src/cpu/x86/vm/assembler_x86_64.cpp

Wed, 07 May 2008 08:06:46 -0700

author
rasbold
date
Wed, 07 May 2008 08:06:46 -0700
changeset 580
f3de1255b035
parent 559
b130b98db9cf
child 599
c436414a719e
child 613
6d172e3548cb
child 777
37f87013dfd8
permissions
-rw-r--r--

6603011: RFE: Optimize long division
Summary: Transform long division by constant into multiply
Reviewed-by: never, kvn

     1 /*
     2  * Copyright 2003-2007 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 #include "incls/_precompiled.incl"
    26 #include "incls/_assembler_x86_64.cpp.incl"
    28 // Implementation of AddressLiteral
    30 AddressLiteral::AddressLiteral(address target, relocInfo::relocType rtype) {
    31   _is_lval = false;
    32   _target = target;
    33   switch (rtype) {
    34   case relocInfo::oop_type:
    35     // Oops are a special case. Normally they would be their own section
    36     // but in cases like icBuffer they are literals in the code stream that
    37     // we don't have a section for. We use none so that we get a literal address
    38     // which is always patchable.
    39     break;
    40   case relocInfo::external_word_type:
    41     _rspec = external_word_Relocation::spec(target);
    42     break;
    43   case relocInfo::internal_word_type:
    44     _rspec = internal_word_Relocation::spec(target);
    45     break;
    46   case relocInfo::opt_virtual_call_type:
    47     _rspec = opt_virtual_call_Relocation::spec();
    48     break;
    49   case relocInfo::static_call_type:
    50     _rspec = static_call_Relocation::spec();
    51     break;
    52   case relocInfo::runtime_call_type:
    53     _rspec = runtime_call_Relocation::spec();
    54     break;
    55   case relocInfo::none:
    56     break;
    57   default:
    58     ShouldNotReachHere();
    59     break;
    60   }
    61 }
    63 // Implementation of Address
    65 Address Address::make_array(ArrayAddress adr) {
    66 #ifdef _LP64
    67   // Not implementable on 64bit machines
    68   // Should have been handled higher up the call chain.
    69   ShouldNotReachHere();
    70   return Address();
    71 #else
    72   AddressLiteral base = adr.base();
    73   Address index = adr.index();
    74   assert(index._disp == 0, "must not have disp"); // maybe it can?
    75   Address array(index._base, index._index, index._scale, (intptr_t) base.target());
    76   array._rspec = base._rspec;
    77   return array;
    78 #endif // _LP64
    79 }
    81 // exceedingly dangerous constructor
    82 Address::Address(int disp, address loc, relocInfo::relocType rtype) {
    83   _base  = noreg;
    84   _index = noreg;
    85   _scale = no_scale;
    86   _disp  = disp;
    87   switch (rtype) {
    88     case relocInfo::external_word_type:
    89       _rspec = external_word_Relocation::spec(loc);
    90       break;
    91     case relocInfo::internal_word_type:
    92       _rspec = internal_word_Relocation::spec(loc);
    93       break;
    94     case relocInfo::runtime_call_type:
    95       // HMM
    96       _rspec = runtime_call_Relocation::spec();
    97       break;
    98     case relocInfo::none:
    99       break;
   100     default:
   101       ShouldNotReachHere();
   102   }
   103 }
   105 // Convert the raw encoding form into the form expected by the constructor for
   106 // Address.  An index of 4 (rsp) corresponds to having no index, so convert
   107 // that to noreg for the Address constructor.
   108 Address Address::make_raw(int base, int index, int scale, int disp) {
   109   bool valid_index = index != rsp->encoding();
   110   if (valid_index) {
   111     Address madr(as_Register(base), as_Register(index), (Address::ScaleFactor)scale, in_ByteSize(disp));
   112     return madr;
   113   } else {
   114     Address madr(as_Register(base), noreg, Address::no_scale, in_ByteSize(disp));
   115     return madr;
   116   }
   117 }
   120 // Implementation of Assembler
   121 int AbstractAssembler::code_fill_byte() {
   122   return (u_char)'\xF4'; // hlt
   123 }
   125 // This should only be used by 64bit instructions that can use rip-relative
   126 // it cannot be used by instructions that want an immediate value.
   128 bool Assembler::reachable(AddressLiteral adr) {
   129   int64_t disp;
   131   // None will force a 64bit literal to the code stream. Likely a placeholder
   132   // for something that will be patched later and we need to certain it will
   133   // always be reachable.
   134   if (adr.reloc() == relocInfo::none) {
   135     return false;
   136   }
   137   if (adr.reloc() == relocInfo::internal_word_type) {
   138     // This should be rip relative and easily reachable.
   139     return true;
   140   }
   141   if (adr.reloc() != relocInfo::external_word_type &&
   142       adr.reloc() != relocInfo::runtime_call_type ) {
   143     return false;
   144   }
   146   // Stress the correction code
   147   if (ForceUnreachable) {
   148     // Must be runtimecall reloc, see if it is in the codecache
   149     // Flipping stuff in the codecache to be unreachable causes issues
   150     // with things like inline caches where the additional instructions
   151     // are not handled.
   152     if (CodeCache::find_blob(adr._target) == NULL) {
   153       return false;
   154     }
   155   }
   156   // For external_word_type/runtime_call_type if it is reachable from where we
   157   // are now (possibly a temp buffer) and where we might end up
   158   // anywhere in the codeCache then we are always reachable.
   159   // This would have to change if we ever save/restore shared code
   160   // to be more pessimistic.
   162   disp = (int64_t)adr._target - ((int64_t)CodeCache::low_bound() + sizeof(int));
   163   if (!is_simm32(disp)) return false;
   164   disp = (int64_t)adr._target - ((int64_t)CodeCache::high_bound() + sizeof(int));
   165   if (!is_simm32(disp)) return false;
   167   disp = (int64_t)adr._target - ((int64_t)_code_pos + sizeof(int));
   169   // Because rip relative is a disp + address_of_next_instruction and we
   170   // don't know the value of address_of_next_instruction we apply a fudge factor
   171   // to make sure we will be ok no matter the size of the instruction we get placed into.
   172   // We don't have to fudge the checks above here because they are already worst case.
   174   // 12 == override/rex byte, opcode byte, rm byte, sib byte, a 4-byte disp , 4-byte literal
   175   // + 4 because better safe than sorry.
   176   const int fudge = 12 + 4;
   177   if (disp < 0) {
   178     disp -= fudge;
   179   } else {
   180     disp += fudge;
   181   }
   182   return is_simm32(disp);
   183 }
   186 // make this go away eventually
   187 void Assembler::emit_data(jint data,
   188                           relocInfo::relocType rtype,
   189                           int format) {
   190   if (rtype == relocInfo::none) {
   191     emit_long(data);
   192   } else {
   193     emit_data(data, Relocation::spec_simple(rtype), format);
   194   }
   195 }
   197 void Assembler::emit_data(jint data,
   198                           RelocationHolder const& rspec,
   199                           int format) {
   200   assert(imm64_operand == 0, "default format must be imm64 in this file");
   201   assert(imm64_operand != format, "must not be imm64");
   202   assert(inst_mark() != NULL, "must be inside InstructionMark");
   203   if (rspec.type() !=  relocInfo::none) {
   204     #ifdef ASSERT
   205       check_relocation(rspec, format);
   206     #endif
   207     // Do not use AbstractAssembler::relocate, which is not intended for
   208     // embedded words.  Instead, relocate to the enclosing instruction.
   210     // hack. call32 is too wide for mask so use disp32
   211     if (format == call32_operand)
   212       code_section()->relocate(inst_mark(), rspec, disp32_operand);
   213     else
   214       code_section()->relocate(inst_mark(), rspec, format);
   215   }
   216   emit_long(data);
   217 }
   219 void Assembler::emit_data64(jlong data,
   220                             relocInfo::relocType rtype,
   221                             int format) {
   222   if (rtype == relocInfo::none) {
   223     emit_long64(data);
   224   } else {
   225     emit_data64(data, Relocation::spec_simple(rtype), format);
   226   }
   227 }
   229 void Assembler::emit_data64(jlong data,
   230                             RelocationHolder const& rspec,
   231                             int format) {
   232   assert(imm64_operand == 0, "default format must be imm64 in this file");
   233   assert(imm64_operand == format, "must be imm64");
   234   assert(inst_mark() != NULL, "must be inside InstructionMark");
   235   // Do not use AbstractAssembler::relocate, which is not intended for
   236   // embedded words.  Instead, relocate to the enclosing instruction.
   237   code_section()->relocate(inst_mark(), rspec, format);
   238 #ifdef ASSERT
   239   check_relocation(rspec, format);
   240 #endif
   241   emit_long64(data);
   242 }
   244 void Assembler::emit_arith_b(int op1, int op2, Register dst, int imm8) {
   245   assert(isByte(op1) && isByte(op2), "wrong opcode");
   246   assert(isByte(imm8), "not a byte");
   247   assert((op1 & 0x01) == 0, "should be 8bit operation");
   248   int dstenc = dst->encoding();
   249   if (dstenc >= 8) {
   250     dstenc -= 8;
   251   }
   252   emit_byte(op1);
   253   emit_byte(op2 | dstenc);
   254   emit_byte(imm8);
   255 }
   257 void Assembler::emit_arith(int op1, int op2, Register dst, int imm32) {
   258   assert(isByte(op1) && isByte(op2), "wrong opcode");
   259   assert((op1 & 0x01) == 1, "should be 32bit operation");
   260   assert((op1 & 0x02) == 0, "sign-extension bit should not be set");
   261   int dstenc = dst->encoding();
   262   if (dstenc >= 8) {
   263     dstenc -= 8;
   264   }
   265   if (is8bit(imm32)) {
   266     emit_byte(op1 | 0x02); // set sign bit
   267     emit_byte(op2 | dstenc);
   268     emit_byte(imm32 & 0xFF);
   269   } else {
   270     emit_byte(op1);
   271     emit_byte(op2 | dstenc);
   272     emit_long(imm32);
   273   }
   274 }
   276 // immediate-to-memory forms
   277 void Assembler::emit_arith_operand(int op1,
   278                                    Register rm, Address adr,
   279                                    int imm32) {
   280   assert((op1 & 0x01) == 1, "should be 32bit operation");
   281   assert((op1 & 0x02) == 0, "sign-extension bit should not be set");
   282   if (is8bit(imm32)) {
   283     emit_byte(op1 | 0x02); // set sign bit
   284     emit_operand(rm, adr, 1);
   285     emit_byte(imm32 & 0xFF);
   286   } else {
   287     emit_byte(op1);
   288     emit_operand(rm, adr, 4);
   289     emit_long(imm32);
   290   }
   291 }
   294 void Assembler::emit_arith(int op1, int op2, Register dst, Register src) {
   295   assert(isByte(op1) && isByte(op2), "wrong opcode");
   296   int dstenc = dst->encoding();
   297   int srcenc = src->encoding();
   298   if (dstenc >= 8) {
   299     dstenc -= 8;
   300   }
   301   if (srcenc >= 8) {
   302     srcenc -= 8;
   303   }
   304   emit_byte(op1);
   305   emit_byte(op2 | dstenc << 3 | srcenc);
   306 }
   308 void Assembler::emit_operand(Register reg, Register base, Register index,
   309                              Address::ScaleFactor scale, int disp,
   310                              RelocationHolder const& rspec,
   311                              int rip_relative_correction) {
   312   relocInfo::relocType rtype = (relocInfo::relocType) rspec.type();
   313   int regenc = reg->encoding();
   314   if (regenc >= 8) {
   315     regenc -= 8;
   316   }
   317   if (base->is_valid()) {
   318     if (index->is_valid()) {
   319       assert(scale != Address::no_scale, "inconsistent address");
   320       int indexenc = index->encoding();
   321       if (indexenc >= 8) {
   322         indexenc -= 8;
   323       }
   324       int baseenc = base->encoding();
   325       if (baseenc >= 8) {
   326         baseenc -= 8;
   327       }
   328       // [base + index*scale + disp]
   329       if (disp == 0 && rtype == relocInfo::none  &&
   330           base != rbp && base != r13) {
   331         // [base + index*scale]
   332         // [00 reg 100][ss index base]
   333         assert(index != rsp, "illegal addressing mode");
   334         emit_byte(0x04 | regenc << 3);
   335         emit_byte(scale << 6 | indexenc << 3 | baseenc);
   336       } else if (is8bit(disp) && rtype == relocInfo::none) {
   337         // [base + index*scale + imm8]
   338         // [01 reg 100][ss index base] imm8
   339         assert(index != rsp, "illegal addressing mode");
   340         emit_byte(0x44 | regenc << 3);
   341         emit_byte(scale << 6 | indexenc << 3 | baseenc);
   342         emit_byte(disp & 0xFF);
   343       } else {
   344         // [base + index*scale + disp32]
   345         // [10 reg 100][ss index base] disp32
   346         assert(index != rsp, "illegal addressing mode");
   347         emit_byte(0x84 | regenc << 3);
   348         emit_byte(scale << 6 | indexenc << 3 | baseenc);
   349         emit_data(disp, rspec, disp32_operand);
   350       }
   351     } else if (base == rsp || base == r12) {
   352       // [rsp + disp]
   353       if (disp == 0 && rtype == relocInfo::none) {
   354         // [rsp]
   355         // [00 reg 100][00 100 100]
   356         emit_byte(0x04 | regenc << 3);
   357         emit_byte(0x24);
   358       } else if (is8bit(disp) && rtype == relocInfo::none) {
   359         // [rsp + imm8]
   360         // [01 reg 100][00 100 100] disp8
   361         emit_byte(0x44 | regenc << 3);
   362         emit_byte(0x24);
   363         emit_byte(disp & 0xFF);
   364       } else {
   365         // [rsp + imm32]
   366         // [10 reg 100][00 100 100] disp32
   367         emit_byte(0x84 | regenc << 3);
   368         emit_byte(0x24);
   369         emit_data(disp, rspec, disp32_operand);
   370       }
   371     } else {
   372       // [base + disp]
   373       assert(base != rsp && base != r12, "illegal addressing mode");
   374       int baseenc = base->encoding();
   375       if (baseenc >= 8) {
   376         baseenc -= 8;
   377       }
   378       if (disp == 0 && rtype == relocInfo::none &&
   379           base != rbp && base != r13) {
   380         // [base]
   381         // [00 reg base]
   382         emit_byte(0x00 | regenc << 3 | baseenc);
   383       } else if (is8bit(disp) && rtype == relocInfo::none) {
   384         // [base + disp8]
   385         // [01 reg base] disp8
   386         emit_byte(0x40 | regenc << 3 | baseenc);
   387         emit_byte(disp & 0xFF);
   388       } else {
   389         // [base + disp32]
   390         // [10 reg base] disp32
   391         emit_byte(0x80 | regenc << 3 | baseenc);
   392         emit_data(disp, rspec, disp32_operand);
   393       }
   394     }
   395   } else {
   396     if (index->is_valid()) {
   397       assert(scale != Address::no_scale, "inconsistent address");
   398       int indexenc = index->encoding();
   399       if (indexenc >= 8) {
   400         indexenc -= 8;
   401       }
   402       // [index*scale + disp]
   403       // [00 reg 100][ss index 101] disp32
   404       assert(index != rsp, "illegal addressing mode");
   405       emit_byte(0x04 | regenc << 3);
   406       emit_byte(scale << 6 | indexenc << 3 | 0x05);
   407       emit_data(disp, rspec, disp32_operand);
   408 #ifdef _LP64
   409     } else if (rtype != relocInfo::none ) {
   410       // [disp] RIP-RELATIVE
   411       // [00 000 101] disp32
   413       emit_byte(0x05 | regenc << 3);
   414       // Note that the RIP-rel. correction applies to the generated
   415       // disp field, but _not_ to the target address in the rspec.
   417       // disp was created by converting the target address minus the pc
   418       // at the start of the instruction. That needs more correction here.
   419       // intptr_t disp = target - next_ip;
   420       assert(inst_mark() != NULL, "must be inside InstructionMark");
   421       address next_ip = pc() + sizeof(int32_t) + rip_relative_correction;
   422       int64_t adjusted = (int64_t) disp -  (next_ip - inst_mark());
   423       assert(is_simm32(adjusted),
   424              "must be 32bit offset (RIP relative address)");
   425       emit_data((int) adjusted, rspec, disp32_operand);
   427 #endif // _LP64
   428     } else {
   429       // [disp] ABSOLUTE
   430       // [00 reg 100][00 100 101] disp32
   431       emit_byte(0x04 | regenc << 3);
   432       emit_byte(0x25);
   433       emit_data(disp, rspec, disp32_operand);
   434     }
   435   }
   436 }
   438 void Assembler::emit_operand(XMMRegister reg, Register base, Register index,
   439                              Address::ScaleFactor scale, int disp,
   440                              RelocationHolder const& rspec,
   441                              int rip_relative_correction) {
   442   relocInfo::relocType rtype = (relocInfo::relocType) rspec.type();
   443   int regenc = reg->encoding();
   444   if (regenc >= 8) {
   445     regenc -= 8;
   446   }
   447   if (base->is_valid()) {
   448     if (index->is_valid()) {
   449       assert(scale != Address::no_scale, "inconsistent address");
   450       int indexenc = index->encoding();
   451       if (indexenc >= 8) {
   452         indexenc -= 8;
   453       }
   454       int baseenc = base->encoding();
   455       if (baseenc >= 8) {
   456         baseenc -= 8;
   457       }
   458       // [base + index*scale + disp]
   459       if (disp == 0 && rtype == relocInfo::none  &&
   460           base != rbp && base != r13) {
   461         // [base + index*scale]
   462         // [00 reg 100][ss index base]
   463         assert(index != rsp, "illegal addressing mode");
   464         emit_byte(0x04 | regenc << 3);
   465         emit_byte(scale << 6 | indexenc << 3 | baseenc);
   466       } else if (is8bit(disp) && rtype == relocInfo::none) {
   467         // [base + index*scale + disp8]
   468         // [01 reg 100][ss index base] disp8
   469         assert(index != rsp, "illegal addressing mode");
   470         emit_byte(0x44 | regenc << 3);
   471         emit_byte(scale << 6 | indexenc << 3 | baseenc);
   472         emit_byte(disp & 0xFF);
   473       } else {
   474         // [base + index*scale + disp32]
   475         // [10 reg 100][ss index base] disp32
   476         assert(index != rsp, "illegal addressing mode");
   477         emit_byte(0x84 | regenc << 3);
   478         emit_byte(scale << 6 | indexenc << 3 | baseenc);
   479         emit_data(disp, rspec, disp32_operand);
   480       }
   481     } else if (base == rsp || base == r12) {
   482       // [rsp + disp]
   483       if (disp == 0 && rtype == relocInfo::none) {
   484         // [rsp]
   485         // [00 reg 100][00 100 100]
   486         emit_byte(0x04 | regenc << 3);
   487         emit_byte(0x24);
   488       } else if (is8bit(disp) && rtype == relocInfo::none) {
   489         // [rsp + imm8]
   490         // [01 reg 100][00 100 100] disp8
   491         emit_byte(0x44 | regenc << 3);
   492         emit_byte(0x24);
   493         emit_byte(disp & 0xFF);
   494       } else {
   495         // [rsp + imm32]
   496         // [10 reg 100][00 100 100] disp32
   497         emit_byte(0x84 | regenc << 3);
   498         emit_byte(0x24);
   499         emit_data(disp, rspec, disp32_operand);
   500       }
   501     } else {
   502       // [base + disp]
   503       assert(base != rsp && base != r12, "illegal addressing mode");
   504       int baseenc = base->encoding();
   505       if (baseenc >= 8) {
   506         baseenc -= 8;
   507       }
   508       if (disp == 0 && rtype == relocInfo::none &&
   509           base != rbp && base != r13) {
   510         // [base]
   511         // [00 reg base]
   512         emit_byte(0x00 | regenc << 3 | baseenc);
   513       } else if (is8bit(disp) && rtype == relocInfo::none) {
   514         // [base + imm8]
   515         // [01 reg base] disp8
   516         emit_byte(0x40 | regenc << 3 | baseenc);
   517         emit_byte(disp & 0xFF);
   518       } else {
   519         // [base + imm32]
   520         // [10 reg base] disp32
   521         emit_byte(0x80 | regenc << 3 | baseenc);
   522         emit_data(disp, rspec, disp32_operand);
   523       }
   524     }
   525   } else {
   526     if (index->is_valid()) {
   527       assert(scale != Address::no_scale, "inconsistent address");
   528       int indexenc = index->encoding();
   529       if (indexenc >= 8) {
   530         indexenc -= 8;
   531       }
   532       // [index*scale + disp]
   533       // [00 reg 100][ss index 101] disp32
   534       assert(index != rsp, "illegal addressing mode");
   535       emit_byte(0x04 | regenc << 3);
   536       emit_byte(scale << 6 | indexenc << 3 | 0x05);
   537       emit_data(disp, rspec, disp32_operand);
   538 #ifdef _LP64
   539     } else if ( rtype != relocInfo::none ) {
   540       // [disp] RIP-RELATIVE
   541       // [00 reg 101] disp32
   542       emit_byte(0x05 | regenc << 3);
   543       // Note that the RIP-rel. correction applies to the generated
   544       // disp field, but _not_ to the target address in the rspec.
   546       // disp was created by converting the target address minus the pc
   547       // at the start of the instruction. That needs more correction here.
   548       // intptr_t disp = target - next_ip;
   550       assert(inst_mark() != NULL, "must be inside InstructionMark");
   551       address next_ip = pc() + sizeof(int32_t) + rip_relative_correction;
   553       int64_t adjusted = (int64_t) disp -  (next_ip - inst_mark());
   554       assert(is_simm32(adjusted),
   555              "must be 32bit offset (RIP relative address)");
   556       emit_data((int) adjusted, rspec, disp32_operand);
   557 #endif // _LP64
   558     } else {
   559       // [disp] ABSOLUTE
   560       // [00 reg 100][00 100 101] disp32
   561       emit_byte(0x04 | regenc << 3);
   562       emit_byte(0x25);
   563       emit_data(disp, rspec, disp32_operand);
   564     }
   565   }
   566 }
   568 // Secret local extension to Assembler::WhichOperand:
   569 #define end_pc_operand (_WhichOperand_limit)
   571 address Assembler::locate_operand(address inst, WhichOperand which) {
   572   // Decode the given instruction, and return the address of
   573   // an embedded 32-bit operand word.
   575   // If "which" is disp32_operand, selects the displacement portion
   576   // of an effective address specifier.
   577   // If "which" is imm64_operand, selects the trailing immediate constant.
   578   // If "which" is call32_operand, selects the displacement of a call or jump.
   579   // Caller is responsible for ensuring that there is such an operand,
   580   // and that it is 32/64 bits wide.
   582   // If "which" is end_pc_operand, find the end of the instruction.
   584   address ip = inst;
   585   bool is_64bit = false;
   587   debug_only(bool has_disp32 = false);
   588   int tail_size = 0; // other random bytes (#32, #16, etc.) at end of insn
   590   again_after_prefix:
   591   switch (0xFF & *ip++) {
   593   // These convenience macros generate groups of "case" labels for the switch.
   594 #define REP4(x) (x)+0: case (x)+1: case (x)+2: case (x)+3
   595 #define REP8(x) (x)+0: case (x)+1: case (x)+2: case (x)+3: \
   596              case (x)+4: case (x)+5: case (x)+6: case (x)+7
   597 #define REP16(x) REP8((x)+0): \
   598               case REP8((x)+8)
   600   case CS_segment:
   601   case SS_segment:
   602   case DS_segment:
   603   case ES_segment:
   604   case FS_segment:
   605   case GS_segment:
   606     assert(0, "shouldn't have that prefix");
   607     assert(ip == inst + 1 || ip == inst + 2, "only two prefixes allowed");
   608     goto again_after_prefix;
   610   case 0x67:
   611   case REX:
   612   case REX_B:
   613   case REX_X:
   614   case REX_XB:
   615   case REX_R:
   616   case REX_RB:
   617   case REX_RX:
   618   case REX_RXB:
   619 //     assert(ip == inst + 1, "only one prefix allowed");
   620     goto again_after_prefix;
   622   case REX_W:
   623   case REX_WB:
   624   case REX_WX:
   625   case REX_WXB:
   626   case REX_WR:
   627   case REX_WRB:
   628   case REX_WRX:
   629   case REX_WRXB:
   630     is_64bit = true;
   631 //     assert(ip == inst + 1, "only one prefix allowed");
   632     goto again_after_prefix;
   634   case 0xFF: // pushq a; decl a; incl a; call a; jmp a
   635   case 0x88: // movb a, r
   636   case 0x89: // movl a, r
   637   case 0x8A: // movb r, a
   638   case 0x8B: // movl r, a
   639   case 0x8F: // popl a
   640     debug_only(has_disp32 = true;)
   641     break;
   643   case 0x68: // pushq #32
   644     if (which == end_pc_operand) {
   645       return ip + 4;
   646     }
   647     assert(0, "pushq has no disp32 or imm64");
   648     ShouldNotReachHere();
   650   case 0x66: // movw ... (size prefix)
   651     again_after_size_prefix2:
   652     switch (0xFF & *ip++) {
   653     case REX:
   654     case REX_B:
   655     case REX_X:
   656     case REX_XB:
   657     case REX_R:
   658     case REX_RB:
   659     case REX_RX:
   660     case REX_RXB:
   661     case REX_W:
   662     case REX_WB:
   663     case REX_WX:
   664     case REX_WXB:
   665     case REX_WR:
   666     case REX_WRB:
   667     case REX_WRX:
   668     case REX_WRXB:
   669       goto again_after_size_prefix2;
   670     case 0x8B: // movw r, a
   671     case 0x89: // movw a, r
   672       break;
   673     case 0xC7: // movw a, #16
   674       tail_size = 2;  // the imm16
   675       break;
   676     case 0x0F: // several SSE/SSE2 variants
   677       ip--;    // reparse the 0x0F
   678       goto again_after_prefix;
   679     default:
   680       ShouldNotReachHere();
   681     }
   682     break;
   684   case REP8(0xB8): // movl/q r, #32/#64(oop?)
   685     if (which == end_pc_operand)  return ip + (is_64bit ? 8 : 4);
   686     assert((which == call32_operand || which == imm64_operand) && is_64bit, "");
   687     return ip;
   689   case 0x69: // imul r, a, #32
   690   case 0xC7: // movl a, #32(oop?)
   691     tail_size = 4;
   692     debug_only(has_disp32 = true); // has both kinds of operands!
   693     break;
   695   case 0x0F: // movx..., etc.
   696     switch (0xFF & *ip++) {
   697     case 0x12: // movlps
   698     case 0x28: // movaps
   699     case 0x2E: // ucomiss
   700     case 0x2F: // comiss
   701     case 0x54: // andps
   702     case 0x57: // xorps
   703     case 0x6E: // movd
   704     case 0x7E: // movd
   705     case 0xAE: // ldmxcsr   a
   706       debug_only(has_disp32 = true); // has both kinds of operands!
   707       break;
   708     case 0xAD: // shrd r, a, %cl
   709     case 0xAF: // imul r, a
   710     case 0xBE: // movsbl r, a
   711     case 0xBF: // movswl r, a
   712     case 0xB6: // movzbl r, a
   713     case 0xB7: // movzwl r, a
   714     case REP16(0x40): // cmovl cc, r, a
   715     case 0xB0: // cmpxchgb
   716     case 0xB1: // cmpxchg
   717     case 0xC1: // xaddl
   718     case 0xC7: // cmpxchg8
   719     case REP16(0x90): // setcc a
   720       debug_only(has_disp32 = true);
   721       // fall out of the switch to decode the address
   722       break;
   723     case 0xAC: // shrd r, a, #8
   724       debug_only(has_disp32 = true);
   725       tail_size = 1;  // the imm8
   726       break;
   727     case REP16(0x80): // jcc rdisp32
   728       if (which == end_pc_operand)  return ip + 4;
   729       assert(which == call32_operand, "jcc has no disp32 or imm64");
   730       return ip;
   731     default:
   732       ShouldNotReachHere();
   733     }
   734     break;
   736   case 0x81: // addl a, #32; addl r, #32
   737     // also: orl, adcl, sbbl, andl, subl, xorl, cmpl
   738     tail_size = 4;
   739     debug_only(has_disp32 = true); // has both kinds of operands!
   740     break;
   742   case 0x83: // addl a, #8; addl r, #8
   743     // also: orl, adcl, sbbl, andl, subl, xorl, cmpl
   744     debug_only(has_disp32 = true); // has both kinds of operands!
   745     tail_size = 1;
   746     break;
   748   case 0x9B:
   749     switch (0xFF & *ip++) {
   750     case 0xD9: // fnstcw a
   751       debug_only(has_disp32 = true);
   752       break;
   753     default:
   754       ShouldNotReachHere();
   755     }
   756     break;
   758   case REP4(0x00): // addb a, r; addl a, r; addb r, a; addl r, a
   759   case REP4(0x10): // adc...
   760   case REP4(0x20): // and...
   761   case REP4(0x30): // xor...
   762   case REP4(0x08): // or...
   763   case REP4(0x18): // sbb...
   764   case REP4(0x28): // sub...
   765   case 0xF7: // mull a
   766   case 0x87: // xchg r, a
   767     debug_only(has_disp32 = true);
   768     break;
   769   case REP4(0x38): // cmp...
   770   case 0x8D: // lea r, a
   771   case 0x85: // test r, a
   772     debug_only(has_disp32 = true); // has both kinds of operands!
   773     break;
   775   case 0xC1: // sal a, #8; sar a, #8; shl a, #8; shr a, #8
   776   case 0xC6: // movb a, #8
   777   case 0x80: // cmpb a, #8
   778   case 0x6B: // imul r, a, #8
   779     debug_only(has_disp32 = true); // has both kinds of operands!
   780     tail_size = 1; // the imm8
   781     break;
   783   case 0xE8: // call rdisp32
   784   case 0xE9: // jmp  rdisp32
   785     if (which == end_pc_operand)  return ip + 4;
   786     assert(which == call32_operand, "call has no disp32 or imm32");
   787     return ip;
   789   case 0xD1: // sal a, 1; sar a, 1; shl a, 1; shr a, 1
   790   case 0xD3: // sal a, %cl; sar a, %cl; shl a, %cl; shr a, %cl
   791   case 0xD9: // fld_s a; fst_s a; fstp_s a; fldcw a
   792   case 0xDD: // fld_d a; fst_d a; fstp_d a
   793   case 0xDB: // fild_s a; fistp_s a; fld_x a; fstp_x a
   794   case 0xDF: // fild_d a; fistp_d a
   795   case 0xD8: // fadd_s a; fsubr_s a; fmul_s a; fdivr_s a; fcomp_s a
   796   case 0xDC: // fadd_d a; fsubr_d a; fmul_d a; fdivr_d a; fcomp_d a
   797   case 0xDE: // faddp_d a; fsubrp_d a; fmulp_d a; fdivrp_d a; fcompp_d a
   798     debug_only(has_disp32 = true);
   799     break;
   801   case 0xF3:                    // For SSE
   802   case 0xF2:                    // For SSE2
   803     switch (0xFF & *ip++) {
   804     case REX:
   805     case REX_B:
   806     case REX_X:
   807     case REX_XB:
   808     case REX_R:
   809     case REX_RB:
   810     case REX_RX:
   811     case REX_RXB:
   812     case REX_W:
   813     case REX_WB:
   814     case REX_WX:
   815     case REX_WXB:
   816     case REX_WR:
   817     case REX_WRB:
   818     case REX_WRX:
   819     case REX_WRXB:
   820       ip++;
   821     default:
   822       ip++;
   823     }
   824     debug_only(has_disp32 = true); // has both kinds of operands!
   825     break;
   827   default:
   828     ShouldNotReachHere();
   830 #undef REP8
   831 #undef REP16
   832   }
   834   assert(which != call32_operand, "instruction is not a call, jmp, or jcc");
   835   assert(which != imm64_operand, "instruction is not a movq reg, imm64");
   836   assert(which != disp32_operand || has_disp32, "instruction has no disp32 field");
   838   // parse the output of emit_operand
   839   int op2 = 0xFF & *ip++;
   840   int base = op2 & 0x07;
   841   int op3 = -1;
   842   const int b100 = 4;
   843   const int b101 = 5;
   844   if (base == b100 && (op2 >> 6) != 3) {
   845     op3 = 0xFF & *ip++;
   846     base = op3 & 0x07;   // refetch the base
   847   }
   848   // now ip points at the disp (if any)
   850   switch (op2 >> 6) {
   851   case 0:
   852     // [00 reg  100][ss index base]
   853     // [00 reg  100][00   100  esp]
   854     // [00 reg base]
   855     // [00 reg  100][ss index  101][disp32]
   856     // [00 reg  101]               [disp32]
   858     if (base == b101) {
   859       if (which == disp32_operand)
   860         return ip;              // caller wants the disp32
   861       ip += 4;                  // skip the disp32
   862     }
   863     break;
   865   case 1:
   866     // [01 reg  100][ss index base][disp8]
   867     // [01 reg  100][00   100  esp][disp8]
   868     // [01 reg base]               [disp8]
   869     ip += 1;                    // skip the disp8
   870     break;
   872   case 2:
   873     // [10 reg  100][ss index base][disp32]
   874     // [10 reg  100][00   100  esp][disp32]
   875     // [10 reg base]               [disp32]
   876     if (which == disp32_operand)
   877       return ip;                // caller wants the disp32
   878     ip += 4;                    // skip the disp32
   879     break;
   881   case 3:
   882     // [11 reg base]  (not a memory addressing mode)
   883     break;
   884   }
   886   if (which == end_pc_operand) {
   887     return ip + tail_size;
   888   }
   890   assert(0, "fix locate_operand");
   891   return ip;
   892 }
   894 address Assembler::locate_next_instruction(address inst) {
   895   // Secretly share code with locate_operand:
   896   return locate_operand(inst, end_pc_operand);
   897 }
   899 #ifdef ASSERT
   900 void Assembler::check_relocation(RelocationHolder const& rspec, int format) {
   901   address inst = inst_mark();
   902   assert(inst != NULL && inst < pc(),
   903          "must point to beginning of instruction");
   904   address opnd;
   906   Relocation* r = rspec.reloc();
   907   if (r->type() == relocInfo::none) {
   908     return;
   909   } else if (r->is_call() || format == call32_operand) {
   910     opnd = locate_operand(inst, call32_operand);
   911   } else if (r->is_data()) {
   912     assert(format == imm64_operand || format == disp32_operand, "format ok");
   913     opnd = locate_operand(inst, (WhichOperand) format);
   914   } else {
   915     assert(format == 0, "cannot specify a format");
   916     return;
   917   }
   918   assert(opnd == pc(), "must put operand where relocs can find it");
   919 }
   920 #endif
   922 int Assembler::prefix_and_encode(int reg_enc, bool byteinst) {
   923   if (reg_enc >= 8) {
   924     prefix(REX_B);
   925     reg_enc -= 8;
   926   } else if (byteinst && reg_enc >= 4) {
   927     prefix(REX);
   928   }
   929   return reg_enc;
   930 }
   932 int Assembler::prefixq_and_encode(int reg_enc) {
   933   if (reg_enc < 8) {
   934     prefix(REX_W);
   935   } else {
   936     prefix(REX_WB);
   937     reg_enc -= 8;
   938   }
   939   return reg_enc;
   940 }
   942 int Assembler::prefix_and_encode(int dst_enc, int src_enc, bool byteinst) {
   943   if (dst_enc < 8) {
   944     if (src_enc >= 8) {
   945       prefix(REX_B);
   946       src_enc -= 8;
   947     } else if (byteinst && src_enc >= 4) {
   948       prefix(REX);
   949     }
   950   } else {
   951     if (src_enc < 8) {
   952       prefix(REX_R);
   953     } else {
   954       prefix(REX_RB);
   955       src_enc -= 8;
   956     }
   957     dst_enc -= 8;
   958   }
   959   return dst_enc << 3 | src_enc;
   960 }
   962 int Assembler::prefixq_and_encode(int dst_enc, int src_enc) {
   963   if (dst_enc < 8) {
   964     if (src_enc < 8) {
   965       prefix(REX_W);
   966     } else {
   967       prefix(REX_WB);
   968       src_enc -= 8;
   969     }
   970   } else {
   971     if (src_enc < 8) {
   972       prefix(REX_WR);
   973     } else {
   974       prefix(REX_WRB);
   975       src_enc -= 8;
   976     }
   977     dst_enc -= 8;
   978   }
   979   return dst_enc << 3 | src_enc;
   980 }
   982 void Assembler::prefix(Register reg) {
   983   if (reg->encoding() >= 8) {
   984     prefix(REX_B);
   985   }
   986 }
   988 void Assembler::prefix(Address adr) {
   989   if (adr.base_needs_rex()) {
   990     if (adr.index_needs_rex()) {
   991       prefix(REX_XB);
   992     } else {
   993       prefix(REX_B);
   994     }
   995   } else {
   996     if (adr.index_needs_rex()) {
   997       prefix(REX_X);
   998     }
   999   }
  1002 void Assembler::prefixq(Address adr) {
  1003   if (adr.base_needs_rex()) {
  1004     if (adr.index_needs_rex()) {
  1005       prefix(REX_WXB);
  1006     } else {
  1007       prefix(REX_WB);
  1009   } else {
  1010     if (adr.index_needs_rex()) {
  1011       prefix(REX_WX);
  1012     } else {
  1013       prefix(REX_W);
  1019 void Assembler::prefix(Address adr, Register reg, bool byteinst) {
  1020   if (reg->encoding() < 8) {
  1021     if (adr.base_needs_rex()) {
  1022       if (adr.index_needs_rex()) {
  1023         prefix(REX_XB);
  1024       } else {
  1025         prefix(REX_B);
  1027     } else {
  1028       if (adr.index_needs_rex()) {
  1029         prefix(REX_X);
  1030       } else if (reg->encoding() >= 4 ) {
  1031         prefix(REX);
  1034   } else {
  1035     if (adr.base_needs_rex()) {
  1036       if (adr.index_needs_rex()) {
  1037         prefix(REX_RXB);
  1038       } else {
  1039         prefix(REX_RB);
  1041     } else {
  1042       if (adr.index_needs_rex()) {
  1043         prefix(REX_RX);
  1044       } else {
  1045         prefix(REX_R);
  1051 void Assembler::prefixq(Address adr, Register src) {
  1052   if (src->encoding() < 8) {
  1053     if (adr.base_needs_rex()) {
  1054       if (adr.index_needs_rex()) {
  1055         prefix(REX_WXB);
  1056       } else {
  1057         prefix(REX_WB);
  1059     } else {
  1060       if (adr.index_needs_rex()) {
  1061         prefix(REX_WX);
  1062       } else {
  1063         prefix(REX_W);
  1066   } else {
  1067     if (adr.base_needs_rex()) {
  1068       if (adr.index_needs_rex()) {
  1069         prefix(REX_WRXB);
  1070       } else {
  1071         prefix(REX_WRB);
  1073     } else {
  1074       if (adr.index_needs_rex()) {
  1075         prefix(REX_WRX);
  1076       } else {
  1077         prefix(REX_WR);
  1083 void Assembler::prefix(Address adr, XMMRegister reg) {
  1084   if (reg->encoding() < 8) {
  1085     if (adr.base_needs_rex()) {
  1086       if (adr.index_needs_rex()) {
  1087         prefix(REX_XB);
  1088       } else {
  1089         prefix(REX_B);
  1091     } else {
  1092       if (adr.index_needs_rex()) {
  1093         prefix(REX_X);
  1096   } else {
  1097     if (adr.base_needs_rex()) {
  1098       if (adr.index_needs_rex()) {
  1099         prefix(REX_RXB);
  1100       } else {
  1101         prefix(REX_RB);
  1103     } else {
  1104       if (adr.index_needs_rex()) {
  1105         prefix(REX_RX);
  1106       } else {
  1107         prefix(REX_R);
  1113 void Assembler::emit_operand(Register reg, Address adr,
  1114                              int rip_relative_correction) {
  1115   emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp,
  1116                adr._rspec,
  1117                rip_relative_correction);
  1120 void Assembler::emit_operand(XMMRegister reg, Address adr,
  1121                              int rip_relative_correction) {
  1122   emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp,
  1123                adr._rspec,
  1124                rip_relative_correction);
  1127 void Assembler::emit_farith(int b1, int b2, int i) {
  1128   assert(isByte(b1) && isByte(b2), "wrong opcode");
  1129   assert(0 <= i &&  i < 8, "illegal stack offset");
  1130   emit_byte(b1);
  1131   emit_byte(b2 + i);
  1134 // pushad is invalid, use this instead.
  1135 // NOTE: Kills flags!!
  1136 void Assembler::pushaq() {
  1137   // we have to store original rsp.  ABI says that 128 bytes
  1138   // below rsp are local scratch.
  1139   movq(Address(rsp, -5 * wordSize), rsp);
  1141   subq(rsp, 16 * wordSize);
  1143   movq(Address(rsp, 15 * wordSize), rax);
  1144   movq(Address(rsp, 14 * wordSize), rcx);
  1145   movq(Address(rsp, 13 * wordSize), rdx);
  1146   movq(Address(rsp, 12 * wordSize), rbx);
  1147   // skip rsp
  1148   movq(Address(rsp, 10 * wordSize), rbp);
  1149   movq(Address(rsp, 9 * wordSize), rsi);
  1150   movq(Address(rsp, 8 * wordSize), rdi);
  1151   movq(Address(rsp, 7 * wordSize), r8);
  1152   movq(Address(rsp, 6 * wordSize), r9);
  1153   movq(Address(rsp, 5 * wordSize), r10);
  1154   movq(Address(rsp, 4 * wordSize), r11);
  1155   movq(Address(rsp, 3 * wordSize), r12);
  1156   movq(Address(rsp, 2 * wordSize), r13);
  1157   movq(Address(rsp, wordSize), r14);
  1158   movq(Address(rsp, 0), r15);
  1161 // popad is invalid, use this instead
  1162 // NOTE: Kills flags!!
  1163 void Assembler::popaq() {
  1164   movq(r15, Address(rsp, 0));
  1165   movq(r14, Address(rsp, wordSize));
  1166   movq(r13, Address(rsp, 2 * wordSize));
  1167   movq(r12, Address(rsp, 3 * wordSize));
  1168   movq(r11, Address(rsp, 4 * wordSize));
  1169   movq(r10, Address(rsp, 5 * wordSize));
  1170   movq(r9,  Address(rsp, 6 * wordSize));
  1171   movq(r8,  Address(rsp, 7 * wordSize));
  1172   movq(rdi, Address(rsp, 8 * wordSize));
  1173   movq(rsi, Address(rsp, 9 * wordSize));
  1174   movq(rbp, Address(rsp, 10 * wordSize));
  1175   // skip rsp
  1176   movq(rbx, Address(rsp, 12 * wordSize));
  1177   movq(rdx, Address(rsp, 13 * wordSize));
  1178   movq(rcx, Address(rsp, 14 * wordSize));
  1179   movq(rax, Address(rsp, 15 * wordSize));
  1181   addq(rsp, 16 * wordSize);
  1184 void Assembler::pushfq() {
  1185   emit_byte(0x9C);
  1188 void Assembler::popfq() {
  1189   emit_byte(0x9D);
  1192 void Assembler::pushq(int imm32) {
  1193   emit_byte(0x68);
  1194   emit_long(imm32);
  1197 void Assembler::pushq(Register src) {
  1198   int encode = prefix_and_encode(src->encoding());
  1200   emit_byte(0x50 | encode);
  1203 void Assembler::pushq(Address src) {
  1204   InstructionMark im(this);
  1205   prefix(src);
  1206   emit_byte(0xFF);
  1207   emit_operand(rsi, src);
  1210 void Assembler::popq(Register dst) {
  1211   int encode = prefix_and_encode(dst->encoding());
  1212   emit_byte(0x58 | encode);
  1215 void Assembler::popq(Address dst) {
  1216   InstructionMark im(this);
  1217   prefix(dst);
  1218   emit_byte(0x8F);
  1219   emit_operand(rax, dst);
  1222 void Assembler::prefix(Prefix p) {
  1223   a_byte(p);
  1226 void Assembler::movb(Register dst, Address src) {
  1227   InstructionMark im(this);
  1228   prefix(src, dst, true);
  1229   emit_byte(0x8A);
  1230   emit_operand(dst, src);
  1233 void Assembler::movb(Address dst, int imm8) {
  1234   InstructionMark im(this);
  1235   prefix(dst);
  1236   emit_byte(0xC6);
  1237   emit_operand(rax, dst, 1);
  1238   emit_byte(imm8);
  1241 void Assembler::movb(Address dst, Register src) {
  1242   InstructionMark im(this);
  1243   prefix(dst, src, true);
  1244   emit_byte(0x88);
  1245   emit_operand(src, dst);
  1248 void Assembler::movw(Address dst, int imm16) {
  1249   InstructionMark im(this);
  1250   emit_byte(0x66); // switch to 16-bit mode
  1251   prefix(dst);
  1252   emit_byte(0xC7);
  1253   emit_operand(rax, dst, 2);
  1254   emit_word(imm16);
  1257 void Assembler::movw(Register dst, Address src) {
  1258   InstructionMark im(this);
  1259   emit_byte(0x66);
  1260   prefix(src, dst);
  1261   emit_byte(0x8B);
  1262   emit_operand(dst, src);
  1265 void Assembler::movw(Address dst, Register src) {
  1266   InstructionMark im(this);
  1267   emit_byte(0x66);
  1268   prefix(dst, src);
  1269   emit_byte(0x89);
  1270   emit_operand(src, dst);
  1273 // Uses zero extension.
  1274 void Assembler::movl(Register dst, int imm32) {
  1275   int encode = prefix_and_encode(dst->encoding());
  1276   emit_byte(0xB8 | encode);
  1277   emit_long(imm32);
  1280 void Assembler::movl(Register dst, Register src) {
  1281   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1282   emit_byte(0x8B);
  1283   emit_byte(0xC0 | encode);
  1286 void Assembler::movl(Register dst, Address src) {
  1287   InstructionMark im(this);
  1288   prefix(src, dst);
  1289   emit_byte(0x8B);
  1290   emit_operand(dst, src);
  1293 void Assembler::movl(Address dst, int imm32) {
  1294   InstructionMark im(this);
  1295   prefix(dst);
  1296   emit_byte(0xC7);
  1297   emit_operand(rax, dst, 4);
  1298   emit_long(imm32);
  1301 void Assembler::movl(Address dst, Register src) {
  1302   InstructionMark im(this);
  1303   prefix(dst, src);
  1304   emit_byte(0x89);
  1305   emit_operand(src, dst);
  1308 void Assembler::mov64(Register dst, intptr_t imm64) {
  1309   InstructionMark im(this);
  1310   int encode = prefixq_and_encode(dst->encoding());
  1311   emit_byte(0xB8 | encode);
  1312   emit_long64(imm64);
  1315 void Assembler::mov_literal64(Register dst, intptr_t imm64, RelocationHolder const& rspec) {
  1316   InstructionMark im(this);
  1317   int encode = prefixq_and_encode(dst->encoding());
  1318   emit_byte(0xB8 | encode);
  1319   emit_data64(imm64, rspec);
  1322 void Assembler::movq(Register dst, Register src) {
  1323   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  1324   emit_byte(0x8B);
  1325   emit_byte(0xC0 | encode);
  1328 void Assembler::movq(Register dst, Address src) {
  1329   InstructionMark im(this);
  1330   prefixq(src, dst);
  1331   emit_byte(0x8B);
  1332   emit_operand(dst, src);
  1335 void Assembler::mov64(Address dst, intptr_t imm32) {
  1336   assert(is_simm32(imm32), "lost bits");
  1337   InstructionMark im(this);
  1338   prefixq(dst);
  1339   emit_byte(0xC7);
  1340   emit_operand(rax, dst, 4);
  1341   emit_long(imm32);
  1344 void Assembler::movq(Address dst, Register src) {
  1345   InstructionMark im(this);
  1346   prefixq(dst, src);
  1347   emit_byte(0x89);
  1348   emit_operand(src, dst);
  1351 void Assembler::movsbl(Register dst, Address src) {
  1352   InstructionMark im(this);
  1353   prefix(src, dst);
  1354   emit_byte(0x0F);
  1355   emit_byte(0xBE);
  1356   emit_operand(dst, src);
  1359 void Assembler::movsbl(Register dst, Register src) {
  1360   int encode = prefix_and_encode(dst->encoding(), src->encoding(), true);
  1361   emit_byte(0x0F);
  1362   emit_byte(0xBE);
  1363   emit_byte(0xC0 | encode);
  1366 void Assembler::movswl(Register dst, Address src) {
  1367   InstructionMark im(this);
  1368   prefix(src, dst);
  1369   emit_byte(0x0F);
  1370   emit_byte(0xBF);
  1371   emit_operand(dst, src);
  1374 void Assembler::movswl(Register dst, Register src) {
  1375   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1376   emit_byte(0x0F);
  1377   emit_byte(0xBF);
  1378   emit_byte(0xC0 | encode);
  1381 void Assembler::movslq(Register dst, Address src) {
  1382   InstructionMark im(this);
  1383   prefixq(src, dst);
  1384   emit_byte(0x63);
  1385   emit_operand(dst, src);
  1388 void Assembler::movslq(Register dst, Register src) {
  1389   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  1390   emit_byte(0x63);
  1391   emit_byte(0xC0 | encode);
  1394 void Assembler::movzbl(Register dst, Address src) {
  1395   InstructionMark im(this);
  1396   prefix(src, dst);
  1397   emit_byte(0x0F);
  1398   emit_byte(0xB6);
  1399   emit_operand(dst, src);
  1402 void Assembler::movzbl(Register dst, Register src) {
  1403   int encode = prefix_and_encode(dst->encoding(), src->encoding(), true);
  1404   emit_byte(0x0F);
  1405   emit_byte(0xB6);
  1406   emit_byte(0xC0 | encode);
  1409 void Assembler::movzwl(Register dst, Address src) {
  1410   InstructionMark im(this);
  1411   prefix(src, dst);
  1412   emit_byte(0x0F);
  1413   emit_byte(0xB7);
  1414   emit_operand(dst, src);
  1417 void Assembler::movzwl(Register dst, Register src) {
  1418   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1419   emit_byte(0x0F);
  1420   emit_byte(0xB7);
  1421   emit_byte(0xC0 | encode);
  1424 void Assembler::movss(XMMRegister dst, XMMRegister src) {
  1425   emit_byte(0xF3);
  1426   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1427   emit_byte(0x0F);
  1428   emit_byte(0x10);
  1429   emit_byte(0xC0 | encode);
  1432 void Assembler::movss(XMMRegister dst, Address src) {
  1433   InstructionMark im(this);
  1434   emit_byte(0xF3);
  1435   prefix(src, dst);
  1436   emit_byte(0x0F);
  1437   emit_byte(0x10);
  1438   emit_operand(dst, src);
  1441 void Assembler::movss(Address dst, XMMRegister src) {
  1442   InstructionMark im(this);
  1443   emit_byte(0xF3);
  1444   prefix(dst, src);
  1445   emit_byte(0x0F);
  1446   emit_byte(0x11);
  1447   emit_operand(src, dst);
  1450 void Assembler::movsd(XMMRegister dst, XMMRegister src) {
  1451   emit_byte(0xF2);
  1452   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1453   emit_byte(0x0F);
  1454   emit_byte(0x10);
  1455   emit_byte(0xC0 | encode);
  1458 void Assembler::movsd(XMMRegister dst, Address src) {
  1459   InstructionMark im(this);
  1460   emit_byte(0xF2);
  1461   prefix(src, dst);
  1462   emit_byte(0x0F);
  1463   emit_byte(0x10);
  1464   emit_operand(dst, src);
  1467 void Assembler::movsd(Address dst, XMMRegister src) {
  1468   InstructionMark im(this);
  1469   emit_byte(0xF2);
  1470   prefix(dst, src);
  1471   emit_byte(0x0F);
  1472   emit_byte(0x11);
  1473   emit_operand(src, dst);
  1476 // New cpus require to use movsd and movss to avoid partial register stall
  1477 // when loading from memory. But for old Opteron use movlpd instead of movsd.
  1478 // The selection is done in MacroAssembler::movdbl() and movflt().
  1479 void Assembler::movlpd(XMMRegister dst, Address src) {
  1480   InstructionMark im(this);
  1481   emit_byte(0x66);
  1482   prefix(src, dst);
  1483   emit_byte(0x0F);
  1484   emit_byte(0x12);
  1485   emit_operand(dst, src);
  1488 void Assembler::movapd(XMMRegister dst, XMMRegister src) {
  1489   int dstenc = dst->encoding();
  1490   int srcenc = src->encoding();
  1491   emit_byte(0x66);
  1492   if (dstenc < 8) {
  1493     if (srcenc >= 8) {
  1494       prefix(REX_B);
  1495       srcenc -= 8;
  1497   } else {
  1498     if (srcenc < 8) {
  1499       prefix(REX_R);
  1500     } else {
  1501       prefix(REX_RB);
  1502       srcenc -= 8;
  1504     dstenc -= 8;
  1506   emit_byte(0x0F);
  1507   emit_byte(0x28);
  1508   emit_byte(0xC0 | dstenc << 3 | srcenc);
  1511 void Assembler::movaps(XMMRegister dst, XMMRegister src) {
  1512   int dstenc = dst->encoding();
  1513   int srcenc = src->encoding();
  1514   if (dstenc < 8) {
  1515     if (srcenc >= 8) {
  1516       prefix(REX_B);
  1517       srcenc -= 8;
  1519   } else {
  1520     if (srcenc < 8) {
  1521       prefix(REX_R);
  1522     } else {
  1523       prefix(REX_RB);
  1524       srcenc -= 8;
  1526     dstenc -= 8;
  1528   emit_byte(0x0F);
  1529   emit_byte(0x28);
  1530   emit_byte(0xC0 | dstenc << 3 | srcenc);
  1533 void Assembler::movdl(XMMRegister dst, Register src) {
  1534   emit_byte(0x66);
  1535   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1536   emit_byte(0x0F);
  1537   emit_byte(0x6E);
  1538   emit_byte(0xC0 | encode);
  1541 void Assembler::movdl(Register dst, XMMRegister src) {
  1542   emit_byte(0x66);
  1543   // swap src/dst to get correct prefix
  1544   int encode = prefix_and_encode(src->encoding(), dst->encoding());
  1545   emit_byte(0x0F);
  1546   emit_byte(0x7E);
  1547   emit_byte(0xC0 | encode);
  1550 void Assembler::movdq(XMMRegister dst, Register src) {
  1551   emit_byte(0x66);
  1552   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  1553   emit_byte(0x0F);
  1554   emit_byte(0x6E);
  1555   emit_byte(0xC0 | encode);
  1558 void Assembler::movdq(Register dst, XMMRegister src) {
  1559   emit_byte(0x66);
  1560   // swap src/dst to get correct prefix
  1561   int encode = prefixq_and_encode(src->encoding(), dst->encoding());
  1562   emit_byte(0x0F);
  1563   emit_byte(0x7E);
  1564   emit_byte(0xC0 | encode);
  1567 void Assembler::pxor(XMMRegister dst, Address src) {
  1568   InstructionMark im(this);
  1569   emit_byte(0x66);
  1570   prefix(src, dst);
  1571   emit_byte(0x0F);
  1572   emit_byte(0xEF);
  1573   emit_operand(dst, src);
  1576 void Assembler::pxor(XMMRegister dst, XMMRegister src) {
  1577   InstructionMark im(this);
  1578   emit_byte(0x66);
  1579   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1580   emit_byte(0x0F);
  1581   emit_byte(0xEF);
  1582   emit_byte(0xC0 | encode);
  1585 void Assembler::movdqa(XMMRegister dst, Address src) {
  1586   InstructionMark im(this);
  1587   emit_byte(0x66);
  1588   prefix(src, dst);
  1589   emit_byte(0x0F);
  1590   emit_byte(0x6F);
  1591   emit_operand(dst, src);
  1594 void Assembler::movdqa(XMMRegister dst, XMMRegister src) {
  1595   emit_byte(0x66);
  1596   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  1597   emit_byte(0x0F);
  1598   emit_byte(0x6F);
  1599   emit_byte(0xC0 | encode);
  1602 void Assembler::movdqa(Address dst, XMMRegister src) {
  1603   InstructionMark im(this);
  1604   emit_byte(0x66);
  1605   prefix(dst, src);
  1606   emit_byte(0x0F);
  1607   emit_byte(0x7F);
  1608   emit_operand(src, dst);
  1611 void Assembler::movq(XMMRegister dst, Address src) {
  1612   InstructionMark im(this);
  1613   emit_byte(0xF3);
  1614   prefix(src, dst);
  1615   emit_byte(0x0F);
  1616   emit_byte(0x7E);
  1617   emit_operand(dst, src);
  1620 void Assembler::movq(Address dst, XMMRegister src) {
  1621   InstructionMark im(this);
  1622   emit_byte(0x66);
  1623   prefix(dst, src);
  1624   emit_byte(0x0F);
  1625   emit_byte(0xD6);
  1626   emit_operand(src, dst);
  1629 void Assembler::pshufd(XMMRegister dst, XMMRegister src, int mode) {
  1630   assert(isByte(mode), "invalid value");
  1631   emit_byte(0x66);
  1632   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1633   emit_byte(0x0F);
  1634   emit_byte(0x70);
  1635   emit_byte(0xC0 | encode);
  1636   emit_byte(mode & 0xFF);
  1639 void Assembler::pshufd(XMMRegister dst, Address src, int mode) {
  1640   assert(isByte(mode), "invalid value");
  1641   InstructionMark im(this);
  1642   emit_byte(0x66);
  1643   emit_byte(0x0F);
  1644   emit_byte(0x70);
  1645   emit_operand(dst, src);
  1646   emit_byte(mode & 0xFF);
  1649 void Assembler::pshuflw(XMMRegister dst, XMMRegister src, int mode) {
  1650   assert(isByte(mode), "invalid value");
  1651   emit_byte(0xF2);
  1652   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1653   emit_byte(0x0F);
  1654   emit_byte(0x70);
  1655   emit_byte(0xC0 | encode);
  1656   emit_byte(mode & 0xFF);
  1659 void Assembler::pshuflw(XMMRegister dst, Address src, int mode) {
  1660   assert(isByte(mode), "invalid value");
  1661   InstructionMark im(this);
  1662   emit_byte(0xF2);
  1663   emit_byte(0x0F);
  1664   emit_byte(0x70);
  1665   emit_operand(dst, src);
  1666   emit_byte(mode & 0xFF);
  1669 void Assembler::cmovl(Condition cc, Register dst, Register src) {
  1670   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1671   emit_byte(0x0F);
  1672   emit_byte(0x40 | cc);
  1673   emit_byte(0xC0 | encode);
  1676 void Assembler::cmovl(Condition cc, Register dst, Address src) {
  1677   InstructionMark im(this);
  1678   prefix(src, dst);
  1679   emit_byte(0x0F);
  1680   emit_byte(0x40 | cc);
  1681   emit_operand(dst, src);
  1684 void Assembler::cmovq(Condition cc, Register dst, Register src) {
  1685   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  1686   emit_byte(0x0F);
  1687   emit_byte(0x40 | cc);
  1688   emit_byte(0xC0 | encode);
  1691 void Assembler::cmovq(Condition cc, Register dst, Address src) {
  1692   InstructionMark im(this);
  1693   prefixq(src, dst);
  1694   emit_byte(0x0F);
  1695   emit_byte(0x40 | cc);
  1696   emit_operand(dst, src);
  1699 void Assembler::prefetch_prefix(Address src) {
  1700   prefix(src);
  1701   emit_byte(0x0F);
  1704 void Assembler::prefetcht0(Address src) {
  1705   InstructionMark im(this);
  1706   prefetch_prefix(src);
  1707   emit_byte(0x18);
  1708   emit_operand(rcx, src); // 1, src
  1711 void Assembler::prefetcht1(Address src) {
  1712   InstructionMark im(this);
  1713   prefetch_prefix(src);
  1714   emit_byte(0x18);
  1715   emit_operand(rdx, src); // 2, src
  1718 void Assembler::prefetcht2(Address src) {
  1719   InstructionMark im(this);
  1720   prefetch_prefix(src);
  1721   emit_byte(0x18);
  1722   emit_operand(rbx, src); // 3, src
  1725 void Assembler::prefetchnta(Address src) {
  1726   InstructionMark im(this);
  1727   prefetch_prefix(src);
  1728   emit_byte(0x18);
  1729   emit_operand(rax, src); // 0, src
  1732 void Assembler::prefetchw(Address src) {
  1733   InstructionMark im(this);
  1734   prefetch_prefix(src);
  1735   emit_byte(0x0D);
  1736   emit_operand(rcx, src); // 1, src
  1739 void Assembler::adcl(Register dst, int imm32) {
  1740   prefix(dst);
  1741   emit_arith(0x81, 0xD0, dst, imm32);
  1744 void Assembler::adcl(Register dst, Address src) {
  1745   InstructionMark im(this);
  1746   prefix(src, dst);
  1747   emit_byte(0x13);
  1748   emit_operand(dst, src);
  1751 void Assembler::adcl(Register dst, Register src) {
  1752   (void) prefix_and_encode(dst->encoding(), src->encoding());
  1753   emit_arith(0x13, 0xC0, dst, src);
  1756 void Assembler::adcq(Register dst, int imm32) {
  1757   (void) prefixq_and_encode(dst->encoding());
  1758   emit_arith(0x81, 0xD0, dst, imm32);
  1761 void Assembler::adcq(Register dst, Address src) {
  1762   InstructionMark im(this);
  1763   prefixq(src, dst);
  1764   emit_byte(0x13);
  1765   emit_operand(dst, src);
  1768 void Assembler::adcq(Register dst, Register src) {
  1769   (int) prefixq_and_encode(dst->encoding(), src->encoding());
  1770   emit_arith(0x13, 0xC0, dst, src);
  1773 void Assembler::addl(Address dst, int imm32) {
  1774   InstructionMark im(this);
  1775   prefix(dst);
  1776   emit_arith_operand(0x81, rax, dst,imm32);
  1779 void Assembler::addl(Address dst, Register src) {
  1780   InstructionMark im(this);
  1781   prefix(dst, src);
  1782   emit_byte(0x01);
  1783   emit_operand(src, dst);
  1786 void Assembler::addl(Register dst, int imm32) {
  1787   prefix(dst);
  1788   emit_arith(0x81, 0xC0, dst, imm32);
  1791 void Assembler::addl(Register dst, Address src) {
  1792   InstructionMark im(this);
  1793   prefix(src, dst);
  1794   emit_byte(0x03);
  1795   emit_operand(dst, src);
  1798 void Assembler::addl(Register dst, Register src) {
  1799   (void) prefix_and_encode(dst->encoding(), src->encoding());
  1800   emit_arith(0x03, 0xC0, dst, src);
  1803 void Assembler::addq(Address dst, int imm32) {
  1804   InstructionMark im(this);
  1805   prefixq(dst);
  1806   emit_arith_operand(0x81, rax, dst,imm32);
  1809 void Assembler::addq(Address dst, Register src) {
  1810   InstructionMark im(this);
  1811   prefixq(dst, src);
  1812   emit_byte(0x01);
  1813   emit_operand(src, dst);
  1816 void Assembler::addq(Register dst, int imm32) {
  1817   (void) prefixq_and_encode(dst->encoding());
  1818   emit_arith(0x81, 0xC0, dst, imm32);
  1821 void Assembler::addq(Register dst, Address src) {
  1822   InstructionMark im(this);
  1823   prefixq(src, dst);
  1824   emit_byte(0x03);
  1825   emit_operand(dst, src);
  1828 void Assembler::addq(Register dst, Register src) {
  1829   (void) prefixq_and_encode(dst->encoding(), src->encoding());
  1830   emit_arith(0x03, 0xC0, dst, src);
  1833 void Assembler::andl(Register dst, int imm32) {
  1834   prefix(dst);
  1835   emit_arith(0x81, 0xE0, dst, imm32);
  1838 void Assembler::andl(Register dst, Address src) {
  1839   InstructionMark im(this);
  1840   prefix(src, dst);
  1841   emit_byte(0x23);
  1842   emit_operand(dst, src);
  1845 void Assembler::andl(Register dst, Register src) {
  1846   (void) prefix_and_encode(dst->encoding(), src->encoding());
  1847   emit_arith(0x23, 0xC0, dst, src);
  1850 void Assembler::andq(Register dst, int imm32) {
  1851   (void) prefixq_and_encode(dst->encoding());
  1852   emit_arith(0x81, 0xE0, dst, imm32);
  1855 void Assembler::andq(Register dst, Address src) {
  1856   InstructionMark im(this);
  1857   prefixq(src, dst);
  1858   emit_byte(0x23);
  1859   emit_operand(dst, src);
  1862 void Assembler::andq(Register dst, Register src) {
  1863   (int) prefixq_and_encode(dst->encoding(), src->encoding());
  1864   emit_arith(0x23, 0xC0, dst, src);
  1867 void Assembler::cmpb(Address dst, int imm8) {
  1868   InstructionMark im(this);
  1869   prefix(dst);
  1870   emit_byte(0x80);
  1871   emit_operand(rdi, dst, 1);
  1872   emit_byte(imm8);
  1875 void Assembler::cmpl(Address dst, int imm32) {
  1876   InstructionMark im(this);
  1877   prefix(dst);
  1878   emit_byte(0x81);
  1879   emit_operand(rdi, dst, 4);
  1880   emit_long(imm32);
  1883 void Assembler::cmpl(Register dst, int imm32) {
  1884   prefix(dst);
  1885   emit_arith(0x81, 0xF8, dst, imm32);
  1888 void Assembler::cmpl(Register dst, Register src) {
  1889   (void) prefix_and_encode(dst->encoding(), src->encoding());
  1890   emit_arith(0x3B, 0xC0, dst, src);
  1893 void Assembler::cmpl(Register dst, Address src) {
  1894   InstructionMark im(this);
  1895   prefix(src, dst);
  1896   emit_byte(0x3B);
  1897   emit_operand(dst, src);
  1900 void Assembler::cmpq(Address dst, int imm32) {
  1901   InstructionMark im(this);
  1902   prefixq(dst);
  1903   emit_byte(0x81);
  1904   emit_operand(rdi, dst, 4);
  1905   emit_long(imm32);
  1908 void Assembler::cmpq(Register dst, int imm32) {
  1909   (void) prefixq_and_encode(dst->encoding());
  1910   emit_arith(0x81, 0xF8, dst, imm32);
  1913 void Assembler::cmpq(Address dst, Register src) {
  1914   prefixq(dst, src);
  1915   emit_byte(0x3B);
  1916   emit_operand(src, dst);
  1919 void Assembler::cmpq(Register dst, Register src) {
  1920   (void) prefixq_and_encode(dst->encoding(), src->encoding());
  1921   emit_arith(0x3B, 0xC0, dst, src);
  1924 void Assembler::cmpq(Register dst, Address  src) {
  1925   InstructionMark im(this);
  1926   prefixq(src, dst);
  1927   emit_byte(0x3B);
  1928   emit_operand(dst, src);
  1931 void Assembler::ucomiss(XMMRegister dst, XMMRegister src) {
  1932   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1933   emit_byte(0x0F);
  1934   emit_byte(0x2E);
  1935   emit_byte(0xC0 | encode);
  1938 void Assembler::ucomisd(XMMRegister dst, XMMRegister src) {
  1939   emit_byte(0x66);
  1940   ucomiss(dst, src);
  1943 void Assembler::decl(Register dst) {
  1944   // Don't use it directly. Use MacroAssembler::decrementl() instead.
  1945   // Use two-byte form (one-byte from is a REX prefix in 64-bit mode)
  1946   int encode = prefix_and_encode(dst->encoding());
  1947   emit_byte(0xFF);
  1948   emit_byte(0xC8 | encode);
  1951 void Assembler::decl(Address dst) {
  1952   // Don't use it directly. Use MacroAssembler::decrementl() instead.
  1953   InstructionMark im(this);
  1954   prefix(dst);
  1955   emit_byte(0xFF);
  1956   emit_operand(rcx, dst);
  1959 void Assembler::decq(Register dst) {
  1960   // Don't use it directly. Use MacroAssembler::decrementq() instead.
  1961   // Use two-byte form (one-byte from is a REX prefix in 64-bit mode)
  1962   int encode = prefixq_and_encode(dst->encoding());
  1963   emit_byte(0xFF);
  1964   emit_byte(0xC8 | encode);
  1967 void Assembler::decq(Address dst) {
  1968   // Don't use it directly. Use MacroAssembler::decrementq() instead.
  1969   InstructionMark im(this);
  1970   prefixq(dst);
  1971   emit_byte(0xFF);
  1972   emit_operand(rcx, dst);
  1975 void Assembler::idivl(Register src) {
  1976   int encode = prefix_and_encode(src->encoding());
  1977   emit_byte(0xF7);
  1978   emit_byte(0xF8 | encode);
  1981 void Assembler::idivq(Register src) {
  1982   int encode = prefixq_and_encode(src->encoding());
  1983   emit_byte(0xF7);
  1984   emit_byte(0xF8 | encode);
  1987 void Assembler::cdql() {
  1988   emit_byte(0x99);
  1991 void Assembler::cdqq() {
  1992   prefix(REX_W);
  1993   emit_byte(0x99);
  1996 void Assembler::imull(Register dst, Register src) {
  1997   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1998   emit_byte(0x0F);
  1999   emit_byte(0xAF);
  2000   emit_byte(0xC0 | encode);
  2003 void Assembler::imull(Register dst, Register src, int value) {
  2004   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  2005   if (is8bit(value)) {
  2006     emit_byte(0x6B);
  2007     emit_byte(0xC0 | encode);
  2008     emit_byte(value);
  2009   } else {
  2010     emit_byte(0x69);
  2011     emit_byte(0xC0 | encode);
  2012     emit_long(value);
  2016 void Assembler::imulq(Register dst, Register src) {
  2017   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  2018   emit_byte(0x0F);
  2019   emit_byte(0xAF);
  2020   emit_byte(0xC0 | encode);
  2023 void Assembler::imulq(Register dst, Register src, int value) {
  2024   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  2025   if (is8bit(value)) {
  2026     emit_byte(0x6B);
  2027     emit_byte(0xC0 | encode);
  2028     emit_byte(value);
  2029   } else {
  2030     emit_byte(0x69);
  2031     emit_byte(0xC0 | encode);
  2032     emit_long(value);
  2036 void Assembler::incl(Register dst) {
  2037   // Don't use it directly. Use MacroAssembler::incrementl() instead.
  2038   // Use two-byte form (one-byte from is a REX prefix in 64-bit mode)
  2039   int encode = prefix_and_encode(dst->encoding());
  2040   emit_byte(0xFF);
  2041   emit_byte(0xC0 | encode);
  2044 void Assembler::incl(Address dst) {
  2045   // Don't use it directly. Use MacroAssembler::incrementl() instead.
  2046   InstructionMark im(this);
  2047   prefix(dst);
  2048   emit_byte(0xFF);
  2049   emit_operand(rax, dst);
  2052 void Assembler::incq(Register dst) {
  2053   // Don't use it directly. Use MacroAssembler::incrementq() instead.
  2054   // Use two-byte form (one-byte from is a REX prefix in 64-bit mode)
  2055   int encode = prefixq_and_encode(dst->encoding());
  2056   emit_byte(0xFF);
  2057   emit_byte(0xC0 | encode);
  2060 void Assembler::incq(Address dst) {
  2061   // Don't use it directly. Use MacroAssembler::incrementq() instead.
  2062   InstructionMark im(this);
  2063   prefixq(dst);
  2064   emit_byte(0xFF);
  2065   emit_operand(rax, dst);
  2068 void Assembler::leal(Register dst, Address src) {
  2069   InstructionMark im(this);
  2070   emit_byte(0x67); // addr32
  2071   prefix(src, dst);
  2072   emit_byte(0x8D);
  2073   emit_operand(dst, src);
  2076 void Assembler::leaq(Register dst, Address src) {
  2077   InstructionMark im(this);
  2078   prefixq(src, dst);
  2079   emit_byte(0x8D);
  2080   emit_operand(dst, src);
  2083 void Assembler::mull(Address src) {
  2084   InstructionMark im(this);
  2085   // was missing
  2086   prefix(src);
  2087   emit_byte(0xF7);
  2088   emit_operand(rsp, src);
  2091 void Assembler::mull(Register src) {
  2092   // was missing
  2093   int encode = prefix_and_encode(src->encoding());
  2094   emit_byte(0xF7);
  2095   emit_byte(0xE0 | encode);
  2098 void Assembler::negl(Register dst) {
  2099   int encode = prefix_and_encode(dst->encoding());
  2100   emit_byte(0xF7);
  2101   emit_byte(0xD8 | encode);
  2104 void Assembler::negq(Register dst) {
  2105   int encode = prefixq_and_encode(dst->encoding());
  2106   emit_byte(0xF7);
  2107   emit_byte(0xD8 | encode);
  2110 void Assembler::notl(Register dst) {
  2111   int encode = prefix_and_encode(dst->encoding());
  2112   emit_byte(0xF7);
  2113   emit_byte(0xD0 | encode);
  2116 void Assembler::notq(Register dst) {
  2117   int encode = prefixq_and_encode(dst->encoding());
  2118   emit_byte(0xF7);
  2119   emit_byte(0xD0 | encode);
  2122 void Assembler::orl(Address dst, int imm32) {
  2123   InstructionMark im(this);
  2124   prefix(dst);
  2125   emit_byte(0x81);
  2126   emit_operand(rcx, dst, 4);
  2127   emit_long(imm32);
  2130 void Assembler::orl(Register dst, int imm32) {
  2131   prefix(dst);
  2132   emit_arith(0x81, 0xC8, dst, imm32);
  2135 void Assembler::orl(Register dst, Address src) {
  2136   InstructionMark im(this);
  2137   prefix(src, dst);
  2138   emit_byte(0x0B);
  2139   emit_operand(dst, src);
  2142 void Assembler::orl(Register dst, Register src) {
  2143   (void) prefix_and_encode(dst->encoding(), src->encoding());
  2144   emit_arith(0x0B, 0xC0, dst, src);
  2147 void Assembler::orq(Address dst, int imm32) {
  2148   InstructionMark im(this);
  2149   prefixq(dst);
  2150   emit_byte(0x81);
  2151   emit_operand(rcx, dst, 4);
  2152   emit_long(imm32);
  2155 void Assembler::orq(Register dst, int imm32) {
  2156   (void) prefixq_and_encode(dst->encoding());
  2157   emit_arith(0x81, 0xC8, dst, imm32);
  2160 void Assembler::orq(Register dst, Address src) {
  2161   InstructionMark im(this);
  2162   prefixq(src, dst);
  2163   emit_byte(0x0B);
  2164   emit_operand(dst, src);
  2167 void Assembler::orq(Register dst, Register src) {
  2168   (void) prefixq_and_encode(dst->encoding(), src->encoding());
  2169   emit_arith(0x0B, 0xC0, dst, src);
  2172 void Assembler::rcll(Register dst, int imm8) {
  2173   assert(isShiftCount(imm8), "illegal shift count");
  2174   int encode = prefix_and_encode(dst->encoding());
  2175   if (imm8 == 1) {
  2176     emit_byte(0xD1);
  2177     emit_byte(0xD0 | encode);
  2178   } else {
  2179     emit_byte(0xC1);
  2180     emit_byte(0xD0 | encode);
  2181     emit_byte(imm8);
  2185 void Assembler::rclq(Register dst, int imm8) {
  2186   assert(isShiftCount(imm8 >> 1), "illegal shift count");
  2187   int encode = prefixq_and_encode(dst->encoding());
  2188   if (imm8 == 1) {
  2189     emit_byte(0xD1);
  2190     emit_byte(0xD0 | encode);
  2191   } else {
  2192     emit_byte(0xC1);
  2193     emit_byte(0xD0 | encode);
  2194     emit_byte(imm8);
  2198 void Assembler::sarl(Register dst, int imm8) {
  2199   int encode = prefix_and_encode(dst->encoding());
  2200   assert(isShiftCount(imm8), "illegal shift count");
  2201   if (imm8 == 1) {
  2202     emit_byte(0xD1);
  2203     emit_byte(0xF8 | encode);
  2204   } else {
  2205     emit_byte(0xC1);
  2206     emit_byte(0xF8 | encode);
  2207     emit_byte(imm8);
  2211 void Assembler::sarl(Register dst) {
  2212   int encode = prefix_and_encode(dst->encoding());
  2213   emit_byte(0xD3);
  2214   emit_byte(0xF8 | encode);
  2217 void Assembler::sarq(Register dst, int imm8) {
  2218   assert(isShiftCount(imm8 >> 1), "illegal shift count");
  2219   int encode = prefixq_and_encode(dst->encoding());
  2220   if (imm8 == 1) {
  2221     emit_byte(0xD1);
  2222     emit_byte(0xF8 | encode);
  2223   } else {
  2224     emit_byte(0xC1);
  2225     emit_byte(0xF8 | encode);
  2226     emit_byte(imm8);
  2230 void Assembler::sarq(Register dst) {
  2231   int encode = prefixq_and_encode(dst->encoding());
  2232   emit_byte(0xD3);
  2233   emit_byte(0xF8 | encode);
  2236 void Assembler::sbbl(Address dst, int imm32) {
  2237   InstructionMark im(this);
  2238   prefix(dst);
  2239   emit_arith_operand(0x81, rbx, dst, imm32);
  2242 void Assembler::sbbl(Register dst, int imm32) {
  2243   prefix(dst);
  2244   emit_arith(0x81, 0xD8, dst, imm32);
  2247 void Assembler::sbbl(Register dst, Address src) {
  2248   InstructionMark im(this);
  2249   prefix(src, dst);
  2250   emit_byte(0x1B);
  2251   emit_operand(dst, src);
  2254 void Assembler::sbbl(Register dst, Register src) {
  2255   (void) prefix_and_encode(dst->encoding(), src->encoding());
  2256   emit_arith(0x1B, 0xC0, dst, src);
  2259 void Assembler::sbbq(Address dst, int imm32) {
  2260   InstructionMark im(this);
  2261   prefixq(dst);
  2262   emit_arith_operand(0x81, rbx, dst, imm32);
  2265 void Assembler::sbbq(Register dst, int imm32) {
  2266   (void) prefixq_and_encode(dst->encoding());
  2267   emit_arith(0x81, 0xD8, dst, imm32);
  2270 void Assembler::sbbq(Register dst, Address src) {
  2271   InstructionMark im(this);
  2272   prefixq(src, dst);
  2273   emit_byte(0x1B);
  2274   emit_operand(dst, src);
  2277 void Assembler::sbbq(Register dst, Register src) {
  2278   (void) prefixq_and_encode(dst->encoding(), src->encoding());
  2279   emit_arith(0x1B, 0xC0, dst, src);
  2282 void Assembler::shll(Register dst, int imm8) {
  2283   assert(isShiftCount(imm8), "illegal shift count");
  2284   int encode = prefix_and_encode(dst->encoding());
  2285   if (imm8 == 1 ) {
  2286     emit_byte(0xD1);
  2287     emit_byte(0xE0 | encode);
  2288   } else {
  2289     emit_byte(0xC1);
  2290     emit_byte(0xE0 | encode);
  2291     emit_byte(imm8);
  2295 void Assembler::shll(Register dst) {
  2296   int encode = prefix_and_encode(dst->encoding());
  2297   emit_byte(0xD3);
  2298   emit_byte(0xE0 | encode);
  2301 void Assembler::shlq(Register dst, int imm8) {
  2302   assert(isShiftCount(imm8 >> 1), "illegal shift count");
  2303   int encode = prefixq_and_encode(dst->encoding());
  2304   if (imm8 == 1) {
  2305     emit_byte(0xD1);
  2306     emit_byte(0xE0 | encode);
  2307   } else {
  2308     emit_byte(0xC1);
  2309     emit_byte(0xE0 | encode);
  2310     emit_byte(imm8);
  2314 void Assembler::shlq(Register dst) {
  2315   int encode = prefixq_and_encode(dst->encoding());
  2316   emit_byte(0xD3);
  2317   emit_byte(0xE0 | encode);
  2320 void Assembler::shrl(Register dst, int imm8) {
  2321   assert(isShiftCount(imm8), "illegal shift count");
  2322   int encode = prefix_and_encode(dst->encoding());
  2323   emit_byte(0xC1);
  2324   emit_byte(0xE8 | encode);
  2325   emit_byte(imm8);
  2328 void Assembler::shrl(Register dst) {
  2329   int encode = prefix_and_encode(dst->encoding());
  2330   emit_byte(0xD3);
  2331   emit_byte(0xE8 | encode);
  2334 void Assembler::shrq(Register dst, int imm8) {
  2335   assert(isShiftCount(imm8 >> 1), "illegal shift count");
  2336   int encode = prefixq_and_encode(dst->encoding());
  2337   emit_byte(0xC1);
  2338   emit_byte(0xE8 | encode);
  2339   emit_byte(imm8);
  2342 void Assembler::shrq(Register dst) {
  2343   int encode = prefixq_and_encode(dst->encoding());
  2344   emit_byte(0xD3);
  2345   emit_byte(0xE8 | encode);
  2348 void Assembler::subl(Address dst, int imm32) {
  2349   InstructionMark im(this);
  2350   prefix(dst);
  2351   if (is8bit(imm32)) {
  2352     emit_byte(0x83);
  2353     emit_operand(rbp, dst, 1);
  2354     emit_byte(imm32 & 0xFF);
  2355   } else {
  2356     emit_byte(0x81);
  2357     emit_operand(rbp, dst, 4);
  2358     emit_long(imm32);
  2362 void Assembler::subl(Register dst, int imm32) {
  2363   prefix(dst);
  2364   emit_arith(0x81, 0xE8, dst, imm32);
  2367 void Assembler::subl(Address dst, Register src) {
  2368   InstructionMark im(this);
  2369   prefix(dst, src);
  2370   emit_byte(0x29);
  2371   emit_operand(src, dst);
  2374 void Assembler::subl(Register dst, Address src) {
  2375   InstructionMark im(this);
  2376   prefix(src, dst);
  2377   emit_byte(0x2B);
  2378   emit_operand(dst, src);
  2381 void Assembler::subl(Register dst, Register src) {
  2382   (void) prefix_and_encode(dst->encoding(), src->encoding());
  2383   emit_arith(0x2B, 0xC0, dst, src);
  2386 void Assembler::subq(Address dst, int imm32) {
  2387   InstructionMark im(this);
  2388   prefixq(dst);
  2389   if (is8bit(imm32)) {
  2390     emit_byte(0x83);
  2391     emit_operand(rbp, dst, 1);
  2392     emit_byte(imm32 & 0xFF);
  2393   } else {
  2394     emit_byte(0x81);
  2395     emit_operand(rbp, dst, 4);
  2396     emit_long(imm32);
  2400 void Assembler::subq(Register dst, int imm32) {
  2401   (void) prefixq_and_encode(dst->encoding());
  2402   emit_arith(0x81, 0xE8, dst, imm32);
  2405 void Assembler::subq(Address dst, Register src) {
  2406   InstructionMark im(this);
  2407   prefixq(dst, src);
  2408   emit_byte(0x29);
  2409   emit_operand(src, dst);
  2412 void Assembler::subq(Register dst, Address src) {
  2413   InstructionMark im(this);
  2414   prefixq(src, dst);
  2415   emit_byte(0x2B);
  2416   emit_operand(dst, src);
  2419 void Assembler::subq(Register dst, Register src) {
  2420   (void) prefixq_and_encode(dst->encoding(), src->encoding());
  2421   emit_arith(0x2B, 0xC0, dst, src);
  2424 void Assembler::testb(Register dst, int imm8) {
  2425   (void) prefix_and_encode(dst->encoding(), true);
  2426   emit_arith_b(0xF6, 0xC0, dst, imm8);
  2429 void Assembler::testl(Register dst, int imm32) {
  2430   // not using emit_arith because test
  2431   // doesn't support sign-extension of
  2432   // 8bit operands
  2433   int encode = dst->encoding();
  2434   if (encode == 0) {
  2435     emit_byte(0xA9);
  2436   } else {
  2437     encode = prefix_and_encode(encode);
  2438     emit_byte(0xF7);
  2439     emit_byte(0xC0 | encode);
  2441   emit_long(imm32);
  2444 void Assembler::testl(Register dst, Register src) {
  2445   (void) prefix_and_encode(dst->encoding(), src->encoding());
  2446   emit_arith(0x85, 0xC0, dst, src);
  2449 void Assembler::testq(Register dst, int imm32) {
  2450   // not using emit_arith because test
  2451   // doesn't support sign-extension of
  2452   // 8bit operands
  2453   int encode = dst->encoding();
  2454   if (encode == 0) {
  2455     prefix(REX_W);
  2456     emit_byte(0xA9);
  2457   } else {
  2458     encode = prefixq_and_encode(encode);
  2459     emit_byte(0xF7);
  2460     emit_byte(0xC0 | encode);
  2462   emit_long(imm32);
  2465 void Assembler::testq(Register dst, Register src) {
  2466   (void) prefixq_and_encode(dst->encoding(), src->encoding());
  2467   emit_arith(0x85, 0xC0, dst, src);
  2470 void Assembler::xaddl(Address dst, Register src) {
  2471   InstructionMark im(this);
  2472   prefix(dst, src);
  2473   emit_byte(0x0F);
  2474   emit_byte(0xC1);
  2475   emit_operand(src, dst);
  2478 void Assembler::xaddq(Address dst, Register src) {
  2479   InstructionMark im(this);
  2480   prefixq(dst, src);
  2481   emit_byte(0x0F);
  2482   emit_byte(0xC1);
  2483   emit_operand(src, dst);
  2486 void Assembler::xorl(Register dst, int imm32) {
  2487   prefix(dst);
  2488   emit_arith(0x81, 0xF0, dst, imm32);
  2491 void Assembler::xorl(Register dst, Register src) {
  2492   (void) prefix_and_encode(dst->encoding(), src->encoding());
  2493   emit_arith(0x33, 0xC0, dst, src);
  2496 void Assembler::xorl(Register dst, Address src) {
  2497   InstructionMark im(this);
  2498   prefix(src, dst);
  2499   emit_byte(0x33);
  2500   emit_operand(dst, src);
  2503 void Assembler::xorq(Register dst, int imm32) {
  2504   (void) prefixq_and_encode(dst->encoding());
  2505   emit_arith(0x81, 0xF0, dst, imm32);
  2508 void Assembler::xorq(Register dst, Register src) {
  2509   (void) prefixq_and_encode(dst->encoding(), src->encoding());
  2510   emit_arith(0x33, 0xC0, dst, src);
  2513 void Assembler::xorq(Register dst, Address src) {
  2514   InstructionMark im(this);
  2515   prefixq(src, dst);
  2516   emit_byte(0x33);
  2517   emit_operand(dst, src);
  2520 void Assembler::bswapl(Register reg) {
  2521   int encode = prefix_and_encode(reg->encoding());
  2522   emit_byte(0x0F);
  2523   emit_byte(0xC8 | encode);
  2526 void Assembler::bswapq(Register reg) {
  2527   int encode = prefixq_and_encode(reg->encoding());
  2528   emit_byte(0x0F);
  2529   emit_byte(0xC8 | encode);
  2532 void Assembler::lock() {
  2533   emit_byte(0xF0);
  2536 void Assembler::xchgl(Register dst, Address src) {
  2537   InstructionMark im(this);
  2538   prefix(src, dst);
  2539   emit_byte(0x87);
  2540   emit_operand(dst, src);
  2543 void Assembler::xchgl(Register dst, Register src) {
  2544   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  2545   emit_byte(0x87);
  2546   emit_byte(0xc0 | encode);
  2549 void Assembler::xchgq(Register dst, Address src) {
  2550   InstructionMark im(this);
  2551   prefixq(src, dst);
  2552   emit_byte(0x87);
  2553   emit_operand(dst, src);
  2556 void Assembler::xchgq(Register dst, Register src) {
  2557   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  2558   emit_byte(0x87);
  2559   emit_byte(0xc0 | encode);
  2562 void Assembler::cmpxchgl(Register reg, Address adr) {
  2563   InstructionMark im(this);
  2564   prefix(adr, reg);
  2565   emit_byte(0x0F);
  2566   emit_byte(0xB1);
  2567   emit_operand(reg, adr);
  2570 void Assembler::cmpxchgq(Register reg, Address adr) {
  2571   InstructionMark im(this);
  2572   prefixq(adr, reg);
  2573   emit_byte(0x0F);
  2574   emit_byte(0xB1);
  2575   emit_operand(reg, adr);
  2578 void Assembler::hlt() {
  2579   emit_byte(0xF4);
  2583 void Assembler::addr_nop_4() {
  2584   // 4 bytes: NOP DWORD PTR [EAX+0]
  2585   emit_byte(0x0F);
  2586   emit_byte(0x1F);
  2587   emit_byte(0x40); // emit_rm(cbuf, 0x1, EAX_enc, EAX_enc);
  2588   emit_byte(0);    // 8-bits offset (1 byte)
  2591 void Assembler::addr_nop_5() {
  2592   // 5 bytes: NOP DWORD PTR [EAX+EAX*0+0] 8-bits offset
  2593   emit_byte(0x0F);
  2594   emit_byte(0x1F);
  2595   emit_byte(0x44); // emit_rm(cbuf, 0x1, EAX_enc, 0x4);
  2596   emit_byte(0x00); // emit_rm(cbuf, 0x0, EAX_enc, EAX_enc);
  2597   emit_byte(0);    // 8-bits offset (1 byte)
  2600 void Assembler::addr_nop_7() {
  2601   // 7 bytes: NOP DWORD PTR [EAX+0] 32-bits offset
  2602   emit_byte(0x0F);
  2603   emit_byte(0x1F);
  2604   emit_byte(0x80); // emit_rm(cbuf, 0x2, EAX_enc, EAX_enc);
  2605   emit_long(0);    // 32-bits offset (4 bytes)
  2608 void Assembler::addr_nop_8() {
  2609   // 8 bytes: NOP DWORD PTR [EAX+EAX*0+0] 32-bits offset
  2610   emit_byte(0x0F);
  2611   emit_byte(0x1F);
  2612   emit_byte(0x84); // emit_rm(cbuf, 0x2, EAX_enc, 0x4);
  2613   emit_byte(0x00); // emit_rm(cbuf, 0x0, EAX_enc, EAX_enc);
  2614   emit_long(0);    // 32-bits offset (4 bytes)
  2617 void Assembler::nop(int i) {
  2618   assert(i > 0, " ");
  2619   if (UseAddressNop && VM_Version::is_intel()) {
  2620     //
  2621     // Using multi-bytes nops "0x0F 0x1F [address]" for Intel
  2622     //  1: 0x90
  2623     //  2: 0x66 0x90
  2624     //  3: 0x66 0x66 0x90 (don't use "0x0F 0x1F 0x00" - need patching safe padding)
  2625     //  4: 0x0F 0x1F 0x40 0x00
  2626     //  5: 0x0F 0x1F 0x44 0x00 0x00
  2627     //  6: 0x66 0x0F 0x1F 0x44 0x00 0x00
  2628     //  7: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
  2629     //  8: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
  2630     //  9: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
  2631     // 10: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
  2632     // 11: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
  2634     // The rest coding is Intel specific - don't use consecutive address nops
  2636     // 12: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
  2637     // 13: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
  2638     // 14: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
  2639     // 15: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
  2641     while(i >= 15) {
  2642       // For Intel don't generate consecutive addess nops (mix with regular nops)
  2643       i -= 15;
  2644       emit_byte(0x66);   // size prefix
  2645       emit_byte(0x66);   // size prefix
  2646       emit_byte(0x66);   // size prefix
  2647       addr_nop_8();
  2648       emit_byte(0x66);   // size prefix
  2649       emit_byte(0x66);   // size prefix
  2650       emit_byte(0x66);   // size prefix
  2651       emit_byte(0x90);   // nop
  2653     switch (i) {
  2654       case 14:
  2655         emit_byte(0x66); // size prefix
  2656       case 13:
  2657         emit_byte(0x66); // size prefix
  2658       case 12:
  2659         addr_nop_8();
  2660         emit_byte(0x66); // size prefix
  2661         emit_byte(0x66); // size prefix
  2662         emit_byte(0x66); // size prefix
  2663         emit_byte(0x90); // nop
  2664         break;
  2665       case 11:
  2666         emit_byte(0x66); // size prefix
  2667       case 10:
  2668         emit_byte(0x66); // size prefix
  2669       case 9:
  2670         emit_byte(0x66); // size prefix
  2671       case 8:
  2672         addr_nop_8();
  2673         break;
  2674       case 7:
  2675         addr_nop_7();
  2676         break;
  2677       case 6:
  2678         emit_byte(0x66); // size prefix
  2679       case 5:
  2680         addr_nop_5();
  2681         break;
  2682       case 4:
  2683         addr_nop_4();
  2684         break;
  2685       case 3:
  2686         // Don't use "0x0F 0x1F 0x00" - need patching safe padding
  2687         emit_byte(0x66); // size prefix
  2688       case 2:
  2689         emit_byte(0x66); // size prefix
  2690       case 1:
  2691         emit_byte(0x90); // nop
  2692         break;
  2693       default:
  2694         assert(i == 0, " ");
  2696     return;
  2698   if (UseAddressNop && VM_Version::is_amd()) {
  2699     //
  2700     // Using multi-bytes nops "0x0F 0x1F [address]" for AMD.
  2701     //  1: 0x90
  2702     //  2: 0x66 0x90
  2703     //  3: 0x66 0x66 0x90 (don't use "0x0F 0x1F 0x00" - need patching safe padding)
  2704     //  4: 0x0F 0x1F 0x40 0x00
  2705     //  5: 0x0F 0x1F 0x44 0x00 0x00
  2706     //  6: 0x66 0x0F 0x1F 0x44 0x00 0x00
  2707     //  7: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
  2708     //  8: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
  2709     //  9: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
  2710     // 10: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
  2711     // 11: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
  2713     // The rest coding is AMD specific - use consecutive address nops
  2715     // 12: 0x66 0x0F 0x1F 0x44 0x00 0x00 0x66 0x0F 0x1F 0x44 0x00 0x00
  2716     // 13: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00 0x66 0x0F 0x1F 0x44 0x00 0x00
  2717     // 14: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
  2718     // 15: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
  2719     // 16: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
  2720     //     Size prefixes (0x66) are added for larger sizes
  2722     while(i >= 22) {
  2723       i -= 11;
  2724       emit_byte(0x66); // size prefix
  2725       emit_byte(0x66); // size prefix
  2726       emit_byte(0x66); // size prefix
  2727       addr_nop_8();
  2729     // Generate first nop for size between 21-12
  2730     switch (i) {
  2731       case 21:
  2732         i -= 1;
  2733         emit_byte(0x66); // size prefix
  2734       case 20:
  2735       case 19:
  2736         i -= 1;
  2737         emit_byte(0x66); // size prefix
  2738       case 18:
  2739       case 17:
  2740         i -= 1;
  2741         emit_byte(0x66); // size prefix
  2742       case 16:
  2743       case 15:
  2744         i -= 8;
  2745         addr_nop_8();
  2746         break;
  2747       case 14:
  2748       case 13:
  2749         i -= 7;
  2750         addr_nop_7();
  2751         break;
  2752       case 12:
  2753         i -= 6;
  2754         emit_byte(0x66); // size prefix
  2755         addr_nop_5();
  2756         break;
  2757       default:
  2758         assert(i < 12, " ");
  2761     // Generate second nop for size between 11-1
  2762     switch (i) {
  2763       case 11:
  2764         emit_byte(0x66); // size prefix
  2765       case 10:
  2766         emit_byte(0x66); // size prefix
  2767       case 9:
  2768         emit_byte(0x66); // size prefix
  2769       case 8:
  2770         addr_nop_8();
  2771         break;
  2772       case 7:
  2773         addr_nop_7();
  2774         break;
  2775       case 6:
  2776         emit_byte(0x66); // size prefix
  2777       case 5:
  2778         addr_nop_5();
  2779         break;
  2780       case 4:
  2781         addr_nop_4();
  2782         break;
  2783       case 3:
  2784         // Don't use "0x0F 0x1F 0x00" - need patching safe padding
  2785         emit_byte(0x66); // size prefix
  2786       case 2:
  2787         emit_byte(0x66); // size prefix
  2788       case 1:
  2789         emit_byte(0x90); // nop
  2790         break;
  2791       default:
  2792         assert(i == 0, " ");
  2794     return;
  2797   // Using nops with size prefixes "0x66 0x90".
  2798   // From AMD Optimization Guide:
  2799   //  1: 0x90
  2800   //  2: 0x66 0x90
  2801   //  3: 0x66 0x66 0x90
  2802   //  4: 0x66 0x66 0x66 0x90
  2803   //  5: 0x66 0x66 0x90 0x66 0x90
  2804   //  6: 0x66 0x66 0x90 0x66 0x66 0x90
  2805   //  7: 0x66 0x66 0x66 0x90 0x66 0x66 0x90
  2806   //  8: 0x66 0x66 0x66 0x90 0x66 0x66 0x66 0x90
  2807   //  9: 0x66 0x66 0x90 0x66 0x66 0x90 0x66 0x66 0x90
  2808   // 10: 0x66 0x66 0x66 0x90 0x66 0x66 0x90 0x66 0x66 0x90
  2809   //
  2810   while(i > 12) {
  2811     i -= 4;
  2812     emit_byte(0x66); // size prefix
  2813     emit_byte(0x66);
  2814     emit_byte(0x66);
  2815     emit_byte(0x90); // nop
  2817   // 1 - 12 nops
  2818   if(i > 8) {
  2819     if(i > 9) {
  2820       i -= 1;
  2821       emit_byte(0x66);
  2823     i -= 3;
  2824     emit_byte(0x66);
  2825     emit_byte(0x66);
  2826     emit_byte(0x90);
  2828   // 1 - 8 nops
  2829   if(i > 4) {
  2830     if(i > 6) {
  2831       i -= 1;
  2832       emit_byte(0x66);
  2834     i -= 3;
  2835     emit_byte(0x66);
  2836     emit_byte(0x66);
  2837     emit_byte(0x90);
  2839   switch (i) {
  2840     case 4:
  2841       emit_byte(0x66);
  2842     case 3:
  2843       emit_byte(0x66);
  2844     case 2:
  2845       emit_byte(0x66);
  2846     case 1:
  2847       emit_byte(0x90);
  2848       break;
  2849     default:
  2850       assert(i == 0, " ");
  2854 void Assembler::ret(int imm16) {
  2855   if (imm16 == 0) {
  2856     emit_byte(0xC3);
  2857   } else {
  2858     emit_byte(0xC2);
  2859     emit_word(imm16);
  2863 // copies a single word from [esi] to [edi]
  2864 void Assembler::smovl() {
  2865   emit_byte(0xA5);
  2868 // copies data from [rsi] to [rdi] using rcx words (m32)
  2869 void Assembler::rep_movl() {
  2870   // REP
  2871   emit_byte(0xF3);
  2872   // MOVSL
  2873   emit_byte(0xA5);
  2876 // copies data from [rsi] to [rdi] using rcx double words (m64)
  2877 void Assembler::rep_movq() {
  2878   // REP
  2879   emit_byte(0xF3);
  2880   // MOVSQ
  2881   prefix(REX_W);
  2882   emit_byte(0xA5);
  2885 // sets rcx double words (m64) with rax value at [rdi]
  2886 void Assembler::rep_set() {
  2887   // REP
  2888   emit_byte(0xF3);
  2889   // STOSQ
  2890   prefix(REX_W);
  2891   emit_byte(0xAB);
  2894 // scans rcx double words (m64) at [rdi] for occurance of rax
  2895 void Assembler::repne_scanq() {
  2896   // REPNE/REPNZ
  2897   emit_byte(0xF2);
  2898   // SCASQ
  2899   prefix(REX_W);
  2900   emit_byte(0xAF);
  2903 void Assembler::repne_scanl() {
  2904   // REPNE/REPNZ
  2905   emit_byte(0xF2);
  2906   // SCASL
  2907   emit_byte(0xAF);
  2911 void Assembler::setb(Condition cc, Register dst) {
  2912   assert(0 <= cc && cc < 16, "illegal cc");
  2913   int encode = prefix_and_encode(dst->encoding(), true);
  2914   emit_byte(0x0F);
  2915   emit_byte(0x90 | cc);
  2916   emit_byte(0xC0 | encode);
  2919 void Assembler::clflush(Address adr) {
  2920   prefix(adr);
  2921   emit_byte(0x0F);
  2922   emit_byte(0xAE);
  2923   emit_operand(rdi, adr);
  2926 void Assembler::call(Label& L, relocInfo::relocType rtype) {
  2927   if (L.is_bound()) {
  2928     const int long_size = 5;
  2929     int offs = (int)( target(L) - pc() );
  2930     assert(offs <= 0, "assembler error");
  2931     InstructionMark im(this);
  2932     // 1110 1000 #32-bit disp
  2933     emit_byte(0xE8);
  2934     emit_data(offs - long_size, rtype, disp32_operand);
  2935   } else {
  2936     InstructionMark im(this);
  2937     // 1110 1000 #32-bit disp
  2938     L.add_patch_at(code(), locator());
  2940     emit_byte(0xE8);
  2941     emit_data(int(0), rtype, disp32_operand);
  2945 void Assembler::call_literal(address entry, RelocationHolder const& rspec) {
  2946   assert(entry != NULL, "call most probably wrong");
  2947   InstructionMark im(this);
  2948   emit_byte(0xE8);
  2949   intptr_t disp = entry - (_code_pos + sizeof(int32_t));
  2950   assert(is_simm32(disp), "must be 32bit offset (call2)");
  2951   // Technically, should use call32_operand, but this format is
  2952   // implied by the fact that we're emitting a call instruction.
  2953   emit_data((int) disp, rspec, disp32_operand);
  2957 void Assembler::call(Register dst) {
  2958   // This was originally using a 32bit register encoding
  2959   // and surely we want 64bit!
  2960   // this is a 32bit encoding but in 64bit mode the default
  2961   // operand size is 64bit so there is no need for the
  2962   // wide prefix. So prefix only happens if we use the
  2963   // new registers. Much like push/pop.
  2964   int encode = prefixq_and_encode(dst->encoding());
  2965   emit_byte(0xFF);
  2966   emit_byte(0xD0 | encode);
  2969 void Assembler::call(Address adr) {
  2970   InstructionMark im(this);
  2971   prefix(adr);
  2972   emit_byte(0xFF);
  2973   emit_operand(rdx, adr);
  2976 void Assembler::jmp(Register reg) {
  2977   int encode = prefix_and_encode(reg->encoding());
  2978   emit_byte(0xFF);
  2979   emit_byte(0xE0 | encode);
  2982 void Assembler::jmp(Address adr) {
  2983   InstructionMark im(this);
  2984   prefix(adr);
  2985   emit_byte(0xFF);
  2986   emit_operand(rsp, adr);
  2989 void Assembler::jmp_literal(address dest, RelocationHolder const& rspec) {
  2990   InstructionMark im(this);
  2991   emit_byte(0xE9);
  2992   assert(dest != NULL, "must have a target");
  2993   intptr_t disp = dest - (_code_pos + sizeof(int32_t));
  2994   assert(is_simm32(disp), "must be 32bit offset (jmp)");
  2995   emit_data(disp, rspec.reloc(), call32_operand);
  2998 void Assembler::jmp(Label& L, relocInfo::relocType rtype) {
  2999   if (L.is_bound()) {
  3000     address entry = target(L);
  3001     assert(entry != NULL, "jmp most probably wrong");
  3002     InstructionMark im(this);
  3003     const int short_size = 2;
  3004     const int long_size = 5;
  3005     intptr_t offs = entry - _code_pos;
  3006     if (rtype == relocInfo::none && is8bit(offs - short_size)) {
  3007       emit_byte(0xEB);
  3008       emit_byte((offs - short_size) & 0xFF);
  3009     } else {
  3010       emit_byte(0xE9);
  3011       emit_long(offs - long_size);
  3013   } else {
  3014     // By default, forward jumps are always 32-bit displacements, since
  3015     // we can't yet know where the label will be bound.  If you're sure that
  3016     // the forward jump will not run beyond 256 bytes, use jmpb to
  3017     // force an 8-bit displacement.
  3018     InstructionMark im(this);
  3019     relocate(rtype);
  3020     L.add_patch_at(code(), locator());
  3021     emit_byte(0xE9);
  3022     emit_long(0);
  3026 void Assembler::jmpb(Label& L) {
  3027   if (L.is_bound()) {
  3028     const int short_size = 2;
  3029     address entry = target(L);
  3030     assert(is8bit((entry - _code_pos) + short_size),
  3031            "Dispacement too large for a short jmp");
  3032     assert(entry != NULL, "jmp most probably wrong");
  3033     intptr_t offs = entry - _code_pos;
  3034     emit_byte(0xEB);
  3035     emit_byte((offs - short_size) & 0xFF);
  3036   } else {
  3037     InstructionMark im(this);
  3038     L.add_patch_at(code(), locator());
  3039     emit_byte(0xEB);
  3040     emit_byte(0);
  3044 void Assembler::jcc(Condition cc, Label& L, relocInfo::relocType rtype) {
  3045   InstructionMark im(this);
  3046   relocate(rtype);
  3047   assert((0 <= cc) && (cc < 16), "illegal cc");
  3048   if (L.is_bound()) {
  3049     address dst = target(L);
  3050     assert(dst != NULL, "jcc most probably wrong");
  3052     const int short_size = 2;
  3053     const int long_size = 6;
  3054     intptr_t offs = (intptr_t)dst - (intptr_t)_code_pos;
  3055     if (rtype == relocInfo::none && is8bit(offs - short_size)) {
  3056       // 0111 tttn #8-bit disp
  3057       emit_byte(0x70 | cc);
  3058       emit_byte((offs - short_size) & 0xFF);
  3059     } else {
  3060       // 0000 1111 1000 tttn #32-bit disp
  3061       assert(is_simm32(offs - long_size),
  3062              "must be 32bit offset (call4)");
  3063       emit_byte(0x0F);
  3064       emit_byte(0x80 | cc);
  3065       emit_long(offs - long_size);
  3067   } else {
  3068     // Note: could eliminate cond. jumps to this jump if condition
  3069     //       is the same however, seems to be rather unlikely case.
  3070     // Note: use jccb() if label to be bound is very close to get
  3071     //       an 8-bit displacement
  3072     L.add_patch_at(code(), locator());
  3073     emit_byte(0x0F);
  3074     emit_byte(0x80 | cc);
  3075     emit_long(0);
  3079 void Assembler::jccb(Condition cc, Label& L) {
  3080   if (L.is_bound()) {
  3081     const int short_size = 2;
  3082     const int long_size = 6;
  3083     address entry = target(L);
  3084     assert(is8bit((intptr_t)entry - ((intptr_t)_code_pos + short_size)),
  3085            "Dispacement too large for a short jmp");
  3086     intptr_t offs = (intptr_t)entry - (intptr_t)_code_pos;
  3087     // 0111 tttn #8-bit disp
  3088     emit_byte(0x70 | cc);
  3089     emit_byte((offs - short_size) & 0xFF);
  3090   } else {
  3091     InstructionMark im(this);
  3092     L.add_patch_at(code(), locator());
  3093     emit_byte(0x70 | cc);
  3094     emit_byte(0);
  3098 // FP instructions
  3100 void Assembler::fxsave(Address dst) {
  3101   prefixq(dst);
  3102   emit_byte(0x0F);
  3103   emit_byte(0xAE);
  3104   emit_operand(as_Register(0), dst);
  3107 void Assembler::fxrstor(Address src) {
  3108   prefixq(src);
  3109   emit_byte(0x0F);
  3110   emit_byte(0xAE);
  3111   emit_operand(as_Register(1), src);
  3114 void Assembler::ldmxcsr(Address src) {
  3115   InstructionMark im(this);
  3116   prefix(src);
  3117   emit_byte(0x0F);
  3118   emit_byte(0xAE);
  3119   emit_operand(as_Register(2), src);
  3122 void Assembler::stmxcsr(Address dst) {
  3123   InstructionMark im(this);
  3124   prefix(dst);
  3125   emit_byte(0x0F);
  3126   emit_byte(0xAE);
  3127   emit_operand(as_Register(3), dst);
  3130 void Assembler::addss(XMMRegister dst, XMMRegister src) {
  3131   emit_byte(0xF3);
  3132   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  3133   emit_byte(0x0F);
  3134   emit_byte(0x58);
  3135   emit_byte(0xC0 | encode);
  3138 void Assembler::addss(XMMRegister dst, Address src) {
  3139   InstructionMark im(this);
  3140   emit_byte(0xF3);
  3141   prefix(src, dst);
  3142   emit_byte(0x0F);
  3143   emit_byte(0x58);
  3144   emit_operand(dst, src);
  3147 void Assembler::subss(XMMRegister dst, XMMRegister src) {
  3148   emit_byte(0xF3);
  3149   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  3150   emit_byte(0x0F);
  3151   emit_byte(0x5C);
  3152   emit_byte(0xC0 | encode);
  3155 void Assembler::subss(XMMRegister dst, Address src) {
  3156   InstructionMark im(this);
  3157   emit_byte(0xF3);
  3158   prefix(src, dst);
  3159   emit_byte(0x0F);
  3160   emit_byte(0x5C);
  3161   emit_operand(dst, src);
  3164 void Assembler::mulss(XMMRegister dst, XMMRegister src) {
  3165   emit_byte(0xF3);
  3166   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  3167   emit_byte(0x0F);
  3168   emit_byte(0x59);
  3169   emit_byte(0xC0 | encode);
  3172 void Assembler::mulss(XMMRegister dst, Address src) {
  3173   InstructionMark im(this);
  3174   emit_byte(0xF3);
  3175   prefix(src, dst);
  3176   emit_byte(0x0F);
  3177   emit_byte(0x59);
  3178   emit_operand(dst, src);
  3181 void Assembler::divss(XMMRegister dst, XMMRegister src) {
  3182   emit_byte(0xF3);
  3183   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  3184   emit_byte(0x0F);
  3185   emit_byte(0x5E);
  3186   emit_byte(0xC0 | encode);
  3189 void Assembler::divss(XMMRegister dst, Address src) {
  3190   InstructionMark im(this);
  3191   emit_byte(0xF3);
  3192   prefix(src, dst);
  3193   emit_byte(0x0F);
  3194   emit_byte(0x5E);
  3195   emit_operand(dst, src);
  3198 void Assembler::addsd(XMMRegister dst, XMMRegister src) {
  3199   emit_byte(0xF2);
  3200   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  3201   emit_byte(0x0F);
  3202   emit_byte(0x58);
  3203   emit_byte(0xC0 | encode);
  3206 void Assembler::addsd(XMMRegister dst, Address src) {
  3207   InstructionMark im(this);
  3208   emit_byte(0xF2);
  3209   prefix(src, dst);
  3210   emit_byte(0x0F);
  3211   emit_byte(0x58);
  3212   emit_operand(dst, src);
  3215 void Assembler::subsd(XMMRegister dst, XMMRegister src) {
  3216   emit_byte(0xF2);
  3217   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  3218   emit_byte(0x0F);
  3219   emit_byte(0x5C);
  3220   emit_byte(0xC0 | encode);
  3223 void Assembler::subsd(XMMRegister dst, Address src) {
  3224   InstructionMark im(this);
  3225   emit_byte(0xF2);
  3226   prefix(src, dst);
  3227   emit_byte(0x0F);
  3228   emit_byte(0x5C);
  3229   emit_operand(dst, src);
  3232 void Assembler::mulsd(XMMRegister dst, XMMRegister src) {
  3233   emit_byte(0xF2);
  3234   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  3235   emit_byte(0x0F);
  3236   emit_byte(0x59);
  3237   emit_byte(0xC0 | encode);
  3240 void Assembler::mulsd(XMMRegister dst, Address src) {
  3241   InstructionMark im(this);
  3242   emit_byte(0xF2);
  3243   prefix(src, dst);
  3244   emit_byte(0x0F);
  3245   emit_byte(0x59);
  3246   emit_operand(dst, src);
  3249 void Assembler::divsd(XMMRegister dst, XMMRegister src) {
  3250   emit_byte(0xF2);
  3251   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  3252   emit_byte(0x0F);
  3253   emit_byte(0x5E);
  3254   emit_byte(0xC0 | encode);
  3257 void Assembler::divsd(XMMRegister dst, Address src) {
  3258   InstructionMark im(this);
  3259   emit_byte(0xF2);
  3260   prefix(src, dst);
  3261   emit_byte(0x0F);
  3262   emit_byte(0x5E);
  3263   emit_operand(dst, src);
  3266 void Assembler::sqrtsd(XMMRegister dst, XMMRegister src) {
  3267   emit_byte(0xF2);
  3268   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  3269   emit_byte(0x0F);
  3270   emit_byte(0x51);
  3271   emit_byte(0xC0 | encode);
  3274 void Assembler::sqrtsd(XMMRegister dst, Address src) {
  3275   InstructionMark im(this);
  3276   emit_byte(0xF2);
  3277   prefix(src, dst);
  3278   emit_byte(0x0F);
  3279   emit_byte(0x51);
  3280   emit_operand(dst, src);
  3283 void Assembler::xorps(XMMRegister dst, XMMRegister src) {
  3284   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  3285   emit_byte(0x0F);
  3286   emit_byte(0x57);
  3287   emit_byte(0xC0 | encode);
  3290 void Assembler::xorps(XMMRegister dst, Address src) {
  3291   InstructionMark im(this);
  3292   prefix(src, dst);
  3293   emit_byte(0x0F);
  3294   emit_byte(0x57);
  3295   emit_operand(dst, src);
  3298 void Assembler::xorpd(XMMRegister dst, XMMRegister src) {
  3299   emit_byte(0x66);
  3300   xorps(dst, src);
  3303 void Assembler::xorpd(XMMRegister dst, Address src) {
  3304   InstructionMark im(this);
  3305   emit_byte(0x66);
  3306   prefix(src, dst);
  3307   emit_byte(0x0F);
  3308   emit_byte(0x57);
  3309   emit_operand(dst, src);
  3312 void Assembler::cvtsi2ssl(XMMRegister dst, Register src) {
  3313   emit_byte(0xF3);
  3314   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  3315   emit_byte(0x0F);
  3316   emit_byte(0x2A);
  3317   emit_byte(0xC0 | encode);
  3320 void Assembler::cvtsi2ssq(XMMRegister dst, Register src) {
  3321   emit_byte(0xF3);
  3322   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  3323   emit_byte(0x0F);
  3324   emit_byte(0x2A);
  3325   emit_byte(0xC0 | encode);
  3328 void Assembler::cvtsi2sdl(XMMRegister dst, Register src) {
  3329   emit_byte(0xF2);
  3330   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  3331   emit_byte(0x0F);
  3332   emit_byte(0x2A);
  3333   emit_byte(0xC0 | encode);
  3336 void Assembler::cvtsi2sdq(XMMRegister dst, Register src) {
  3337   emit_byte(0xF2);
  3338   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  3339   emit_byte(0x0F);
  3340   emit_byte(0x2A);
  3341   emit_byte(0xC0 | encode);
  3344 void Assembler::cvttss2sil(Register dst, XMMRegister src) {
  3345   emit_byte(0xF3);
  3346   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  3347   emit_byte(0x0F);
  3348   emit_byte(0x2C);
  3349   emit_byte(0xC0 | encode);
  3352 void Assembler::cvttss2siq(Register dst, XMMRegister src) {
  3353   emit_byte(0xF3);
  3354   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  3355   emit_byte(0x0F);
  3356   emit_byte(0x2C);
  3357   emit_byte(0xC0 | encode);
  3360 void Assembler::cvttsd2sil(Register dst, XMMRegister src) {
  3361   emit_byte(0xF2);
  3362   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  3363   emit_byte(0x0F);
  3364   emit_byte(0x2C);
  3365   emit_byte(0xC0 | encode);
  3368 void Assembler::cvttsd2siq(Register dst, XMMRegister src) {
  3369   emit_byte(0xF2);
  3370   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  3371   emit_byte(0x0F);
  3372   emit_byte(0x2C);
  3373   emit_byte(0xC0 | encode);
  3376 void Assembler::cvtss2sd(XMMRegister dst, XMMRegister src) {
  3377   emit_byte(0xF3);
  3378   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  3379   emit_byte(0x0F);
  3380   emit_byte(0x5A);
  3381   emit_byte(0xC0 | encode);
  3384 void Assembler::cvtdq2pd(XMMRegister dst, XMMRegister src) {
  3385   emit_byte(0xF3);
  3386   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  3387   emit_byte(0x0F);
  3388   emit_byte(0xE6);
  3389   emit_byte(0xC0 | encode);
  3392 void Assembler::cvtdq2ps(XMMRegister dst, XMMRegister src) {
  3393   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  3394   emit_byte(0x0F);
  3395   emit_byte(0x5B);
  3396   emit_byte(0xC0 | encode);
  3399 void Assembler::cvtsd2ss(XMMRegister dst, XMMRegister src) {
  3400   emit_byte(0xF2);
  3401   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  3402   emit_byte(0x0F);
  3403   emit_byte(0x5A);
  3404   emit_byte(0xC0 | encode);
  3407 void Assembler::punpcklbw(XMMRegister dst, XMMRegister src) {
  3408   emit_byte(0x66);
  3409   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  3410   emit_byte(0x0F);
  3411   emit_byte(0x60);
  3412   emit_byte(0xC0 | encode);
  3415 // Implementation of MacroAssembler
  3417 // On 32 bit it returns a vanilla displacement on 64 bit is a rip relative displacement
  3418 Address MacroAssembler::as_Address(AddressLiteral adr) {
  3419   assert(!adr.is_lval(), "must be rval");
  3420   assert(reachable(adr), "must be");
  3421   return Address((int)(intptr_t)(adr.target() - pc()), adr.target(), adr.reloc());
  3424 Address MacroAssembler::as_Address(ArrayAddress adr) {
  3425 #ifdef _LP64
  3426   AddressLiteral base = adr.base();
  3427   lea(rscratch1, base);
  3428   Address index = adr.index();
  3429   assert(index._disp == 0, "must not have disp"); // maybe it can?
  3430   Address array(rscratch1, index._index, index._scale, index._disp);
  3431   return array;
  3432 #else
  3433   return Address::make_array(adr);
  3434 #endif // _LP64
  3438 void MacroAssembler::fat_nop() {
  3439   // A 5 byte nop that is safe for patching (see patch_verified_entry)
  3440   // Recommened sequence from 'Software Optimization Guide for the AMD
  3441   // Hammer Processor'
  3442   emit_byte(0x66);
  3443   emit_byte(0x66);
  3444   emit_byte(0x90);
  3445   emit_byte(0x66);
  3446   emit_byte(0x90);
  3449 static Assembler::Condition reverse[] = {
  3450     Assembler::noOverflow     /* overflow      = 0x0 */ ,
  3451     Assembler::overflow       /* noOverflow    = 0x1 */ ,
  3452     Assembler::aboveEqual     /* carrySet      = 0x2, below         = 0x2 */ ,
  3453     Assembler::below          /* aboveEqual    = 0x3, carryClear    = 0x3 */ ,
  3454     Assembler::notZero        /* zero          = 0x4, equal         = 0x4 */ ,
  3455     Assembler::zero           /* notZero       = 0x5, notEqual      = 0x5 */ ,
  3456     Assembler::above          /* belowEqual    = 0x6 */ ,
  3457     Assembler::belowEqual     /* above         = 0x7 */ ,
  3458     Assembler::positive       /* negative      = 0x8 */ ,
  3459     Assembler::negative       /* positive      = 0x9 */ ,
  3460     Assembler::noParity       /* parity        = 0xa */ ,
  3461     Assembler::parity         /* noParity      = 0xb */ ,
  3462     Assembler::greaterEqual   /* less          = 0xc */ ,
  3463     Assembler::less           /* greaterEqual  = 0xd */ ,
  3464     Assembler::greater        /* lessEqual     = 0xe */ ,
  3465     Assembler::lessEqual      /* greater       = 0xf, */
  3467 };
  3469 // 32bit can do a case table jump in one instruction but we no longer allow the base
  3470 // to be installed in the Address class
  3471 void MacroAssembler::jump(ArrayAddress entry) {
  3472 #ifdef _LP64
  3473   lea(rscratch1, entry.base());
  3474   Address dispatch = entry.index();
  3475   assert(dispatch._base == noreg, "must be");
  3476   dispatch._base = rscratch1;
  3477   jmp(dispatch);
  3478 #else
  3479   jmp(as_Address(entry));
  3480 #endif // _LP64
  3483 void MacroAssembler::jump(AddressLiteral dst) {
  3484   if (reachable(dst)) {
  3485     jmp_literal(dst.target(), dst.rspec());
  3486   } else {
  3487     lea(rscratch1, dst);
  3488     jmp(rscratch1);
  3492 void MacroAssembler::jump_cc(Condition cc, AddressLiteral dst) {
  3493   if (reachable(dst)) {
  3494     InstructionMark im(this);
  3495     relocate(dst.reloc());
  3496     const int short_size = 2;
  3497     const int long_size = 6;
  3498     int offs = (intptr_t)dst.target() - ((intptr_t)_code_pos);
  3499     if (dst.reloc() == relocInfo::none && is8bit(offs - short_size)) {
  3500       // 0111 tttn #8-bit disp
  3501       emit_byte(0x70 | cc);
  3502       emit_byte((offs - short_size) & 0xFF);
  3503     } else {
  3504       // 0000 1111 1000 tttn #32-bit disp
  3505       emit_byte(0x0F);
  3506       emit_byte(0x80 | cc);
  3507       emit_long(offs - long_size);
  3509   } else {
  3510 #ifdef ASSERT
  3511     warning("reversing conditional branch");
  3512 #endif /* ASSERT */
  3513     Label skip;
  3514     jccb(reverse[cc], skip);
  3515     lea(rscratch1, dst);
  3516     Assembler::jmp(rscratch1);
  3517     bind(skip);
  3521 // Wouldn't need if AddressLiteral version had new name
  3522 void MacroAssembler::call(Label& L, relocInfo::relocType rtype) {
  3523   Assembler::call(L, rtype);
  3526 // Wouldn't need if AddressLiteral version had new name
  3527 void MacroAssembler::call(Register entry) {
  3528   Assembler::call(entry);
  3531 void MacroAssembler::call(AddressLiteral entry) {
  3532   if (reachable(entry)) {
  3533     Assembler::call_literal(entry.target(), entry.rspec());
  3534   } else {
  3535     lea(rscratch1, entry);
  3536     Assembler::call(rscratch1);
  3540 void MacroAssembler::cmp8(AddressLiteral src1, int8_t src2) {
  3541   if (reachable(src1)) {
  3542     cmpb(as_Address(src1), src2);
  3543   } else {
  3544     lea(rscratch1, src1);
  3545     cmpb(Address(rscratch1, 0), src2);
  3549 void MacroAssembler::cmp32(AddressLiteral src1, int32_t src2) {
  3550   if (reachable(src1)) {
  3551     cmpl(as_Address(src1), src2);
  3552   } else {
  3553     lea(rscratch1, src1);
  3554     cmpl(Address(rscratch1, 0), src2);
  3558 void MacroAssembler::cmp32(Register src1, AddressLiteral src2) {
  3559   if (reachable(src2)) {
  3560     cmpl(src1, as_Address(src2));
  3561   } else {
  3562     lea(rscratch1, src2);
  3563     cmpl(src1, Address(rscratch1, 0));
  3567 void MacroAssembler::cmpptr(Register src1, AddressLiteral src2) {
  3568 #ifdef _LP64
  3569   if (src2.is_lval()) {
  3570     movptr(rscratch1, src2);
  3571     Assembler::cmpq(src1, rscratch1);
  3572   } else if (reachable(src2)) {
  3573     cmpq(src1, as_Address(src2));
  3574   } else {
  3575     lea(rscratch1, src2);
  3576     Assembler::cmpq(src1, Address(rscratch1, 0));
  3578 #else
  3579   if (src2.is_lval()) {
  3580     cmp_literal32(src1, (int32_t) src2.target(), src2.rspec());
  3581   } else {
  3582     cmpl(src1, as_Address(src2));
  3584 #endif // _LP64
  3587 void MacroAssembler::cmpptr(Address src1, AddressLiteral src2) {
  3588   assert(src2.is_lval(), "not a mem-mem compare");
  3589 #ifdef _LP64
  3590   // moves src2's literal address
  3591   movptr(rscratch1, src2);
  3592   Assembler::cmpq(src1, rscratch1);
  3593 #else
  3594   cmp_literal32(src1, (int32_t) src2.target(), src2.rspec());
  3595 #endif // _LP64
  3598 void MacroAssembler::cmp64(Register src1, AddressLiteral src2) {
  3599   assert(!src2.is_lval(), "should use cmpptr");
  3601   if (reachable(src2)) {
  3602 #ifdef _LP64
  3603     cmpq(src1, as_Address(src2));
  3604 #else
  3605     ShouldNotReachHere();
  3606 #endif // _LP64
  3607   } else {
  3608     lea(rscratch1, src2);
  3609     Assembler::cmpq(src1, Address(rscratch1, 0));
  3613 void MacroAssembler::cmpxchgptr(Register reg, AddressLiteral adr) {
  3614   if (reachable(adr)) {
  3615 #ifdef _LP64
  3616     cmpxchgq(reg, as_Address(adr));
  3617 #else
  3618     cmpxchgl(reg, as_Address(adr));
  3619 #endif // _LP64
  3620   } else {
  3621     lea(rscratch1, adr);
  3622     cmpxchgq(reg, Address(rscratch1, 0));
  3626 void MacroAssembler::incrementl(AddressLiteral dst) {
  3627   if (reachable(dst)) {
  3628     incrementl(as_Address(dst));
  3629   } else {
  3630     lea(rscratch1, dst);
  3631     incrementl(Address(rscratch1, 0));
  3635 void MacroAssembler::incrementl(ArrayAddress dst) {
  3636   incrementl(as_Address(dst));
  3639 void MacroAssembler::lea(Register dst, Address src) {
  3640 #ifdef _LP64
  3641   leaq(dst, src);
  3642 #else
  3643   leal(dst, src);
  3644 #endif // _LP64
  3647 void MacroAssembler::lea(Register dst, AddressLiteral src) {
  3648 #ifdef _LP64
  3649     mov_literal64(dst, (intptr_t)src.target(), src.rspec());
  3650 #else
  3651     mov_literal32(dst, (intptr_t)src.target(), src.rspec());
  3652 #endif // _LP64
  3655 void MacroAssembler::mov32(AddressLiteral dst, Register src) {
  3656   if (reachable(dst)) {
  3657     movl(as_Address(dst), src);
  3658   } else {
  3659     lea(rscratch1, dst);
  3660     movl(Address(rscratch1, 0), src);
  3664 void MacroAssembler::mov32(Register dst, AddressLiteral src) {
  3665   if (reachable(src)) {
  3666     movl(dst, as_Address(src));
  3667   } else {
  3668     lea(rscratch1, src);
  3669     movl(dst, Address(rscratch1, 0));
  3673 void MacroAssembler::movdbl(XMMRegister dst, AddressLiteral src) {
  3674   if (reachable(src)) {
  3675     if (UseXmmLoadAndClearUpper) {
  3676       movsd (dst, as_Address(src));
  3677     } else {
  3678       movlpd(dst, as_Address(src));
  3680   } else {
  3681     lea(rscratch1, src);
  3682     if (UseXmmLoadAndClearUpper) {
  3683       movsd (dst, Address(rscratch1, 0));
  3684     } else {
  3685       movlpd(dst, Address(rscratch1, 0));
  3690 void MacroAssembler::movflt(XMMRegister dst, AddressLiteral src) {
  3691   if (reachable(src)) {
  3692     movss(dst, as_Address(src));
  3693   } else {
  3694     lea(rscratch1, src);
  3695     movss(dst, Address(rscratch1, 0));
  3699 void MacroAssembler::movoop(Register dst, jobject obj) {
  3700   mov_literal64(dst, (intptr_t)obj, oop_Relocation::spec_for_immediate());
  3703 void MacroAssembler::movoop(Address dst, jobject obj) {
  3704   mov_literal64(rscratch1, (intptr_t)obj, oop_Relocation::spec_for_immediate());
  3705   movq(dst, rscratch1);
  3708 void MacroAssembler::movptr(Register dst, AddressLiteral src) {
  3709 #ifdef _LP64
  3710   if (src.is_lval()) {
  3711     mov_literal64(dst, (intptr_t)src.target(), src.rspec());
  3712   } else {
  3713     if (reachable(src)) {
  3714       movq(dst, as_Address(src));
  3715     } else {
  3716       lea(rscratch1, src);
  3717       movq(dst, Address(rscratch1,0));
  3720 #else
  3721   if (src.is_lval()) {
  3722     mov_literal32(dst, (intptr_t)src.target(), src.rspec());
  3723   } else {
  3724     movl(dst, as_Address(src));
  3726 #endif // LP64
  3729 void MacroAssembler::movptr(ArrayAddress dst, Register src) {
  3730 #ifdef _LP64
  3731   movq(as_Address(dst), src);
  3732 #else
  3733   movl(as_Address(dst), src);
  3734 #endif // _LP64
  3737 void MacroAssembler::pushoop(jobject obj) {
  3738 #ifdef _LP64
  3739   movoop(rscratch1, obj);
  3740   pushq(rscratch1);
  3741 #else
  3742   push_literal32((int32_t)obj, oop_Relocation::spec_for_immediate());
  3743 #endif // _LP64
  3746 void MacroAssembler::pushptr(AddressLiteral src) {
  3747 #ifdef _LP64
  3748   lea(rscratch1, src);
  3749   if (src.is_lval()) {
  3750     pushq(rscratch1);
  3751   } else {
  3752     pushq(Address(rscratch1, 0));
  3754 #else
  3755   if (src.is_lval()) {
  3756     push_literal((int32_t)src.target(), src.rspec());
  3757   else {
  3758     pushl(as_Address(src));
  3760 #endif // _LP64
  3763 void MacroAssembler::ldmxcsr(AddressLiteral src) {
  3764   if (reachable(src)) {
  3765     Assembler::ldmxcsr(as_Address(src));
  3766   } else {
  3767     lea(rscratch1, src);
  3768     Assembler::ldmxcsr(Address(rscratch1, 0));
  3772 void MacroAssembler::movlpd(XMMRegister dst, AddressLiteral src) {
  3773   if (reachable(src)) {
  3774     movlpd(dst, as_Address(src));
  3775   } else {
  3776     lea(rscratch1, src);
  3777     movlpd(dst, Address(rscratch1, 0));
  3781 void MacroAssembler::movss(XMMRegister dst, AddressLiteral src) {
  3782   if (reachable(src)) {
  3783     movss(dst, as_Address(src));
  3784   } else {
  3785     lea(rscratch1, src);
  3786     movss(dst, Address(rscratch1, 0));
  3789 void MacroAssembler::xorpd(XMMRegister dst, AddressLiteral src) {
  3790   if (reachable(src)) {
  3791     xorpd(dst, as_Address(src));
  3792   } else {
  3793     lea(rscratch1, src);
  3794     xorpd(dst, Address(rscratch1, 0));
  3798 void MacroAssembler::xorps(XMMRegister dst, AddressLiteral src) {
  3799   if (reachable(src)) {
  3800     xorps(dst, as_Address(src));
  3801   } else {
  3802     lea(rscratch1, src);
  3803     xorps(dst, Address(rscratch1, 0));
  3807 void MacroAssembler::null_check(Register reg, int offset) {
  3808   if (needs_explicit_null_check(offset)) {
  3809     // provoke OS NULL exception if reg = NULL by
  3810     // accessing M[reg] w/o changing any (non-CC) registers
  3811     cmpq(rax, Address(reg, 0));
  3812     // Note: should probably use testl(rax, Address(reg, 0));
  3813     //       may be shorter code (however, this version of
  3814     //       testl needs to be implemented first)
  3815   } else {
  3816     // nothing to do, (later) access of M[reg + offset]
  3817     // will provoke OS NULL exception if reg = NULL
  3821 int MacroAssembler::load_unsigned_byte(Register dst, Address src) {
  3822   int off = offset();
  3823   movzbl(dst, src);
  3824   return off;
  3827 int MacroAssembler::load_unsigned_word(Register dst, Address src) {
  3828   int off = offset();
  3829   movzwl(dst, src);
  3830   return off;
  3833 int MacroAssembler::load_signed_byte(Register dst, Address src) {
  3834   int off = offset();
  3835   movsbl(dst, src);
  3836   return off;
  3839 int MacroAssembler::load_signed_word(Register dst, Address src) {
  3840   int off = offset();
  3841   movswl(dst, src);
  3842   return off;
  3845 void MacroAssembler::incrementl(Register reg, int value) {
  3846   if (value == min_jint) { addl(reg, value); return; }
  3847   if (value <  0) { decrementl(reg, -value); return; }
  3848   if (value == 0) {                        ; return; }
  3849   if (value == 1 && UseIncDec) { incl(reg) ; return; }
  3850   /* else */      { addl(reg, value)       ; return; }
  3853 void MacroAssembler::decrementl(Register reg, int value) {
  3854   if (value == min_jint) { subl(reg, value); return; }
  3855   if (value <  0) { incrementl(reg, -value); return; }
  3856   if (value == 0) {                        ; return; }
  3857   if (value == 1 && UseIncDec) { decl(reg) ; return; }
  3858   /* else */      { subl(reg, value)       ; return; }
  3861 void MacroAssembler::incrementq(Register reg, int value) {
  3862   if (value == min_jint) { addq(reg, value); return; }
  3863   if (value <  0) { decrementq(reg, -value); return; }
  3864   if (value == 0) {                        ; return; }
  3865   if (value == 1 && UseIncDec) { incq(reg) ; return; }
  3866   /* else */      { addq(reg, value)       ; return; }
  3869 void MacroAssembler::decrementq(Register reg, int value) {
  3870   if (value == min_jint) { subq(reg, value); return; }
  3871   if (value <  0) { incrementq(reg, -value); return; }
  3872   if (value == 0) {                        ; return; }
  3873   if (value == 1 && UseIncDec) { decq(reg) ; return; }
  3874   /* else */      { subq(reg, value)       ; return; }
  3877 void MacroAssembler::incrementl(Address dst, int value) {
  3878   if (value == min_jint) { addl(dst, value); return; }
  3879   if (value <  0) { decrementl(dst, -value); return; }
  3880   if (value == 0) {                        ; return; }
  3881   if (value == 1 && UseIncDec) { incl(dst) ; return; }
  3882   /* else */      { addl(dst, value)       ; return; }
  3885 void MacroAssembler::decrementl(Address dst, int value) {
  3886   if (value == min_jint) { subl(dst, value); return; }
  3887   if (value <  0) { incrementl(dst, -value); return; }
  3888   if (value == 0) {                        ; return; }
  3889   if (value == 1 && UseIncDec) { decl(dst) ; return; }
  3890   /* else */      { subl(dst, value)       ; return; }
  3893 void MacroAssembler::incrementq(Address dst, int value) {
  3894   if (value == min_jint) { addq(dst, value); return; }
  3895   if (value <  0) { decrementq(dst, -value); return; }
  3896   if (value == 0) {                        ; return; }
  3897   if (value == 1 && UseIncDec) { incq(dst) ; return; }
  3898   /* else */      { addq(dst, value)       ; return; }
  3901 void MacroAssembler::decrementq(Address dst, int value) {
  3902   if (value == min_jint) { subq(dst, value); return; }
  3903   if (value <  0) { incrementq(dst, -value); return; }
  3904   if (value == 0) {                        ; return; }
  3905   if (value == 1 && UseIncDec) { decq(dst) ; return; }
  3906   /* else */      { subq(dst, value)       ; return; }
  3909 void MacroAssembler::align(int modulus) {
  3910   if (offset() % modulus != 0) {
  3911     nop(modulus - (offset() % modulus));
  3915 void MacroAssembler::enter() {
  3916   pushq(rbp);
  3917   movq(rbp, rsp);
  3920 void MacroAssembler::leave() {
  3921   emit_byte(0xC9); // LEAVE
  3924 // C++ bool manipulation
  3926 void MacroAssembler::movbool(Register dst, Address src) {
  3927   if(sizeof(bool) == 1)
  3928     movb(dst, src);
  3929   else if(sizeof(bool) == 2)
  3930     movw(dst, src);
  3931   else if(sizeof(bool) == 4)
  3932     movl(dst, src);
  3933   else {
  3934     // unsupported
  3935     ShouldNotReachHere();
  3939 void MacroAssembler::movbool(Address dst, bool boolconst) {
  3940   if(sizeof(bool) == 1)
  3941     movb(dst, (int) boolconst);
  3942   else if(sizeof(bool) == 2)
  3943     movw(dst, (int) boolconst);
  3944   else if(sizeof(bool) == 4)
  3945     movl(dst, (int) boolconst);
  3946   else {
  3947     // unsupported
  3948     ShouldNotReachHere();
  3952 void MacroAssembler::movbool(Address dst, Register src) {
  3953   if(sizeof(bool) == 1)
  3954     movb(dst, src);
  3955   else if(sizeof(bool) == 2)
  3956     movw(dst, src);
  3957   else if(sizeof(bool) == 4)
  3958     movl(dst, src);
  3959   else {
  3960     // unsupported
  3961     ShouldNotReachHere();
  3965 void MacroAssembler::testbool(Register dst) {
  3966   if(sizeof(bool) == 1)
  3967     testb(dst, (int) 0xff);
  3968   else if(sizeof(bool) == 2) {
  3969     // need testw impl
  3970     ShouldNotReachHere();
  3971   } else if(sizeof(bool) == 4)
  3972     testl(dst, dst);
  3973   else {
  3974     // unsupported
  3975     ShouldNotReachHere();
  3979 void MacroAssembler::set_last_Java_frame(Register last_java_sp,
  3980                                          Register last_java_fp,
  3981                                          address  last_java_pc) {
  3982   // determine last_java_sp register
  3983   if (!last_java_sp->is_valid()) {
  3984     last_java_sp = rsp;
  3987   // last_java_fp is optional
  3988   if (last_java_fp->is_valid()) {
  3989     movq(Address(r15_thread, JavaThread::last_Java_fp_offset()),
  3990          last_java_fp);
  3993   // last_java_pc is optional
  3994   if (last_java_pc != NULL) {
  3995     Address java_pc(r15_thread,
  3996                     JavaThread::frame_anchor_offset() + JavaFrameAnchor::last_Java_pc_offset());
  3997     lea(rscratch1, InternalAddress(last_java_pc));
  3998     movq(java_pc, rscratch1);
  4001   movq(Address(r15_thread, JavaThread::last_Java_sp_offset()), last_java_sp);
  4004 void MacroAssembler::reset_last_Java_frame(bool clear_fp,
  4005                                            bool clear_pc) {
  4006   // we must set sp to zero to clear frame
  4007   movptr(Address(r15_thread, JavaThread::last_Java_sp_offset()), NULL_WORD);
  4008   // must clear fp, so that compiled frames are not confused; it is
  4009   // possible that we need it only for debugging
  4010   if (clear_fp) {
  4011     movptr(Address(r15_thread, JavaThread::last_Java_fp_offset()), NULL_WORD);
  4014   if (clear_pc) {
  4015     movptr(Address(r15_thread, JavaThread::last_Java_pc_offset()), NULL_WORD);
  4020 // Implementation of call_VM versions
  4022 void MacroAssembler::call_VM_leaf_base(address entry_point, int num_args) {
  4023   Label L, E;
  4025 #ifdef _WIN64
  4026   // Windows always allocates space for it's register args
  4027   assert(num_args <= 4, "only register arguments supported");
  4028   subq(rsp,  frame::arg_reg_save_area_bytes);
  4029 #endif
  4031   // Align stack if necessary
  4032   testl(rsp, 15);
  4033   jcc(Assembler::zero, L);
  4035   subq(rsp, 8);
  4037     call(RuntimeAddress(entry_point));
  4039   addq(rsp, 8);
  4040   jmp(E);
  4042   bind(L);
  4044     call(RuntimeAddress(entry_point));
  4047   bind(E);
  4049 #ifdef _WIN64
  4050   // restore stack pointer
  4051   addq(rsp, frame::arg_reg_save_area_bytes);
  4052 #endif
  4057 void MacroAssembler::call_VM_base(Register oop_result,
  4058                                   Register java_thread,
  4059                                   Register last_java_sp,
  4060                                   address entry_point,
  4061                                   int num_args,
  4062                                   bool check_exceptions) {
  4063   // determine last_java_sp register
  4064   if (!last_java_sp->is_valid()) {
  4065     last_java_sp = rsp;
  4068   // debugging support
  4069   assert(num_args >= 0, "cannot have negative number of arguments");
  4070   assert(r15_thread != oop_result,
  4071          "cannot use the same register for java_thread & oop_result");
  4072   assert(r15_thread != last_java_sp,
  4073          "cannot use the same register for java_thread & last_java_sp");
  4075   // set last Java frame before call
  4077   // This sets last_Java_fp which is only needed from interpreted frames
  4078   // and should really be done only from the interp_masm version before
  4079   // calling the underlying call_VM. That doesn't happen yet so we set
  4080   // last_Java_fp here even though some callers don't need it and
  4081   // also clear it below.
  4082   set_last_Java_frame(last_java_sp, rbp, NULL);
  4085     Label L, E;
  4087     // Align stack if necessary
  4088 #ifdef _WIN64
  4089     assert(num_args <= 4, "only register arguments supported");
  4090     // Windows always allocates space for it's register args
  4091     subq(rsp, frame::arg_reg_save_area_bytes);
  4092 #endif
  4093     testl(rsp, 15);
  4094     jcc(Assembler::zero, L);
  4096     subq(rsp, 8);
  4098       call(RuntimeAddress(entry_point));
  4100     addq(rsp, 8);
  4101     jmp(E);
  4104     bind(L);
  4106       call(RuntimeAddress(entry_point));
  4109     bind(E);
  4111 #ifdef _WIN64
  4112     // restore stack pointer
  4113     addq(rsp, frame::arg_reg_save_area_bytes);
  4114 #endif
  4117 #ifdef ASSERT
  4118   pushq(rax);
  4120     Label L;
  4121     get_thread(rax);
  4122     cmpq(r15_thread, rax);
  4123     jcc(Assembler::equal, L);
  4124     stop("MacroAssembler::call_VM_base: register not callee saved?");
  4125     bind(L);
  4127   popq(rax);
  4128 #endif
  4130   // reset last Java frame
  4131   // This really shouldn't have to clear fp set note above at the
  4132   // call to set_last_Java_frame
  4133   reset_last_Java_frame(true, false);
  4135   check_and_handle_popframe(noreg);
  4136   check_and_handle_earlyret(noreg);
  4138   if (check_exceptions) {
  4139     cmpq(Address(r15_thread, Thread::pending_exception_offset()), (int) NULL);
  4140     // This used to conditionally jump to forward_exception however it is
  4141     // possible if we relocate that the branch will not reach. So we must jump
  4142     // around so we can always reach
  4143     Label ok;
  4144     jcc(Assembler::equal, ok);
  4145     jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
  4146     bind(ok);
  4149   // get oop result if there is one and reset the value in the thread
  4150   if (oop_result->is_valid()) {
  4151     movq(oop_result, Address(r15_thread, JavaThread::vm_result_offset()));
  4152     movptr(Address(r15_thread, JavaThread::vm_result_offset()), NULL_WORD);
  4153     verify_oop(oop_result, "broken oop in call_VM_base");
  4157 void MacroAssembler::check_and_handle_popframe(Register java_thread) {}
  4158 void MacroAssembler::check_and_handle_earlyret(Register java_thread) {}
  4160 void MacroAssembler::call_VM_helper(Register oop_result,
  4161                                     address entry_point,
  4162                                     int num_args,
  4163                                     bool check_exceptions) {
  4164   // Java thread becomes first argument of C function
  4165   movq(c_rarg0, r15_thread);
  4167   // We've pushed one address, correct last_Java_sp
  4168   leaq(rax, Address(rsp, wordSize));
  4170   call_VM_base(oop_result, noreg, rax, entry_point, num_args,
  4171                check_exceptions);
  4175 void MacroAssembler::call_VM(Register oop_result,
  4176                              address entry_point,
  4177                              bool check_exceptions) {
  4178   Label C, E;
  4179   Assembler::call(C, relocInfo::none);
  4180   jmp(E);
  4182   bind(C);
  4183   call_VM_helper(oop_result, entry_point, 0, check_exceptions);
  4184   ret(0);
  4186   bind(E);
  4190 void MacroAssembler::call_VM(Register oop_result,
  4191                              address entry_point,
  4192                              Register arg_1,
  4193                              bool check_exceptions) {
  4194   assert(rax != arg_1, "smashed argument");
  4195   assert(c_rarg0 != arg_1, "smashed argument");
  4197   Label C, E;
  4198   Assembler::call(C, relocInfo::none);
  4199   jmp(E);
  4201   bind(C);
  4202   // c_rarg0 is reserved for thread
  4203   if (c_rarg1 != arg_1) {
  4204     movq(c_rarg1, arg_1);
  4206   call_VM_helper(oop_result, entry_point, 1, check_exceptions);
  4207   ret(0);
  4209   bind(E);
  4212 void MacroAssembler::call_VM(Register oop_result,
  4213                              address entry_point,
  4214                              Register arg_1,
  4215                              Register arg_2,
  4216                              bool check_exceptions) {
  4217   assert(rax != arg_1, "smashed argument");
  4218   assert(rax != arg_2, "smashed argument");
  4219   assert(c_rarg0 != arg_1, "smashed argument");
  4220   assert(c_rarg0 != arg_2, "smashed argument");
  4221   assert(c_rarg1 != arg_2, "smashed argument");
  4222   assert(c_rarg2 != arg_1, "smashed argument");
  4224   Label C, E;
  4225   Assembler::call(C, relocInfo::none);
  4226   jmp(E);
  4228   bind(C);
  4229   // c_rarg0 is reserved for thread
  4230   if (c_rarg1 != arg_1) {
  4231     movq(c_rarg1, arg_1);
  4233   if (c_rarg2 != arg_2) {
  4234     movq(c_rarg2, arg_2);
  4236   call_VM_helper(oop_result, entry_point, 2, check_exceptions);
  4237   ret(0);
  4239   bind(E);
  4243 void MacroAssembler::call_VM(Register oop_result,
  4244                              address entry_point,
  4245                              Register arg_1,
  4246                              Register arg_2,
  4247                              Register arg_3,
  4248                              bool check_exceptions) {
  4249   assert(rax != arg_1, "smashed argument");
  4250   assert(rax != arg_2, "smashed argument");
  4251   assert(rax != arg_3, "smashed argument");
  4252   assert(c_rarg0 != arg_1, "smashed argument");
  4253   assert(c_rarg0 != arg_2, "smashed argument");
  4254   assert(c_rarg0 != arg_3, "smashed argument");
  4255   assert(c_rarg1 != arg_2, "smashed argument");
  4256   assert(c_rarg1 != arg_3, "smashed argument");
  4257   assert(c_rarg2 != arg_1, "smashed argument");
  4258   assert(c_rarg2 != arg_3, "smashed argument");
  4259   assert(c_rarg3 != arg_1, "smashed argument");
  4260   assert(c_rarg3 != arg_2, "smashed argument");
  4262   Label C, E;
  4263   Assembler::call(C, relocInfo::none);
  4264   jmp(E);
  4266   bind(C);
  4267   // c_rarg0 is reserved for thread
  4268   if (c_rarg1 != arg_1) {
  4269     movq(c_rarg1, arg_1);
  4271   if (c_rarg2 != arg_2) {
  4272     movq(c_rarg2, arg_2);
  4274   if (c_rarg3 != arg_3) {
  4275     movq(c_rarg3, arg_3);
  4277   call_VM_helper(oop_result, entry_point, 3, check_exceptions);
  4278   ret(0);
  4280   bind(E);
  4283 void MacroAssembler::call_VM(Register oop_result,
  4284                              Register last_java_sp,
  4285                              address entry_point,
  4286                              int num_args,
  4287                              bool check_exceptions) {
  4288   call_VM_base(oop_result, noreg, last_java_sp, entry_point, num_args,
  4289                check_exceptions);
  4292 void MacroAssembler::call_VM(Register oop_result,
  4293                              Register last_java_sp,
  4294                              address entry_point,
  4295                              Register arg_1,
  4296                              bool check_exceptions) {
  4297   assert(c_rarg0 != arg_1, "smashed argument");
  4298   assert(c_rarg1 != last_java_sp, "smashed argument");
  4299   // c_rarg0 is reserved for thread
  4300   if (c_rarg1 != arg_1) {
  4301     movq(c_rarg1, arg_1);
  4303   call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions);
  4306 void MacroAssembler::call_VM(Register oop_result,
  4307                              Register last_java_sp,
  4308                              address entry_point,
  4309                              Register arg_1,
  4310                              Register arg_2,
  4311                              bool check_exceptions) {
  4312   assert(c_rarg0 != arg_1, "smashed argument");
  4313   assert(c_rarg0 != arg_2, "smashed argument");
  4314   assert(c_rarg1 != arg_2, "smashed argument");
  4315   assert(c_rarg1 != last_java_sp, "smashed argument");
  4316   assert(c_rarg2 != arg_1, "smashed argument");
  4317   assert(c_rarg2 != last_java_sp, "smashed argument");
  4318   // c_rarg0 is reserved for thread
  4319   if (c_rarg1 != arg_1) {
  4320     movq(c_rarg1, arg_1);
  4322   if (c_rarg2 != arg_2) {
  4323     movq(c_rarg2, arg_2);
  4325   call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions);
  4329 void MacroAssembler::call_VM(Register oop_result,
  4330                              Register last_java_sp,
  4331                              address entry_point,
  4332                              Register arg_1,
  4333                              Register arg_2,
  4334                              Register arg_3,
  4335                              bool check_exceptions) {
  4336   assert(c_rarg0 != arg_1, "smashed argument");
  4337   assert(c_rarg0 != arg_2, "smashed argument");
  4338   assert(c_rarg0 != arg_3, "smashed argument");
  4339   assert(c_rarg1 != arg_2, "smashed argument");
  4340   assert(c_rarg1 != arg_3, "smashed argument");
  4341   assert(c_rarg1 != last_java_sp, "smashed argument");
  4342   assert(c_rarg2 != arg_1, "smashed argument");
  4343   assert(c_rarg2 != arg_3, "smashed argument");
  4344   assert(c_rarg2 != last_java_sp, "smashed argument");
  4345   assert(c_rarg3 != arg_1, "smashed argument");
  4346   assert(c_rarg3 != arg_2, "smashed argument");
  4347   assert(c_rarg3 != last_java_sp, "smashed argument");
  4348   // c_rarg0 is reserved for thread
  4349   if (c_rarg1 != arg_1) {
  4350     movq(c_rarg1, arg_1);
  4352   if (c_rarg2 != arg_2) {
  4353     movq(c_rarg2, arg_2);
  4355   if (c_rarg3 != arg_3) {
  4356     movq(c_rarg2, arg_3);
  4358   call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions);
  4361 void MacroAssembler::call_VM_leaf(address entry_point, int num_args) {
  4362   call_VM_leaf_base(entry_point, num_args);
  4365 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_1) {
  4366   if (c_rarg0 != arg_1) {
  4367     movq(c_rarg0, arg_1);
  4369   call_VM_leaf(entry_point, 1);
  4372 void MacroAssembler::call_VM_leaf(address entry_point,
  4373                                   Register arg_1,
  4374                                   Register arg_2) {
  4375   assert(c_rarg0 != arg_2, "smashed argument");
  4376   assert(c_rarg1 != arg_1, "smashed argument");
  4377   if (c_rarg0 != arg_1) {
  4378     movq(c_rarg0, arg_1);
  4380   if (c_rarg1 != arg_2) {
  4381     movq(c_rarg1, arg_2);
  4383   call_VM_leaf(entry_point, 2);
  4386 void MacroAssembler::call_VM_leaf(address entry_point,
  4387                                   Register arg_1,
  4388                                   Register arg_2,
  4389                                   Register arg_3) {
  4390   assert(c_rarg0 != arg_2, "smashed argument");
  4391   assert(c_rarg0 != arg_3, "smashed argument");
  4392   assert(c_rarg1 != arg_1, "smashed argument");
  4393   assert(c_rarg1 != arg_3, "smashed argument");
  4394   assert(c_rarg2 != arg_1, "smashed argument");
  4395   assert(c_rarg2 != arg_2, "smashed argument");
  4396   if (c_rarg0 != arg_1) {
  4397     movq(c_rarg0, arg_1);
  4399   if (c_rarg1 != arg_2) {
  4400     movq(c_rarg1, arg_2);
  4402   if (c_rarg2 != arg_3) {
  4403     movq(c_rarg2, arg_3);
  4405   call_VM_leaf(entry_point, 3);
  4409 // Calls to C land
  4410 //
  4411 // When entering C land, the rbp & rsp of the last Java frame have to
  4412 // be recorded in the (thread-local) JavaThread object. When leaving C
  4413 // land, the last Java fp has to be reset to 0. This is required to
  4414 // allow proper stack traversal.
  4415 void MacroAssembler::store_check(Register obj) {
  4416   // Does a store check for the oop in register obj. The content of
  4417   // register obj is destroyed afterwards.
  4418   store_check_part_1(obj);
  4419   store_check_part_2(obj);
  4422 void MacroAssembler::store_check(Register obj, Address dst) {
  4423   store_check(obj);
  4426 // split the store check operation so that other instructions can be
  4427 // scheduled inbetween
  4428 void MacroAssembler::store_check_part_1(Register obj) {
  4429   BarrierSet* bs = Universe::heap()->barrier_set();
  4430   assert(bs->kind() == BarrierSet::CardTableModRef, "Wrong barrier set kind");
  4431   shrq(obj, CardTableModRefBS::card_shift);
  4434 void MacroAssembler::store_check_part_2(Register obj) {
  4435   BarrierSet* bs = Universe::heap()->barrier_set();
  4436   assert(bs->kind() == BarrierSet::CardTableModRef, "Wrong barrier set kind");
  4437   CardTableModRefBS* ct = (CardTableModRefBS*)bs;
  4438   assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
  4440   // The calculation for byte_map_base is as follows:
  4441   // byte_map_base = _byte_map - (uintptr_t(low_bound) >> card_shift);
  4442   // So this essentially converts an address to a displacement and
  4443   // it will never need to be relocated. On 64bit however the value may be too
  4444   // large for a 32bit displacement
  4446   intptr_t disp = (intptr_t) ct->byte_map_base;
  4447   if (is_simm32(disp)) {
  4448     Address cardtable(noreg, obj, Address::times_1, disp);
  4449     movb(cardtable, 0);
  4450   } else {
  4451     // By doing it as an ExternalAddress disp could be converted to a rip-relative
  4452     // displacement and done in a single instruction given favorable mapping and
  4453     // a smarter version of as_Address. Worst case it is two instructions which
  4454     // is no worse off then loading disp into a register and doing as a simple
  4455     // Address() as above.
  4456     // We can't do as ExternalAddress as the only style since if disp == 0 we'll
  4457     // assert since NULL isn't acceptable in a reloci (see 6644928). In any case
  4458     // in some cases we'll get a single instruction version.
  4460     ExternalAddress cardtable((address)disp);
  4461     Address index(noreg, obj, Address::times_1);
  4462     movb(as_Address(ArrayAddress(cardtable, index)), 0);
  4467 void MacroAssembler::c2bool(Register x) {
  4468   // implements x == 0 ? 0 : 1
  4469   // note: must only look at least-significant byte of x
  4470   //       since C-style booleans are stored in one byte
  4471   //       only! (was bug)
  4472   andl(x, 0xFF);
  4473   setb(Assembler::notZero, x);
  4476 int MacroAssembler::corrected_idivl(Register reg) {
  4477   // Full implementation of Java idiv and irem; checks for special
  4478   // case as described in JVM spec., p.243 & p.271.  The function
  4479   // returns the (pc) offset of the idivl instruction - may be needed
  4480   // for implicit exceptions.
  4481   //
  4482   //         normal case                           special case
  4483   //
  4484   // input : eax: dividend                         min_int
  4485   //         reg: divisor   (may not be eax/edx)   -1
  4486   //
  4487   // output: eax: quotient  (= eax idiv reg)       min_int
  4488   //         edx: remainder (= eax irem reg)       0
  4489   assert(reg != rax && reg != rdx, "reg cannot be rax or rdx register");
  4490   const int min_int = 0x80000000;
  4491   Label normal_case, special_case;
  4493   // check for special case
  4494   cmpl(rax, min_int);
  4495   jcc(Assembler::notEqual, normal_case);
  4496   xorl(rdx, rdx); // prepare edx for possible special case (where
  4497                   // remainder = 0)
  4498   cmpl(reg, -1);
  4499   jcc(Assembler::equal, special_case);
  4501   // handle normal case
  4502   bind(normal_case);
  4503   cdql();
  4504   int idivl_offset = offset();
  4505   idivl(reg);
  4507   // normal and special case exit
  4508   bind(special_case);
  4510   return idivl_offset;
  4513 int MacroAssembler::corrected_idivq(Register reg) {
  4514   // Full implementation of Java ldiv and lrem; checks for special
  4515   // case as described in JVM spec., p.243 & p.271.  The function
  4516   // returns the (pc) offset of the idivl instruction - may be needed
  4517   // for implicit exceptions.
  4518   //
  4519   //         normal case                           special case
  4520   //
  4521   // input : rax: dividend                         min_long
  4522   //         reg: divisor   (may not be eax/edx)   -1
  4523   //
  4524   // output: rax: quotient  (= rax idiv reg)       min_long
  4525   //         rdx: remainder (= rax irem reg)       0
  4526   assert(reg != rax && reg != rdx, "reg cannot be rax or rdx register");
  4527   static const int64_t min_long = 0x8000000000000000;
  4528   Label normal_case, special_case;
  4530   // check for special case
  4531   cmp64(rax, ExternalAddress((address) &min_long));
  4532   jcc(Assembler::notEqual, normal_case);
  4533   xorl(rdx, rdx); // prepare rdx for possible special case (where
  4534                   // remainder = 0)
  4535   cmpq(reg, -1);
  4536   jcc(Assembler::equal, special_case);
  4538   // handle normal case
  4539   bind(normal_case);
  4540   cdqq();
  4541   int idivq_offset = offset();
  4542   idivq(reg);
  4544   // normal and special case exit
  4545   bind(special_case);
  4547   return idivq_offset;
  4550 void MacroAssembler::push_IU_state() {
  4551   pushfq();     // Push flags first because pushaq kills them
  4552   subq(rsp, 8); // Make sure rsp stays 16-byte aligned
  4553   pushaq();
  4556 void MacroAssembler::pop_IU_state() {
  4557   popaq();
  4558   addq(rsp, 8);
  4559   popfq();
  4562 void MacroAssembler::push_FPU_state() {
  4563   subq(rsp, FPUStateSizeInWords * wordSize);
  4564   fxsave(Address(rsp, 0));
  4567 void MacroAssembler::pop_FPU_state() {
  4568   fxrstor(Address(rsp, 0));
  4569   addq(rsp, FPUStateSizeInWords * wordSize);
  4572 // Save Integer and Float state
  4573 // Warning: Stack must be 16 byte aligned
  4574 void MacroAssembler::push_CPU_state() {
  4575   push_IU_state();
  4576   push_FPU_state();
  4579 void MacroAssembler::pop_CPU_state() {
  4580   pop_FPU_state();
  4581   pop_IU_state();
  4584 void MacroAssembler::sign_extend_short(Register reg) {
  4585   movswl(reg, reg);
  4588 void MacroAssembler::sign_extend_byte(Register reg) {
  4589   movsbl(reg, reg);
  4592 void MacroAssembler::division_with_shift(Register reg, int shift_value) {
  4593   assert (shift_value > 0, "illegal shift value");
  4594   Label _is_positive;
  4595   testl (reg, reg);
  4596   jcc (Assembler::positive, _is_positive);
  4597   int offset = (1 << shift_value) - 1 ;
  4599   if (offset == 1) {
  4600     incrementl(reg);
  4601   } else {
  4602     addl(reg, offset);
  4605   bind (_is_positive);
  4606   sarl(reg, shift_value);
  4609 void MacroAssembler::round_to_l(Register reg, int modulus) {
  4610   addl(reg, modulus - 1);
  4611   andl(reg, -modulus);
  4614 void MacroAssembler::round_to_q(Register reg, int modulus) {
  4615   addq(reg, modulus - 1);
  4616   andq(reg, -modulus);
  4619 void MacroAssembler::verify_oop(Register reg, const char* s) {
  4620   if (!VerifyOops) {
  4621     return;
  4624   // Pass register number to verify_oop_subroutine
  4625   char* b = new char[strlen(s) + 50];
  4626   sprintf(b, "verify_oop: %s: %s", reg->name(), s);
  4628   pushq(rax); // save rax, restored by receiver
  4630   // pass args on stack, only touch rax
  4631   pushq(reg);
  4632   // avoid using pushptr, as it modifies scratch registers
  4633   // and our contract is not to modify anything
  4634   ExternalAddress buffer((address)b);
  4635   movptr(rax, buffer.addr());
  4636   pushq(rax);
  4638   // call indirectly to solve generation ordering problem
  4639   movptr(rax, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address()));
  4640   call(rax); // no alignment requirement
  4641   // everything popped by receiver
  4644 void MacroAssembler::verify_oop_addr(Address addr, const char* s) {
  4645   if (!VerifyOops) return;
  4646   // Pass register number to verify_oop_subroutine
  4647   char* b = new char[strlen(s) + 50];
  4648   sprintf(b, "verify_oop_addr: %s", s);
  4649   pushq(rax);                          // save rax
  4650   movq(addr, rax);
  4651   pushq(rax);                          // pass register argument
  4654   // avoid using pushptr, as it modifies scratch registers
  4655   // and our contract is not to modify anything
  4656   ExternalAddress buffer((address)b);
  4657   movptr(rax, buffer.addr());
  4658   pushq(rax);
  4660   // call indirectly to solve generation ordering problem
  4661   movptr(rax, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address()));
  4662   call(rax); // no alignment requirement
  4663   // everything popped by receiver
  4667 void MacroAssembler::stop(const char* msg) {
  4668   address rip = pc();
  4669   pushaq(); // get regs on stack
  4670   lea(c_rarg0, ExternalAddress((address) msg));
  4671   lea(c_rarg1, InternalAddress(rip));
  4672   movq(c_rarg2, rsp); // pass pointer to regs array
  4673   andq(rsp, -16); // align stack as required by ABI
  4674   call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug)));
  4675   hlt();
  4678 void MacroAssembler::warn(const char* msg) {
  4679   pushq(r12);
  4680   movq(r12, rsp);
  4681   andq(rsp, -16);     // align stack as required by push_CPU_state and call
  4683   push_CPU_state();   // keeps alignment at 16 bytes
  4684   lea(c_rarg0, ExternalAddress((address) msg));
  4685   call_VM_leaf(CAST_FROM_FN_PTR(address, warning), c_rarg0);
  4686   pop_CPU_state();
  4688   movq(rsp, r12);
  4689   popq(r12);
  4692 #ifndef PRODUCT
  4693 extern "C" void findpc(intptr_t x);
  4694 #endif
  4696 void MacroAssembler::debug(char* msg, int64_t pc, int64_t regs[]) {
  4697   // In order to get locks to work, we need to fake a in_VM state
  4698   if (ShowMessageBoxOnError ) {
  4699     JavaThread* thread = JavaThread::current();
  4700     JavaThreadState saved_state = thread->thread_state();
  4701     thread->set_thread_state(_thread_in_vm);
  4702 #ifndef PRODUCT
  4703     if (CountBytecodes || TraceBytecodes || StopInterpreterAt) {
  4704       ttyLocker ttyl;
  4705       BytecodeCounter::print();
  4707 #endif
  4708     // To see where a verify_oop failed, get $ebx+40/X for this frame.
  4709     // XXX correct this offset for amd64
  4710     // This is the value of eip which points to where verify_oop will return.
  4711     if (os::message_box(msg, "Execution stopped, print registers?")) {
  4712       ttyLocker ttyl;
  4713       tty->print_cr("rip = 0x%016lx", pc);
  4714 #ifndef PRODUCT
  4715       tty->cr();
  4716       findpc(pc);
  4717       tty->cr();
  4718 #endif
  4719       tty->print_cr("rax = 0x%016lx", regs[15]);
  4720       tty->print_cr("rbx = 0x%016lx", regs[12]);
  4721       tty->print_cr("rcx = 0x%016lx", regs[14]);
  4722       tty->print_cr("rdx = 0x%016lx", regs[13]);
  4723       tty->print_cr("rdi = 0x%016lx", regs[8]);
  4724       tty->print_cr("rsi = 0x%016lx", regs[9]);
  4725       tty->print_cr("rbp = 0x%016lx", regs[10]);
  4726       tty->print_cr("rsp = 0x%016lx", regs[11]);
  4727       tty->print_cr("r8  = 0x%016lx", regs[7]);
  4728       tty->print_cr("r9  = 0x%016lx", regs[6]);
  4729       tty->print_cr("r10 = 0x%016lx", regs[5]);
  4730       tty->print_cr("r11 = 0x%016lx", regs[4]);
  4731       tty->print_cr("r12 = 0x%016lx", regs[3]);
  4732       tty->print_cr("r13 = 0x%016lx", regs[2]);
  4733       tty->print_cr("r14 = 0x%016lx", regs[1]);
  4734       tty->print_cr("r15 = 0x%016lx", regs[0]);
  4735       BREAKPOINT;
  4737     ThreadStateTransition::transition(thread, _thread_in_vm, saved_state);
  4738   } else {
  4739     ttyLocker ttyl;
  4740     ::tty->print_cr("=============== DEBUG MESSAGE: %s ================\n",
  4741                     msg);
  4745 void MacroAssembler::os_breakpoint() {
  4746   // instead of directly emitting a breakpoint, call os:breakpoint for
  4747   // better debugability
  4748   // This shouldn't need alignment, it's an empty function
  4749   call(RuntimeAddress(CAST_FROM_FN_PTR(address, os::breakpoint)));
  4752 // Write serialization page so VM thread can do a pseudo remote membar.
  4753 // We use the current thread pointer to calculate a thread specific
  4754 // offset to write to within the page. This minimizes bus traffic
  4755 // due to cache line collision.
  4756 void MacroAssembler::serialize_memory(Register thread,
  4757                                       Register tmp) {
  4759   movl(tmp, thread);
  4760   shrl(tmp, os::get_serialize_page_shift_count());
  4761   andl(tmp, (os::vm_page_size() - sizeof(int)));
  4763   Address index(noreg, tmp, Address::times_1);
  4764   ExternalAddress page(os::get_memory_serialize_page());
  4766   movptr(ArrayAddress(page, index), tmp);
  4769 void MacroAssembler::verify_tlab() {
  4770 #ifdef ASSERT
  4771   if (UseTLAB) {
  4772     Label next, ok;
  4773     Register t1 = rsi;
  4775     pushq(t1);
  4777     movq(t1, Address(r15_thread, in_bytes(JavaThread::tlab_top_offset())));
  4778     cmpq(t1, Address(r15_thread, in_bytes(JavaThread::tlab_start_offset())));
  4779     jcc(Assembler::aboveEqual, next);
  4780     stop("assert(top >= start)");
  4781     should_not_reach_here();
  4783     bind(next);
  4784     movq(t1, Address(r15_thread, in_bytes(JavaThread::tlab_end_offset())));
  4785     cmpq(t1, Address(r15_thread, in_bytes(JavaThread::tlab_top_offset())));
  4786     jcc(Assembler::aboveEqual, ok);
  4787     stop("assert(top <= end)");
  4788     should_not_reach_here();
  4790     bind(ok);
  4792     popq(t1);
  4794 #endif
  4797 // Defines obj, preserves var_size_in_bytes
  4798 void MacroAssembler::eden_allocate(Register obj,
  4799                                    Register var_size_in_bytes,
  4800                                    int con_size_in_bytes,
  4801                                    Register t1,
  4802                                    Label& slow_case) {
  4803   assert(obj == rax, "obj must be in rax for cmpxchg");
  4804   assert_different_registers(obj, var_size_in_bytes, t1);
  4805   Register end = t1;
  4806   Label retry;
  4807   bind(retry);
  4808   ExternalAddress heap_top((address) Universe::heap()->top_addr());
  4809   movptr(obj, heap_top);
  4810   if (var_size_in_bytes == noreg) {
  4811     leaq(end, Address(obj, con_size_in_bytes));
  4812   } else {
  4813     leaq(end, Address(obj, var_size_in_bytes, Address::times_1));
  4815   // if end < obj then we wrapped around => object too long => slow case
  4816   cmpq(end, obj);
  4817   jcc(Assembler::below, slow_case);
  4818   cmpptr(end, ExternalAddress((address) Universe::heap()->end_addr()));
  4820   jcc(Assembler::above, slow_case);
  4821   // Compare obj with the top addr, and if still equal, store the new
  4822   // top addr in end at the address of the top addr pointer. Sets ZF
  4823   // if was equal, and clears it otherwise. Use lock prefix for
  4824   // atomicity on MPs.
  4825   if (os::is_MP()) {
  4826     lock();
  4828   cmpxchgptr(end, heap_top);
  4829   // if someone beat us on the allocation, try again, otherwise continue
  4830   jcc(Assembler::notEqual, retry);
  4833 // Defines obj, preserves var_size_in_bytes, okay for t2 == var_size_in_bytes.
  4834 void MacroAssembler::tlab_allocate(Register obj,
  4835                                    Register var_size_in_bytes,
  4836                                    int con_size_in_bytes,
  4837                                    Register t1,
  4838                                    Register t2,
  4839                                    Label& slow_case) {
  4840   assert_different_registers(obj, t1, t2);
  4841   assert_different_registers(obj, var_size_in_bytes, t1);
  4842   Register end = t2;
  4844   verify_tlab();
  4846   movq(obj, Address(r15_thread, JavaThread::tlab_top_offset()));
  4847   if (var_size_in_bytes == noreg) {
  4848     leaq(end, Address(obj, con_size_in_bytes));
  4849   } else {
  4850     leaq(end, Address(obj, var_size_in_bytes, Address::times_1));
  4852   cmpq(end, Address(r15_thread, JavaThread::tlab_end_offset()));
  4853   jcc(Assembler::above, slow_case);
  4855   // update the tlab top pointer
  4856   movq(Address(r15_thread, JavaThread::tlab_top_offset()), end);
  4858   // recover var_size_in_bytes if necessary
  4859   if (var_size_in_bytes == end) {
  4860     subq(var_size_in_bytes, obj);
  4862   verify_tlab();
  4865 // Preserves rbx and rdx.
  4866 void MacroAssembler::tlab_refill(Label& retry,
  4867                                  Label& try_eden,
  4868                                  Label& slow_case) {
  4869   Register top = rax;
  4870   Register t1 = rcx;
  4871   Register t2 = rsi;
  4872   Register t3 = r10;
  4873   Register thread_reg = r15_thread;
  4874   assert_different_registers(top, thread_reg, t1, t2, t3,
  4875                              /* preserve: */ rbx, rdx);
  4876   Label do_refill, discard_tlab;
  4878   if (CMSIncrementalMode || !Universe::heap()->supports_inline_contig_alloc()) {
  4879     // No allocation in the shared eden.
  4880     jmp(slow_case);
  4883   movq(top, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())));
  4884   movq(t1, Address(thread_reg, in_bytes(JavaThread::tlab_end_offset())));
  4886   // calculate amount of free space
  4887   subq(t1, top);
  4888   shrq(t1, LogHeapWordSize);
  4890   // Retain tlab and allocate object in shared space if
  4891   // the amount free in the tlab is too large to discard.
  4892   cmpq(t1, Address(thread_reg, // size_t
  4893                    in_bytes(JavaThread::tlab_refill_waste_limit_offset())));
  4894   jcc(Assembler::lessEqual, discard_tlab);
  4896   // Retain
  4897   mov64(t2, ThreadLocalAllocBuffer::refill_waste_limit_increment());
  4898   addq(Address(thread_reg,  // size_t
  4899                in_bytes(JavaThread::tlab_refill_waste_limit_offset())),
  4900        t2);
  4901   if (TLABStats) {
  4902     // increment number of slow_allocations
  4903     addl(Address(thread_reg, // unsigned int
  4904                  in_bytes(JavaThread::tlab_slow_allocations_offset())),
  4905          1);
  4907   jmp(try_eden);
  4909   bind(discard_tlab);
  4910   if (TLABStats) {
  4911     // increment number of refills
  4912     addl(Address(thread_reg, // unsigned int
  4913                  in_bytes(JavaThread::tlab_number_of_refills_offset())),
  4914          1);
  4915     // accumulate wastage -- t1 is amount free in tlab
  4916     addl(Address(thread_reg, // unsigned int
  4917                  in_bytes(JavaThread::tlab_fast_refill_waste_offset())),
  4918          t1);
  4921   // if tlab is currently allocated (top or end != null) then
  4922   // fill [top, end + alignment_reserve) with array object
  4923   testq(top, top);
  4924   jcc(Assembler::zero, do_refill);
  4926   // set up the mark word
  4927   mov64(t3, (int64_t) markOopDesc::prototype()->copy_set_hash(0x2));
  4928   movq(Address(top, oopDesc::mark_offset_in_bytes()), t3);
  4929   // set the length to the remaining space
  4930   subq(t1, typeArrayOopDesc::header_size(T_INT));
  4931   addq(t1, (int)ThreadLocalAllocBuffer::alignment_reserve());
  4932   shlq(t1, log2_intptr(HeapWordSize / sizeof(jint)));
  4933   movq(Address(top, arrayOopDesc::length_offset_in_bytes()), t1);
  4934   // set klass to intArrayKlass
  4935   movptr(t1, ExternalAddress((address) Universe::intArrayKlassObj_addr()));
  4936   store_klass(top, t1);
  4938   // refill the tlab with an eden allocation
  4939   bind(do_refill);
  4940   movq(t1, Address(thread_reg, in_bytes(JavaThread::tlab_size_offset())));
  4941   shlq(t1, LogHeapWordSize);
  4942   // add object_size ??
  4943   eden_allocate(top, t1, 0, t2, slow_case);
  4945   // Check that t1 was preserved in eden_allocate.
  4946 #ifdef ASSERT
  4947   if (UseTLAB) {
  4948     Label ok;
  4949     Register tsize = rsi;
  4950     assert_different_registers(tsize, thread_reg, t1);
  4951     pushq(tsize);
  4952     movq(tsize, Address(thread_reg, in_bytes(JavaThread::tlab_size_offset())));
  4953     shlq(tsize, LogHeapWordSize);
  4954     cmpq(t1, tsize);
  4955     jcc(Assembler::equal, ok);
  4956     stop("assert(t1 != tlab size)");
  4957     should_not_reach_here();
  4959     bind(ok);
  4960     popq(tsize);
  4962 #endif
  4963   movq(Address(thread_reg, in_bytes(JavaThread::tlab_start_offset())), top);
  4964   movq(Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())), top);
  4965   addq(top, t1);
  4966   subq(top, (int)ThreadLocalAllocBuffer::alignment_reserve_in_bytes());
  4967   movq(Address(thread_reg, in_bytes(JavaThread::tlab_end_offset())), top);
  4968   verify_tlab();
  4969   jmp(retry);
  4973 int MacroAssembler::biased_locking_enter(Register lock_reg, Register obj_reg, Register swap_reg, Register tmp_reg,
  4974                                          bool swap_reg_contains_mark,
  4975                                          Label& done, Label* slow_case,
  4976                                          BiasedLockingCounters* counters) {
  4977   assert(UseBiasedLocking, "why call this otherwise?");
  4978   assert(swap_reg == rax, "swap_reg must be rax for cmpxchgq");
  4979   assert(tmp_reg != noreg, "tmp_reg must be supplied");
  4980   assert_different_registers(lock_reg, obj_reg, swap_reg, tmp_reg);
  4981   assert(markOopDesc::age_shift == markOopDesc::lock_bits + markOopDesc::biased_lock_bits, "biased locking makes assumptions about bit layout");
  4982   Address mark_addr      (obj_reg, oopDesc::mark_offset_in_bytes());
  4983   Address saved_mark_addr(lock_reg, 0);
  4985   if (PrintBiasedLockingStatistics && counters == NULL)
  4986     counters = BiasedLocking::counters();
  4988   // Biased locking
  4989   // See whether the lock is currently biased toward our thread and
  4990   // whether the epoch is still valid
  4991   // Note that the runtime guarantees sufficient alignment of JavaThread
  4992   // pointers to allow age to be placed into low bits
  4993   // First check to see whether biasing is even enabled for this object
  4994   Label cas_label;
  4995   int null_check_offset = -1;
  4996   if (!swap_reg_contains_mark) {
  4997     null_check_offset = offset();
  4998     movq(swap_reg, mark_addr);
  5000   movq(tmp_reg, swap_reg);
  5001   andq(tmp_reg, markOopDesc::biased_lock_mask_in_place);
  5002   cmpq(tmp_reg, markOopDesc::biased_lock_pattern);
  5003   jcc(Assembler::notEqual, cas_label);
  5004   // The bias pattern is present in the object's header. Need to check
  5005   // whether the bias owner and the epoch are both still current.
  5006   load_klass(tmp_reg, obj_reg);
  5007   movq(tmp_reg, Address(tmp_reg, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes()));
  5008   orq(tmp_reg, r15_thread);
  5009   xorq(tmp_reg, swap_reg);
  5010   andq(tmp_reg, ~((int) markOopDesc::age_mask_in_place));
  5011   if (counters != NULL) {
  5012     cond_inc32(Assembler::zero,
  5013                ExternalAddress((address) counters->anonymously_biased_lock_entry_count_addr()));
  5015   jcc(Assembler::equal, done);
  5017   Label try_revoke_bias;
  5018   Label try_rebias;
  5020   // At this point we know that the header has the bias pattern and
  5021   // that we are not the bias owner in the current epoch. We need to
  5022   // figure out more details about the state of the header in order to
  5023   // know what operations can be legally performed on the object's
  5024   // header.
  5026   // If the low three bits in the xor result aren't clear, that means
  5027   // the prototype header is no longer biased and we have to revoke
  5028   // the bias on this object.
  5029   testq(tmp_reg, markOopDesc::biased_lock_mask_in_place);
  5030   jcc(Assembler::notZero, try_revoke_bias);
  5032   // Biasing is still enabled for this data type. See whether the
  5033   // epoch of the current bias is still valid, meaning that the epoch
  5034   // bits of the mark word are equal to the epoch bits of the
  5035   // prototype header. (Note that the prototype header's epoch bits
  5036   // only change at a safepoint.) If not, attempt to rebias the object
  5037   // toward the current thread. Note that we must be absolutely sure
  5038   // that the current epoch is invalid in order to do this because
  5039   // otherwise the manipulations it performs on the mark word are
  5040   // illegal.
  5041   testq(tmp_reg, markOopDesc::epoch_mask_in_place);
  5042   jcc(Assembler::notZero, try_rebias);
  5044   // The epoch of the current bias is still valid but we know nothing
  5045   // about the owner; it might be set or it might be clear. Try to
  5046   // acquire the bias of the object using an atomic operation. If this
  5047   // fails we will go in to the runtime to revoke the object's bias.
  5048   // Note that we first construct the presumed unbiased header so we
  5049   // don't accidentally blow away another thread's valid bias.
  5050   andq(swap_reg,
  5051        markOopDesc::biased_lock_mask_in_place | markOopDesc::age_mask_in_place | markOopDesc::epoch_mask_in_place);
  5052   movq(tmp_reg, swap_reg);
  5053   orq(tmp_reg, r15_thread);
  5054   if (os::is_MP()) {
  5055     lock();
  5057   cmpxchgq(tmp_reg, Address(obj_reg, 0));
  5058   // If the biasing toward our thread failed, this means that
  5059   // another thread succeeded in biasing it toward itself and we
  5060   // need to revoke that bias. The revocation will occur in the
  5061   // interpreter runtime in the slow case.
  5062   if (counters != NULL) {
  5063     cond_inc32(Assembler::zero,
  5064                ExternalAddress((address) counters->anonymously_biased_lock_entry_count_addr()));
  5066   if (slow_case != NULL) {
  5067     jcc(Assembler::notZero, *slow_case);
  5069   jmp(done);
  5071   bind(try_rebias);
  5072   // At this point we know the epoch has expired, meaning that the
  5073   // current "bias owner", if any, is actually invalid. Under these
  5074   // circumstances _only_, we are allowed to use the current header's
  5075   // value as the comparison value when doing the cas to acquire the
  5076   // bias in the current epoch. In other words, we allow transfer of
  5077   // the bias from one thread to another directly in this situation.
  5078   //
  5079   // FIXME: due to a lack of registers we currently blow away the age
  5080   // bits in this situation. Should attempt to preserve them.
  5081   load_klass(tmp_reg, obj_reg);
  5082   movq(tmp_reg, Address(tmp_reg, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes()));
  5083   orq(tmp_reg, r15_thread);
  5084   if (os::is_MP()) {
  5085     lock();
  5087   cmpxchgq(tmp_reg, Address(obj_reg, 0));
  5088   // If the biasing toward our thread failed, then another thread
  5089   // succeeded in biasing it toward itself and we need to revoke that
  5090   // bias. The revocation will occur in the runtime in the slow case.
  5091   if (counters != NULL) {
  5092     cond_inc32(Assembler::zero,
  5093                ExternalAddress((address) counters->rebiased_lock_entry_count_addr()));
  5095   if (slow_case != NULL) {
  5096     jcc(Assembler::notZero, *slow_case);
  5098   jmp(done);
  5100   bind(try_revoke_bias);
  5101   // The prototype mark in the klass doesn't have the bias bit set any
  5102   // more, indicating that objects of this data type are not supposed
  5103   // to be biased any more. We are going to try to reset the mark of
  5104   // this object to the prototype value and fall through to the
  5105   // CAS-based locking scheme. Note that if our CAS fails, it means
  5106   // that another thread raced us for the privilege of revoking the
  5107   // bias of this particular object, so it's okay to continue in the
  5108   // normal locking code.
  5109   //
  5110   // FIXME: due to a lack of registers we currently blow away the age
  5111   // bits in this situation. Should attempt to preserve them.
  5112   load_klass(tmp_reg, obj_reg);
  5113   movq(tmp_reg, Address(tmp_reg, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes()));
  5114   if (os::is_MP()) {
  5115     lock();
  5117   cmpxchgq(tmp_reg, Address(obj_reg, 0));
  5118   // Fall through to the normal CAS-based lock, because no matter what
  5119   // the result of the above CAS, some thread must have succeeded in
  5120   // removing the bias bit from the object's header.
  5121   if (counters != NULL) {
  5122     cond_inc32(Assembler::zero,
  5123                ExternalAddress((address) counters->revoked_lock_entry_count_addr()));
  5126   bind(cas_label);
  5128   return null_check_offset;
  5132 void MacroAssembler::biased_locking_exit(Register obj_reg, Register temp_reg, Label& done) {
  5133   assert(UseBiasedLocking, "why call this otherwise?");
  5135   // Check for biased locking unlock case, which is a no-op
  5136   // Note: we do not have to check the thread ID for two reasons.
  5137   // First, the interpreter checks for IllegalMonitorStateException at
  5138   // a higher level. Second, if the bias was revoked while we held the
  5139   // lock, the object could not be rebiased toward another thread, so
  5140   // the bias bit would be clear.
  5141   movq(temp_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes()));
  5142   andq(temp_reg, markOopDesc::biased_lock_mask_in_place);
  5143   cmpq(temp_reg, markOopDesc::biased_lock_pattern);
  5144   jcc(Assembler::equal, done);
  5148 void MacroAssembler::load_klass(Register dst, Register src) {
  5149   if (UseCompressedOops) {
  5150     movl(dst, Address(src, oopDesc::klass_offset_in_bytes()));
  5151     decode_heap_oop_not_null(dst);
  5152   } else {
  5153     movq(dst, Address(src, oopDesc::klass_offset_in_bytes()));
  5157 void MacroAssembler::store_klass(Register dst, Register src) {
  5158   if (UseCompressedOops) {
  5159     encode_heap_oop_not_null(src);
  5160     // zero the entire klass field first as the gap needs to be zeroed too.
  5161     movptr(Address(dst, oopDesc::klass_offset_in_bytes()), NULL_WORD);
  5162     movl(Address(dst, oopDesc::klass_offset_in_bytes()), src);
  5163   } else {
  5164     movq(Address(dst, oopDesc::klass_offset_in_bytes()), src);
  5168 void MacroAssembler::load_heap_oop(Register dst, Address src) {
  5169   if (UseCompressedOops) {
  5170     movl(dst, src);
  5171     decode_heap_oop(dst);
  5172   } else {
  5173     movq(dst, src);
  5177 void MacroAssembler::store_heap_oop(Address dst, Register src) {
  5178   if (UseCompressedOops) {
  5179     assert(!dst.uses(src), "not enough registers");
  5180     encode_heap_oop(src);
  5181     movl(dst, src);
  5182   } else {
  5183     movq(dst, src);
  5187 // Algorithm must match oop.inline.hpp encode_heap_oop.
  5188 void MacroAssembler::encode_heap_oop(Register r) {
  5189   assert (UseCompressedOops, "should be compressed");
  5190 #ifdef ASSERT
  5191   Label ok;
  5192   pushq(rscratch1); // cmpptr trashes rscratch1
  5193   cmpptr(r12_heapbase, ExternalAddress((address)Universe::heap_base_addr()));
  5194   jcc(Assembler::equal, ok);
  5195   stop("MacroAssembler::encode_heap_oop: heap base corrupted?");
  5196   bind(ok);
  5197   popq(rscratch1);
  5198 #endif
  5199   verify_oop(r, "broken oop in encode_heap_oop");
  5200   testq(r, r);
  5201   cmovq(Assembler::equal, r, r12_heapbase);
  5202   subq(r, r12_heapbase);
  5203   shrq(r, LogMinObjAlignmentInBytes);
  5206 void MacroAssembler::encode_heap_oop_not_null(Register r) {
  5207   assert (UseCompressedOops, "should be compressed");
  5208 #ifdef ASSERT
  5209   Label ok;
  5210   testq(r, r);
  5211   jcc(Assembler::notEqual, ok);
  5212   stop("null oop passed to encode_heap_oop_not_null");
  5213   bind(ok);
  5214 #endif
  5215   verify_oop(r, "broken oop in encode_heap_oop_not_null");
  5216   subq(r, r12_heapbase);
  5217   shrq(r, LogMinObjAlignmentInBytes);
  5220 void MacroAssembler::encode_heap_oop_not_null(Register dst, Register src) {
  5221   assert (UseCompressedOops, "should be compressed");
  5222 #ifdef ASSERT
  5223   Label ok;
  5224   testq(src, src);
  5225   jcc(Assembler::notEqual, ok);
  5226   stop("null oop passed to encode_heap_oop_not_null2");
  5227   bind(ok);
  5228 #endif
  5229   verify_oop(src, "broken oop in encode_heap_oop_not_null2");
  5230   if (dst != src) {
  5231     movq(dst, src);
  5233   subq(dst, r12_heapbase);
  5234   shrq(dst, LogMinObjAlignmentInBytes);
  5237 void  MacroAssembler::decode_heap_oop(Register r) {
  5238   assert (UseCompressedOops, "should be compressed");
  5239 #ifdef ASSERT
  5240   Label ok;
  5241   pushq(rscratch1);
  5242   cmpptr(r12_heapbase,
  5243          ExternalAddress((address)Universe::heap_base_addr()));
  5244   jcc(Assembler::equal, ok);
  5245   stop("MacroAssembler::decode_heap_oop: heap base corrupted?");
  5246   bind(ok);
  5247   popq(rscratch1);
  5248 #endif
  5250   Label done;
  5251   shlq(r, LogMinObjAlignmentInBytes);
  5252   jccb(Assembler::equal, done);
  5253   addq(r, r12_heapbase);
  5254 #if 0
  5255    // alternate decoding probably a wash.
  5256    testq(r, r);
  5257    jccb(Assembler::equal, done);
  5258    leaq(r, Address(r12_heapbase, r, Address::times_8, 0));
  5259 #endif
  5260   bind(done);
  5261   verify_oop(r, "broken oop in decode_heap_oop");
  5264 void  MacroAssembler::decode_heap_oop_not_null(Register r) {
  5265   assert (UseCompressedOops, "should only be used for compressed headers");
  5266   // Cannot assert, unverified entry point counts instructions (see .ad file)
  5267   // vtableStubs also counts instructions in pd_code_size_limit.
  5268   assert(Address::times_8 == LogMinObjAlignmentInBytes, "decode alg wrong");
  5269   leaq(r, Address(r12_heapbase, r, Address::times_8, 0));
  5272 void  MacroAssembler::decode_heap_oop_not_null(Register dst, Register src) {
  5273   assert (UseCompressedOops, "should only be used for compressed headers");
  5274   // Cannot assert, unverified entry point counts instructions (see .ad file)
  5275   // vtableStubs also counts instructions in pd_code_size_limit.
  5276   assert(Address::times_8 == LogMinObjAlignmentInBytes, "decode alg wrong");
  5277   leaq(dst, Address(r12_heapbase, src, Address::times_8, 0));
  5280 Assembler::Condition MacroAssembler::negate_condition(Assembler::Condition cond) {
  5281   switch (cond) {
  5282     // Note some conditions are synonyms for others
  5283     case Assembler::zero:         return Assembler::notZero;
  5284     case Assembler::notZero:      return Assembler::zero;
  5285     case Assembler::less:         return Assembler::greaterEqual;
  5286     case Assembler::lessEqual:    return Assembler::greater;
  5287     case Assembler::greater:      return Assembler::lessEqual;
  5288     case Assembler::greaterEqual: return Assembler::less;
  5289     case Assembler::below:        return Assembler::aboveEqual;
  5290     case Assembler::belowEqual:   return Assembler::above;
  5291     case Assembler::above:        return Assembler::belowEqual;
  5292     case Assembler::aboveEqual:   return Assembler::below;
  5293     case Assembler::overflow:     return Assembler::noOverflow;
  5294     case Assembler::noOverflow:   return Assembler::overflow;
  5295     case Assembler::negative:     return Assembler::positive;
  5296     case Assembler::positive:     return Assembler::negative;
  5297     case Assembler::parity:       return Assembler::noParity;
  5298     case Assembler::noParity:     return Assembler::parity;
  5300   ShouldNotReachHere(); return Assembler::overflow;
  5304 void MacroAssembler::cond_inc32(Condition cond, AddressLiteral counter_addr) {
  5305   Condition negated_cond = negate_condition(cond);
  5306   Label L;
  5307   jcc(negated_cond, L);
  5308   atomic_incl(counter_addr);
  5309   bind(L);
  5312 void MacroAssembler::atomic_incl(AddressLiteral counter_addr) {
  5313   pushfq();
  5314   if (os::is_MP())
  5315     lock();
  5316   incrementl(counter_addr);
  5317   popfq();
  5320 SkipIfEqual::SkipIfEqual(
  5321     MacroAssembler* masm, const bool* flag_addr, bool value) {
  5322   _masm = masm;
  5323   _masm->cmp8(ExternalAddress((address)flag_addr), value);
  5324   _masm->jcc(Assembler::equal, _label);
  5327 SkipIfEqual::~SkipIfEqual() {
  5328   _masm->bind(_label);
  5331 void MacroAssembler::bang_stack_size(Register size, Register tmp) {
  5332   movq(tmp, rsp);
  5333   // Bang stack for total size given plus shadow page size.
  5334   // Bang one page at a time because large size can bang beyond yellow and
  5335   // red zones.
  5336   Label loop;
  5337   bind(loop);
  5338   movl(Address(tmp, (-os::vm_page_size())), size );
  5339   subq(tmp, os::vm_page_size());
  5340   subl(size, os::vm_page_size());
  5341   jcc(Assembler::greater, loop);
  5343   // Bang down shadow pages too.
  5344   // The -1 because we already subtracted 1 page.
  5345   for (int i = 0; i< StackShadowPages-1; i++) {
  5346     movq(Address(tmp, (-i*os::vm_page_size())), size );
  5350 void MacroAssembler::reinit_heapbase() {
  5351   if (UseCompressedOops) {
  5352     movptr(r12_heapbase, ExternalAddress((address)Universe::heap_base_addr()));

mercurial