src/share/vm/opto/compile.cpp

Tue, 15 Apr 2008 10:49:32 -0700

author
kvn
date
Tue, 15 Apr 2008 10:49:32 -0700
changeset 520
f3b3fe64f59f
parent 500
99269dbf4ba8
child 535
c7c777385a15
permissions
-rw-r--r--

6692301: Side effect in NumberFormat tests with -server -Xcomp
Summary: Optimization in CmpPNode::sub() removed the valid compare instruction because of false positive answer from detect_dominating_control().
Reviewed-by: jrose, sgoldman

     1 /*
     2  * Copyright 1997-2007 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 #include "incls/_precompiled.incl"
    26 #include "incls/_compile.cpp.incl"
    28 /// Support for intrinsics.
    30 // Return the index at which m must be inserted (or already exists).
    31 // The sort order is by the address of the ciMethod, with is_virtual as minor key.
    32 int Compile::intrinsic_insertion_index(ciMethod* m, bool is_virtual) {
    33 #ifdef ASSERT
    34   for (int i = 1; i < _intrinsics->length(); i++) {
    35     CallGenerator* cg1 = _intrinsics->at(i-1);
    36     CallGenerator* cg2 = _intrinsics->at(i);
    37     assert(cg1->method() != cg2->method()
    38            ? cg1->method()     < cg2->method()
    39            : cg1->is_virtual() < cg2->is_virtual(),
    40            "compiler intrinsics list must stay sorted");
    41   }
    42 #endif
    43   // Binary search sorted list, in decreasing intervals [lo, hi].
    44   int lo = 0, hi = _intrinsics->length()-1;
    45   while (lo <= hi) {
    46     int mid = (uint)(hi + lo) / 2;
    47     ciMethod* mid_m = _intrinsics->at(mid)->method();
    48     if (m < mid_m) {
    49       hi = mid-1;
    50     } else if (m > mid_m) {
    51       lo = mid+1;
    52     } else {
    53       // look at minor sort key
    54       bool mid_virt = _intrinsics->at(mid)->is_virtual();
    55       if (is_virtual < mid_virt) {
    56         hi = mid-1;
    57       } else if (is_virtual > mid_virt) {
    58         lo = mid+1;
    59       } else {
    60         return mid;  // exact match
    61       }
    62     }
    63   }
    64   return lo;  // inexact match
    65 }
    67 void Compile::register_intrinsic(CallGenerator* cg) {
    68   if (_intrinsics == NULL) {
    69     _intrinsics = new GrowableArray<CallGenerator*>(60);
    70   }
    71   // This code is stolen from ciObjectFactory::insert.
    72   // Really, GrowableArray should have methods for
    73   // insert_at, remove_at, and binary_search.
    74   int len = _intrinsics->length();
    75   int index = intrinsic_insertion_index(cg->method(), cg->is_virtual());
    76   if (index == len) {
    77     _intrinsics->append(cg);
    78   } else {
    79 #ifdef ASSERT
    80     CallGenerator* oldcg = _intrinsics->at(index);
    81     assert(oldcg->method() != cg->method() || oldcg->is_virtual() != cg->is_virtual(), "don't register twice");
    82 #endif
    83     _intrinsics->append(_intrinsics->at(len-1));
    84     int pos;
    85     for (pos = len-2; pos >= index; pos--) {
    86       _intrinsics->at_put(pos+1,_intrinsics->at(pos));
    87     }
    88     _intrinsics->at_put(index, cg);
    89   }
    90   assert(find_intrinsic(cg->method(), cg->is_virtual()) == cg, "registration worked");
    91 }
    93 CallGenerator* Compile::find_intrinsic(ciMethod* m, bool is_virtual) {
    94   assert(m->is_loaded(), "don't try this on unloaded methods");
    95   if (_intrinsics != NULL) {
    96     int index = intrinsic_insertion_index(m, is_virtual);
    97     if (index < _intrinsics->length()
    98         && _intrinsics->at(index)->method() == m
    99         && _intrinsics->at(index)->is_virtual() == is_virtual) {
   100       return _intrinsics->at(index);
   101     }
   102   }
   103   // Lazily create intrinsics for intrinsic IDs well-known in the runtime.
   104   if (m->intrinsic_id() != vmIntrinsics::_none) {
   105     CallGenerator* cg = make_vm_intrinsic(m, is_virtual);
   106     if (cg != NULL) {
   107       // Save it for next time:
   108       register_intrinsic(cg);
   109       return cg;
   110     } else {
   111       gather_intrinsic_statistics(m->intrinsic_id(), is_virtual, _intrinsic_disabled);
   112     }
   113   }
   114   return NULL;
   115 }
   117 // Compile:: register_library_intrinsics and make_vm_intrinsic are defined
   118 // in library_call.cpp.
   121 #ifndef PRODUCT
   122 // statistics gathering...
   124 juint  Compile::_intrinsic_hist_count[vmIntrinsics::ID_LIMIT] = {0};
   125 jubyte Compile::_intrinsic_hist_flags[vmIntrinsics::ID_LIMIT] = {0};
   127 bool Compile::gather_intrinsic_statistics(vmIntrinsics::ID id, bool is_virtual, int flags) {
   128   assert(id > vmIntrinsics::_none && id < vmIntrinsics::ID_LIMIT, "oob");
   129   int oflags = _intrinsic_hist_flags[id];
   130   assert(flags != 0, "what happened?");
   131   if (is_virtual) {
   132     flags |= _intrinsic_virtual;
   133   }
   134   bool changed = (flags != oflags);
   135   if ((flags & _intrinsic_worked) != 0) {
   136     juint count = (_intrinsic_hist_count[id] += 1);
   137     if (count == 1) {
   138       changed = true;           // first time
   139     }
   140     // increment the overall count also:
   141     _intrinsic_hist_count[vmIntrinsics::_none] += 1;
   142   }
   143   if (changed) {
   144     if (((oflags ^ flags) & _intrinsic_virtual) != 0) {
   145       // Something changed about the intrinsic's virtuality.
   146       if ((flags & _intrinsic_virtual) != 0) {
   147         // This is the first use of this intrinsic as a virtual call.
   148         if (oflags != 0) {
   149           // We already saw it as a non-virtual, so note both cases.
   150           flags |= _intrinsic_both;
   151         }
   152       } else if ((oflags & _intrinsic_both) == 0) {
   153         // This is the first use of this intrinsic as a non-virtual
   154         flags |= _intrinsic_both;
   155       }
   156     }
   157     _intrinsic_hist_flags[id] = (jubyte) (oflags | flags);
   158   }
   159   // update the overall flags also:
   160   _intrinsic_hist_flags[vmIntrinsics::_none] |= (jubyte) flags;
   161   return changed;
   162 }
   164 static char* format_flags(int flags, char* buf) {
   165   buf[0] = 0;
   166   if ((flags & Compile::_intrinsic_worked) != 0)    strcat(buf, ",worked");
   167   if ((flags & Compile::_intrinsic_failed) != 0)    strcat(buf, ",failed");
   168   if ((flags & Compile::_intrinsic_disabled) != 0)  strcat(buf, ",disabled");
   169   if ((flags & Compile::_intrinsic_virtual) != 0)   strcat(buf, ",virtual");
   170   if ((flags & Compile::_intrinsic_both) != 0)      strcat(buf, ",nonvirtual");
   171   if (buf[0] == 0)  strcat(buf, ",");
   172   assert(buf[0] == ',', "must be");
   173   return &buf[1];
   174 }
   176 void Compile::print_intrinsic_statistics() {
   177   char flagsbuf[100];
   178   ttyLocker ttyl;
   179   if (xtty != NULL)  xtty->head("statistics type='intrinsic'");
   180   tty->print_cr("Compiler intrinsic usage:");
   181   juint total = _intrinsic_hist_count[vmIntrinsics::_none];
   182   if (total == 0)  total = 1;  // avoid div0 in case of no successes
   183   #define PRINT_STAT_LINE(name, c, f) \
   184     tty->print_cr("  %4d (%4.1f%%) %s (%s)", (int)(c), ((c) * 100.0) / total, name, f);
   185   for (int index = 1 + (int)vmIntrinsics::_none; index < (int)vmIntrinsics::ID_LIMIT; index++) {
   186     vmIntrinsics::ID id = (vmIntrinsics::ID) index;
   187     int   flags = _intrinsic_hist_flags[id];
   188     juint count = _intrinsic_hist_count[id];
   189     if ((flags | count) != 0) {
   190       PRINT_STAT_LINE(vmIntrinsics::name_at(id), count, format_flags(flags, flagsbuf));
   191     }
   192   }
   193   PRINT_STAT_LINE("total", total, format_flags(_intrinsic_hist_flags[vmIntrinsics::_none], flagsbuf));
   194   if (xtty != NULL)  xtty->tail("statistics");
   195 }
   197 void Compile::print_statistics() {
   198   { ttyLocker ttyl;
   199     if (xtty != NULL)  xtty->head("statistics type='opto'");
   200     Parse::print_statistics();
   201     PhaseCCP::print_statistics();
   202     PhaseRegAlloc::print_statistics();
   203     Scheduling::print_statistics();
   204     PhasePeephole::print_statistics();
   205     PhaseIdealLoop::print_statistics();
   206     if (xtty != NULL)  xtty->tail("statistics");
   207   }
   208   if (_intrinsic_hist_flags[vmIntrinsics::_none] != 0) {
   209     // put this under its own <statistics> element.
   210     print_intrinsic_statistics();
   211   }
   212 }
   213 #endif //PRODUCT
   215 // Support for bundling info
   216 Bundle* Compile::node_bundling(const Node *n) {
   217   assert(valid_bundle_info(n), "oob");
   218   return &_node_bundling_base[n->_idx];
   219 }
   221 bool Compile::valid_bundle_info(const Node *n) {
   222   return (_node_bundling_limit > n->_idx);
   223 }
   226 // Identify all nodes that are reachable from below, useful.
   227 // Use breadth-first pass that records state in a Unique_Node_List,
   228 // recursive traversal is slower.
   229 void Compile::identify_useful_nodes(Unique_Node_List &useful) {
   230   int estimated_worklist_size = unique();
   231   useful.map( estimated_worklist_size, NULL );  // preallocate space
   233   // Initialize worklist
   234   if (root() != NULL)     { useful.push(root()); }
   235   // If 'top' is cached, declare it useful to preserve cached node
   236   if( cached_top_node() ) { useful.push(cached_top_node()); }
   238   // Push all useful nodes onto the list, breadthfirst
   239   for( uint next = 0; next < useful.size(); ++next ) {
   240     assert( next < unique(), "Unique useful nodes < total nodes");
   241     Node *n  = useful.at(next);
   242     uint max = n->len();
   243     for( uint i = 0; i < max; ++i ) {
   244       Node *m = n->in(i);
   245       if( m == NULL ) continue;
   246       useful.push(m);
   247     }
   248   }
   249 }
   251 // Disconnect all useless nodes by disconnecting those at the boundary.
   252 void Compile::remove_useless_nodes(Unique_Node_List &useful) {
   253   uint next = 0;
   254   while( next < useful.size() ) {
   255     Node *n = useful.at(next++);
   256     // Use raw traversal of out edges since this code removes out edges
   257     int max = n->outcnt();
   258     for (int j = 0; j < max; ++j ) {
   259       Node* child = n->raw_out(j);
   260       if( ! useful.member(child) ) {
   261         assert( !child->is_top() || child != top(),
   262                 "If top is cached in Compile object it is in useful list");
   263         // Only need to remove this out-edge to the useless node
   264         n->raw_del_out(j);
   265         --j;
   266         --max;
   267       }
   268     }
   269     if (n->outcnt() == 1 && n->has_special_unique_user()) {
   270       record_for_igvn( n->unique_out() );
   271     }
   272   }
   273   debug_only(verify_graph_edges(true/*check for no_dead_code*/);)
   274 }
   276 //------------------------------frame_size_in_words-----------------------------
   277 // frame_slots in units of words
   278 int Compile::frame_size_in_words() const {
   279   // shift is 0 in LP32 and 1 in LP64
   280   const int shift = (LogBytesPerWord - LogBytesPerInt);
   281   int words = _frame_slots >> shift;
   282   assert( words << shift == _frame_slots, "frame size must be properly aligned in LP64" );
   283   return words;
   284 }
   286 // ============================================================================
   287 //------------------------------CompileWrapper---------------------------------
   288 class CompileWrapper : public StackObj {
   289   Compile *const _compile;
   290  public:
   291   CompileWrapper(Compile* compile);
   293   ~CompileWrapper();
   294 };
   296 CompileWrapper::CompileWrapper(Compile* compile) : _compile(compile) {
   297   // the Compile* pointer is stored in the current ciEnv:
   298   ciEnv* env = compile->env();
   299   assert(env == ciEnv::current(), "must already be a ciEnv active");
   300   assert(env->compiler_data() == NULL, "compile already active?");
   301   env->set_compiler_data(compile);
   302   assert(compile == Compile::current(), "sanity");
   304   compile->set_type_dict(NULL);
   305   compile->set_type_hwm(NULL);
   306   compile->set_type_last_size(0);
   307   compile->set_last_tf(NULL, NULL);
   308   compile->set_indexSet_arena(NULL);
   309   compile->set_indexSet_free_block_list(NULL);
   310   compile->init_type_arena();
   311   Type::Initialize(compile);
   312   _compile->set_scratch_buffer_blob(NULL);
   313   _compile->begin_method();
   314 }
   315 CompileWrapper::~CompileWrapper() {
   316   if (_compile->failing()) {
   317     _compile->print_method("Failed");
   318   }
   319   _compile->end_method();
   320   if (_compile->scratch_buffer_blob() != NULL)
   321     BufferBlob::free(_compile->scratch_buffer_blob());
   322   _compile->env()->set_compiler_data(NULL);
   323 }
   326 //----------------------------print_compile_messages---------------------------
   327 void Compile::print_compile_messages() {
   328 #ifndef PRODUCT
   329   // Check if recompiling
   330   if (_subsume_loads == false && PrintOpto) {
   331     // Recompiling without allowing machine instructions to subsume loads
   332     tty->print_cr("*********************************************************");
   333     tty->print_cr("** Bailout: Recompile without subsuming loads          **");
   334     tty->print_cr("*********************************************************");
   335   }
   336   if (_do_escape_analysis != DoEscapeAnalysis && PrintOpto) {
   337     // Recompiling without escape analysis
   338     tty->print_cr("*********************************************************");
   339     tty->print_cr("** Bailout: Recompile without escape analysis          **");
   340     tty->print_cr("*********************************************************");
   341   }
   342   if (env()->break_at_compile()) {
   343     // Open the debugger when compiing this method.
   344     tty->print("### Breaking when compiling: ");
   345     method()->print_short_name();
   346     tty->cr();
   347     BREAKPOINT;
   348   }
   350   if( PrintOpto ) {
   351     if (is_osr_compilation()) {
   352       tty->print("[OSR]%3d", _compile_id);
   353     } else {
   354       tty->print("%3d", _compile_id);
   355     }
   356   }
   357 #endif
   358 }
   361 void Compile::init_scratch_buffer_blob() {
   362   if( scratch_buffer_blob() != NULL )  return;
   364   // Construct a temporary CodeBuffer to have it construct a BufferBlob
   365   // Cache this BufferBlob for this compile.
   366   ResourceMark rm;
   367   int size = (MAX_inst_size + MAX_stubs_size + MAX_const_size);
   368   BufferBlob* blob = BufferBlob::create("Compile::scratch_buffer", size);
   369   // Record the buffer blob for next time.
   370   set_scratch_buffer_blob(blob);
   371   guarantee(scratch_buffer_blob() != NULL, "Need BufferBlob for code generation");
   373   // Initialize the relocation buffers
   374   relocInfo* locs_buf = (relocInfo*) blob->instructions_end() - MAX_locs_size;
   375   set_scratch_locs_memory(locs_buf);
   376 }
   379 //-----------------------scratch_emit_size-------------------------------------
   380 // Helper function that computes size by emitting code
   381 uint Compile::scratch_emit_size(const Node* n) {
   382   // Emit into a trash buffer and count bytes emitted.
   383   // This is a pretty expensive way to compute a size,
   384   // but it works well enough if seldom used.
   385   // All common fixed-size instructions are given a size
   386   // method by the AD file.
   387   // Note that the scratch buffer blob and locs memory are
   388   // allocated at the beginning of the compile task, and
   389   // may be shared by several calls to scratch_emit_size.
   390   // The allocation of the scratch buffer blob is particularly
   391   // expensive, since it has to grab the code cache lock.
   392   BufferBlob* blob = this->scratch_buffer_blob();
   393   assert(blob != NULL, "Initialize BufferBlob at start");
   394   assert(blob->size() > MAX_inst_size, "sanity");
   395   relocInfo* locs_buf = scratch_locs_memory();
   396   address blob_begin = blob->instructions_begin();
   397   address blob_end   = (address)locs_buf;
   398   assert(blob->instructions_contains(blob_end), "sanity");
   399   CodeBuffer buf(blob_begin, blob_end - blob_begin);
   400   buf.initialize_consts_size(MAX_const_size);
   401   buf.initialize_stubs_size(MAX_stubs_size);
   402   assert(locs_buf != NULL, "sanity");
   403   int lsize = MAX_locs_size / 2;
   404   buf.insts()->initialize_shared_locs(&locs_buf[0],     lsize);
   405   buf.stubs()->initialize_shared_locs(&locs_buf[lsize], lsize);
   406   n->emit(buf, this->regalloc());
   407   return buf.code_size();
   408 }
   411 // ============================================================================
   412 //------------------------------Compile standard-------------------------------
   413 debug_only( int Compile::_debug_idx = 100000; )
   415 // Compile a method.  entry_bci is -1 for normal compilations and indicates
   416 // the continuation bci for on stack replacement.
   419 Compile::Compile( ciEnv* ci_env, C2Compiler* compiler, ciMethod* target, int osr_bci, bool subsume_loads, bool do_escape_analysis )
   420                 : Phase(Compiler),
   421                   _env(ci_env),
   422                   _log(ci_env->log()),
   423                   _compile_id(ci_env->compile_id()),
   424                   _save_argument_registers(false),
   425                   _stub_name(NULL),
   426                   _stub_function(NULL),
   427                   _stub_entry_point(NULL),
   428                   _method(target),
   429                   _entry_bci(osr_bci),
   430                   _initial_gvn(NULL),
   431                   _for_igvn(NULL),
   432                   _warm_calls(NULL),
   433                   _subsume_loads(subsume_loads),
   434                   _do_escape_analysis(do_escape_analysis),
   435                   _failure_reason(NULL),
   436                   _code_buffer("Compile::Fill_buffer"),
   437                   _orig_pc_slot(0),
   438                   _orig_pc_slot_offset_in_bytes(0),
   439                   _node_bundling_limit(0),
   440                   _node_bundling_base(NULL),
   441 #ifndef PRODUCT
   442                   _trace_opto_output(TraceOptoOutput || method()->has_option("TraceOptoOutput")),
   443                   _printer(IdealGraphPrinter::printer()),
   444 #endif
   445                   _congraph(NULL) {
   446   C = this;
   448   CompileWrapper cw(this);
   449 #ifndef PRODUCT
   450   if (TimeCompiler2) {
   451     tty->print(" ");
   452     target->holder()->name()->print();
   453     tty->print(".");
   454     target->print_short_name();
   455     tty->print("  ");
   456   }
   457   TraceTime t1("Total compilation time", &_t_totalCompilation, TimeCompiler, TimeCompiler2);
   458   TraceTime t2(NULL, &_t_methodCompilation, TimeCompiler, false);
   459   set_print_assembly(PrintOptoAssembly || _method->should_print_assembly());
   460 #endif
   462   if (ProfileTraps) {
   463     // Make sure the method being compiled gets its own MDO,
   464     // so we can at least track the decompile_count().
   465     method()->build_method_data();
   466   }
   468   Init(::AliasLevel);
   471   print_compile_messages();
   473   if (UseOldInlining || PrintCompilation NOT_PRODUCT( || PrintOpto) )
   474     _ilt = InlineTree::build_inline_tree_root();
   475   else
   476     _ilt = NULL;
   478   // Even if NO memory addresses are used, MergeMem nodes must have at least 1 slice
   479   assert(num_alias_types() >= AliasIdxRaw, "");
   481 #define MINIMUM_NODE_HASH  1023
   482   // Node list that Iterative GVN will start with
   483   Unique_Node_List for_igvn(comp_arena());
   484   set_for_igvn(&for_igvn);
   486   // GVN that will be run immediately on new nodes
   487   uint estimated_size = method()->code_size()*4+64;
   488   estimated_size = (estimated_size < MINIMUM_NODE_HASH ? MINIMUM_NODE_HASH : estimated_size);
   489   PhaseGVN gvn(node_arena(), estimated_size);
   490   set_initial_gvn(&gvn);
   492   { // Scope for timing the parser
   493     TracePhase t3("parse", &_t_parser, true);
   495     // Put top into the hash table ASAP.
   496     initial_gvn()->transform_no_reclaim(top());
   498     // Set up tf(), start(), and find a CallGenerator.
   499     CallGenerator* cg;
   500     if (is_osr_compilation()) {
   501       const TypeTuple *domain = StartOSRNode::osr_domain();
   502       const TypeTuple *range = TypeTuple::make_range(method()->signature());
   503       init_tf(TypeFunc::make(domain, range));
   504       StartNode* s = new (this, 2) StartOSRNode(root(), domain);
   505       initial_gvn()->set_type_bottom(s);
   506       init_start(s);
   507       cg = CallGenerator::for_osr(method(), entry_bci());
   508     } else {
   509       // Normal case.
   510       init_tf(TypeFunc::make(method()));
   511       StartNode* s = new (this, 2) StartNode(root(), tf()->domain());
   512       initial_gvn()->set_type_bottom(s);
   513       init_start(s);
   514       float past_uses = method()->interpreter_invocation_count();
   515       float expected_uses = past_uses;
   516       cg = CallGenerator::for_inline(method(), expected_uses);
   517     }
   518     if (failing())  return;
   519     if (cg == NULL) {
   520       record_method_not_compilable_all_tiers("cannot parse method");
   521       return;
   522     }
   523     JVMState* jvms = build_start_state(start(), tf());
   524     if ((jvms = cg->generate(jvms)) == NULL) {
   525       record_method_not_compilable("method parse failed");
   526       return;
   527     }
   528     GraphKit kit(jvms);
   530     if (!kit.stopped()) {
   531       // Accept return values, and transfer control we know not where.
   532       // This is done by a special, unique ReturnNode bound to root.
   533       return_values(kit.jvms());
   534     }
   536     if (kit.has_exceptions()) {
   537       // Any exceptions that escape from this call must be rethrown
   538       // to whatever caller is dynamically above us on the stack.
   539       // This is done by a special, unique RethrowNode bound to root.
   540       rethrow_exceptions(kit.transfer_exceptions_into_jvms());
   541     }
   543     // Remove clutter produced by parsing.
   544     if (!failing()) {
   545       ResourceMark rm;
   546       PhaseRemoveUseless pru(initial_gvn(), &for_igvn);
   547     }
   548   }
   550   // Note:  Large methods are capped off in do_one_bytecode().
   551   if (failing())  return;
   553   // After parsing, node notes are no longer automagic.
   554   // They must be propagated by register_new_node_with_optimizer(),
   555   // clone(), or the like.
   556   set_default_node_notes(NULL);
   558   for (;;) {
   559     int successes = Inline_Warm();
   560     if (failing())  return;
   561     if (successes == 0)  break;
   562   }
   564   // Drain the list.
   565   Finish_Warm();
   566 #ifndef PRODUCT
   567   if (_printer) {
   568     _printer->print_inlining(this);
   569   }
   570 #endif
   572   if (failing())  return;
   573   NOT_PRODUCT( verify_graph_edges(); )
   575   // Perform escape analysis
   576   if (_do_escape_analysis)
   577     _congraph = new ConnectionGraph(this);
   578   if (_congraph != NULL) {
   579     NOT_PRODUCT( TracePhase t2("escapeAnalysis", &_t_escapeAnalysis, TimeCompiler); )
   580     _congraph->compute_escape();
   581     if (failing())  return;
   583 #ifndef PRODUCT
   584     if (PrintEscapeAnalysis) {
   585       _congraph->dump();
   586     }
   587 #endif
   588   }
   589   // Now optimize
   590   Optimize();
   591   if (failing())  return;
   592   NOT_PRODUCT( verify_graph_edges(); )
   594 #ifndef PRODUCT
   595   if (PrintIdeal) {
   596     ttyLocker ttyl;  // keep the following output all in one block
   597     // This output goes directly to the tty, not the compiler log.
   598     // To enable tools to match it up with the compilation activity,
   599     // be sure to tag this tty output with the compile ID.
   600     if (xtty != NULL) {
   601       xtty->head("ideal compile_id='%d'%s", compile_id(),
   602                  is_osr_compilation()    ? " compile_kind='osr'" :
   603                  "");
   604     }
   605     root()->dump(9999);
   606     if (xtty != NULL) {
   607       xtty->tail("ideal");
   608     }
   609   }
   610 #endif
   612   // Now that we know the size of all the monitors we can add a fixed slot
   613   // for the original deopt pc.
   615   _orig_pc_slot =  fixed_slots();
   616   int next_slot = _orig_pc_slot + (sizeof(address) / VMRegImpl::stack_slot_size);
   617   set_fixed_slots(next_slot);
   619   // Now generate code
   620   Code_Gen();
   621   if (failing())  return;
   623   // Check if we want to skip execution of all compiled code.
   624   {
   625 #ifndef PRODUCT
   626     if (OptoNoExecute) {
   627       record_method_not_compilable("+OptoNoExecute");  // Flag as failed
   628       return;
   629     }
   630     TracePhase t2("install_code", &_t_registerMethod, TimeCompiler);
   631 #endif
   633     if (is_osr_compilation()) {
   634       _code_offsets.set_value(CodeOffsets::Verified_Entry, 0);
   635       _code_offsets.set_value(CodeOffsets::OSR_Entry, _first_block_size);
   636     } else {
   637       _code_offsets.set_value(CodeOffsets::Verified_Entry, _first_block_size);
   638       _code_offsets.set_value(CodeOffsets::OSR_Entry, 0);
   639     }
   641     env()->register_method(_method, _entry_bci,
   642                            &_code_offsets,
   643                            _orig_pc_slot_offset_in_bytes,
   644                            code_buffer(),
   645                            frame_size_in_words(), _oop_map_set,
   646                            &_handler_table, &_inc_table,
   647                            compiler,
   648                            env()->comp_level(),
   649                            true, /*has_debug_info*/
   650                            has_unsafe_access()
   651                            );
   652   }
   653 }
   655 //------------------------------Compile----------------------------------------
   656 // Compile a runtime stub
   657 Compile::Compile( ciEnv* ci_env,
   658                   TypeFunc_generator generator,
   659                   address stub_function,
   660                   const char *stub_name,
   661                   int is_fancy_jump,
   662                   bool pass_tls,
   663                   bool save_arg_registers,
   664                   bool return_pc )
   665   : Phase(Compiler),
   666     _env(ci_env),
   667     _log(ci_env->log()),
   668     _compile_id(-1),
   669     _save_argument_registers(save_arg_registers),
   670     _method(NULL),
   671     _stub_name(stub_name),
   672     _stub_function(stub_function),
   673     _stub_entry_point(NULL),
   674     _entry_bci(InvocationEntryBci),
   675     _initial_gvn(NULL),
   676     _for_igvn(NULL),
   677     _warm_calls(NULL),
   678     _orig_pc_slot(0),
   679     _orig_pc_slot_offset_in_bytes(0),
   680     _subsume_loads(true),
   681     _do_escape_analysis(false),
   682     _failure_reason(NULL),
   683     _code_buffer("Compile::Fill_buffer"),
   684     _node_bundling_limit(0),
   685     _node_bundling_base(NULL),
   686 #ifndef PRODUCT
   687     _trace_opto_output(TraceOptoOutput),
   688     _printer(NULL),
   689 #endif
   690     _congraph(NULL) {
   691   C = this;
   693 #ifndef PRODUCT
   694   TraceTime t1(NULL, &_t_totalCompilation, TimeCompiler, false);
   695   TraceTime t2(NULL, &_t_stubCompilation, TimeCompiler, false);
   696   set_print_assembly(PrintFrameConverterAssembly);
   697 #endif
   698   CompileWrapper cw(this);
   699   Init(/*AliasLevel=*/ 0);
   700   init_tf((*generator)());
   702   {
   703     // The following is a dummy for the sake of GraphKit::gen_stub
   704     Unique_Node_List for_igvn(comp_arena());
   705     set_for_igvn(&for_igvn);  // not used, but some GraphKit guys push on this
   706     PhaseGVN gvn(Thread::current()->resource_area(),255);
   707     set_initial_gvn(&gvn);    // not significant, but GraphKit guys use it pervasively
   708     gvn.transform_no_reclaim(top());
   710     GraphKit kit;
   711     kit.gen_stub(stub_function, stub_name, is_fancy_jump, pass_tls, return_pc);
   712   }
   714   NOT_PRODUCT( verify_graph_edges(); )
   715   Code_Gen();
   716   if (failing())  return;
   719   // Entry point will be accessed using compile->stub_entry_point();
   720   if (code_buffer() == NULL) {
   721     Matcher::soft_match_failure();
   722   } else {
   723     if (PrintAssembly && (WizardMode || Verbose))
   724       tty->print_cr("### Stub::%s", stub_name);
   726     if (!failing()) {
   727       assert(_fixed_slots == 0, "no fixed slots used for runtime stubs");
   729       // Make the NMethod
   730       // For now we mark the frame as never safe for profile stackwalking
   731       RuntimeStub *rs = RuntimeStub::new_runtime_stub(stub_name,
   732                                                       code_buffer(),
   733                                                       CodeOffsets::frame_never_safe,
   734                                                       // _code_offsets.value(CodeOffsets::Frame_Complete),
   735                                                       frame_size_in_words(),
   736                                                       _oop_map_set,
   737                                                       save_arg_registers);
   738       assert(rs != NULL && rs->is_runtime_stub(), "sanity check");
   740       _stub_entry_point = rs->entry_point();
   741     }
   742   }
   743 }
   745 #ifndef PRODUCT
   746 void print_opto_verbose_signature( const TypeFunc *j_sig, const char *stub_name ) {
   747   if(PrintOpto && Verbose) {
   748     tty->print("%s   ", stub_name); j_sig->print_flattened(); tty->cr();
   749   }
   750 }
   751 #endif
   753 void Compile::print_codes() {
   754 }
   756 //------------------------------Init-------------------------------------------
   757 // Prepare for a single compilation
   758 void Compile::Init(int aliaslevel) {
   759   _unique  = 0;
   760   _regalloc = NULL;
   762   _tf      = NULL;  // filled in later
   763   _top     = NULL;  // cached later
   764   _matcher = NULL;  // filled in later
   765   _cfg     = NULL;  // filled in later
   767   set_24_bit_selection_and_mode(Use24BitFP, false);
   769   _node_note_array = NULL;
   770   _default_node_notes = NULL;
   772   _immutable_memory = NULL; // filled in at first inquiry
   774   // Globally visible Nodes
   775   // First set TOP to NULL to give safe behavior during creation of RootNode
   776   set_cached_top_node(NULL);
   777   set_root(new (this, 3) RootNode());
   778   // Now that you have a Root to point to, create the real TOP
   779   set_cached_top_node( new (this, 1) ConNode(Type::TOP) );
   780   set_recent_alloc(NULL, NULL);
   782   // Create Debug Information Recorder to record scopes, oopmaps, etc.
   783   env()->set_oop_recorder(new OopRecorder(comp_arena()));
   784   env()->set_debug_info(new DebugInformationRecorder(env()->oop_recorder()));
   785   env()->set_dependencies(new Dependencies(env()));
   787   _fixed_slots = 0;
   788   set_has_split_ifs(false);
   789   set_has_loops(has_method() && method()->has_loops()); // first approximation
   790   _deopt_happens = true;  // start out assuming the worst
   791   _trap_can_recompile = false;  // no traps emitted yet
   792   _major_progress = true; // start out assuming good things will happen
   793   set_has_unsafe_access(false);
   794   Copy::zero_to_bytes(_trap_hist, sizeof(_trap_hist));
   795   set_decompile_count(0);
   797   // Compilation level related initialization
   798   if (env()->comp_level() == CompLevel_fast_compile) {
   799     set_num_loop_opts(Tier1LoopOptsCount);
   800     set_do_inlining(Tier1Inline != 0);
   801     set_max_inline_size(Tier1MaxInlineSize);
   802     set_freq_inline_size(Tier1FreqInlineSize);
   803     set_do_scheduling(false);
   804     set_do_count_invocations(Tier1CountInvocations);
   805     set_do_method_data_update(Tier1UpdateMethodData);
   806   } else {
   807     assert(env()->comp_level() == CompLevel_full_optimization, "unknown comp level");
   808     set_num_loop_opts(LoopOptsCount);
   809     set_do_inlining(Inline);
   810     set_max_inline_size(MaxInlineSize);
   811     set_freq_inline_size(FreqInlineSize);
   812     set_do_scheduling(OptoScheduling);
   813     set_do_count_invocations(false);
   814     set_do_method_data_update(false);
   815   }
   817   if (debug_info()->recording_non_safepoints()) {
   818     set_node_note_array(new(comp_arena()) GrowableArray<Node_Notes*>
   819                         (comp_arena(), 8, 0, NULL));
   820     set_default_node_notes(Node_Notes::make(this));
   821   }
   823   // // -- Initialize types before each compile --
   824   // // Update cached type information
   825   // if( _method && _method->constants() )
   826   //   Type::update_loaded_types(_method, _method->constants());
   828   // Init alias_type map.
   829   if (!_do_escape_analysis && aliaslevel == 3)
   830     aliaslevel = 2;  // No unique types without escape analysis
   831   _AliasLevel = aliaslevel;
   832   const int grow_ats = 16;
   833   _max_alias_types = grow_ats;
   834   _alias_types   = NEW_ARENA_ARRAY(comp_arena(), AliasType*, grow_ats);
   835   AliasType* ats = NEW_ARENA_ARRAY(comp_arena(), AliasType,  grow_ats);
   836   Copy::zero_to_bytes(ats, sizeof(AliasType)*grow_ats);
   837   {
   838     for (int i = 0; i < grow_ats; i++)  _alias_types[i] = &ats[i];
   839   }
   840   // Initialize the first few types.
   841   _alias_types[AliasIdxTop]->Init(AliasIdxTop, NULL);
   842   _alias_types[AliasIdxBot]->Init(AliasIdxBot, TypePtr::BOTTOM);
   843   _alias_types[AliasIdxRaw]->Init(AliasIdxRaw, TypeRawPtr::BOTTOM);
   844   _num_alias_types = AliasIdxRaw+1;
   845   // Zero out the alias type cache.
   846   Copy::zero_to_bytes(_alias_cache, sizeof(_alias_cache));
   847   // A NULL adr_type hits in the cache right away.  Preload the right answer.
   848   probe_alias_cache(NULL)->_index = AliasIdxTop;
   850   _intrinsics = NULL;
   851   _macro_nodes = new GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
   852   register_library_intrinsics();
   853 }
   855 //---------------------------init_start----------------------------------------
   856 // Install the StartNode on this compile object.
   857 void Compile::init_start(StartNode* s) {
   858   if (failing())
   859     return; // already failing
   860   assert(s == start(), "");
   861 }
   863 StartNode* Compile::start() const {
   864   assert(!failing(), "");
   865   for (DUIterator_Fast imax, i = root()->fast_outs(imax); i < imax; i++) {
   866     Node* start = root()->fast_out(i);
   867     if( start->is_Start() )
   868       return start->as_Start();
   869   }
   870   ShouldNotReachHere();
   871   return NULL;
   872 }
   874 //-------------------------------immutable_memory-------------------------------------
   875 // Access immutable memory
   876 Node* Compile::immutable_memory() {
   877   if (_immutable_memory != NULL) {
   878     return _immutable_memory;
   879   }
   880   StartNode* s = start();
   881   for (DUIterator_Fast imax, i = s->fast_outs(imax); true; i++) {
   882     Node *p = s->fast_out(i);
   883     if (p != s && p->as_Proj()->_con == TypeFunc::Memory) {
   884       _immutable_memory = p;
   885       return _immutable_memory;
   886     }
   887   }
   888   ShouldNotReachHere();
   889   return NULL;
   890 }
   892 //----------------------set_cached_top_node------------------------------------
   893 // Install the cached top node, and make sure Node::is_top works correctly.
   894 void Compile::set_cached_top_node(Node* tn) {
   895   if (tn != NULL)  verify_top(tn);
   896   Node* old_top = _top;
   897   _top = tn;
   898   // Calling Node::setup_is_top allows the nodes the chance to adjust
   899   // their _out arrays.
   900   if (_top != NULL)     _top->setup_is_top();
   901   if (old_top != NULL)  old_top->setup_is_top();
   902   assert(_top == NULL || top()->is_top(), "");
   903 }
   905 #ifndef PRODUCT
   906 void Compile::verify_top(Node* tn) const {
   907   if (tn != NULL) {
   908     assert(tn->is_Con(), "top node must be a constant");
   909     assert(((ConNode*)tn)->type() == Type::TOP, "top node must have correct type");
   910     assert(tn->in(0) != NULL, "must have live top node");
   911   }
   912 }
   913 #endif
   916 ///-------------------Managing Per-Node Debug & Profile Info-------------------
   918 void Compile::grow_node_notes(GrowableArray<Node_Notes*>* arr, int grow_by) {
   919   guarantee(arr != NULL, "");
   920   int num_blocks = arr->length();
   921   if (grow_by < num_blocks)  grow_by = num_blocks;
   922   int num_notes = grow_by * _node_notes_block_size;
   923   Node_Notes* notes = NEW_ARENA_ARRAY(node_arena(), Node_Notes, num_notes);
   924   Copy::zero_to_bytes(notes, num_notes * sizeof(Node_Notes));
   925   while (num_notes > 0) {
   926     arr->append(notes);
   927     notes     += _node_notes_block_size;
   928     num_notes -= _node_notes_block_size;
   929   }
   930   assert(num_notes == 0, "exact multiple, please");
   931 }
   933 bool Compile::copy_node_notes_to(Node* dest, Node* source) {
   934   if (source == NULL || dest == NULL)  return false;
   936   if (dest->is_Con())
   937     return false;               // Do not push debug info onto constants.
   939 #ifdef ASSERT
   940   // Leave a bread crumb trail pointing to the original node:
   941   if (dest != NULL && dest != source && dest->debug_orig() == NULL) {
   942     dest->set_debug_orig(source);
   943   }
   944 #endif
   946   if (node_note_array() == NULL)
   947     return false;               // Not collecting any notes now.
   949   // This is a copy onto a pre-existing node, which may already have notes.
   950   // If both nodes have notes, do not overwrite any pre-existing notes.
   951   Node_Notes* source_notes = node_notes_at(source->_idx);
   952   if (source_notes == NULL || source_notes->is_clear())  return false;
   953   Node_Notes* dest_notes   = node_notes_at(dest->_idx);
   954   if (dest_notes == NULL || dest_notes->is_clear()) {
   955     return set_node_notes_at(dest->_idx, source_notes);
   956   }
   958   Node_Notes merged_notes = (*source_notes);
   959   // The order of operations here ensures that dest notes will win...
   960   merged_notes.update_from(dest_notes);
   961   return set_node_notes_at(dest->_idx, &merged_notes);
   962 }
   965 //--------------------------allow_range_check_smearing-------------------------
   966 // Gating condition for coalescing similar range checks.
   967 // Sometimes we try 'speculatively' replacing a series of a range checks by a
   968 // single covering check that is at least as strong as any of them.
   969 // If the optimization succeeds, the simplified (strengthened) range check
   970 // will always succeed.  If it fails, we will deopt, and then give up
   971 // on the optimization.
   972 bool Compile::allow_range_check_smearing() const {
   973   // If this method has already thrown a range-check,
   974   // assume it was because we already tried range smearing
   975   // and it failed.
   976   uint already_trapped = trap_count(Deoptimization::Reason_range_check);
   977   return !already_trapped;
   978 }
   981 //------------------------------flatten_alias_type-----------------------------
   982 const TypePtr *Compile::flatten_alias_type( const TypePtr *tj ) const {
   983   int offset = tj->offset();
   984   TypePtr::PTR ptr = tj->ptr();
   986   // Process weird unsafe references.
   987   if (offset == Type::OffsetBot && (tj->isa_instptr() /*|| tj->isa_klassptr()*/)) {
   988     assert(InlineUnsafeOps, "indeterminate pointers come only from unsafe ops");
   989     tj = TypeOopPtr::BOTTOM;
   990     ptr = tj->ptr();
   991     offset = tj->offset();
   992   }
   994   // Array pointers need some flattening
   995   const TypeAryPtr *ta = tj->isa_aryptr();
   996   if( ta && _AliasLevel >= 2 ) {
   997     // For arrays indexed by constant indices, we flatten the alias
   998     // space to include all of the array body.  Only the header, klass
   999     // and array length can be accessed un-aliased.
  1000     if( offset != Type::OffsetBot ) {
  1001       if( ta->const_oop() ) { // methodDataOop or methodOop
  1002         offset = Type::OffsetBot;   // Flatten constant access into array body
  1003         tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),ta->ary(),ta->klass(),false,Type::OffsetBot, ta->instance_id());
  1004       } else if( offset == arrayOopDesc::length_offset_in_bytes() ) {
  1005         // range is OK as-is.
  1006         tj = ta = TypeAryPtr::RANGE;
  1007       } else if( offset == oopDesc::klass_offset_in_bytes() ) {
  1008         tj = TypeInstPtr::KLASS; // all klass loads look alike
  1009         ta = TypeAryPtr::RANGE; // generic ignored junk
  1010         ptr = TypePtr::BotPTR;
  1011       } else if( offset == oopDesc::mark_offset_in_bytes() ) {
  1012         tj = TypeInstPtr::MARK;
  1013         ta = TypeAryPtr::RANGE; // generic ignored junk
  1014         ptr = TypePtr::BotPTR;
  1015       } else {                  // Random constant offset into array body
  1016         offset = Type::OffsetBot;   // Flatten constant access into array body
  1017         tj = ta = TypeAryPtr::make(ptr,ta->ary(),ta->klass(),false,Type::OffsetBot, ta->instance_id());
  1020     // Arrays of fixed size alias with arrays of unknown size.
  1021     if (ta->size() != TypeInt::POS) {
  1022       const TypeAry *tary = TypeAry::make(ta->elem(), TypeInt::POS);
  1023       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,ta->klass(),false,offset, ta->instance_id());
  1025     // Arrays of known objects become arrays of unknown objects.
  1026     if (ta->elem()->isa_oopptr() && ta->elem() != TypeInstPtr::BOTTOM) {
  1027       const TypeAry *tary = TypeAry::make(TypeInstPtr::BOTTOM, ta->size());
  1028       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,NULL,false,offset, ta->instance_id());
  1030     // Arrays of bytes and of booleans both use 'bastore' and 'baload' so
  1031     // cannot be distinguished by bytecode alone.
  1032     if (ta->elem() == TypeInt::BOOL) {
  1033       const TypeAry *tary = TypeAry::make(TypeInt::BYTE, ta->size());
  1034       ciKlass* aklass = ciTypeArrayKlass::make(T_BYTE);
  1035       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,aklass,false,offset, ta->instance_id());
  1037     // During the 2nd round of IterGVN, NotNull castings are removed.
  1038     // Make sure the Bottom and NotNull variants alias the same.
  1039     // Also, make sure exact and non-exact variants alias the same.
  1040     if( ptr == TypePtr::NotNull || ta->klass_is_exact() ) {
  1041       if (ta->const_oop()) {
  1042         tj = ta = TypeAryPtr::make(TypePtr::Constant,ta->const_oop(),ta->ary(),ta->klass(),false,offset);
  1043       } else {
  1044         tj = ta = TypeAryPtr::make(TypePtr::BotPTR,ta->ary(),ta->klass(),false,offset);
  1049   // Oop pointers need some flattening
  1050   const TypeInstPtr *to = tj->isa_instptr();
  1051   if( to && _AliasLevel >= 2 && to != TypeOopPtr::BOTTOM ) {
  1052     if( ptr == TypePtr::Constant ) {
  1053       // No constant oop pointers (such as Strings); they alias with
  1054       // unknown strings.
  1055       tj = to = TypeInstPtr::make(TypePtr::BotPTR,to->klass(),false,0,offset);
  1056     } else if( ptr == TypePtr::NotNull || to->klass_is_exact() ) {
  1057       // During the 2nd round of IterGVN, NotNull castings are removed.
  1058       // Make sure the Bottom and NotNull variants alias the same.
  1059       // Also, make sure exact and non-exact variants alias the same.
  1060       tj = to = TypeInstPtr::make(TypePtr::BotPTR,to->klass(),false,0,offset, to->instance_id());
  1062     // Canonicalize the holder of this field
  1063     ciInstanceKlass *k = to->klass()->as_instance_klass();
  1064     if (offset >= 0 && offset < oopDesc::header_size() * wordSize) {
  1065       // First handle header references such as a LoadKlassNode, even if the
  1066       // object's klass is unloaded at compile time (4965979).
  1067       tj = to = TypeInstPtr::make(TypePtr::BotPTR, env()->Object_klass(), false, NULL, offset, to->instance_id());
  1068     } else if (offset < 0 || offset >= k->size_helper() * wordSize) {
  1069       to = NULL;
  1070       tj = TypeOopPtr::BOTTOM;
  1071       offset = tj->offset();
  1072     } else {
  1073       ciInstanceKlass *canonical_holder = k->get_canonical_holder(offset);
  1074       if (!k->equals(canonical_holder) || tj->offset() != offset) {
  1075         tj = to = TypeInstPtr::make(TypePtr::BotPTR, canonical_holder, false, NULL, offset, to->instance_id());
  1080   // Klass pointers to object array klasses need some flattening
  1081   const TypeKlassPtr *tk = tj->isa_klassptr();
  1082   if( tk ) {
  1083     // If we are referencing a field within a Klass, we need
  1084     // to assume the worst case of an Object.  Both exact and
  1085     // inexact types must flatten to the same alias class.
  1086     // Since the flattened result for a klass is defined to be
  1087     // precisely java.lang.Object, use a constant ptr.
  1088     if ( offset == Type::OffsetBot || (offset >= 0 && (size_t)offset < sizeof(Klass)) ) {
  1090       tj = tk = TypeKlassPtr::make(TypePtr::Constant,
  1091                                    TypeKlassPtr::OBJECT->klass(),
  1092                                    offset);
  1095     ciKlass* klass = tk->klass();
  1096     if( klass->is_obj_array_klass() ) {
  1097       ciKlass* k = TypeAryPtr::OOPS->klass();
  1098       if( !k || !k->is_loaded() )                  // Only fails for some -Xcomp runs
  1099         k = TypeInstPtr::BOTTOM->klass();
  1100       tj = tk = TypeKlassPtr::make( TypePtr::NotNull, k, offset );
  1103     // Check for precise loads from the primary supertype array and force them
  1104     // to the supertype cache alias index.  Check for generic array loads from
  1105     // the primary supertype array and also force them to the supertype cache
  1106     // alias index.  Since the same load can reach both, we need to merge
  1107     // these 2 disparate memories into the same alias class.  Since the
  1108     // primary supertype array is read-only, there's no chance of confusion
  1109     // where we bypass an array load and an array store.
  1110     uint off2 = offset - Klass::primary_supers_offset_in_bytes();
  1111     if( offset == Type::OffsetBot ||
  1112         off2 < Klass::primary_super_limit()*wordSize ) {
  1113       offset = sizeof(oopDesc) +Klass::secondary_super_cache_offset_in_bytes();
  1114       tj = tk = TypeKlassPtr::make( TypePtr::NotNull, tk->klass(), offset );
  1118   // Flatten all Raw pointers together.
  1119   if (tj->base() == Type::RawPtr)
  1120     tj = TypeRawPtr::BOTTOM;
  1122   if (tj->base() == Type::AnyPtr)
  1123     tj = TypePtr::BOTTOM;      // An error, which the caller must check for.
  1125   // Flatten all to bottom for now
  1126   switch( _AliasLevel ) {
  1127   case 0:
  1128     tj = TypePtr::BOTTOM;
  1129     break;
  1130   case 1:                       // Flatten to: oop, static, field or array
  1131     switch (tj->base()) {
  1132     //case Type::AryPtr: tj = TypeAryPtr::RANGE;    break;
  1133     case Type::RawPtr:   tj = TypeRawPtr::BOTTOM;   break;
  1134     case Type::AryPtr:   // do not distinguish arrays at all
  1135     case Type::InstPtr:  tj = TypeInstPtr::BOTTOM;  break;
  1136     case Type::KlassPtr: tj = TypeKlassPtr::OBJECT; break;
  1137     case Type::AnyPtr:   tj = TypePtr::BOTTOM;      break;  // caller checks it
  1138     default: ShouldNotReachHere();
  1140     break;
  1141   case 2:                       // No collasping at level 2; keep all splits
  1142   case 3:                       // No collasping at level 3; keep all splits
  1143     break;
  1144   default:
  1145     Unimplemented();
  1148   offset = tj->offset();
  1149   assert( offset != Type::OffsetTop, "Offset has fallen from constant" );
  1151   assert( (offset != Type::OffsetBot && tj->base() != Type::AryPtr) ||
  1152           (offset == Type::OffsetBot && tj->base() == Type::AryPtr) ||
  1153           (offset == Type::OffsetBot && tj == TypeOopPtr::BOTTOM) ||
  1154           (offset == Type::OffsetBot && tj == TypePtr::BOTTOM) ||
  1155           (offset == oopDesc::mark_offset_in_bytes() && tj->base() == Type::AryPtr) ||
  1156           (offset == oopDesc::klass_offset_in_bytes() && tj->base() == Type::AryPtr) ||
  1157           (offset == arrayOopDesc::length_offset_in_bytes() && tj->base() == Type::AryPtr)  ,
  1158           "For oops, klasses, raw offset must be constant; for arrays the offset is never known" );
  1159   assert( tj->ptr() != TypePtr::TopPTR &&
  1160           tj->ptr() != TypePtr::AnyNull &&
  1161           tj->ptr() != TypePtr::Null, "No imprecise addresses" );
  1162 //    assert( tj->ptr() != TypePtr::Constant ||
  1163 //            tj->base() == Type::RawPtr ||
  1164 //            tj->base() == Type::KlassPtr, "No constant oop addresses" );
  1166   return tj;
  1169 void Compile::AliasType::Init(int i, const TypePtr* at) {
  1170   _index = i;
  1171   _adr_type = at;
  1172   _field = NULL;
  1173   _is_rewritable = true; // default
  1174   const TypeOopPtr *atoop = (at != NULL) ? at->isa_oopptr() : NULL;
  1175   if (atoop != NULL && atoop->is_instance()) {
  1176     const TypeOopPtr *gt = atoop->cast_to_instance(TypeOopPtr::UNKNOWN_INSTANCE);
  1177     _general_index = Compile::current()->get_alias_index(gt);
  1178   } else {
  1179     _general_index = 0;
  1183 //---------------------------------print_on------------------------------------
  1184 #ifndef PRODUCT
  1185 void Compile::AliasType::print_on(outputStream* st) {
  1186   if (index() < 10)
  1187         st->print("@ <%d> ", index());
  1188   else  st->print("@ <%d>",  index());
  1189   st->print(is_rewritable() ? "   " : " RO");
  1190   int offset = adr_type()->offset();
  1191   if (offset == Type::OffsetBot)
  1192         st->print(" +any");
  1193   else  st->print(" +%-3d", offset);
  1194   st->print(" in ");
  1195   adr_type()->dump_on(st);
  1196   const TypeOopPtr* tjp = adr_type()->isa_oopptr();
  1197   if (field() != NULL && tjp) {
  1198     if (tjp->klass()  != field()->holder() ||
  1199         tjp->offset() != field()->offset_in_bytes()) {
  1200       st->print(" != ");
  1201       field()->print();
  1202       st->print(" ***");
  1207 void print_alias_types() {
  1208   Compile* C = Compile::current();
  1209   tty->print_cr("--- Alias types, AliasIdxBot .. %d", C->num_alias_types()-1);
  1210   for (int idx = Compile::AliasIdxBot; idx < C->num_alias_types(); idx++) {
  1211     C->alias_type(idx)->print_on(tty);
  1212     tty->cr();
  1215 #endif
  1218 //----------------------------probe_alias_cache--------------------------------
  1219 Compile::AliasCacheEntry* Compile::probe_alias_cache(const TypePtr* adr_type) {
  1220   intptr_t key = (intptr_t) adr_type;
  1221   key ^= key >> logAliasCacheSize;
  1222   return &_alias_cache[key & right_n_bits(logAliasCacheSize)];
  1226 //-----------------------------grow_alias_types--------------------------------
  1227 void Compile::grow_alias_types() {
  1228   const int old_ats  = _max_alias_types; // how many before?
  1229   const int new_ats  = old_ats;          // how many more?
  1230   const int grow_ats = old_ats+new_ats;  // how many now?
  1231   _max_alias_types = grow_ats;
  1232   _alias_types =  REALLOC_ARENA_ARRAY(comp_arena(), AliasType*, _alias_types, old_ats, grow_ats);
  1233   AliasType* ats =    NEW_ARENA_ARRAY(comp_arena(), AliasType, new_ats);
  1234   Copy::zero_to_bytes(ats, sizeof(AliasType)*new_ats);
  1235   for (int i = 0; i < new_ats; i++)  _alias_types[old_ats+i] = &ats[i];
  1239 //--------------------------------find_alias_type------------------------------
  1240 Compile::AliasType* Compile::find_alias_type(const TypePtr* adr_type, bool no_create) {
  1241   if (_AliasLevel == 0)
  1242     return alias_type(AliasIdxBot);
  1244   AliasCacheEntry* ace = probe_alias_cache(adr_type);
  1245   if (ace->_adr_type == adr_type) {
  1246     return alias_type(ace->_index);
  1249   // Handle special cases.
  1250   if (adr_type == NULL)             return alias_type(AliasIdxTop);
  1251   if (adr_type == TypePtr::BOTTOM)  return alias_type(AliasIdxBot);
  1253   // Do it the slow way.
  1254   const TypePtr* flat = flatten_alias_type(adr_type);
  1256 #ifdef ASSERT
  1257   assert(flat == flatten_alias_type(flat), "idempotent");
  1258   assert(flat != TypePtr::BOTTOM,     "cannot alias-analyze an untyped ptr");
  1259   if (flat->isa_oopptr() && !flat->isa_klassptr()) {
  1260     const TypeOopPtr* foop = flat->is_oopptr();
  1261     const TypePtr* xoop = foop->cast_to_exactness(!foop->klass_is_exact())->is_ptr();
  1262     assert(foop == flatten_alias_type(xoop), "exactness must not affect alias type");
  1264   assert(flat == flatten_alias_type(flat), "exact bit doesn't matter");
  1265 #endif
  1267   int idx = AliasIdxTop;
  1268   for (int i = 0; i < num_alias_types(); i++) {
  1269     if (alias_type(i)->adr_type() == flat) {
  1270       idx = i;
  1271       break;
  1275   if (idx == AliasIdxTop) {
  1276     if (no_create)  return NULL;
  1277     // Grow the array if necessary.
  1278     if (_num_alias_types == _max_alias_types)  grow_alias_types();
  1279     // Add a new alias type.
  1280     idx = _num_alias_types++;
  1281     _alias_types[idx]->Init(idx, flat);
  1282     if (flat == TypeInstPtr::KLASS)  alias_type(idx)->set_rewritable(false);
  1283     if (flat == TypeAryPtr::RANGE)   alias_type(idx)->set_rewritable(false);
  1284     if (flat->isa_instptr()) {
  1285       if (flat->offset() == java_lang_Class::klass_offset_in_bytes()
  1286           && flat->is_instptr()->klass() == env()->Class_klass())
  1287         alias_type(idx)->set_rewritable(false);
  1289     if (flat->isa_klassptr()) {
  1290       if (flat->offset() == Klass::super_check_offset_offset_in_bytes() + (int)sizeof(oopDesc))
  1291         alias_type(idx)->set_rewritable(false);
  1292       if (flat->offset() == Klass::modifier_flags_offset_in_bytes() + (int)sizeof(oopDesc))
  1293         alias_type(idx)->set_rewritable(false);
  1294       if (flat->offset() == Klass::access_flags_offset_in_bytes() + (int)sizeof(oopDesc))
  1295         alias_type(idx)->set_rewritable(false);
  1296       if (flat->offset() == Klass::java_mirror_offset_in_bytes() + (int)sizeof(oopDesc))
  1297         alias_type(idx)->set_rewritable(false);
  1299     // %%% (We would like to finalize JavaThread::threadObj_offset(),
  1300     // but the base pointer type is not distinctive enough to identify
  1301     // references into JavaThread.)
  1303     // Check for final instance fields.
  1304     const TypeInstPtr* tinst = flat->isa_instptr();
  1305     if (tinst && tinst->offset() >= oopDesc::header_size() * wordSize) {
  1306       ciInstanceKlass *k = tinst->klass()->as_instance_klass();
  1307       ciField* field = k->get_field_by_offset(tinst->offset(), false);
  1308       // Set field() and is_rewritable() attributes.
  1309       if (field != NULL)  alias_type(idx)->set_field(field);
  1311     const TypeKlassPtr* tklass = flat->isa_klassptr();
  1312     // Check for final static fields.
  1313     if (tklass && tklass->klass()->is_instance_klass()) {
  1314       ciInstanceKlass *k = tklass->klass()->as_instance_klass();
  1315       ciField* field = k->get_field_by_offset(tklass->offset(), true);
  1316       // Set field() and is_rewritable() attributes.
  1317       if (field != NULL)   alias_type(idx)->set_field(field);
  1321   // Fill the cache for next time.
  1322   ace->_adr_type = adr_type;
  1323   ace->_index    = idx;
  1324   assert(alias_type(adr_type) == alias_type(idx),  "type must be installed");
  1326   // Might as well try to fill the cache for the flattened version, too.
  1327   AliasCacheEntry* face = probe_alias_cache(flat);
  1328   if (face->_adr_type == NULL) {
  1329     face->_adr_type = flat;
  1330     face->_index    = idx;
  1331     assert(alias_type(flat) == alias_type(idx), "flat type must work too");
  1334   return alias_type(idx);
  1338 Compile::AliasType* Compile::alias_type(ciField* field) {
  1339   const TypeOopPtr* t;
  1340   if (field->is_static())
  1341     t = TypeKlassPtr::make(field->holder());
  1342   else
  1343     t = TypeOopPtr::make_from_klass_raw(field->holder());
  1344   AliasType* atp = alias_type(t->add_offset(field->offset_in_bytes()));
  1345   assert(field->is_final() == !atp->is_rewritable(), "must get the rewritable bits correct");
  1346   return atp;
  1350 //------------------------------have_alias_type--------------------------------
  1351 bool Compile::have_alias_type(const TypePtr* adr_type) {
  1352   AliasCacheEntry* ace = probe_alias_cache(adr_type);
  1353   if (ace->_adr_type == adr_type) {
  1354     return true;
  1357   // Handle special cases.
  1358   if (adr_type == NULL)             return true;
  1359   if (adr_type == TypePtr::BOTTOM)  return true;
  1361   return find_alias_type(adr_type, true) != NULL;
  1364 //-----------------------------must_alias--------------------------------------
  1365 // True if all values of the given address type are in the given alias category.
  1366 bool Compile::must_alias(const TypePtr* adr_type, int alias_idx) {
  1367   if (alias_idx == AliasIdxBot)         return true;  // the universal category
  1368   if (adr_type == NULL)                 return true;  // NULL serves as TypePtr::TOP
  1369   if (alias_idx == AliasIdxTop)         return false; // the empty category
  1370   if (adr_type->base() == Type::AnyPtr) return false; // TypePtr::BOTTOM or its twins
  1372   // the only remaining possible overlap is identity
  1373   int adr_idx = get_alias_index(adr_type);
  1374   assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, "");
  1375   assert(adr_idx == alias_idx ||
  1376          (alias_type(alias_idx)->adr_type() != TypeOopPtr::BOTTOM
  1377           && adr_type                       != TypeOopPtr::BOTTOM),
  1378          "should not be testing for overlap with an unsafe pointer");
  1379   return adr_idx == alias_idx;
  1382 //------------------------------can_alias--------------------------------------
  1383 // True if any values of the given address type are in the given alias category.
  1384 bool Compile::can_alias(const TypePtr* adr_type, int alias_idx) {
  1385   if (alias_idx == AliasIdxTop)         return false; // the empty category
  1386   if (adr_type == NULL)                 return false; // NULL serves as TypePtr::TOP
  1387   if (alias_idx == AliasIdxBot)         return true;  // the universal category
  1388   if (adr_type->base() == Type::AnyPtr) return true;  // TypePtr::BOTTOM or its twins
  1390   // the only remaining possible overlap is identity
  1391   int adr_idx = get_alias_index(adr_type);
  1392   assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, "");
  1393   return adr_idx == alias_idx;
  1398 //---------------------------pop_warm_call-------------------------------------
  1399 WarmCallInfo* Compile::pop_warm_call() {
  1400   WarmCallInfo* wci = _warm_calls;
  1401   if (wci != NULL)  _warm_calls = wci->remove_from(wci);
  1402   return wci;
  1405 //----------------------------Inline_Warm--------------------------------------
  1406 int Compile::Inline_Warm() {
  1407   // If there is room, try to inline some more warm call sites.
  1408   // %%% Do a graph index compaction pass when we think we're out of space?
  1409   if (!InlineWarmCalls)  return 0;
  1411   int calls_made_hot = 0;
  1412   int room_to_grow   = NodeCountInliningCutoff - unique();
  1413   int amount_to_grow = MIN2(room_to_grow, (int)NodeCountInliningStep);
  1414   int amount_grown   = 0;
  1415   WarmCallInfo* call;
  1416   while (amount_to_grow > 0 && (call = pop_warm_call()) != NULL) {
  1417     int est_size = (int)call->size();
  1418     if (est_size > (room_to_grow - amount_grown)) {
  1419       // This one won't fit anyway.  Get rid of it.
  1420       call->make_cold();
  1421       continue;
  1423     call->make_hot();
  1424     calls_made_hot++;
  1425     amount_grown   += est_size;
  1426     amount_to_grow -= est_size;
  1429   if (calls_made_hot > 0)  set_major_progress();
  1430   return calls_made_hot;
  1434 //----------------------------Finish_Warm--------------------------------------
  1435 void Compile::Finish_Warm() {
  1436   if (!InlineWarmCalls)  return;
  1437   if (failing())  return;
  1438   if (warm_calls() == NULL)  return;
  1440   // Clean up loose ends, if we are out of space for inlining.
  1441   WarmCallInfo* call;
  1442   while ((call = pop_warm_call()) != NULL) {
  1443     call->make_cold();
  1448 //------------------------------Optimize---------------------------------------
  1449 // Given a graph, optimize it.
  1450 void Compile::Optimize() {
  1451   TracePhase t1("optimizer", &_t_optimizer, true);
  1453 #ifndef PRODUCT
  1454   if (env()->break_at_compile()) {
  1455     BREAKPOINT;
  1458 #endif
  1460   ResourceMark rm;
  1461   int          loop_opts_cnt;
  1463   NOT_PRODUCT( verify_graph_edges(); )
  1465   print_method("Start");
  1468   // Iterative Global Value Numbering, including ideal transforms
  1469   // Initialize IterGVN with types and values from parse-time GVN
  1470   PhaseIterGVN igvn(initial_gvn());
  1472     NOT_PRODUCT( TracePhase t2("iterGVN", &_t_iterGVN, TimeCompiler); )
  1473     igvn.optimize();
  1476   print_method("Iter GVN 1", 2);
  1478   if (failing())  return;
  1480   // get rid of the connection graph since it's information is not
  1481   // updated by optimizations
  1482   _congraph = NULL;
  1485   // Loop transforms on the ideal graph.  Range Check Elimination,
  1486   // peeling, unrolling, etc.
  1488   // Set loop opts counter
  1489   loop_opts_cnt = num_loop_opts();
  1490   if((loop_opts_cnt > 0) && (has_loops() || has_split_ifs())) {
  1492       TracePhase t2("idealLoop", &_t_idealLoop, true);
  1493       PhaseIdealLoop ideal_loop( igvn, NULL, true );
  1494       loop_opts_cnt--;
  1495       if (major_progress()) print_method("PhaseIdealLoop 1", 2);
  1496       if (failing())  return;
  1498     // Loop opts pass if partial peeling occurred in previous pass
  1499     if(PartialPeelLoop && major_progress() && (loop_opts_cnt > 0)) {
  1500       TracePhase t3("idealLoop", &_t_idealLoop, true);
  1501       PhaseIdealLoop ideal_loop( igvn, NULL, false );
  1502       loop_opts_cnt--;
  1503       if (major_progress()) print_method("PhaseIdealLoop 2", 2);
  1504       if (failing())  return;
  1506     // Loop opts pass for loop-unrolling before CCP
  1507     if(major_progress() && (loop_opts_cnt > 0)) {
  1508       TracePhase t4("idealLoop", &_t_idealLoop, true);
  1509       PhaseIdealLoop ideal_loop( igvn, NULL, false );
  1510       loop_opts_cnt--;
  1511       if (major_progress()) print_method("PhaseIdealLoop 3", 2);
  1514   if (failing())  return;
  1516   // Conditional Constant Propagation;
  1517   PhaseCCP ccp( &igvn );
  1518   assert( true, "Break here to ccp.dump_nodes_and_types(_root,999,1)");
  1520     TracePhase t2("ccp", &_t_ccp, true);
  1521     ccp.do_transform();
  1523   print_method("PhaseCPP 1", 2);
  1525   assert( true, "Break here to ccp.dump_old2new_map()");
  1527   // Iterative Global Value Numbering, including ideal transforms
  1529     NOT_PRODUCT( TracePhase t2("iterGVN2", &_t_iterGVN2, TimeCompiler); )
  1530     igvn = ccp;
  1531     igvn.optimize();
  1534   print_method("Iter GVN 2", 2);
  1536   if (failing())  return;
  1538   // Loop transforms on the ideal graph.  Range Check Elimination,
  1539   // peeling, unrolling, etc.
  1540   if(loop_opts_cnt > 0) {
  1541     debug_only( int cnt = 0; );
  1542     while(major_progress() && (loop_opts_cnt > 0)) {
  1543       TracePhase t2("idealLoop", &_t_idealLoop, true);
  1544       assert( cnt++ < 40, "infinite cycle in loop optimization" );
  1545       PhaseIdealLoop ideal_loop( igvn, NULL, true );
  1546       loop_opts_cnt--;
  1547       if (major_progress()) print_method("PhaseIdealLoop iterations", 2);
  1548       if (failing())  return;
  1552     NOT_PRODUCT( TracePhase t2("macroExpand", &_t_macroExpand, TimeCompiler); )
  1553     PhaseMacroExpand  mex(igvn);
  1554     if (mex.expand_macro_nodes()) {
  1555       assert(failing(), "must bail out w/ explicit message");
  1556       return;
  1560  } // (End scope of igvn; run destructor if necessary for asserts.)
  1562   // A method with only infinite loops has no edges entering loops from root
  1564     NOT_PRODUCT( TracePhase t2("graphReshape", &_t_graphReshaping, TimeCompiler); )
  1565     if (final_graph_reshaping()) {
  1566       assert(failing(), "must bail out w/ explicit message");
  1567       return;
  1571   print_method("Optimize finished", 2);
  1575 //------------------------------Code_Gen---------------------------------------
  1576 // Given a graph, generate code for it
  1577 void Compile::Code_Gen() {
  1578   if (failing())  return;
  1580   // Perform instruction selection.  You might think we could reclaim Matcher
  1581   // memory PDQ, but actually the Matcher is used in generating spill code.
  1582   // Internals of the Matcher (including some VectorSets) must remain live
  1583   // for awhile - thus I cannot reclaim Matcher memory lest a VectorSet usage
  1584   // set a bit in reclaimed memory.
  1586   // In debug mode can dump m._nodes.dump() for mapping of ideal to machine
  1587   // nodes.  Mapping is only valid at the root of each matched subtree.
  1588   NOT_PRODUCT( verify_graph_edges(); )
  1590   Node_List proj_list;
  1591   Matcher m(proj_list);
  1592   _matcher = &m;
  1594     TracePhase t2("matcher", &_t_matcher, true);
  1595     m.match();
  1597   // In debug mode can dump m._nodes.dump() for mapping of ideal to machine
  1598   // nodes.  Mapping is only valid at the root of each matched subtree.
  1599   NOT_PRODUCT( verify_graph_edges(); )
  1601   // If you have too many nodes, or if matching has failed, bail out
  1602   check_node_count(0, "out of nodes matching instructions");
  1603   if (failing())  return;
  1605   // Build a proper-looking CFG
  1606   PhaseCFG cfg(node_arena(), root(), m);
  1607   _cfg = &cfg;
  1609     NOT_PRODUCT( TracePhase t2("scheduler", &_t_scheduler, TimeCompiler); )
  1610     cfg.Dominators();
  1611     if (failing())  return;
  1613     NOT_PRODUCT( verify_graph_edges(); )
  1615     cfg.Estimate_Block_Frequency();
  1616     cfg.GlobalCodeMotion(m,unique(),proj_list);
  1618     print_method("Global code motion", 2);
  1620     if (failing())  return;
  1621     NOT_PRODUCT( verify_graph_edges(); )
  1623     debug_only( cfg.verify(); )
  1625   NOT_PRODUCT( verify_graph_edges(); )
  1627   PhaseChaitin regalloc(unique(),cfg,m);
  1628   _regalloc = &regalloc;
  1630     TracePhase t2("regalloc", &_t_registerAllocation, true);
  1631     // Perform any platform dependent preallocation actions.  This is used,
  1632     // for example, to avoid taking an implicit null pointer exception
  1633     // using the frame pointer on win95.
  1634     _regalloc->pd_preallocate_hook();
  1636     // Perform register allocation.  After Chaitin, use-def chains are
  1637     // no longer accurate (at spill code) and so must be ignored.
  1638     // Node->LRG->reg mappings are still accurate.
  1639     _regalloc->Register_Allocate();
  1641     // Bail out if the allocator builds too many nodes
  1642     if (failing())  return;
  1645   // Prior to register allocation we kept empty basic blocks in case the
  1646   // the allocator needed a place to spill.  After register allocation we
  1647   // are not adding any new instructions.  If any basic block is empty, we
  1648   // can now safely remove it.
  1650     NOT_PRODUCT( TracePhase t2("removeEmpty", &_t_removeEmptyBlocks, TimeCompiler); )
  1651     cfg.RemoveEmpty();
  1654   // Perform any platform dependent postallocation verifications.
  1655   debug_only( _regalloc->pd_postallocate_verify_hook(); )
  1657   // Apply peephole optimizations
  1658   if( OptoPeephole ) {
  1659     NOT_PRODUCT( TracePhase t2("peephole", &_t_peephole, TimeCompiler); )
  1660     PhasePeephole peep( _regalloc, cfg);
  1661     peep.do_transform();
  1664   // Convert Nodes to instruction bits in a buffer
  1666     // %%%% workspace merge brought two timers together for one job
  1667     TracePhase t2a("output", &_t_output, true);
  1668     NOT_PRODUCT( TraceTime t2b(NULL, &_t_codeGeneration, TimeCompiler, false); )
  1669     Output();
  1672   print_method("End");
  1674   // He's dead, Jim.
  1675   _cfg     = (PhaseCFG*)0xdeadbeef;
  1676   _regalloc = (PhaseChaitin*)0xdeadbeef;
  1680 //------------------------------dump_asm---------------------------------------
  1681 // Dump formatted assembly
  1682 #ifndef PRODUCT
  1683 void Compile::dump_asm(int *pcs, uint pc_limit) {
  1684   bool cut_short = false;
  1685   tty->print_cr("#");
  1686   tty->print("#  ");  _tf->dump();  tty->cr();
  1687   tty->print_cr("#");
  1689   // For all blocks
  1690   int pc = 0x0;                 // Program counter
  1691   char starts_bundle = ' ';
  1692   _regalloc->dump_frame();
  1694   Node *n = NULL;
  1695   for( uint i=0; i<_cfg->_num_blocks; i++ ) {
  1696     if (VMThread::should_terminate()) { cut_short = true; break; }
  1697     Block *b = _cfg->_blocks[i];
  1698     if (b->is_connector() && !Verbose) continue;
  1699     n = b->_nodes[0];
  1700     if (pcs && n->_idx < pc_limit)
  1701       tty->print("%3.3x   ", pcs[n->_idx]);
  1702     else
  1703       tty->print("      ");
  1704     b->dump_head( &_cfg->_bbs );
  1705     if (b->is_connector()) {
  1706       tty->print_cr("        # Empty connector block");
  1707     } else if (b->num_preds() == 2 && b->pred(1)->is_CatchProj() && b->pred(1)->as_CatchProj()->_con == CatchProjNode::fall_through_index) {
  1708       tty->print_cr("        # Block is sole successor of call");
  1711     // For all instructions
  1712     Node *delay = NULL;
  1713     for( uint j = 0; j<b->_nodes.size(); j++ ) {
  1714       if (VMThread::should_terminate()) { cut_short = true; break; }
  1715       n = b->_nodes[j];
  1716       if (valid_bundle_info(n)) {
  1717         Bundle *bundle = node_bundling(n);
  1718         if (bundle->used_in_unconditional_delay()) {
  1719           delay = n;
  1720           continue;
  1722         if (bundle->starts_bundle())
  1723           starts_bundle = '+';
  1726       if( !n->is_Region() &&    // Dont print in the Assembly
  1727           !n->is_Phi() &&       // a few noisely useless nodes
  1728           !n->is_Proj() &&
  1729           !n->is_MachTemp() &&
  1730           !n->is_Catch() &&     // Would be nice to print exception table targets
  1731           !n->is_MergeMem() &&  // Not very interesting
  1732           !n->is_top() &&       // Debug info table constants
  1733           !(n->is_Con() && !n->is_Mach())// Debug info table constants
  1734           ) {
  1735         if (pcs && n->_idx < pc_limit)
  1736           tty->print("%3.3x", pcs[n->_idx]);
  1737         else
  1738           tty->print("   ");
  1739         tty->print(" %c ", starts_bundle);
  1740         starts_bundle = ' ';
  1741         tty->print("\t");
  1742         n->format(_regalloc, tty);
  1743         tty->cr();
  1746       // If we have an instruction with a delay slot, and have seen a delay,
  1747       // then back up and print it
  1748       if (valid_bundle_info(n) && node_bundling(n)->use_unconditional_delay()) {
  1749         assert(delay != NULL, "no unconditional delay instruction");
  1750         if (node_bundling(delay)->starts_bundle())
  1751           starts_bundle = '+';
  1752         if (pcs && n->_idx < pc_limit)
  1753           tty->print("%3.3x", pcs[n->_idx]);
  1754         else
  1755           tty->print("   ");
  1756         tty->print(" %c ", starts_bundle);
  1757         starts_bundle = ' ';
  1758         tty->print("\t");
  1759         delay->format(_regalloc, tty);
  1760         tty->print_cr("");
  1761         delay = NULL;
  1764       // Dump the exception table as well
  1765       if( n->is_Catch() && (Verbose || WizardMode) ) {
  1766         // Print the exception table for this offset
  1767         _handler_table.print_subtable_for(pc);
  1771     if (pcs && n->_idx < pc_limit)
  1772       tty->print_cr("%3.3x", pcs[n->_idx]);
  1773     else
  1774       tty->print_cr("");
  1776     assert(cut_short || delay == NULL, "no unconditional delay branch");
  1778   } // End of per-block dump
  1779   tty->print_cr("");
  1781   if (cut_short)  tty->print_cr("*** disassembly is cut short ***");
  1783 #endif
  1785 //------------------------------Final_Reshape_Counts---------------------------
  1786 // This class defines counters to help identify when a method
  1787 // may/must be executed using hardware with only 24-bit precision.
  1788 struct Final_Reshape_Counts : public StackObj {
  1789   int  _call_count;             // count non-inlined 'common' calls
  1790   int  _float_count;            // count float ops requiring 24-bit precision
  1791   int  _double_count;           // count double ops requiring more precision
  1792   int  _java_call_count;        // count non-inlined 'java' calls
  1793   VectorSet _visited;           // Visitation flags
  1794   Node_List _tests;             // Set of IfNodes & PCTableNodes
  1796   Final_Reshape_Counts() :
  1797     _call_count(0), _float_count(0), _double_count(0), _java_call_count(0),
  1798     _visited( Thread::current()->resource_area() ) { }
  1800   void inc_call_count  () { _call_count  ++; }
  1801   void inc_float_count () { _float_count ++; }
  1802   void inc_double_count() { _double_count++; }
  1803   void inc_java_call_count() { _java_call_count++; }
  1805   int  get_call_count  () const { return _call_count  ; }
  1806   int  get_float_count () const { return _float_count ; }
  1807   int  get_double_count() const { return _double_count; }
  1808   int  get_java_call_count() const { return _java_call_count; }
  1809 };
  1811 static bool oop_offset_is_sane(const TypeInstPtr* tp) {
  1812   ciInstanceKlass *k = tp->klass()->as_instance_klass();
  1813   // Make sure the offset goes inside the instance layout.
  1814   return (uint)tp->offset() < (uint)(oopDesc::header_size() + k->nonstatic_field_size())*wordSize;
  1815   // Note that OffsetBot and OffsetTop are very negative.
  1818 //------------------------------final_graph_reshaping_impl----------------------
  1819 // Implement items 1-5 from final_graph_reshaping below.
  1820 static void final_graph_reshaping_impl( Node *n, Final_Reshape_Counts &fpu ) {
  1822   uint nop = n->Opcode();
  1824   // Check for 2-input instruction with "last use" on right input.
  1825   // Swap to left input.  Implements item (2).
  1826   if( n->req() == 3 &&          // two-input instruction
  1827       n->in(1)->outcnt() > 1 && // left use is NOT a last use
  1828       (!n->in(1)->is_Phi() || n->in(1)->in(2) != n) && // it is not data loop
  1829       n->in(2)->outcnt() == 1 &&// right use IS a last use
  1830       !n->in(2)->is_Con() ) {   // right use is not a constant
  1831     // Check for commutative opcode
  1832     switch( nop ) {
  1833     case Op_AddI:  case Op_AddF:  case Op_AddD:  case Op_AddL:
  1834     case Op_MaxI:  case Op_MinI:
  1835     case Op_MulI:  case Op_MulF:  case Op_MulD:  case Op_MulL:
  1836     case Op_AndL:  case Op_XorL:  case Op_OrL:
  1837     case Op_AndI:  case Op_XorI:  case Op_OrI: {
  1838       // Move "last use" input to left by swapping inputs
  1839       n->swap_edges(1, 2);
  1840       break;
  1842     default:
  1843       break;
  1847   // Count FPU ops and common calls, implements item (3)
  1848   switch( nop ) {
  1849   // Count all float operations that may use FPU
  1850   case Op_AddF:
  1851   case Op_SubF:
  1852   case Op_MulF:
  1853   case Op_DivF:
  1854   case Op_NegF:
  1855   case Op_ModF:
  1856   case Op_ConvI2F:
  1857   case Op_ConF:
  1858   case Op_CmpF:
  1859   case Op_CmpF3:
  1860   // case Op_ConvL2F: // longs are split into 32-bit halves
  1861     fpu.inc_float_count();
  1862     break;
  1864   case Op_ConvF2D:
  1865   case Op_ConvD2F:
  1866     fpu.inc_float_count();
  1867     fpu.inc_double_count();
  1868     break;
  1870   // Count all double operations that may use FPU
  1871   case Op_AddD:
  1872   case Op_SubD:
  1873   case Op_MulD:
  1874   case Op_DivD:
  1875   case Op_NegD:
  1876   case Op_ModD:
  1877   case Op_ConvI2D:
  1878   case Op_ConvD2I:
  1879   // case Op_ConvL2D: // handled by leaf call
  1880   // case Op_ConvD2L: // handled by leaf call
  1881   case Op_ConD:
  1882   case Op_CmpD:
  1883   case Op_CmpD3:
  1884     fpu.inc_double_count();
  1885     break;
  1886   case Op_Opaque1:              // Remove Opaque Nodes before matching
  1887   case Op_Opaque2:              // Remove Opaque Nodes before matching
  1888     n->replace_by(n->in(1));
  1889     break;
  1890   case Op_CallStaticJava:
  1891   case Op_CallJava:
  1892   case Op_CallDynamicJava:
  1893     fpu.inc_java_call_count(); // Count java call site;
  1894   case Op_CallRuntime:
  1895   case Op_CallLeaf:
  1896   case Op_CallLeafNoFP: {
  1897     assert( n->is_Call(), "" );
  1898     CallNode *call = n->as_Call();
  1899     // Count call sites where the FP mode bit would have to be flipped.
  1900     // Do not count uncommon runtime calls:
  1901     // uncommon_trap, _complete_monitor_locking, _complete_monitor_unlocking,
  1902     // _new_Java, _new_typeArray, _new_objArray, _rethrow_Java, ...
  1903     if( !call->is_CallStaticJava() || !call->as_CallStaticJava()->_name ) {
  1904       fpu.inc_call_count();   // Count the call site
  1905     } else {                  // See if uncommon argument is shared
  1906       Node *n = call->in(TypeFunc::Parms);
  1907       int nop = n->Opcode();
  1908       // Clone shared simple arguments to uncommon calls, item (1).
  1909       if( n->outcnt() > 1 &&
  1910           !n->is_Proj() &&
  1911           nop != Op_CreateEx &&
  1912           nop != Op_CheckCastPP &&
  1913           !n->is_Mem() ) {
  1914         Node *x = n->clone();
  1915         call->set_req( TypeFunc::Parms, x );
  1918     break;
  1921   case Op_StoreD:
  1922   case Op_LoadD:
  1923   case Op_LoadD_unaligned:
  1924     fpu.inc_double_count();
  1925     goto handle_mem;
  1926   case Op_StoreF:
  1927   case Op_LoadF:
  1928     fpu.inc_float_count();
  1929     goto handle_mem;
  1931   case Op_StoreB:
  1932   case Op_StoreC:
  1933   case Op_StoreCM:
  1934   case Op_StorePConditional:
  1935   case Op_StoreI:
  1936   case Op_StoreL:
  1937   case Op_StoreLConditional:
  1938   case Op_CompareAndSwapI:
  1939   case Op_CompareAndSwapL:
  1940   case Op_CompareAndSwapP:
  1941   case Op_StoreP:
  1942   case Op_LoadB:
  1943   case Op_LoadC:
  1944   case Op_LoadI:
  1945   case Op_LoadKlass:
  1946   case Op_LoadL:
  1947   case Op_LoadL_unaligned:
  1948   case Op_LoadPLocked:
  1949   case Op_LoadLLocked:
  1950   case Op_LoadP:
  1951   case Op_LoadRange:
  1952   case Op_LoadS: {
  1953   handle_mem:
  1954 #ifdef ASSERT
  1955     if( VerifyOptoOopOffsets ) {
  1956       assert( n->is_Mem(), "" );
  1957       MemNode *mem  = (MemNode*)n;
  1958       // Check to see if address types have grounded out somehow.
  1959       const TypeInstPtr *tp = mem->in(MemNode::Address)->bottom_type()->isa_instptr();
  1960       assert( !tp || oop_offset_is_sane(tp), "" );
  1962 #endif
  1963     break;
  1965   case Op_If:
  1966   case Op_CountedLoopEnd:
  1967     fpu._tests.push(n);         // Collect CFG split points
  1968     break;
  1970   case Op_AddP: {               // Assert sane base pointers
  1971     const Node *addp = n->in(AddPNode::Address);
  1972     assert( !addp->is_AddP() ||
  1973             addp->in(AddPNode::Base)->is_top() || // Top OK for allocation
  1974             addp->in(AddPNode::Base) == n->in(AddPNode::Base),
  1975             "Base pointers must match" );
  1976     break;
  1979   case Op_ModI:
  1980     if (UseDivMod) {
  1981       // Check if a%b and a/b both exist
  1982       Node* d = n->find_similar(Op_DivI);
  1983       if (d) {
  1984         // Replace them with a fused divmod if supported
  1985         Compile* C = Compile::current();
  1986         if (Matcher::has_match_rule(Op_DivModI)) {
  1987           DivModINode* divmod = DivModINode::make(C, n);
  1988           d->replace_by(divmod->div_proj());
  1989           n->replace_by(divmod->mod_proj());
  1990         } else {
  1991           // replace a%b with a-((a/b)*b)
  1992           Node* mult = new (C, 3) MulINode(d, d->in(2));
  1993           Node* sub  = new (C, 3) SubINode(d->in(1), mult);
  1994           n->replace_by( sub );
  1998     break;
  2000   case Op_ModL:
  2001     if (UseDivMod) {
  2002       // Check if a%b and a/b both exist
  2003       Node* d = n->find_similar(Op_DivL);
  2004       if (d) {
  2005         // Replace them with a fused divmod if supported
  2006         Compile* C = Compile::current();
  2007         if (Matcher::has_match_rule(Op_DivModL)) {
  2008           DivModLNode* divmod = DivModLNode::make(C, n);
  2009           d->replace_by(divmod->div_proj());
  2010           n->replace_by(divmod->mod_proj());
  2011         } else {
  2012           // replace a%b with a-((a/b)*b)
  2013           Node* mult = new (C, 3) MulLNode(d, d->in(2));
  2014           Node* sub  = new (C, 3) SubLNode(d->in(1), mult);
  2015           n->replace_by( sub );
  2019     break;
  2021   case Op_Load16B:
  2022   case Op_Load8B:
  2023   case Op_Load4B:
  2024   case Op_Load8S:
  2025   case Op_Load4S:
  2026   case Op_Load2S:
  2027   case Op_Load8C:
  2028   case Op_Load4C:
  2029   case Op_Load2C:
  2030   case Op_Load4I:
  2031   case Op_Load2I:
  2032   case Op_Load2L:
  2033   case Op_Load4F:
  2034   case Op_Load2F:
  2035   case Op_Load2D:
  2036   case Op_Store16B:
  2037   case Op_Store8B:
  2038   case Op_Store4B:
  2039   case Op_Store8C:
  2040   case Op_Store4C:
  2041   case Op_Store2C:
  2042   case Op_Store4I:
  2043   case Op_Store2I:
  2044   case Op_Store2L:
  2045   case Op_Store4F:
  2046   case Op_Store2F:
  2047   case Op_Store2D:
  2048     break;
  2050   case Op_PackB:
  2051   case Op_PackS:
  2052   case Op_PackC:
  2053   case Op_PackI:
  2054   case Op_PackF:
  2055   case Op_PackL:
  2056   case Op_PackD:
  2057     if (n->req()-1 > 2) {
  2058       // Replace many operand PackNodes with a binary tree for matching
  2059       PackNode* p = (PackNode*) n;
  2060       Node* btp = p->binaryTreePack(Compile::current(), 1, n->req());
  2061       n->replace_by(btp);
  2063     break;
  2064   default:
  2065     assert( !n->is_Call(), "" );
  2066     assert( !n->is_Mem(), "" );
  2067     if( n->is_If() || n->is_PCTable() )
  2068       fpu._tests.push(n);       // Collect CFG split points
  2069     break;
  2073 //------------------------------final_graph_reshaping_walk---------------------
  2074 // Replacing Opaque nodes with their input in final_graph_reshaping_impl(),
  2075 // requires that the walk visits a node's inputs before visiting the node.
  2076 static void final_graph_reshaping_walk( Node_Stack &nstack, Node *root, Final_Reshape_Counts &fpu ) {
  2077   fpu._visited.set(root->_idx); // first, mark node as visited
  2078   uint cnt = root->req();
  2079   Node *n = root;
  2080   uint  i = 0;
  2081   while (true) {
  2082     if (i < cnt) {
  2083       // Place all non-visited non-null inputs onto stack
  2084       Node* m = n->in(i);
  2085       ++i;
  2086       if (m != NULL && !fpu._visited.test_set(m->_idx)) {
  2087         cnt = m->req();
  2088         nstack.push(n, i); // put on stack parent and next input's index
  2089         n = m;
  2090         i = 0;
  2092     } else {
  2093       // Now do post-visit work
  2094       final_graph_reshaping_impl( n, fpu );
  2095       if (nstack.is_empty())
  2096         break;             // finished
  2097       n = nstack.node();   // Get node from stack
  2098       cnt = n->req();
  2099       i = nstack.index();
  2100       nstack.pop();        // Shift to the next node on stack
  2105 //------------------------------final_graph_reshaping--------------------------
  2106 // Final Graph Reshaping.
  2107 //
  2108 // (1) Clone simple inputs to uncommon calls, so they can be scheduled late
  2109 //     and not commoned up and forced early.  Must come after regular
  2110 //     optimizations to avoid GVN undoing the cloning.  Clone constant
  2111 //     inputs to Loop Phis; these will be split by the allocator anyways.
  2112 //     Remove Opaque nodes.
  2113 // (2) Move last-uses by commutative operations to the left input to encourage
  2114 //     Intel update-in-place two-address operations and better register usage
  2115 //     on RISCs.  Must come after regular optimizations to avoid GVN Ideal
  2116 //     calls canonicalizing them back.
  2117 // (3) Count the number of double-precision FP ops, single-precision FP ops
  2118 //     and call sites.  On Intel, we can get correct rounding either by
  2119 //     forcing singles to memory (requires extra stores and loads after each
  2120 //     FP bytecode) or we can set a rounding mode bit (requires setting and
  2121 //     clearing the mode bit around call sites).  The mode bit is only used
  2122 //     if the relative frequency of single FP ops to calls is low enough.
  2123 //     This is a key transform for SPEC mpeg_audio.
  2124 // (4) Detect infinite loops; blobs of code reachable from above but not
  2125 //     below.  Several of the Code_Gen algorithms fail on such code shapes,
  2126 //     so we simply bail out.  Happens a lot in ZKM.jar, but also happens
  2127 //     from time to time in other codes (such as -Xcomp finalizer loops, etc).
  2128 //     Detection is by looking for IfNodes where only 1 projection is
  2129 //     reachable from below or CatchNodes missing some targets.
  2130 // (5) Assert for insane oop offsets in debug mode.
  2132 bool Compile::final_graph_reshaping() {
  2133   // an infinite loop may have been eliminated by the optimizer,
  2134   // in which case the graph will be empty.
  2135   if (root()->req() == 1) {
  2136     record_method_not_compilable("trivial infinite loop");
  2137     return true;
  2140   Final_Reshape_Counts fpu;
  2142   // Visit everybody reachable!
  2143   // Allocate stack of size C->unique()/2 to avoid frequent realloc
  2144   Node_Stack nstack(unique() >> 1);
  2145   final_graph_reshaping_walk(nstack, root(), fpu);
  2147   // Check for unreachable (from below) code (i.e., infinite loops).
  2148   for( uint i = 0; i < fpu._tests.size(); i++ ) {
  2149     Node *n = fpu._tests[i];
  2150     assert( n->is_PCTable() || n->is_If(), "either PCTables or IfNodes" );
  2151     // Get number of CFG targets; 2 for IfNodes or _size for PCTables.
  2152     // Note that PCTables include exception targets after calls.
  2153     uint expected_kids = n->is_PCTable() ? n->as_PCTable()->_size : 2;
  2154     if (n->outcnt() != expected_kids) {
  2155       // Check for a few special cases.  Rethrow Nodes never take the
  2156       // 'fall-thru' path, so expected kids is 1 less.
  2157       if (n->is_PCTable() && n->in(0) && n->in(0)->in(0)) {
  2158         if (n->in(0)->in(0)->is_Call()) {
  2159           CallNode *call = n->in(0)->in(0)->as_Call();
  2160           if (call->entry_point() == OptoRuntime::rethrow_stub()) {
  2161             expected_kids--;      // Rethrow always has 1 less kid
  2162           } else if (call->req() > TypeFunc::Parms &&
  2163                      call->is_CallDynamicJava()) {
  2164             // Check for null receiver. In such case, the optimizer has
  2165             // detected that the virtual call will always result in a null
  2166             // pointer exception. The fall-through projection of this CatchNode
  2167             // will not be populated.
  2168             Node *arg0 = call->in(TypeFunc::Parms);
  2169             if (arg0->is_Type() &&
  2170                 arg0->as_Type()->type()->higher_equal(TypePtr::NULL_PTR)) {
  2171               expected_kids--;
  2173           } else if (call->entry_point() == OptoRuntime::new_array_Java() &&
  2174                      call->req() > TypeFunc::Parms+1 &&
  2175                      call->is_CallStaticJava()) {
  2176             // Check for negative array length. In such case, the optimizer has
  2177             // detected that the allocation attempt will always result in an
  2178             // exception. There is no fall-through projection of this CatchNode .
  2179             Node *arg1 = call->in(TypeFunc::Parms+1);
  2180             if (arg1->is_Type() &&
  2181                 arg1->as_Type()->type()->join(TypeInt::POS)->empty()) {
  2182               expected_kids--;
  2187       // Recheck with a better notion of 'expected_kids'
  2188       if (n->outcnt() != expected_kids) {
  2189         record_method_not_compilable("malformed control flow");
  2190         return true;            // Not all targets reachable!
  2193     // Check that I actually visited all kids.  Unreached kids
  2194     // must be infinite loops.
  2195     for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++)
  2196       if (!fpu._visited.test(n->fast_out(j)->_idx)) {
  2197         record_method_not_compilable("infinite loop");
  2198         return true;            // Found unvisited kid; must be unreach
  2202   // If original bytecodes contained a mixture of floats and doubles
  2203   // check if the optimizer has made it homogenous, item (3).
  2204   if( Use24BitFPMode && Use24BitFP &&
  2205       fpu.get_float_count() > 32 &&
  2206       fpu.get_double_count() == 0 &&
  2207       (10 * fpu.get_call_count() < fpu.get_float_count()) ) {
  2208     set_24_bit_selection_and_mode( false,  true );
  2211   set_has_java_calls(fpu.get_java_call_count() > 0);
  2213   // No infinite loops, no reason to bail out.
  2214   return false;
  2217 //-----------------------------too_many_traps----------------------------------
  2218 // Report if there are too many traps at the current method and bci.
  2219 // Return true if there was a trap, and/or PerMethodTrapLimit is exceeded.
  2220 bool Compile::too_many_traps(ciMethod* method,
  2221                              int bci,
  2222                              Deoptimization::DeoptReason reason) {
  2223   ciMethodData* md = method->method_data();
  2224   if (md->is_empty()) {
  2225     // Assume the trap has not occurred, or that it occurred only
  2226     // because of a transient condition during start-up in the interpreter.
  2227     return false;
  2229   if (md->has_trap_at(bci, reason) != 0) {
  2230     // Assume PerBytecodeTrapLimit==0, for a more conservative heuristic.
  2231     // Also, if there are multiple reasons, or if there is no per-BCI record,
  2232     // assume the worst.
  2233     if (log())
  2234       log()->elem("observe trap='%s' count='%d'",
  2235                   Deoptimization::trap_reason_name(reason),
  2236                   md->trap_count(reason));
  2237     return true;
  2238   } else {
  2239     // Ignore method/bci and see if there have been too many globally.
  2240     return too_many_traps(reason, md);
  2244 // Less-accurate variant which does not require a method and bci.
  2245 bool Compile::too_many_traps(Deoptimization::DeoptReason reason,
  2246                              ciMethodData* logmd) {
  2247  if (trap_count(reason) >= (uint)PerMethodTrapLimit) {
  2248     // Too many traps globally.
  2249     // Note that we use cumulative trap_count, not just md->trap_count.
  2250     if (log()) {
  2251       int mcount = (logmd == NULL)? -1: (int)logmd->trap_count(reason);
  2252       log()->elem("observe trap='%s' count='0' mcount='%d' ccount='%d'",
  2253                   Deoptimization::trap_reason_name(reason),
  2254                   mcount, trap_count(reason));
  2256     return true;
  2257   } else {
  2258     // The coast is clear.
  2259     return false;
  2263 //--------------------------too_many_recompiles--------------------------------
  2264 // Report if there are too many recompiles at the current method and bci.
  2265 // Consults PerBytecodeRecompilationCutoff and PerMethodRecompilationCutoff.
  2266 // Is not eager to return true, since this will cause the compiler to use
  2267 // Action_none for a trap point, to avoid too many recompilations.
  2268 bool Compile::too_many_recompiles(ciMethod* method,
  2269                                   int bci,
  2270                                   Deoptimization::DeoptReason reason) {
  2271   ciMethodData* md = method->method_data();
  2272   if (md->is_empty()) {
  2273     // Assume the trap has not occurred, or that it occurred only
  2274     // because of a transient condition during start-up in the interpreter.
  2275     return false;
  2277   // Pick a cutoff point well within PerBytecodeRecompilationCutoff.
  2278   uint bc_cutoff = (uint) PerBytecodeRecompilationCutoff / 8;
  2279   uint m_cutoff  = (uint) PerMethodRecompilationCutoff / 2 + 1;  // not zero
  2280   Deoptimization::DeoptReason per_bc_reason
  2281     = Deoptimization::reason_recorded_per_bytecode_if_any(reason);
  2282   if ((per_bc_reason == Deoptimization::Reason_none
  2283        || md->has_trap_at(bci, reason) != 0)
  2284       // The trap frequency measure we care about is the recompile count:
  2285       && md->trap_recompiled_at(bci)
  2286       && md->overflow_recompile_count() >= bc_cutoff) {
  2287     // Do not emit a trap here if it has already caused recompilations.
  2288     // Also, if there are multiple reasons, or if there is no per-BCI record,
  2289     // assume the worst.
  2290     if (log())
  2291       log()->elem("observe trap='%s recompiled' count='%d' recompiles2='%d'",
  2292                   Deoptimization::trap_reason_name(reason),
  2293                   md->trap_count(reason),
  2294                   md->overflow_recompile_count());
  2295     return true;
  2296   } else if (trap_count(reason) != 0
  2297              && decompile_count() >= m_cutoff) {
  2298     // Too many recompiles globally, and we have seen this sort of trap.
  2299     // Use cumulative decompile_count, not just md->decompile_count.
  2300     if (log())
  2301       log()->elem("observe trap='%s' count='%d' mcount='%d' decompiles='%d' mdecompiles='%d'",
  2302                   Deoptimization::trap_reason_name(reason),
  2303                   md->trap_count(reason), trap_count(reason),
  2304                   md->decompile_count(), decompile_count());
  2305     return true;
  2306   } else {
  2307     // The coast is clear.
  2308     return false;
  2313 #ifndef PRODUCT
  2314 //------------------------------verify_graph_edges---------------------------
  2315 // Walk the Graph and verify that there is a one-to-one correspondence
  2316 // between Use-Def edges and Def-Use edges in the graph.
  2317 void Compile::verify_graph_edges(bool no_dead_code) {
  2318   if (VerifyGraphEdges) {
  2319     ResourceArea *area = Thread::current()->resource_area();
  2320     Unique_Node_List visited(area);
  2321     // Call recursive graph walk to check edges
  2322     _root->verify_edges(visited);
  2323     if (no_dead_code) {
  2324       // Now make sure that no visited node is used by an unvisited node.
  2325       bool dead_nodes = 0;
  2326       Unique_Node_List checked(area);
  2327       while (visited.size() > 0) {
  2328         Node* n = visited.pop();
  2329         checked.push(n);
  2330         for (uint i = 0; i < n->outcnt(); i++) {
  2331           Node* use = n->raw_out(i);
  2332           if (checked.member(use))  continue;  // already checked
  2333           if (visited.member(use))  continue;  // already in the graph
  2334           if (use->is_Con())        continue;  // a dead ConNode is OK
  2335           // At this point, we have found a dead node which is DU-reachable.
  2336           if (dead_nodes++ == 0)
  2337             tty->print_cr("*** Dead nodes reachable via DU edges:");
  2338           use->dump(2);
  2339           tty->print_cr("---");
  2340           checked.push(use);  // No repeats; pretend it is now checked.
  2343       assert(dead_nodes == 0, "using nodes must be reachable from root");
  2347 #endif
  2349 // The Compile object keeps track of failure reasons separately from the ciEnv.
  2350 // This is required because there is not quite a 1-1 relation between the
  2351 // ciEnv and its compilation task and the Compile object.  Note that one
  2352 // ciEnv might use two Compile objects, if C2Compiler::compile_method decides
  2353 // to backtrack and retry without subsuming loads.  Other than this backtracking
  2354 // behavior, the Compile's failure reason is quietly copied up to the ciEnv
  2355 // by the logic in C2Compiler.
  2356 void Compile::record_failure(const char* reason) {
  2357   if (log() != NULL) {
  2358     log()->elem("failure reason='%s' phase='compile'", reason);
  2360   if (_failure_reason == NULL) {
  2361     // Record the first failure reason.
  2362     _failure_reason = reason;
  2364   _root = NULL;  // flush the graph, too
  2367 Compile::TracePhase::TracePhase(const char* name, elapsedTimer* accumulator, bool dolog)
  2368   : TraceTime(NULL, accumulator, false NOT_PRODUCT( || TimeCompiler ), false)
  2370   if (dolog) {
  2371     C = Compile::current();
  2372     _log = C->log();
  2373   } else {
  2374     C = NULL;
  2375     _log = NULL;
  2377   if (_log != NULL) {
  2378     _log->begin_head("phase name='%s' nodes='%d'", name, C->unique());
  2379     _log->stamp();
  2380     _log->end_head();
  2384 Compile::TracePhase::~TracePhase() {
  2385   if (_log != NULL) {
  2386     _log->done("phase nodes='%d'", C->unique());

mercurial