src/share/vm/interpreter/templateInterpreter.cpp

Tue, 27 Nov 2012 14:20:21 +0100

author
stefank
date
Tue, 27 Nov 2012 14:20:21 +0100
changeset 4299
f34d701e952e
parent 4237
a3e2f723f2a5
child 5353
b800986664f4
permissions
-rw-r--r--

8003935: Simplify the needed includes for using Thread::current()
Reviewed-by: dholmes, rbackman, coleenp

     1 /*
     2  * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "interpreter/interpreter.hpp"
    27 #include "interpreter/interpreterGenerator.hpp"
    28 #include "interpreter/interpreterRuntime.hpp"
    29 #include "interpreter/templateTable.hpp"
    31 #ifndef CC_INTERP
    33 # define __ _masm->
    35 void TemplateInterpreter::initialize() {
    36   if (_code != NULL) return;
    37   // assertions
    38   assert((int)Bytecodes::number_of_codes <= (int)DispatchTable::length,
    39          "dispatch table too small");
    41   AbstractInterpreter::initialize();
    43   TemplateTable::initialize();
    45   // generate interpreter
    46   { ResourceMark rm;
    47     TraceTime timer("Interpreter generation", TraceStartupTime);
    48     int code_size = InterpreterCodeSize;
    49     NOT_PRODUCT(code_size *= 4;)  // debug uses extra interpreter code space
    50     _code = new StubQueue(new InterpreterCodeletInterface, code_size, NULL,
    51                           "Interpreter");
    52     InterpreterGenerator g(_code);
    53     if (PrintInterpreter) print();
    54   }
    56   // initialize dispatch table
    57   _active_table = _normal_table;
    58 }
    60 //------------------------------------------------------------------------------------------------------------------------
    61 // Implementation of EntryPoint
    63 EntryPoint::EntryPoint() {
    64   assert(number_of_states == 9, "check the code below");
    65   _entry[btos] = NULL;
    66   _entry[ctos] = NULL;
    67   _entry[stos] = NULL;
    68   _entry[atos] = NULL;
    69   _entry[itos] = NULL;
    70   _entry[ltos] = NULL;
    71   _entry[ftos] = NULL;
    72   _entry[dtos] = NULL;
    73   _entry[vtos] = NULL;
    74 }
    77 EntryPoint::EntryPoint(address bentry, address centry, address sentry, address aentry, address ientry, address lentry, address fentry, address dentry, address ventry) {
    78   assert(number_of_states == 9, "check the code below");
    79   _entry[btos] = bentry;
    80   _entry[ctos] = centry;
    81   _entry[stos] = sentry;
    82   _entry[atos] = aentry;
    83   _entry[itos] = ientry;
    84   _entry[ltos] = lentry;
    85   _entry[ftos] = fentry;
    86   _entry[dtos] = dentry;
    87   _entry[vtos] = ventry;
    88 }
    91 void EntryPoint::set_entry(TosState state, address entry) {
    92   assert(0 <= state && state < number_of_states, "state out of bounds");
    93   _entry[state] = entry;
    94 }
    97 address EntryPoint::entry(TosState state) const {
    98   assert(0 <= state && state < number_of_states, "state out of bounds");
    99   return _entry[state];
   100 }
   103 void EntryPoint::print() {
   104   tty->print("[");
   105   for (int i = 0; i < number_of_states; i++) {
   106     if (i > 0) tty->print(", ");
   107     tty->print(INTPTR_FORMAT, _entry[i]);
   108   }
   109   tty->print("]");
   110 }
   113 bool EntryPoint::operator == (const EntryPoint& y) {
   114   int i = number_of_states;
   115   while (i-- > 0) {
   116     if (_entry[i] != y._entry[i]) return false;
   117   }
   118   return true;
   119 }
   122 //------------------------------------------------------------------------------------------------------------------------
   123 // Implementation of DispatchTable
   125 EntryPoint DispatchTable::entry(int i) const {
   126   assert(0 <= i && i < length, "index out of bounds");
   127   return
   128     EntryPoint(
   129       _table[btos][i],
   130       _table[ctos][i],
   131       _table[stos][i],
   132       _table[atos][i],
   133       _table[itos][i],
   134       _table[ltos][i],
   135       _table[ftos][i],
   136       _table[dtos][i],
   137       _table[vtos][i]
   138     );
   139 }
   142 void DispatchTable::set_entry(int i, EntryPoint& entry) {
   143   assert(0 <= i && i < length, "index out of bounds");
   144   assert(number_of_states == 9, "check the code below");
   145   _table[btos][i] = entry.entry(btos);
   146   _table[ctos][i] = entry.entry(ctos);
   147   _table[stos][i] = entry.entry(stos);
   148   _table[atos][i] = entry.entry(atos);
   149   _table[itos][i] = entry.entry(itos);
   150   _table[ltos][i] = entry.entry(ltos);
   151   _table[ftos][i] = entry.entry(ftos);
   152   _table[dtos][i] = entry.entry(dtos);
   153   _table[vtos][i] = entry.entry(vtos);
   154 }
   157 bool DispatchTable::operator == (DispatchTable& y) {
   158   int i = length;
   159   while (i-- > 0) {
   160     EntryPoint t = y.entry(i); // for compiler compatibility (BugId 4150096)
   161     if (!(entry(i) == t)) return false;
   162   }
   163   return true;
   164 }
   166 address    TemplateInterpreter::_remove_activation_entry                    = NULL;
   167 address    TemplateInterpreter::_remove_activation_preserving_args_entry    = NULL;
   170 address    TemplateInterpreter::_throw_ArrayIndexOutOfBoundsException_entry = NULL;
   171 address    TemplateInterpreter::_throw_ArrayStoreException_entry            = NULL;
   172 address    TemplateInterpreter::_throw_ArithmeticException_entry            = NULL;
   173 address    TemplateInterpreter::_throw_ClassCastException_entry             = NULL;
   174 address    TemplateInterpreter::_throw_NullPointerException_entry           = NULL;
   175 address    TemplateInterpreter::_throw_StackOverflowError_entry             = NULL;
   176 address    TemplateInterpreter::_throw_exception_entry                      = NULL;
   178 #ifndef PRODUCT
   179 EntryPoint TemplateInterpreter::_trace_code;
   180 #endif // !PRODUCT
   181 EntryPoint TemplateInterpreter::_return_entry[TemplateInterpreter::number_of_return_entries];
   182 EntryPoint TemplateInterpreter::_earlyret_entry;
   183 EntryPoint TemplateInterpreter::_deopt_entry [TemplateInterpreter::number_of_deopt_entries ];
   184 EntryPoint TemplateInterpreter::_continuation_entry;
   185 EntryPoint TemplateInterpreter::_safept_entry;
   187 address    TemplateInterpreter::_return_3_addrs_by_index[TemplateInterpreter::number_of_return_addrs];
   188 address    TemplateInterpreter::_return_5_addrs_by_index[TemplateInterpreter::number_of_return_addrs];
   190 DispatchTable TemplateInterpreter::_active_table;
   191 DispatchTable TemplateInterpreter::_normal_table;
   192 DispatchTable TemplateInterpreter::_safept_table;
   193 address    TemplateInterpreter::_wentry_point[DispatchTable::length];
   195 TemplateInterpreterGenerator::TemplateInterpreterGenerator(StubQueue* _code): AbstractInterpreterGenerator(_code) {
   196   _unimplemented_bytecode    = NULL;
   197   _illegal_bytecode_sequence = NULL;
   198 }
   200 static const BasicType types[Interpreter::number_of_result_handlers] = {
   201   T_BOOLEAN,
   202   T_CHAR   ,
   203   T_BYTE   ,
   204   T_SHORT  ,
   205   T_INT    ,
   206   T_LONG   ,
   207   T_VOID   ,
   208   T_FLOAT  ,
   209   T_DOUBLE ,
   210   T_OBJECT
   211 };
   213 void TemplateInterpreterGenerator::generate_all() {
   214   AbstractInterpreterGenerator::generate_all();
   216   { CodeletMark cm(_masm, "error exits");
   217     _unimplemented_bytecode    = generate_error_exit("unimplemented bytecode");
   218     _illegal_bytecode_sequence = generate_error_exit("illegal bytecode sequence - method not verified");
   219   }
   221 #ifndef PRODUCT
   222   if (TraceBytecodes) {
   223     CodeletMark cm(_masm, "bytecode tracing support");
   224     Interpreter::_trace_code =
   225       EntryPoint(
   226         generate_trace_code(btos),
   227         generate_trace_code(ctos),
   228         generate_trace_code(stos),
   229         generate_trace_code(atos),
   230         generate_trace_code(itos),
   231         generate_trace_code(ltos),
   232         generate_trace_code(ftos),
   233         generate_trace_code(dtos),
   234         generate_trace_code(vtos)
   235       );
   236   }
   237 #endif // !PRODUCT
   239   { CodeletMark cm(_masm, "return entry points");
   240     for (int i = 0; i < Interpreter::number_of_return_entries; i++) {
   241       Interpreter::_return_entry[i] =
   242         EntryPoint(
   243           generate_return_entry_for(itos, i),
   244           generate_return_entry_for(itos, i),
   245           generate_return_entry_for(itos, i),
   246           generate_return_entry_for(atos, i),
   247           generate_return_entry_for(itos, i),
   248           generate_return_entry_for(ltos, i),
   249           generate_return_entry_for(ftos, i),
   250           generate_return_entry_for(dtos, i),
   251           generate_return_entry_for(vtos, i)
   252         );
   253     }
   254   }
   256   { CodeletMark cm(_masm, "earlyret entry points");
   257     Interpreter::_earlyret_entry =
   258       EntryPoint(
   259         generate_earlyret_entry_for(btos),
   260         generate_earlyret_entry_for(ctos),
   261         generate_earlyret_entry_for(stos),
   262         generate_earlyret_entry_for(atos),
   263         generate_earlyret_entry_for(itos),
   264         generate_earlyret_entry_for(ltos),
   265         generate_earlyret_entry_for(ftos),
   266         generate_earlyret_entry_for(dtos),
   267         generate_earlyret_entry_for(vtos)
   268       );
   269   }
   271   { CodeletMark cm(_masm, "deoptimization entry points");
   272     for (int i = 0; i < Interpreter::number_of_deopt_entries; i++) {
   273       Interpreter::_deopt_entry[i] =
   274         EntryPoint(
   275           generate_deopt_entry_for(itos, i),
   276           generate_deopt_entry_for(itos, i),
   277           generate_deopt_entry_for(itos, i),
   278           generate_deopt_entry_for(atos, i),
   279           generate_deopt_entry_for(itos, i),
   280           generate_deopt_entry_for(ltos, i),
   281           generate_deopt_entry_for(ftos, i),
   282           generate_deopt_entry_for(dtos, i),
   283           generate_deopt_entry_for(vtos, i)
   284         );
   285     }
   286   }
   288   { CodeletMark cm(_masm, "result handlers for native calls");
   289     // The various result converter stublets.
   290     int is_generated[Interpreter::number_of_result_handlers];
   291     memset(is_generated, 0, sizeof(is_generated));
   293     for (int i = 0; i < Interpreter::number_of_result_handlers; i++) {
   294       BasicType type = types[i];
   295       if (!is_generated[Interpreter::BasicType_as_index(type)]++) {
   296         Interpreter::_native_abi_to_tosca[Interpreter::BasicType_as_index(type)] = generate_result_handler_for(type);
   297       }
   298     }
   299   }
   301   for (int j = 0; j < number_of_states; j++) {
   302     const TosState states[] = {btos, ctos, stos, itos, ltos, ftos, dtos, atos, vtos};
   303     int index = Interpreter::TosState_as_index(states[j]);
   304     Interpreter::_return_3_addrs_by_index[index] = Interpreter::return_entry(states[j], 3);
   305     Interpreter::_return_5_addrs_by_index[index] = Interpreter::return_entry(states[j], 5);
   306   }
   308   { CodeletMark cm(_masm, "continuation entry points");
   309     Interpreter::_continuation_entry =
   310       EntryPoint(
   311         generate_continuation_for(btos),
   312         generate_continuation_for(ctos),
   313         generate_continuation_for(stos),
   314         generate_continuation_for(atos),
   315         generate_continuation_for(itos),
   316         generate_continuation_for(ltos),
   317         generate_continuation_for(ftos),
   318         generate_continuation_for(dtos),
   319         generate_continuation_for(vtos)
   320       );
   321   }
   323   { CodeletMark cm(_masm, "safepoint entry points");
   324     Interpreter::_safept_entry =
   325       EntryPoint(
   326         generate_safept_entry_for(btos, CAST_FROM_FN_PTR(address, InterpreterRuntime::at_safepoint)),
   327         generate_safept_entry_for(ctos, CAST_FROM_FN_PTR(address, InterpreterRuntime::at_safepoint)),
   328         generate_safept_entry_for(stos, CAST_FROM_FN_PTR(address, InterpreterRuntime::at_safepoint)),
   329         generate_safept_entry_for(atos, CAST_FROM_FN_PTR(address, InterpreterRuntime::at_safepoint)),
   330         generate_safept_entry_for(itos, CAST_FROM_FN_PTR(address, InterpreterRuntime::at_safepoint)),
   331         generate_safept_entry_for(ltos, CAST_FROM_FN_PTR(address, InterpreterRuntime::at_safepoint)),
   332         generate_safept_entry_for(ftos, CAST_FROM_FN_PTR(address, InterpreterRuntime::at_safepoint)),
   333         generate_safept_entry_for(dtos, CAST_FROM_FN_PTR(address, InterpreterRuntime::at_safepoint)),
   334         generate_safept_entry_for(vtos, CAST_FROM_FN_PTR(address, InterpreterRuntime::at_safepoint))
   335       );
   336   }
   338   { CodeletMark cm(_masm, "exception handling");
   339     // (Note: this is not safepoint safe because thread may return to compiled code)
   340     generate_throw_exception();
   341   }
   343   { CodeletMark cm(_masm, "throw exception entrypoints");
   344     Interpreter::_throw_ArrayIndexOutOfBoundsException_entry = generate_ArrayIndexOutOfBounds_handler("java/lang/ArrayIndexOutOfBoundsException");
   345     Interpreter::_throw_ArrayStoreException_entry            = generate_klass_exception_handler("java/lang/ArrayStoreException"                 );
   346     Interpreter::_throw_ArithmeticException_entry            = generate_exception_handler("java/lang/ArithmeticException"           , "/ by zero");
   347     Interpreter::_throw_ClassCastException_entry             = generate_ClassCastException_handler();
   348     Interpreter::_throw_NullPointerException_entry           = generate_exception_handler("java/lang/NullPointerException"          , NULL       );
   349     Interpreter::_throw_StackOverflowError_entry             = generate_StackOverflowError_handler();
   350   }
   354 #define method_entry(kind)                                                                    \
   355   { CodeletMark cm(_masm, "method entry point (kind = " #kind ")");                    \
   356     Interpreter::_entry_table[Interpreter::kind] = generate_method_entry(Interpreter::kind);  \
   357   }
   359   // all non-native method kinds
   360   method_entry(zerolocals)
   361   method_entry(zerolocals_synchronized)
   362   method_entry(empty)
   363   method_entry(accessor)
   364   method_entry(abstract)
   365   method_entry(java_lang_math_sin  )
   366   method_entry(java_lang_math_cos  )
   367   method_entry(java_lang_math_tan  )
   368   method_entry(java_lang_math_abs  )
   369   method_entry(java_lang_math_sqrt )
   370   method_entry(java_lang_math_log  )
   371   method_entry(java_lang_math_log10)
   372   method_entry(java_lang_math_exp  )
   373   method_entry(java_lang_math_pow  )
   374   method_entry(java_lang_ref_reference_get)
   376   initialize_method_handle_entries();
   378   // all native method kinds (must be one contiguous block)
   379   Interpreter::_native_entry_begin = Interpreter::code()->code_end();
   380   method_entry(native)
   381   method_entry(native_synchronized)
   382   Interpreter::_native_entry_end = Interpreter::code()->code_end();
   384 #undef method_entry
   386   // Bytecodes
   387   set_entry_points_for_all_bytes();
   388   set_safepoints_for_all_bytes();
   389 }
   391 //------------------------------------------------------------------------------------------------------------------------
   393 address TemplateInterpreterGenerator::generate_error_exit(const char* msg) {
   394   address entry = __ pc();
   395   __ stop(msg);
   396   return entry;
   397 }
   400 //------------------------------------------------------------------------------------------------------------------------
   402 void TemplateInterpreterGenerator::set_entry_points_for_all_bytes() {
   403   for (int i = 0; i < DispatchTable::length; i++) {
   404     Bytecodes::Code code = (Bytecodes::Code)i;
   405     if (Bytecodes::is_defined(code)) {
   406       set_entry_points(code);
   407     } else {
   408       set_unimplemented(i);
   409     }
   410   }
   411 }
   414 void TemplateInterpreterGenerator::set_safepoints_for_all_bytes() {
   415   for (int i = 0; i < DispatchTable::length; i++) {
   416     Bytecodes::Code code = (Bytecodes::Code)i;
   417     if (Bytecodes::is_defined(code)) Interpreter::_safept_table.set_entry(code, Interpreter::_safept_entry);
   418   }
   419 }
   422 void TemplateInterpreterGenerator::set_unimplemented(int i) {
   423   address e = _unimplemented_bytecode;
   424   EntryPoint entry(e, e, e, e, e, e, e, e, e);
   425   Interpreter::_normal_table.set_entry(i, entry);
   426   Interpreter::_wentry_point[i] = _unimplemented_bytecode;
   427 }
   430 void TemplateInterpreterGenerator::set_entry_points(Bytecodes::Code code) {
   431   CodeletMark cm(_masm, Bytecodes::name(code), code);
   432   // initialize entry points
   433   assert(_unimplemented_bytecode    != NULL, "should have been generated before");
   434   assert(_illegal_bytecode_sequence != NULL, "should have been generated before");
   435   address bep = _illegal_bytecode_sequence;
   436   address cep = _illegal_bytecode_sequence;
   437   address sep = _illegal_bytecode_sequence;
   438   address aep = _illegal_bytecode_sequence;
   439   address iep = _illegal_bytecode_sequence;
   440   address lep = _illegal_bytecode_sequence;
   441   address fep = _illegal_bytecode_sequence;
   442   address dep = _illegal_bytecode_sequence;
   443   address vep = _unimplemented_bytecode;
   444   address wep = _unimplemented_bytecode;
   445   // code for short & wide version of bytecode
   446   if (Bytecodes::is_defined(code)) {
   447     Template* t = TemplateTable::template_for(code);
   448     assert(t->is_valid(), "just checking");
   449     set_short_entry_points(t, bep, cep, sep, aep, iep, lep, fep, dep, vep);
   450   }
   451   if (Bytecodes::wide_is_defined(code)) {
   452     Template* t = TemplateTable::template_for_wide(code);
   453     assert(t->is_valid(), "just checking");
   454     set_wide_entry_point(t, wep);
   455   }
   456   // set entry points
   457   EntryPoint entry(bep, cep, sep, aep, iep, lep, fep, dep, vep);
   458   Interpreter::_normal_table.set_entry(code, entry);
   459   Interpreter::_wentry_point[code] = wep;
   460 }
   463 void TemplateInterpreterGenerator::set_wide_entry_point(Template* t, address& wep) {
   464   assert(t->is_valid(), "template must exist");
   465   assert(t->tos_in() == vtos, "only vtos tos_in supported for wide instructions");
   466   wep = __ pc(); generate_and_dispatch(t);
   467 }
   470 void TemplateInterpreterGenerator::set_short_entry_points(Template* t, address& bep, address& cep, address& sep, address& aep, address& iep, address& lep, address& fep, address& dep, address& vep) {
   471   assert(t->is_valid(), "template must exist");
   472   switch (t->tos_in()) {
   473     case btos:
   474     case ctos:
   475     case stos:
   476       ShouldNotReachHere();  // btos/ctos/stos should use itos.
   477       break;
   478     case atos: vep = __ pc(); __ pop(atos); aep = __ pc(); generate_and_dispatch(t); break;
   479     case itos: vep = __ pc(); __ pop(itos); iep = __ pc(); generate_and_dispatch(t); break;
   480     case ltos: vep = __ pc(); __ pop(ltos); lep = __ pc(); generate_and_dispatch(t); break;
   481     case ftos: vep = __ pc(); __ pop(ftos); fep = __ pc(); generate_and_dispatch(t); break;
   482     case dtos: vep = __ pc(); __ pop(dtos); dep = __ pc(); generate_and_dispatch(t); break;
   483     case vtos: set_vtos_entry_points(t, bep, cep, sep, aep, iep, lep, fep, dep, vep);     break;
   484     default  : ShouldNotReachHere();                                                 break;
   485   }
   486 }
   489 //------------------------------------------------------------------------------------------------------------------------
   491 void TemplateInterpreterGenerator::generate_and_dispatch(Template* t, TosState tos_out) {
   492   if (PrintBytecodeHistogram)                                    histogram_bytecode(t);
   493 #ifndef PRODUCT
   494   // debugging code
   495   if (CountBytecodes || TraceBytecodes || StopInterpreterAt > 0) count_bytecode();
   496   if (PrintBytecodePairHistogram)                                histogram_bytecode_pair(t);
   497   if (TraceBytecodes)                                            trace_bytecode(t);
   498   if (StopInterpreterAt > 0)                                     stop_interpreter_at();
   499   __ verify_FPU(1, t->tos_in());
   500 #endif // !PRODUCT
   501   int step;
   502   if (!t->does_dispatch()) {
   503     step = t->is_wide() ? Bytecodes::wide_length_for(t->bytecode()) : Bytecodes::length_for(t->bytecode());
   504     if (tos_out == ilgl) tos_out = t->tos_out();
   505     // compute bytecode size
   506     assert(step > 0, "just checkin'");
   507     // setup stuff for dispatching next bytecode
   508     if (ProfileInterpreter && VerifyDataPointer
   509         && MethodData::bytecode_has_profile(t->bytecode())) {
   510       __ verify_method_data_pointer();
   511     }
   512     __ dispatch_prolog(tos_out, step);
   513   }
   514   // generate template
   515   t->generate(_masm);
   516   // advance
   517   if (t->does_dispatch()) {
   518 #ifdef ASSERT
   519     // make sure execution doesn't go beyond this point if code is broken
   520     __ should_not_reach_here();
   521 #endif // ASSERT
   522   } else {
   523     // dispatch to next bytecode
   524     __ dispatch_epilog(tos_out, step);
   525   }
   526 }
   528 //------------------------------------------------------------------------------------------------------------------------
   529 // Entry points
   531 address TemplateInterpreter::return_entry(TosState state, int length) {
   532   guarantee(0 <= length && length < Interpreter::number_of_return_entries, "illegal length");
   533   return _return_entry[length].entry(state);
   534 }
   537 address TemplateInterpreter::deopt_entry(TosState state, int length) {
   538   guarantee(0 <= length && length < Interpreter::number_of_deopt_entries, "illegal length");
   539   return _deopt_entry[length].entry(state);
   540 }
   542 //------------------------------------------------------------------------------------------------------------------------
   543 // Suport for invokes
   545 int TemplateInterpreter::TosState_as_index(TosState state) {
   546   assert( state < number_of_states , "Invalid state in TosState_as_index");
   547   assert(0 <= (int)state && (int)state < TemplateInterpreter::number_of_return_addrs, "index out of bounds");
   548   return (int)state;
   549 }
   552 //------------------------------------------------------------------------------------------------------------------------
   553 // Safepoint suppport
   555 static inline void copy_table(address* from, address* to, int size) {
   556   // Copy non-overlapping tables. The copy has to occur word wise for MT safety.
   557   while (size-- > 0) *to++ = *from++;
   558 }
   560 void TemplateInterpreter::notice_safepoints() {
   561   if (!_notice_safepoints) {
   562     // switch to safepoint dispatch table
   563     _notice_safepoints = true;
   564     copy_table((address*)&_safept_table, (address*)&_active_table, sizeof(_active_table) / sizeof(address));
   565   }
   566 }
   568 // switch from the dispatch table which notices safepoints back to the
   569 // normal dispatch table.  So that we can notice single stepping points,
   570 // keep the safepoint dispatch table if we are single stepping in JVMTI.
   571 // Note that the should_post_single_step test is exactly as fast as the
   572 // JvmtiExport::_enabled test and covers both cases.
   573 void TemplateInterpreter::ignore_safepoints() {
   574   if (_notice_safepoints) {
   575     if (!JvmtiExport::should_post_single_step()) {
   576       // switch to normal dispatch table
   577       _notice_safepoints = false;
   578       copy_table((address*)&_normal_table, (address*)&_active_table, sizeof(_active_table) / sizeof(address));
   579     }
   580   }
   581 }
   583 //------------------------------------------------------------------------------------------------------------------------
   584 // Deoptimization support
   586 // If deoptimization happens, this function returns the point of next bytecode to continue execution
   587 address TemplateInterpreter::deopt_continue_after_entry(Method* method, address bcp, int callee_parameters, bool is_top_frame) {
   588   return AbstractInterpreter::deopt_continue_after_entry(method, bcp, callee_parameters, is_top_frame);
   589 }
   591 // If deoptimization happens, this function returns the point where the interpreter reexecutes
   592 // the bytecode.
   593 // Note: Bytecodes::_athrow (C1 only) and Bytecodes::_return are the special cases
   594 //       that do not return "Interpreter::deopt_entry(vtos, 0)"
   595 address TemplateInterpreter::deopt_reexecute_entry(Method* method, address bcp) {
   596   assert(method->contains(bcp), "just checkin'");
   597   Bytecodes::Code code   = Bytecodes::java_code_at(method, bcp);
   598   if (code == Bytecodes::_return) {
   599     // This is used for deopt during registration of finalizers
   600     // during Object.<init>.  We simply need to resume execution at
   601     // the standard return vtos bytecode to pop the frame normally.
   602     // reexecuting the real bytecode would cause double registration
   603     // of the finalizable object.
   604     return _normal_table.entry(Bytecodes::_return).entry(vtos);
   605   } else {
   606     return AbstractInterpreter::deopt_reexecute_entry(method, bcp);
   607   }
   608 }
   610 // If deoptimization happens, the interpreter should reexecute this bytecode.
   611 // This function mainly helps the compilers to set up the reexecute bit.
   612 bool TemplateInterpreter::bytecode_should_reexecute(Bytecodes::Code code) {
   613   if (code == Bytecodes::_return) {
   614     //Yes, we consider Bytecodes::_return as a special case of reexecution
   615     return true;
   616   } else {
   617     return AbstractInterpreter::bytecode_should_reexecute(code);
   618   }
   619 }
   621 #endif // !CC_INTERP

mercurial