src/share/vm/gc_interface/collectedHeap.cpp

Tue, 27 Nov 2012 14:20:21 +0100

author
stefank
date
Tue, 27 Nov 2012 14:20:21 +0100
changeset 4299
f34d701e952e
parent 4047
aed758eda82a
child 5237
f2110083203d
permissions
-rw-r--r--

8003935: Simplify the needed includes for using Thread::current()
Reviewed-by: dholmes, rbackman, coleenp

     1 /*
     2  * Copyright (c) 2001, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "classfile/systemDictionary.hpp"
    27 #include "gc_implementation/shared/vmGCOperations.hpp"
    28 #include "gc_interface/collectedHeap.hpp"
    29 #include "gc_interface/collectedHeap.inline.hpp"
    30 #include "oops/oop.inline.hpp"
    31 #include "oops/instanceMirrorKlass.hpp"
    32 #include "runtime/init.hpp"
    33 #include "runtime/thread.inline.hpp"
    34 #include "services/heapDumper.hpp"
    37 #ifdef ASSERT
    38 int CollectedHeap::_fire_out_of_memory_count = 0;
    39 #endif
    41 size_t CollectedHeap::_filler_array_max_size = 0;
    43 template <>
    44 void EventLogBase<GCMessage>::print(outputStream* st, GCMessage& m) {
    45   st->print_cr("GC heap %s", m.is_before ? "before" : "after");
    46   st->print_raw(m);
    47 }
    49 void GCHeapLog::log_heap(bool before) {
    50   if (!should_log()) {
    51     return;
    52   }
    54   double timestamp = fetch_timestamp();
    55   MutexLockerEx ml(&_mutex, Mutex::_no_safepoint_check_flag);
    56   int index = compute_log_index();
    57   _records[index].thread = NULL; // Its the GC thread so it's not that interesting.
    58   _records[index].timestamp = timestamp;
    59   _records[index].data.is_before = before;
    60   stringStream st(_records[index].data.buffer(), _records[index].data.size());
    61   if (before) {
    62     Universe::print_heap_before_gc(&st, true);
    63   } else {
    64     Universe::print_heap_after_gc(&st, true);
    65   }
    66 }
    68 // Memory state functions.
    71 CollectedHeap::CollectedHeap() : _n_par_threads(0)
    73 {
    74   const size_t max_len = size_t(arrayOopDesc::max_array_length(T_INT));
    75   const size_t elements_per_word = HeapWordSize / sizeof(jint);
    76   _filler_array_max_size = align_object_size(filler_array_hdr_size() +
    77                                              max_len / elements_per_word);
    79   _barrier_set = NULL;
    80   _is_gc_active = false;
    81   _total_collections = _total_full_collections = 0;
    82   _gc_cause = _gc_lastcause = GCCause::_no_gc;
    83   NOT_PRODUCT(_promotion_failure_alot_count = 0;)
    84   NOT_PRODUCT(_promotion_failure_alot_gc_number = 0;)
    86   if (UsePerfData) {
    87     EXCEPTION_MARK;
    89     // create the gc cause jvmstat counters
    90     _perf_gc_cause = PerfDataManager::create_string_variable(SUN_GC, "cause",
    91                              80, GCCause::to_string(_gc_cause), CHECK);
    93     _perf_gc_lastcause =
    94                 PerfDataManager::create_string_variable(SUN_GC, "lastCause",
    95                              80, GCCause::to_string(_gc_lastcause), CHECK);
    96   }
    97   _defer_initial_card_mark = false; // strengthened by subclass in pre_initialize() below.
    98   // Create the ring log
    99   if (LogEvents) {
   100     _gc_heap_log = new GCHeapLog();
   101   } else {
   102     _gc_heap_log = NULL;
   103   }
   104 }
   106 // This interface assumes that it's being called by the
   107 // vm thread. It collects the heap assuming that the
   108 // heap lock is already held and that we are executing in
   109 // the context of the vm thread.
   110 void CollectedHeap::collect_as_vm_thread(GCCause::Cause cause) {
   111   assert(Thread::current()->is_VM_thread(), "Precondition#1");
   112   assert(Heap_lock->is_locked(), "Precondition#2");
   113   GCCauseSetter gcs(this, cause);
   114   switch (cause) {
   115     case GCCause::_heap_inspection:
   116     case GCCause::_heap_dump:
   117     case GCCause::_metadata_GC_threshold : {
   118       HandleMark hm;
   119       do_full_collection(false);        // don't clear all soft refs
   120       break;
   121     }
   122     case GCCause::_last_ditch_collection: {
   123       HandleMark hm;
   124       do_full_collection(true);         // do clear all soft refs
   125       break;
   126     }
   127     default:
   128       ShouldNotReachHere(); // Unexpected use of this function
   129   }
   130 }
   131 MetaWord* CollectedHeap::satisfy_failed_metadata_allocation(
   132                                               ClassLoaderData* loader_data,
   133                                               size_t size, Metaspace::MetadataType mdtype) {
   134   return collector_policy()->satisfy_failed_metadata_allocation(loader_data, size, mdtype);
   135 }
   138 void CollectedHeap::pre_initialize() {
   139   // Used for ReduceInitialCardMarks (when COMPILER2 is used);
   140   // otherwise remains unused.
   141 #ifdef COMPILER2
   142   _defer_initial_card_mark =    ReduceInitialCardMarks && can_elide_tlab_store_barriers()
   143                              && (DeferInitialCardMark || card_mark_must_follow_store());
   144 #else
   145   assert(_defer_initial_card_mark == false, "Who would set it?");
   146 #endif
   147 }
   149 #ifndef PRODUCT
   150 void CollectedHeap::check_for_bad_heap_word_value(HeapWord* addr, size_t size) {
   151   if (CheckMemoryInitialization && ZapUnusedHeapArea) {
   152     for (size_t slot = 0; slot < size; slot += 1) {
   153       assert((*(intptr_t*) (addr + slot)) != ((intptr_t) badHeapWordVal),
   154              "Found badHeapWordValue in post-allocation check");
   155     }
   156   }
   157 }
   159 void CollectedHeap::check_for_non_bad_heap_word_value(HeapWord* addr, size_t size) {
   160   if (CheckMemoryInitialization && ZapUnusedHeapArea) {
   161     for (size_t slot = 0; slot < size; slot += 1) {
   162       assert((*(intptr_t*) (addr + slot)) == ((intptr_t) badHeapWordVal),
   163              "Found non badHeapWordValue in pre-allocation check");
   164     }
   165   }
   166 }
   167 #endif // PRODUCT
   169 #ifdef ASSERT
   170 void CollectedHeap::check_for_valid_allocation_state() {
   171   Thread *thread = Thread::current();
   172   // How to choose between a pending exception and a potential
   173   // OutOfMemoryError?  Don't allow pending exceptions.
   174   // This is a VM policy failure, so how do we exhaustively test it?
   175   assert(!thread->has_pending_exception(),
   176          "shouldn't be allocating with pending exception");
   177   if (StrictSafepointChecks) {
   178     assert(thread->allow_allocation(),
   179            "Allocation done by thread for which allocation is blocked "
   180            "by No_Allocation_Verifier!");
   181     // Allocation of an oop can always invoke a safepoint,
   182     // hence, the true argument
   183     thread->check_for_valid_safepoint_state(true);
   184   }
   185 }
   186 #endif
   188 HeapWord* CollectedHeap::allocate_from_tlab_slow(Thread* thread, size_t size) {
   190   // Retain tlab and allocate object in shared space if
   191   // the amount free in the tlab is too large to discard.
   192   if (thread->tlab().free() > thread->tlab().refill_waste_limit()) {
   193     thread->tlab().record_slow_allocation(size);
   194     return NULL;
   195   }
   197   // Discard tlab and allocate a new one.
   198   // To minimize fragmentation, the last TLAB may be smaller than the rest.
   199   size_t new_tlab_size = thread->tlab().compute_size(size);
   201   thread->tlab().clear_before_allocation();
   203   if (new_tlab_size == 0) {
   204     return NULL;
   205   }
   207   // Allocate a new TLAB...
   208   HeapWord* obj = Universe::heap()->allocate_new_tlab(new_tlab_size);
   209   if (obj == NULL) {
   210     return NULL;
   211   }
   212   if (ZeroTLAB) {
   213     // ..and clear it.
   214     Copy::zero_to_words(obj, new_tlab_size);
   215   } else {
   216     // ...and zap just allocated object.
   217 #ifdef ASSERT
   218     // Skip mangling the space corresponding to the object header to
   219     // ensure that the returned space is not considered parsable by
   220     // any concurrent GC thread.
   221     size_t hdr_size = oopDesc::header_size();
   222     Copy::fill_to_words(obj + hdr_size, new_tlab_size - hdr_size, badHeapWordVal);
   223 #endif // ASSERT
   224   }
   225   thread->tlab().fill(obj, obj + size, new_tlab_size);
   226   return obj;
   227 }
   229 void CollectedHeap::flush_deferred_store_barrier(JavaThread* thread) {
   230   MemRegion deferred = thread->deferred_card_mark();
   231   if (!deferred.is_empty()) {
   232     assert(_defer_initial_card_mark, "Otherwise should be empty");
   233     {
   234       // Verify that the storage points to a parsable object in heap
   235       DEBUG_ONLY(oop old_obj = oop(deferred.start());)
   236       assert(is_in(old_obj), "Not in allocated heap");
   237       assert(!can_elide_initializing_store_barrier(old_obj),
   238              "Else should have been filtered in new_store_pre_barrier()");
   239       assert(old_obj->is_oop(true), "Not an oop");
   240       assert(deferred.word_size() == (size_t)(old_obj->size()),
   241              "Mismatch: multiple objects?");
   242     }
   243     BarrierSet* bs = barrier_set();
   244     assert(bs->has_write_region_opt(), "No write_region() on BarrierSet");
   245     bs->write_region(deferred);
   246     // "Clear" the deferred_card_mark field
   247     thread->set_deferred_card_mark(MemRegion());
   248   }
   249   assert(thread->deferred_card_mark().is_empty(), "invariant");
   250 }
   252 // Helper for ReduceInitialCardMarks. For performance,
   253 // compiled code may elide card-marks for initializing stores
   254 // to a newly allocated object along the fast-path. We
   255 // compensate for such elided card-marks as follows:
   256 // (a) Generational, non-concurrent collectors, such as
   257 //     GenCollectedHeap(ParNew,DefNew,Tenured) and
   258 //     ParallelScavengeHeap(ParallelGC, ParallelOldGC)
   259 //     need the card-mark if and only if the region is
   260 //     in the old gen, and do not care if the card-mark
   261 //     succeeds or precedes the initializing stores themselves,
   262 //     so long as the card-mark is completed before the next
   263 //     scavenge. For all these cases, we can do a card mark
   264 //     at the point at which we do a slow path allocation
   265 //     in the old gen, i.e. in this call.
   266 // (b) GenCollectedHeap(ConcurrentMarkSweepGeneration) requires
   267 //     in addition that the card-mark for an old gen allocated
   268 //     object strictly follow any associated initializing stores.
   269 //     In these cases, the memRegion remembered below is
   270 //     used to card-mark the entire region either just before the next
   271 //     slow-path allocation by this thread or just before the next scavenge or
   272 //     CMS-associated safepoint, whichever of these events happens first.
   273 //     (The implicit assumption is that the object has been fully
   274 //     initialized by this point, a fact that we assert when doing the
   275 //     card-mark.)
   276 // (c) G1CollectedHeap(G1) uses two kinds of write barriers. When a
   277 //     G1 concurrent marking is in progress an SATB (pre-write-)barrier is
   278 //     is used to remember the pre-value of any store. Initializing
   279 //     stores will not need this barrier, so we need not worry about
   280 //     compensating for the missing pre-barrier here. Turning now
   281 //     to the post-barrier, we note that G1 needs a RS update barrier
   282 //     which simply enqueues a (sequence of) dirty cards which may
   283 //     optionally be refined by the concurrent update threads. Note
   284 //     that this barrier need only be applied to a non-young write,
   285 //     but, like in CMS, because of the presence of concurrent refinement
   286 //     (much like CMS' precleaning), must strictly follow the oop-store.
   287 //     Thus, using the same protocol for maintaining the intended
   288 //     invariants turns out, serendepitously, to be the same for both
   289 //     G1 and CMS.
   290 //
   291 // For any future collector, this code should be reexamined with
   292 // that specific collector in mind, and the documentation above suitably
   293 // extended and updated.
   294 oop CollectedHeap::new_store_pre_barrier(JavaThread* thread, oop new_obj) {
   295   // If a previous card-mark was deferred, flush it now.
   296   flush_deferred_store_barrier(thread);
   297   if (can_elide_initializing_store_barrier(new_obj)) {
   298     // The deferred_card_mark region should be empty
   299     // following the flush above.
   300     assert(thread->deferred_card_mark().is_empty(), "Error");
   301   } else {
   302     MemRegion mr((HeapWord*)new_obj, new_obj->size());
   303     assert(!mr.is_empty(), "Error");
   304     if (_defer_initial_card_mark) {
   305       // Defer the card mark
   306       thread->set_deferred_card_mark(mr);
   307     } else {
   308       // Do the card mark
   309       BarrierSet* bs = barrier_set();
   310       assert(bs->has_write_region_opt(), "No write_region() on BarrierSet");
   311       bs->write_region(mr);
   312     }
   313   }
   314   return new_obj;
   315 }
   317 size_t CollectedHeap::filler_array_hdr_size() {
   318   return size_t(align_object_offset(arrayOopDesc::header_size(T_INT))); // align to Long
   319 }
   321 size_t CollectedHeap::filler_array_min_size() {
   322   return align_object_size(filler_array_hdr_size()); // align to MinObjAlignment
   323 }
   325 #ifdef ASSERT
   326 void CollectedHeap::fill_args_check(HeapWord* start, size_t words)
   327 {
   328   assert(words >= min_fill_size(), "too small to fill");
   329   assert(words % MinObjAlignment == 0, "unaligned size");
   330   assert(Universe::heap()->is_in_reserved(start), "not in heap");
   331   assert(Universe::heap()->is_in_reserved(start + words - 1), "not in heap");
   332 }
   334 void CollectedHeap::zap_filler_array(HeapWord* start, size_t words, bool zap)
   335 {
   336   if (ZapFillerObjects && zap) {
   337     Copy::fill_to_words(start + filler_array_hdr_size(),
   338                         words - filler_array_hdr_size(), 0XDEAFBABE);
   339   }
   340 }
   341 #endif // ASSERT
   343 void
   344 CollectedHeap::fill_with_array(HeapWord* start, size_t words, bool zap)
   345 {
   346   assert(words >= filler_array_min_size(), "too small for an array");
   347   assert(words <= filler_array_max_size(), "too big for a single object");
   349   const size_t payload_size = words - filler_array_hdr_size();
   350   const size_t len = payload_size * HeapWordSize / sizeof(jint);
   351   assert((int)len >= 0, err_msg("size too large " SIZE_FORMAT " becomes %d", words, (int)len));
   353   // Set the length first for concurrent GC.
   354   ((arrayOop)start)->set_length((int)len);
   355   post_allocation_setup_common(Universe::intArrayKlassObj(), start);
   356   DEBUG_ONLY(zap_filler_array(start, words, zap);)
   357 }
   359 void
   360 CollectedHeap::fill_with_object_impl(HeapWord* start, size_t words, bool zap)
   361 {
   362   assert(words <= filler_array_max_size(), "too big for a single object");
   364   if (words >= filler_array_min_size()) {
   365     fill_with_array(start, words, zap);
   366   } else if (words > 0) {
   367     assert(words == min_fill_size(), "unaligned size");
   368     post_allocation_setup_common(SystemDictionary::Object_klass(), start);
   369   }
   370 }
   372 void CollectedHeap::fill_with_object(HeapWord* start, size_t words, bool zap)
   373 {
   374   DEBUG_ONLY(fill_args_check(start, words);)
   375   HandleMark hm;  // Free handles before leaving.
   376   fill_with_object_impl(start, words, zap);
   377 }
   379 void CollectedHeap::fill_with_objects(HeapWord* start, size_t words, bool zap)
   380 {
   381   DEBUG_ONLY(fill_args_check(start, words);)
   382   HandleMark hm;  // Free handles before leaving.
   384 #ifdef _LP64
   385   // A single array can fill ~8G, so multiple objects are needed only in 64-bit.
   386   // First fill with arrays, ensuring that any remaining space is big enough to
   387   // fill.  The remainder is filled with a single object.
   388   const size_t min = min_fill_size();
   389   const size_t max = filler_array_max_size();
   390   while (words > max) {
   391     const size_t cur = words - max >= min ? max : max - min;
   392     fill_with_array(start, cur, zap);
   393     start += cur;
   394     words -= cur;
   395   }
   396 #endif
   398   fill_with_object_impl(start, words, zap);
   399 }
   401 HeapWord* CollectedHeap::allocate_new_tlab(size_t size) {
   402   guarantee(false, "thread-local allocation buffers not supported");
   403   return NULL;
   404 }
   406 void CollectedHeap::ensure_parsability(bool retire_tlabs) {
   407   // The second disjunct in the assertion below makes a concession
   408   // for the start-up verification done while the VM is being
   409   // created. Callers be careful that you know that mutators
   410   // aren't going to interfere -- for instance, this is permissible
   411   // if we are still single-threaded and have either not yet
   412   // started allocating (nothing much to verify) or we have
   413   // started allocating but are now a full-fledged JavaThread
   414   // (and have thus made our TLAB's) available for filling.
   415   assert(SafepointSynchronize::is_at_safepoint() ||
   416          !is_init_completed(),
   417          "Should only be called at a safepoint or at start-up"
   418          " otherwise concurrent mutator activity may make heap "
   419          " unparsable again");
   420   const bool use_tlab = UseTLAB;
   421   const bool deferred = _defer_initial_card_mark;
   422   // The main thread starts allocating via a TLAB even before it
   423   // has added itself to the threads list at vm boot-up.
   424   assert(!use_tlab || Threads::first() != NULL,
   425          "Attempt to fill tlabs before main thread has been added"
   426          " to threads list is doomed to failure!");
   427   for (JavaThread *thread = Threads::first(); thread; thread = thread->next()) {
   428      if (use_tlab) thread->tlab().make_parsable(retire_tlabs);
   429 #ifdef COMPILER2
   430      // The deferred store barriers must all have been flushed to the
   431      // card-table (or other remembered set structure) before GC starts
   432      // processing the card-table (or other remembered set).
   433      if (deferred) flush_deferred_store_barrier(thread);
   434 #else
   435      assert(!deferred, "Should be false");
   436      assert(thread->deferred_card_mark().is_empty(), "Should be empty");
   437 #endif
   438   }
   439 }
   441 void CollectedHeap::accumulate_statistics_all_tlabs() {
   442   if (UseTLAB) {
   443     assert(SafepointSynchronize::is_at_safepoint() ||
   444          !is_init_completed(),
   445          "should only accumulate statistics on tlabs at safepoint");
   447     ThreadLocalAllocBuffer::accumulate_statistics_before_gc();
   448   }
   449 }
   451 void CollectedHeap::resize_all_tlabs() {
   452   if (UseTLAB) {
   453     assert(SafepointSynchronize::is_at_safepoint() ||
   454          !is_init_completed(),
   455          "should only resize tlabs at safepoint");
   457     ThreadLocalAllocBuffer::resize_all_tlabs();
   458   }
   459 }
   461 void CollectedHeap::pre_full_gc_dump() {
   462   if (HeapDumpBeforeFullGC) {
   463     TraceTime tt("Heap Dump (before full gc): ", PrintGCDetails, false, gclog_or_tty);
   464     // We are doing a "major" collection and a heap dump before
   465     // major collection has been requested.
   466     HeapDumper::dump_heap();
   467   }
   468   if (PrintClassHistogramBeforeFullGC) {
   469     TraceTime tt("Class Histogram (before full gc): ", PrintGCDetails, true, gclog_or_tty);
   470     VM_GC_HeapInspection inspector(gclog_or_tty, false /* ! full gc */, false /* ! prologue */);
   471     inspector.doit();
   472   }
   473 }
   475 void CollectedHeap::post_full_gc_dump() {
   476   if (HeapDumpAfterFullGC) {
   477     TraceTime tt("Heap Dump (after full gc): ", PrintGCDetails, false, gclog_or_tty);
   478     HeapDumper::dump_heap();
   479   }
   480   if (PrintClassHistogramAfterFullGC) {
   481     TraceTime tt("Class Histogram (after full gc): ", PrintGCDetails, true, gclog_or_tty);
   482     VM_GC_HeapInspection inspector(gclog_or_tty, false /* ! full gc */, false /* ! prologue */);
   483     inspector.doit();
   484   }
   485 }
   487 oop CollectedHeap::Class_obj_allocate(KlassHandle klass, int size, KlassHandle real_klass, TRAPS) {
   488   debug_only(check_for_valid_allocation_state());
   489   assert(!Universe::heap()->is_gc_active(), "Allocation during gc not allowed");
   490   assert(size >= 0, "int won't convert to size_t");
   491   HeapWord* obj;
   492     assert(ScavengeRootsInCode > 0, "must be");
   493     obj = common_mem_allocate_init(size, CHECK_NULL);
   494   post_allocation_setup_common(klass, obj);
   495   assert(Universe::is_bootstrapping() ||
   496          !((oop)obj)->is_array(), "must not be an array");
   497   NOT_PRODUCT(Universe::heap()->check_for_bad_heap_word_value(obj, size));
   498   oop mirror = (oop)obj;
   500   java_lang_Class::set_oop_size(mirror, size);
   502   // Setup indirections
   503   if (!real_klass.is_null()) {
   504     java_lang_Class::set_klass(mirror, real_klass());
   505     real_klass->set_java_mirror(mirror);
   506   }
   508   InstanceMirrorKlass* mk = InstanceMirrorKlass::cast(mirror->klass());
   509   assert(size == mk->instance_size(real_klass), "should have been set");
   511   // notify jvmti and dtrace
   512   post_allocation_notify(klass, (oop)obj);
   514   return mirror;
   515 }
   517 /////////////// Unit tests ///////////////
   519 #ifndef PRODUCT
   520 void CollectedHeap::test_is_in() {
   521   CollectedHeap* heap = Universe::heap();
   523   uintptr_t epsilon    = (uintptr_t) MinObjAlignment;
   524   uintptr_t heap_start = (uintptr_t) heap->_reserved.start();
   525   uintptr_t heap_end   = (uintptr_t) heap->_reserved.end();
   527   // Test that NULL is not in the heap.
   528   assert(!heap->is_in(NULL), "NULL is unexpectedly in the heap");
   530   // Test that a pointer to before the heap start is reported as outside the heap.
   531   assert(heap_start >= ((uintptr_t)NULL + epsilon), "sanity");
   532   void* before_heap = (void*)(heap_start - epsilon);
   533   assert(!heap->is_in(before_heap),
   534       err_msg("before_heap: " PTR_FORMAT " is unexpectedly in the heap", before_heap));
   536   // Test that a pointer to after the heap end is reported as outside the heap.
   537   assert(heap_end <= ((uintptr_t)-1 - epsilon), "sanity");
   538   void* after_heap = (void*)(heap_end + epsilon);
   539   assert(!heap->is_in(after_heap),
   540       err_msg("after_heap: " PTR_FORMAT " is unexpectedly in the heap", after_heap));
   541 }
   542 #endif

mercurial