src/cpu/sparc/vm/interp_masm_sparc.cpp

Tue, 27 Nov 2012 14:20:21 +0100

author
stefank
date
Tue, 27 Nov 2012 14:20:21 +0100
changeset 4299
f34d701e952e
parent 4116
69fb89ec6fa7
child 4303
5505fbbae3d3
permissions
-rw-r--r--

8003935: Simplify the needed includes for using Thread::current()
Reviewed-by: dholmes, rbackman, coleenp

     1 /*
     2  * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "interp_masm_sparc.hpp"
    27 #include "interpreter/interpreter.hpp"
    28 #include "interpreter/interpreterRuntime.hpp"
    29 #include "oops/arrayOop.hpp"
    30 #include "oops/markOop.hpp"
    31 #include "oops/methodData.hpp"
    32 #include "oops/method.hpp"
    33 #include "prims/jvmtiExport.hpp"
    34 #include "prims/jvmtiRedefineClassesTrace.hpp"
    35 #include "prims/jvmtiThreadState.hpp"
    36 #include "runtime/basicLock.hpp"
    37 #include "runtime/biasedLocking.hpp"
    38 #include "runtime/sharedRuntime.hpp"
    39 #include "runtime/thread.inline.hpp"
    41 #ifndef CC_INTERP
    42 #ifndef FAST_DISPATCH
    43 #define FAST_DISPATCH 1
    44 #endif
    45 #undef FAST_DISPATCH
    47 // Implementation of InterpreterMacroAssembler
    49 // This file specializes the assember with interpreter-specific macros
    51 const Address InterpreterMacroAssembler::l_tmp(FP, (frame::interpreter_frame_l_scratch_fp_offset * wordSize) + STACK_BIAS);
    52 const Address InterpreterMacroAssembler::d_tmp(FP, (frame::interpreter_frame_d_scratch_fp_offset * wordSize) + STACK_BIAS);
    54 #else // CC_INTERP
    55 #ifndef STATE
    56 #define STATE(field_name) Lstate, in_bytes(byte_offset_of(BytecodeInterpreter, field_name))
    57 #endif // STATE
    59 #endif // CC_INTERP
    61 void InterpreterMacroAssembler::compute_extra_locals_size_in_bytes(Register args_size, Register locals_size, Register delta) {
    62   // Note: this algorithm is also used by C1's OSR entry sequence.
    63   // Any changes should also be applied to CodeEmitter::emit_osr_entry().
    64   assert_different_registers(args_size, locals_size);
    65   // max_locals*2 for TAGS.  Assumes that args_size has already been adjusted.
    66   subcc(locals_size, args_size, delta);// extra space for non-arguments locals in words
    67   // Use br/mov combination because it works on both V8 and V9 and is
    68   // faster.
    69   Label skip_move;
    70   br(Assembler::negative, true, Assembler::pt, skip_move);
    71   delayed()->mov(G0, delta);
    72   bind(skip_move);
    73   round_to(delta, WordsPerLong);       // make multiple of 2 (SP must be 2-word aligned)
    74   sll(delta, LogBytesPerWord, delta);  // extra space for locals in bytes
    75 }
    77 #ifndef CC_INTERP
    79 // Dispatch code executed in the prolog of a bytecode which does not do it's
    80 // own dispatch. The dispatch address is computed and placed in IdispatchAddress
    81 void InterpreterMacroAssembler::dispatch_prolog(TosState state, int bcp_incr) {
    82   assert_not_delayed();
    83 #ifdef FAST_DISPATCH
    84   // FAST_DISPATCH and ProfileInterpreter are mutually exclusive since
    85   // they both use I2.
    86   assert(!ProfileInterpreter, "FAST_DISPATCH and +ProfileInterpreter are mutually exclusive");
    87   ldub(Lbcp, bcp_incr, Lbyte_code);                     // load next bytecode
    88   add(Lbyte_code, Interpreter::distance_from_dispatch_table(state), Lbyte_code);
    89                                                         // add offset to correct dispatch table
    90   sll(Lbyte_code, LogBytesPerWord, Lbyte_code);         // multiply by wordSize
    91   ld_ptr(IdispatchTables, Lbyte_code, IdispatchAddress);// get entry addr
    92 #else
    93   ldub( Lbcp, bcp_incr, Lbyte_code);                    // load next bytecode
    94   // dispatch table to use
    95   AddressLiteral tbl(Interpreter::dispatch_table(state));
    96   sll(Lbyte_code, LogBytesPerWord, Lbyte_code);         // multiply by wordSize
    97   set(tbl, G3_scratch);                                 // compute addr of table
    98   ld_ptr(G3_scratch, Lbyte_code, IdispatchAddress);     // get entry addr
    99 #endif
   100 }
   103 // Dispatch code executed in the epilog of a bytecode which does not do it's
   104 // own dispatch. The dispatch address in IdispatchAddress is used for the
   105 // dispatch.
   106 void InterpreterMacroAssembler::dispatch_epilog(TosState state, int bcp_incr) {
   107   assert_not_delayed();
   108   verify_FPU(1, state);
   109   interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
   110   jmp( IdispatchAddress, 0 );
   111   if (bcp_incr != 0)  delayed()->inc(Lbcp, bcp_incr);
   112   else                delayed()->nop();
   113 }
   116 void InterpreterMacroAssembler::dispatch_next(TosState state, int bcp_incr) {
   117   // %%%% consider branching to a single shared dispatch stub (for each bcp_incr)
   118   assert_not_delayed();
   119   ldub( Lbcp, bcp_incr, Lbyte_code);               // load next bytecode
   120   dispatch_Lbyte_code(state, Interpreter::dispatch_table(state), bcp_incr);
   121 }
   124 void InterpreterMacroAssembler::dispatch_next_noverify_oop(TosState state, int bcp_incr) {
   125   // %%%% consider branching to a single shared dispatch stub (for each bcp_incr)
   126   assert_not_delayed();
   127   ldub( Lbcp, bcp_incr, Lbyte_code);               // load next bytecode
   128   dispatch_Lbyte_code(state, Interpreter::dispatch_table(state), bcp_incr, false);
   129 }
   132 void InterpreterMacroAssembler::dispatch_via(TosState state, address* table) {
   133   // load current bytecode
   134   assert_not_delayed();
   135   ldub( Lbcp, 0, Lbyte_code);               // load next bytecode
   136   dispatch_base(state, table);
   137 }
   140 void InterpreterMacroAssembler::call_VM_leaf_base(
   141   Register java_thread,
   142   address  entry_point,
   143   int      number_of_arguments
   144 ) {
   145   if (!java_thread->is_valid())
   146     java_thread = L7_thread_cache;
   147   // super call
   148   MacroAssembler::call_VM_leaf_base(java_thread, entry_point, number_of_arguments);
   149 }
   152 void InterpreterMacroAssembler::call_VM_base(
   153   Register        oop_result,
   154   Register        java_thread,
   155   Register        last_java_sp,
   156   address         entry_point,
   157   int             number_of_arguments,
   158   bool            check_exception
   159 ) {
   160   if (!java_thread->is_valid())
   161     java_thread = L7_thread_cache;
   162   // See class ThreadInVMfromInterpreter, which assumes that the interpreter
   163   // takes responsibility for setting its own thread-state on call-out.
   164   // However, ThreadInVMfromInterpreter resets the state to "in_Java".
   166   //save_bcp();                                  // save bcp
   167   MacroAssembler::call_VM_base(oop_result, java_thread, last_java_sp, entry_point, number_of_arguments, check_exception);
   168   //restore_bcp();                               // restore bcp
   169   //restore_locals();                            // restore locals pointer
   170 }
   173 void InterpreterMacroAssembler::check_and_handle_popframe(Register scratch_reg) {
   174   if (JvmtiExport::can_pop_frame()) {
   175     Label L;
   177     // Check the "pending popframe condition" flag in the current thread
   178     ld(G2_thread, JavaThread::popframe_condition_offset(), scratch_reg);
   180     // Initiate popframe handling only if it is not already being processed.  If the flag
   181     // has the popframe_processing bit set, it means that this code is called *during* popframe
   182     // handling - we don't want to reenter.
   183     btst(JavaThread::popframe_pending_bit, scratch_reg);
   184     br(zero, false, pt, L);
   185     delayed()->nop();
   186     btst(JavaThread::popframe_processing_bit, scratch_reg);
   187     br(notZero, false, pt, L);
   188     delayed()->nop();
   190     // Call Interpreter::remove_activation_preserving_args_entry() to get the
   191     // address of the same-named entrypoint in the generated interpreter code.
   192     call_VM_leaf(noreg, CAST_FROM_FN_PTR(address, Interpreter::remove_activation_preserving_args_entry));
   194     // Jump to Interpreter::_remove_activation_preserving_args_entry
   195     jmpl(O0, G0, G0);
   196     delayed()->nop();
   197     bind(L);
   198   }
   199 }
   202 void InterpreterMacroAssembler::load_earlyret_value(TosState state) {
   203   Register thr_state = G4_scratch;
   204   ld_ptr(G2_thread, JavaThread::jvmti_thread_state_offset(), thr_state);
   205   const Address tos_addr(thr_state, JvmtiThreadState::earlyret_tos_offset());
   206   const Address oop_addr(thr_state, JvmtiThreadState::earlyret_oop_offset());
   207   const Address val_addr(thr_state, JvmtiThreadState::earlyret_value_offset());
   208   switch (state) {
   209   case ltos: ld_long(val_addr, Otos_l);                   break;
   210   case atos: ld_ptr(oop_addr, Otos_l);
   211              st_ptr(G0, oop_addr);                        break;
   212   case btos:                                           // fall through
   213   case ctos:                                           // fall through
   214   case stos:                                           // fall through
   215   case itos: ld(val_addr, Otos_l1);                       break;
   216   case ftos: ldf(FloatRegisterImpl::S, val_addr, Ftos_f); break;
   217   case dtos: ldf(FloatRegisterImpl::D, val_addr, Ftos_d); break;
   218   case vtos: /* nothing to do */                          break;
   219   default  : ShouldNotReachHere();
   220   }
   221   // Clean up tos value in the jvmti thread state
   222   or3(G0, ilgl, G3_scratch);
   223   stw(G3_scratch, tos_addr);
   224   st_long(G0, val_addr);
   225   interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
   226 }
   229 void InterpreterMacroAssembler::check_and_handle_earlyret(Register scratch_reg) {
   230   if (JvmtiExport::can_force_early_return()) {
   231     Label L;
   232     Register thr_state = G3_scratch;
   233     ld_ptr(G2_thread, JavaThread::jvmti_thread_state_offset(), thr_state);
   234     br_null_short(thr_state, pt, L); // if (thread->jvmti_thread_state() == NULL) exit;
   236     // Initiate earlyret handling only if it is not already being processed.
   237     // If the flag has the earlyret_processing bit set, it means that this code
   238     // is called *during* earlyret handling - we don't want to reenter.
   239     ld(thr_state, JvmtiThreadState::earlyret_state_offset(), G4_scratch);
   240     cmp_and_br_short(G4_scratch, JvmtiThreadState::earlyret_pending, Assembler::notEqual, pt, L);
   242     // Call Interpreter::remove_activation_early_entry() to get the address of the
   243     // same-named entrypoint in the generated interpreter code
   244     ld(thr_state, JvmtiThreadState::earlyret_tos_offset(), Otos_l1);
   245     call_VM_leaf(noreg, CAST_FROM_FN_PTR(address, Interpreter::remove_activation_early_entry), Otos_l1);
   247     // Jump to Interpreter::_remove_activation_early_entry
   248     jmpl(O0, G0, G0);
   249     delayed()->nop();
   250     bind(L);
   251   }
   252 }
   255 void InterpreterMacroAssembler::super_call_VM_leaf(Register thread_cache, address entry_point, Register arg_1, Register arg_2) {
   256   mov(arg_1, O0);
   257   mov(arg_2, O1);
   258   MacroAssembler::call_VM_leaf_base(thread_cache, entry_point, 2);
   259 }
   260 #endif /* CC_INTERP */
   263 #ifndef CC_INTERP
   265 void InterpreterMacroAssembler::dispatch_base(TosState state, address* table) {
   266   assert_not_delayed();
   267   dispatch_Lbyte_code(state, table);
   268 }
   271 void InterpreterMacroAssembler::dispatch_normal(TosState state) {
   272   dispatch_base(state, Interpreter::normal_table(state));
   273 }
   276 void InterpreterMacroAssembler::dispatch_only(TosState state) {
   277   dispatch_base(state, Interpreter::dispatch_table(state));
   278 }
   281 // common code to dispatch and dispatch_only
   282 // dispatch value in Lbyte_code and increment Lbcp
   284 void InterpreterMacroAssembler::dispatch_Lbyte_code(TosState state, address* table, int bcp_incr, bool verify) {
   285   verify_FPU(1, state);
   286   // %%%%% maybe implement +VerifyActivationFrameSize here
   287   //verify_thread(); //too slow; we will just verify on method entry & exit
   288   if (verify) interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
   289 #ifdef FAST_DISPATCH
   290   if (table == Interpreter::dispatch_table(state)) {
   291     // use IdispatchTables
   292     add(Lbyte_code, Interpreter::distance_from_dispatch_table(state), Lbyte_code);
   293                                                         // add offset to correct dispatch table
   294     sll(Lbyte_code, LogBytesPerWord, Lbyte_code);       // multiply by wordSize
   295     ld_ptr(IdispatchTables, Lbyte_code, G3_scratch);    // get entry addr
   296   } else {
   297 #endif
   298     // dispatch table to use
   299     AddressLiteral tbl(table);
   300     sll(Lbyte_code, LogBytesPerWord, Lbyte_code);       // multiply by wordSize
   301     set(tbl, G3_scratch);                               // compute addr of table
   302     ld_ptr(G3_scratch, Lbyte_code, G3_scratch);         // get entry addr
   303 #ifdef FAST_DISPATCH
   304   }
   305 #endif
   306   jmp( G3_scratch, 0 );
   307   if (bcp_incr != 0)  delayed()->inc(Lbcp, bcp_incr);
   308   else                delayed()->nop();
   309 }
   312 // Helpers for expression stack
   314 // Longs and doubles are Category 2 computational types in the
   315 // JVM specification (section 3.11.1) and take 2 expression stack or
   316 // local slots.
   317 // Aligning them on 32 bit with tagged stacks is hard because the code generated
   318 // for the dup* bytecodes depends on what types are already on the stack.
   319 // If the types are split into the two stack/local slots, that is much easier
   320 // (and we can use 0 for non-reference tags).
   322 // Known good alignment in _LP64 but unknown otherwise
   323 void InterpreterMacroAssembler::load_unaligned_double(Register r1, int offset, FloatRegister d) {
   324   assert_not_delayed();
   326 #ifdef _LP64
   327   ldf(FloatRegisterImpl::D, r1, offset, d);
   328 #else
   329   ldf(FloatRegisterImpl::S, r1, offset, d);
   330   ldf(FloatRegisterImpl::S, r1, offset + Interpreter::stackElementSize, d->successor());
   331 #endif
   332 }
   334 // Known good alignment in _LP64 but unknown otherwise
   335 void InterpreterMacroAssembler::store_unaligned_double(FloatRegister d, Register r1, int offset) {
   336   assert_not_delayed();
   338 #ifdef _LP64
   339   stf(FloatRegisterImpl::D, d, r1, offset);
   340   // store something more useful here
   341   debug_only(stx(G0, r1, offset+Interpreter::stackElementSize);)
   342 #else
   343   stf(FloatRegisterImpl::S, d, r1, offset);
   344   stf(FloatRegisterImpl::S, d->successor(), r1, offset + Interpreter::stackElementSize);
   345 #endif
   346 }
   349 // Known good alignment in _LP64 but unknown otherwise
   350 void InterpreterMacroAssembler::load_unaligned_long(Register r1, int offset, Register rd) {
   351   assert_not_delayed();
   352 #ifdef _LP64
   353   ldx(r1, offset, rd);
   354 #else
   355   ld(r1, offset, rd);
   356   ld(r1, offset + Interpreter::stackElementSize, rd->successor());
   357 #endif
   358 }
   360 // Known good alignment in _LP64 but unknown otherwise
   361 void InterpreterMacroAssembler::store_unaligned_long(Register l, Register r1, int offset) {
   362   assert_not_delayed();
   364 #ifdef _LP64
   365   stx(l, r1, offset);
   366   // store something more useful here
   367   debug_only(stx(G0, r1, offset+Interpreter::stackElementSize);)
   368 #else
   369   st(l, r1, offset);
   370   st(l->successor(), r1, offset + Interpreter::stackElementSize);
   371 #endif
   372 }
   374 void InterpreterMacroAssembler::pop_i(Register r) {
   375   assert_not_delayed();
   376   ld(Lesp, Interpreter::expr_offset_in_bytes(0), r);
   377   inc(Lesp, Interpreter::stackElementSize);
   378   debug_only(verify_esp(Lesp));
   379 }
   381 void InterpreterMacroAssembler::pop_ptr(Register r, Register scratch) {
   382   assert_not_delayed();
   383   ld_ptr(Lesp, Interpreter::expr_offset_in_bytes(0), r);
   384   inc(Lesp, Interpreter::stackElementSize);
   385   debug_only(verify_esp(Lesp));
   386 }
   388 void InterpreterMacroAssembler::pop_l(Register r) {
   389   assert_not_delayed();
   390   load_unaligned_long(Lesp, Interpreter::expr_offset_in_bytes(0), r);
   391   inc(Lesp, 2*Interpreter::stackElementSize);
   392   debug_only(verify_esp(Lesp));
   393 }
   396 void InterpreterMacroAssembler::pop_f(FloatRegister f, Register scratch) {
   397   assert_not_delayed();
   398   ldf(FloatRegisterImpl::S, Lesp, Interpreter::expr_offset_in_bytes(0), f);
   399   inc(Lesp, Interpreter::stackElementSize);
   400   debug_only(verify_esp(Lesp));
   401 }
   404 void InterpreterMacroAssembler::pop_d(FloatRegister f, Register scratch) {
   405   assert_not_delayed();
   406   load_unaligned_double(Lesp, Interpreter::expr_offset_in_bytes(0), f);
   407   inc(Lesp, 2*Interpreter::stackElementSize);
   408   debug_only(verify_esp(Lesp));
   409 }
   412 void InterpreterMacroAssembler::push_i(Register r) {
   413   assert_not_delayed();
   414   debug_only(verify_esp(Lesp));
   415   st(r, Lesp, 0);
   416   dec(Lesp, Interpreter::stackElementSize);
   417 }
   419 void InterpreterMacroAssembler::push_ptr(Register r) {
   420   assert_not_delayed();
   421   st_ptr(r, Lesp, 0);
   422   dec(Lesp, Interpreter::stackElementSize);
   423 }
   425 // remember: our convention for longs in SPARC is:
   426 // O0 (Otos_l1) has high-order part in first word,
   427 // O1 (Otos_l2) has low-order part in second word
   429 void InterpreterMacroAssembler::push_l(Register r) {
   430   assert_not_delayed();
   431   debug_only(verify_esp(Lesp));
   432   // Longs are stored in memory-correct order, even if unaligned.
   433   int offset = -Interpreter::stackElementSize;
   434   store_unaligned_long(r, Lesp, offset);
   435   dec(Lesp, 2 * Interpreter::stackElementSize);
   436 }
   439 void InterpreterMacroAssembler::push_f(FloatRegister f) {
   440   assert_not_delayed();
   441   debug_only(verify_esp(Lesp));
   442   stf(FloatRegisterImpl::S, f, Lesp, 0);
   443   dec(Lesp, Interpreter::stackElementSize);
   444 }
   447 void InterpreterMacroAssembler::push_d(FloatRegister d)   {
   448   assert_not_delayed();
   449   debug_only(verify_esp(Lesp));
   450   // Longs are stored in memory-correct order, even if unaligned.
   451   int offset = -Interpreter::stackElementSize;
   452   store_unaligned_double(d, Lesp, offset);
   453   dec(Lesp, 2 * Interpreter::stackElementSize);
   454 }
   457 void InterpreterMacroAssembler::push(TosState state) {
   458   interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
   459   switch (state) {
   460     case atos: push_ptr();            break;
   461     case btos: push_i();              break;
   462     case ctos:
   463     case stos: push_i();              break;
   464     case itos: push_i();              break;
   465     case ltos: push_l();              break;
   466     case ftos: push_f();              break;
   467     case dtos: push_d();              break;
   468     case vtos: /* nothing to do */    break;
   469     default  : ShouldNotReachHere();
   470   }
   471 }
   474 void InterpreterMacroAssembler::pop(TosState state) {
   475   switch (state) {
   476     case atos: pop_ptr();            break;
   477     case btos: pop_i();              break;
   478     case ctos:
   479     case stos: pop_i();              break;
   480     case itos: pop_i();              break;
   481     case ltos: pop_l();              break;
   482     case ftos: pop_f();              break;
   483     case dtos: pop_d();              break;
   484     case vtos: /* nothing to do */   break;
   485     default  : ShouldNotReachHere();
   486   }
   487   interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
   488 }
   491 // Helpers for swap and dup
   492 void InterpreterMacroAssembler::load_ptr(int n, Register val) {
   493   ld_ptr(Lesp, Interpreter::expr_offset_in_bytes(n), val);
   494 }
   495 void InterpreterMacroAssembler::store_ptr(int n, Register val) {
   496   st_ptr(val, Lesp, Interpreter::expr_offset_in_bytes(n));
   497 }
   500 void InterpreterMacroAssembler::load_receiver(Register param_count,
   501                                               Register recv) {
   502   sll(param_count, Interpreter::logStackElementSize, param_count);
   503   ld_ptr(Lesp, param_count, recv);  // gets receiver oop
   504 }
   506 void InterpreterMacroAssembler::empty_expression_stack() {
   507   // Reset Lesp.
   508   sub( Lmonitors, wordSize, Lesp );
   510   // Reset SP by subtracting more space from Lesp.
   511   Label done;
   512   assert(G4_scratch != Gframe_size, "Only you can prevent register aliasing!");
   514   // A native does not need to do this, since its callee does not change SP.
   515   ld(Lmethod, Method::access_flags_offset(), Gframe_size);  // Load access flags.
   516   btst(JVM_ACC_NATIVE, Gframe_size);
   517   br(Assembler::notZero, false, Assembler::pt, done);
   518   delayed()->nop();
   520   // Compute max expression stack+register save area
   521   lduh(Lmethod, in_bytes(Method::max_stack_offset()), Gframe_size);  // Load max stack.
   522   add( Gframe_size, frame::memory_parameter_word_sp_offset, Gframe_size );
   524   //
   525   // now set up a stack frame with the size computed above
   526   //
   527   //round_to( Gframe_size, WordsPerLong ); // -- moved down to the "and" below
   528   sll( Gframe_size, LogBytesPerWord, Gframe_size );
   529   sub( Lesp, Gframe_size, Gframe_size );
   530   and3( Gframe_size, -(2 * wordSize), Gframe_size );          // align SP (downwards) to an 8/16-byte boundary
   531   debug_only(verify_sp(Gframe_size, G4_scratch));
   532 #ifdef _LP64
   533   sub(Gframe_size, STACK_BIAS, Gframe_size );
   534 #endif
   535   mov(Gframe_size, SP);
   537   bind(done);
   538 }
   541 #ifdef ASSERT
   542 void InterpreterMacroAssembler::verify_sp(Register Rsp, Register Rtemp) {
   543   Label Bad, OK;
   545   // Saved SP must be aligned.
   546 #ifdef _LP64
   547   btst(2*BytesPerWord-1, Rsp);
   548 #else
   549   btst(LongAlignmentMask, Rsp);
   550 #endif
   551   br(Assembler::notZero, false, Assembler::pn, Bad);
   552   delayed()->nop();
   554   // Saved SP, plus register window size, must not be above FP.
   555   add(Rsp, frame::register_save_words * wordSize, Rtemp);
   556 #ifdef _LP64
   557   sub(Rtemp, STACK_BIAS, Rtemp);  // Bias Rtemp before cmp to FP
   558 #endif
   559   cmp_and_brx_short(Rtemp, FP, Assembler::greaterUnsigned, Assembler::pn, Bad);
   561   // Saved SP must not be ridiculously below current SP.
   562   size_t maxstack = MAX2(JavaThread::stack_size_at_create(), (size_t) 4*K*K);
   563   set(maxstack, Rtemp);
   564   sub(SP, Rtemp, Rtemp);
   565 #ifdef _LP64
   566   add(Rtemp, STACK_BIAS, Rtemp);  // Unbias Rtemp before cmp to Rsp
   567 #endif
   568   cmp_and_brx_short(Rsp, Rtemp, Assembler::lessUnsigned, Assembler::pn, Bad);
   570   ba_short(OK);
   572   bind(Bad);
   573   stop("on return to interpreted call, restored SP is corrupted");
   575   bind(OK);
   576 }
   579 void InterpreterMacroAssembler::verify_esp(Register Resp) {
   580   // about to read or write Resp[0]
   581   // make sure it is not in the monitors or the register save area
   582   Label OK1, OK2;
   584   cmp(Resp, Lmonitors);
   585   brx(Assembler::lessUnsigned, true, Assembler::pt, OK1);
   586   delayed()->sub(Resp, frame::memory_parameter_word_sp_offset * wordSize, Resp);
   587   stop("too many pops:  Lesp points into monitor area");
   588   bind(OK1);
   589 #ifdef _LP64
   590   sub(Resp, STACK_BIAS, Resp);
   591 #endif
   592   cmp(Resp, SP);
   593   brx(Assembler::greaterEqualUnsigned, false, Assembler::pt, OK2);
   594   delayed()->add(Resp, STACK_BIAS + frame::memory_parameter_word_sp_offset * wordSize, Resp);
   595   stop("too many pushes:  Lesp points into register window");
   596   bind(OK2);
   597 }
   598 #endif // ASSERT
   600 // Load compiled (i2c) or interpreter entry when calling from interpreted and
   601 // do the call. Centralized so that all interpreter calls will do the same actions.
   602 // If jvmti single stepping is on for a thread we must not call compiled code.
   603 void InterpreterMacroAssembler::call_from_interpreter(Register target, Register scratch, Register Rret) {
   605   // Assume we want to go compiled if available
   607   ld_ptr(G5_method, in_bytes(Method::from_interpreted_offset()), target);
   609   if (JvmtiExport::can_post_interpreter_events()) {
   610     // JVMTI events, such as single-stepping, are implemented partly by avoiding running
   611     // compiled code in threads for which the event is enabled.  Check here for
   612     // interp_only_mode if these events CAN be enabled.
   613     verify_thread();
   614     Label skip_compiled_code;
   616     const Address interp_only(G2_thread, JavaThread::interp_only_mode_offset());
   617     ld(interp_only, scratch);
   618     cmp_zero_and_br(Assembler::notZero, scratch, skip_compiled_code, true, Assembler::pn);
   619     delayed()->ld_ptr(G5_method, in_bytes(Method::interpreter_entry_offset()), target);
   620     bind(skip_compiled_code);
   621   }
   623   // the i2c_adapters need Method* in G5_method (right? %%%)
   624   // do the call
   625 #ifdef ASSERT
   626   {
   627     Label ok;
   628     br_notnull_short(target, Assembler::pt, ok);
   629     stop("null entry point");
   630     bind(ok);
   631   }
   632 #endif // ASSERT
   634   // Adjust Rret first so Llast_SP can be same as Rret
   635   add(Rret, -frame::pc_return_offset, O7);
   636   add(Lesp, BytesPerWord, Gargs); // setup parameter pointer
   637   // Record SP so we can remove any stack space allocated by adapter transition
   638   jmp(target, 0);
   639   delayed()->mov(SP, Llast_SP);
   640 }
   642 void InterpreterMacroAssembler::if_cmp(Condition cc, bool ptr_compare) {
   643   assert_not_delayed();
   645   Label not_taken;
   646   if (ptr_compare) brx(cc, false, Assembler::pn, not_taken);
   647   else             br (cc, false, Assembler::pn, not_taken);
   648   delayed()->nop();
   650   TemplateTable::branch(false,false);
   652   bind(not_taken);
   654   profile_not_taken_branch(G3_scratch);
   655 }
   658 void InterpreterMacroAssembler::get_2_byte_integer_at_bcp(
   659                                   int         bcp_offset,
   660                                   Register    Rtmp,
   661                                   Register    Rdst,
   662                                   signedOrNot is_signed,
   663                                   setCCOrNot  should_set_CC ) {
   664   assert(Rtmp != Rdst, "need separate temp register");
   665   assert_not_delayed();
   666   switch (is_signed) {
   667    default: ShouldNotReachHere();
   669    case   Signed:  ldsb( Lbcp, bcp_offset, Rdst  );  break; // high byte
   670    case Unsigned:  ldub( Lbcp, bcp_offset, Rdst  );  break; // high byte
   671   }
   672   ldub( Lbcp, bcp_offset + 1, Rtmp ); // low byte
   673   sll( Rdst, BitsPerByte, Rdst);
   674   switch (should_set_CC ) {
   675    default: ShouldNotReachHere();
   677    case      set_CC:  orcc( Rdst, Rtmp, Rdst ); break;
   678    case dont_set_CC:  or3(  Rdst, Rtmp, Rdst ); break;
   679   }
   680 }
   683 void InterpreterMacroAssembler::get_4_byte_integer_at_bcp(
   684                                   int        bcp_offset,
   685                                   Register   Rtmp,
   686                                   Register   Rdst,
   687                                   setCCOrNot should_set_CC ) {
   688   assert(Rtmp != Rdst, "need separate temp register");
   689   assert_not_delayed();
   690   add( Lbcp, bcp_offset, Rtmp);
   691   andcc( Rtmp, 3, G0);
   692   Label aligned;
   693   switch (should_set_CC ) {
   694    default: ShouldNotReachHere();
   696    case      set_CC: break;
   697    case dont_set_CC: break;
   698   }
   700   br(Assembler::zero, true, Assembler::pn, aligned);
   701 #ifdef _LP64
   702   delayed()->ldsw(Rtmp, 0, Rdst);
   703 #else
   704   delayed()->ld(Rtmp, 0, Rdst);
   705 #endif
   707   ldub(Lbcp, bcp_offset + 3, Rdst);
   708   ldub(Lbcp, bcp_offset + 2, Rtmp);  sll(Rtmp,  8, Rtmp);  or3(Rtmp, Rdst, Rdst);
   709   ldub(Lbcp, bcp_offset + 1, Rtmp);  sll(Rtmp, 16, Rtmp);  or3(Rtmp, Rdst, Rdst);
   710 #ifdef _LP64
   711   ldsb(Lbcp, bcp_offset + 0, Rtmp);  sll(Rtmp, 24, Rtmp);
   712 #else
   713   // Unsigned load is faster than signed on some implementations
   714   ldub(Lbcp, bcp_offset + 0, Rtmp);  sll(Rtmp, 24, Rtmp);
   715 #endif
   716   or3(Rtmp, Rdst, Rdst );
   718   bind(aligned);
   719   if (should_set_CC == set_CC) tst(Rdst);
   720 }
   722 void InterpreterMacroAssembler::get_cache_index_at_bcp(Register temp, Register index,
   723                                                        int bcp_offset, size_t index_size) {
   724   assert(bcp_offset > 0, "bcp is still pointing to start of bytecode");
   725   if (index_size == sizeof(u2)) {
   726     get_2_byte_integer_at_bcp(bcp_offset, temp, index, Unsigned);
   727   } else if (index_size == sizeof(u4)) {
   728     assert(EnableInvokeDynamic, "giant index used only for JSR 292");
   729     get_4_byte_integer_at_bcp(bcp_offset, temp, index);
   730     assert(ConstantPool::decode_invokedynamic_index(~123) == 123, "else change next line");
   731     xor3(index, -1, index);  // convert to plain index
   732   } else if (index_size == sizeof(u1)) {
   733     ldub(Lbcp, bcp_offset, index);
   734   } else {
   735     ShouldNotReachHere();
   736   }
   737 }
   740 void InterpreterMacroAssembler::get_cache_and_index_at_bcp(Register cache, Register tmp,
   741                                                            int bcp_offset, size_t index_size) {
   742   assert(bcp_offset > 0, "bcp is still pointing to start of bytecode");
   743   assert_different_registers(cache, tmp);
   744   assert_not_delayed();
   745   get_cache_index_at_bcp(cache, tmp, bcp_offset, index_size);
   746   // convert from field index to ConstantPoolCacheEntry index and from
   747   // word index to byte offset
   748   sll(tmp, exact_log2(in_words(ConstantPoolCacheEntry::size()) * BytesPerWord), tmp);
   749   add(LcpoolCache, tmp, cache);
   750 }
   753 void InterpreterMacroAssembler::get_cache_and_index_and_bytecode_at_bcp(Register cache,
   754                                                                         Register temp,
   755                                                                         Register bytecode,
   756                                                                         int byte_no,
   757                                                                         int bcp_offset,
   758                                                                         size_t index_size) {
   759   get_cache_and_index_at_bcp(cache, temp, bcp_offset, index_size);
   760   ld_ptr(cache, ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::indices_offset(), bytecode);
   761   const int shift_count = (1 + byte_no) * BitsPerByte;
   762   assert((byte_no == TemplateTable::f1_byte && shift_count == ConstantPoolCacheEntry::bytecode_1_shift) ||
   763          (byte_no == TemplateTable::f2_byte && shift_count == ConstantPoolCacheEntry::bytecode_2_shift),
   764          "correct shift count");
   765   srl(bytecode, shift_count, bytecode);
   766   assert(ConstantPoolCacheEntry::bytecode_1_mask == ConstantPoolCacheEntry::bytecode_2_mask, "common mask");
   767   and3(bytecode, ConstantPoolCacheEntry::bytecode_1_mask, bytecode);
   768 }
   771 void InterpreterMacroAssembler::get_cache_entry_pointer_at_bcp(Register cache, Register tmp,
   772                                                                int bcp_offset, size_t index_size) {
   773   assert(bcp_offset > 0, "bcp is still pointing to start of bytecode");
   774   assert_different_registers(cache, tmp);
   775   assert_not_delayed();
   776   if (index_size == sizeof(u2)) {
   777     get_2_byte_integer_at_bcp(bcp_offset, cache, tmp, Unsigned);
   778   } else {
   779     ShouldNotReachHere();  // other sizes not supported here
   780   }
   781               // convert from field index to ConstantPoolCacheEntry index
   782               // and from word index to byte offset
   783   sll(tmp, exact_log2(in_words(ConstantPoolCacheEntry::size()) * BytesPerWord), tmp);
   784               // skip past the header
   785   add(tmp, in_bytes(ConstantPoolCache::base_offset()), tmp);
   786               // construct pointer to cache entry
   787   add(LcpoolCache, tmp, cache);
   788 }
   791 // Load object from cpool->resolved_references(index)
   792 void InterpreterMacroAssembler::load_resolved_reference_at_index(
   793                                            Register result, Register index) {
   794   assert_different_registers(result, index);
   795   assert_not_delayed();
   796   // convert from field index to resolved_references() index and from
   797   // word index to byte offset. Since this is a java object, it can be compressed
   798   Register tmp = index;  // reuse
   799   sll(index, LogBytesPerHeapOop, tmp);
   800   get_constant_pool(result);
   801   // load pointer for resolved_references[] objArray
   802   ld_ptr(result, ConstantPool::resolved_references_offset_in_bytes(), result);
   803   // JNIHandles::resolve(result)
   804   ld_ptr(result, 0, result);
   805   // Add in the index
   806   add(result, tmp, result);
   807   load_heap_oop(result, arrayOopDesc::base_offset_in_bytes(T_OBJECT), result);
   808 }
   811 // Generate a subtype check: branch to ok_is_subtype if sub_klass is
   812 // a subtype of super_klass.  Blows registers Rsuper_klass, Rsub_klass, tmp1, tmp2.
   813 void InterpreterMacroAssembler::gen_subtype_check(Register Rsub_klass,
   814                                                   Register Rsuper_klass,
   815                                                   Register Rtmp1,
   816                                                   Register Rtmp2,
   817                                                   Register Rtmp3,
   818                                                   Label &ok_is_subtype ) {
   819   Label not_subtype;
   821   // Profile the not-null value's klass.
   822   profile_typecheck(Rsub_klass, Rtmp1);
   824   check_klass_subtype_fast_path(Rsub_klass, Rsuper_klass,
   825                                 Rtmp1, Rtmp2,
   826                                 &ok_is_subtype, &not_subtype, NULL);
   828   check_klass_subtype_slow_path(Rsub_klass, Rsuper_klass,
   829                                 Rtmp1, Rtmp2, Rtmp3, /*hack:*/ noreg,
   830                                 &ok_is_subtype, NULL);
   832   bind(not_subtype);
   833   profile_typecheck_failed(Rtmp1);
   834 }
   836 // Separate these two to allow for delay slot in middle
   837 // These are used to do a test and full jump to exception-throwing code.
   839 // %%%%% Could possibly reoptimize this by testing to see if could use
   840 // a single conditional branch (i.e. if span is small enough.
   841 // If you go that route, than get rid of the split and give up
   842 // on the delay-slot hack.
   844 void InterpreterMacroAssembler::throw_if_not_1_icc( Condition ok_condition,
   845                                                     Label&    ok ) {
   846   assert_not_delayed();
   847   br(ok_condition, true, pt, ok);
   848   // DELAY SLOT
   849 }
   851 void InterpreterMacroAssembler::throw_if_not_1_xcc( Condition ok_condition,
   852                                                     Label&    ok ) {
   853   assert_not_delayed();
   854   bp( ok_condition, true, Assembler::xcc, pt, ok);
   855   // DELAY SLOT
   856 }
   858 void InterpreterMacroAssembler::throw_if_not_1_x( Condition ok_condition,
   859                                                   Label&    ok ) {
   860   assert_not_delayed();
   861   brx(ok_condition, true, pt, ok);
   862   // DELAY SLOT
   863 }
   865 void InterpreterMacroAssembler::throw_if_not_2( address  throw_entry_point,
   866                                                 Register Rscratch,
   867                                                 Label&   ok ) {
   868   assert(throw_entry_point != NULL, "entry point must be generated by now");
   869   AddressLiteral dest(throw_entry_point);
   870   jump_to(dest, Rscratch);
   871   delayed()->nop();
   872   bind(ok);
   873 }
   876 // And if you cannot use the delay slot, here is a shorthand:
   878 void InterpreterMacroAssembler::throw_if_not_icc( Condition ok_condition,
   879                                                   address   throw_entry_point,
   880                                                   Register  Rscratch ) {
   881   Label ok;
   882   if (ok_condition != never) {
   883     throw_if_not_1_icc( ok_condition, ok);
   884     delayed()->nop();
   885   }
   886   throw_if_not_2( throw_entry_point, Rscratch, ok);
   887 }
   888 void InterpreterMacroAssembler::throw_if_not_xcc( Condition ok_condition,
   889                                                   address   throw_entry_point,
   890                                                   Register  Rscratch ) {
   891   Label ok;
   892   if (ok_condition != never) {
   893     throw_if_not_1_xcc( ok_condition, ok);
   894     delayed()->nop();
   895   }
   896   throw_if_not_2( throw_entry_point, Rscratch, ok);
   897 }
   898 void InterpreterMacroAssembler::throw_if_not_x( Condition ok_condition,
   899                                                 address   throw_entry_point,
   900                                                 Register  Rscratch ) {
   901   Label ok;
   902   if (ok_condition != never) {
   903     throw_if_not_1_x( ok_condition, ok);
   904     delayed()->nop();
   905   }
   906   throw_if_not_2( throw_entry_point, Rscratch, ok);
   907 }
   909 // Check that index is in range for array, then shift index by index_shift, and put arrayOop + shifted_index into res
   910 // Note: res is still shy of address by array offset into object.
   912 void InterpreterMacroAssembler::index_check_without_pop(Register array, Register index, int index_shift, Register tmp, Register res) {
   913   assert_not_delayed();
   915   verify_oop(array);
   916 #ifdef _LP64
   917   // sign extend since tos (index) can be a 32bit value
   918   sra(index, G0, index);
   919 #endif // _LP64
   921   // check array
   922   Label ptr_ok;
   923   tst(array);
   924   throw_if_not_1_x( notZero, ptr_ok );
   925   delayed()->ld( array, arrayOopDesc::length_offset_in_bytes(), tmp ); // check index
   926   throw_if_not_2( Interpreter::_throw_NullPointerException_entry, G3_scratch, ptr_ok);
   928   Label index_ok;
   929   cmp(index, tmp);
   930   throw_if_not_1_icc( lessUnsigned, index_ok );
   931   if (index_shift > 0)  delayed()->sll(index, index_shift, index);
   932   else                  delayed()->add(array, index, res); // addr - const offset in index
   933   // convention: move aberrant index into G3_scratch for exception message
   934   mov(index, G3_scratch);
   935   throw_if_not_2( Interpreter::_throw_ArrayIndexOutOfBoundsException_entry, G4_scratch, index_ok);
   937   // add offset if didn't do it in delay slot
   938   if (index_shift > 0)   add(array, index, res); // addr - const offset in index
   939 }
   942 void InterpreterMacroAssembler::index_check(Register array, Register index, int index_shift, Register tmp, Register res) {
   943   assert_not_delayed();
   945   // pop array
   946   pop_ptr(array);
   948   // check array
   949   index_check_without_pop(array, index, index_shift, tmp, res);
   950 }
   953 void InterpreterMacroAssembler::get_const(Register Rdst) {
   954   ld_ptr(Lmethod, in_bytes(Method::const_offset()), Rdst);
   955 }
   958 void InterpreterMacroAssembler::get_constant_pool(Register Rdst) {
   959   get_const(Rdst);
   960   ld_ptr(Rdst, in_bytes(ConstMethod::constants_offset()), Rdst);
   961 }
   964 void InterpreterMacroAssembler::get_constant_pool_cache(Register Rdst) {
   965   get_constant_pool(Rdst);
   966   ld_ptr(Rdst, ConstantPool::cache_offset_in_bytes(), Rdst);
   967 }
   970 void InterpreterMacroAssembler::get_cpool_and_tags(Register Rcpool, Register Rtags) {
   971   get_constant_pool(Rcpool);
   972   ld_ptr(Rcpool, ConstantPool::tags_offset_in_bytes(), Rtags);
   973 }
   976 // unlock if synchronized method
   977 //
   978 // Unlock the receiver if this is a synchronized method.
   979 // Unlock any Java monitors from syncronized blocks.
   980 //
   981 // If there are locked Java monitors
   982 //    If throw_monitor_exception
   983 //       throws IllegalMonitorStateException
   984 //    Else if install_monitor_exception
   985 //       installs IllegalMonitorStateException
   986 //    Else
   987 //       no error processing
   988 void InterpreterMacroAssembler::unlock_if_synchronized_method(TosState state,
   989                                                               bool throw_monitor_exception,
   990                                                               bool install_monitor_exception) {
   991   Label unlocked, unlock, no_unlock;
   993   // get the value of _do_not_unlock_if_synchronized into G1_scratch
   994   const Address do_not_unlock_if_synchronized(G2_thread,
   995     JavaThread::do_not_unlock_if_synchronized_offset());
   996   ldbool(do_not_unlock_if_synchronized, G1_scratch);
   997   stbool(G0, do_not_unlock_if_synchronized); // reset the flag
   999   // check if synchronized method
  1000   const Address access_flags(Lmethod, Method::access_flags_offset());
  1001   interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
  1002   push(state); // save tos
  1003   ld(access_flags, G3_scratch); // Load access flags.
  1004   btst(JVM_ACC_SYNCHRONIZED, G3_scratch);
  1005   br(zero, false, pt, unlocked);
  1006   delayed()->nop();
  1008   // Don't unlock anything if the _do_not_unlock_if_synchronized flag
  1009   // is set.
  1010   cmp_zero_and_br(Assembler::notZero, G1_scratch, no_unlock);
  1011   delayed()->nop();
  1013   // BasicObjectLock will be first in list, since this is a synchronized method. However, need
  1014   // to check that the object has not been unlocked by an explicit monitorexit bytecode.
  1016   //Intel: if (throw_monitor_exception) ... else ...
  1017   // Entry already unlocked, need to throw exception
  1018   //...
  1020   // pass top-most monitor elem
  1021   add( top_most_monitor(), O1 );
  1023   ld_ptr(O1, BasicObjectLock::obj_offset_in_bytes(), G3_scratch);
  1024   br_notnull_short(G3_scratch, pt, unlock);
  1026   if (throw_monitor_exception) {
  1027     // Entry already unlocked need to throw an exception
  1028     MacroAssembler::call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception));
  1029     should_not_reach_here();
  1030   } else {
  1031     // Monitor already unlocked during a stack unroll.
  1032     // If requested, install an illegal_monitor_state_exception.
  1033     // Continue with stack unrolling.
  1034     if (install_monitor_exception) {
  1035       MacroAssembler::call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::new_illegal_monitor_state_exception));
  1037     ba_short(unlocked);
  1040   bind(unlock);
  1042   unlock_object(O1);
  1044   bind(unlocked);
  1046   // I0, I1: Might contain return value
  1048   // Check that all monitors are unlocked
  1049   { Label loop, exception, entry, restart;
  1051     Register Rmptr   = O0;
  1052     Register Rtemp   = O1;
  1053     Register Rlimit  = Lmonitors;
  1054     const jint delta = frame::interpreter_frame_monitor_size() * wordSize;
  1055     assert( (delta & LongAlignmentMask) == 0,
  1056             "sizeof BasicObjectLock must be even number of doublewords");
  1058     #ifdef ASSERT
  1059     add(top_most_monitor(), Rmptr, delta);
  1060     { Label L;
  1061       // ensure that Rmptr starts out above (or at) Rlimit
  1062       cmp_and_brx_short(Rmptr, Rlimit, Assembler::greaterEqualUnsigned, pn, L);
  1063       stop("monitor stack has negative size");
  1064       bind(L);
  1066     #endif
  1067     bind(restart);
  1068     ba(entry);
  1069     delayed()->
  1070     add(top_most_monitor(), Rmptr, delta);      // points to current entry, starting with bottom-most entry
  1072     // Entry is still locked, need to throw exception
  1073     bind(exception);
  1074     if (throw_monitor_exception) {
  1075       MacroAssembler::call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception));
  1076       should_not_reach_here();
  1077     } else {
  1078       // Stack unrolling. Unlock object and if requested, install illegal_monitor_exception.
  1079       // Unlock does not block, so don't have to worry about the frame
  1080       unlock_object(Rmptr);
  1081       if (install_monitor_exception) {
  1082         MacroAssembler::call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::new_illegal_monitor_state_exception));
  1084       ba_short(restart);
  1087     bind(loop);
  1088     cmp(Rtemp, G0);                             // check if current entry is used
  1089     brx(Assembler::notEqual, false, pn, exception);
  1090     delayed()->
  1091     dec(Rmptr, delta);                          // otherwise advance to next entry
  1092     #ifdef ASSERT
  1093     { Label L;
  1094       // ensure that Rmptr has not somehow stepped below Rlimit
  1095       cmp_and_brx_short(Rmptr, Rlimit, Assembler::greaterEqualUnsigned, pn, L);
  1096       stop("ran off the end of the monitor stack");
  1097       bind(L);
  1099     #endif
  1100     bind(entry);
  1101     cmp(Rmptr, Rlimit);                         // check if bottom reached
  1102     brx(Assembler::notEqual, true, pn, loop);   // if not at bottom then check this entry
  1103     delayed()->
  1104     ld_ptr(Rmptr, BasicObjectLock::obj_offset_in_bytes() - delta, Rtemp);
  1107   bind(no_unlock);
  1108   pop(state);
  1109   interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
  1113 // remove activation
  1114 //
  1115 // Unlock the receiver if this is a synchronized method.
  1116 // Unlock any Java monitors from syncronized blocks.
  1117 // Remove the activation from the stack.
  1118 //
  1119 // If there are locked Java monitors
  1120 //    If throw_monitor_exception
  1121 //       throws IllegalMonitorStateException
  1122 //    Else if install_monitor_exception
  1123 //       installs IllegalMonitorStateException
  1124 //    Else
  1125 //       no error processing
  1126 void InterpreterMacroAssembler::remove_activation(TosState state,
  1127                                                   bool throw_monitor_exception,
  1128                                                   bool install_monitor_exception) {
  1130   unlock_if_synchronized_method(state, throw_monitor_exception, install_monitor_exception);
  1132   // save result (push state before jvmti call and pop it afterwards) and notify jvmti
  1133   notify_method_exit(false, state, NotifyJVMTI);
  1135   interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
  1136   verify_thread();
  1138   // return tos
  1139   assert(Otos_l1 == Otos_i, "adjust code below");
  1140   switch (state) {
  1141 #ifdef _LP64
  1142   case ltos: mov(Otos_l, Otos_l->after_save()); break; // O0 -> I0
  1143 #else
  1144   case ltos: mov(Otos_l2, Otos_l2->after_save()); // fall through  // O1 -> I1
  1145 #endif
  1146   case btos:                                      // fall through
  1147   case ctos:
  1148   case stos:                                      // fall through
  1149   case atos:                                      // fall through
  1150   case itos: mov(Otos_l1, Otos_l1->after_save());    break;        // O0 -> I0
  1151   case ftos:                                      // fall through
  1152   case dtos:                                      // fall through
  1153   case vtos: /* nothing to do */                     break;
  1154   default  : ShouldNotReachHere();
  1157 #if defined(COMPILER2) && !defined(_LP64)
  1158   if (state == ltos) {
  1159     // C2 expects long results in G1 we can't tell if we're returning to interpreted
  1160     // or compiled so just be safe use G1 and O0/O1
  1162     // Shift bits into high (msb) of G1
  1163     sllx(Otos_l1->after_save(), 32, G1);
  1164     // Zero extend low bits
  1165     srl (Otos_l2->after_save(), 0, Otos_l2->after_save());
  1166     or3 (Otos_l2->after_save(), G1, G1);
  1168 #endif /* COMPILER2 */
  1171 #endif /* CC_INTERP */
  1174 // Lock object
  1175 //
  1176 // Argument - lock_reg points to the BasicObjectLock to be used for locking,
  1177 //            it must be initialized with the object to lock
  1178 void InterpreterMacroAssembler::lock_object(Register lock_reg, Register Object) {
  1179   if (UseHeavyMonitors) {
  1180     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), lock_reg);
  1182   else {
  1183     Register obj_reg = Object;
  1184     Register mark_reg = G4_scratch;
  1185     Register temp_reg = G1_scratch;
  1186     Address  lock_addr(lock_reg, BasicObjectLock::lock_offset_in_bytes());
  1187     Address  mark_addr(obj_reg, oopDesc::mark_offset_in_bytes());
  1188     Label    done;
  1190     Label slow_case;
  1192     assert_different_registers(lock_reg, obj_reg, mark_reg, temp_reg);
  1194     // load markOop from object into mark_reg
  1195     ld_ptr(mark_addr, mark_reg);
  1197     if (UseBiasedLocking) {
  1198       biased_locking_enter(obj_reg, mark_reg, temp_reg, done, &slow_case);
  1201     // get the address of basicLock on stack that will be stored in the object
  1202     // we need a temporary register here as we do not want to clobber lock_reg
  1203     // (cas clobbers the destination register)
  1204     mov(lock_reg, temp_reg);
  1205     // set mark reg to be (markOop of object | UNLOCK_VALUE)
  1206     or3(mark_reg, markOopDesc::unlocked_value, mark_reg);
  1207     // initialize the box  (Must happen before we update the object mark!)
  1208     st_ptr(mark_reg, lock_addr, BasicLock::displaced_header_offset_in_bytes());
  1209     // compare and exchange object_addr, markOop | 1, stack address of basicLock
  1210     assert(mark_addr.disp() == 0, "cas must take a zero displacement");
  1211     casx_under_lock(mark_addr.base(), mark_reg, temp_reg,
  1212       (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr());
  1214     // if the compare and exchange succeeded we are done (we saw an unlocked object)
  1215     cmp_and_brx_short(mark_reg, temp_reg, Assembler::equal, Assembler::pt, done);
  1217     // We did not see an unlocked object so try the fast recursive case
  1219     // Check if owner is self by comparing the value in the markOop of object
  1220     // with the stack pointer
  1221     sub(temp_reg, SP, temp_reg);
  1222 #ifdef _LP64
  1223     sub(temp_reg, STACK_BIAS, temp_reg);
  1224 #endif
  1225     assert(os::vm_page_size() > 0xfff, "page size too small - change the constant");
  1227     // Composite "andcc" test:
  1228     // (a) %sp -vs- markword proximity check, and,
  1229     // (b) verify mark word LSBs == 0 (Stack-locked).
  1230     //
  1231     // FFFFF003/FFFFFFFFFFFF003 is (markOopDesc::lock_mask_in_place | -os::vm_page_size())
  1232     // Note that the page size used for %sp proximity testing is arbitrary and is
  1233     // unrelated to the actual MMU page size.  We use a 'logical' page size of
  1234     // 4096 bytes.   F..FFF003 is designed to fit conveniently in the SIMM13 immediate
  1235     // field of the andcc instruction.
  1236     andcc (temp_reg, 0xFFFFF003, G0) ;
  1238     // if condition is true we are done and hence we can store 0 in the displaced
  1239     // header indicating it is a recursive lock and be done
  1240     brx(Assembler::zero, true, Assembler::pt, done);
  1241     delayed()->st_ptr(G0, lock_addr, BasicLock::displaced_header_offset_in_bytes());
  1243     // none of the above fast optimizations worked so we have to get into the
  1244     // slow case of monitor enter
  1245     bind(slow_case);
  1246     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), lock_reg);
  1248     bind(done);
  1252 // Unlocks an object. Used in monitorexit bytecode and remove_activation.
  1253 //
  1254 // Argument - lock_reg points to the BasicObjectLock for lock
  1255 // Throw IllegalMonitorException if object is not locked by current thread
  1256 void InterpreterMacroAssembler::unlock_object(Register lock_reg) {
  1257   if (UseHeavyMonitors) {
  1258     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg);
  1259   } else {
  1260     Register obj_reg = G3_scratch;
  1261     Register mark_reg = G4_scratch;
  1262     Register displaced_header_reg = G1_scratch;
  1263     Address  lockobj_addr(lock_reg, BasicObjectLock::obj_offset_in_bytes());
  1264     Address  mark_addr(obj_reg, oopDesc::mark_offset_in_bytes());
  1265     Label    done;
  1267     if (UseBiasedLocking) {
  1268       // load the object out of the BasicObjectLock
  1269       ld_ptr(lockobj_addr, obj_reg);
  1270       biased_locking_exit(mark_addr, mark_reg, done, true);
  1271       st_ptr(G0, lockobj_addr);  // free entry
  1274     // Test first if we are in the fast recursive case
  1275     Address lock_addr(lock_reg, BasicObjectLock::lock_offset_in_bytes() + BasicLock::displaced_header_offset_in_bytes());
  1276     ld_ptr(lock_addr, displaced_header_reg);
  1277     br_null(displaced_header_reg, true, Assembler::pn, done);
  1278     delayed()->st_ptr(G0, lockobj_addr);  // free entry
  1280     // See if it is still a light weight lock, if so we just unlock
  1281     // the object and we are done
  1283     if (!UseBiasedLocking) {
  1284       // load the object out of the BasicObjectLock
  1285       ld_ptr(lockobj_addr, obj_reg);
  1288     // we have the displaced header in displaced_header_reg
  1289     // we expect to see the stack address of the basicLock in case the
  1290     // lock is still a light weight lock (lock_reg)
  1291     assert(mark_addr.disp() == 0, "cas must take a zero displacement");
  1292     casx_under_lock(mark_addr.base(), lock_reg, displaced_header_reg,
  1293       (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr());
  1294     cmp(lock_reg, displaced_header_reg);
  1295     brx(Assembler::equal, true, Assembler::pn, done);
  1296     delayed()->st_ptr(G0, lockobj_addr);  // free entry
  1298     // The lock has been converted into a heavy lock and hence
  1299     // we need to get into the slow case
  1301     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg);
  1303     bind(done);
  1307 #ifndef CC_INTERP
  1309 // Get the method data pointer from the Method* and set the
  1310 // specified register to its value.
  1312 void InterpreterMacroAssembler::set_method_data_pointer() {
  1313   assert(ProfileInterpreter, "must be profiling interpreter");
  1314   Label get_continue;
  1316   ld_ptr(Lmethod, in_bytes(Method::method_data_offset()), ImethodDataPtr);
  1317   test_method_data_pointer(get_continue);
  1318   add(ImethodDataPtr, in_bytes(MethodData::data_offset()), ImethodDataPtr);
  1319   bind(get_continue);
  1322 // Set the method data pointer for the current bcp.
  1324 void InterpreterMacroAssembler::set_method_data_pointer_for_bcp() {
  1325   assert(ProfileInterpreter, "must be profiling interpreter");
  1326   Label zero_continue;
  1328   // Test MDO to avoid the call if it is NULL.
  1329   ld_ptr(Lmethod, in_bytes(Method::method_data_offset()), ImethodDataPtr);
  1330   test_method_data_pointer(zero_continue);
  1331   call_VM_leaf(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::bcp_to_di), Lmethod, Lbcp);
  1332   add(ImethodDataPtr, in_bytes(MethodData::data_offset()), ImethodDataPtr);
  1333   add(ImethodDataPtr, O0, ImethodDataPtr);
  1334   bind(zero_continue);
  1337 // Test ImethodDataPtr.  If it is null, continue at the specified label
  1339 void InterpreterMacroAssembler::test_method_data_pointer(Label& zero_continue) {
  1340   assert(ProfileInterpreter, "must be profiling interpreter");
  1341   br_null_short(ImethodDataPtr, Assembler::pn, zero_continue);
  1344 void InterpreterMacroAssembler::verify_method_data_pointer() {
  1345   assert(ProfileInterpreter, "must be profiling interpreter");
  1346 #ifdef ASSERT
  1347   Label verify_continue;
  1348   test_method_data_pointer(verify_continue);
  1350   // If the mdp is valid, it will point to a DataLayout header which is
  1351   // consistent with the bcp.  The converse is highly probable also.
  1352   lduh(ImethodDataPtr, in_bytes(DataLayout::bci_offset()), G3_scratch);
  1353   ld_ptr(Lmethod, Method::const_offset(), O5);
  1354   add(G3_scratch, in_bytes(ConstMethod::codes_offset()), G3_scratch);
  1355   add(G3_scratch, O5, G3_scratch);
  1356   cmp(Lbcp, G3_scratch);
  1357   brx(Assembler::equal, false, Assembler::pt, verify_continue);
  1359   Register temp_reg = O5;
  1360   delayed()->mov(ImethodDataPtr, temp_reg);
  1361   // %%% should use call_VM_leaf here?
  1362   //call_VM_leaf(noreg, ..., Lmethod, Lbcp, ImethodDataPtr);
  1363   save_frame_and_mov(sizeof(jdouble) / wordSize, Lmethod, O0, Lbcp, O1);
  1364   Address d_save(FP, -sizeof(jdouble) + STACK_BIAS);
  1365   stf(FloatRegisterImpl::D, Ftos_d, d_save);
  1366   mov(temp_reg->after_save(), O2);
  1367   save_thread(L7_thread_cache);
  1368   call(CAST_FROM_FN_PTR(address, InterpreterRuntime::verify_mdp), relocInfo::none);
  1369   delayed()->nop();
  1370   restore_thread(L7_thread_cache);
  1371   ldf(FloatRegisterImpl::D, d_save, Ftos_d);
  1372   restore();
  1373   bind(verify_continue);
  1374 #endif // ASSERT
  1377 void InterpreterMacroAssembler::test_invocation_counter_for_mdp(Register invocation_count,
  1378                                                                 Register Rtmp,
  1379                                                                 Label &profile_continue) {
  1380   assert(ProfileInterpreter, "must be profiling interpreter");
  1381   // Control will flow to "profile_continue" if the counter is less than the
  1382   // limit or if we call profile_method()
  1384   Label done;
  1386   // if no method data exists, and the counter is high enough, make one
  1387   br_notnull_short(ImethodDataPtr, Assembler::pn, done);
  1389   // Test to see if we should create a method data oop
  1390   AddressLiteral profile_limit((address) &InvocationCounter::InterpreterProfileLimit);
  1391   sethi(profile_limit, Rtmp);
  1392   ld(Rtmp, profile_limit.low10(), Rtmp);
  1393   cmp(invocation_count, Rtmp);
  1394   // Use long branches because call_VM() code and following code generated by
  1395   // test_backedge_count_for_osr() is large in debug VM.
  1396   br(Assembler::lessUnsigned, false, Assembler::pn, profile_continue);
  1397   delayed()->nop();
  1399   // Build it now.
  1400   call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::profile_method));
  1401   set_method_data_pointer_for_bcp();
  1402   ba(profile_continue);
  1403   delayed()->nop();
  1404   bind(done);
  1407 // Store a value at some constant offset from the method data pointer.
  1409 void InterpreterMacroAssembler::set_mdp_data_at(int constant, Register value) {
  1410   assert(ProfileInterpreter, "must be profiling interpreter");
  1411   st_ptr(value, ImethodDataPtr, constant);
  1414 void InterpreterMacroAssembler::increment_mdp_data_at(Address counter,
  1415                                                       Register bumped_count,
  1416                                                       bool decrement) {
  1417   assert(ProfileInterpreter, "must be profiling interpreter");
  1419   // Load the counter.
  1420   ld_ptr(counter, bumped_count);
  1422   if (decrement) {
  1423     // Decrement the register.  Set condition codes.
  1424     subcc(bumped_count, DataLayout::counter_increment, bumped_count);
  1426     // If the decrement causes the counter to overflow, stay negative
  1427     Label L;
  1428     brx(Assembler::negative, true, Assembler::pn, L);
  1430     // Store the decremented counter, if it is still negative.
  1431     delayed()->st_ptr(bumped_count, counter);
  1432     bind(L);
  1433   } else {
  1434     // Increment the register.  Set carry flag.
  1435     addcc(bumped_count, DataLayout::counter_increment, bumped_count);
  1437     // If the increment causes the counter to overflow, pull back by 1.
  1438     assert(DataLayout::counter_increment == 1, "subc works");
  1439     subc(bumped_count, G0, bumped_count);
  1441     // Store the incremented counter.
  1442     st_ptr(bumped_count, counter);
  1446 // Increment the value at some constant offset from the method data pointer.
  1448 void InterpreterMacroAssembler::increment_mdp_data_at(int constant,
  1449                                                       Register bumped_count,
  1450                                                       bool decrement) {
  1451   // Locate the counter at a fixed offset from the mdp:
  1452   Address counter(ImethodDataPtr, constant);
  1453   increment_mdp_data_at(counter, bumped_count, decrement);
  1456 // Increment the value at some non-fixed (reg + constant) offset from
  1457 // the method data pointer.
  1459 void InterpreterMacroAssembler::increment_mdp_data_at(Register reg,
  1460                                                       int constant,
  1461                                                       Register bumped_count,
  1462                                                       Register scratch2,
  1463                                                       bool decrement) {
  1464   // Add the constant to reg to get the offset.
  1465   add(ImethodDataPtr, reg, scratch2);
  1466   Address counter(scratch2, constant);
  1467   increment_mdp_data_at(counter, bumped_count, decrement);
  1470 // Set a flag value at the current method data pointer position.
  1471 // Updates a single byte of the header, to avoid races with other header bits.
  1473 void InterpreterMacroAssembler::set_mdp_flag_at(int flag_constant,
  1474                                                 Register scratch) {
  1475   assert(ProfileInterpreter, "must be profiling interpreter");
  1476   // Load the data header
  1477   ldub(ImethodDataPtr, in_bytes(DataLayout::flags_offset()), scratch);
  1479   // Set the flag
  1480   or3(scratch, flag_constant, scratch);
  1482   // Store the modified header.
  1483   stb(scratch, ImethodDataPtr, in_bytes(DataLayout::flags_offset()));
  1486 // Test the location at some offset from the method data pointer.
  1487 // If it is not equal to value, branch to the not_equal_continue Label.
  1488 // Set condition codes to match the nullness of the loaded value.
  1490 void InterpreterMacroAssembler::test_mdp_data_at(int offset,
  1491                                                  Register value,
  1492                                                  Label& not_equal_continue,
  1493                                                  Register scratch) {
  1494   assert(ProfileInterpreter, "must be profiling interpreter");
  1495   ld_ptr(ImethodDataPtr, offset, scratch);
  1496   cmp(value, scratch);
  1497   brx(Assembler::notEqual, false, Assembler::pn, not_equal_continue);
  1498   delayed()->tst(scratch);
  1501 // Update the method data pointer by the displacement located at some fixed
  1502 // offset from the method data pointer.
  1504 void InterpreterMacroAssembler::update_mdp_by_offset(int offset_of_disp,
  1505                                                      Register scratch) {
  1506   assert(ProfileInterpreter, "must be profiling interpreter");
  1507   ld_ptr(ImethodDataPtr, offset_of_disp, scratch);
  1508   add(ImethodDataPtr, scratch, ImethodDataPtr);
  1511 // Update the method data pointer by the displacement located at the
  1512 // offset (reg + offset_of_disp).
  1514 void InterpreterMacroAssembler::update_mdp_by_offset(Register reg,
  1515                                                      int offset_of_disp,
  1516                                                      Register scratch) {
  1517   assert(ProfileInterpreter, "must be profiling interpreter");
  1518   add(reg, offset_of_disp, scratch);
  1519   ld_ptr(ImethodDataPtr, scratch, scratch);
  1520   add(ImethodDataPtr, scratch, ImethodDataPtr);
  1523 // Update the method data pointer by a simple constant displacement.
  1525 void InterpreterMacroAssembler::update_mdp_by_constant(int constant) {
  1526   assert(ProfileInterpreter, "must be profiling interpreter");
  1527   add(ImethodDataPtr, constant, ImethodDataPtr);
  1530 // Update the method data pointer for a _ret bytecode whose target
  1531 // was not among our cached targets.
  1533 void InterpreterMacroAssembler::update_mdp_for_ret(TosState state,
  1534                                                    Register return_bci) {
  1535   assert(ProfileInterpreter, "must be profiling interpreter");
  1536   push(state);
  1537   st_ptr(return_bci, l_tmp);  // protect return_bci, in case it is volatile
  1538   call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::update_mdp_for_ret), return_bci);
  1539   ld_ptr(l_tmp, return_bci);
  1540   pop(state);
  1543 // Count a taken branch in the bytecodes.
  1545 void InterpreterMacroAssembler::profile_taken_branch(Register scratch, Register bumped_count) {
  1546   if (ProfileInterpreter) {
  1547     Label profile_continue;
  1549     // If no method data exists, go to profile_continue.
  1550     test_method_data_pointer(profile_continue);
  1552     // We are taking a branch.  Increment the taken count.
  1553     increment_mdp_data_at(in_bytes(JumpData::taken_offset()), bumped_count);
  1555     // The method data pointer needs to be updated to reflect the new target.
  1556     update_mdp_by_offset(in_bytes(JumpData::displacement_offset()), scratch);
  1557     bind (profile_continue);
  1562 // Count a not-taken branch in the bytecodes.
  1564 void InterpreterMacroAssembler::profile_not_taken_branch(Register scratch) {
  1565   if (ProfileInterpreter) {
  1566     Label profile_continue;
  1568     // If no method data exists, go to profile_continue.
  1569     test_method_data_pointer(profile_continue);
  1571     // We are taking a branch.  Increment the not taken count.
  1572     increment_mdp_data_at(in_bytes(BranchData::not_taken_offset()), scratch);
  1574     // The method data pointer needs to be updated to correspond to the
  1575     // next bytecode.
  1576     update_mdp_by_constant(in_bytes(BranchData::branch_data_size()));
  1577     bind (profile_continue);
  1582 // Count a non-virtual call in the bytecodes.
  1584 void InterpreterMacroAssembler::profile_call(Register scratch) {
  1585   if (ProfileInterpreter) {
  1586     Label profile_continue;
  1588     // If no method data exists, go to profile_continue.
  1589     test_method_data_pointer(profile_continue);
  1591     // We are making a call.  Increment the count.
  1592     increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch);
  1594     // The method data pointer needs to be updated to reflect the new target.
  1595     update_mdp_by_constant(in_bytes(CounterData::counter_data_size()));
  1596     bind (profile_continue);
  1601 // Count a final call in the bytecodes.
  1603 void InterpreterMacroAssembler::profile_final_call(Register scratch) {
  1604   if (ProfileInterpreter) {
  1605     Label profile_continue;
  1607     // If no method data exists, go to profile_continue.
  1608     test_method_data_pointer(profile_continue);
  1610     // We are making a call.  Increment the count.
  1611     increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch);
  1613     // The method data pointer needs to be updated to reflect the new target.
  1614     update_mdp_by_constant(in_bytes(VirtualCallData::virtual_call_data_size()));
  1615     bind (profile_continue);
  1620 // Count a virtual call in the bytecodes.
  1622 void InterpreterMacroAssembler::profile_virtual_call(Register receiver,
  1623                                                      Register scratch,
  1624                                                      bool receiver_can_be_null) {
  1625   if (ProfileInterpreter) {
  1626     Label profile_continue;
  1628     // If no method data exists, go to profile_continue.
  1629     test_method_data_pointer(profile_continue);
  1632     Label skip_receiver_profile;
  1633     if (receiver_can_be_null) {
  1634       Label not_null;
  1635       br_notnull_short(receiver, Assembler::pt, not_null);
  1636       // We are making a call.  Increment the count for null receiver.
  1637       increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch);
  1638       ba_short(skip_receiver_profile);
  1639       bind(not_null);
  1642     // Record the receiver type.
  1643     record_klass_in_profile(receiver, scratch, true);
  1644     bind(skip_receiver_profile);
  1646     // The method data pointer needs to be updated to reflect the new target.
  1647     update_mdp_by_constant(in_bytes(VirtualCallData::virtual_call_data_size()));
  1648     bind (profile_continue);
  1652 void InterpreterMacroAssembler::record_klass_in_profile_helper(
  1653                                         Register receiver, Register scratch,
  1654                                         int start_row, Label& done, bool is_virtual_call) {
  1655   if (TypeProfileWidth == 0) {
  1656     if (is_virtual_call) {
  1657       increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch);
  1659     return;
  1662   int last_row = VirtualCallData::row_limit() - 1;
  1663   assert(start_row <= last_row, "must be work left to do");
  1664   // Test this row for both the receiver and for null.
  1665   // Take any of three different outcomes:
  1666   //   1. found receiver => increment count and goto done
  1667   //   2. found null => keep looking for case 1, maybe allocate this cell
  1668   //   3. found something else => keep looking for cases 1 and 2
  1669   // Case 3 is handled by a recursive call.
  1670   for (int row = start_row; row <= last_row; row++) {
  1671     Label next_test;
  1672     bool test_for_null_also = (row == start_row);
  1674     // See if the receiver is receiver[n].
  1675     int recvr_offset = in_bytes(VirtualCallData::receiver_offset(row));
  1676     test_mdp_data_at(recvr_offset, receiver, next_test, scratch);
  1677     // delayed()->tst(scratch);
  1679     // The receiver is receiver[n].  Increment count[n].
  1680     int count_offset = in_bytes(VirtualCallData::receiver_count_offset(row));
  1681     increment_mdp_data_at(count_offset, scratch);
  1682     ba_short(done);
  1683     bind(next_test);
  1685     if (test_for_null_also) {
  1686       Label found_null;
  1687       // Failed the equality check on receiver[n]...  Test for null.
  1688       if (start_row == last_row) {
  1689         // The only thing left to do is handle the null case.
  1690         if (is_virtual_call) {
  1691           brx(Assembler::zero, false, Assembler::pn, found_null);
  1692           delayed()->nop();
  1693           // Receiver did not match any saved receiver and there is no empty row for it.
  1694           // Increment total counter to indicate polymorphic case.
  1695           increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch);
  1696           ba_short(done);
  1697           bind(found_null);
  1698         } else {
  1699           brx(Assembler::notZero, false, Assembler::pt, done);
  1700           delayed()->nop();
  1702         break;
  1704       // Since null is rare, make it be the branch-taken case.
  1705       brx(Assembler::zero, false, Assembler::pn, found_null);
  1706       delayed()->nop();
  1708       // Put all the "Case 3" tests here.
  1709       record_klass_in_profile_helper(receiver, scratch, start_row + 1, done, is_virtual_call);
  1711       // Found a null.  Keep searching for a matching receiver,
  1712       // but remember that this is an empty (unused) slot.
  1713       bind(found_null);
  1717   // In the fall-through case, we found no matching receiver, but we
  1718   // observed the receiver[start_row] is NULL.
  1720   // Fill in the receiver field and increment the count.
  1721   int recvr_offset = in_bytes(VirtualCallData::receiver_offset(start_row));
  1722   set_mdp_data_at(recvr_offset, receiver);
  1723   int count_offset = in_bytes(VirtualCallData::receiver_count_offset(start_row));
  1724   mov(DataLayout::counter_increment, scratch);
  1725   set_mdp_data_at(count_offset, scratch);
  1726   if (start_row > 0) {
  1727     ba_short(done);
  1731 void InterpreterMacroAssembler::record_klass_in_profile(Register receiver,
  1732                                                         Register scratch, bool is_virtual_call) {
  1733   assert(ProfileInterpreter, "must be profiling");
  1734   Label done;
  1736   record_klass_in_profile_helper(receiver, scratch, 0, done, is_virtual_call);
  1738   bind (done);
  1742 // Count a ret in the bytecodes.
  1744 void InterpreterMacroAssembler::profile_ret(TosState state,
  1745                                             Register return_bci,
  1746                                             Register scratch) {
  1747   if (ProfileInterpreter) {
  1748     Label profile_continue;
  1749     uint row;
  1751     // If no method data exists, go to profile_continue.
  1752     test_method_data_pointer(profile_continue);
  1754     // Update the total ret count.
  1755     increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch);
  1757     for (row = 0; row < RetData::row_limit(); row++) {
  1758       Label next_test;
  1760       // See if return_bci is equal to bci[n]:
  1761       test_mdp_data_at(in_bytes(RetData::bci_offset(row)),
  1762                        return_bci, next_test, scratch);
  1764       // return_bci is equal to bci[n].  Increment the count.
  1765       increment_mdp_data_at(in_bytes(RetData::bci_count_offset(row)), scratch);
  1767       // The method data pointer needs to be updated to reflect the new target.
  1768       update_mdp_by_offset(in_bytes(RetData::bci_displacement_offset(row)), scratch);
  1769       ba_short(profile_continue);
  1770       bind(next_test);
  1773     update_mdp_for_ret(state, return_bci);
  1775     bind (profile_continue);
  1779 // Profile an unexpected null in the bytecodes.
  1780 void InterpreterMacroAssembler::profile_null_seen(Register scratch) {
  1781   if (ProfileInterpreter) {
  1782     Label profile_continue;
  1784     // If no method data exists, go to profile_continue.
  1785     test_method_data_pointer(profile_continue);
  1787     set_mdp_flag_at(BitData::null_seen_byte_constant(), scratch);
  1789     // The method data pointer needs to be updated.
  1790     int mdp_delta = in_bytes(BitData::bit_data_size());
  1791     if (TypeProfileCasts) {
  1792       mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
  1794     update_mdp_by_constant(mdp_delta);
  1796     bind (profile_continue);
  1800 void InterpreterMacroAssembler::profile_typecheck(Register klass,
  1801                                                   Register scratch) {
  1802   if (ProfileInterpreter) {
  1803     Label profile_continue;
  1805     // If no method data exists, go to profile_continue.
  1806     test_method_data_pointer(profile_continue);
  1808     int mdp_delta = in_bytes(BitData::bit_data_size());
  1809     if (TypeProfileCasts) {
  1810       mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
  1812       // Record the object type.
  1813       record_klass_in_profile(klass, scratch, false);
  1816     // The method data pointer needs to be updated.
  1817     update_mdp_by_constant(mdp_delta);
  1819     bind (profile_continue);
  1823 void InterpreterMacroAssembler::profile_typecheck_failed(Register scratch) {
  1824   if (ProfileInterpreter && TypeProfileCasts) {
  1825     Label profile_continue;
  1827     // If no method data exists, go to profile_continue.
  1828     test_method_data_pointer(profile_continue);
  1830     int count_offset = in_bytes(CounterData::count_offset());
  1831     // Back up the address, since we have already bumped the mdp.
  1832     count_offset -= in_bytes(VirtualCallData::virtual_call_data_size());
  1834     // *Decrement* the counter.  We expect to see zero or small negatives.
  1835     increment_mdp_data_at(count_offset, scratch, true);
  1837     bind (profile_continue);
  1841 // Count the default case of a switch construct.
  1843 void InterpreterMacroAssembler::profile_switch_default(Register scratch) {
  1844   if (ProfileInterpreter) {
  1845     Label profile_continue;
  1847     // If no method data exists, go to profile_continue.
  1848     test_method_data_pointer(profile_continue);
  1850     // Update the default case count
  1851     increment_mdp_data_at(in_bytes(MultiBranchData::default_count_offset()),
  1852                           scratch);
  1854     // The method data pointer needs to be updated.
  1855     update_mdp_by_offset(
  1856                     in_bytes(MultiBranchData::default_displacement_offset()),
  1857                     scratch);
  1859     bind (profile_continue);
  1863 // Count the index'th case of a switch construct.
  1865 void InterpreterMacroAssembler::profile_switch_case(Register index,
  1866                                                     Register scratch,
  1867                                                     Register scratch2,
  1868                                                     Register scratch3) {
  1869   if (ProfileInterpreter) {
  1870     Label profile_continue;
  1872     // If no method data exists, go to profile_continue.
  1873     test_method_data_pointer(profile_continue);
  1875     // Build the base (index * per_case_size_in_bytes()) + case_array_offset_in_bytes()
  1876     set(in_bytes(MultiBranchData::per_case_size()), scratch);
  1877     smul(index, scratch, scratch);
  1878     add(scratch, in_bytes(MultiBranchData::case_array_offset()), scratch);
  1880     // Update the case count
  1881     increment_mdp_data_at(scratch,
  1882                           in_bytes(MultiBranchData::relative_count_offset()),
  1883                           scratch2,
  1884                           scratch3);
  1886     // The method data pointer needs to be updated.
  1887     update_mdp_by_offset(scratch,
  1888                      in_bytes(MultiBranchData::relative_displacement_offset()),
  1889                      scratch2);
  1891     bind (profile_continue);
  1895 // add a InterpMonitorElem to stack (see frame_sparc.hpp)
  1897 void InterpreterMacroAssembler::add_monitor_to_stack( bool stack_is_empty,
  1898                                                       Register Rtemp,
  1899                                                       Register Rtemp2 ) {
  1901   Register Rlimit = Lmonitors;
  1902   const jint delta = frame::interpreter_frame_monitor_size() * wordSize;
  1903   assert( (delta & LongAlignmentMask) == 0,
  1904           "sizeof BasicObjectLock must be even number of doublewords");
  1906   sub( SP,        delta, SP);
  1907   sub( Lesp,      delta, Lesp);
  1908   sub( Lmonitors, delta, Lmonitors);
  1910   if (!stack_is_empty) {
  1912     // must copy stack contents down
  1914     Label start_copying, next;
  1916     // untested("monitor stack expansion");
  1917     compute_stack_base(Rtemp);
  1918     ba(start_copying);
  1919     delayed()->cmp(Rtemp, Rlimit); // done? duplicated below
  1921     // note: must copy from low memory upwards
  1922     // On entry to loop,
  1923     // Rtemp points to new base of stack, Lesp points to new end of stack (1 past TOS)
  1924     // Loop mutates Rtemp
  1926     bind( next);
  1928     st_ptr(Rtemp2, Rtemp, 0);
  1929     inc(Rtemp, wordSize);
  1930     cmp(Rtemp, Rlimit); // are we done? (duplicated above)
  1932     bind( start_copying );
  1934     brx( notEqual, true, pn, next );
  1935     delayed()->ld_ptr( Rtemp, delta, Rtemp2 );
  1937     // done copying stack
  1941 // Locals
  1942 void InterpreterMacroAssembler::access_local_ptr( Register index, Register dst ) {
  1943   assert_not_delayed();
  1944   sll(index, Interpreter::logStackElementSize, index);
  1945   sub(Llocals, index, index);
  1946   ld_ptr(index, 0, dst);
  1947   // Note:  index must hold the effective address--the iinc template uses it
  1950 // Just like access_local_ptr but the tag is a returnAddress
  1951 void InterpreterMacroAssembler::access_local_returnAddress(Register index,
  1952                                                            Register dst ) {
  1953   assert_not_delayed();
  1954   sll(index, Interpreter::logStackElementSize, index);
  1955   sub(Llocals, index, index);
  1956   ld_ptr(index, 0, dst);
  1959 void InterpreterMacroAssembler::access_local_int( Register index, Register dst ) {
  1960   assert_not_delayed();
  1961   sll(index, Interpreter::logStackElementSize, index);
  1962   sub(Llocals, index, index);
  1963   ld(index, 0, dst);
  1964   // Note:  index must hold the effective address--the iinc template uses it
  1968 void InterpreterMacroAssembler::access_local_long( Register index, Register dst ) {
  1969   assert_not_delayed();
  1970   sll(index, Interpreter::logStackElementSize, index);
  1971   sub(Llocals, index, index);
  1972   // First half stored at index n+1 (which grows down from Llocals[n])
  1973   load_unaligned_long(index, Interpreter::local_offset_in_bytes(1), dst);
  1977 void InterpreterMacroAssembler::access_local_float( Register index, FloatRegister dst ) {
  1978   assert_not_delayed();
  1979   sll(index, Interpreter::logStackElementSize, index);
  1980   sub(Llocals, index, index);
  1981   ldf(FloatRegisterImpl::S, index, 0, dst);
  1985 void InterpreterMacroAssembler::access_local_double( Register index, FloatRegister dst ) {
  1986   assert_not_delayed();
  1987   sll(index, Interpreter::logStackElementSize, index);
  1988   sub(Llocals, index, index);
  1989   load_unaligned_double(index, Interpreter::local_offset_in_bytes(1), dst);
  1993 #ifdef ASSERT
  1994 void InterpreterMacroAssembler::check_for_regarea_stomp(Register Rindex, int offset, Register Rlimit, Register Rscratch, Register Rscratch1) {
  1995   Label L;
  1997   assert(Rindex != Rscratch, "Registers cannot be same");
  1998   assert(Rindex != Rscratch1, "Registers cannot be same");
  1999   assert(Rlimit != Rscratch, "Registers cannot be same");
  2000   assert(Rlimit != Rscratch1, "Registers cannot be same");
  2001   assert(Rscratch1 != Rscratch, "Registers cannot be same");
  2003   // untested("reg area corruption");
  2004   add(Rindex, offset, Rscratch);
  2005   add(Rlimit, 64 + STACK_BIAS, Rscratch1);
  2006   cmp_and_brx_short(Rscratch, Rscratch1, Assembler::greaterEqualUnsigned, pn, L);
  2007   stop("regsave area is being clobbered");
  2008   bind(L);
  2010 #endif // ASSERT
  2013 void InterpreterMacroAssembler::store_local_int( Register index, Register src ) {
  2014   assert_not_delayed();
  2015   sll(index, Interpreter::logStackElementSize, index);
  2016   sub(Llocals, index, index);
  2017   debug_only(check_for_regarea_stomp(index, 0, FP, G1_scratch, G4_scratch);)
  2018   st(src, index, 0);
  2021 void InterpreterMacroAssembler::store_local_ptr( Register index, Register src ) {
  2022   assert_not_delayed();
  2023   sll(index, Interpreter::logStackElementSize, index);
  2024   sub(Llocals, index, index);
  2025 #ifdef ASSERT
  2026   check_for_regarea_stomp(index, 0, FP, G1_scratch, G4_scratch);
  2027 #endif
  2028   st_ptr(src, index, 0);
  2033 void InterpreterMacroAssembler::store_local_ptr( int n, Register src ) {
  2034   st_ptr(src, Llocals, Interpreter::local_offset_in_bytes(n));
  2037 void InterpreterMacroAssembler::store_local_long( Register index, Register src ) {
  2038   assert_not_delayed();
  2039   sll(index, Interpreter::logStackElementSize, index);
  2040   sub(Llocals, index, index);
  2041 #ifdef ASSERT
  2042   check_for_regarea_stomp(index, Interpreter::local_offset_in_bytes(1), FP, G1_scratch, G4_scratch);
  2043 #endif
  2044   store_unaligned_long(src, index, Interpreter::local_offset_in_bytes(1)); // which is n+1
  2048 void InterpreterMacroAssembler::store_local_float( Register index, FloatRegister src ) {
  2049   assert_not_delayed();
  2050   sll(index, Interpreter::logStackElementSize, index);
  2051   sub(Llocals, index, index);
  2052 #ifdef ASSERT
  2053   check_for_regarea_stomp(index, 0, FP, G1_scratch, G4_scratch);
  2054 #endif
  2055   stf(FloatRegisterImpl::S, src, index, 0);
  2059 void InterpreterMacroAssembler::store_local_double( Register index, FloatRegister src ) {
  2060   assert_not_delayed();
  2061   sll(index, Interpreter::logStackElementSize, index);
  2062   sub(Llocals, index, index);
  2063 #ifdef ASSERT
  2064   check_for_regarea_stomp(index, Interpreter::local_offset_in_bytes(1), FP, G1_scratch, G4_scratch);
  2065 #endif
  2066   store_unaligned_double(src, index, Interpreter::local_offset_in_bytes(1));
  2070 int InterpreterMacroAssembler::top_most_monitor_byte_offset() {
  2071   const jint delta = frame::interpreter_frame_monitor_size() * wordSize;
  2072   int rounded_vm_local_words = ::round_to(frame::interpreter_frame_vm_local_words, WordsPerLong);
  2073   return ((-rounded_vm_local_words * wordSize) - delta ) + STACK_BIAS;
  2077 Address InterpreterMacroAssembler::top_most_monitor() {
  2078   return Address(FP, top_most_monitor_byte_offset());
  2082 void InterpreterMacroAssembler::compute_stack_base( Register Rdest ) {
  2083   add( Lesp,      wordSize,                                    Rdest );
  2086 #endif /* CC_INTERP */
  2088 void InterpreterMacroAssembler::increment_invocation_counter( Register Rtmp, Register Rtmp2 ) {
  2089   assert(UseCompiler, "incrementing must be useful");
  2090 #ifdef CC_INTERP
  2091   Address inv_counter(G5_method, Method::invocation_counter_offset() +
  2092                                  InvocationCounter::counter_offset());
  2093   Address be_counter (G5_method, Method::backedge_counter_offset() +
  2094                                  InvocationCounter::counter_offset());
  2095 #else
  2096   Address inv_counter(Lmethod, Method::invocation_counter_offset() +
  2097                                InvocationCounter::counter_offset());
  2098   Address be_counter (Lmethod, Method::backedge_counter_offset() +
  2099                                InvocationCounter::counter_offset());
  2100 #endif /* CC_INTERP */
  2101   int delta = InvocationCounter::count_increment;
  2103   // Load each counter in a register
  2104   ld( inv_counter, Rtmp );
  2105   ld( be_counter, Rtmp2 );
  2107   assert( is_simm13( delta ), " delta too large.");
  2109   // Add the delta to the invocation counter and store the result
  2110   add( Rtmp, delta, Rtmp );
  2112   // Mask the backedge counter
  2113   and3( Rtmp2, InvocationCounter::count_mask_value, Rtmp2 );
  2115   // Store value
  2116   st( Rtmp, inv_counter);
  2118   // Add invocation counter + backedge counter
  2119   add( Rtmp, Rtmp2, Rtmp);
  2121   // Note that this macro must leave the backedge_count + invocation_count in Rtmp!
  2124 void InterpreterMacroAssembler::increment_backedge_counter( Register Rtmp, Register Rtmp2 ) {
  2125   assert(UseCompiler, "incrementing must be useful");
  2126 #ifdef CC_INTERP
  2127   Address be_counter (G5_method, Method::backedge_counter_offset() +
  2128                                  InvocationCounter::counter_offset());
  2129   Address inv_counter(G5_method, Method::invocation_counter_offset() +
  2130                                  InvocationCounter::counter_offset());
  2131 #else
  2132   Address be_counter (Lmethod, Method::backedge_counter_offset() +
  2133                                InvocationCounter::counter_offset());
  2134   Address inv_counter(Lmethod, Method::invocation_counter_offset() +
  2135                                InvocationCounter::counter_offset());
  2136 #endif /* CC_INTERP */
  2137   int delta = InvocationCounter::count_increment;
  2138   // Load each counter in a register
  2139   ld( be_counter, Rtmp );
  2140   ld( inv_counter, Rtmp2 );
  2142   // Add the delta to the backedge counter
  2143   add( Rtmp, delta, Rtmp );
  2145   // Mask the invocation counter, add to backedge counter
  2146   and3( Rtmp2, InvocationCounter::count_mask_value, Rtmp2 );
  2148   // and store the result to memory
  2149   st( Rtmp, be_counter );
  2151   // Add backedge + invocation counter
  2152   add( Rtmp, Rtmp2, Rtmp );
  2154   // Note that this macro must leave backedge_count + invocation_count in Rtmp!
  2157 #ifndef CC_INTERP
  2158 void InterpreterMacroAssembler::test_backedge_count_for_osr( Register backedge_count,
  2159                                                              Register branch_bcp,
  2160                                                              Register Rtmp ) {
  2161   Label did_not_overflow;
  2162   Label overflow_with_error;
  2163   assert_different_registers(backedge_count, Rtmp, branch_bcp);
  2164   assert(UseOnStackReplacement,"Must UseOnStackReplacement to test_backedge_count_for_osr");
  2166   AddressLiteral limit(&InvocationCounter::InterpreterBackwardBranchLimit);
  2167   load_contents(limit, Rtmp);
  2168   cmp_and_br_short(backedge_count, Rtmp, Assembler::lessUnsigned, Assembler::pt, did_not_overflow);
  2170   // When ProfileInterpreter is on, the backedge_count comes from the
  2171   // MethodData*, which value does not get reset on the call to
  2172   // frequency_counter_overflow().  To avoid excessive calls to the overflow
  2173   // routine while the method is being compiled, add a second test to make sure
  2174   // the overflow function is called only once every overflow_frequency.
  2175   if (ProfileInterpreter) {
  2176     const int overflow_frequency = 1024;
  2177     andcc(backedge_count, overflow_frequency-1, Rtmp);
  2178     brx(Assembler::notZero, false, Assembler::pt, did_not_overflow);
  2179     delayed()->nop();
  2182   // overflow in loop, pass branch bytecode
  2183   set(6,Rtmp);
  2184   call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::frequency_counter_overflow), branch_bcp, Rtmp);
  2186   // Was an OSR adapter generated?
  2187   // O0 = osr nmethod
  2188   br_null_short(O0, Assembler::pn, overflow_with_error);
  2190   // Has the nmethod been invalidated already?
  2191   ld(O0, nmethod::entry_bci_offset(), O2);
  2192   cmp_and_br_short(O2, InvalidOSREntryBci, Assembler::equal, Assembler::pn, overflow_with_error);
  2194   // migrate the interpreter frame off of the stack
  2196   mov(G2_thread, L7);
  2197   // save nmethod
  2198   mov(O0, L6);
  2199   set_last_Java_frame(SP, noreg);
  2200   call_VM_leaf(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_begin), L7);
  2201   reset_last_Java_frame();
  2202   mov(L7, G2_thread);
  2204   // move OSR nmethod to I1
  2205   mov(L6, I1);
  2207   // OSR buffer to I0
  2208   mov(O0, I0);
  2210   // remove the interpreter frame
  2211   restore(I5_savedSP, 0, SP);
  2213   // Jump to the osr code.
  2214   ld_ptr(O1, nmethod::osr_entry_point_offset(), O2);
  2215   jmp(O2, G0);
  2216   delayed()->nop();
  2218   bind(overflow_with_error);
  2220   bind(did_not_overflow);
  2225 void InterpreterMacroAssembler::interp_verify_oop(Register reg, TosState state, const char * file, int line) {
  2226   if (state == atos) { MacroAssembler::_verify_oop(reg, "broken oop ", file, line); }
  2230 // local helper function for the verify_oop_or_return_address macro
  2231 static bool verify_return_address(Method* m, int bci) {
  2232 #ifndef PRODUCT
  2233   address pc = (address)(m->constMethod())
  2234              + in_bytes(ConstMethod::codes_offset()) + bci;
  2235   // assume it is a valid return address if it is inside m and is preceded by a jsr
  2236   if (!m->contains(pc))                                          return false;
  2237   address jsr_pc;
  2238   jsr_pc = pc - Bytecodes::length_for(Bytecodes::_jsr);
  2239   if (*jsr_pc == Bytecodes::_jsr   && jsr_pc >= m->code_base())    return true;
  2240   jsr_pc = pc - Bytecodes::length_for(Bytecodes::_jsr_w);
  2241   if (*jsr_pc == Bytecodes::_jsr_w && jsr_pc >= m->code_base())    return true;
  2242 #endif // PRODUCT
  2243   return false;
  2247 void InterpreterMacroAssembler::verify_oop_or_return_address(Register reg, Register Rtmp) {
  2248   if (!VerifyOops)  return;
  2249   // the VM documentation for the astore[_wide] bytecode allows
  2250   // the TOS to be not only an oop but also a return address
  2251   Label test;
  2252   Label skip;
  2253   // See if it is an address (in the current method):
  2255   mov(reg, Rtmp);
  2256   const int log2_bytecode_size_limit = 16;
  2257   srl(Rtmp, log2_bytecode_size_limit, Rtmp);
  2258   br_notnull_short( Rtmp, pt, test );
  2260   // %%% should use call_VM_leaf here?
  2261   save_frame_and_mov(0, Lmethod, O0, reg, O1);
  2262   save_thread(L7_thread_cache);
  2263   call(CAST_FROM_FN_PTR(address,verify_return_address), relocInfo::none);
  2264   delayed()->nop();
  2265   restore_thread(L7_thread_cache);
  2266   br_notnull( O0, false, pt, skip );
  2267   delayed()->restore();
  2269   // Perform a more elaborate out-of-line call
  2270   // Not an address; verify it:
  2271   bind(test);
  2272   verify_oop(reg);
  2273   bind(skip);
  2277 void InterpreterMacroAssembler::verify_FPU(int stack_depth, TosState state) {
  2278   if (state == ftos || state == dtos) MacroAssembler::verify_FPU(stack_depth);
  2280 #endif /* CC_INTERP */
  2282 // Inline assembly for:
  2283 //
  2284 // if (thread is in interp_only_mode) {
  2285 //   InterpreterRuntime::post_method_entry();
  2286 // }
  2287 // if (DTraceMethodProbes) {
  2288 //   SharedRuntime::dtrace_method_entry(method, receiver);
  2289 // }
  2290 // if (RC_TRACE_IN_RANGE(0x00001000, 0x00002000)) {
  2291 //   SharedRuntime::rc_trace_method_entry(method, receiver);
  2292 // }
  2294 void InterpreterMacroAssembler::notify_method_entry() {
  2296   // C++ interpreter only uses this for native methods.
  2298   // Whenever JVMTI puts a thread in interp_only_mode, method
  2299   // entry/exit events are sent for that thread to track stack
  2300   // depth.  If it is possible to enter interp_only_mode we add
  2301   // the code to check if the event should be sent.
  2302   if (JvmtiExport::can_post_interpreter_events()) {
  2303     Label L;
  2304     Register temp_reg = O5;
  2305     const Address interp_only(G2_thread, JavaThread::interp_only_mode_offset());
  2306     ld(interp_only, temp_reg);
  2307     cmp_and_br_short(temp_reg, 0, equal, pt, L);
  2308     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_entry));
  2309     bind(L);
  2313     Register temp_reg = O5;
  2314     SkipIfEqual skip_if(this, temp_reg, &DTraceMethodProbes, zero);
  2315     call_VM_leaf(noreg,
  2316       CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry),
  2317       G2_thread, Lmethod);
  2320   // RedefineClasses() tracing support for obsolete method entry
  2321   if (RC_TRACE_IN_RANGE(0x00001000, 0x00002000)) {
  2322     call_VM_leaf(noreg,
  2323       CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry),
  2324       G2_thread, Lmethod);
  2329 // Inline assembly for:
  2330 //
  2331 // if (thread is in interp_only_mode) {
  2332 //   // save result
  2333 //   InterpreterRuntime::post_method_exit();
  2334 //   // restore result
  2335 // }
  2336 // if (DTraceMethodProbes) {
  2337 //   SharedRuntime::dtrace_method_exit(thread, method);
  2338 // }
  2339 //
  2340 // Native methods have their result stored in d_tmp and l_tmp
  2341 // Java methods have their result stored in the expression stack
  2343 void InterpreterMacroAssembler::notify_method_exit(bool is_native_method,
  2344                                                    TosState state,
  2345                                                    NotifyMethodExitMode mode) {
  2346   // C++ interpreter only uses this for native methods.
  2348   // Whenever JVMTI puts a thread in interp_only_mode, method
  2349   // entry/exit events are sent for that thread to track stack
  2350   // depth.  If it is possible to enter interp_only_mode we add
  2351   // the code to check if the event should be sent.
  2352   if (mode == NotifyJVMTI && JvmtiExport::can_post_interpreter_events()) {
  2353     Label L;
  2354     Register temp_reg = O5;
  2355     const Address interp_only(G2_thread, JavaThread::interp_only_mode_offset());
  2356     ld(interp_only, temp_reg);
  2357     cmp_and_br_short(temp_reg, 0, equal, pt, L);
  2359     // Note: frame::interpreter_frame_result has a dependency on how the
  2360     // method result is saved across the call to post_method_exit. For
  2361     // native methods it assumes the result registers are saved to
  2362     // l_scratch and d_scratch. If this changes then the interpreter_frame_result
  2363     // implementation will need to be updated too.
  2365     save_return_value(state, is_native_method);
  2366     call_VM(noreg,
  2367             CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_exit));
  2368     restore_return_value(state, is_native_method);
  2369     bind(L);
  2373     Register temp_reg = O5;
  2374     // Dtrace notification
  2375     SkipIfEqual skip_if(this, temp_reg, &DTraceMethodProbes, zero);
  2376     save_return_value(state, is_native_method);
  2377     call_VM_leaf(
  2378       noreg,
  2379       CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
  2380       G2_thread, Lmethod);
  2381     restore_return_value(state, is_native_method);
  2385 void InterpreterMacroAssembler::save_return_value(TosState state, bool is_native_call) {
  2386 #ifdef CC_INTERP
  2387   // result potentially in O0/O1: save it across calls
  2388   stf(FloatRegisterImpl::D, F0, STATE(_native_fresult));
  2389 #ifdef _LP64
  2390   stx(O0, STATE(_native_lresult));
  2391 #else
  2392   std(O0, STATE(_native_lresult));
  2393 #endif
  2394 #else // CC_INTERP
  2395   if (is_native_call) {
  2396     stf(FloatRegisterImpl::D, F0, d_tmp);
  2397 #ifdef _LP64
  2398     stx(O0, l_tmp);
  2399 #else
  2400     std(O0, l_tmp);
  2401 #endif
  2402   } else {
  2403     push(state);
  2405 #endif // CC_INTERP
  2408 void InterpreterMacroAssembler::restore_return_value( TosState state, bool is_native_call) {
  2409 #ifdef CC_INTERP
  2410   ldf(FloatRegisterImpl::D, STATE(_native_fresult), F0);
  2411 #ifdef _LP64
  2412   ldx(STATE(_native_lresult), O0);
  2413 #else
  2414   ldd(STATE(_native_lresult), O0);
  2415 #endif
  2416 #else // CC_INTERP
  2417   if (is_native_call) {
  2418     ldf(FloatRegisterImpl::D, d_tmp, F0);
  2419 #ifdef _LP64
  2420     ldx(l_tmp, O0);
  2421 #else
  2422     ldd(l_tmp, O0);
  2423 #endif
  2424   } else {
  2425     pop(state);
  2427 #endif // CC_INTERP
  2430 // Jump if ((*counter_addr += increment) & mask) satisfies the condition.
  2431 void InterpreterMacroAssembler::increment_mask_and_jump(Address counter_addr,
  2432                                                         int increment, int mask,
  2433                                                         Register scratch1, Register scratch2,
  2434                                                         Condition cond, Label *where) {
  2435   ld(counter_addr, scratch1);
  2436   add(scratch1, increment, scratch1);
  2437   if (is_simm13(mask)) {
  2438     andcc(scratch1, mask, G0);
  2439   } else {
  2440     set(mask, scratch2);
  2441     andcc(scratch1, scratch2,  G0);
  2443   br(cond, false, Assembler::pn, *where);
  2444   delayed()->st(scratch1, counter_addr);

mercurial