src/share/vm/code/dependencies.cpp

Fri, 28 Sep 2012 10:16:29 -0700

author
kvn
date
Fri, 28 Sep 2012 10:16:29 -0700
changeset 4117
f2e12eb74117
parent 4052
75f33eecc1b3
child 4155
9a9b6e05ffb4
permissions
-rw-r--r--

Merge

     1 /*
     2  * Copyright (c) 2005, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "ci/ciArrayKlass.hpp"
    27 #include "ci/ciEnv.hpp"
    28 #include "ci/ciKlass.hpp"
    29 #include "ci/ciMethod.hpp"
    30 #include "code/dependencies.hpp"
    31 #include "compiler/compileLog.hpp"
    32 #include "oops/oop.inline.hpp"
    33 #include "runtime/handles.hpp"
    34 #include "runtime/handles.inline.hpp"
    35 #include "utilities/copy.hpp"
    38 #ifdef ASSERT
    39 static bool must_be_in_vm() {
    40   Thread* thread = Thread::current();
    41   if (thread->is_Java_thread())
    42     return ((JavaThread*)thread)->thread_state() == _thread_in_vm;
    43   else
    44     return true;  //something like this: thread->is_VM_thread();
    45 }
    46 #endif //ASSERT
    48 void Dependencies::initialize(ciEnv* env) {
    49   Arena* arena = env->arena();
    50   _oop_recorder = env->oop_recorder();
    51   _log = env->log();
    52   _dep_seen = new(arena) GrowableArray<int>(arena, 500, 0, 0);
    53   DEBUG_ONLY(_deps[end_marker] = NULL);
    54   for (int i = (int)FIRST_TYPE; i < (int)TYPE_LIMIT; i++) {
    55     _deps[i] = new(arena) GrowableArray<ciBaseObject*>(arena, 10, 0, 0);
    56   }
    57   _content_bytes = NULL;
    58   _size_in_bytes = (size_t)-1;
    60   assert(TYPE_LIMIT <= (1<<LG2_TYPE_LIMIT), "sanity");
    61 }
    63 void Dependencies::assert_evol_method(ciMethod* m) {
    64   assert_common_1(evol_method, m);
    65 }
    67 void Dependencies::assert_leaf_type(ciKlass* ctxk) {
    68   if (ctxk->is_array_klass()) {
    69     // As a special case, support this assertion on an array type,
    70     // which reduces to an assertion on its element type.
    71     // Note that this cannot be done with assertions that
    72     // relate to concreteness or abstractness.
    73     ciType* elemt = ctxk->as_array_klass()->base_element_type();
    74     if (!elemt->is_instance_klass())  return;   // Ex:  int[][]
    75     ctxk = elemt->as_instance_klass();
    76     //if (ctxk->is_final())  return;            // Ex:  String[][]
    77   }
    78   check_ctxk(ctxk);
    79   assert_common_1(leaf_type, ctxk);
    80 }
    82 void Dependencies::assert_abstract_with_unique_concrete_subtype(ciKlass* ctxk, ciKlass* conck) {
    83   check_ctxk_abstract(ctxk);
    84   assert_common_2(abstract_with_unique_concrete_subtype, ctxk, conck);
    85 }
    87 void Dependencies::assert_abstract_with_no_concrete_subtype(ciKlass* ctxk) {
    88   check_ctxk_abstract(ctxk);
    89   assert_common_1(abstract_with_no_concrete_subtype, ctxk);
    90 }
    92 void Dependencies::assert_concrete_with_no_concrete_subtype(ciKlass* ctxk) {
    93   check_ctxk_concrete(ctxk);
    94   assert_common_1(concrete_with_no_concrete_subtype, ctxk);
    95 }
    97 void Dependencies::assert_unique_concrete_method(ciKlass* ctxk, ciMethod* uniqm) {
    98   check_ctxk(ctxk);
    99   assert_common_2(unique_concrete_method, ctxk, uniqm);
   100 }
   102 void Dependencies::assert_abstract_with_exclusive_concrete_subtypes(ciKlass* ctxk, ciKlass* k1, ciKlass* k2) {
   103   check_ctxk(ctxk);
   104   assert_common_3(abstract_with_exclusive_concrete_subtypes_2, ctxk, k1, k2);
   105 }
   107 void Dependencies::assert_exclusive_concrete_methods(ciKlass* ctxk, ciMethod* m1, ciMethod* m2) {
   108   check_ctxk(ctxk);
   109   assert_common_3(exclusive_concrete_methods_2, ctxk, m1, m2);
   110 }
   112 void Dependencies::assert_has_no_finalizable_subclasses(ciKlass* ctxk) {
   113   check_ctxk(ctxk);
   114   assert_common_1(no_finalizable_subclasses, ctxk);
   115 }
   117 void Dependencies::assert_call_site_target_value(ciCallSite* call_site, ciMethodHandle* method_handle) {
   118   check_ctxk(call_site->klass());
   119   assert_common_2(call_site_target_value, call_site, method_handle);
   120 }
   122 // Helper function.  If we are adding a new dep. under ctxk2,
   123 // try to find an old dep. under a broader* ctxk1.  If there is
   124 //
   125 bool Dependencies::maybe_merge_ctxk(GrowableArray<ciBaseObject*>* deps,
   126                                     int ctxk_i, ciKlass* ctxk2) {
   127   ciKlass* ctxk1 = deps->at(ctxk_i)->as_metadata()->as_klass();
   128   if (ctxk2->is_subtype_of(ctxk1)) {
   129     return true;  // success, and no need to change
   130   } else if (ctxk1->is_subtype_of(ctxk2)) {
   131     // new context class fully subsumes previous one
   132     deps->at_put(ctxk_i, ctxk2);
   133     return true;
   134   } else {
   135     return false;
   136   }
   137 }
   139 void Dependencies::assert_common_1(DepType dept, ciBaseObject* x) {
   140   assert(dep_args(dept) == 1, "sanity");
   141   log_dependency(dept, x);
   142   GrowableArray<ciBaseObject*>* deps = _deps[dept];
   144   // see if the same (or a similar) dep is already recorded
   145   if (note_dep_seen(dept, x)) {
   146     assert(deps->find(x) >= 0, "sanity");
   147   } else {
   148     deps->append(x);
   149   }
   150 }
   152 void Dependencies::assert_common_2(DepType dept,
   153                                    ciBaseObject* x0, ciBaseObject* x1) {
   154   assert(dep_args(dept) == 2, "sanity");
   155   log_dependency(dept, x0, x1);
   156   GrowableArray<ciBaseObject*>* deps = _deps[dept];
   158   // see if the same (or a similar) dep is already recorded
   159   bool has_ctxk = has_explicit_context_arg(dept);
   160   if (has_ctxk) {
   161     assert(dep_context_arg(dept) == 0, "sanity");
   162     if (note_dep_seen(dept, x1)) {
   163       // look in this bucket for redundant assertions
   164       const int stride = 2;
   165       for (int i = deps->length(); (i -= stride) >= 0; ) {
   166         ciBaseObject* y1 = deps->at(i+1);
   167         if (x1 == y1) {  // same subject; check the context
   168           if (maybe_merge_ctxk(deps, i+0, x0->as_metadata()->as_klass())) {
   169             return;
   170           }
   171         }
   172       }
   173     }
   174   } else {
   175     assert(dep_implicit_context_arg(dept) == 0, "sanity");
   176     if (note_dep_seen(dept, x0) && note_dep_seen(dept, x1)) {
   177       // look in this bucket for redundant assertions
   178       const int stride = 2;
   179       for (int i = deps->length(); (i -= stride) >= 0; ) {
   180         ciBaseObject* y0 = deps->at(i+0);
   181         ciBaseObject* y1 = deps->at(i+1);
   182         if (x0 == y0 && x1 == y1) {
   183           return;
   184         }
   185       }
   186     }
   187   }
   189   // append the assertion in the correct bucket:
   190   deps->append(x0);
   191   deps->append(x1);
   192 }
   194 void Dependencies::assert_common_3(DepType dept,
   195                                    ciKlass* ctxk, ciBaseObject* x, ciBaseObject* x2) {
   196   assert(dep_context_arg(dept) == 0, "sanity");
   197   assert(dep_args(dept) == 3, "sanity");
   198   log_dependency(dept, ctxk, x, x2);
   199   GrowableArray<ciBaseObject*>* deps = _deps[dept];
   201   // try to normalize an unordered pair:
   202   bool swap = false;
   203   switch (dept) {
   204   case abstract_with_exclusive_concrete_subtypes_2:
   205     swap = (x->ident() > x2->ident() && x->as_metadata()->as_klass() != ctxk);
   206     break;
   207   case exclusive_concrete_methods_2:
   208     swap = (x->ident() > x2->ident() && x->as_metadata()->as_method()->holder() != ctxk);
   209     break;
   210   }
   211   if (swap) { ciBaseObject* t = x; x = x2; x2 = t; }
   213   // see if the same (or a similar) dep is already recorded
   214   if (note_dep_seen(dept, x) && note_dep_seen(dept, x2)) {
   215     // look in this bucket for redundant assertions
   216     const int stride = 3;
   217     for (int i = deps->length(); (i -= stride) >= 0; ) {
   218       ciBaseObject* y  = deps->at(i+1);
   219       ciBaseObject* y2 = deps->at(i+2);
   220       if (x == y && x2 == y2) {  // same subjects; check the context
   221         if (maybe_merge_ctxk(deps, i+0, ctxk)) {
   222           return;
   223         }
   224       }
   225     }
   226   }
   227   // append the assertion in the correct bucket:
   228   deps->append(ctxk);
   229   deps->append(x);
   230   deps->append(x2);
   231 }
   233 /// Support for encoding dependencies into an nmethod:
   235 void Dependencies::copy_to(nmethod* nm) {
   236   address beg = nm->dependencies_begin();
   237   address end = nm->dependencies_end();
   238   guarantee(end - beg >= (ptrdiff_t) size_in_bytes(), "bad sizing");
   239   Copy::disjoint_words((HeapWord*) content_bytes(),
   240                        (HeapWord*) beg,
   241                        size_in_bytes() / sizeof(HeapWord));
   242   assert(size_in_bytes() % sizeof(HeapWord) == 0, "copy by words");
   243 }
   245 static int sort_dep(ciBaseObject** p1, ciBaseObject** p2, int narg) {
   246   for (int i = 0; i < narg; i++) {
   247     int diff = p1[i]->ident() - p2[i]->ident();
   248     if (diff != 0)  return diff;
   249   }
   250   return 0;
   251 }
   252 static int sort_dep_arg_1(ciBaseObject** p1, ciBaseObject** p2)
   253 { return sort_dep(p1, p2, 1); }
   254 static int sort_dep_arg_2(ciBaseObject** p1, ciBaseObject** p2)
   255 { return sort_dep(p1, p2, 2); }
   256 static int sort_dep_arg_3(ciBaseObject** p1, ciBaseObject** p2)
   257 { return sort_dep(p1, p2, 3); }
   259 void Dependencies::sort_all_deps() {
   260   for (int deptv = (int)FIRST_TYPE; deptv < (int)TYPE_LIMIT; deptv++) {
   261     DepType dept = (DepType)deptv;
   262     GrowableArray<ciBaseObject*>* deps = _deps[dept];
   263     if (deps->length() <= 1)  continue;
   264     switch (dep_args(dept)) {
   265     case 1: deps->sort(sort_dep_arg_1, 1); break;
   266     case 2: deps->sort(sort_dep_arg_2, 2); break;
   267     case 3: deps->sort(sort_dep_arg_3, 3); break;
   268     default: ShouldNotReachHere();
   269     }
   270   }
   271 }
   273 size_t Dependencies::estimate_size_in_bytes() {
   274   size_t est_size = 100;
   275   for (int deptv = (int)FIRST_TYPE; deptv < (int)TYPE_LIMIT; deptv++) {
   276     DepType dept = (DepType)deptv;
   277     GrowableArray<ciBaseObject*>* deps = _deps[dept];
   278     est_size += deps->length()*2;  // tags and argument(s)
   279   }
   280   return est_size;
   281 }
   283 ciKlass* Dependencies::ctxk_encoded_as_null(DepType dept, ciBaseObject* x) {
   284   switch (dept) {
   285   case abstract_with_exclusive_concrete_subtypes_2:
   286     return x->as_metadata()->as_klass();
   287   case unique_concrete_method:
   288   case exclusive_concrete_methods_2:
   289     return x->as_metadata()->as_method()->holder();
   290   }
   291   return NULL;  // let NULL be NULL
   292 }
   294 Klass* Dependencies::ctxk_encoded_as_null(DepType dept, Metadata* x) {
   295   assert(must_be_in_vm(), "raw oops here");
   296   switch (dept) {
   297   case abstract_with_exclusive_concrete_subtypes_2:
   298     assert(x->is_klass(), "sanity");
   299     return (Klass*) x;
   300   case unique_concrete_method:
   301   case exclusive_concrete_methods_2:
   302     assert(x->is_method(), "sanity");
   303     return ((Method*)x)->method_holder();
   304   }
   305   return NULL;  // let NULL be NULL
   306 }
   308 void Dependencies::encode_content_bytes() {
   309   sort_all_deps();
   311   // cast is safe, no deps can overflow INT_MAX
   312   CompressedWriteStream bytes((int)estimate_size_in_bytes());
   314   for (int deptv = (int)FIRST_TYPE; deptv < (int)TYPE_LIMIT; deptv++) {
   315     DepType dept = (DepType)deptv;
   316     GrowableArray<ciBaseObject*>* deps = _deps[dept];
   317     if (deps->length() == 0)  continue;
   318     int stride = dep_args(dept);
   319     int ctxkj  = dep_context_arg(dept);  // -1 if no context arg
   320     assert(stride > 0, "sanity");
   321     for (int i = 0; i < deps->length(); i += stride) {
   322       jbyte code_byte = (jbyte)dept;
   323       int skipj = -1;
   324       if (ctxkj >= 0 && ctxkj+1 < stride) {
   325         ciKlass*  ctxk = deps->at(i+ctxkj+0)->as_metadata()->as_klass();
   326         ciBaseObject* x     = deps->at(i+ctxkj+1);  // following argument
   327         if (ctxk == ctxk_encoded_as_null(dept, x)) {
   328           skipj = ctxkj;  // we win:  maybe one less oop to keep track of
   329           code_byte |= default_context_type_bit;
   330         }
   331       }
   332       bytes.write_byte(code_byte);
   333       for (int j = 0; j < stride; j++) {
   334         if (j == skipj)  continue;
   335         ciBaseObject* v = deps->at(i+j);
   336         if (v->is_object()) {
   337           bytes.write_int(_oop_recorder->find_index(v->as_object()->constant_encoding()));
   338         } else {
   339           ciMetadata* meta = v->as_metadata();
   340           bytes.write_int(_oop_recorder->find_index(meta->constant_encoding()));
   341         }
   342       }
   343     }
   344   }
   346   // write a sentinel byte to mark the end
   347   bytes.write_byte(end_marker);
   349   // round it out to a word boundary
   350   while (bytes.position() % sizeof(HeapWord) != 0) {
   351     bytes.write_byte(end_marker);
   352   }
   354   // check whether the dept byte encoding really works
   355   assert((jbyte)default_context_type_bit != 0, "byte overflow");
   357   _content_bytes = bytes.buffer();
   358   _size_in_bytes = bytes.position();
   359 }
   362 const char* Dependencies::_dep_name[TYPE_LIMIT] = {
   363   "end_marker",
   364   "evol_method",
   365   "leaf_type",
   366   "abstract_with_unique_concrete_subtype",
   367   "abstract_with_no_concrete_subtype",
   368   "concrete_with_no_concrete_subtype",
   369   "unique_concrete_method",
   370   "abstract_with_exclusive_concrete_subtypes_2",
   371   "exclusive_concrete_methods_2",
   372   "no_finalizable_subclasses",
   373   "call_site_target_value"
   374 };
   376 int Dependencies::_dep_args[TYPE_LIMIT] = {
   377   -1,// end_marker
   378   1, // evol_method m
   379   1, // leaf_type ctxk
   380   2, // abstract_with_unique_concrete_subtype ctxk, k
   381   1, // abstract_with_no_concrete_subtype ctxk
   382   1, // concrete_with_no_concrete_subtype ctxk
   383   2, // unique_concrete_method ctxk, m
   384   3, // unique_concrete_subtypes_2 ctxk, k1, k2
   385   3, // unique_concrete_methods_2 ctxk, m1, m2
   386   1, // no_finalizable_subclasses ctxk
   387   2  // call_site_target_value call_site, method_handle
   388 };
   390 const char* Dependencies::dep_name(Dependencies::DepType dept) {
   391   if (!dept_in_mask(dept, all_types))  return "?bad-dep?";
   392   return _dep_name[dept];
   393 }
   395 int Dependencies::dep_args(Dependencies::DepType dept) {
   396   if (!dept_in_mask(dept, all_types))  return -1;
   397   return _dep_args[dept];
   398 }
   400 void Dependencies::check_valid_dependency_type(DepType dept) {
   401   guarantee(FIRST_TYPE <= dept && dept < TYPE_LIMIT, err_msg("invalid dependency type: %d", (int) dept));
   402 }
   404 // for the sake of the compiler log, print out current dependencies:
   405 void Dependencies::log_all_dependencies() {
   406   if (log() == NULL)  return;
   407   ciBaseObject* args[max_arg_count];
   408   for (int deptv = (int)FIRST_TYPE; deptv < (int)TYPE_LIMIT; deptv++) {
   409     DepType dept = (DepType)deptv;
   410     GrowableArray<ciBaseObject*>* deps = _deps[dept];
   411     if (deps->length() == 0)  continue;
   412     int stride = dep_args(dept);
   413     for (int i = 0; i < deps->length(); i += stride) {
   414       for (int j = 0; j < stride; j++) {
   415         // flush out the identities before printing
   416         args[j] = deps->at(i+j);
   417       }
   418       write_dependency_to(log(), dept, stride, args);
   419     }
   420   }
   421 }
   423 void Dependencies::write_dependency_to(CompileLog* log,
   424                                        DepType dept,
   425                                        int nargs, DepArgument args[],
   426                                        Klass* witness) {
   427   if (log == NULL) {
   428     return;
   429   }
   430   ciEnv* env = ciEnv::current();
   431   ciBaseObject* ciargs[max_arg_count];
   432   assert(nargs <= max_arg_count, "oob");
   433   for (int j = 0; j < nargs; j++) {
   434     if (args[j].is_oop()) {
   435       ciargs[j] = env->get_object(args[j].oop_value());
   436     } else {
   437       ciargs[j] = env->get_metadata(args[j].metadata_value());
   438     }
   439   }
   440   Dependencies::write_dependency_to(log, dept, nargs, ciargs, witness);
   441 }
   443 void Dependencies::write_dependency_to(CompileLog* log,
   444                                        DepType dept,
   445                                        int nargs, ciBaseObject* args[],
   446                                        Klass* witness) {
   447   if (log == NULL)  return;
   448   assert(nargs <= max_arg_count, "oob");
   449   int argids[max_arg_count];
   450   int ctxkj = dep_context_arg(dept);  // -1 if no context arg
   451   int j;
   452   for (j = 0; j < nargs; j++) {
   453     if (args[j]->is_object()) {
   454       argids[j] = log->identify(args[j]->as_object());
   455     } else {
   456       argids[j] = log->identify(args[j]->as_metadata());
   457     }
   458   }
   459   if (witness != NULL) {
   460     log->begin_elem("dependency_failed");
   461   } else {
   462     log->begin_elem("dependency");
   463   }
   464   log->print(" type='%s'", dep_name(dept));
   465   if (ctxkj >= 0) {
   466     log->print(" ctxk='%d'", argids[ctxkj]);
   467   }
   468   // write remaining arguments, if any.
   469   for (j = 0; j < nargs; j++) {
   470     if (j == ctxkj)  continue;  // already logged
   471     if (j == 1) {
   472       log->print(  " x='%d'",    argids[j]);
   473     } else {
   474       log->print(" x%d='%d'", j, argids[j]);
   475     }
   476   }
   477   if (witness != NULL) {
   478     log->object("witness", witness);
   479     log->stamp();
   480   }
   481   log->end_elem();
   482 }
   484 void Dependencies::write_dependency_to(xmlStream* xtty,
   485                                        DepType dept,
   486                                        int nargs, DepArgument args[],
   487                                        Klass* witness) {
   488   if (xtty == NULL)  return;
   489   ttyLocker ttyl;
   490   int ctxkj = dep_context_arg(dept);  // -1 if no context arg
   491   if (witness != NULL) {
   492     xtty->begin_elem("dependency_failed");
   493   } else {
   494     xtty->begin_elem("dependency");
   495   }
   496   xtty->print(" type='%s'", dep_name(dept));
   497   if (ctxkj >= 0) {
   498     xtty->object("ctxk", args[ctxkj].metadata_value());
   499   }
   500   // write remaining arguments, if any.
   501   for (int j = 0; j < nargs; j++) {
   502     if (j == ctxkj)  continue;  // already logged
   503     if (j == 1) {
   504       if (args[j].is_oop()) {
   505         xtty->object("x", args[j].oop_value());
   506       } else {
   507         xtty->object("x", args[j].metadata_value());
   508       }
   509     } else {
   510       char xn[10]; sprintf(xn, "x%d", j);
   511       if (args[j].is_oop()) {
   512         xtty->object(xn, args[j].oop_value());
   513       } else {
   514         xtty->object(xn, args[j].metadata_value());
   515       }
   516     }
   517   }
   518   if (witness != NULL) {
   519     xtty->object("witness", witness);
   520     xtty->stamp();
   521   }
   522   xtty->end_elem();
   523 }
   525 void Dependencies::print_dependency(DepType dept, int nargs, DepArgument args[],
   526                                     Klass* witness) {
   527   ResourceMark rm;
   528   ttyLocker ttyl;   // keep the following output all in one block
   529   tty->print_cr("%s of type %s",
   530                 (witness == NULL)? "Dependency": "Failed dependency",
   531                 dep_name(dept));
   532   // print arguments
   533   int ctxkj = dep_context_arg(dept);  // -1 if no context arg
   534   for (int j = 0; j < nargs; j++) {
   535     DepArgument arg = args[j];
   536     bool put_star = false;
   537     if (arg.is_null())  continue;
   538     const char* what;
   539     if (j == ctxkj) {
   540       assert(arg.is_metadata(), "must be");
   541       what = "context";
   542       put_star = !Dependencies::is_concrete_klass((Klass*)arg.metadata_value());
   543     } else if (arg.is_method()) {
   544       what = "method ";
   545       put_star = !Dependencies::is_concrete_method((Method*)arg.metadata_value());
   546     } else if (arg.is_klass()) {
   547       what = "class  ";
   548     } else {
   549       what = "object ";
   550     }
   551     tty->print("  %s = %s", what, (put_star? "*": ""));
   552     if (arg.is_klass())
   553       tty->print("%s", Klass::cast((Klass*)arg.metadata_value())->external_name());
   554     else if (arg.is_method())
   555       ((Method*)arg.metadata_value())->print_value();
   556     else
   557       ShouldNotReachHere(); // Provide impl for this type.
   558     tty->cr();
   559   }
   560   if (witness != NULL) {
   561     bool put_star = !Dependencies::is_concrete_klass(witness);
   562     tty->print_cr("  witness = %s%s",
   563                   (put_star? "*": ""),
   564                   Klass::cast(witness)->external_name());
   565   }
   566 }
   568 void Dependencies::DepStream::log_dependency(Klass* witness) {
   569   if (_deps == NULL && xtty == NULL)  return;  // fast cutout for runtime
   570   int nargs = argument_count();
   571   DepArgument args[max_arg_count];
   572   for (int j = 0; j < nargs; j++) {
   573     if (type() == call_site_target_value) {
   574       args[j] = argument_oop(j);
   575     } else {
   576     args[j] = argument(j);
   577   }
   578   }
   579   if (_deps != NULL && _deps->log() != NULL) {
   580     Dependencies::write_dependency_to(_deps->log(),
   581                                       type(), nargs, args, witness);
   582   } else {
   583     Dependencies::write_dependency_to(xtty,
   584                                       type(), nargs, args, witness);
   585   }
   586 }
   588 void Dependencies::DepStream::print_dependency(Klass* witness, bool verbose) {
   589   int nargs = argument_count();
   590   DepArgument args[max_arg_count];
   591   for (int j = 0; j < nargs; j++) {
   592     args[j] = argument(j);
   593   }
   594   Dependencies::print_dependency(type(), nargs, args, witness);
   595   if (verbose) {
   596     if (_code != NULL) {
   597       tty->print("  code: ");
   598       _code->print_value_on(tty);
   599       tty->cr();
   600     }
   601   }
   602 }
   605 /// Dependency stream support (decodes dependencies from an nmethod):
   607 #ifdef ASSERT
   608 void Dependencies::DepStream::initial_asserts(size_t byte_limit) {
   609   assert(must_be_in_vm(), "raw oops here");
   610   _byte_limit = byte_limit;
   611   _type       = (DepType)(end_marker-1);  // defeat "already at end" assert
   612   assert((_code!=NULL) + (_deps!=NULL) == 1, "one or t'other");
   613 }
   614 #endif //ASSERT
   616 bool Dependencies::DepStream::next() {
   617   assert(_type != end_marker, "already at end");
   618   if (_bytes.position() == 0 && _code != NULL
   619       && _code->dependencies_size() == 0) {
   620     // Method has no dependencies at all.
   621     return false;
   622   }
   623   int code_byte = (_bytes.read_byte() & 0xFF);
   624   if (code_byte == end_marker) {
   625     DEBUG_ONLY(_type = end_marker);
   626     return false;
   627   } else {
   628     int ctxk_bit = (code_byte & Dependencies::default_context_type_bit);
   629     code_byte -= ctxk_bit;
   630     DepType dept = (DepType)code_byte;
   631     _type = dept;
   632     Dependencies::check_valid_dependency_type(dept);
   633     int stride = _dep_args[dept];
   634     assert(stride == dep_args(dept), "sanity");
   635     int skipj = -1;
   636     if (ctxk_bit != 0) {
   637       skipj = 0;  // currently the only context argument is at zero
   638       assert(skipj == dep_context_arg(dept), "zero arg always ctxk");
   639     }
   640     for (int j = 0; j < stride; j++) {
   641       _xi[j] = (j == skipj)? 0: _bytes.read_int();
   642     }
   643     DEBUG_ONLY(_xi[stride] = -1);   // help detect overruns
   644     return true;
   645   }
   646 }
   648 inline Metadata* Dependencies::DepStream::recorded_metadata_at(int i) {
   649   Metadata* o = NULL;
   650   if (_code != NULL) {
   651     o = _code->metadata_at(i);
   652   } else {
   653     o = _deps->oop_recorder()->metadata_at(i);
   654   }
   655   assert(o == NULL || o->is_metadata(),
   656          err_msg("Should be perm " PTR_FORMAT, o));
   657   return o;
   658 }
   660 inline oop Dependencies::DepStream::recorded_oop_at(int i) {
   661   return (_code != NULL)
   662          ? _code->oop_at(i)
   663     : JNIHandles::resolve(_deps->oop_recorder()->oop_at(i));
   664 }
   666 Metadata* Dependencies::DepStream::argument(int i) {
   667   Metadata* result = recorded_metadata_at(argument_index(i));
   668   assert(result == NULL || result->is_klass() || result->is_method(), "must be");
   669   return result;
   670 }
   672 oop Dependencies::DepStream::argument_oop(int i) {
   673   oop result = recorded_oop_at(argument_index(i));
   674   assert(result == NULL || result->is_oop(), "must be");
   675   return result;
   676 }
   678 Klass* Dependencies::DepStream::context_type() {
   679   assert(must_be_in_vm(), "raw oops here");
   681   // Most dependencies have an explicit context type argument.
   682   {
   683     int ctxkj = dep_context_arg(_type);  // -1 if no explicit context arg
   684     if (ctxkj >= 0) {
   685       Metadata* k = argument(ctxkj);
   686       if (k != NULL) {       // context type was not compressed away
   687         assert(k->is_klass(), "type check");
   688         return (Klass*) k;
   689       }
   690       // recompute "default" context type
   691       return ctxk_encoded_as_null(_type, argument(ctxkj+1));
   692     }
   693   }
   695   // Some dependencies are using the klass of the first object
   696   // argument as implicit context type (e.g. call_site_target_value).
   697   {
   698     int ctxkj = dep_implicit_context_arg(_type);
   699     if (ctxkj >= 0) {
   700       Klass* k = argument_oop(ctxkj)->klass();
   701       assert(k->is_klass(), "type check");
   702       return (Klass*) k;
   703     }
   704   }
   706   // And some dependencies don't have a context type at all,
   707   // e.g. evol_method.
   708   return NULL;
   709 }
   711 /// Checking dependencies:
   713 // This hierarchy walker inspects subtypes of a given type,
   714 // trying to find a "bad" class which breaks a dependency.
   715 // Such a class is called a "witness" to the broken dependency.
   716 // While searching around, we ignore "participants", which
   717 // are already known to the dependency.
   718 class ClassHierarchyWalker {
   719  public:
   720   enum { PARTICIPANT_LIMIT = 3 };
   722  private:
   723   // optional method descriptor to check for:
   724   Symbol* _name;
   725   Symbol* _signature;
   727   // special classes which are not allowed to be witnesses:
   728   Klass*    _participants[PARTICIPANT_LIMIT+1];
   729   int       _num_participants;
   731   // cache of method lookups
   732   Method* _found_methods[PARTICIPANT_LIMIT+1];
   734   // if non-zero, tells how many witnesses to convert to participants
   735   int       _record_witnesses;
   737   void initialize(Klass* participant) {
   738     _record_witnesses = 0;
   739     _participants[0]  = participant;
   740     _found_methods[0] = NULL;
   741     _num_participants = 0;
   742     if (participant != NULL) {
   743       // Terminating NULL.
   744       _participants[1] = NULL;
   745       _found_methods[1] = NULL;
   746       _num_participants = 1;
   747     }
   748   }
   750   void initialize_from_method(Method* m) {
   751     assert(m != NULL && m->is_method(), "sanity");
   752     _name      = m->name();
   753     _signature = m->signature();
   754   }
   756  public:
   757   // The walker is initialized to recognize certain methods and/or types
   758   // as friendly participants.
   759   ClassHierarchyWalker(Klass* participant, Method* m) {
   760     initialize_from_method(m);
   761     initialize(participant);
   762   }
   763   ClassHierarchyWalker(Method* m) {
   764     initialize_from_method(m);
   765     initialize(NULL);
   766   }
   767   ClassHierarchyWalker(Klass* participant = NULL) {
   768     _name      = NULL;
   769     _signature = NULL;
   770     initialize(participant);
   771   }
   773   // This is common code for two searches:  One for concrete subtypes,
   774   // the other for concrete method implementations and overrides.
   775   bool doing_subtype_search() {
   776     return _name == NULL;
   777   }
   779   int num_participants() { return _num_participants; }
   780   Klass* participant(int n) {
   781     assert((uint)n <= (uint)_num_participants, "oob");
   782     return _participants[n];
   783   }
   785   // Note:  If n==num_participants, returns NULL.
   786   Method* found_method(int n) {
   787     assert((uint)n <= (uint)_num_participants, "oob");
   788     Method* fm = _found_methods[n];
   789     assert(n == _num_participants || fm != NULL, "proper usage");
   790     assert(fm == NULL || fm->method_holder() == _participants[n], "sanity");
   791     return fm;
   792   }
   794 #ifdef ASSERT
   795   // Assert that m is inherited into ctxk, without intervening overrides.
   796   // (May return true even if this is not true, in corner cases where we punt.)
   797   bool check_method_context(Klass* ctxk, Method* m) {
   798     if (m->method_holder() == ctxk)
   799       return true;  // Quick win.
   800     if (m->is_private())
   801       return false; // Quick lose.  Should not happen.
   802     if (!(m->is_public() || m->is_protected()))
   803       // The override story is complex when packages get involved.
   804       return true;  // Must punt the assertion to true.
   805     Klass* k = Klass::cast(ctxk);
   806     Method* lm = k->lookup_method(m->name(), m->signature());
   807     if (lm == NULL && k->oop_is_instance()) {
   808       // It might be an abstract interface method, devoid of mirandas.
   809       lm = ((InstanceKlass*)k)->lookup_method_in_all_interfaces(m->name(),
   810                                                                 m->signature());
   811     }
   812     if (lm == m)
   813       // Method m is inherited into ctxk.
   814       return true;
   815     if (lm != NULL) {
   816       if (!(lm->is_public() || lm->is_protected())) {
   817         // Method is [package-]private, so the override story is complex.
   818         return true;  // Must punt the assertion to true.
   819       }
   820       if (lm->is_static()) {
   821         // Static methods don't override non-static so punt
   822         return true;
   823       }
   824       if (   !Dependencies::is_concrete_method(lm)
   825           && !Dependencies::is_concrete_method(m)
   826           && Klass::cast(lm->method_holder())->is_subtype_of(m->method_holder()))
   827         // Method m is overridden by lm, but both are non-concrete.
   828         return true;
   829     }
   830     ResourceMark rm;
   831     tty->print_cr("Dependency method not found in the associated context:");
   832     tty->print_cr("  context = %s", Klass::cast(ctxk)->external_name());
   833     tty->print(   "  method = "); m->print_short_name(tty); tty->cr();
   834     if (lm != NULL) {
   835       tty->print( "  found = "); lm->print_short_name(tty); tty->cr();
   836     }
   837     return false;
   838   }
   839 #endif
   841   void add_participant(Klass* participant) {
   842     assert(_num_participants + _record_witnesses < PARTICIPANT_LIMIT, "oob");
   843     int np = _num_participants++;
   844     _participants[np] = participant;
   845     _participants[np+1] = NULL;
   846     _found_methods[np+1] = NULL;
   847   }
   849   void record_witnesses(int add) {
   850     if (add > PARTICIPANT_LIMIT)  add = PARTICIPANT_LIMIT;
   851     assert(_num_participants + add < PARTICIPANT_LIMIT, "oob");
   852     _record_witnesses = add;
   853   }
   855   bool is_witness(Klass* k) {
   856     if (doing_subtype_search()) {
   857       return Dependencies::is_concrete_klass(k);
   858     } else {
   859       Method* m = InstanceKlass::cast(k)->find_method(_name, _signature);
   860       if (m == NULL || !Dependencies::is_concrete_method(m))  return false;
   861       _found_methods[_num_participants] = m;
   862       // Note:  If add_participant(k) is called,
   863       // the method m will already be memoized for it.
   864       return true;
   865     }
   866   }
   868   bool is_participant(Klass* k) {
   869     if (k == _participants[0]) {
   870       return true;
   871     } else if (_num_participants <= 1) {
   872       return false;
   873     } else {
   874       return in_list(k, &_participants[1]);
   875     }
   876   }
   877   bool ignore_witness(Klass* witness) {
   878     if (_record_witnesses == 0) {
   879       return false;
   880     } else {
   881       --_record_witnesses;
   882       add_participant(witness);
   883       return true;
   884     }
   885   }
   886   static bool in_list(Klass* x, Klass** list) {
   887     for (int i = 0; ; i++) {
   888       Klass* y = list[i];
   889       if (y == NULL)  break;
   890       if (y == x)  return true;
   891     }
   892     return false;  // not in list
   893   }
   895  private:
   896   // the actual search method:
   897   Klass* find_witness_anywhere(Klass* context_type,
   898                                  bool participants_hide_witnesses,
   899                                  bool top_level_call = true);
   900   // the spot-checking version:
   901   Klass* find_witness_in(KlassDepChange& changes,
   902                          Klass* context_type,
   903                            bool participants_hide_witnesses);
   904  public:
   905   Klass* find_witness_subtype(Klass* context_type, KlassDepChange* changes = NULL) {
   906     assert(doing_subtype_search(), "must set up a subtype search");
   907     // When looking for unexpected concrete types,
   908     // do not look beneath expected ones.
   909     const bool participants_hide_witnesses = true;
   910     // CX > CC > C' is OK, even if C' is new.
   911     // CX > { CC,  C' } is not OK if C' is new, and C' is the witness.
   912     if (changes != NULL) {
   913       return find_witness_in(*changes, context_type, participants_hide_witnesses);
   914     } else {
   915       return find_witness_anywhere(context_type, participants_hide_witnesses);
   916     }
   917   }
   918   Klass* find_witness_definer(Klass* context_type, KlassDepChange* changes = NULL) {
   919     assert(!doing_subtype_search(), "must set up a method definer search");
   920     // When looking for unexpected concrete methods,
   921     // look beneath expected ones, to see if there are overrides.
   922     const bool participants_hide_witnesses = true;
   923     // CX.m > CC.m > C'.m is not OK, if C'.m is new, and C' is the witness.
   924     if (changes != NULL) {
   925       return find_witness_in(*changes, context_type, !participants_hide_witnesses);
   926     } else {
   927       return find_witness_anywhere(context_type, !participants_hide_witnesses);
   928     }
   929   }
   930 };
   932 #ifndef PRODUCT
   933 static int deps_find_witness_calls = 0;
   934 static int deps_find_witness_steps = 0;
   935 static int deps_find_witness_recursions = 0;
   936 static int deps_find_witness_singles = 0;
   937 static int deps_find_witness_print = 0; // set to -1 to force a final print
   938 static bool count_find_witness_calls() {
   939   if (TraceDependencies || LogCompilation) {
   940     int pcount = deps_find_witness_print + 1;
   941     bool final_stats      = (pcount == 0);
   942     bool initial_call     = (pcount == 1);
   943     bool occasional_print = ((pcount & ((1<<10) - 1)) == 0);
   944     if (pcount < 0)  pcount = 1; // crude overflow protection
   945     deps_find_witness_print = pcount;
   946     if (VerifyDependencies && initial_call) {
   947       tty->print_cr("Warning:  TraceDependencies results may be inflated by VerifyDependencies");
   948     }
   949     if (occasional_print || final_stats) {
   950       // Every now and then dump a little info about dependency searching.
   951       if (xtty != NULL) {
   952        ttyLocker ttyl;
   953        xtty->elem("deps_find_witness calls='%d' steps='%d' recursions='%d' singles='%d'",
   954                    deps_find_witness_calls,
   955                    deps_find_witness_steps,
   956                    deps_find_witness_recursions,
   957                    deps_find_witness_singles);
   958       }
   959       if (final_stats || (TraceDependencies && WizardMode)) {
   960         ttyLocker ttyl;
   961         tty->print_cr("Dependency check (find_witness) "
   962                       "calls=%d, steps=%d (avg=%.1f), recursions=%d, singles=%d",
   963                       deps_find_witness_calls,
   964                       deps_find_witness_steps,
   965                       (double)deps_find_witness_steps / deps_find_witness_calls,
   966                       deps_find_witness_recursions,
   967                       deps_find_witness_singles);
   968       }
   969     }
   970     return true;
   971   }
   972   return false;
   973 }
   974 #else
   975 #define count_find_witness_calls() (0)
   976 #endif //PRODUCT
   979 Klass* ClassHierarchyWalker::find_witness_in(KlassDepChange& changes,
   980                                                Klass* context_type,
   981                                                bool participants_hide_witnesses) {
   982   assert(changes.involves_context(context_type), "irrelevant dependency");
   983   Klass* new_type = changes.new_type();
   985   count_find_witness_calls();
   986   NOT_PRODUCT(deps_find_witness_singles++);
   988   // Current thread must be in VM (not native mode, as in CI):
   989   assert(must_be_in_vm(), "raw oops here");
   990   // Must not move the class hierarchy during this check:
   991   assert_locked_or_safepoint(Compile_lock);
   993   int nof_impls = InstanceKlass::cast(context_type)->nof_implementors();
   994   if (nof_impls > 1) {
   995     // Avoid this case: *I.m > { A.m, C }; B.m > C
   996     // %%% Until this is fixed more systematically, bail out.
   997     // See corresponding comment in find_witness_anywhere.
   998     return context_type;
   999   }
  1001   assert(!is_participant(new_type), "only old classes are participants");
  1002   if (participants_hide_witnesses) {
  1003     // If the new type is a subtype of a participant, we are done.
  1004     for (int i = 0; i < num_participants(); i++) {
  1005       Klass* part = participant(i);
  1006       if (part == NULL)  continue;
  1007       assert(changes.involves_context(part) == Klass::cast(new_type)->is_subtype_of(part),
  1008              "correct marking of participants, b/c new_type is unique");
  1009       if (changes.involves_context(part)) {
  1010         // new guy is protected from this check by previous participant
  1011         return NULL;
  1016   if (is_witness(new_type) &&
  1017       !ignore_witness(new_type)) {
  1018     return new_type;
  1021   return NULL;
  1025 // Walk hierarchy under a context type, looking for unexpected types.
  1026 // Do not report participant types, and recursively walk beneath
  1027 // them only if participants_hide_witnesses is false.
  1028 // If top_level_call is false, skip testing the context type,
  1029 // because the caller has already considered it.
  1030 Klass* ClassHierarchyWalker::find_witness_anywhere(Klass* context_type,
  1031                                                      bool participants_hide_witnesses,
  1032                                                      bool top_level_call) {
  1033   // Current thread must be in VM (not native mode, as in CI):
  1034   assert(must_be_in_vm(), "raw oops here");
  1035   // Must not move the class hierarchy during this check:
  1036   assert_locked_or_safepoint(Compile_lock);
  1038   bool do_counts = count_find_witness_calls();
  1040   // Check the root of the sub-hierarchy first.
  1041   if (top_level_call) {
  1042     if (do_counts) {
  1043       NOT_PRODUCT(deps_find_witness_calls++);
  1044       NOT_PRODUCT(deps_find_witness_steps++);
  1046     if (is_participant(context_type)) {
  1047       if (participants_hide_witnesses)  return NULL;
  1048       // else fall through to search loop...
  1049     } else if (is_witness(context_type) && !ignore_witness(context_type)) {
  1050       // The context is an abstract class or interface, to start with.
  1051       return context_type;
  1055   // Now we must check each implementor and each subclass.
  1056   // Use a short worklist to avoid blowing the stack.
  1057   // Each worklist entry is a *chain* of subklass siblings to process.
  1058   const int CHAINMAX = 100;  // >= 1 + InstanceKlass::implementors_limit
  1059   Klass* chains[CHAINMAX];
  1060   int    chaini = 0;  // index into worklist
  1061   Klass* chain;       // scratch variable
  1062 #define ADD_SUBCLASS_CHAIN(k)                     {  \
  1063     assert(chaini < CHAINMAX, "oob");                \
  1064     chain = InstanceKlass::cast(k)->subklass();      \
  1065     if (chain != NULL)  chains[chaini++] = chain;    }
  1067   // Look for non-abstract subclasses.
  1068   // (Note:  Interfaces do not have subclasses.)
  1069   ADD_SUBCLASS_CHAIN(context_type);
  1071   // If it is an interface, search its direct implementors.
  1072   // (Their subclasses are additional indirect implementors.
  1073   // See InstanceKlass::add_implementor.)
  1074   // (Note:  nof_implementors is always zero for non-interfaces.)
  1075   int nof_impls = InstanceKlass::cast(context_type)->nof_implementors();
  1076   if (nof_impls > 1) {
  1077     // Avoid this case: *I.m > { A.m, C }; B.m > C
  1078     // Here, I.m has 2 concrete implementations, but m appears unique
  1079     // as A.m, because the search misses B.m when checking C.
  1080     // The inherited method B.m was getting missed by the walker
  1081     // when interface 'I' was the starting point.
  1082     // %%% Until this is fixed more systematically, bail out.
  1083     // (Old CHA had the same limitation.)
  1084     return context_type;
  1086   if (nof_impls > 0) {
  1087     Klass* impl = InstanceKlass::cast(context_type)->implementor();
  1088     assert(impl != NULL, "just checking");
  1089     // If impl is the same as the context_type, then more than one
  1090     // implementor has seen. No exact info in this case.
  1091     if (impl == context_type) {
  1092       return context_type;  // report an inexact witness to this sad affair
  1094     if (do_counts)
  1095       { NOT_PRODUCT(deps_find_witness_steps++); }
  1096     if (is_participant(impl)) {
  1097       if (!participants_hide_witnesses) {
  1098         ADD_SUBCLASS_CHAIN(impl);
  1100     } else if (is_witness(impl) && !ignore_witness(impl)) {
  1101       return impl;
  1102     } else {
  1103       ADD_SUBCLASS_CHAIN(impl);
  1107   // Recursively process each non-trivial sibling chain.
  1108   while (chaini > 0) {
  1109     Klass* chain = chains[--chaini];
  1110     for (Klass* sub = chain; sub != NULL; sub = sub->next_sibling()) {
  1111       if (do_counts) { NOT_PRODUCT(deps_find_witness_steps++); }
  1112       if (is_participant(sub)) {
  1113         if (participants_hide_witnesses)  continue;
  1114         // else fall through to process this guy's subclasses
  1115       } else if (is_witness(sub) && !ignore_witness(sub)) {
  1116         return sub;
  1118       if (chaini < (VerifyDependencies? 2: CHAINMAX)) {
  1119         // Fast path.  (Partially disabled if VerifyDependencies.)
  1120         ADD_SUBCLASS_CHAIN(sub);
  1121       } else {
  1122         // Worklist overflow.  Do a recursive call.  Should be rare.
  1123         // The recursive call will have its own worklist, of course.
  1124         // (Note that sub has already been tested, so that there is
  1125         // no need for the recursive call to re-test.  That's handy,
  1126         // since the recursive call sees sub as the context_type.)
  1127         if (do_counts) { NOT_PRODUCT(deps_find_witness_recursions++); }
  1128         Klass* witness = find_witness_anywhere(sub,
  1129                                                  participants_hide_witnesses,
  1130                                                  /*top_level_call=*/ false);
  1131         if (witness != NULL)  return witness;
  1136   // No witness found.  The dependency remains unbroken.
  1137   return NULL;
  1138 #undef ADD_SUBCLASS_CHAIN
  1142 bool Dependencies::is_concrete_klass(Klass* k) {
  1143   if (Klass::cast(k)->is_abstract())  return false;
  1144   // %%% We could treat classes which are concrete but
  1145   // have not yet been instantiated as virtually abstract.
  1146   // This would require a deoptimization barrier on first instantiation.
  1147   //if (k->is_not_instantiated())  return false;
  1148   return true;
  1151 bool Dependencies::is_concrete_method(Method* m) {
  1152   // Statics are irrelevant to virtual call sites.
  1153   if (m->is_static())  return false;
  1155   // We could also return false if m does not yet appear to be
  1156   // executed, if the VM version supports this distinction also.
  1157   return !m->is_abstract();
  1161 Klass* Dependencies::find_finalizable_subclass(Klass* k) {
  1162   if (k->is_interface())  return NULL;
  1163   if (k->has_finalizer()) return k;
  1164   k = k->subklass();
  1165   while (k != NULL) {
  1166     Klass* result = find_finalizable_subclass(k);
  1167     if (result != NULL) return result;
  1168     k = k->next_sibling();
  1170   return NULL;
  1174 bool Dependencies::is_concrete_klass(ciInstanceKlass* k) {
  1175   if (k->is_abstract())  return false;
  1176   // We could also return false if k does not yet appear to be
  1177   // instantiated, if the VM version supports this distinction also.
  1178   //if (k->is_not_instantiated())  return false;
  1179   return true;
  1182 bool Dependencies::is_concrete_method(ciMethod* m) {
  1183   // Statics are irrelevant to virtual call sites.
  1184   if (m->is_static())  return false;
  1186   // We could also return false if m does not yet appear to be
  1187   // executed, if the VM version supports this distinction also.
  1188   return !m->is_abstract();
  1192 bool Dependencies::has_finalizable_subclass(ciInstanceKlass* k) {
  1193   return k->has_finalizable_subclass();
  1197 // Any use of the contents (bytecodes) of a method must be
  1198 // marked by an "evol_method" dependency, if those contents
  1199 // can change.  (Note: A method is always dependent on itself.)
  1200 Klass* Dependencies::check_evol_method(Method* m) {
  1201   assert(must_be_in_vm(), "raw oops here");
  1202   // Did somebody do a JVMTI RedefineClasses while our backs were turned?
  1203   // Or is there a now a breakpoint?
  1204   // (Assumes compiled code cannot handle bkpts; change if UseFastBreakpoints.)
  1205   if (m->is_old()
  1206       || m->number_of_breakpoints() > 0) {
  1207     return m->method_holder();
  1208   } else {
  1209     return NULL;
  1213 // This is a strong assertion:  It is that the given type
  1214 // has no subtypes whatever.  It is most useful for
  1215 // optimizing checks on reflected types or on array types.
  1216 // (Checks on types which are derived from real instances
  1217 // can be optimized more strongly than this, because we
  1218 // know that the checked type comes from a concrete type,
  1219 // and therefore we can disregard abstract types.)
  1220 Klass* Dependencies::check_leaf_type(Klass* ctxk) {
  1221   assert(must_be_in_vm(), "raw oops here");
  1222   assert_locked_or_safepoint(Compile_lock);
  1223   InstanceKlass* ctx = InstanceKlass::cast(ctxk);
  1224   Klass* sub = ctx->subklass();
  1225   if (sub != NULL) {
  1226     return sub;
  1227   } else if (ctx->nof_implementors() != 0) {
  1228     // if it is an interface, it must be unimplemented
  1229     // (if it is not an interface, nof_implementors is always zero)
  1230     Klass* impl = ctx->implementor();
  1231     assert(impl != NULL, "must be set");
  1232     return impl;
  1233   } else {
  1234     return NULL;
  1238 // Test the assertion that conck is the only concrete subtype* of ctxk.
  1239 // The type conck itself is allowed to have have further concrete subtypes.
  1240 // This allows the compiler to narrow occurrences of ctxk by conck,
  1241 // when dealing with the types of actual instances.
  1242 Klass* Dependencies::check_abstract_with_unique_concrete_subtype(Klass* ctxk,
  1243                                                                    Klass* conck,
  1244                                                                    KlassDepChange* changes) {
  1245   ClassHierarchyWalker wf(conck);
  1246   return wf.find_witness_subtype(ctxk, changes);
  1249 // If a non-concrete class has no concrete subtypes, it is not (yet)
  1250 // instantiatable.  This can allow the compiler to make some paths go
  1251 // dead, if they are gated by a test of the type.
  1252 Klass* Dependencies::check_abstract_with_no_concrete_subtype(Klass* ctxk,
  1253                                                                KlassDepChange* changes) {
  1254   // Find any concrete subtype, with no participants:
  1255   ClassHierarchyWalker wf;
  1256   return wf.find_witness_subtype(ctxk, changes);
  1260 // If a concrete class has no concrete subtypes, it can always be
  1261 // exactly typed.  This allows the use of a cheaper type test.
  1262 Klass* Dependencies::check_concrete_with_no_concrete_subtype(Klass* ctxk,
  1263                                                                KlassDepChange* changes) {
  1264   // Find any concrete subtype, with only the ctxk as participant:
  1265   ClassHierarchyWalker wf(ctxk);
  1266   return wf.find_witness_subtype(ctxk, changes);
  1270 // Find the unique concrete proper subtype of ctxk, or NULL if there
  1271 // is more than one concrete proper subtype.  If there are no concrete
  1272 // proper subtypes, return ctxk itself, whether it is concrete or not.
  1273 // The returned subtype is allowed to have have further concrete subtypes.
  1274 // That is, return CC1 for CX > CC1 > CC2, but NULL for CX > { CC1, CC2 }.
  1275 Klass* Dependencies::find_unique_concrete_subtype(Klass* ctxk) {
  1276   ClassHierarchyWalker wf(ctxk);   // Ignore ctxk when walking.
  1277   wf.record_witnesses(1);          // Record one other witness when walking.
  1278   Klass* wit = wf.find_witness_subtype(ctxk);
  1279   if (wit != NULL)  return NULL;   // Too many witnesses.
  1280   Klass* conck = wf.participant(0);
  1281   if (conck == NULL) {
  1282 #ifndef PRODUCT
  1283     // Make sure the dependency mechanism will pass this discovery:
  1284     if (VerifyDependencies) {
  1285       // Turn off dependency tracing while actually testing deps.
  1286       FlagSetting fs(TraceDependencies, false);
  1287       if (!Dependencies::is_concrete_klass(ctxk)) {
  1288         guarantee(NULL ==
  1289                   (void *)check_abstract_with_no_concrete_subtype(ctxk),
  1290                   "verify dep.");
  1291       } else {
  1292         guarantee(NULL ==
  1293                   (void *)check_concrete_with_no_concrete_subtype(ctxk),
  1294                   "verify dep.");
  1297 #endif //PRODUCT
  1298     return ctxk;                   // Return ctxk as a flag for "no subtypes".
  1299   } else {
  1300 #ifndef PRODUCT
  1301     // Make sure the dependency mechanism will pass this discovery:
  1302     if (VerifyDependencies) {
  1303       // Turn off dependency tracing while actually testing deps.
  1304       FlagSetting fs(TraceDependencies, false);
  1305       if (!Dependencies::is_concrete_klass(ctxk)) {
  1306         guarantee(NULL == (void *)
  1307                   check_abstract_with_unique_concrete_subtype(ctxk, conck),
  1308                   "verify dep.");
  1311 #endif //PRODUCT
  1312     return conck;
  1316 // Test the assertion that the k[12] are the only concrete subtypes of ctxk,
  1317 // except possibly for further subtypes of k[12] themselves.
  1318 // The context type must be abstract.  The types k1 and k2 are themselves
  1319 // allowed to have further concrete subtypes.
  1320 Klass* Dependencies::check_abstract_with_exclusive_concrete_subtypes(
  1321                                                 Klass* ctxk,
  1322                                                 Klass* k1,
  1323                                                 Klass* k2,
  1324                                                 KlassDepChange* changes) {
  1325   ClassHierarchyWalker wf;
  1326   wf.add_participant(k1);
  1327   wf.add_participant(k2);
  1328   return wf.find_witness_subtype(ctxk, changes);
  1331 // Search ctxk for concrete implementations.  If there are klen or fewer,
  1332 // pack them into the given array and return the number.
  1333 // Otherwise, return -1, meaning the given array would overflow.
  1334 // (Note that a return of 0 means there are exactly no concrete subtypes.)
  1335 // In this search, if ctxk is concrete, it will be reported alone.
  1336 // For any type CC reported, no proper subtypes of CC will be reported.
  1337 int Dependencies::find_exclusive_concrete_subtypes(Klass* ctxk,
  1338                                                    int klen,
  1339                                                    Klass* karray[]) {
  1340   ClassHierarchyWalker wf;
  1341   wf.record_witnesses(klen);
  1342   Klass* wit = wf.find_witness_subtype(ctxk);
  1343   if (wit != NULL)  return -1;  // Too many witnesses.
  1344   int num = wf.num_participants();
  1345   assert(num <= klen, "oob");
  1346   // Pack the result array with the good news.
  1347   for (int i = 0; i < num; i++)
  1348     karray[i] = wf.participant(i);
  1349 #ifndef PRODUCT
  1350   // Make sure the dependency mechanism will pass this discovery:
  1351   if (VerifyDependencies) {
  1352     // Turn off dependency tracing while actually testing deps.
  1353     FlagSetting fs(TraceDependencies, false);
  1354     switch (Dependencies::is_concrete_klass(ctxk)? -1: num) {
  1355     case -1: // ctxk was itself concrete
  1356       guarantee(num == 1 && karray[0] == ctxk, "verify dep.");
  1357       break;
  1358     case 0:
  1359       guarantee(NULL == (void *)check_abstract_with_no_concrete_subtype(ctxk),
  1360                 "verify dep.");
  1361       break;
  1362     case 1:
  1363       guarantee(NULL == (void *)
  1364                 check_abstract_with_unique_concrete_subtype(ctxk, karray[0]),
  1365                 "verify dep.");
  1366       break;
  1367     case 2:
  1368       guarantee(NULL == (void *)
  1369                 check_abstract_with_exclusive_concrete_subtypes(ctxk,
  1370                                                                 karray[0],
  1371                                                                 karray[1]),
  1372                 "verify dep.");
  1373       break;
  1374     default:
  1375       ShouldNotReachHere();  // klen > 2 yet supported
  1378 #endif //PRODUCT
  1379   return num;
  1382 // If a class (or interface) has a unique concrete method uniqm, return NULL.
  1383 // Otherwise, return a class that contains an interfering method.
  1384 Klass* Dependencies::check_unique_concrete_method(Klass* ctxk, Method* uniqm,
  1385                                                     KlassDepChange* changes) {
  1386   // Here is a missing optimization:  If uniqm->is_final(),
  1387   // we don't really need to search beneath it for overrides.
  1388   // This is probably not important, since we don't use dependencies
  1389   // to track final methods.  (They can't be "definalized".)
  1390   ClassHierarchyWalker wf(uniqm->method_holder(), uniqm);
  1391   return wf.find_witness_definer(ctxk, changes);
  1394 // Find the set of all non-abstract methods under ctxk that match m.
  1395 // (The method m must be defined or inherited in ctxk.)
  1396 // Include m itself in the set, unless it is abstract.
  1397 // If this set has exactly one element, return that element.
  1398 Method* Dependencies::find_unique_concrete_method(Klass* ctxk, Method* m) {
  1399   ClassHierarchyWalker wf(m);
  1400   assert(wf.check_method_context(ctxk, m), "proper context");
  1401   wf.record_witnesses(1);
  1402   Klass* wit = wf.find_witness_definer(ctxk);
  1403   if (wit != NULL)  return NULL;  // Too many witnesses.
  1404   Method* fm = wf.found_method(0);  // Will be NULL if num_parts == 0.
  1405   if (Dependencies::is_concrete_method(m)) {
  1406     if (fm == NULL) {
  1407       // It turns out that m was always the only implementation.
  1408       fm = m;
  1409     } else if (fm != m) {
  1410       // Two conflicting implementations after all.
  1411       // (This can happen if m is inherited into ctxk and fm overrides it.)
  1412       return NULL;
  1415 #ifndef PRODUCT
  1416   // Make sure the dependency mechanism will pass this discovery:
  1417   if (VerifyDependencies && fm != NULL) {
  1418     guarantee(NULL == (void *)check_unique_concrete_method(ctxk, fm),
  1419               "verify dep.");
  1421 #endif //PRODUCT
  1422   return fm;
  1425 Klass* Dependencies::check_exclusive_concrete_methods(Klass* ctxk,
  1426                                                         Method* m1,
  1427                                                         Method* m2,
  1428                                                         KlassDepChange* changes) {
  1429   ClassHierarchyWalker wf(m1);
  1430   wf.add_participant(m1->method_holder());
  1431   wf.add_participant(m2->method_holder());
  1432   return wf.find_witness_definer(ctxk, changes);
  1435 // Find the set of all non-abstract methods under ctxk that match m[0].
  1436 // (The method m[0] must be defined or inherited in ctxk.)
  1437 // Include m itself in the set, unless it is abstract.
  1438 // Fill the given array m[0..(mlen-1)] with this set, and return the length.
  1439 // (The length may be zero if no concrete methods are found anywhere.)
  1440 // If there are too many concrete methods to fit in marray, return -1.
  1441 int Dependencies::find_exclusive_concrete_methods(Klass* ctxk,
  1442                                                   int mlen,
  1443                                                   Method* marray[]) {
  1444   Method* m0 = marray[0];
  1445   ClassHierarchyWalker wf(m0);
  1446   assert(wf.check_method_context(ctxk, m0), "proper context");
  1447   wf.record_witnesses(mlen);
  1448   bool participants_hide_witnesses = true;
  1449   Klass* wit = wf.find_witness_definer(ctxk);
  1450   if (wit != NULL)  return -1;  // Too many witnesses.
  1451   int num = wf.num_participants();
  1452   assert(num <= mlen, "oob");
  1453   // Keep track of whether m is also part of the result set.
  1454   int mfill = 0;
  1455   assert(marray[mfill] == m0, "sanity");
  1456   if (Dependencies::is_concrete_method(m0))
  1457     mfill++;  // keep m0 as marray[0], the first result
  1458   for (int i = 0; i < num; i++) {
  1459     Method* fm = wf.found_method(i);
  1460     if (fm == m0)  continue;  // Already put this guy in the list.
  1461     if (mfill == mlen) {
  1462       return -1;              // Oops.  Too many methods after all!
  1464     marray[mfill++] = fm;
  1466 #ifndef PRODUCT
  1467   // Make sure the dependency mechanism will pass this discovery:
  1468   if (VerifyDependencies) {
  1469     // Turn off dependency tracing while actually testing deps.
  1470     FlagSetting fs(TraceDependencies, false);
  1471     switch (mfill) {
  1472     case 1:
  1473       guarantee(NULL == (void *)check_unique_concrete_method(ctxk, marray[0]),
  1474                 "verify dep.");
  1475       break;
  1476     case 2:
  1477       guarantee(NULL == (void *)
  1478                 check_exclusive_concrete_methods(ctxk, marray[0], marray[1]),
  1479                 "verify dep.");
  1480       break;
  1481     default:
  1482       ShouldNotReachHere();  // mlen > 2 yet supported
  1485 #endif //PRODUCT
  1486   return mfill;
  1490 Klass* Dependencies::check_has_no_finalizable_subclasses(Klass* ctxk, KlassDepChange* changes) {
  1491   Klass* search_at = ctxk;
  1492   if (changes != NULL)
  1493     search_at = changes->new_type(); // just look at the new bit
  1494   return find_finalizable_subclass(search_at);
  1498 Klass* Dependencies::check_call_site_target_value(oop call_site, oop method_handle, CallSiteDepChange* changes) {
  1499   assert(call_site    ->is_a(SystemDictionary::CallSite_klass()),     "sanity");
  1500   assert(method_handle->is_a(SystemDictionary::MethodHandle_klass()), "sanity");
  1501   if (changes == NULL) {
  1502     // Validate all CallSites
  1503     if (java_lang_invoke_CallSite::target(call_site) != method_handle)
  1504       return call_site->klass();  // assertion failed
  1505   } else {
  1506     // Validate the given CallSite
  1507     if (call_site == changes->call_site() && java_lang_invoke_CallSite::target(call_site) != changes->method_handle()) {
  1508       assert(method_handle != changes->method_handle(), "must be");
  1509       return call_site->klass();  // assertion failed
  1512   return NULL;  // assertion still valid
  1516 void Dependencies::DepStream::trace_and_log_witness(Klass* witness) {
  1517   if (witness != NULL) {
  1518     if (TraceDependencies) {
  1519       print_dependency(witness, /*verbose=*/ true);
  1521     // The following is a no-op unless logging is enabled:
  1522     log_dependency(witness);
  1527 Klass* Dependencies::DepStream::check_klass_dependency(KlassDepChange* changes) {
  1528   assert_locked_or_safepoint(Compile_lock);
  1529   Dependencies::check_valid_dependency_type(type());
  1531   Klass* witness = NULL;
  1532   switch (type()) {
  1533   case evol_method:
  1534     witness = check_evol_method(method_argument(0));
  1535     break;
  1536   case leaf_type:
  1537     witness = check_leaf_type(context_type());
  1538     break;
  1539   case abstract_with_unique_concrete_subtype:
  1540     witness = check_abstract_with_unique_concrete_subtype(context_type(), type_argument(1), changes);
  1541     break;
  1542   case abstract_with_no_concrete_subtype:
  1543     witness = check_abstract_with_no_concrete_subtype(context_type(), changes);
  1544     break;
  1545   case concrete_with_no_concrete_subtype:
  1546     witness = check_concrete_with_no_concrete_subtype(context_type(), changes);
  1547     break;
  1548   case unique_concrete_method:
  1549     witness = check_unique_concrete_method(context_type(), method_argument(1), changes);
  1550     break;
  1551   case abstract_with_exclusive_concrete_subtypes_2:
  1552     witness = check_abstract_with_exclusive_concrete_subtypes(context_type(), type_argument(1), type_argument(2), changes);
  1553     break;
  1554   case exclusive_concrete_methods_2:
  1555     witness = check_exclusive_concrete_methods(context_type(), method_argument(1), method_argument(2), changes);
  1556     break;
  1557   case no_finalizable_subclasses:
  1558     witness = check_has_no_finalizable_subclasses(context_type(), changes);
  1559     break;
  1560   default:
  1561     witness = NULL;
  1562     break;
  1564   trace_and_log_witness(witness);
  1565   return witness;
  1569 Klass* Dependencies::DepStream::check_call_site_dependency(CallSiteDepChange* changes) {
  1570   assert_locked_or_safepoint(Compile_lock);
  1571   Dependencies::check_valid_dependency_type(type());
  1573   Klass* witness = NULL;
  1574   switch (type()) {
  1575   case call_site_target_value:
  1576     witness = check_call_site_target_value(argument_oop(0), argument_oop(1), changes);
  1577     break;
  1578   default:
  1579     witness = NULL;
  1580     break;
  1582   trace_and_log_witness(witness);
  1583   return witness;
  1587 Klass* Dependencies::DepStream::spot_check_dependency_at(DepChange& changes) {
  1588   // Handle klass dependency
  1589   if (changes.is_klass_change() && changes.as_klass_change()->involves_context(context_type()))
  1590     return check_klass_dependency(changes.as_klass_change());
  1592   // Handle CallSite dependency
  1593   if (changes.is_call_site_change())
  1594     return check_call_site_dependency(changes.as_call_site_change());
  1596   // irrelevant dependency; skip it
  1597   return NULL;
  1601 void DepChange::print() {
  1602   int nsup = 0, nint = 0;
  1603   for (ContextStream str(*this); str.next(); ) {
  1604     Klass* k = str.klass();
  1605     switch (str.change_type()) {
  1606     case Change_new_type:
  1607       tty->print_cr("  dependee = %s", InstanceKlass::cast(k)->external_name());
  1608       break;
  1609     case Change_new_sub:
  1610       if (!WizardMode) {
  1611         ++nsup;
  1612       } else {
  1613         tty->print_cr("  context super = %s", InstanceKlass::cast(k)->external_name());
  1615       break;
  1616     case Change_new_impl:
  1617       if (!WizardMode) {
  1618         ++nint;
  1619       } else {
  1620         tty->print_cr("  context interface = %s", InstanceKlass::cast(k)->external_name());
  1622       break;
  1625   if (nsup + nint != 0) {
  1626     tty->print_cr("  context supers = %d, interfaces = %d", nsup, nint);
  1630 void DepChange::ContextStream::start() {
  1631   Klass* new_type = _changes.is_klass_change() ? _changes.as_klass_change()->new_type() : (Klass*) NULL;
  1632   _change_type = (new_type == NULL ? NO_CHANGE : Start_Klass);
  1633   _klass = new_type;
  1634   _ti_base = NULL;
  1635   _ti_index = 0;
  1636   _ti_limit = 0;
  1639 bool DepChange::ContextStream::next() {
  1640   switch (_change_type) {
  1641   case Start_Klass:             // initial state; _klass is the new type
  1642     _ti_base = InstanceKlass::cast(_klass)->transitive_interfaces();
  1643     _ti_index = 0;
  1644     _change_type = Change_new_type;
  1645     return true;
  1646   case Change_new_type:
  1647     // fall through:
  1648     _change_type = Change_new_sub;
  1649   case Change_new_sub:
  1650     // 6598190: brackets workaround Sun Studio C++ compiler bug 6629277
  1652       _klass = InstanceKlass::cast(_klass)->super();
  1653       if (_klass != NULL) {
  1654         return true;
  1657     // else set up _ti_limit and fall through:
  1658     _ti_limit = (_ti_base == NULL) ? 0 : _ti_base->length();
  1659     _change_type = Change_new_impl;
  1660   case Change_new_impl:
  1661     if (_ti_index < _ti_limit) {
  1662       _klass = _ti_base->at(_ti_index++);
  1663       return true;
  1665     // fall through:
  1666     _change_type = NO_CHANGE;  // iterator is exhausted
  1667   case NO_CHANGE:
  1668     break;
  1669   default:
  1670     ShouldNotReachHere();
  1672   return false;
  1675 void KlassDepChange::initialize() {
  1676   // entire transaction must be under this lock:
  1677   assert_lock_strong(Compile_lock);
  1679   // Mark all dependee and all its superclasses
  1680   // Mark transitive interfaces
  1681   for (ContextStream str(*this); str.next(); ) {
  1682     Klass* d = str.klass();
  1683     assert(!InstanceKlass::cast(d)->is_marked_dependent(), "checking");
  1684     InstanceKlass::cast(d)->set_is_marked_dependent(true);
  1688 KlassDepChange::~KlassDepChange() {
  1689   // Unmark all dependee and all its superclasses
  1690   // Unmark transitive interfaces
  1691   for (ContextStream str(*this); str.next(); ) {
  1692     Klass* d = str.klass();
  1693     InstanceKlass::cast(d)->set_is_marked_dependent(false);
  1697 bool KlassDepChange::involves_context(Klass* k) {
  1698   if (k == NULL || !Klass::cast(k)->oop_is_instance()) {
  1699     return false;
  1701   InstanceKlass* ik = InstanceKlass::cast(k);
  1702   bool is_contained = ik->is_marked_dependent();
  1703   assert(is_contained == Klass::cast(new_type())->is_subtype_of(k),
  1704          "correct marking of potential context types");
  1705   return is_contained;
  1708 #ifndef PRODUCT
  1709 void Dependencies::print_statistics() {
  1710   if (deps_find_witness_print != 0) {
  1711     // Call one final time, to flush out the data.
  1712     deps_find_witness_print = -1;
  1713     count_find_witness_calls();
  1716 #endif

mercurial