src/share/vm/runtime/thread.cpp

Tue, 30 Nov 2010 09:53:04 -0800

author
twisti
date
Tue, 30 Nov 2010 09:53:04 -0800
changeset 2343
f2da85a9b08e
parent 2314
f95d63e2154a
child 2356
4de5f4101cfd
permissions
-rw-r--r--

7001363: java/dyn/InvokeDynamic should not be a well-known class in the JVM
Summary: Because of the removal of language support, the JDK 7 API for JSR 292 no longer includes a public class named java/dyn/InvokeDynamic.
Reviewed-by: jrose, kvn

     1 /*
     2  * Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "classfile/classLoader.hpp"
    27 #include "classfile/javaClasses.hpp"
    28 #include "classfile/systemDictionary.hpp"
    29 #include "classfile/vmSymbols.hpp"
    30 #include "code/scopeDesc.hpp"
    31 #include "compiler/compileBroker.hpp"
    32 #include "interpreter/interpreter.hpp"
    33 #include "interpreter/linkResolver.hpp"
    34 #include "memory/oopFactory.hpp"
    35 #include "memory/universe.inline.hpp"
    36 #include "oops/instanceKlass.hpp"
    37 #include "oops/objArrayOop.hpp"
    38 #include "oops/oop.inline.hpp"
    39 #include "oops/symbolOop.hpp"
    40 #include "prims/jvm_misc.hpp"
    41 #include "prims/jvmtiExport.hpp"
    42 #include "prims/jvmtiThreadState.hpp"
    43 #include "prims/privilegedStack.hpp"
    44 #include "runtime/aprofiler.hpp"
    45 #include "runtime/arguments.hpp"
    46 #include "runtime/biasedLocking.hpp"
    47 #include "runtime/deoptimization.hpp"
    48 #include "runtime/fprofiler.hpp"
    49 #include "runtime/frame.inline.hpp"
    50 #include "runtime/hpi.hpp"
    51 #include "runtime/init.hpp"
    52 #include "runtime/interfaceSupport.hpp"
    53 #include "runtime/java.hpp"
    54 #include "runtime/javaCalls.hpp"
    55 #include "runtime/jniPeriodicChecker.hpp"
    56 #include "runtime/memprofiler.hpp"
    57 #include "runtime/mutexLocker.hpp"
    58 #include "runtime/objectMonitor.hpp"
    59 #include "runtime/osThread.hpp"
    60 #include "runtime/safepoint.hpp"
    61 #include "runtime/sharedRuntime.hpp"
    62 #include "runtime/statSampler.hpp"
    63 #include "runtime/stubRoutines.hpp"
    64 #include "runtime/task.hpp"
    65 #include "runtime/threadCritical.hpp"
    66 #include "runtime/threadLocalStorage.hpp"
    67 #include "runtime/vframe.hpp"
    68 #include "runtime/vframeArray.hpp"
    69 #include "runtime/vframe_hp.hpp"
    70 #include "runtime/vmThread.hpp"
    71 #include "runtime/vm_operations.hpp"
    72 #include "services/attachListener.hpp"
    73 #include "services/management.hpp"
    74 #include "services/threadService.hpp"
    75 #include "utilities/defaultStream.hpp"
    76 #include "utilities/dtrace.hpp"
    77 #include "utilities/events.hpp"
    78 #include "utilities/preserveException.hpp"
    79 #ifdef TARGET_OS_FAMILY_linux
    80 # include "os_linux.inline.hpp"
    81 # include "thread_linux.inline.hpp"
    82 #endif
    83 #ifdef TARGET_OS_FAMILY_solaris
    84 # include "os_solaris.inline.hpp"
    85 # include "thread_solaris.inline.hpp"
    86 #endif
    87 #ifdef TARGET_OS_FAMILY_windows
    88 # include "os_windows.inline.hpp"
    89 # include "thread_windows.inline.hpp"
    90 #endif
    91 #ifndef SERIALGC
    92 #include "gc_implementation/concurrentMarkSweep/concurrentMarkSweepThread.hpp"
    93 #include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
    94 #include "gc_implementation/parallelScavenge/pcTasks.hpp"
    95 #endif
    96 #ifdef COMPILER1
    97 #include "c1/c1_Compiler.hpp"
    98 #endif
    99 #ifdef COMPILER2
   100 #include "opto/c2compiler.hpp"
   101 #include "opto/idealGraphPrinter.hpp"
   102 #endif
   104 #ifdef DTRACE_ENABLED
   106 // Only bother with this argument setup if dtrace is available
   108 HS_DTRACE_PROBE_DECL(hotspot, vm__init__begin);
   109 HS_DTRACE_PROBE_DECL(hotspot, vm__init__end);
   110 HS_DTRACE_PROBE_DECL5(hotspot, thread__start, char*, intptr_t,
   111   intptr_t, intptr_t, bool);
   112 HS_DTRACE_PROBE_DECL5(hotspot, thread__stop, char*, intptr_t,
   113   intptr_t, intptr_t, bool);
   115 #define DTRACE_THREAD_PROBE(probe, javathread)                             \
   116   {                                                                        \
   117     ResourceMark rm(this);                                                 \
   118     int len = 0;                                                           \
   119     const char* name = (javathread)->get_thread_name();                    \
   120     len = strlen(name);                                                    \
   121     HS_DTRACE_PROBE5(hotspot, thread__##probe,                             \
   122       name, len,                                                           \
   123       java_lang_Thread::thread_id((javathread)->threadObj()),              \
   124       (javathread)->osthread()->thread_id(),                               \
   125       java_lang_Thread::is_daemon((javathread)->threadObj()));             \
   126   }
   128 #else //  ndef DTRACE_ENABLED
   130 #define DTRACE_THREAD_PROBE(probe, javathread)
   132 #endif // ndef DTRACE_ENABLED
   134 // Class hierarchy
   135 // - Thread
   136 //   - VMThread
   137 //   - WatcherThread
   138 //   - ConcurrentMarkSweepThread
   139 //   - JavaThread
   140 //     - CompilerThread
   142 // ======= Thread ========
   144 // Support for forcing alignment of thread objects for biased locking
   145 void* Thread::operator new(size_t size) {
   146   if (UseBiasedLocking) {
   147     const int alignment = markOopDesc::biased_lock_alignment;
   148     size_t aligned_size = size + (alignment - sizeof(intptr_t));
   149     void* real_malloc_addr = CHeapObj::operator new(aligned_size);
   150     void* aligned_addr     = (void*) align_size_up((intptr_t) real_malloc_addr, alignment);
   151     assert(((uintptr_t) aligned_addr + (uintptr_t) size) <=
   152            ((uintptr_t) real_malloc_addr + (uintptr_t) aligned_size),
   153            "JavaThread alignment code overflowed allocated storage");
   154     if (TraceBiasedLocking) {
   155       if (aligned_addr != real_malloc_addr)
   156         tty->print_cr("Aligned thread " INTPTR_FORMAT " to " INTPTR_FORMAT,
   157                       real_malloc_addr, aligned_addr);
   158     }
   159     ((Thread*) aligned_addr)->_real_malloc_address = real_malloc_addr;
   160     return aligned_addr;
   161   } else {
   162     return CHeapObj::operator new(size);
   163   }
   164 }
   166 void Thread::operator delete(void* p) {
   167   if (UseBiasedLocking) {
   168     void* real_malloc_addr = ((Thread*) p)->_real_malloc_address;
   169     CHeapObj::operator delete(real_malloc_addr);
   170   } else {
   171     CHeapObj::operator delete(p);
   172   }
   173 }
   176 // Base class for all threads: VMThread, WatcherThread, ConcurrentMarkSweepThread,
   177 // JavaThread
   180 Thread::Thread() {
   181   // stack
   182   _stack_base   = NULL;
   183   _stack_size   = 0;
   184   _self_raw_id  = 0;
   185   _lgrp_id      = -1;
   186   _osthread     = NULL;
   188   // allocated data structures
   189   set_resource_area(new ResourceArea());
   190   set_handle_area(new HandleArea(NULL));
   191   set_active_handles(NULL);
   192   set_free_handle_block(NULL);
   193   set_last_handle_mark(NULL);
   194   set_osthread(NULL);
   196   // This initial value ==> never claimed.
   197   _oops_do_parity = 0;
   199   // the handle mark links itself to last_handle_mark
   200   new HandleMark(this);
   202   // plain initialization
   203   debug_only(_owned_locks = NULL;)
   204   debug_only(_allow_allocation_count = 0;)
   205   NOT_PRODUCT(_allow_safepoint_count = 0;)
   206   NOT_PRODUCT(_skip_gcalot = false;)
   207   CHECK_UNHANDLED_OOPS_ONLY(_gc_locked_out_count = 0;)
   208   _jvmti_env_iteration_count = 0;
   209   _vm_operation_started_count = 0;
   210   _vm_operation_completed_count = 0;
   211   _current_pending_monitor = NULL;
   212   _current_pending_monitor_is_from_java = true;
   213   _current_waiting_monitor = NULL;
   214   _num_nested_signal = 0;
   215   omFreeList = NULL ;
   216   omFreeCount = 0 ;
   217   omFreeProvision = 32 ;
   218   omInUseList = NULL ;
   219   omInUseCount = 0 ;
   221   _SR_lock = new Monitor(Mutex::suspend_resume, "SR_lock", true);
   222   _suspend_flags = 0;
   224   // thread-specific hashCode stream generator state - Marsaglia shift-xor form
   225   _hashStateX = os::random() ;
   226   _hashStateY = 842502087 ;
   227   _hashStateZ = 0x8767 ;    // (int)(3579807591LL & 0xffff) ;
   228   _hashStateW = 273326509 ;
   230   _OnTrap   = 0 ;
   231   _schedctl = NULL ;
   232   _Stalled  = 0 ;
   233   _TypeTag  = 0x2BAD ;
   235   // Many of the following fields are effectively final - immutable
   236   // Note that nascent threads can't use the Native Monitor-Mutex
   237   // construct until the _MutexEvent is initialized ...
   238   // CONSIDER: instead of using a fixed set of purpose-dedicated ParkEvents
   239   // we might instead use a stack of ParkEvents that we could provision on-demand.
   240   // The stack would act as a cache to avoid calls to ParkEvent::Allocate()
   241   // and ::Release()
   242   _ParkEvent   = ParkEvent::Allocate (this) ;
   243   _SleepEvent  = ParkEvent::Allocate (this) ;
   244   _MutexEvent  = ParkEvent::Allocate (this) ;
   245   _MuxEvent    = ParkEvent::Allocate (this) ;
   247 #ifdef CHECK_UNHANDLED_OOPS
   248   if (CheckUnhandledOops) {
   249     _unhandled_oops = new UnhandledOops(this);
   250   }
   251 #endif // CHECK_UNHANDLED_OOPS
   252 #ifdef ASSERT
   253   if (UseBiasedLocking) {
   254     assert((((uintptr_t) this) & (markOopDesc::biased_lock_alignment - 1)) == 0, "forced alignment of thread object failed");
   255     assert(this == _real_malloc_address ||
   256            this == (void*) align_size_up((intptr_t) _real_malloc_address, markOopDesc::biased_lock_alignment),
   257            "bug in forced alignment of thread objects");
   258   }
   259 #endif /* ASSERT */
   260 }
   262 void Thread::initialize_thread_local_storage() {
   263   // Note: Make sure this method only calls
   264   // non-blocking operations. Otherwise, it might not work
   265   // with the thread-startup/safepoint interaction.
   267   // During Java thread startup, safepoint code should allow this
   268   // method to complete because it may need to allocate memory to
   269   // store information for the new thread.
   271   // initialize structure dependent on thread local storage
   272   ThreadLocalStorage::set_thread(this);
   274   // set up any platform-specific state.
   275   os::initialize_thread();
   277 }
   279 void Thread::record_stack_base_and_size() {
   280   set_stack_base(os::current_stack_base());
   281   set_stack_size(os::current_stack_size());
   282 }
   285 Thread::~Thread() {
   286   // Reclaim the objectmonitors from the omFreeList of the moribund thread.
   287   ObjectSynchronizer::omFlush (this) ;
   289   // deallocate data structures
   290   delete resource_area();
   291   // since the handle marks are using the handle area, we have to deallocated the root
   292   // handle mark before deallocating the thread's handle area,
   293   assert(last_handle_mark() != NULL, "check we have an element");
   294   delete last_handle_mark();
   295   assert(last_handle_mark() == NULL, "check we have reached the end");
   297   // It's possible we can encounter a null _ParkEvent, etc., in stillborn threads.
   298   // We NULL out the fields for good hygiene.
   299   ParkEvent::Release (_ParkEvent)   ; _ParkEvent   = NULL ;
   300   ParkEvent::Release (_SleepEvent)  ; _SleepEvent  = NULL ;
   301   ParkEvent::Release (_MutexEvent)  ; _MutexEvent  = NULL ;
   302   ParkEvent::Release (_MuxEvent)    ; _MuxEvent    = NULL ;
   304   delete handle_area();
   306   // osthread() can be NULL, if creation of thread failed.
   307   if (osthread() != NULL) os::free_thread(osthread());
   309   delete _SR_lock;
   311   // clear thread local storage if the Thread is deleting itself
   312   if (this == Thread::current()) {
   313     ThreadLocalStorage::set_thread(NULL);
   314   } else {
   315     // In the case where we're not the current thread, invalidate all the
   316     // caches in case some code tries to get the current thread or the
   317     // thread that was destroyed, and gets stale information.
   318     ThreadLocalStorage::invalidate_all();
   319   }
   320   CHECK_UNHANDLED_OOPS_ONLY(if (CheckUnhandledOops) delete unhandled_oops();)
   321 }
   323 // NOTE: dummy function for assertion purpose.
   324 void Thread::run() {
   325   ShouldNotReachHere();
   326 }
   328 #ifdef ASSERT
   329 // Private method to check for dangling thread pointer
   330 void check_for_dangling_thread_pointer(Thread *thread) {
   331  assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
   332          "possibility of dangling Thread pointer");
   333 }
   334 #endif
   337 #ifndef PRODUCT
   338 // Tracing method for basic thread operations
   339 void Thread::trace(const char* msg, const Thread* const thread) {
   340   if (!TraceThreadEvents) return;
   341   ResourceMark rm;
   342   ThreadCritical tc;
   343   const char *name = "non-Java thread";
   344   int prio = -1;
   345   if (thread->is_Java_thread()
   346       && !thread->is_Compiler_thread()) {
   347     // The Threads_lock must be held to get information about
   348     // this thread but may not be in some situations when
   349     // tracing  thread events.
   350     bool release_Threads_lock = false;
   351     if (!Threads_lock->owned_by_self()) {
   352       Threads_lock->lock();
   353       release_Threads_lock = true;
   354     }
   355     JavaThread* jt = (JavaThread *)thread;
   356     name = (char *)jt->get_thread_name();
   357     oop thread_oop = jt->threadObj();
   358     if (thread_oop != NULL) {
   359       prio = java_lang_Thread::priority(thread_oop);
   360     }
   361     if (release_Threads_lock) {
   362       Threads_lock->unlock();
   363     }
   364   }
   365   tty->print_cr("Thread::%s " INTPTR_FORMAT " [%lx] %s (prio: %d)", msg, thread, thread->osthread()->thread_id(), name, prio);
   366 }
   367 #endif
   370 ThreadPriority Thread::get_priority(const Thread* const thread) {
   371   trace("get priority", thread);
   372   ThreadPriority priority;
   373   // Can return an error!
   374   (void)os::get_priority(thread, priority);
   375   assert(MinPriority <= priority && priority <= MaxPriority, "non-Java priority found");
   376   return priority;
   377 }
   379 void Thread::set_priority(Thread* thread, ThreadPriority priority) {
   380   trace("set priority", thread);
   381   debug_only(check_for_dangling_thread_pointer(thread);)
   382   // Can return an error!
   383   (void)os::set_priority(thread, priority);
   384 }
   387 void Thread::start(Thread* thread) {
   388   trace("start", thread);
   389   // Start is different from resume in that its safety is guaranteed by context or
   390   // being called from a Java method synchronized on the Thread object.
   391   if (!DisableStartThread) {
   392     if (thread->is_Java_thread()) {
   393       // Initialize the thread state to RUNNABLE before starting this thread.
   394       // Can not set it after the thread started because we do not know the
   395       // exact thread state at that time. It could be in MONITOR_WAIT or
   396       // in SLEEPING or some other state.
   397       java_lang_Thread::set_thread_status(((JavaThread*)thread)->threadObj(),
   398                                           java_lang_Thread::RUNNABLE);
   399     }
   400     os::start_thread(thread);
   401   }
   402 }
   404 // Enqueue a VM_Operation to do the job for us - sometime later
   405 void Thread::send_async_exception(oop java_thread, oop java_throwable) {
   406   VM_ThreadStop* vm_stop = new VM_ThreadStop(java_thread, java_throwable);
   407   VMThread::execute(vm_stop);
   408 }
   411 //
   412 // Check if an external suspend request has completed (or has been
   413 // cancelled). Returns true if the thread is externally suspended and
   414 // false otherwise.
   415 //
   416 // The bits parameter returns information about the code path through
   417 // the routine. Useful for debugging:
   418 //
   419 // set in is_ext_suspend_completed():
   420 // 0x00000001 - routine was entered
   421 // 0x00000010 - routine return false at end
   422 // 0x00000100 - thread exited (return false)
   423 // 0x00000200 - suspend request cancelled (return false)
   424 // 0x00000400 - thread suspended (return true)
   425 // 0x00001000 - thread is in a suspend equivalent state (return true)
   426 // 0x00002000 - thread is native and walkable (return true)
   427 // 0x00004000 - thread is native_trans and walkable (needed retry)
   428 //
   429 // set in wait_for_ext_suspend_completion():
   430 // 0x00010000 - routine was entered
   431 // 0x00020000 - suspend request cancelled before loop (return false)
   432 // 0x00040000 - thread suspended before loop (return true)
   433 // 0x00080000 - suspend request cancelled in loop (return false)
   434 // 0x00100000 - thread suspended in loop (return true)
   435 // 0x00200000 - suspend not completed during retry loop (return false)
   436 //
   438 // Helper class for tracing suspend wait debug bits.
   439 //
   440 // 0x00000100 indicates that the target thread exited before it could
   441 // self-suspend which is not a wait failure. 0x00000200, 0x00020000 and
   442 // 0x00080000 each indicate a cancelled suspend request so they don't
   443 // count as wait failures either.
   444 #define DEBUG_FALSE_BITS (0x00000010 | 0x00200000)
   446 class TraceSuspendDebugBits : public StackObj {
   447  private:
   448   JavaThread * jt;
   449   bool         is_wait;
   450   bool         called_by_wait;  // meaningful when !is_wait
   451   uint32_t *   bits;
   453  public:
   454   TraceSuspendDebugBits(JavaThread *_jt, bool _is_wait, bool _called_by_wait,
   455                         uint32_t *_bits) {
   456     jt             = _jt;
   457     is_wait        = _is_wait;
   458     called_by_wait = _called_by_wait;
   459     bits           = _bits;
   460   }
   462   ~TraceSuspendDebugBits() {
   463     if (!is_wait) {
   464 #if 1
   465       // By default, don't trace bits for is_ext_suspend_completed() calls.
   466       // That trace is very chatty.
   467       return;
   468 #else
   469       if (!called_by_wait) {
   470         // If tracing for is_ext_suspend_completed() is enabled, then only
   471         // trace calls to it from wait_for_ext_suspend_completion()
   472         return;
   473       }
   474 #endif
   475     }
   477     if (AssertOnSuspendWaitFailure || TraceSuspendWaitFailures) {
   478       if (bits != NULL && (*bits & DEBUG_FALSE_BITS) != 0) {
   479         MutexLocker ml(Threads_lock);  // needed for get_thread_name()
   480         ResourceMark rm;
   482         tty->print_cr(
   483             "Failed wait_for_ext_suspend_completion(thread=%s, debug_bits=%x)",
   484             jt->get_thread_name(), *bits);
   486         guarantee(!AssertOnSuspendWaitFailure, "external suspend wait failed");
   487       }
   488     }
   489   }
   490 };
   491 #undef DEBUG_FALSE_BITS
   494 bool JavaThread::is_ext_suspend_completed(bool called_by_wait, int delay, uint32_t *bits) {
   495   TraceSuspendDebugBits tsdb(this, false /* !is_wait */, called_by_wait, bits);
   497   bool did_trans_retry = false;  // only do thread_in_native_trans retry once
   498   bool do_trans_retry;           // flag to force the retry
   500   *bits |= 0x00000001;
   502   do {
   503     do_trans_retry = false;
   505     if (is_exiting()) {
   506       // Thread is in the process of exiting. This is always checked
   507       // first to reduce the risk of dereferencing a freed JavaThread.
   508       *bits |= 0x00000100;
   509       return false;
   510     }
   512     if (!is_external_suspend()) {
   513       // Suspend request is cancelled. This is always checked before
   514       // is_ext_suspended() to reduce the risk of a rogue resume
   515       // confusing the thread that made the suspend request.
   516       *bits |= 0x00000200;
   517       return false;
   518     }
   520     if (is_ext_suspended()) {
   521       // thread is suspended
   522       *bits |= 0x00000400;
   523       return true;
   524     }
   526     // Now that we no longer do hard suspends of threads running
   527     // native code, the target thread can be changing thread state
   528     // while we are in this routine:
   529     //
   530     //   _thread_in_native -> _thread_in_native_trans -> _thread_blocked
   531     //
   532     // We save a copy of the thread state as observed at this moment
   533     // and make our decision about suspend completeness based on the
   534     // copy. This closes the race where the thread state is seen as
   535     // _thread_in_native_trans in the if-thread_blocked check, but is
   536     // seen as _thread_blocked in if-thread_in_native_trans check.
   537     JavaThreadState save_state = thread_state();
   539     if (save_state == _thread_blocked && is_suspend_equivalent()) {
   540       // If the thread's state is _thread_blocked and this blocking
   541       // condition is known to be equivalent to a suspend, then we can
   542       // consider the thread to be externally suspended. This means that
   543       // the code that sets _thread_blocked has been modified to do
   544       // self-suspension if the blocking condition releases. We also
   545       // used to check for CONDVAR_WAIT here, but that is now covered by
   546       // the _thread_blocked with self-suspension check.
   547       //
   548       // Return true since we wouldn't be here unless there was still an
   549       // external suspend request.
   550       *bits |= 0x00001000;
   551       return true;
   552     } else if (save_state == _thread_in_native && frame_anchor()->walkable()) {
   553       // Threads running native code will self-suspend on native==>VM/Java
   554       // transitions. If its stack is walkable (should always be the case
   555       // unless this function is called before the actual java_suspend()
   556       // call), then the wait is done.
   557       *bits |= 0x00002000;
   558       return true;
   559     } else if (!called_by_wait && !did_trans_retry &&
   560                save_state == _thread_in_native_trans &&
   561                frame_anchor()->walkable()) {
   562       // The thread is transitioning from thread_in_native to another
   563       // thread state. check_safepoint_and_suspend_for_native_trans()
   564       // will force the thread to self-suspend. If it hasn't gotten
   565       // there yet we may have caught the thread in-between the native
   566       // code check above and the self-suspend. Lucky us. If we were
   567       // called by wait_for_ext_suspend_completion(), then it
   568       // will be doing the retries so we don't have to.
   569       //
   570       // Since we use the saved thread state in the if-statement above,
   571       // there is a chance that the thread has already transitioned to
   572       // _thread_blocked by the time we get here. In that case, we will
   573       // make a single unnecessary pass through the logic below. This
   574       // doesn't hurt anything since we still do the trans retry.
   576       *bits |= 0x00004000;
   578       // Once the thread leaves thread_in_native_trans for another
   579       // thread state, we break out of this retry loop. We shouldn't
   580       // need this flag to prevent us from getting back here, but
   581       // sometimes paranoia is good.
   582       did_trans_retry = true;
   584       // We wait for the thread to transition to a more usable state.
   585       for (int i = 1; i <= SuspendRetryCount; i++) {
   586         // We used to do an "os::yield_all(i)" call here with the intention
   587         // that yielding would increase on each retry. However, the parameter
   588         // is ignored on Linux which means the yield didn't scale up. Waiting
   589         // on the SR_lock below provides a much more predictable scale up for
   590         // the delay. It also provides a simple/direct point to check for any
   591         // safepoint requests from the VMThread
   593         // temporarily drops SR_lock while doing wait with safepoint check
   594         // (if we're a JavaThread - the WatcherThread can also call this)
   595         // and increase delay with each retry
   596         SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
   598         // check the actual thread state instead of what we saved above
   599         if (thread_state() != _thread_in_native_trans) {
   600           // the thread has transitioned to another thread state so
   601           // try all the checks (except this one) one more time.
   602           do_trans_retry = true;
   603           break;
   604         }
   605       } // end retry loop
   608     }
   609   } while (do_trans_retry);
   611   *bits |= 0x00000010;
   612   return false;
   613 }
   615 //
   616 // Wait for an external suspend request to complete (or be cancelled).
   617 // Returns true if the thread is externally suspended and false otherwise.
   618 //
   619 bool JavaThread::wait_for_ext_suspend_completion(int retries, int delay,
   620        uint32_t *bits) {
   621   TraceSuspendDebugBits tsdb(this, true /* is_wait */,
   622                              false /* !called_by_wait */, bits);
   624   // local flag copies to minimize SR_lock hold time
   625   bool is_suspended;
   626   bool pending;
   627   uint32_t reset_bits;
   629   // set a marker so is_ext_suspend_completed() knows we are the caller
   630   *bits |= 0x00010000;
   632   // We use reset_bits to reinitialize the bits value at the top of
   633   // each retry loop. This allows the caller to make use of any
   634   // unused bits for their own marking purposes.
   635   reset_bits = *bits;
   637   {
   638     MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
   639     is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
   640                                             delay, bits);
   641     pending = is_external_suspend();
   642   }
   643   // must release SR_lock to allow suspension to complete
   645   if (!pending) {
   646     // A cancelled suspend request is the only false return from
   647     // is_ext_suspend_completed() that keeps us from entering the
   648     // retry loop.
   649     *bits |= 0x00020000;
   650     return false;
   651   }
   653   if (is_suspended) {
   654     *bits |= 0x00040000;
   655     return true;
   656   }
   658   for (int i = 1; i <= retries; i++) {
   659     *bits = reset_bits;  // reinit to only track last retry
   661     // We used to do an "os::yield_all(i)" call here with the intention
   662     // that yielding would increase on each retry. However, the parameter
   663     // is ignored on Linux which means the yield didn't scale up. Waiting
   664     // on the SR_lock below provides a much more predictable scale up for
   665     // the delay. It also provides a simple/direct point to check for any
   666     // safepoint requests from the VMThread
   668     {
   669       MutexLocker ml(SR_lock());
   670       // wait with safepoint check (if we're a JavaThread - the WatcherThread
   671       // can also call this)  and increase delay with each retry
   672       SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
   674       is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
   675                                               delay, bits);
   677       // It is possible for the external suspend request to be cancelled
   678       // (by a resume) before the actual suspend operation is completed.
   679       // Refresh our local copy to see if we still need to wait.
   680       pending = is_external_suspend();
   681     }
   683     if (!pending) {
   684       // A cancelled suspend request is the only false return from
   685       // is_ext_suspend_completed() that keeps us from staying in the
   686       // retry loop.
   687       *bits |= 0x00080000;
   688       return false;
   689     }
   691     if (is_suspended) {
   692       *bits |= 0x00100000;
   693       return true;
   694     }
   695   } // end retry loop
   697   // thread did not suspend after all our retries
   698   *bits |= 0x00200000;
   699   return false;
   700 }
   702 #ifndef PRODUCT
   703 void JavaThread::record_jump(address target, address instr, const char* file, int line) {
   705   // This should not need to be atomic as the only way for simultaneous
   706   // updates is via interrupts. Even then this should be rare or non-existant
   707   // and we don't care that much anyway.
   709   int index = _jmp_ring_index;
   710   _jmp_ring_index = (index + 1 ) & (jump_ring_buffer_size - 1);
   711   _jmp_ring[index]._target = (intptr_t) target;
   712   _jmp_ring[index]._instruction = (intptr_t) instr;
   713   _jmp_ring[index]._file = file;
   714   _jmp_ring[index]._line = line;
   715 }
   716 #endif /* PRODUCT */
   718 // Called by flat profiler
   719 // Callers have already called wait_for_ext_suspend_completion
   720 // The assertion for that is currently too complex to put here:
   721 bool JavaThread::profile_last_Java_frame(frame* _fr) {
   722   bool gotframe = false;
   723   // self suspension saves needed state.
   724   if (has_last_Java_frame() && _anchor.walkable()) {
   725      *_fr = pd_last_frame();
   726      gotframe = true;
   727   }
   728   return gotframe;
   729 }
   731 void Thread::interrupt(Thread* thread) {
   732   trace("interrupt", thread);
   733   debug_only(check_for_dangling_thread_pointer(thread);)
   734   os::interrupt(thread);
   735 }
   737 bool Thread::is_interrupted(Thread* thread, bool clear_interrupted) {
   738   trace("is_interrupted", thread);
   739   debug_only(check_for_dangling_thread_pointer(thread);)
   740   // Note:  If clear_interrupted==false, this simply fetches and
   741   // returns the value of the field osthread()->interrupted().
   742   return os::is_interrupted(thread, clear_interrupted);
   743 }
   746 // GC Support
   747 bool Thread::claim_oops_do_par_case(int strong_roots_parity) {
   748   jint thread_parity = _oops_do_parity;
   749   if (thread_parity != strong_roots_parity) {
   750     jint res = Atomic::cmpxchg(strong_roots_parity, &_oops_do_parity, thread_parity);
   751     if (res == thread_parity) return true;
   752     else {
   753       guarantee(res == strong_roots_parity, "Or else what?");
   754       assert(SharedHeap::heap()->n_par_threads() > 0,
   755              "Should only fail when parallel.");
   756       return false;
   757     }
   758   }
   759   assert(SharedHeap::heap()->n_par_threads() > 0,
   760          "Should only fail when parallel.");
   761   return false;
   762 }
   764 void Thread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
   765   active_handles()->oops_do(f);
   766   // Do oop for ThreadShadow
   767   f->do_oop((oop*)&_pending_exception);
   768   handle_area()->oops_do(f);
   769 }
   771 void Thread::nmethods_do(CodeBlobClosure* cf) {
   772   // no nmethods in a generic thread...
   773 }
   775 void Thread::print_on(outputStream* st) const {
   776   // get_priority assumes osthread initialized
   777   if (osthread() != NULL) {
   778     st->print("prio=%d tid=" INTPTR_FORMAT " ", get_priority(this), this);
   779     osthread()->print_on(st);
   780   }
   781   debug_only(if (WizardMode) print_owned_locks_on(st);)
   782 }
   784 // Thread::print_on_error() is called by fatal error handler. Don't use
   785 // any lock or allocate memory.
   786 void Thread::print_on_error(outputStream* st, char* buf, int buflen) const {
   787   if      (is_VM_thread())                  st->print("VMThread");
   788   else if (is_Compiler_thread())            st->print("CompilerThread");
   789   else if (is_Java_thread())                st->print("JavaThread");
   790   else if (is_GC_task_thread())             st->print("GCTaskThread");
   791   else if (is_Watcher_thread())             st->print("WatcherThread");
   792   else if (is_ConcurrentGC_thread())        st->print("ConcurrentGCThread");
   793   else st->print("Thread");
   795   st->print(" [stack: " PTR_FORMAT "," PTR_FORMAT "]",
   796             _stack_base - _stack_size, _stack_base);
   798   if (osthread()) {
   799     st->print(" [id=%d]", osthread()->thread_id());
   800   }
   801 }
   803 #ifdef ASSERT
   804 void Thread::print_owned_locks_on(outputStream* st) const {
   805   Monitor *cur = _owned_locks;
   806   if (cur == NULL) {
   807     st->print(" (no locks) ");
   808   } else {
   809     st->print_cr(" Locks owned:");
   810     while(cur) {
   811       cur->print_on(st);
   812       cur = cur->next();
   813     }
   814   }
   815 }
   817 static int ref_use_count  = 0;
   819 bool Thread::owns_locks_but_compiled_lock() const {
   820   for(Monitor *cur = _owned_locks; cur; cur = cur->next()) {
   821     if (cur != Compile_lock) return true;
   822   }
   823   return false;
   824 }
   827 #endif
   829 #ifndef PRODUCT
   831 // The flag: potential_vm_operation notifies if this particular safepoint state could potential
   832 // invoke the vm-thread (i.e., and oop allocation). In that case, we also have to make sure that
   833 // no threads which allow_vm_block's are held
   834 void Thread::check_for_valid_safepoint_state(bool potential_vm_operation) {
   835     // Check if current thread is allowed to block at a safepoint
   836     if (!(_allow_safepoint_count == 0))
   837       fatal("Possible safepoint reached by thread that does not allow it");
   838     if (is_Java_thread() && ((JavaThread*)this)->thread_state() != _thread_in_vm) {
   839       fatal("LEAF method calling lock?");
   840     }
   842 #ifdef ASSERT
   843     if (potential_vm_operation && is_Java_thread()
   844         && !Universe::is_bootstrapping()) {
   845       // Make sure we do not hold any locks that the VM thread also uses.
   846       // This could potentially lead to deadlocks
   847       for(Monitor *cur = _owned_locks; cur; cur = cur->next()) {
   848         // Threads_lock is special, since the safepoint synchronization will not start before this is
   849         // acquired. Hence, a JavaThread cannot be holding it at a safepoint. So is VMOperationRequest_lock,
   850         // since it is used to transfer control between JavaThreads and the VMThread
   851         // Do not *exclude* any locks unless you are absolutly sure it is correct. Ask someone else first!
   852         if ( (cur->allow_vm_block() &&
   853               cur != Threads_lock &&
   854               cur != Compile_lock &&               // Temporary: should not be necessary when we get spearate compilation
   855               cur != VMOperationRequest_lock &&
   856               cur != VMOperationQueue_lock) ||
   857               cur->rank() == Mutex::special) {
   858           warning("Thread holding lock at safepoint that vm can block on: %s", cur->name());
   859         }
   860       }
   861     }
   863     if (GCALotAtAllSafepoints) {
   864       // We could enter a safepoint here and thus have a gc
   865       InterfaceSupport::check_gc_alot();
   866     }
   867 #endif
   868 }
   869 #endif
   871 bool Thread::is_in_stack(address adr) const {
   872   assert(Thread::current() == this, "is_in_stack can only be called from current thread");
   873   address end = os::current_stack_pointer();
   874   if (stack_base() >= adr && adr >= end) return true;
   876   return false;
   877 }
   880 // We had to move these methods here, because vm threads get into ObjectSynchronizer::enter
   881 // However, there is a note in JavaThread::is_lock_owned() about the VM threads not being
   882 // used for compilation in the future. If that change is made, the need for these methods
   883 // should be revisited, and they should be removed if possible.
   885 bool Thread::is_lock_owned(address adr) const {
   886   return on_local_stack(adr);
   887 }
   889 bool Thread::set_as_starting_thread() {
   890  // NOTE: this must be called inside the main thread.
   891   return os::create_main_thread((JavaThread*)this);
   892 }
   894 static void initialize_class(symbolHandle class_name, TRAPS) {
   895   klassOop klass = SystemDictionary::resolve_or_fail(class_name, true, CHECK);
   896   instanceKlass::cast(klass)->initialize(CHECK);
   897 }
   900 // Creates the initial ThreadGroup
   901 static Handle create_initial_thread_group(TRAPS) {
   902   klassOop k = SystemDictionary::resolve_or_fail(vmSymbolHandles::java_lang_ThreadGroup(), true, CHECK_NH);
   903   instanceKlassHandle klass (THREAD, k);
   905   Handle system_instance = klass->allocate_instance_handle(CHECK_NH);
   906   {
   907     JavaValue result(T_VOID);
   908     JavaCalls::call_special(&result,
   909                             system_instance,
   910                             klass,
   911                             vmSymbolHandles::object_initializer_name(),
   912                             vmSymbolHandles::void_method_signature(),
   913                             CHECK_NH);
   914   }
   915   Universe::set_system_thread_group(system_instance());
   917   Handle main_instance = klass->allocate_instance_handle(CHECK_NH);
   918   {
   919     JavaValue result(T_VOID);
   920     Handle string = java_lang_String::create_from_str("main", CHECK_NH);
   921     JavaCalls::call_special(&result,
   922                             main_instance,
   923                             klass,
   924                             vmSymbolHandles::object_initializer_name(),
   925                             vmSymbolHandles::threadgroup_string_void_signature(),
   926                             system_instance,
   927                             string,
   928                             CHECK_NH);
   929   }
   930   return main_instance;
   931 }
   933 // Creates the initial Thread
   934 static oop create_initial_thread(Handle thread_group, JavaThread* thread, TRAPS) {
   935   klassOop k = SystemDictionary::resolve_or_fail(vmSymbolHandles::java_lang_Thread(), true, CHECK_NULL);
   936   instanceKlassHandle klass (THREAD, k);
   937   instanceHandle thread_oop = klass->allocate_instance_handle(CHECK_NULL);
   939   java_lang_Thread::set_thread(thread_oop(), thread);
   940   java_lang_Thread::set_priority(thread_oop(), NormPriority);
   941   thread->set_threadObj(thread_oop());
   943   Handle string = java_lang_String::create_from_str("main", CHECK_NULL);
   945   JavaValue result(T_VOID);
   946   JavaCalls::call_special(&result, thread_oop,
   947                                    klass,
   948                                    vmSymbolHandles::object_initializer_name(),
   949                                    vmSymbolHandles::threadgroup_string_void_signature(),
   950                                    thread_group,
   951                                    string,
   952                                    CHECK_NULL);
   953   return thread_oop();
   954 }
   956 static void call_initializeSystemClass(TRAPS) {
   957   klassOop k =  SystemDictionary::resolve_or_fail(vmSymbolHandles::java_lang_System(), true, CHECK);
   958   instanceKlassHandle klass (THREAD, k);
   960   JavaValue result(T_VOID);
   961   JavaCalls::call_static(&result, klass, vmSymbolHandles::initializeSystemClass_name(),
   962                                          vmSymbolHandles::void_method_signature(), CHECK);
   963 }
   965 #ifdef KERNEL
   966 static void set_jkernel_boot_classloader_hook(TRAPS) {
   967   klassOop k = SystemDictionary::sun_jkernel_DownloadManager_klass();
   968   instanceKlassHandle klass (THREAD, k);
   970   if (k == NULL) {
   971     // sun.jkernel.DownloadManager may not present in the JDK; just return
   972     return;
   973   }
   975   JavaValue result(T_VOID);
   976   JavaCalls::call_static(&result, klass, vmSymbolHandles::setBootClassLoaderHook_name(),
   977                                          vmSymbolHandles::void_method_signature(), CHECK);
   978 }
   979 #endif // KERNEL
   981 static void reset_vm_info_property(TRAPS) {
   982   // the vm info string
   983   ResourceMark rm(THREAD);
   984   const char *vm_info = VM_Version::vm_info_string();
   986   // java.lang.System class
   987   klassOop k =  SystemDictionary::resolve_or_fail(vmSymbolHandles::java_lang_System(), true, CHECK);
   988   instanceKlassHandle klass (THREAD, k);
   990   // setProperty arguments
   991   Handle key_str    = java_lang_String::create_from_str("java.vm.info", CHECK);
   992   Handle value_str  = java_lang_String::create_from_str(vm_info, CHECK);
   994   // return value
   995   JavaValue r(T_OBJECT);
   997   // public static String setProperty(String key, String value);
   998   JavaCalls::call_static(&r,
   999                          klass,
  1000                          vmSymbolHandles::setProperty_name(),
  1001                          vmSymbolHandles::string_string_string_signature(),
  1002                          key_str,
  1003                          value_str,
  1004                          CHECK);
  1008 void JavaThread::allocate_threadObj(Handle thread_group, char* thread_name, bool daemon, TRAPS) {
  1009   assert(thread_group.not_null(), "thread group should be specified");
  1010   assert(threadObj() == NULL, "should only create Java thread object once");
  1012   klassOop k = SystemDictionary::resolve_or_fail(vmSymbolHandles::java_lang_Thread(), true, CHECK);
  1013   instanceKlassHandle klass (THREAD, k);
  1014   instanceHandle thread_oop = klass->allocate_instance_handle(CHECK);
  1016   java_lang_Thread::set_thread(thread_oop(), this);
  1017   java_lang_Thread::set_priority(thread_oop(), NormPriority);
  1018   set_threadObj(thread_oop());
  1020   JavaValue result(T_VOID);
  1021   if (thread_name != NULL) {
  1022     Handle name = java_lang_String::create_from_str(thread_name, CHECK);
  1023     // Thread gets assigned specified name and null target
  1024     JavaCalls::call_special(&result,
  1025                             thread_oop,
  1026                             klass,
  1027                             vmSymbolHandles::object_initializer_name(),
  1028                             vmSymbolHandles::threadgroup_string_void_signature(),
  1029                             thread_group, // Argument 1
  1030                             name,         // Argument 2
  1031                             THREAD);
  1032   } else {
  1033     // Thread gets assigned name "Thread-nnn" and null target
  1034     // (java.lang.Thread doesn't have a constructor taking only a ThreadGroup argument)
  1035     JavaCalls::call_special(&result,
  1036                             thread_oop,
  1037                             klass,
  1038                             vmSymbolHandles::object_initializer_name(),
  1039                             vmSymbolHandles::threadgroup_runnable_void_signature(),
  1040                             thread_group, // Argument 1
  1041                             Handle(),     // Argument 2
  1042                             THREAD);
  1046   if (daemon) {
  1047       java_lang_Thread::set_daemon(thread_oop());
  1050   if (HAS_PENDING_EXCEPTION) {
  1051     return;
  1054   KlassHandle group(this, SystemDictionary::ThreadGroup_klass());
  1055   Handle threadObj(this, this->threadObj());
  1057   JavaCalls::call_special(&result,
  1058                          thread_group,
  1059                          group,
  1060                          vmSymbolHandles::add_method_name(),
  1061                          vmSymbolHandles::thread_void_signature(),
  1062                          threadObj,          // Arg 1
  1063                          THREAD);
  1068 // NamedThread --  non-JavaThread subclasses with multiple
  1069 // uniquely named instances should derive from this.
  1070 NamedThread::NamedThread() : Thread() {
  1071   _name = NULL;
  1072   _processed_thread = NULL;
  1075 NamedThread::~NamedThread() {
  1076   if (_name != NULL) {
  1077     FREE_C_HEAP_ARRAY(char, _name);
  1078     _name = NULL;
  1082 void NamedThread::set_name(const char* format, ...) {
  1083   guarantee(_name == NULL, "Only get to set name once.");
  1084   _name = NEW_C_HEAP_ARRAY(char, max_name_len);
  1085   guarantee(_name != NULL, "alloc failure");
  1086   va_list ap;
  1087   va_start(ap, format);
  1088   jio_vsnprintf(_name, max_name_len, format, ap);
  1089   va_end(ap);
  1092 // ======= WatcherThread ========
  1094 // The watcher thread exists to simulate timer interrupts.  It should
  1095 // be replaced by an abstraction over whatever native support for
  1096 // timer interrupts exists on the platform.
  1098 WatcherThread* WatcherThread::_watcher_thread   = NULL;
  1099 volatile bool  WatcherThread::_should_terminate = false;
  1101 WatcherThread::WatcherThread() : Thread() {
  1102   assert(watcher_thread() == NULL, "we can only allocate one WatcherThread");
  1103   if (os::create_thread(this, os::watcher_thread)) {
  1104     _watcher_thread = this;
  1106     // Set the watcher thread to the highest OS priority which should not be
  1107     // used, unless a Java thread with priority java.lang.Thread.MAX_PRIORITY
  1108     // is created. The only normal thread using this priority is the reference
  1109     // handler thread, which runs for very short intervals only.
  1110     // If the VMThread's priority is not lower than the WatcherThread profiling
  1111     // will be inaccurate.
  1112     os::set_priority(this, MaxPriority);
  1113     if (!DisableStartThread) {
  1114       os::start_thread(this);
  1119 void WatcherThread::run() {
  1120   assert(this == watcher_thread(), "just checking");
  1122   this->record_stack_base_and_size();
  1123   this->initialize_thread_local_storage();
  1124   this->set_active_handles(JNIHandleBlock::allocate_block());
  1125   while(!_should_terminate) {
  1126     assert(watcher_thread() == Thread::current(),  "thread consistency check");
  1127     assert(watcher_thread() == this,  "thread consistency check");
  1129     // Calculate how long it'll be until the next PeriodicTask work
  1130     // should be done, and sleep that amount of time.
  1131     size_t time_to_wait = PeriodicTask::time_to_wait();
  1133     // we expect this to timeout - we only ever get unparked when
  1134     // we should terminate
  1136       OSThreadWaitState osts(this->osthread(), false /* not Object.wait() */);
  1138       jlong prev_time = os::javaTimeNanos();
  1139       for (;;) {
  1140         int res= _SleepEvent->park(time_to_wait);
  1141         if (res == OS_TIMEOUT || _should_terminate)
  1142           break;
  1143         // spurious wakeup of some kind
  1144         jlong now = os::javaTimeNanos();
  1145         time_to_wait -= (now - prev_time) / 1000000;
  1146         if (time_to_wait <= 0)
  1147           break;
  1148         prev_time = now;
  1152     if (is_error_reported()) {
  1153       // A fatal error has happened, the error handler(VMError::report_and_die)
  1154       // should abort JVM after creating an error log file. However in some
  1155       // rare cases, the error handler itself might deadlock. Here we try to
  1156       // kill JVM if the fatal error handler fails to abort in 2 minutes.
  1157       //
  1158       // This code is in WatcherThread because WatcherThread wakes up
  1159       // periodically so the fatal error handler doesn't need to do anything;
  1160       // also because the WatcherThread is less likely to crash than other
  1161       // threads.
  1163       for (;;) {
  1164         if (!ShowMessageBoxOnError
  1165          && (OnError == NULL || OnError[0] == '\0')
  1166          && Arguments::abort_hook() == NULL) {
  1167              os::sleep(this, 2 * 60 * 1000, false);
  1168              fdStream err(defaultStream::output_fd());
  1169              err.print_raw_cr("# [ timer expired, abort... ]");
  1170              // skip atexit/vm_exit/vm_abort hooks
  1171              os::die();
  1174         // Wake up 5 seconds later, the fatal handler may reset OnError or
  1175         // ShowMessageBoxOnError when it is ready to abort.
  1176         os::sleep(this, 5 * 1000, false);
  1180     PeriodicTask::real_time_tick(time_to_wait);
  1182     // If we have no more tasks left due to dynamic disenrollment,
  1183     // shut down the thread since we don't currently support dynamic enrollment
  1184     if (PeriodicTask::num_tasks() == 0) {
  1185       _should_terminate = true;
  1189   // Signal that it is terminated
  1191     MutexLockerEx mu(Terminator_lock, Mutex::_no_safepoint_check_flag);
  1192     _watcher_thread = NULL;
  1193     Terminator_lock->notify();
  1196   // Thread destructor usually does this..
  1197   ThreadLocalStorage::set_thread(NULL);
  1200 void WatcherThread::start() {
  1201   if (watcher_thread() == NULL) {
  1202     _should_terminate = false;
  1203     // Create the single instance of WatcherThread
  1204     new WatcherThread();
  1208 void WatcherThread::stop() {
  1209   // it is ok to take late safepoints here, if needed
  1210   MutexLocker mu(Terminator_lock);
  1211   _should_terminate = true;
  1212   OrderAccess::fence();  // ensure WatcherThread sees update in main loop
  1214   Thread* watcher = watcher_thread();
  1215   if (watcher != NULL)
  1216     watcher->_SleepEvent->unpark();
  1218   while(watcher_thread() != NULL) {
  1219     // This wait should make safepoint checks, wait without a timeout,
  1220     // and wait as a suspend-equivalent condition.
  1221     //
  1222     // Note: If the FlatProfiler is running, then this thread is waiting
  1223     // for the WatcherThread to terminate and the WatcherThread, via the
  1224     // FlatProfiler task, is waiting for the external suspend request on
  1225     // this thread to complete. wait_for_ext_suspend_completion() will
  1226     // eventually timeout, but that takes time. Making this wait a
  1227     // suspend-equivalent condition solves that timeout problem.
  1228     //
  1229     Terminator_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
  1230                           Mutex::_as_suspend_equivalent_flag);
  1234 void WatcherThread::print_on(outputStream* st) const {
  1235   st->print("\"%s\" ", name());
  1236   Thread::print_on(st);
  1237   st->cr();
  1240 // ======= JavaThread ========
  1242 // A JavaThread is a normal Java thread
  1244 void JavaThread::initialize() {
  1245   // Initialize fields
  1247   // Set the claimed par_id to -1 (ie not claiming any par_ids)
  1248   set_claimed_par_id(-1);
  1250   set_saved_exception_pc(NULL);
  1251   set_threadObj(NULL);
  1252   _anchor.clear();
  1253   set_entry_point(NULL);
  1254   set_jni_functions(jni_functions());
  1255   set_callee_target(NULL);
  1256   set_vm_result(NULL);
  1257   set_vm_result_2(NULL);
  1258   set_vframe_array_head(NULL);
  1259   set_vframe_array_last(NULL);
  1260   set_deferred_locals(NULL);
  1261   set_deopt_mark(NULL);
  1262   set_deopt_nmethod(NULL);
  1263   clear_must_deopt_id();
  1264   set_monitor_chunks(NULL);
  1265   set_next(NULL);
  1266   set_thread_state(_thread_new);
  1267   _terminated = _not_terminated;
  1268   _privileged_stack_top = NULL;
  1269   _array_for_gc = NULL;
  1270   _suspend_equivalent = false;
  1271   _in_deopt_handler = 0;
  1272   _doing_unsafe_access = false;
  1273   _stack_guard_state = stack_guard_unused;
  1274   _exception_oop = NULL;
  1275   _exception_pc  = 0;
  1276   _exception_handler_pc = 0;
  1277   _exception_stack_size = 0;
  1278   _is_method_handle_return = 0;
  1279   _jvmti_thread_state= NULL;
  1280   _should_post_on_exceptions_flag = JNI_FALSE;
  1281   _jvmti_get_loaded_classes_closure = NULL;
  1282   _interp_only_mode    = 0;
  1283   _special_runtime_exit_condition = _no_async_condition;
  1284   _pending_async_exception = NULL;
  1285   _is_compiling = false;
  1286   _thread_stat = NULL;
  1287   _thread_stat = new ThreadStatistics();
  1288   _blocked_on_compilation = false;
  1289   _jni_active_critical = 0;
  1290   _do_not_unlock_if_synchronized = false;
  1291   _cached_monitor_info = NULL;
  1292   _parker = Parker::Allocate(this) ;
  1294 #ifndef PRODUCT
  1295   _jmp_ring_index = 0;
  1296   for (int ji = 0 ; ji < jump_ring_buffer_size ; ji++ ) {
  1297     record_jump(NULL, NULL, NULL, 0);
  1299 #endif /* PRODUCT */
  1301   set_thread_profiler(NULL);
  1302   if (FlatProfiler::is_active()) {
  1303     // This is where we would decide to either give each thread it's own profiler
  1304     // or use one global one from FlatProfiler,
  1305     // or up to some count of the number of profiled threads, etc.
  1306     ThreadProfiler* pp = new ThreadProfiler();
  1307     pp->engage();
  1308     set_thread_profiler(pp);
  1311   // Setup safepoint state info for this thread
  1312   ThreadSafepointState::create(this);
  1314   debug_only(_java_call_counter = 0);
  1316   // JVMTI PopFrame support
  1317   _popframe_condition = popframe_inactive;
  1318   _popframe_preserved_args = NULL;
  1319   _popframe_preserved_args_size = 0;
  1321   pd_initialize();
  1324 #ifndef SERIALGC
  1325 SATBMarkQueueSet JavaThread::_satb_mark_queue_set;
  1326 DirtyCardQueueSet JavaThread::_dirty_card_queue_set;
  1327 #endif // !SERIALGC
  1329 JavaThread::JavaThread(bool is_attaching) :
  1330   Thread()
  1331 #ifndef SERIALGC
  1332   , _satb_mark_queue(&_satb_mark_queue_set),
  1333   _dirty_card_queue(&_dirty_card_queue_set)
  1334 #endif // !SERIALGC
  1336   initialize();
  1337   _is_attaching = is_attaching;
  1338   assert(_deferred_card_mark.is_empty(), "Default MemRegion ctor");
  1341 bool JavaThread::reguard_stack(address cur_sp) {
  1342   if (_stack_guard_state != stack_guard_yellow_disabled) {
  1343     return true; // Stack already guarded or guard pages not needed.
  1346   if (register_stack_overflow()) {
  1347     // For those architectures which have separate register and
  1348     // memory stacks, we must check the register stack to see if
  1349     // it has overflowed.
  1350     return false;
  1353   // Java code never executes within the yellow zone: the latter is only
  1354   // there to provoke an exception during stack banging.  If java code
  1355   // is executing there, either StackShadowPages should be larger, or
  1356   // some exception code in c1, c2 or the interpreter isn't unwinding
  1357   // when it should.
  1358   guarantee(cur_sp > stack_yellow_zone_base(), "not enough space to reguard - increase StackShadowPages");
  1360   enable_stack_yellow_zone();
  1361   return true;
  1364 bool JavaThread::reguard_stack(void) {
  1365   return reguard_stack(os::current_stack_pointer());
  1369 void JavaThread::block_if_vm_exited() {
  1370   if (_terminated == _vm_exited) {
  1371     // _vm_exited is set at safepoint, and Threads_lock is never released
  1372     // we will block here forever
  1373     Threads_lock->lock_without_safepoint_check();
  1374     ShouldNotReachHere();
  1379 // Remove this ifdef when C1 is ported to the compiler interface.
  1380 static void compiler_thread_entry(JavaThread* thread, TRAPS);
  1382 JavaThread::JavaThread(ThreadFunction entry_point, size_t stack_sz) :
  1383   Thread()
  1384 #ifndef SERIALGC
  1385   , _satb_mark_queue(&_satb_mark_queue_set),
  1386   _dirty_card_queue(&_dirty_card_queue_set)
  1387 #endif // !SERIALGC
  1389   if (TraceThreadEvents) {
  1390     tty->print_cr("creating thread %p", this);
  1392   initialize();
  1393   _is_attaching = false;
  1394   set_entry_point(entry_point);
  1395   // Create the native thread itself.
  1396   // %note runtime_23
  1397   os::ThreadType thr_type = os::java_thread;
  1398   thr_type = entry_point == &compiler_thread_entry ? os::compiler_thread :
  1399                                                      os::java_thread;
  1400   os::create_thread(this, thr_type, stack_sz);
  1402   // The _osthread may be NULL here because we ran out of memory (too many threads active).
  1403   // We need to throw and OutOfMemoryError - however we cannot do this here because the caller
  1404   // may hold a lock and all locks must be unlocked before throwing the exception (throwing
  1405   // the exception consists of creating the exception object & initializing it, initialization
  1406   // will leave the VM via a JavaCall and then all locks must be unlocked).
  1407   //
  1408   // The thread is still suspended when we reach here. Thread must be explicit started
  1409   // by creator! Furthermore, the thread must also explicitly be added to the Threads list
  1410   // by calling Threads:add. The reason why this is not done here, is because the thread
  1411   // object must be fully initialized (take a look at JVM_Start)
  1414 JavaThread::~JavaThread() {
  1415   if (TraceThreadEvents) {
  1416       tty->print_cr("terminate thread %p", this);
  1419   // JSR166 -- return the parker to the free list
  1420   Parker::Release(_parker);
  1421   _parker = NULL ;
  1423   // Free any remaining  previous UnrollBlock
  1424   vframeArray* old_array = vframe_array_last();
  1426   if (old_array != NULL) {
  1427     Deoptimization::UnrollBlock* old_info = old_array->unroll_block();
  1428     old_array->set_unroll_block(NULL);
  1429     delete old_info;
  1430     delete old_array;
  1433   GrowableArray<jvmtiDeferredLocalVariableSet*>* deferred = deferred_locals();
  1434   if (deferred != NULL) {
  1435     // This can only happen if thread is destroyed before deoptimization occurs.
  1436     assert(deferred->length() != 0, "empty array!");
  1437     do {
  1438       jvmtiDeferredLocalVariableSet* dlv = deferred->at(0);
  1439       deferred->remove_at(0);
  1440       // individual jvmtiDeferredLocalVariableSet are CHeapObj's
  1441       delete dlv;
  1442     } while (deferred->length() != 0);
  1443     delete deferred;
  1446   // All Java related clean up happens in exit
  1447   ThreadSafepointState::destroy(this);
  1448   if (_thread_profiler != NULL) delete _thread_profiler;
  1449   if (_thread_stat != NULL) delete _thread_stat;
  1453 // The first routine called by a new Java thread
  1454 void JavaThread::run() {
  1455   // initialize thread-local alloc buffer related fields
  1456   this->initialize_tlab();
  1458   // used to test validitity of stack trace backs
  1459   this->record_base_of_stack_pointer();
  1461   // Record real stack base and size.
  1462   this->record_stack_base_and_size();
  1464   // Initialize thread local storage; set before calling MutexLocker
  1465   this->initialize_thread_local_storage();
  1467   this->create_stack_guard_pages();
  1469   this->cache_global_variables();
  1471   // Thread is now sufficient initialized to be handled by the safepoint code as being
  1472   // in the VM. Change thread state from _thread_new to _thread_in_vm
  1473   ThreadStateTransition::transition_and_fence(this, _thread_new, _thread_in_vm);
  1475   assert(JavaThread::current() == this, "sanity check");
  1476   assert(!Thread::current()->owns_locks(), "sanity check");
  1478   DTRACE_THREAD_PROBE(start, this);
  1480   // This operation might block. We call that after all safepoint checks for a new thread has
  1481   // been completed.
  1482   this->set_active_handles(JNIHandleBlock::allocate_block());
  1484   if (JvmtiExport::should_post_thread_life()) {
  1485     JvmtiExport::post_thread_start(this);
  1488   // We call another function to do the rest so we are sure that the stack addresses used
  1489   // from there will be lower than the stack base just computed
  1490   thread_main_inner();
  1492   // Note, thread is no longer valid at this point!
  1496 void JavaThread::thread_main_inner() {
  1497   assert(JavaThread::current() == this, "sanity check");
  1498   assert(this->threadObj() != NULL, "just checking");
  1500   // Execute thread entry point. If this thread is being asked to restart,
  1501   // or has been stopped before starting, do not reexecute entry point.
  1502   // Note: Due to JVM_StopThread we can have pending exceptions already!
  1503   if (!this->has_pending_exception() && !java_lang_Thread::is_stillborn(this->threadObj())) {
  1504     // enter the thread's entry point only if we have no pending exceptions
  1505     HandleMark hm(this);
  1506     this->entry_point()(this, this);
  1509   DTRACE_THREAD_PROBE(stop, this);
  1511   this->exit(false);
  1512   delete this;
  1516 static void ensure_join(JavaThread* thread) {
  1517   // We do not need to grap the Threads_lock, since we are operating on ourself.
  1518   Handle threadObj(thread, thread->threadObj());
  1519   assert(threadObj.not_null(), "java thread object must exist");
  1520   ObjectLocker lock(threadObj, thread);
  1521   // Ignore pending exception (ThreadDeath), since we are exiting anyway
  1522   thread->clear_pending_exception();
  1523   // It is of profound importance that we set the stillborn bit and reset the thread object,
  1524   // before we do the notify. Since, changing these two variable will make JVM_IsAlive return
  1525   // false. So in case another thread is doing a join on this thread , it will detect that the thread
  1526   // is dead when it gets notified.
  1527   java_lang_Thread::set_stillborn(threadObj());
  1528   // Thread is exiting. So set thread_status field in  java.lang.Thread class to TERMINATED.
  1529   java_lang_Thread::set_thread_status(threadObj(), java_lang_Thread::TERMINATED);
  1530   java_lang_Thread::set_thread(threadObj(), NULL);
  1531   lock.notify_all(thread);
  1532   // Ignore pending exception (ThreadDeath), since we are exiting anyway
  1533   thread->clear_pending_exception();
  1537 // For any new cleanup additions, please check to see if they need to be applied to
  1538 // cleanup_failed_attach_current_thread as well.
  1539 void JavaThread::exit(bool destroy_vm, ExitType exit_type) {
  1540   assert(this == JavaThread::current(),  "thread consistency check");
  1541   if (!InitializeJavaLangSystem) return;
  1543   HandleMark hm(this);
  1544   Handle uncaught_exception(this, this->pending_exception());
  1545   this->clear_pending_exception();
  1546   Handle threadObj(this, this->threadObj());
  1547   assert(threadObj.not_null(), "Java thread object should be created");
  1549   if (get_thread_profiler() != NULL) {
  1550     get_thread_profiler()->disengage();
  1551     ResourceMark rm;
  1552     get_thread_profiler()->print(get_thread_name());
  1556   // FIXIT: This code should be moved into else part, when reliable 1.2/1.3 check is in place
  1558     EXCEPTION_MARK;
  1560     CLEAR_PENDING_EXCEPTION;
  1562   // FIXIT: The is_null check is only so it works better on JDK1.2 VM's. This
  1563   // has to be fixed by a runtime query method
  1564   if (!destroy_vm || JDK_Version::is_jdk12x_version()) {
  1565     // JSR-166: change call from from ThreadGroup.uncaughtException to
  1566     // java.lang.Thread.dispatchUncaughtException
  1567     if (uncaught_exception.not_null()) {
  1568       Handle group(this, java_lang_Thread::threadGroup(threadObj()));
  1569       Events::log("uncaught exception INTPTR_FORMAT " " INTPTR_FORMAT " " INTPTR_FORMAT",
  1570         (address)uncaught_exception(), (address)threadObj(), (address)group());
  1572         EXCEPTION_MARK;
  1573         // Check if the method Thread.dispatchUncaughtException() exists. If so
  1574         // call it.  Otherwise we have an older library without the JSR-166 changes,
  1575         // so call ThreadGroup.uncaughtException()
  1576         KlassHandle recvrKlass(THREAD, threadObj->klass());
  1577         CallInfo callinfo;
  1578         KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass());
  1579         LinkResolver::resolve_virtual_call(callinfo, threadObj, recvrKlass, thread_klass,
  1580                                            vmSymbolHandles::dispatchUncaughtException_name(),
  1581                                            vmSymbolHandles::throwable_void_signature(),
  1582                                            KlassHandle(), false, false, THREAD);
  1583         CLEAR_PENDING_EXCEPTION;
  1584         methodHandle method = callinfo.selected_method();
  1585         if (method.not_null()) {
  1586           JavaValue result(T_VOID);
  1587           JavaCalls::call_virtual(&result,
  1588                                   threadObj, thread_klass,
  1589                                   vmSymbolHandles::dispatchUncaughtException_name(),
  1590                                   vmSymbolHandles::throwable_void_signature(),
  1591                                   uncaught_exception,
  1592                                   THREAD);
  1593         } else {
  1594           KlassHandle thread_group(THREAD, SystemDictionary::ThreadGroup_klass());
  1595           JavaValue result(T_VOID);
  1596           JavaCalls::call_virtual(&result,
  1597                                   group, thread_group,
  1598                                   vmSymbolHandles::uncaughtException_name(),
  1599                                   vmSymbolHandles::thread_throwable_void_signature(),
  1600                                   threadObj,           // Arg 1
  1601                                   uncaught_exception,  // Arg 2
  1602                                   THREAD);
  1604         CLEAR_PENDING_EXCEPTION;
  1608     // Call Thread.exit(). We try 3 times in case we got another Thread.stop during
  1609     // the execution of the method. If that is not enough, then we don't really care. Thread.stop
  1610     // is deprecated anyhow.
  1611     { int count = 3;
  1612       while (java_lang_Thread::threadGroup(threadObj()) != NULL && (count-- > 0)) {
  1613         EXCEPTION_MARK;
  1614         JavaValue result(T_VOID);
  1615         KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass());
  1616         JavaCalls::call_virtual(&result,
  1617                               threadObj, thread_klass,
  1618                               vmSymbolHandles::exit_method_name(),
  1619                               vmSymbolHandles::void_method_signature(),
  1620                               THREAD);
  1621         CLEAR_PENDING_EXCEPTION;
  1625     // notify JVMTI
  1626     if (JvmtiExport::should_post_thread_life()) {
  1627       JvmtiExport::post_thread_end(this);
  1630     // We have notified the agents that we are exiting, before we go on,
  1631     // we must check for a pending external suspend request and honor it
  1632     // in order to not surprise the thread that made the suspend request.
  1633     while (true) {
  1635         MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
  1636         if (!is_external_suspend()) {
  1637           set_terminated(_thread_exiting);
  1638           ThreadService::current_thread_exiting(this);
  1639           break;
  1641         // Implied else:
  1642         // Things get a little tricky here. We have a pending external
  1643         // suspend request, but we are holding the SR_lock so we
  1644         // can't just self-suspend. So we temporarily drop the lock
  1645         // and then self-suspend.
  1648       ThreadBlockInVM tbivm(this);
  1649       java_suspend_self();
  1651       // We're done with this suspend request, but we have to loop around
  1652       // and check again. Eventually we will get SR_lock without a pending
  1653       // external suspend request and will be able to mark ourselves as
  1654       // exiting.
  1656     // no more external suspends are allowed at this point
  1657   } else {
  1658     // before_exit() has already posted JVMTI THREAD_END events
  1661   // Notify waiters on thread object. This has to be done after exit() is called
  1662   // on the thread (if the thread is the last thread in a daemon ThreadGroup the
  1663   // group should have the destroyed bit set before waiters are notified).
  1664   ensure_join(this);
  1665   assert(!this->has_pending_exception(), "ensure_join should have cleared");
  1667   // 6282335 JNI DetachCurrentThread spec states that all Java monitors
  1668   // held by this thread must be released.  A detach operation must only
  1669   // get here if there are no Java frames on the stack.  Therefore, any
  1670   // owned monitors at this point MUST be JNI-acquired monitors which are
  1671   // pre-inflated and in the monitor cache.
  1672   //
  1673   // ensure_join() ignores IllegalThreadStateExceptions, and so does this.
  1674   if (exit_type == jni_detach && JNIDetachReleasesMonitors) {
  1675     assert(!this->has_last_Java_frame(), "detaching with Java frames?");
  1676     ObjectSynchronizer::release_monitors_owned_by_thread(this);
  1677     assert(!this->has_pending_exception(), "release_monitors should have cleared");
  1680   // These things needs to be done while we are still a Java Thread. Make sure that thread
  1681   // is in a consistent state, in case GC happens
  1682   assert(_privileged_stack_top == NULL, "must be NULL when we get here");
  1684   if (active_handles() != NULL) {
  1685     JNIHandleBlock* block = active_handles();
  1686     set_active_handles(NULL);
  1687     JNIHandleBlock::release_block(block);
  1690   if (free_handle_block() != NULL) {
  1691     JNIHandleBlock* block = free_handle_block();
  1692     set_free_handle_block(NULL);
  1693     JNIHandleBlock::release_block(block);
  1696   // These have to be removed while this is still a valid thread.
  1697   remove_stack_guard_pages();
  1699   if (UseTLAB) {
  1700     tlab().make_parsable(true);  // retire TLAB
  1703   if (jvmti_thread_state() != NULL) {
  1704     JvmtiExport::cleanup_thread(this);
  1707 #ifndef SERIALGC
  1708   // We must flush G1-related buffers before removing a thread from
  1709   // the list of active threads.
  1710   if (UseG1GC) {
  1711     flush_barrier_queues();
  1713 #endif
  1715   // Remove from list of active threads list, and notify VM thread if we are the last non-daemon thread
  1716   Threads::remove(this);
  1719 #ifndef SERIALGC
  1720 // Flush G1-related queues.
  1721 void JavaThread::flush_barrier_queues() {
  1722   satb_mark_queue().flush();
  1723   dirty_card_queue().flush();
  1726 void JavaThread::initialize_queues() {
  1727   assert(!SafepointSynchronize::is_at_safepoint(),
  1728          "we should not be at a safepoint");
  1730   ObjPtrQueue& satb_queue = satb_mark_queue();
  1731   SATBMarkQueueSet& satb_queue_set = satb_mark_queue_set();
  1732   // The SATB queue should have been constructed with its active
  1733   // field set to false.
  1734   assert(!satb_queue.is_active(), "SATB queue should not be active");
  1735   assert(satb_queue.is_empty(), "SATB queue should be empty");
  1736   // If we are creating the thread during a marking cycle, we should
  1737   // set the active field of the SATB queue to true.
  1738   if (satb_queue_set.is_active()) {
  1739     satb_queue.set_active(true);
  1742   DirtyCardQueue& dirty_queue = dirty_card_queue();
  1743   // The dirty card queue should have been constructed with its
  1744   // active field set to true.
  1745   assert(dirty_queue.is_active(), "dirty card queue should be active");
  1747 #endif // !SERIALGC
  1749 void JavaThread::cleanup_failed_attach_current_thread() {
  1750   if (get_thread_profiler() != NULL) {
  1751     get_thread_profiler()->disengage();
  1752     ResourceMark rm;
  1753     get_thread_profiler()->print(get_thread_name());
  1756   if (active_handles() != NULL) {
  1757     JNIHandleBlock* block = active_handles();
  1758     set_active_handles(NULL);
  1759     JNIHandleBlock::release_block(block);
  1762   if (free_handle_block() != NULL) {
  1763     JNIHandleBlock* block = free_handle_block();
  1764     set_free_handle_block(NULL);
  1765     JNIHandleBlock::release_block(block);
  1768   // These have to be removed while this is still a valid thread.
  1769   remove_stack_guard_pages();
  1771   if (UseTLAB) {
  1772     tlab().make_parsable(true);  // retire TLAB, if any
  1775 #ifndef SERIALGC
  1776   if (UseG1GC) {
  1777     flush_barrier_queues();
  1779 #endif
  1781   Threads::remove(this);
  1782   delete this;
  1788 JavaThread* JavaThread::active() {
  1789   Thread* thread = ThreadLocalStorage::thread();
  1790   assert(thread != NULL, "just checking");
  1791   if (thread->is_Java_thread()) {
  1792     return (JavaThread*) thread;
  1793   } else {
  1794     assert(thread->is_VM_thread(), "this must be a vm thread");
  1795     VM_Operation* op = ((VMThread*) thread)->vm_operation();
  1796     JavaThread *ret=op == NULL ? NULL : (JavaThread *)op->calling_thread();
  1797     assert(ret->is_Java_thread(), "must be a Java thread");
  1798     return ret;
  1802 bool JavaThread::is_lock_owned(address adr) const {
  1803   if (Thread::is_lock_owned(adr)) return true;
  1805   for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
  1806     if (chunk->contains(adr)) return true;
  1809   return false;
  1813 void JavaThread::add_monitor_chunk(MonitorChunk* chunk) {
  1814   chunk->set_next(monitor_chunks());
  1815   set_monitor_chunks(chunk);
  1818 void JavaThread::remove_monitor_chunk(MonitorChunk* chunk) {
  1819   guarantee(monitor_chunks() != NULL, "must be non empty");
  1820   if (monitor_chunks() == chunk) {
  1821     set_monitor_chunks(chunk->next());
  1822   } else {
  1823     MonitorChunk* prev = monitor_chunks();
  1824     while (prev->next() != chunk) prev = prev->next();
  1825     prev->set_next(chunk->next());
  1829 // JVM support.
  1831 // Note: this function shouldn't block if it's called in
  1832 // _thread_in_native_trans state (such as from
  1833 // check_special_condition_for_native_trans()).
  1834 void JavaThread::check_and_handle_async_exceptions(bool check_unsafe_error) {
  1836   if (has_last_Java_frame() && has_async_condition()) {
  1837     // If we are at a polling page safepoint (not a poll return)
  1838     // then we must defer async exception because live registers
  1839     // will be clobbered by the exception path. Poll return is
  1840     // ok because the call we a returning from already collides
  1841     // with exception handling registers and so there is no issue.
  1842     // (The exception handling path kills call result registers but
  1843     //  this is ok since the exception kills the result anyway).
  1845     if (is_at_poll_safepoint()) {
  1846       // if the code we are returning to has deoptimized we must defer
  1847       // the exception otherwise live registers get clobbered on the
  1848       // exception path before deoptimization is able to retrieve them.
  1849       //
  1850       RegisterMap map(this, false);
  1851       frame caller_fr = last_frame().sender(&map);
  1852       assert(caller_fr.is_compiled_frame(), "what?");
  1853       if (caller_fr.is_deoptimized_frame()) {
  1854         if (TraceExceptions) {
  1855           ResourceMark rm;
  1856           tty->print_cr("deferred async exception at compiled safepoint");
  1858         return;
  1863   JavaThread::AsyncRequests condition = clear_special_runtime_exit_condition();
  1864   if (condition == _no_async_condition) {
  1865     // Conditions have changed since has_special_runtime_exit_condition()
  1866     // was called:
  1867     // - if we were here only because of an external suspend request,
  1868     //   then that was taken care of above (or cancelled) so we are done
  1869     // - if we were here because of another async request, then it has
  1870     //   been cleared between the has_special_runtime_exit_condition()
  1871     //   and now so again we are done
  1872     return;
  1875   // Check for pending async. exception
  1876   if (_pending_async_exception != NULL) {
  1877     // Only overwrite an already pending exception, if it is not a threadDeath.
  1878     if (!has_pending_exception() || !pending_exception()->is_a(SystemDictionary::ThreadDeath_klass())) {
  1880       // We cannot call Exceptions::_throw(...) here because we cannot block
  1881       set_pending_exception(_pending_async_exception, __FILE__, __LINE__);
  1883       if (TraceExceptions) {
  1884         ResourceMark rm;
  1885         tty->print("Async. exception installed at runtime exit (" INTPTR_FORMAT ")", this);
  1886         if (has_last_Java_frame() ) {
  1887           frame f = last_frame();
  1888           tty->print(" (pc: " INTPTR_FORMAT " sp: " INTPTR_FORMAT " )", f.pc(), f.sp());
  1890         tty->print_cr(" of type: %s", instanceKlass::cast(_pending_async_exception->klass())->external_name());
  1892       _pending_async_exception = NULL;
  1893       clear_has_async_exception();
  1897   if (check_unsafe_error &&
  1898       condition == _async_unsafe_access_error && !has_pending_exception()) {
  1899     condition = _no_async_condition;  // done
  1900     switch (thread_state()) {
  1901     case _thread_in_vm:
  1903         JavaThread* THREAD = this;
  1904         THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
  1906     case _thread_in_native:
  1908         ThreadInVMfromNative tiv(this);
  1909         JavaThread* THREAD = this;
  1910         THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
  1912     case _thread_in_Java:
  1914         ThreadInVMfromJava tiv(this);
  1915         JavaThread* THREAD = this;
  1916         THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in a recent unsafe memory access operation in compiled Java code");
  1918     default:
  1919       ShouldNotReachHere();
  1923   assert(condition == _no_async_condition || has_pending_exception() ||
  1924          (!check_unsafe_error && condition == _async_unsafe_access_error),
  1925          "must have handled the async condition, if no exception");
  1928 void JavaThread::handle_special_runtime_exit_condition(bool check_asyncs) {
  1929   //
  1930   // Check for pending external suspend. Internal suspend requests do
  1931   // not use handle_special_runtime_exit_condition().
  1932   // If JNIEnv proxies are allowed, don't self-suspend if the target
  1933   // thread is not the current thread. In older versions of jdbx, jdbx
  1934   // threads could call into the VM with another thread's JNIEnv so we
  1935   // can be here operating on behalf of a suspended thread (4432884).
  1936   bool do_self_suspend = is_external_suspend_with_lock();
  1937   if (do_self_suspend && (!AllowJNIEnvProxy || this == JavaThread::current())) {
  1938     //
  1939     // Because thread is external suspended the safepoint code will count
  1940     // thread as at a safepoint. This can be odd because we can be here
  1941     // as _thread_in_Java which would normally transition to _thread_blocked
  1942     // at a safepoint. We would like to mark the thread as _thread_blocked
  1943     // before calling java_suspend_self like all other callers of it but
  1944     // we must then observe proper safepoint protocol. (We can't leave
  1945     // _thread_blocked with a safepoint in progress). However we can be
  1946     // here as _thread_in_native_trans so we can't use a normal transition
  1947     // constructor/destructor pair because they assert on that type of
  1948     // transition. We could do something like:
  1949     //
  1950     // JavaThreadState state = thread_state();
  1951     // set_thread_state(_thread_in_vm);
  1952     // {
  1953     //   ThreadBlockInVM tbivm(this);
  1954     //   java_suspend_self()
  1955     // }
  1956     // set_thread_state(_thread_in_vm_trans);
  1957     // if (safepoint) block;
  1958     // set_thread_state(state);
  1959     //
  1960     // but that is pretty messy. Instead we just go with the way the
  1961     // code has worked before and note that this is the only path to
  1962     // java_suspend_self that doesn't put the thread in _thread_blocked
  1963     // mode.
  1965     frame_anchor()->make_walkable(this);
  1966     java_suspend_self();
  1968     // We might be here for reasons in addition to the self-suspend request
  1969     // so check for other async requests.
  1972   if (check_asyncs) {
  1973     check_and_handle_async_exceptions();
  1977 void JavaThread::send_thread_stop(oop java_throwable)  {
  1978   assert(Thread::current()->is_VM_thread(), "should be in the vm thread");
  1979   assert(Threads_lock->is_locked(), "Threads_lock should be locked by safepoint code");
  1980   assert(SafepointSynchronize::is_at_safepoint(), "all threads are stopped");
  1982   // Do not throw asynchronous exceptions against the compiler thread
  1983   // (the compiler thread should not be a Java thread -- fix in 1.4.2)
  1984   if (is_Compiler_thread()) return;
  1986   // This is a change from JDK 1.1, but JDK 1.2 will also do it:
  1987   if (java_throwable->is_a(SystemDictionary::ThreadDeath_klass())) {
  1988     java_lang_Thread::set_stillborn(threadObj());
  1992     // Actually throw the Throwable against the target Thread - however
  1993     // only if there is no thread death exception installed already.
  1994     if (_pending_async_exception == NULL || !_pending_async_exception->is_a(SystemDictionary::ThreadDeath_klass())) {
  1995       // If the topmost frame is a runtime stub, then we are calling into
  1996       // OptoRuntime from compiled code. Some runtime stubs (new, monitor_exit..)
  1997       // must deoptimize the caller before continuing, as the compiled  exception handler table
  1998       // may not be valid
  1999       if (has_last_Java_frame()) {
  2000         frame f = last_frame();
  2001         if (f.is_runtime_frame() || f.is_safepoint_blob_frame()) {
  2002           // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
  2003           RegisterMap reg_map(this, UseBiasedLocking);
  2004           frame compiled_frame = f.sender(&reg_map);
  2005           if (compiled_frame.can_be_deoptimized()) {
  2006             Deoptimization::deoptimize(this, compiled_frame, &reg_map);
  2011       // Set async. pending exception in thread.
  2012       set_pending_async_exception(java_throwable);
  2014       if (TraceExceptions) {
  2015        ResourceMark rm;
  2016        tty->print_cr("Pending Async. exception installed of type: %s", instanceKlass::cast(_pending_async_exception->klass())->external_name());
  2018       // for AbortVMOnException flag
  2019       NOT_PRODUCT(Exceptions::debug_check_abort(instanceKlass::cast(_pending_async_exception->klass())->external_name()));
  2024   // Interrupt thread so it will wake up from a potential wait()
  2025   Thread::interrupt(this);
  2028 // External suspension mechanism.
  2029 //
  2030 // Tell the VM to suspend a thread when ever it knows that it does not hold on
  2031 // to any VM_locks and it is at a transition
  2032 // Self-suspension will happen on the transition out of the vm.
  2033 // Catch "this" coming in from JNIEnv pointers when the thread has been freed
  2034 //
  2035 // Guarantees on return:
  2036 //   + Target thread will not execute any new bytecode (that's why we need to
  2037 //     force a safepoint)
  2038 //   + Target thread will not enter any new monitors
  2039 //
  2040 void JavaThread::java_suspend() {
  2041   { MutexLocker mu(Threads_lock);
  2042     if (!Threads::includes(this) || is_exiting() || this->threadObj() == NULL) {
  2043        return;
  2047   { MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
  2048     if (!is_external_suspend()) {
  2049       // a racing resume has cancelled us; bail out now
  2050       return;
  2053     // suspend is done
  2054     uint32_t debug_bits = 0;
  2055     // Warning: is_ext_suspend_completed() may temporarily drop the
  2056     // SR_lock to allow the thread to reach a stable thread state if
  2057     // it is currently in a transient thread state.
  2058     if (is_ext_suspend_completed(false /* !called_by_wait */,
  2059                                  SuspendRetryDelay, &debug_bits) ) {
  2060       return;
  2064   VM_ForceSafepoint vm_suspend;
  2065   VMThread::execute(&vm_suspend);
  2068 // Part II of external suspension.
  2069 // A JavaThread self suspends when it detects a pending external suspend
  2070 // request. This is usually on transitions. It is also done in places
  2071 // where continuing to the next transition would surprise the caller,
  2072 // e.g., monitor entry.
  2073 //
  2074 // Returns the number of times that the thread self-suspended.
  2075 //
  2076 // Note: DO NOT call java_suspend_self() when you just want to block current
  2077 //       thread. java_suspend_self() is the second stage of cooperative
  2078 //       suspension for external suspend requests and should only be used
  2079 //       to complete an external suspend request.
  2080 //
  2081 int JavaThread::java_suspend_self() {
  2082   int ret = 0;
  2084   // we are in the process of exiting so don't suspend
  2085   if (is_exiting()) {
  2086      clear_external_suspend();
  2087      return ret;
  2090   assert(_anchor.walkable() ||
  2091     (is_Java_thread() && !((JavaThread*)this)->has_last_Java_frame()),
  2092     "must have walkable stack");
  2094   MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
  2096   assert(!this->is_ext_suspended(),
  2097     "a thread trying to self-suspend should not already be suspended");
  2099   if (this->is_suspend_equivalent()) {
  2100     // If we are self-suspending as a result of the lifting of a
  2101     // suspend equivalent condition, then the suspend_equivalent
  2102     // flag is not cleared until we set the ext_suspended flag so
  2103     // that wait_for_ext_suspend_completion() returns consistent
  2104     // results.
  2105     this->clear_suspend_equivalent();
  2108   // A racing resume may have cancelled us before we grabbed SR_lock
  2109   // above. Or another external suspend request could be waiting for us
  2110   // by the time we return from SR_lock()->wait(). The thread
  2111   // that requested the suspension may already be trying to walk our
  2112   // stack and if we return now, we can change the stack out from under
  2113   // it. This would be a "bad thing (TM)" and cause the stack walker
  2114   // to crash. We stay self-suspended until there are no more pending
  2115   // external suspend requests.
  2116   while (is_external_suspend()) {
  2117     ret++;
  2118     this->set_ext_suspended();
  2120     // _ext_suspended flag is cleared by java_resume()
  2121     while (is_ext_suspended()) {
  2122       this->SR_lock()->wait(Mutex::_no_safepoint_check_flag);
  2126   return ret;
  2129 #ifdef ASSERT
  2130 // verify the JavaThread has not yet been published in the Threads::list, and
  2131 // hence doesn't need protection from concurrent access at this stage
  2132 void JavaThread::verify_not_published() {
  2133   if (!Threads_lock->owned_by_self()) {
  2134    MutexLockerEx ml(Threads_lock,  Mutex::_no_safepoint_check_flag);
  2135    assert( !Threads::includes(this),
  2136            "java thread shouldn't have been published yet!");
  2138   else {
  2139    assert( !Threads::includes(this),
  2140            "java thread shouldn't have been published yet!");
  2143 #endif
  2145 // Slow path when the native==>VM/Java barriers detect a safepoint is in
  2146 // progress or when _suspend_flags is non-zero.
  2147 // Current thread needs to self-suspend if there is a suspend request and/or
  2148 // block if a safepoint is in progress.
  2149 // Async exception ISN'T checked.
  2150 // Note only the ThreadInVMfromNative transition can call this function
  2151 // directly and when thread state is _thread_in_native_trans
  2152 void JavaThread::check_safepoint_and_suspend_for_native_trans(JavaThread *thread) {
  2153   assert(thread->thread_state() == _thread_in_native_trans, "wrong state");
  2155   JavaThread *curJT = JavaThread::current();
  2156   bool do_self_suspend = thread->is_external_suspend();
  2158   assert(!curJT->has_last_Java_frame() || curJT->frame_anchor()->walkable(), "Unwalkable stack in native->vm transition");
  2160   // If JNIEnv proxies are allowed, don't self-suspend if the target
  2161   // thread is not the current thread. In older versions of jdbx, jdbx
  2162   // threads could call into the VM with another thread's JNIEnv so we
  2163   // can be here operating on behalf of a suspended thread (4432884).
  2164   if (do_self_suspend && (!AllowJNIEnvProxy || curJT == thread)) {
  2165     JavaThreadState state = thread->thread_state();
  2167     // We mark this thread_blocked state as a suspend-equivalent so
  2168     // that a caller to is_ext_suspend_completed() won't be confused.
  2169     // The suspend-equivalent state is cleared by java_suspend_self().
  2170     thread->set_suspend_equivalent();
  2172     // If the safepoint code sees the _thread_in_native_trans state, it will
  2173     // wait until the thread changes to other thread state. There is no
  2174     // guarantee on how soon we can obtain the SR_lock and complete the
  2175     // self-suspend request. It would be a bad idea to let safepoint wait for
  2176     // too long. Temporarily change the state to _thread_blocked to
  2177     // let the VM thread know that this thread is ready for GC. The problem
  2178     // of changing thread state is that safepoint could happen just after
  2179     // java_suspend_self() returns after being resumed, and VM thread will
  2180     // see the _thread_blocked state. We must check for safepoint
  2181     // after restoring the state and make sure we won't leave while a safepoint
  2182     // is in progress.
  2183     thread->set_thread_state(_thread_blocked);
  2184     thread->java_suspend_self();
  2185     thread->set_thread_state(state);
  2186     // Make sure new state is seen by VM thread
  2187     if (os::is_MP()) {
  2188       if (UseMembar) {
  2189         // Force a fence between the write above and read below
  2190         OrderAccess::fence();
  2191       } else {
  2192         // Must use this rather than serialization page in particular on Windows
  2193         InterfaceSupport::serialize_memory(thread);
  2198   if (SafepointSynchronize::do_call_back()) {
  2199     // If we are safepointing, then block the caller which may not be
  2200     // the same as the target thread (see above).
  2201     SafepointSynchronize::block(curJT);
  2204   if (thread->is_deopt_suspend()) {
  2205     thread->clear_deopt_suspend();
  2206     RegisterMap map(thread, false);
  2207     frame f = thread->last_frame();
  2208     while ( f.id() != thread->must_deopt_id() && ! f.is_first_frame()) {
  2209       f = f.sender(&map);
  2211     if (f.id() == thread->must_deopt_id()) {
  2212       thread->clear_must_deopt_id();
  2213       f.deoptimize(thread);
  2214     } else {
  2215       fatal("missed deoptimization!");
  2220 // Slow path when the native==>VM/Java barriers detect a safepoint is in
  2221 // progress or when _suspend_flags is non-zero.
  2222 // Current thread needs to self-suspend if there is a suspend request and/or
  2223 // block if a safepoint is in progress.
  2224 // Also check for pending async exception (not including unsafe access error).
  2225 // Note only the native==>VM/Java barriers can call this function and when
  2226 // thread state is _thread_in_native_trans.
  2227 void JavaThread::check_special_condition_for_native_trans(JavaThread *thread) {
  2228   check_safepoint_and_suspend_for_native_trans(thread);
  2230   if (thread->has_async_exception()) {
  2231     // We are in _thread_in_native_trans state, don't handle unsafe
  2232     // access error since that may block.
  2233     thread->check_and_handle_async_exceptions(false);
  2237 // We need to guarantee the Threads_lock here, since resumes are not
  2238 // allowed during safepoint synchronization
  2239 // Can only resume from an external suspension
  2240 void JavaThread::java_resume() {
  2241   assert_locked_or_safepoint(Threads_lock);
  2243   // Sanity check: thread is gone, has started exiting or the thread
  2244   // was not externally suspended.
  2245   if (!Threads::includes(this) || is_exiting() || !is_external_suspend()) {
  2246     return;
  2249   MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
  2251   clear_external_suspend();
  2253   if (is_ext_suspended()) {
  2254     clear_ext_suspended();
  2255     SR_lock()->notify_all();
  2259 void JavaThread::create_stack_guard_pages() {
  2260   if (! os::uses_stack_guard_pages() || _stack_guard_state != stack_guard_unused) return;
  2261   address low_addr = stack_base() - stack_size();
  2262   size_t len = (StackYellowPages + StackRedPages) * os::vm_page_size();
  2264   int allocate = os::allocate_stack_guard_pages();
  2265   // warning("Guarding at " PTR_FORMAT " for len " SIZE_FORMAT "\n", low_addr, len);
  2267   if (allocate && !os::create_stack_guard_pages((char *) low_addr, len)) {
  2268     warning("Attempt to allocate stack guard pages failed.");
  2269     return;
  2272   if (os::guard_memory((char *) low_addr, len)) {
  2273     _stack_guard_state = stack_guard_enabled;
  2274   } else {
  2275     warning("Attempt to protect stack guard pages failed.");
  2276     if (os::uncommit_memory((char *) low_addr, len)) {
  2277       warning("Attempt to deallocate stack guard pages failed.");
  2282 void JavaThread::remove_stack_guard_pages() {
  2283   if (_stack_guard_state == stack_guard_unused) return;
  2284   address low_addr = stack_base() - stack_size();
  2285   size_t len = (StackYellowPages + StackRedPages) * os::vm_page_size();
  2287   if (os::allocate_stack_guard_pages()) {
  2288     if (os::remove_stack_guard_pages((char *) low_addr, len)) {
  2289       _stack_guard_state = stack_guard_unused;
  2290     } else {
  2291       warning("Attempt to deallocate stack guard pages failed.");
  2293   } else {
  2294     if (_stack_guard_state == stack_guard_unused) return;
  2295     if (os::unguard_memory((char *) low_addr, len)) {
  2296       _stack_guard_state = stack_guard_unused;
  2297     } else {
  2298         warning("Attempt to unprotect stack guard pages failed.");
  2303 void JavaThread::enable_stack_yellow_zone() {
  2304   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
  2305   assert(_stack_guard_state != stack_guard_enabled, "already enabled");
  2307   // The base notation is from the stacks point of view, growing downward.
  2308   // We need to adjust it to work correctly with guard_memory()
  2309   address base = stack_yellow_zone_base() - stack_yellow_zone_size();
  2311   guarantee(base < stack_base(),"Error calculating stack yellow zone");
  2312   guarantee(base < os::current_stack_pointer(),"Error calculating stack yellow zone");
  2314   if (os::guard_memory((char *) base, stack_yellow_zone_size())) {
  2315     _stack_guard_state = stack_guard_enabled;
  2316   } else {
  2317     warning("Attempt to guard stack yellow zone failed.");
  2319   enable_register_stack_guard();
  2322 void JavaThread::disable_stack_yellow_zone() {
  2323   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
  2324   assert(_stack_guard_state != stack_guard_yellow_disabled, "already disabled");
  2326   // Simply return if called for a thread that does not use guard pages.
  2327   if (_stack_guard_state == stack_guard_unused) return;
  2329   // The base notation is from the stacks point of view, growing downward.
  2330   // We need to adjust it to work correctly with guard_memory()
  2331   address base = stack_yellow_zone_base() - stack_yellow_zone_size();
  2333   if (os::unguard_memory((char *)base, stack_yellow_zone_size())) {
  2334     _stack_guard_state = stack_guard_yellow_disabled;
  2335   } else {
  2336     warning("Attempt to unguard stack yellow zone failed.");
  2338   disable_register_stack_guard();
  2341 void JavaThread::enable_stack_red_zone() {
  2342   // The base notation is from the stacks point of view, growing downward.
  2343   // We need to adjust it to work correctly with guard_memory()
  2344   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
  2345   address base = stack_red_zone_base() - stack_red_zone_size();
  2347   guarantee(base < stack_base(),"Error calculating stack red zone");
  2348   guarantee(base < os::current_stack_pointer(),"Error calculating stack red zone");
  2350   if(!os::guard_memory((char *) base, stack_red_zone_size())) {
  2351     warning("Attempt to guard stack red zone failed.");
  2355 void JavaThread::disable_stack_red_zone() {
  2356   // The base notation is from the stacks point of view, growing downward.
  2357   // We need to adjust it to work correctly with guard_memory()
  2358   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
  2359   address base = stack_red_zone_base() - stack_red_zone_size();
  2360   if (!os::unguard_memory((char *)base, stack_red_zone_size())) {
  2361     warning("Attempt to unguard stack red zone failed.");
  2365 void JavaThread::frames_do(void f(frame*, const RegisterMap* map)) {
  2366   // ignore is there is no stack
  2367   if (!has_last_Java_frame()) return;
  2368   // traverse the stack frames. Starts from top frame.
  2369   for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
  2370     frame* fr = fst.current();
  2371     f(fr, fst.register_map());
  2376 #ifndef PRODUCT
  2377 // Deoptimization
  2378 // Function for testing deoptimization
  2379 void JavaThread::deoptimize() {
  2380   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
  2381   StackFrameStream fst(this, UseBiasedLocking);
  2382   bool deopt = false;           // Dump stack only if a deopt actually happens.
  2383   bool only_at = strlen(DeoptimizeOnlyAt) > 0;
  2384   // Iterate over all frames in the thread and deoptimize
  2385   for(; !fst.is_done(); fst.next()) {
  2386     if(fst.current()->can_be_deoptimized()) {
  2388       if (only_at) {
  2389         // Deoptimize only at particular bcis.  DeoptimizeOnlyAt
  2390         // consists of comma or carriage return separated numbers so
  2391         // search for the current bci in that string.
  2392         address pc = fst.current()->pc();
  2393         nmethod* nm =  (nmethod*) fst.current()->cb();
  2394         ScopeDesc* sd = nm->scope_desc_at( pc);
  2395         char buffer[8];
  2396         jio_snprintf(buffer, sizeof(buffer), "%d", sd->bci());
  2397         size_t len = strlen(buffer);
  2398         const char * found = strstr(DeoptimizeOnlyAt, buffer);
  2399         while (found != NULL) {
  2400           if ((found[len] == ',' || found[len] == '\n' || found[len] == '\0') &&
  2401               (found == DeoptimizeOnlyAt || found[-1] == ',' || found[-1] == '\n')) {
  2402             // Check that the bci found is bracketed by terminators.
  2403             break;
  2405           found = strstr(found + 1, buffer);
  2407         if (!found) {
  2408           continue;
  2412       if (DebugDeoptimization && !deopt) {
  2413         deopt = true; // One-time only print before deopt
  2414         tty->print_cr("[BEFORE Deoptimization]");
  2415         trace_frames();
  2416         trace_stack();
  2418       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
  2422   if (DebugDeoptimization && deopt) {
  2423     tty->print_cr("[AFTER Deoptimization]");
  2424     trace_frames();
  2429 // Make zombies
  2430 void JavaThread::make_zombies() {
  2431   for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
  2432     if (fst.current()->can_be_deoptimized()) {
  2433       // it is a Java nmethod
  2434       nmethod* nm = CodeCache::find_nmethod(fst.current()->pc());
  2435       nm->make_not_entrant();
  2439 #endif // PRODUCT
  2442 void JavaThread::deoptimized_wrt_marked_nmethods() {
  2443   if (!has_last_Java_frame()) return;
  2444   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
  2445   StackFrameStream fst(this, UseBiasedLocking);
  2446   for(; !fst.is_done(); fst.next()) {
  2447     if (fst.current()->should_be_deoptimized()) {
  2448       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
  2454 // GC support
  2455 static void frame_gc_epilogue(frame* f, const RegisterMap* map) { f->gc_epilogue(); }
  2457 void JavaThread::gc_epilogue() {
  2458   frames_do(frame_gc_epilogue);
  2462 static void frame_gc_prologue(frame* f, const RegisterMap* map) { f->gc_prologue(); }
  2464 void JavaThread::gc_prologue() {
  2465   frames_do(frame_gc_prologue);
  2468 // If the caller is a NamedThread, then remember, in the current scope,
  2469 // the given JavaThread in its _processed_thread field.
  2470 class RememberProcessedThread: public StackObj {
  2471   NamedThread* _cur_thr;
  2472 public:
  2473   RememberProcessedThread(JavaThread* jthr) {
  2474     Thread* thread = Thread::current();
  2475     if (thread->is_Named_thread()) {
  2476       _cur_thr = (NamedThread *)thread;
  2477       _cur_thr->set_processed_thread(jthr);
  2478     } else {
  2479       _cur_thr = NULL;
  2483   ~RememberProcessedThread() {
  2484     if (_cur_thr) {
  2485       _cur_thr->set_processed_thread(NULL);
  2488 };
  2490 void JavaThread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
  2491   // Verify that the deferred card marks have been flushed.
  2492   assert(deferred_card_mark().is_empty(), "Should be empty during GC");
  2494   // The ThreadProfiler oops_do is done from FlatProfiler::oops_do
  2495   // since there may be more than one thread using each ThreadProfiler.
  2497   // Traverse the GCHandles
  2498   Thread::oops_do(f, cf);
  2500   assert( (!has_last_Java_frame() && java_call_counter() == 0) ||
  2501           (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
  2503   if (has_last_Java_frame()) {
  2504     // Record JavaThread to GC thread
  2505     RememberProcessedThread rpt(this);
  2507     // Traverse the privileged stack
  2508     if (_privileged_stack_top != NULL) {
  2509       _privileged_stack_top->oops_do(f);
  2512     // traverse the registered growable array
  2513     if (_array_for_gc != NULL) {
  2514       for (int index = 0; index < _array_for_gc->length(); index++) {
  2515         f->do_oop(_array_for_gc->adr_at(index));
  2519     // Traverse the monitor chunks
  2520     for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
  2521       chunk->oops_do(f);
  2524     // Traverse the execution stack
  2525     for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
  2526       fst.current()->oops_do(f, cf, fst.register_map());
  2530   // callee_target is never live across a gc point so NULL it here should
  2531   // it still contain a methdOop.
  2533   set_callee_target(NULL);
  2535   assert(vframe_array_head() == NULL, "deopt in progress at a safepoint!");
  2536   // If we have deferred set_locals there might be oops waiting to be
  2537   // written
  2538   GrowableArray<jvmtiDeferredLocalVariableSet*>* list = deferred_locals();
  2539   if (list != NULL) {
  2540     for (int i = 0; i < list->length(); i++) {
  2541       list->at(i)->oops_do(f);
  2545   // Traverse instance variables at the end since the GC may be moving things
  2546   // around using this function
  2547   f->do_oop((oop*) &_threadObj);
  2548   f->do_oop((oop*) &_vm_result);
  2549   f->do_oop((oop*) &_vm_result_2);
  2550   f->do_oop((oop*) &_exception_oop);
  2551   f->do_oop((oop*) &_pending_async_exception);
  2553   if (jvmti_thread_state() != NULL) {
  2554     jvmti_thread_state()->oops_do(f);
  2558 void JavaThread::nmethods_do(CodeBlobClosure* cf) {
  2559   Thread::nmethods_do(cf);  // (super method is a no-op)
  2561   assert( (!has_last_Java_frame() && java_call_counter() == 0) ||
  2562           (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
  2564   if (has_last_Java_frame()) {
  2565     // Traverse the execution stack
  2566     for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
  2567       fst.current()->nmethods_do(cf);
  2572 // Printing
  2573 const char* _get_thread_state_name(JavaThreadState _thread_state) {
  2574   switch (_thread_state) {
  2575   case _thread_uninitialized:     return "_thread_uninitialized";
  2576   case _thread_new:               return "_thread_new";
  2577   case _thread_new_trans:         return "_thread_new_trans";
  2578   case _thread_in_native:         return "_thread_in_native";
  2579   case _thread_in_native_trans:   return "_thread_in_native_trans";
  2580   case _thread_in_vm:             return "_thread_in_vm";
  2581   case _thread_in_vm_trans:       return "_thread_in_vm_trans";
  2582   case _thread_in_Java:           return "_thread_in_Java";
  2583   case _thread_in_Java_trans:     return "_thread_in_Java_trans";
  2584   case _thread_blocked:           return "_thread_blocked";
  2585   case _thread_blocked_trans:     return "_thread_blocked_trans";
  2586   default:                        return "unknown thread state";
  2590 #ifndef PRODUCT
  2591 void JavaThread::print_thread_state_on(outputStream *st) const {
  2592   st->print_cr("   JavaThread state: %s", _get_thread_state_name(_thread_state));
  2593 };
  2594 void JavaThread::print_thread_state() const {
  2595   print_thread_state_on(tty);
  2596 };
  2597 #endif // PRODUCT
  2599 // Called by Threads::print() for VM_PrintThreads operation
  2600 void JavaThread::print_on(outputStream *st) const {
  2601   st->print("\"%s\" ", get_thread_name());
  2602   oop thread_oop = threadObj();
  2603   if (thread_oop != NULL && java_lang_Thread::is_daemon(thread_oop))  st->print("daemon ");
  2604   Thread::print_on(st);
  2605   // print guess for valid stack memory region (assume 4K pages); helps lock debugging
  2606   st->print_cr("[" INTPTR_FORMAT "]", (intptr_t)last_Java_sp() & ~right_n_bits(12));
  2607   if (thread_oop != NULL && JDK_Version::is_gte_jdk15x_version()) {
  2608     st->print_cr("   java.lang.Thread.State: %s", java_lang_Thread::thread_status_name(thread_oop));
  2610 #ifndef PRODUCT
  2611   print_thread_state_on(st);
  2612   _safepoint_state->print_on(st);
  2613 #endif // PRODUCT
  2616 // Called by fatal error handler. The difference between this and
  2617 // JavaThread::print() is that we can't grab lock or allocate memory.
  2618 void JavaThread::print_on_error(outputStream* st, char *buf, int buflen) const {
  2619   st->print("JavaThread \"%s\"",  get_thread_name_string(buf, buflen));
  2620   oop thread_obj = threadObj();
  2621   if (thread_obj != NULL) {
  2622      if (java_lang_Thread::is_daemon(thread_obj)) st->print(" daemon");
  2624   st->print(" [");
  2625   st->print("%s", _get_thread_state_name(_thread_state));
  2626   if (osthread()) {
  2627     st->print(", id=%d", osthread()->thread_id());
  2629   st->print(", stack(" PTR_FORMAT "," PTR_FORMAT ")",
  2630             _stack_base - _stack_size, _stack_base);
  2631   st->print("]");
  2632   return;
  2635 // Verification
  2637 static void frame_verify(frame* f, const RegisterMap *map) { f->verify(map); }
  2639 void JavaThread::verify() {
  2640   // Verify oops in the thread.
  2641   oops_do(&VerifyOopClosure::verify_oop, NULL);
  2643   // Verify the stack frames.
  2644   frames_do(frame_verify);
  2647 // CR 6300358 (sub-CR 2137150)
  2648 // Most callers of this method assume that it can't return NULL but a
  2649 // thread may not have a name whilst it is in the process of attaching to
  2650 // the VM - see CR 6412693, and there are places where a JavaThread can be
  2651 // seen prior to having it's threadObj set (eg JNI attaching threads and
  2652 // if vm exit occurs during initialization). These cases can all be accounted
  2653 // for such that this method never returns NULL.
  2654 const char* JavaThread::get_thread_name() const {
  2655 #ifdef ASSERT
  2656   // early safepoints can hit while current thread does not yet have TLS
  2657   if (!SafepointSynchronize::is_at_safepoint()) {
  2658     Thread *cur = Thread::current();
  2659     if (!(cur->is_Java_thread() && cur == this)) {
  2660       // Current JavaThreads are allowed to get their own name without
  2661       // the Threads_lock.
  2662       assert_locked_or_safepoint(Threads_lock);
  2665 #endif // ASSERT
  2666     return get_thread_name_string();
  2669 // Returns a non-NULL representation of this thread's name, or a suitable
  2670 // descriptive string if there is no set name
  2671 const char* JavaThread::get_thread_name_string(char* buf, int buflen) const {
  2672   const char* name_str;
  2673   oop thread_obj = threadObj();
  2674   if (thread_obj != NULL) {
  2675     typeArrayOop name = java_lang_Thread::name(thread_obj);
  2676     if (name != NULL) {
  2677       if (buf == NULL) {
  2678         name_str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
  2680       else {
  2681         name_str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length(), buf, buflen);
  2684     else if (is_attaching()) { // workaround for 6412693 - see 6404306
  2685       name_str = "<no-name - thread is attaching>";
  2687     else {
  2688       name_str = Thread::name();
  2691   else {
  2692     name_str = Thread::name();
  2694   assert(name_str != NULL, "unexpected NULL thread name");
  2695   return name_str;
  2699 const char* JavaThread::get_threadgroup_name() const {
  2700   debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
  2701   oop thread_obj = threadObj();
  2702   if (thread_obj != NULL) {
  2703     oop thread_group = java_lang_Thread::threadGroup(thread_obj);
  2704     if (thread_group != NULL) {
  2705       typeArrayOop name = java_lang_ThreadGroup::name(thread_group);
  2706       // ThreadGroup.name can be null
  2707       if (name != NULL) {
  2708         const char* str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
  2709         return str;
  2713   return NULL;
  2716 const char* JavaThread::get_parent_name() const {
  2717   debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
  2718   oop thread_obj = threadObj();
  2719   if (thread_obj != NULL) {
  2720     oop thread_group = java_lang_Thread::threadGroup(thread_obj);
  2721     if (thread_group != NULL) {
  2722       oop parent = java_lang_ThreadGroup::parent(thread_group);
  2723       if (parent != NULL) {
  2724         typeArrayOop name = java_lang_ThreadGroup::name(parent);
  2725         // ThreadGroup.name can be null
  2726         if (name != NULL) {
  2727           const char* str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
  2728           return str;
  2733   return NULL;
  2736 ThreadPriority JavaThread::java_priority() const {
  2737   oop thr_oop = threadObj();
  2738   if (thr_oop == NULL) return NormPriority; // Bootstrapping
  2739   ThreadPriority priority = java_lang_Thread::priority(thr_oop);
  2740   assert(MinPriority <= priority && priority <= MaxPriority, "sanity check");
  2741   return priority;
  2744 void JavaThread::prepare(jobject jni_thread, ThreadPriority prio) {
  2746   assert(Threads_lock->owner() == Thread::current(), "must have threads lock");
  2747   // Link Java Thread object <-> C++ Thread
  2749   // Get the C++ thread object (an oop) from the JNI handle (a jthread)
  2750   // and put it into a new Handle.  The Handle "thread_oop" can then
  2751   // be used to pass the C++ thread object to other methods.
  2753   // Set the Java level thread object (jthread) field of the
  2754   // new thread (a JavaThread *) to C++ thread object using the
  2755   // "thread_oop" handle.
  2757   // Set the thread field (a JavaThread *) of the
  2758   // oop representing the java_lang_Thread to the new thread (a JavaThread *).
  2760   Handle thread_oop(Thread::current(),
  2761                     JNIHandles::resolve_non_null(jni_thread));
  2762   assert(instanceKlass::cast(thread_oop->klass())->is_linked(),
  2763     "must be initialized");
  2764   set_threadObj(thread_oop());
  2765   java_lang_Thread::set_thread(thread_oop(), this);
  2767   if (prio == NoPriority) {
  2768     prio = java_lang_Thread::priority(thread_oop());
  2769     assert(prio != NoPriority, "A valid priority should be present");
  2772   // Push the Java priority down to the native thread; needs Threads_lock
  2773   Thread::set_priority(this, prio);
  2775   // Add the new thread to the Threads list and set it in motion.
  2776   // We must have threads lock in order to call Threads::add.
  2777   // It is crucial that we do not block before the thread is
  2778   // added to the Threads list for if a GC happens, then the java_thread oop
  2779   // will not be visited by GC.
  2780   Threads::add(this);
  2783 oop JavaThread::current_park_blocker() {
  2784   // Support for JSR-166 locks
  2785   oop thread_oop = threadObj();
  2786   if (thread_oop != NULL &&
  2787       JDK_Version::current().supports_thread_park_blocker()) {
  2788     return java_lang_Thread::park_blocker(thread_oop);
  2790   return NULL;
  2794 void JavaThread::print_stack_on(outputStream* st) {
  2795   if (!has_last_Java_frame()) return;
  2796   ResourceMark rm;
  2797   HandleMark   hm;
  2799   RegisterMap reg_map(this);
  2800   vframe* start_vf = last_java_vframe(&reg_map);
  2801   int count = 0;
  2802   for (vframe* f = start_vf; f; f = f->sender() ) {
  2803     if (f->is_java_frame()) {
  2804       javaVFrame* jvf = javaVFrame::cast(f);
  2805       java_lang_Throwable::print_stack_element(st, jvf->method(), jvf->bci());
  2807       // Print out lock information
  2808       if (JavaMonitorsInStackTrace) {
  2809         jvf->print_lock_info_on(st, count);
  2811     } else {
  2812       // Ignore non-Java frames
  2815     // Bail-out case for too deep stacks
  2816     count++;
  2817     if (MaxJavaStackTraceDepth == count) return;
  2822 // JVMTI PopFrame support
  2823 void JavaThread::popframe_preserve_args(ByteSize size_in_bytes, void* start) {
  2824   assert(_popframe_preserved_args == NULL, "should not wipe out old PopFrame preserved arguments");
  2825   if (in_bytes(size_in_bytes) != 0) {
  2826     _popframe_preserved_args = NEW_C_HEAP_ARRAY(char, in_bytes(size_in_bytes));
  2827     _popframe_preserved_args_size = in_bytes(size_in_bytes);
  2828     Copy::conjoint_jbytes(start, _popframe_preserved_args, _popframe_preserved_args_size);
  2832 void* JavaThread::popframe_preserved_args() {
  2833   return _popframe_preserved_args;
  2836 ByteSize JavaThread::popframe_preserved_args_size() {
  2837   return in_ByteSize(_popframe_preserved_args_size);
  2840 WordSize JavaThread::popframe_preserved_args_size_in_words() {
  2841   int sz = in_bytes(popframe_preserved_args_size());
  2842   assert(sz % wordSize == 0, "argument size must be multiple of wordSize");
  2843   return in_WordSize(sz / wordSize);
  2846 void JavaThread::popframe_free_preserved_args() {
  2847   assert(_popframe_preserved_args != NULL, "should not free PopFrame preserved arguments twice");
  2848   FREE_C_HEAP_ARRAY(char, (char*) _popframe_preserved_args);
  2849   _popframe_preserved_args = NULL;
  2850   _popframe_preserved_args_size = 0;
  2853 #ifndef PRODUCT
  2855 void JavaThread::trace_frames() {
  2856   tty->print_cr("[Describe stack]");
  2857   int frame_no = 1;
  2858   for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
  2859     tty->print("  %d. ", frame_no++);
  2860     fst.current()->print_value_on(tty,this);
  2861     tty->cr();
  2866 void JavaThread::trace_stack_from(vframe* start_vf) {
  2867   ResourceMark rm;
  2868   int vframe_no = 1;
  2869   for (vframe* f = start_vf; f; f = f->sender() ) {
  2870     if (f->is_java_frame()) {
  2871       javaVFrame::cast(f)->print_activation(vframe_no++);
  2872     } else {
  2873       f->print();
  2875     if (vframe_no > StackPrintLimit) {
  2876       tty->print_cr("...<more frames>...");
  2877       return;
  2883 void JavaThread::trace_stack() {
  2884   if (!has_last_Java_frame()) return;
  2885   ResourceMark rm;
  2886   HandleMark   hm;
  2887   RegisterMap reg_map(this);
  2888   trace_stack_from(last_java_vframe(&reg_map));
  2892 #endif // PRODUCT
  2895 javaVFrame* JavaThread::last_java_vframe(RegisterMap *reg_map) {
  2896   assert(reg_map != NULL, "a map must be given");
  2897   frame f = last_frame();
  2898   for (vframe* vf = vframe::new_vframe(&f, reg_map, this); vf; vf = vf->sender() ) {
  2899     if (vf->is_java_frame()) return javaVFrame::cast(vf);
  2901   return NULL;
  2905 klassOop JavaThread::security_get_caller_class(int depth) {
  2906   vframeStream vfst(this);
  2907   vfst.security_get_caller_frame(depth);
  2908   if (!vfst.at_end()) {
  2909     return vfst.method()->method_holder();
  2911   return NULL;
  2914 static void compiler_thread_entry(JavaThread* thread, TRAPS) {
  2915   assert(thread->is_Compiler_thread(), "must be compiler thread");
  2916   CompileBroker::compiler_thread_loop();
  2919 // Create a CompilerThread
  2920 CompilerThread::CompilerThread(CompileQueue* queue, CompilerCounters* counters)
  2921 : JavaThread(&compiler_thread_entry) {
  2922   _env   = NULL;
  2923   _log   = NULL;
  2924   _task  = NULL;
  2925   _queue = queue;
  2926   _counters = counters;
  2927   _buffer_blob = NULL;
  2929 #ifndef PRODUCT
  2930   _ideal_graph_printer = NULL;
  2931 #endif
  2935 // ======= Threads ========
  2937 // The Threads class links together all active threads, and provides
  2938 // operations over all threads.  It is protected by its own Mutex
  2939 // lock, which is also used in other contexts to protect thread
  2940 // operations from having the thread being operated on from exiting
  2941 // and going away unexpectedly (e.g., safepoint synchronization)
  2943 JavaThread* Threads::_thread_list = NULL;
  2944 int         Threads::_number_of_threads = 0;
  2945 int         Threads::_number_of_non_daemon_threads = 0;
  2946 int         Threads::_return_code = 0;
  2947 size_t      JavaThread::_stack_size_at_create = 0;
  2949 // All JavaThreads
  2950 #define ALL_JAVA_THREADS(X) for (JavaThread* X = _thread_list; X; X = X->next())
  2952 void os_stream();
  2954 // All JavaThreads + all non-JavaThreads (i.e., every thread in the system)
  2955 void Threads::threads_do(ThreadClosure* tc) {
  2956   assert_locked_or_safepoint(Threads_lock);
  2957   // ALL_JAVA_THREADS iterates through all JavaThreads
  2958   ALL_JAVA_THREADS(p) {
  2959     tc->do_thread(p);
  2961   // Someday we could have a table or list of all non-JavaThreads.
  2962   // For now, just manually iterate through them.
  2963   tc->do_thread(VMThread::vm_thread());
  2964   Universe::heap()->gc_threads_do(tc);
  2965   WatcherThread *wt = WatcherThread::watcher_thread();
  2966   // Strictly speaking, the following NULL check isn't sufficient to make sure
  2967   // the data for WatcherThread is still valid upon being examined. However,
  2968   // considering that WatchThread terminates when the VM is on the way to
  2969   // exit at safepoint, the chance of the above is extremely small. The right
  2970   // way to prevent termination of WatcherThread would be to acquire
  2971   // Terminator_lock, but we can't do that without violating the lock rank
  2972   // checking in some cases.
  2973   if (wt != NULL)
  2974     tc->do_thread(wt);
  2976   // If CompilerThreads ever become non-JavaThreads, add them here
  2979 jint Threads::create_vm(JavaVMInitArgs* args, bool* canTryAgain) {
  2981   extern void JDK_Version_init();
  2983   // Check version
  2984   if (!is_supported_jni_version(args->version)) return JNI_EVERSION;
  2986   // Initialize the output stream module
  2987   ostream_init();
  2989   // Process java launcher properties.
  2990   Arguments::process_sun_java_launcher_properties(args);
  2992   // Initialize the os module before using TLS
  2993   os::init();
  2995   // Initialize system properties.
  2996   Arguments::init_system_properties();
  2998   // So that JDK version can be used as a discrimintor when parsing arguments
  2999   JDK_Version_init();
  3001   // Update/Initialize System properties after JDK version number is known
  3002   Arguments::init_version_specific_system_properties();
  3004   // Parse arguments
  3005   jint parse_result = Arguments::parse(args);
  3006   if (parse_result != JNI_OK) return parse_result;
  3008   if (PauseAtStartup) {
  3009     os::pause();
  3012   HS_DTRACE_PROBE(hotspot, vm__init__begin);
  3014   // Record VM creation timing statistics
  3015   TraceVmCreationTime create_vm_timer;
  3016   create_vm_timer.start();
  3018   // Timing (must come after argument parsing)
  3019   TraceTime timer("Create VM", TraceStartupTime);
  3021   // Initialize the os module after parsing the args
  3022   jint os_init_2_result = os::init_2();
  3023   if (os_init_2_result != JNI_OK) return os_init_2_result;
  3025   // Initialize output stream logging
  3026   ostream_init_log();
  3028   // Convert -Xrun to -agentlib: if there is no JVM_OnLoad
  3029   // Must be before create_vm_init_agents()
  3030   if (Arguments::init_libraries_at_startup()) {
  3031     convert_vm_init_libraries_to_agents();
  3034   // Launch -agentlib/-agentpath and converted -Xrun agents
  3035   if (Arguments::init_agents_at_startup()) {
  3036     create_vm_init_agents();
  3039   // Initialize Threads state
  3040   _thread_list = NULL;
  3041   _number_of_threads = 0;
  3042   _number_of_non_daemon_threads = 0;
  3044   // Initialize TLS
  3045   ThreadLocalStorage::init();
  3047   // Initialize global data structures and create system classes in heap
  3048   vm_init_globals();
  3050   // Attach the main thread to this os thread
  3051   JavaThread* main_thread = new JavaThread();
  3052   main_thread->set_thread_state(_thread_in_vm);
  3053   // must do this before set_active_handles and initialize_thread_local_storage
  3054   // Note: on solaris initialize_thread_local_storage() will (indirectly)
  3055   // change the stack size recorded here to one based on the java thread
  3056   // stacksize. This adjusted size is what is used to figure the placement
  3057   // of the guard pages.
  3058   main_thread->record_stack_base_and_size();
  3059   main_thread->initialize_thread_local_storage();
  3061   main_thread->set_active_handles(JNIHandleBlock::allocate_block());
  3063   if (!main_thread->set_as_starting_thread()) {
  3064     vm_shutdown_during_initialization(
  3065       "Failed necessary internal allocation. Out of swap space");
  3066     delete main_thread;
  3067     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
  3068     return JNI_ENOMEM;
  3071   // Enable guard page *after* os::create_main_thread(), otherwise it would
  3072   // crash Linux VM, see notes in os_linux.cpp.
  3073   main_thread->create_stack_guard_pages();
  3075   // Initialize Java-Level synchronization subsystem
  3076   ObjectMonitor::Initialize() ;
  3078   // Initialize global modules
  3079   jint status = init_globals();
  3080   if (status != JNI_OK) {
  3081     delete main_thread;
  3082     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
  3083     return status;
  3086   // Should be done after the heap is fully created
  3087   main_thread->cache_global_variables();
  3089   HandleMark hm;
  3091   { MutexLocker mu(Threads_lock);
  3092     Threads::add(main_thread);
  3095   // Any JVMTI raw monitors entered in onload will transition into
  3096   // real raw monitor. VM is setup enough here for raw monitor enter.
  3097   JvmtiExport::transition_pending_onload_raw_monitors();
  3099   if (VerifyBeforeGC &&
  3100       Universe::heap()->total_collections() >= VerifyGCStartAt) {
  3101     Universe::heap()->prepare_for_verify();
  3102     Universe::verify();   // make sure we're starting with a clean slate
  3105   // Create the VMThread
  3106   { TraceTime timer("Start VMThread", TraceStartupTime);
  3107     VMThread::create();
  3108     Thread* vmthread = VMThread::vm_thread();
  3110     if (!os::create_thread(vmthread, os::vm_thread))
  3111       vm_exit_during_initialization("Cannot create VM thread. Out of system resources.");
  3113     // Wait for the VM thread to become ready, and VMThread::run to initialize
  3114     // Monitors can have spurious returns, must always check another state flag
  3116       MutexLocker ml(Notify_lock);
  3117       os::start_thread(vmthread);
  3118       while (vmthread->active_handles() == NULL) {
  3119         Notify_lock->wait();
  3124   assert (Universe::is_fully_initialized(), "not initialized");
  3125   EXCEPTION_MARK;
  3127   // At this point, the Universe is initialized, but we have not executed
  3128   // any byte code.  Now is a good time (the only time) to dump out the
  3129   // internal state of the JVM for sharing.
  3131   if (DumpSharedSpaces) {
  3132     Universe::heap()->preload_and_dump(CHECK_0);
  3133     ShouldNotReachHere();
  3136   // Always call even when there are not JVMTI environments yet, since environments
  3137   // may be attached late and JVMTI must track phases of VM execution
  3138   JvmtiExport::enter_start_phase();
  3140   // Notify JVMTI agents that VM has started (JNI is up) - nop if no agents.
  3141   JvmtiExport::post_vm_start();
  3144     TraceTime timer("Initialize java.lang classes", TraceStartupTime);
  3146     if (EagerXrunInit && Arguments::init_libraries_at_startup()) {
  3147       create_vm_init_libraries();
  3150     if (InitializeJavaLangString) {
  3151       initialize_class(vmSymbolHandles::java_lang_String(), CHECK_0);
  3152     } else {
  3153       warning("java.lang.String not initialized");
  3156     if (AggressiveOpts) {
  3158         // Forcibly initialize java/util/HashMap and mutate the private
  3159         // static final "frontCacheEnabled" field before we start creating instances
  3160 #ifdef ASSERT
  3161         klassOop tmp_k = SystemDictionary::find(vmSymbolHandles::java_util_HashMap(), Handle(), Handle(), CHECK_0);
  3162         assert(tmp_k == NULL, "java/util/HashMap should not be loaded yet");
  3163 #endif
  3164         klassOop k_o = SystemDictionary::resolve_or_null(vmSymbolHandles::java_util_HashMap(), Handle(), Handle(), CHECK_0);
  3165         KlassHandle k = KlassHandle(THREAD, k_o);
  3166         guarantee(k.not_null(), "Must find java/util/HashMap");
  3167         instanceKlassHandle ik = instanceKlassHandle(THREAD, k());
  3168         ik->initialize(CHECK_0);
  3169         fieldDescriptor fd;
  3170         // Possible we might not find this field; if so, don't break
  3171         if (ik->find_local_field(vmSymbols::frontCacheEnabled_name(), vmSymbols::bool_signature(), &fd)) {
  3172           k()->bool_field_put(fd.offset(), true);
  3176       if (UseStringCache) {
  3177         // Forcibly initialize java/lang/StringValue and mutate the private
  3178         // static final "stringCacheEnabled" field before we start creating instances
  3179         klassOop k_o = SystemDictionary::resolve_or_null(vmSymbolHandles::java_lang_StringValue(), Handle(), Handle(), CHECK_0);
  3180         // Possible that StringValue isn't present: if so, silently don't break
  3181         if (k_o != NULL) {
  3182           KlassHandle k = KlassHandle(THREAD, k_o);
  3183           instanceKlassHandle ik = instanceKlassHandle(THREAD, k());
  3184           ik->initialize(CHECK_0);
  3185           fieldDescriptor fd;
  3186           // Possible we might not find this field: if so, silently don't break
  3187           if (ik->find_local_field(vmSymbols::stringCacheEnabled_name(), vmSymbols::bool_signature(), &fd)) {
  3188             k()->bool_field_put(fd.offset(), true);
  3194     // Initialize java_lang.System (needed before creating the thread)
  3195     if (InitializeJavaLangSystem) {
  3196       initialize_class(vmSymbolHandles::java_lang_System(), CHECK_0);
  3197       initialize_class(vmSymbolHandles::java_lang_ThreadGroup(), CHECK_0);
  3198       Handle thread_group = create_initial_thread_group(CHECK_0);
  3199       Universe::set_main_thread_group(thread_group());
  3200       initialize_class(vmSymbolHandles::java_lang_Thread(), CHECK_0);
  3201       oop thread_object = create_initial_thread(thread_group, main_thread, CHECK_0);
  3202       main_thread->set_threadObj(thread_object);
  3203       // Set thread status to running since main thread has
  3204       // been started and running.
  3205       java_lang_Thread::set_thread_status(thread_object,
  3206                                           java_lang_Thread::RUNNABLE);
  3208       // The VM preresolve methods to these classes. Make sure that get initialized
  3209       initialize_class(vmSymbolHandles::java_lang_reflect_Method(), CHECK_0);
  3210       initialize_class(vmSymbolHandles::java_lang_ref_Finalizer(),  CHECK_0);
  3211       // The VM creates & returns objects of this class. Make sure it's initialized.
  3212       initialize_class(vmSymbolHandles::java_lang_Class(), CHECK_0);
  3213       call_initializeSystemClass(CHECK_0);
  3214     } else {
  3215       warning("java.lang.System not initialized");
  3218     // an instance of OutOfMemory exception has been allocated earlier
  3219     if (InitializeJavaLangExceptionsErrors) {
  3220       initialize_class(vmSymbolHandles::java_lang_OutOfMemoryError(), CHECK_0);
  3221       initialize_class(vmSymbolHandles::java_lang_NullPointerException(), CHECK_0);
  3222       initialize_class(vmSymbolHandles::java_lang_ClassCastException(), CHECK_0);
  3223       initialize_class(vmSymbolHandles::java_lang_ArrayStoreException(), CHECK_0);
  3224       initialize_class(vmSymbolHandles::java_lang_ArithmeticException(), CHECK_0);
  3225       initialize_class(vmSymbolHandles::java_lang_StackOverflowError(), CHECK_0);
  3226       initialize_class(vmSymbolHandles::java_lang_IllegalMonitorStateException(), CHECK_0);
  3227     } else {
  3228       warning("java.lang.OutOfMemoryError has not been initialized");
  3229       warning("java.lang.NullPointerException has not been initialized");
  3230       warning("java.lang.ClassCastException has not been initialized");
  3231       warning("java.lang.ArrayStoreException has not been initialized");
  3232       warning("java.lang.ArithmeticException has not been initialized");
  3233       warning("java.lang.StackOverflowError has not been initialized");
  3237   // See        : bugid 4211085.
  3238   // Background : the static initializer of java.lang.Compiler tries to read
  3239   //              property"java.compiler" and read & write property "java.vm.info".
  3240   //              When a security manager is installed through the command line
  3241   //              option "-Djava.security.manager", the above properties are not
  3242   //              readable and the static initializer for java.lang.Compiler fails
  3243   //              resulting in a NoClassDefFoundError.  This can happen in any
  3244   //              user code which calls methods in java.lang.Compiler.
  3245   // Hack :       the hack is to pre-load and initialize this class, so that only
  3246   //              system domains are on the stack when the properties are read.
  3247   //              Currently even the AWT code has calls to methods in java.lang.Compiler.
  3248   //              On the classic VM, java.lang.Compiler is loaded very early to load the JIT.
  3249   // Future Fix : the best fix is to grant everyone permissions to read "java.compiler" and
  3250   //              read and write"java.vm.info" in the default policy file. See bugid 4211383
  3251   //              Once that is done, we should remove this hack.
  3252   initialize_class(vmSymbolHandles::java_lang_Compiler(), CHECK_0);
  3254   // More hackery - the static initializer of java.lang.Compiler adds the string "nojit" to
  3255   // the java.vm.info property if no jit gets loaded through java.lang.Compiler (the hotspot
  3256   // compiler does not get loaded through java.lang.Compiler).  "java -version" with the
  3257   // hotspot vm says "nojit" all the time which is confusing.  So, we reset it here.
  3258   // This should also be taken out as soon as 4211383 gets fixed.
  3259   reset_vm_info_property(CHECK_0);
  3261   quicken_jni_functions();
  3263   // Set flag that basic initialization has completed. Used by exceptions and various
  3264   // debug stuff, that does not work until all basic classes have been initialized.
  3265   set_init_completed();
  3267   HS_DTRACE_PROBE(hotspot, vm__init__end);
  3269   // record VM initialization completion time
  3270   Management::record_vm_init_completed();
  3272   // Compute system loader. Note that this has to occur after set_init_completed, since
  3273   // valid exceptions may be thrown in the process.
  3274   // Note that we do not use CHECK_0 here since we are inside an EXCEPTION_MARK and
  3275   // set_init_completed has just been called, causing exceptions not to be shortcut
  3276   // anymore. We call vm_exit_during_initialization directly instead.
  3277   SystemDictionary::compute_java_system_loader(THREAD);
  3278   if (HAS_PENDING_EXCEPTION) {
  3279     vm_exit_during_initialization(Handle(THREAD, PENDING_EXCEPTION));
  3282 #ifdef KERNEL
  3283   if (JDK_Version::is_gte_jdk17x_version()) {
  3284     set_jkernel_boot_classloader_hook(THREAD);
  3286 #endif // KERNEL
  3288 #ifndef SERIALGC
  3289   // Support for ConcurrentMarkSweep. This should be cleaned up
  3290   // and better encapsulated. The ugly nested if test would go away
  3291   // once things are properly refactored. XXX YSR
  3292   if (UseConcMarkSweepGC || UseG1GC) {
  3293     if (UseConcMarkSweepGC) {
  3294       ConcurrentMarkSweepThread::makeSurrogateLockerThread(THREAD);
  3295     } else {
  3296       ConcurrentMarkThread::makeSurrogateLockerThread(THREAD);
  3298     if (HAS_PENDING_EXCEPTION) {
  3299       vm_exit_during_initialization(Handle(THREAD, PENDING_EXCEPTION));
  3302 #endif // SERIALGC
  3304   // Always call even when there are not JVMTI environments yet, since environments
  3305   // may be attached late and JVMTI must track phases of VM execution
  3306   JvmtiExport::enter_live_phase();
  3308   // Signal Dispatcher needs to be started before VMInit event is posted
  3309   os::signal_init();
  3311   // Start Attach Listener if +StartAttachListener or it can't be started lazily
  3312   if (!DisableAttachMechanism) {
  3313     if (StartAttachListener || AttachListener::init_at_startup()) {
  3314       AttachListener::init();
  3318   // Launch -Xrun agents
  3319   // Must be done in the JVMTI live phase so that for backward compatibility the JDWP
  3320   // back-end can launch with -Xdebug -Xrunjdwp.
  3321   if (!EagerXrunInit && Arguments::init_libraries_at_startup()) {
  3322     create_vm_init_libraries();
  3325   // Notify JVMTI agents that VM initialization is complete - nop if no agents.
  3326   JvmtiExport::post_vm_initialized();
  3328   Chunk::start_chunk_pool_cleaner_task();
  3330   // initialize compiler(s)
  3331   CompileBroker::compilation_init();
  3333   Management::initialize(THREAD);
  3334   if (HAS_PENDING_EXCEPTION) {
  3335     // management agent fails to start possibly due to
  3336     // configuration problem and is responsible for printing
  3337     // stack trace if appropriate. Simply exit VM.
  3338     vm_exit(1);
  3341   if (Arguments::has_profile())       FlatProfiler::engage(main_thread, true);
  3342   if (Arguments::has_alloc_profile()) AllocationProfiler::engage();
  3343   if (MemProfiling)                   MemProfiler::engage();
  3344   StatSampler::engage();
  3345   if (CheckJNICalls)                  JniPeriodicChecker::engage();
  3347   BiasedLocking::init();
  3350   // Start up the WatcherThread if there are any periodic tasks
  3351   // NOTE:  All PeriodicTasks should be registered by now. If they
  3352   //   aren't, late joiners might appear to start slowly (we might
  3353   //   take a while to process their first tick).
  3354   if (PeriodicTask::num_tasks() > 0) {
  3355     WatcherThread::start();
  3358   // Give os specific code one last chance to start
  3359   os::init_3();
  3361   create_vm_timer.end();
  3362   return JNI_OK;
  3365 // type for the Agent_OnLoad and JVM_OnLoad entry points
  3366 extern "C" {
  3367   typedef jint (JNICALL *OnLoadEntry_t)(JavaVM *, char *, void *);
  3369 // Find a command line agent library and return its entry point for
  3370 //         -agentlib:  -agentpath:   -Xrun
  3371 // num_symbol_entries must be passed-in since only the caller knows the number of symbols in the array.
  3372 static OnLoadEntry_t lookup_on_load(AgentLibrary* agent, const char *on_load_symbols[], size_t num_symbol_entries) {
  3373   OnLoadEntry_t on_load_entry = NULL;
  3374   void *library = agent->os_lib();  // check if we have looked it up before
  3376   if (library == NULL) {
  3377     char buffer[JVM_MAXPATHLEN];
  3378     char ebuf[1024];
  3379     const char *name = agent->name();
  3380     const char *msg = "Could not find agent library ";
  3382     if (agent->is_absolute_path()) {
  3383       library = hpi::dll_load(name, ebuf, sizeof ebuf);
  3384       if (library == NULL) {
  3385         const char *sub_msg = " in absolute path, with error: ";
  3386         size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
  3387         char *buf = NEW_C_HEAP_ARRAY(char, len);
  3388         jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
  3389         // If we can't find the agent, exit.
  3390         vm_exit_during_initialization(buf, NULL);
  3391         FREE_C_HEAP_ARRAY(char, buf);
  3393     } else {
  3394       // Try to load the agent from the standard dll directory
  3395       hpi::dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(), name);
  3396       library = hpi::dll_load(buffer, ebuf, sizeof ebuf);
  3397 #ifdef KERNEL
  3398       // Download instrument dll
  3399       if (library == NULL && strcmp(name, "instrument") == 0) {
  3400         char *props = Arguments::get_kernel_properties();
  3401         char *home  = Arguments::get_java_home();
  3402         const char *fmt   = "%s/bin/java %s -Dkernel.background.download=false"
  3403                       " sun.jkernel.DownloadManager -download client_jvm";
  3404         size_t length = strlen(props) + strlen(home) + strlen(fmt) + 1;
  3405         char *cmd = NEW_C_HEAP_ARRAY(char, length);
  3406         jio_snprintf(cmd, length, fmt, home, props);
  3407         int status = os::fork_and_exec(cmd);
  3408         FreeHeap(props);
  3409         if (status == -1) {
  3410           warning(cmd);
  3411           vm_exit_during_initialization("fork_and_exec failed: %s",
  3412                                          strerror(errno));
  3414         FREE_C_HEAP_ARRAY(char, cmd);
  3415         // when this comes back the instrument.dll should be where it belongs.
  3416         library = hpi::dll_load(buffer, ebuf, sizeof ebuf);
  3418 #endif // KERNEL
  3419       if (library == NULL) { // Try the local directory
  3420         char ns[1] = {0};
  3421         hpi::dll_build_name(buffer, sizeof(buffer), ns, name);
  3422         library = hpi::dll_load(buffer, ebuf, sizeof ebuf);
  3423         if (library == NULL) {
  3424           const char *sub_msg = " on the library path, with error: ";
  3425           size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
  3426           char *buf = NEW_C_HEAP_ARRAY(char, len);
  3427           jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
  3428           // If we can't find the agent, exit.
  3429           vm_exit_during_initialization(buf, NULL);
  3430           FREE_C_HEAP_ARRAY(char, buf);
  3434     agent->set_os_lib(library);
  3437   // Find the OnLoad function.
  3438   for (size_t symbol_index = 0; symbol_index < num_symbol_entries; symbol_index++) {
  3439     on_load_entry = CAST_TO_FN_PTR(OnLoadEntry_t, hpi::dll_lookup(library, on_load_symbols[symbol_index]));
  3440     if (on_load_entry != NULL) break;
  3442   return on_load_entry;
  3445 // Find the JVM_OnLoad entry point
  3446 static OnLoadEntry_t lookup_jvm_on_load(AgentLibrary* agent) {
  3447   const char *on_load_symbols[] = JVM_ONLOAD_SYMBOLS;
  3448   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
  3451 // Find the Agent_OnLoad entry point
  3452 static OnLoadEntry_t lookup_agent_on_load(AgentLibrary* agent) {
  3453   const char *on_load_symbols[] = AGENT_ONLOAD_SYMBOLS;
  3454   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
  3457 // For backwards compatibility with -Xrun
  3458 // Convert libraries with no JVM_OnLoad, but which have Agent_OnLoad to be
  3459 // treated like -agentpath:
  3460 // Must be called before agent libraries are created
  3461 void Threads::convert_vm_init_libraries_to_agents() {
  3462   AgentLibrary* agent;
  3463   AgentLibrary* next;
  3465   for (agent = Arguments::libraries(); agent != NULL; agent = next) {
  3466     next = agent->next();  // cache the next agent now as this agent may get moved off this list
  3467     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
  3469     // If there is an JVM_OnLoad function it will get called later,
  3470     // otherwise see if there is an Agent_OnLoad
  3471     if (on_load_entry == NULL) {
  3472       on_load_entry = lookup_agent_on_load(agent);
  3473       if (on_load_entry != NULL) {
  3474         // switch it to the agent list -- so that Agent_OnLoad will be called,
  3475         // JVM_OnLoad won't be attempted and Agent_OnUnload will
  3476         Arguments::convert_library_to_agent(agent);
  3477       } else {
  3478         vm_exit_during_initialization("Could not find JVM_OnLoad or Agent_OnLoad function in the library", agent->name());
  3484 // Create agents for -agentlib:  -agentpath:  and converted -Xrun
  3485 // Invokes Agent_OnLoad
  3486 // Called very early -- before JavaThreads exist
  3487 void Threads::create_vm_init_agents() {
  3488   extern struct JavaVM_ main_vm;
  3489   AgentLibrary* agent;
  3491   JvmtiExport::enter_onload_phase();
  3492   for (agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
  3493     OnLoadEntry_t  on_load_entry = lookup_agent_on_load(agent);
  3495     if (on_load_entry != NULL) {
  3496       // Invoke the Agent_OnLoad function
  3497       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
  3498       if (err != JNI_OK) {
  3499         vm_exit_during_initialization("agent library failed to init", agent->name());
  3501     } else {
  3502       vm_exit_during_initialization("Could not find Agent_OnLoad function in the agent library", agent->name());
  3505   JvmtiExport::enter_primordial_phase();
  3508 extern "C" {
  3509   typedef void (JNICALL *Agent_OnUnload_t)(JavaVM *);
  3512 void Threads::shutdown_vm_agents() {
  3513   // Send any Agent_OnUnload notifications
  3514   const char *on_unload_symbols[] = AGENT_ONUNLOAD_SYMBOLS;
  3515   extern struct JavaVM_ main_vm;
  3516   for (AgentLibrary* agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
  3518     // Find the Agent_OnUnload function.
  3519     for (uint symbol_index = 0; symbol_index < ARRAY_SIZE(on_unload_symbols); symbol_index++) {
  3520       Agent_OnUnload_t unload_entry = CAST_TO_FN_PTR(Agent_OnUnload_t,
  3521                hpi::dll_lookup(agent->os_lib(), on_unload_symbols[symbol_index]));
  3523       // Invoke the Agent_OnUnload function
  3524       if (unload_entry != NULL) {
  3525         JavaThread* thread = JavaThread::current();
  3526         ThreadToNativeFromVM ttn(thread);
  3527         HandleMark hm(thread);
  3528         (*unload_entry)(&main_vm);
  3529         break;
  3535 // Called for after the VM is initialized for -Xrun libraries which have not been converted to agent libraries
  3536 // Invokes JVM_OnLoad
  3537 void Threads::create_vm_init_libraries() {
  3538   extern struct JavaVM_ main_vm;
  3539   AgentLibrary* agent;
  3541   for (agent = Arguments::libraries(); agent != NULL; agent = agent->next()) {
  3542     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
  3544     if (on_load_entry != NULL) {
  3545       // Invoke the JVM_OnLoad function
  3546       JavaThread* thread = JavaThread::current();
  3547       ThreadToNativeFromVM ttn(thread);
  3548       HandleMark hm(thread);
  3549       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
  3550       if (err != JNI_OK) {
  3551         vm_exit_during_initialization("-Xrun library failed to init", agent->name());
  3553     } else {
  3554       vm_exit_during_initialization("Could not find JVM_OnLoad function in -Xrun library", agent->name());
  3559 // Last thread running calls java.lang.Shutdown.shutdown()
  3560 void JavaThread::invoke_shutdown_hooks() {
  3561   HandleMark hm(this);
  3563   // We could get here with a pending exception, if so clear it now.
  3564   if (this->has_pending_exception()) {
  3565     this->clear_pending_exception();
  3568   EXCEPTION_MARK;
  3569   klassOop k =
  3570     SystemDictionary::resolve_or_null(vmSymbolHandles::java_lang_Shutdown(),
  3571                                       THREAD);
  3572   if (k != NULL) {
  3573     // SystemDictionary::resolve_or_null will return null if there was
  3574     // an exception.  If we cannot load the Shutdown class, just don't
  3575     // call Shutdown.shutdown() at all.  This will mean the shutdown hooks
  3576     // and finalizers (if runFinalizersOnExit is set) won't be run.
  3577     // Note that if a shutdown hook was registered or runFinalizersOnExit
  3578     // was called, the Shutdown class would have already been loaded
  3579     // (Runtime.addShutdownHook and runFinalizersOnExit will load it).
  3580     instanceKlassHandle shutdown_klass (THREAD, k);
  3581     JavaValue result(T_VOID);
  3582     JavaCalls::call_static(&result,
  3583                            shutdown_klass,
  3584                            vmSymbolHandles::shutdown_method_name(),
  3585                            vmSymbolHandles::void_method_signature(),
  3586                            THREAD);
  3588   CLEAR_PENDING_EXCEPTION;
  3591 // Threads::destroy_vm() is normally called from jni_DestroyJavaVM() when
  3592 // the program falls off the end of main(). Another VM exit path is through
  3593 // vm_exit() when the program calls System.exit() to return a value or when
  3594 // there is a serious error in VM. The two shutdown paths are not exactly
  3595 // the same, but they share Shutdown.shutdown() at Java level and before_exit()
  3596 // and VM_Exit op at VM level.
  3597 //
  3598 // Shutdown sequence:
  3599 //   + Wait until we are the last non-daemon thread to execute
  3600 //     <-- every thing is still working at this moment -->
  3601 //   + Call java.lang.Shutdown.shutdown(), which will invoke Java level
  3602 //        shutdown hooks, run finalizers if finalization-on-exit
  3603 //   + Call before_exit(), prepare for VM exit
  3604 //      > run VM level shutdown hooks (they are registered through JVM_OnExit(),
  3605 //        currently the only user of this mechanism is File.deleteOnExit())
  3606 //      > stop flat profiler, StatSampler, watcher thread, CMS threads,
  3607 //        post thread end and vm death events to JVMTI,
  3608 //        stop signal thread
  3609 //   + Call JavaThread::exit(), it will:
  3610 //      > release JNI handle blocks, remove stack guard pages
  3611 //      > remove this thread from Threads list
  3612 //     <-- no more Java code from this thread after this point -->
  3613 //   + Stop VM thread, it will bring the remaining VM to a safepoint and stop
  3614 //     the compiler threads at safepoint
  3615 //     <-- do not use anything that could get blocked by Safepoint -->
  3616 //   + Disable tracing at JNI/JVM barriers
  3617 //   + Set _vm_exited flag for threads that are still running native code
  3618 //   + Delete this thread
  3619 //   + Call exit_globals()
  3620 //      > deletes tty
  3621 //      > deletes PerfMemory resources
  3622 //   + Return to caller
  3624 bool Threads::destroy_vm() {
  3625   JavaThread* thread = JavaThread::current();
  3627   // Wait until we are the last non-daemon thread to execute
  3628   { MutexLocker nu(Threads_lock);
  3629     while (Threads::number_of_non_daemon_threads() > 1 )
  3630       // This wait should make safepoint checks, wait without a timeout,
  3631       // and wait as a suspend-equivalent condition.
  3632       //
  3633       // Note: If the FlatProfiler is running and this thread is waiting
  3634       // for another non-daemon thread to finish, then the FlatProfiler
  3635       // is waiting for the external suspend request on this thread to
  3636       // complete. wait_for_ext_suspend_completion() will eventually
  3637       // timeout, but that takes time. Making this wait a suspend-
  3638       // equivalent condition solves that timeout problem.
  3639       //
  3640       Threads_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
  3641                          Mutex::_as_suspend_equivalent_flag);
  3644   // Hang forever on exit if we are reporting an error.
  3645   if (ShowMessageBoxOnError && is_error_reported()) {
  3646     os::infinite_sleep();
  3649   if (JDK_Version::is_jdk12x_version()) {
  3650     // We are the last thread running, so check if finalizers should be run.
  3651     // For 1.3 or later this is done in thread->invoke_shutdown_hooks()
  3652     HandleMark rm(thread);
  3653     Universe::run_finalizers_on_exit();
  3654   } else {
  3655     // run Java level shutdown hooks
  3656     thread->invoke_shutdown_hooks();
  3659   before_exit(thread);
  3661   thread->exit(true);
  3663   // Stop VM thread.
  3665     // 4945125 The vm thread comes to a safepoint during exit.
  3666     // GC vm_operations can get caught at the safepoint, and the
  3667     // heap is unparseable if they are caught. Grab the Heap_lock
  3668     // to prevent this. The GC vm_operations will not be able to
  3669     // queue until after the vm thread is dead.
  3670     MutexLocker ml(Heap_lock);
  3672     VMThread::wait_for_vm_thread_exit();
  3673     assert(SafepointSynchronize::is_at_safepoint(), "VM thread should exit at Safepoint");
  3674     VMThread::destroy();
  3677   // clean up ideal graph printers
  3678 #if defined(COMPILER2) && !defined(PRODUCT)
  3679   IdealGraphPrinter::clean_up();
  3680 #endif
  3682   // Now, all Java threads are gone except daemon threads. Daemon threads
  3683   // running Java code or in VM are stopped by the Safepoint. However,
  3684   // daemon threads executing native code are still running.  But they
  3685   // will be stopped at native=>Java/VM barriers. Note that we can't
  3686   // simply kill or suspend them, as it is inherently deadlock-prone.
  3688 #ifndef PRODUCT
  3689   // disable function tracing at JNI/JVM barriers
  3690   TraceHPI = false;
  3691   TraceJNICalls = false;
  3692   TraceJVMCalls = false;
  3693   TraceRuntimeCalls = false;
  3694 #endif
  3696   VM_Exit::set_vm_exited();
  3698   notify_vm_shutdown();
  3700   delete thread;
  3702   // exit_globals() will delete tty
  3703   exit_globals();
  3705   return true;
  3709 jboolean Threads::is_supported_jni_version_including_1_1(jint version) {
  3710   if (version == JNI_VERSION_1_1) return JNI_TRUE;
  3711   return is_supported_jni_version(version);
  3715 jboolean Threads::is_supported_jni_version(jint version) {
  3716   if (version == JNI_VERSION_1_2) return JNI_TRUE;
  3717   if (version == JNI_VERSION_1_4) return JNI_TRUE;
  3718   if (version == JNI_VERSION_1_6) return JNI_TRUE;
  3719   return JNI_FALSE;
  3723 void Threads::add(JavaThread* p, bool force_daemon) {
  3724   // The threads lock must be owned at this point
  3725   assert_locked_or_safepoint(Threads_lock);
  3727   // See the comment for this method in thread.hpp for its purpose and
  3728   // why it is called here.
  3729   p->initialize_queues();
  3730   p->set_next(_thread_list);
  3731   _thread_list = p;
  3732   _number_of_threads++;
  3733   oop threadObj = p->threadObj();
  3734   bool daemon = true;
  3735   // Bootstrapping problem: threadObj can be null for initial
  3736   // JavaThread (or for threads attached via JNI)
  3737   if ((!force_daemon) && (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj))) {
  3738     _number_of_non_daemon_threads++;
  3739     daemon = false;
  3742   ThreadService::add_thread(p, daemon);
  3744   // Possible GC point.
  3745   Events::log("Thread added: " INTPTR_FORMAT, p);
  3748 void Threads::remove(JavaThread* p) {
  3749   // Extra scope needed for Thread_lock, so we can check
  3750   // that we do not remove thread without safepoint code notice
  3751   { MutexLocker ml(Threads_lock);
  3753     assert(includes(p), "p must be present");
  3755     JavaThread* current = _thread_list;
  3756     JavaThread* prev    = NULL;
  3758     while (current != p) {
  3759       prev    = current;
  3760       current = current->next();
  3763     if (prev) {
  3764       prev->set_next(current->next());
  3765     } else {
  3766       _thread_list = p->next();
  3768     _number_of_threads--;
  3769     oop threadObj = p->threadObj();
  3770     bool daemon = true;
  3771     if (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj)) {
  3772       _number_of_non_daemon_threads--;
  3773       daemon = false;
  3775       // Only one thread left, do a notify on the Threads_lock so a thread waiting
  3776       // on destroy_vm will wake up.
  3777       if (number_of_non_daemon_threads() == 1)
  3778         Threads_lock->notify_all();
  3780     ThreadService::remove_thread(p, daemon);
  3782     // Make sure that safepoint code disregard this thread. This is needed since
  3783     // the thread might mess around with locks after this point. This can cause it
  3784     // to do callbacks into the safepoint code. However, the safepoint code is not aware
  3785     // of this thread since it is removed from the queue.
  3786     p->set_terminated_value();
  3787   } // unlock Threads_lock
  3789   // Since Events::log uses a lock, we grab it outside the Threads_lock
  3790   Events::log("Thread exited: " INTPTR_FORMAT, p);
  3793 // Threads_lock must be held when this is called (or must be called during a safepoint)
  3794 bool Threads::includes(JavaThread* p) {
  3795   assert(Threads_lock->is_locked(), "sanity check");
  3796   ALL_JAVA_THREADS(q) {
  3797     if (q == p ) {
  3798       return true;
  3801   return false;
  3804 // Operations on the Threads list for GC.  These are not explicitly locked,
  3805 // but the garbage collector must provide a safe context for them to run.
  3806 // In particular, these things should never be called when the Threads_lock
  3807 // is held by some other thread. (Note: the Safepoint abstraction also
  3808 // uses the Threads_lock to gurantee this property. It also makes sure that
  3809 // all threads gets blocked when exiting or starting).
  3811 void Threads::oops_do(OopClosure* f, CodeBlobClosure* cf) {
  3812   ALL_JAVA_THREADS(p) {
  3813     p->oops_do(f, cf);
  3815   VMThread::vm_thread()->oops_do(f, cf);
  3818 void Threads::possibly_parallel_oops_do(OopClosure* f, CodeBlobClosure* cf) {
  3819   // Introduce a mechanism allowing parallel threads to claim threads as
  3820   // root groups.  Overhead should be small enough to use all the time,
  3821   // even in sequential code.
  3822   SharedHeap* sh = SharedHeap::heap();
  3823   bool is_par = (sh->n_par_threads() > 0);
  3824   int cp = SharedHeap::heap()->strong_roots_parity();
  3825   ALL_JAVA_THREADS(p) {
  3826     if (p->claim_oops_do(is_par, cp)) {
  3827       p->oops_do(f, cf);
  3830   VMThread* vmt = VMThread::vm_thread();
  3831   if (vmt->claim_oops_do(is_par, cp))
  3832     vmt->oops_do(f, cf);
  3835 #ifndef SERIALGC
  3836 // Used by ParallelScavenge
  3837 void Threads::create_thread_roots_tasks(GCTaskQueue* q) {
  3838   ALL_JAVA_THREADS(p) {
  3839     q->enqueue(new ThreadRootsTask(p));
  3841   q->enqueue(new ThreadRootsTask(VMThread::vm_thread()));
  3844 // Used by Parallel Old
  3845 void Threads::create_thread_roots_marking_tasks(GCTaskQueue* q) {
  3846   ALL_JAVA_THREADS(p) {
  3847     q->enqueue(new ThreadRootsMarkingTask(p));
  3849   q->enqueue(new ThreadRootsMarkingTask(VMThread::vm_thread()));
  3851 #endif // SERIALGC
  3853 void Threads::nmethods_do(CodeBlobClosure* cf) {
  3854   ALL_JAVA_THREADS(p) {
  3855     p->nmethods_do(cf);
  3857   VMThread::vm_thread()->nmethods_do(cf);
  3860 void Threads::gc_epilogue() {
  3861   ALL_JAVA_THREADS(p) {
  3862     p->gc_epilogue();
  3866 void Threads::gc_prologue() {
  3867   ALL_JAVA_THREADS(p) {
  3868     p->gc_prologue();
  3872 void Threads::deoptimized_wrt_marked_nmethods() {
  3873   ALL_JAVA_THREADS(p) {
  3874     p->deoptimized_wrt_marked_nmethods();
  3879 // Get count Java threads that are waiting to enter the specified monitor.
  3880 GrowableArray<JavaThread*>* Threads::get_pending_threads(int count,
  3881   address monitor, bool doLock) {
  3882   assert(doLock || SafepointSynchronize::is_at_safepoint(),
  3883     "must grab Threads_lock or be at safepoint");
  3884   GrowableArray<JavaThread*>* result = new GrowableArray<JavaThread*>(count);
  3886   int i = 0;
  3888     MutexLockerEx ml(doLock ? Threads_lock : NULL);
  3889     ALL_JAVA_THREADS(p) {
  3890       if (p->is_Compiler_thread()) continue;
  3892       address pending = (address)p->current_pending_monitor();
  3893       if (pending == monitor) {             // found a match
  3894         if (i < count) result->append(p);   // save the first count matches
  3895         i++;
  3899   return result;
  3903 JavaThread *Threads::owning_thread_from_monitor_owner(address owner, bool doLock) {
  3904   assert(doLock ||
  3905          Threads_lock->owned_by_self() ||
  3906          SafepointSynchronize::is_at_safepoint(),
  3907          "must grab Threads_lock or be at safepoint");
  3909   // NULL owner means not locked so we can skip the search
  3910   if (owner == NULL) return NULL;
  3913     MutexLockerEx ml(doLock ? Threads_lock : NULL);
  3914     ALL_JAVA_THREADS(p) {
  3915       // first, see if owner is the address of a Java thread
  3916       if (owner == (address)p) return p;
  3919   assert(UseHeavyMonitors == false, "Did not find owning Java thread with UseHeavyMonitors enabled");
  3920   if (UseHeavyMonitors) return NULL;
  3922   //
  3923   // If we didn't find a matching Java thread and we didn't force use of
  3924   // heavyweight monitors, then the owner is the stack address of the
  3925   // Lock Word in the owning Java thread's stack.
  3926   //
  3927   JavaThread* the_owner = NULL;
  3929     MutexLockerEx ml(doLock ? Threads_lock : NULL);
  3930     ALL_JAVA_THREADS(q) {
  3931       if (q->is_lock_owned(owner)) {
  3932         the_owner = q;
  3933         break;
  3937   assert(the_owner != NULL, "Did not find owning Java thread for lock word address");
  3938   return the_owner;
  3941 // Threads::print_on() is called at safepoint by VM_PrintThreads operation.
  3942 void Threads::print_on(outputStream* st, bool print_stacks, bool internal_format, bool print_concurrent_locks) {
  3943   char buf[32];
  3944   st->print_cr(os::local_time_string(buf, sizeof(buf)));
  3946   st->print_cr("Full thread dump %s (%s %s):",
  3947                 Abstract_VM_Version::vm_name(),
  3948                 Abstract_VM_Version::vm_release(),
  3949                 Abstract_VM_Version::vm_info_string()
  3950                );
  3951   st->cr();
  3953 #ifndef SERIALGC
  3954   // Dump concurrent locks
  3955   ConcurrentLocksDump concurrent_locks;
  3956   if (print_concurrent_locks) {
  3957     concurrent_locks.dump_at_safepoint();
  3959 #endif // SERIALGC
  3961   ALL_JAVA_THREADS(p) {
  3962     ResourceMark rm;
  3963     p->print_on(st);
  3964     if (print_stacks) {
  3965       if (internal_format) {
  3966         p->trace_stack();
  3967       } else {
  3968         p->print_stack_on(st);
  3971     st->cr();
  3972 #ifndef SERIALGC
  3973     if (print_concurrent_locks) {
  3974       concurrent_locks.print_locks_on(p, st);
  3976 #endif // SERIALGC
  3979   VMThread::vm_thread()->print_on(st);
  3980   st->cr();
  3981   Universe::heap()->print_gc_threads_on(st);
  3982   WatcherThread* wt = WatcherThread::watcher_thread();
  3983   if (wt != NULL) wt->print_on(st);
  3984   st->cr();
  3985   CompileBroker::print_compiler_threads_on(st);
  3986   st->flush();
  3989 // Threads::print_on_error() is called by fatal error handler. It's possible
  3990 // that VM is not at safepoint and/or current thread is inside signal handler.
  3991 // Don't print stack trace, as the stack may not be walkable. Don't allocate
  3992 // memory (even in resource area), it might deadlock the error handler.
  3993 void Threads::print_on_error(outputStream* st, Thread* current, char* buf, int buflen) {
  3994   bool found_current = false;
  3995   st->print_cr("Java Threads: ( => current thread )");
  3996   ALL_JAVA_THREADS(thread) {
  3997     bool is_current = (current == thread);
  3998     found_current = found_current || is_current;
  4000     st->print("%s", is_current ? "=>" : "  ");
  4002     st->print(PTR_FORMAT, thread);
  4003     st->print(" ");
  4004     thread->print_on_error(st, buf, buflen);
  4005     st->cr();
  4007   st->cr();
  4009   st->print_cr("Other Threads:");
  4010   if (VMThread::vm_thread()) {
  4011     bool is_current = (current == VMThread::vm_thread());
  4012     found_current = found_current || is_current;
  4013     st->print("%s", current == VMThread::vm_thread() ? "=>" : "  ");
  4015     st->print(PTR_FORMAT, VMThread::vm_thread());
  4016     st->print(" ");
  4017     VMThread::vm_thread()->print_on_error(st, buf, buflen);
  4018     st->cr();
  4020   WatcherThread* wt = WatcherThread::watcher_thread();
  4021   if (wt != NULL) {
  4022     bool is_current = (current == wt);
  4023     found_current = found_current || is_current;
  4024     st->print("%s", is_current ? "=>" : "  ");
  4026     st->print(PTR_FORMAT, wt);
  4027     st->print(" ");
  4028     wt->print_on_error(st, buf, buflen);
  4029     st->cr();
  4031   if (!found_current) {
  4032     st->cr();
  4033     st->print("=>" PTR_FORMAT " (exited) ", current);
  4034     current->print_on_error(st, buf, buflen);
  4035     st->cr();
  4039 // Internal SpinLock and Mutex
  4040 // Based on ParkEvent
  4042 // Ad-hoc mutual exclusion primitives: SpinLock and Mux
  4043 //
  4044 // We employ SpinLocks _only for low-contention, fixed-length
  4045 // short-duration critical sections where we're concerned
  4046 // about native mutex_t or HotSpot Mutex:: latency.
  4047 // The mux construct provides a spin-then-block mutual exclusion
  4048 // mechanism.
  4049 //
  4050 // Testing has shown that contention on the ListLock guarding gFreeList
  4051 // is common.  If we implement ListLock as a simple SpinLock it's common
  4052 // for the JVM to devolve to yielding with little progress.  This is true
  4053 // despite the fact that the critical sections protected by ListLock are
  4054 // extremely short.
  4055 //
  4056 // TODO-FIXME: ListLock should be of type SpinLock.
  4057 // We should make this a 1st-class type, integrated into the lock
  4058 // hierarchy as leaf-locks.  Critically, the SpinLock structure
  4059 // should have sufficient padding to avoid false-sharing and excessive
  4060 // cache-coherency traffic.
  4063 typedef volatile int SpinLockT ;
  4065 void Thread::SpinAcquire (volatile int * adr, const char * LockName) {
  4066   if (Atomic::cmpxchg (1, adr, 0) == 0) {
  4067      return ;   // normal fast-path return
  4070   // Slow-path : We've encountered contention -- Spin/Yield/Block strategy.
  4071   TEVENT (SpinAcquire - ctx) ;
  4072   int ctr = 0 ;
  4073   int Yields = 0 ;
  4074   for (;;) {
  4075      while (*adr != 0) {
  4076         ++ctr ;
  4077         if ((ctr & 0xFFF) == 0 || !os::is_MP()) {
  4078            if (Yields > 5) {
  4079              // Consider using a simple NakedSleep() instead.
  4080              // Then SpinAcquire could be called by non-JVM threads
  4081              Thread::current()->_ParkEvent->park(1) ;
  4082            } else {
  4083              os::NakedYield() ;
  4084              ++Yields ;
  4086         } else {
  4087            SpinPause() ;
  4090      if (Atomic::cmpxchg (1, adr, 0) == 0) return ;
  4094 void Thread::SpinRelease (volatile int * adr) {
  4095   assert (*adr != 0, "invariant") ;
  4096   OrderAccess::fence() ;      // guarantee at least release consistency.
  4097   // Roach-motel semantics.
  4098   // It's safe if subsequent LDs and STs float "up" into the critical section,
  4099   // but prior LDs and STs within the critical section can't be allowed
  4100   // to reorder or float past the ST that releases the lock.
  4101   *adr = 0 ;
  4104 // muxAcquire and muxRelease:
  4105 //
  4106 // *  muxAcquire and muxRelease support a single-word lock-word construct.
  4107 //    The LSB of the word is set IFF the lock is held.
  4108 //    The remainder of the word points to the head of a singly-linked list
  4109 //    of threads blocked on the lock.
  4110 //
  4111 // *  The current implementation of muxAcquire-muxRelease uses its own
  4112 //    dedicated Thread._MuxEvent instance.  If we're interested in
  4113 //    minimizing the peak number of extant ParkEvent instances then
  4114 //    we could eliminate _MuxEvent and "borrow" _ParkEvent as long
  4115 //    as certain invariants were satisfied.  Specifically, care would need
  4116 //    to be taken with regards to consuming unpark() "permits".
  4117 //    A safe rule of thumb is that a thread would never call muxAcquire()
  4118 //    if it's enqueued (cxq, EntryList, WaitList, etc) and will subsequently
  4119 //    park().  Otherwise the _ParkEvent park() operation in muxAcquire() could
  4120 //    consume an unpark() permit intended for monitorenter, for instance.
  4121 //    One way around this would be to widen the restricted-range semaphore
  4122 //    implemented in park().  Another alternative would be to provide
  4123 //    multiple instances of the PlatformEvent() for each thread.  One
  4124 //    instance would be dedicated to muxAcquire-muxRelease, for instance.
  4125 //
  4126 // *  Usage:
  4127 //    -- Only as leaf locks
  4128 //    -- for short-term locking only as muxAcquire does not perform
  4129 //       thread state transitions.
  4130 //
  4131 // Alternatives:
  4132 // *  We could implement muxAcquire and muxRelease with MCS or CLH locks
  4133 //    but with parking or spin-then-park instead of pure spinning.
  4134 // *  Use Taura-Oyama-Yonenzawa locks.
  4135 // *  It's possible to construct a 1-0 lock if we encode the lockword as
  4136 //    (List,LockByte).  Acquire will CAS the full lockword while Release
  4137 //    will STB 0 into the LockByte.  The 1-0 scheme admits stranding, so
  4138 //    acquiring threads use timers (ParkTimed) to detect and recover from
  4139 //    the stranding window.  Thread/Node structures must be aligned on 256-byte
  4140 //    boundaries by using placement-new.
  4141 // *  Augment MCS with advisory back-link fields maintained with CAS().
  4142 //    Pictorially:  LockWord -> T1 <-> T2 <-> T3 <-> ... <-> Tn <-> Owner.
  4143 //    The validity of the backlinks must be ratified before we trust the value.
  4144 //    If the backlinks are invalid the exiting thread must back-track through the
  4145 //    the forward links, which are always trustworthy.
  4146 // *  Add a successor indication.  The LockWord is currently encoded as
  4147 //    (List, LOCKBIT:1).  We could also add a SUCCBIT or an explicit _succ variable
  4148 //    to provide the usual futile-wakeup optimization.
  4149 //    See RTStt for details.
  4150 // *  Consider schedctl.sc_nopreempt to cover the critical section.
  4151 //
  4154 typedef volatile intptr_t MutexT ;      // Mux Lock-word
  4155 enum MuxBits { LOCKBIT = 1 } ;
  4157 void Thread::muxAcquire (volatile intptr_t * Lock, const char * LockName) {
  4158   intptr_t w = Atomic::cmpxchg_ptr (LOCKBIT, Lock, 0) ;
  4159   if (w == 0) return ;
  4160   if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
  4161      return ;
  4164   TEVENT (muxAcquire - Contention) ;
  4165   ParkEvent * const Self = Thread::current()->_MuxEvent ;
  4166   assert ((intptr_t(Self) & LOCKBIT) == 0, "invariant") ;
  4167   for (;;) {
  4168      int its = (os::is_MP() ? 100 : 0) + 1 ;
  4170      // Optional spin phase: spin-then-park strategy
  4171      while (--its >= 0) {
  4172        w = *Lock ;
  4173        if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
  4174           return ;
  4178      Self->reset() ;
  4179      Self->OnList = intptr_t(Lock) ;
  4180      // The following fence() isn't _strictly necessary as the subsequent
  4181      // CAS() both serializes execution and ratifies the fetched *Lock value.
  4182      OrderAccess::fence();
  4183      for (;;) {
  4184         w = *Lock ;
  4185         if ((w & LOCKBIT) == 0) {
  4186             if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
  4187                 Self->OnList = 0 ;   // hygiene - allows stronger asserts
  4188                 return ;
  4190             continue ;      // Interference -- *Lock changed -- Just retry
  4192         assert (w & LOCKBIT, "invariant") ;
  4193         Self->ListNext = (ParkEvent *) (w & ~LOCKBIT );
  4194         if (Atomic::cmpxchg_ptr (intptr_t(Self)|LOCKBIT, Lock, w) == w) break ;
  4197      while (Self->OnList != 0) {
  4198         Self->park() ;
  4203 void Thread::muxAcquireW (volatile intptr_t * Lock, ParkEvent * ev) {
  4204   intptr_t w = Atomic::cmpxchg_ptr (LOCKBIT, Lock, 0) ;
  4205   if (w == 0) return ;
  4206   if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
  4207     return ;
  4210   TEVENT (muxAcquire - Contention) ;
  4211   ParkEvent * ReleaseAfter = NULL ;
  4212   if (ev == NULL) {
  4213     ev = ReleaseAfter = ParkEvent::Allocate (NULL) ;
  4215   assert ((intptr_t(ev) & LOCKBIT) == 0, "invariant") ;
  4216   for (;;) {
  4217     guarantee (ev->OnList == 0, "invariant") ;
  4218     int its = (os::is_MP() ? 100 : 0) + 1 ;
  4220     // Optional spin phase: spin-then-park strategy
  4221     while (--its >= 0) {
  4222       w = *Lock ;
  4223       if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
  4224         if (ReleaseAfter != NULL) {
  4225           ParkEvent::Release (ReleaseAfter) ;
  4227         return ;
  4231     ev->reset() ;
  4232     ev->OnList = intptr_t(Lock) ;
  4233     // The following fence() isn't _strictly necessary as the subsequent
  4234     // CAS() both serializes execution and ratifies the fetched *Lock value.
  4235     OrderAccess::fence();
  4236     for (;;) {
  4237       w = *Lock ;
  4238       if ((w & LOCKBIT) == 0) {
  4239         if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
  4240           ev->OnList = 0 ;
  4241           // We call ::Release while holding the outer lock, thus
  4242           // artificially lengthening the critical section.
  4243           // Consider deferring the ::Release() until the subsequent unlock(),
  4244           // after we've dropped the outer lock.
  4245           if (ReleaseAfter != NULL) {
  4246             ParkEvent::Release (ReleaseAfter) ;
  4248           return ;
  4250         continue ;      // Interference -- *Lock changed -- Just retry
  4252       assert (w & LOCKBIT, "invariant") ;
  4253       ev->ListNext = (ParkEvent *) (w & ~LOCKBIT );
  4254       if (Atomic::cmpxchg_ptr (intptr_t(ev)|LOCKBIT, Lock, w) == w) break ;
  4257     while (ev->OnList != 0) {
  4258       ev->park() ;
  4263 // Release() must extract a successor from the list and then wake that thread.
  4264 // It can "pop" the front of the list or use a detach-modify-reattach (DMR) scheme
  4265 // similar to that used by ParkEvent::Allocate() and ::Release().  DMR-based
  4266 // Release() would :
  4267 // (A) CAS() or swap() null to *Lock, releasing the lock and detaching the list.
  4268 // (B) Extract a successor from the private list "in-hand"
  4269 // (C) attempt to CAS() the residual back into *Lock over null.
  4270 //     If there were any newly arrived threads and the CAS() would fail.
  4271 //     In that case Release() would detach the RATs, re-merge the list in-hand
  4272 //     with the RATs and repeat as needed.  Alternately, Release() might
  4273 //     detach and extract a successor, but then pass the residual list to the wakee.
  4274 //     The wakee would be responsible for reattaching and remerging before it
  4275 //     competed for the lock.
  4276 //
  4277 // Both "pop" and DMR are immune from ABA corruption -- there can be
  4278 // multiple concurrent pushers, but only one popper or detacher.
  4279 // This implementation pops from the head of the list.  This is unfair,
  4280 // but tends to provide excellent throughput as hot threads remain hot.
  4281 // (We wake recently run threads first).
  4283 void Thread::muxRelease (volatile intptr_t * Lock)  {
  4284   for (;;) {
  4285     const intptr_t w = Atomic::cmpxchg_ptr (0, Lock, LOCKBIT) ;
  4286     assert (w & LOCKBIT, "invariant") ;
  4287     if (w == LOCKBIT) return ;
  4288     ParkEvent * List = (ParkEvent *) (w & ~LOCKBIT) ;
  4289     assert (List != NULL, "invariant") ;
  4290     assert (List->OnList == intptr_t(Lock), "invariant") ;
  4291     ParkEvent * nxt = List->ListNext ;
  4293     // The following CAS() releases the lock and pops the head element.
  4294     if (Atomic::cmpxchg_ptr (intptr_t(nxt), Lock, w) != w) {
  4295       continue ;
  4297     List->OnList = 0 ;
  4298     OrderAccess::fence() ;
  4299     List->unpark () ;
  4300     return ;
  4305 void Threads::verify() {
  4306   ALL_JAVA_THREADS(p) {
  4307     p->verify();
  4309   VMThread* thread = VMThread::vm_thread();
  4310   if (thread != NULL) thread->verify();

mercurial