src/share/vm/opto/graphKit.cpp

Thu, 18 Nov 2010 09:52:48 -0800

author
kvn
date
Thu, 18 Nov 2010 09:52:48 -0800
changeset 2307
f264f4c42799
parent 2141
f9883ee8ce39
child 2314
f95d63e2154a
permissions
-rw-r--r--

7000491: assert(false) failed: should be optimized out in SharedRuntime::g1_wb_pre
Summary: Wrong value type is used for NULL store when clearing the detail message of the preallocated exception object.
Reviewed-by: never, iveresov

     1 /*
     2  * Copyright (c) 2001, 2010, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "incls/_precompiled.incl"
    26 #include "incls/_graphKit.cpp.incl"
    28 //----------------------------GraphKit-----------------------------------------
    29 // Main utility constructor.
    30 GraphKit::GraphKit(JVMState* jvms)
    31   : Phase(Phase::Parser),
    32     _env(C->env()),
    33     _gvn(*C->initial_gvn())
    34 {
    35   _exceptions = jvms->map()->next_exception();
    36   if (_exceptions != NULL)  jvms->map()->set_next_exception(NULL);
    37   set_jvms(jvms);
    38 }
    40 // Private constructor for parser.
    41 GraphKit::GraphKit()
    42   : Phase(Phase::Parser),
    43     _env(C->env()),
    44     _gvn(*C->initial_gvn())
    45 {
    46   _exceptions = NULL;
    47   set_map(NULL);
    48   debug_only(_sp = -99);
    49   debug_only(set_bci(-99));
    50 }
    54 //---------------------------clean_stack---------------------------------------
    55 // Clear away rubbish from the stack area of the JVM state.
    56 // This destroys any arguments that may be waiting on the stack.
    57 void GraphKit::clean_stack(int from_sp) {
    58   SafePointNode* map      = this->map();
    59   JVMState*      jvms     = this->jvms();
    60   int            stk_size = jvms->stk_size();
    61   int            stkoff   = jvms->stkoff();
    62   Node*          top      = this->top();
    63   for (int i = from_sp; i < stk_size; i++) {
    64     if (map->in(stkoff + i) != top) {
    65       map->set_req(stkoff + i, top);
    66     }
    67   }
    68 }
    71 //--------------------------------sync_jvms-----------------------------------
    72 // Make sure our current jvms agrees with our parse state.
    73 JVMState* GraphKit::sync_jvms() const {
    74   JVMState* jvms = this->jvms();
    75   jvms->set_bci(bci());       // Record the new bci in the JVMState
    76   jvms->set_sp(sp());         // Record the new sp in the JVMState
    77   assert(jvms_in_sync(), "jvms is now in sync");
    78   return jvms;
    79 }
    81 #ifdef ASSERT
    82 bool GraphKit::jvms_in_sync() const {
    83   Parse* parse = is_Parse();
    84   if (parse == NULL) {
    85     if (bci() !=      jvms()->bci())          return false;
    86     if (sp()  != (int)jvms()->sp())           return false;
    87     return true;
    88   }
    89   if (jvms()->method() != parse->method())    return false;
    90   if (jvms()->bci()    != parse->bci())       return false;
    91   int jvms_sp = jvms()->sp();
    92   if (jvms_sp          != parse->sp())        return false;
    93   int jvms_depth = jvms()->depth();
    94   if (jvms_depth       != parse->depth())     return false;
    95   return true;
    96 }
    98 // Local helper checks for special internal merge points
    99 // used to accumulate and merge exception states.
   100 // They are marked by the region's in(0) edge being the map itself.
   101 // Such merge points must never "escape" into the parser at large,
   102 // until they have been handed to gvn.transform.
   103 static bool is_hidden_merge(Node* reg) {
   104   if (reg == NULL)  return false;
   105   if (reg->is_Phi()) {
   106     reg = reg->in(0);
   107     if (reg == NULL)  return false;
   108   }
   109   return reg->is_Region() && reg->in(0) != NULL && reg->in(0)->is_Root();
   110 }
   112 void GraphKit::verify_map() const {
   113   if (map() == NULL)  return;  // null map is OK
   114   assert(map()->req() <= jvms()->endoff(), "no extra garbage on map");
   115   assert(!map()->has_exceptions(),    "call add_exception_states_from 1st");
   116   assert(!is_hidden_merge(control()), "call use_exception_state, not set_map");
   117 }
   119 void GraphKit::verify_exception_state(SafePointNode* ex_map) {
   120   assert(ex_map->next_exception() == NULL, "not already part of a chain");
   121   assert(has_saved_ex_oop(ex_map), "every exception state has an ex_oop");
   122 }
   123 #endif
   125 //---------------------------stop_and_kill_map---------------------------------
   126 // Set _map to NULL, signalling a stop to further bytecode execution.
   127 // First smash the current map's control to a constant, to mark it dead.
   128 void GraphKit::stop_and_kill_map() {
   129   SafePointNode* dead_map = stop();
   130   if (dead_map != NULL) {
   131     dead_map->disconnect_inputs(NULL); // Mark the map as killed.
   132     assert(dead_map->is_killed(), "must be so marked");
   133   }
   134 }
   137 //--------------------------------stopped--------------------------------------
   138 // Tell if _map is NULL, or control is top.
   139 bool GraphKit::stopped() {
   140   if (map() == NULL)           return true;
   141   else if (control() == top()) return true;
   142   else                         return false;
   143 }
   146 //-----------------------------has_ex_handler----------------------------------
   147 // Tell if this method or any caller method has exception handlers.
   148 bool GraphKit::has_ex_handler() {
   149   for (JVMState* jvmsp = jvms(); jvmsp != NULL; jvmsp = jvmsp->caller()) {
   150     if (jvmsp->has_method() && jvmsp->method()->has_exception_handlers()) {
   151       return true;
   152     }
   153   }
   154   return false;
   155 }
   157 //------------------------------save_ex_oop------------------------------------
   158 // Save an exception without blowing stack contents or other JVM state.
   159 void GraphKit::set_saved_ex_oop(SafePointNode* ex_map, Node* ex_oop) {
   160   assert(!has_saved_ex_oop(ex_map), "clear ex-oop before setting again");
   161   ex_map->add_req(ex_oop);
   162   debug_only(verify_exception_state(ex_map));
   163 }
   165 inline static Node* common_saved_ex_oop(SafePointNode* ex_map, bool clear_it) {
   166   assert(GraphKit::has_saved_ex_oop(ex_map), "ex_oop must be there");
   167   Node* ex_oop = ex_map->in(ex_map->req()-1);
   168   if (clear_it)  ex_map->del_req(ex_map->req()-1);
   169   return ex_oop;
   170 }
   172 //-----------------------------saved_ex_oop------------------------------------
   173 // Recover a saved exception from its map.
   174 Node* GraphKit::saved_ex_oop(SafePointNode* ex_map) {
   175   return common_saved_ex_oop(ex_map, false);
   176 }
   178 //--------------------------clear_saved_ex_oop---------------------------------
   179 // Erase a previously saved exception from its map.
   180 Node* GraphKit::clear_saved_ex_oop(SafePointNode* ex_map) {
   181   return common_saved_ex_oop(ex_map, true);
   182 }
   184 #ifdef ASSERT
   185 //---------------------------has_saved_ex_oop----------------------------------
   186 // Erase a previously saved exception from its map.
   187 bool GraphKit::has_saved_ex_oop(SafePointNode* ex_map) {
   188   return ex_map->req() == ex_map->jvms()->endoff()+1;
   189 }
   190 #endif
   192 //-------------------------make_exception_state--------------------------------
   193 // Turn the current JVM state into an exception state, appending the ex_oop.
   194 SafePointNode* GraphKit::make_exception_state(Node* ex_oop) {
   195   sync_jvms();
   196   SafePointNode* ex_map = stop();  // do not manipulate this map any more
   197   set_saved_ex_oop(ex_map, ex_oop);
   198   return ex_map;
   199 }
   202 //--------------------------add_exception_state--------------------------------
   203 // Add an exception to my list of exceptions.
   204 void GraphKit::add_exception_state(SafePointNode* ex_map) {
   205   if (ex_map == NULL || ex_map->control() == top()) {
   206     return;
   207   }
   208 #ifdef ASSERT
   209   verify_exception_state(ex_map);
   210   if (has_exceptions()) {
   211     assert(ex_map->jvms()->same_calls_as(_exceptions->jvms()), "all collected exceptions must come from the same place");
   212   }
   213 #endif
   215   // If there is already an exception of exactly this type, merge with it.
   216   // In particular, null-checks and other low-level exceptions common up here.
   217   Node*       ex_oop  = saved_ex_oop(ex_map);
   218   const Type* ex_type = _gvn.type(ex_oop);
   219   if (ex_oop == top()) {
   220     // No action needed.
   221     return;
   222   }
   223   assert(ex_type->isa_instptr(), "exception must be an instance");
   224   for (SafePointNode* e2 = _exceptions; e2 != NULL; e2 = e2->next_exception()) {
   225     const Type* ex_type2 = _gvn.type(saved_ex_oop(e2));
   226     // We check sp also because call bytecodes can generate exceptions
   227     // both before and after arguments are popped!
   228     if (ex_type2 == ex_type
   229         && e2->_jvms->sp() == ex_map->_jvms->sp()) {
   230       combine_exception_states(ex_map, e2);
   231       return;
   232     }
   233   }
   235   // No pre-existing exception of the same type.  Chain it on the list.
   236   push_exception_state(ex_map);
   237 }
   239 //-----------------------add_exception_states_from-----------------------------
   240 void GraphKit::add_exception_states_from(JVMState* jvms) {
   241   SafePointNode* ex_map = jvms->map()->next_exception();
   242   if (ex_map != NULL) {
   243     jvms->map()->set_next_exception(NULL);
   244     for (SafePointNode* next_map; ex_map != NULL; ex_map = next_map) {
   245       next_map = ex_map->next_exception();
   246       ex_map->set_next_exception(NULL);
   247       add_exception_state(ex_map);
   248     }
   249   }
   250 }
   252 //-----------------------transfer_exceptions_into_jvms-------------------------
   253 JVMState* GraphKit::transfer_exceptions_into_jvms() {
   254   if (map() == NULL) {
   255     // We need a JVMS to carry the exceptions, but the map has gone away.
   256     // Create a scratch JVMS, cloned from any of the exception states...
   257     if (has_exceptions()) {
   258       _map = _exceptions;
   259       _map = clone_map();
   260       _map->set_next_exception(NULL);
   261       clear_saved_ex_oop(_map);
   262       debug_only(verify_map());
   263     } else {
   264       // ...or created from scratch
   265       JVMState* jvms = new (C) JVMState(_method, NULL);
   266       jvms->set_bci(_bci);
   267       jvms->set_sp(_sp);
   268       jvms->set_map(new (C, TypeFunc::Parms) SafePointNode(TypeFunc::Parms, jvms));
   269       set_jvms(jvms);
   270       for (uint i = 0; i < map()->req(); i++)  map()->init_req(i, top());
   271       set_all_memory(top());
   272       while (map()->req() < jvms->endoff())  map()->add_req(top());
   273     }
   274     // (This is a kludge, in case you didn't notice.)
   275     set_control(top());
   276   }
   277   JVMState* jvms = sync_jvms();
   278   assert(!jvms->map()->has_exceptions(), "no exceptions on this map yet");
   279   jvms->map()->set_next_exception(_exceptions);
   280   _exceptions = NULL;   // done with this set of exceptions
   281   return jvms;
   282 }
   284 static inline void add_n_reqs(Node* dstphi, Node* srcphi) {
   285   assert(is_hidden_merge(dstphi), "must be a special merge node");
   286   assert(is_hidden_merge(srcphi), "must be a special merge node");
   287   uint limit = srcphi->req();
   288   for (uint i = PhiNode::Input; i < limit; i++) {
   289     dstphi->add_req(srcphi->in(i));
   290   }
   291 }
   292 static inline void add_one_req(Node* dstphi, Node* src) {
   293   assert(is_hidden_merge(dstphi), "must be a special merge node");
   294   assert(!is_hidden_merge(src), "must not be a special merge node");
   295   dstphi->add_req(src);
   296 }
   298 //-----------------------combine_exception_states------------------------------
   299 // This helper function combines exception states by building phis on a
   300 // specially marked state-merging region.  These regions and phis are
   301 // untransformed, and can build up gradually.  The region is marked by
   302 // having a control input of its exception map, rather than NULL.  Such
   303 // regions do not appear except in this function, and in use_exception_state.
   304 void GraphKit::combine_exception_states(SafePointNode* ex_map, SafePointNode* phi_map) {
   305   if (failing())  return;  // dying anyway...
   306   JVMState* ex_jvms = ex_map->_jvms;
   307   assert(ex_jvms->same_calls_as(phi_map->_jvms), "consistent call chains");
   308   assert(ex_jvms->stkoff() == phi_map->_jvms->stkoff(), "matching locals");
   309   assert(ex_jvms->sp() == phi_map->_jvms->sp(), "matching stack sizes");
   310   assert(ex_jvms->monoff() == phi_map->_jvms->monoff(), "matching JVMS");
   311   assert(ex_map->req() == phi_map->req(), "matching maps");
   312   uint tos = ex_jvms->stkoff() + ex_jvms->sp();
   313   Node*         hidden_merge_mark = root();
   314   Node*         region  = phi_map->control();
   315   MergeMemNode* phi_mem = phi_map->merged_memory();
   316   MergeMemNode* ex_mem  = ex_map->merged_memory();
   317   if (region->in(0) != hidden_merge_mark) {
   318     // The control input is not (yet) a specially-marked region in phi_map.
   319     // Make it so, and build some phis.
   320     region = new (C, 2) RegionNode(2);
   321     _gvn.set_type(region, Type::CONTROL);
   322     region->set_req(0, hidden_merge_mark);  // marks an internal ex-state
   323     region->init_req(1, phi_map->control());
   324     phi_map->set_control(region);
   325     Node* io_phi = PhiNode::make(region, phi_map->i_o(), Type::ABIO);
   326     record_for_igvn(io_phi);
   327     _gvn.set_type(io_phi, Type::ABIO);
   328     phi_map->set_i_o(io_phi);
   329     for (MergeMemStream mms(phi_mem); mms.next_non_empty(); ) {
   330       Node* m = mms.memory();
   331       Node* m_phi = PhiNode::make(region, m, Type::MEMORY, mms.adr_type(C));
   332       record_for_igvn(m_phi);
   333       _gvn.set_type(m_phi, Type::MEMORY);
   334       mms.set_memory(m_phi);
   335     }
   336   }
   338   // Either or both of phi_map and ex_map might already be converted into phis.
   339   Node* ex_control = ex_map->control();
   340   // if there is special marking on ex_map also, we add multiple edges from src
   341   bool add_multiple = (ex_control->in(0) == hidden_merge_mark);
   342   // how wide was the destination phi_map, originally?
   343   uint orig_width = region->req();
   345   if (add_multiple) {
   346     add_n_reqs(region, ex_control);
   347     add_n_reqs(phi_map->i_o(), ex_map->i_o());
   348   } else {
   349     // ex_map has no merges, so we just add single edges everywhere
   350     add_one_req(region, ex_control);
   351     add_one_req(phi_map->i_o(), ex_map->i_o());
   352   }
   353   for (MergeMemStream mms(phi_mem, ex_mem); mms.next_non_empty2(); ) {
   354     if (mms.is_empty()) {
   355       // get a copy of the base memory, and patch some inputs into it
   356       const TypePtr* adr_type = mms.adr_type(C);
   357       Node* phi = mms.force_memory()->as_Phi()->slice_memory(adr_type);
   358       assert(phi->as_Phi()->region() == mms.base_memory()->in(0), "");
   359       mms.set_memory(phi);
   360       // Prepare to append interesting stuff onto the newly sliced phi:
   361       while (phi->req() > orig_width)  phi->del_req(phi->req()-1);
   362     }
   363     // Append stuff from ex_map:
   364     if (add_multiple) {
   365       add_n_reqs(mms.memory(), mms.memory2());
   366     } else {
   367       add_one_req(mms.memory(), mms.memory2());
   368     }
   369   }
   370   uint limit = ex_map->req();
   371   for (uint i = TypeFunc::Parms; i < limit; i++) {
   372     // Skip everything in the JVMS after tos.  (The ex_oop follows.)
   373     if (i == tos)  i = ex_jvms->monoff();
   374     Node* src = ex_map->in(i);
   375     Node* dst = phi_map->in(i);
   376     if (src != dst) {
   377       PhiNode* phi;
   378       if (dst->in(0) != region) {
   379         dst = phi = PhiNode::make(region, dst, _gvn.type(dst));
   380         record_for_igvn(phi);
   381         _gvn.set_type(phi, phi->type());
   382         phi_map->set_req(i, dst);
   383         // Prepare to append interesting stuff onto the new phi:
   384         while (dst->req() > orig_width)  dst->del_req(dst->req()-1);
   385       } else {
   386         assert(dst->is_Phi(), "nobody else uses a hidden region");
   387         phi = (PhiNode*)dst;
   388       }
   389       if (add_multiple && src->in(0) == ex_control) {
   390         // Both are phis.
   391         add_n_reqs(dst, src);
   392       } else {
   393         while (dst->req() < region->req())  add_one_req(dst, src);
   394       }
   395       const Type* srctype = _gvn.type(src);
   396       if (phi->type() != srctype) {
   397         const Type* dsttype = phi->type()->meet(srctype);
   398         if (phi->type() != dsttype) {
   399           phi->set_type(dsttype);
   400           _gvn.set_type(phi, dsttype);
   401         }
   402       }
   403     }
   404   }
   405 }
   407 //--------------------------use_exception_state--------------------------------
   408 Node* GraphKit::use_exception_state(SafePointNode* phi_map) {
   409   if (failing()) { stop(); return top(); }
   410   Node* region = phi_map->control();
   411   Node* hidden_merge_mark = root();
   412   assert(phi_map->jvms()->map() == phi_map, "sanity: 1-1 relation");
   413   Node* ex_oop = clear_saved_ex_oop(phi_map);
   414   if (region->in(0) == hidden_merge_mark) {
   415     // Special marking for internal ex-states.  Process the phis now.
   416     region->set_req(0, region);  // now it's an ordinary region
   417     set_jvms(phi_map->jvms());   // ...so now we can use it as a map
   418     // Note: Setting the jvms also sets the bci and sp.
   419     set_control(_gvn.transform(region));
   420     uint tos = jvms()->stkoff() + sp();
   421     for (uint i = 1; i < tos; i++) {
   422       Node* x = phi_map->in(i);
   423       if (x->in(0) == region) {
   424         assert(x->is_Phi(), "expected a special phi");
   425         phi_map->set_req(i, _gvn.transform(x));
   426       }
   427     }
   428     for (MergeMemStream mms(merged_memory()); mms.next_non_empty(); ) {
   429       Node* x = mms.memory();
   430       if (x->in(0) == region) {
   431         assert(x->is_Phi(), "nobody else uses a hidden region");
   432         mms.set_memory(_gvn.transform(x));
   433       }
   434     }
   435     if (ex_oop->in(0) == region) {
   436       assert(ex_oop->is_Phi(), "expected a special phi");
   437       ex_oop = _gvn.transform(ex_oop);
   438     }
   439   } else {
   440     set_jvms(phi_map->jvms());
   441   }
   443   assert(!is_hidden_merge(phi_map->control()), "hidden ex. states cleared");
   444   assert(!is_hidden_merge(phi_map->i_o()), "hidden ex. states cleared");
   445   return ex_oop;
   446 }
   448 //---------------------------------java_bc-------------------------------------
   449 Bytecodes::Code GraphKit::java_bc() const {
   450   ciMethod* method = this->method();
   451   int       bci    = this->bci();
   452   if (method != NULL && bci != InvocationEntryBci)
   453     return method->java_code_at_bci(bci);
   454   else
   455     return Bytecodes::_illegal;
   456 }
   458 void GraphKit::uncommon_trap_if_should_post_on_exceptions(Deoptimization::DeoptReason reason,
   459                                                           bool must_throw) {
   460     // if the exception capability is set, then we will generate code
   461     // to check the JavaThread.should_post_on_exceptions flag to see
   462     // if we actually need to report exception events (for this
   463     // thread).  If we don't need to report exception events, we will
   464     // take the normal fast path provided by add_exception_events.  If
   465     // exception event reporting is enabled for this thread, we will
   466     // take the uncommon_trap in the BuildCutout below.
   468     // first must access the should_post_on_exceptions_flag in this thread's JavaThread
   469     Node* jthread = _gvn.transform(new (C, 1) ThreadLocalNode());
   470     Node* adr = basic_plus_adr(top(), jthread, in_bytes(JavaThread::should_post_on_exceptions_flag_offset()));
   471     Node* should_post_flag = make_load(control(), adr, TypeInt::INT, T_INT, Compile::AliasIdxRaw, false);
   473     // Test the should_post_on_exceptions_flag vs. 0
   474     Node* chk = _gvn.transform( new (C, 3) CmpINode(should_post_flag, intcon(0)) );
   475     Node* tst = _gvn.transform( new (C, 2) BoolNode(chk, BoolTest::eq) );
   477     // Branch to slow_path if should_post_on_exceptions_flag was true
   478     { BuildCutout unless(this, tst, PROB_MAX);
   479       // Do not try anything fancy if we're notifying the VM on every throw.
   480       // Cf. case Bytecodes::_athrow in parse2.cpp.
   481       uncommon_trap(reason, Deoptimization::Action_none,
   482                     (ciKlass*)NULL, (char*)NULL, must_throw);
   483     }
   485 }
   487 //------------------------------builtin_throw----------------------------------
   488 void GraphKit::builtin_throw(Deoptimization::DeoptReason reason, Node* arg) {
   489   bool must_throw = true;
   491   if (env()->jvmti_can_post_on_exceptions()) {
   492     // check if we must post exception events, take uncommon trap if so
   493     uncommon_trap_if_should_post_on_exceptions(reason, must_throw);
   494     // here if should_post_on_exceptions is false
   495     // continue on with the normal codegen
   496   }
   498   // If this particular condition has not yet happened at this
   499   // bytecode, then use the uncommon trap mechanism, and allow for
   500   // a future recompilation if several traps occur here.
   501   // If the throw is hot, try to use a more complicated inline mechanism
   502   // which keeps execution inside the compiled code.
   503   bool treat_throw_as_hot = false;
   504   ciMethodData* md = method()->method_data();
   506   if (ProfileTraps) {
   507     if (too_many_traps(reason)) {
   508       treat_throw_as_hot = true;
   509     }
   510     // (If there is no MDO at all, assume it is early in
   511     // execution, and that any deopts are part of the
   512     // startup transient, and don't need to be remembered.)
   514     // Also, if there is a local exception handler, treat all throws
   515     // as hot if there has been at least one in this method.
   516     if (C->trap_count(reason) != 0
   517         && method()->method_data()->trap_count(reason) != 0
   518         && has_ex_handler()) {
   519         treat_throw_as_hot = true;
   520     }
   521   }
   523   // If this throw happens frequently, an uncommon trap might cause
   524   // a performance pothole.  If there is a local exception handler,
   525   // and if this particular bytecode appears to be deoptimizing often,
   526   // let us handle the throw inline, with a preconstructed instance.
   527   // Note:   If the deopt count has blown up, the uncommon trap
   528   // runtime is going to flush this nmethod, not matter what.
   529   if (treat_throw_as_hot
   530       && (!StackTraceInThrowable || OmitStackTraceInFastThrow)) {
   531     // If the throw is local, we use a pre-existing instance and
   532     // punt on the backtrace.  This would lead to a missing backtrace
   533     // (a repeat of 4292742) if the backtrace object is ever asked
   534     // for its backtrace.
   535     // Fixing this remaining case of 4292742 requires some flavor of
   536     // escape analysis.  Leave that for the future.
   537     ciInstance* ex_obj = NULL;
   538     switch (reason) {
   539     case Deoptimization::Reason_null_check:
   540       ex_obj = env()->NullPointerException_instance();
   541       break;
   542     case Deoptimization::Reason_div0_check:
   543       ex_obj = env()->ArithmeticException_instance();
   544       break;
   545     case Deoptimization::Reason_range_check:
   546       ex_obj = env()->ArrayIndexOutOfBoundsException_instance();
   547       break;
   548     case Deoptimization::Reason_class_check:
   549       if (java_bc() == Bytecodes::_aastore) {
   550         ex_obj = env()->ArrayStoreException_instance();
   551       } else {
   552         ex_obj = env()->ClassCastException_instance();
   553       }
   554       break;
   555     }
   556     if (failing()) { stop(); return; }  // exception allocation might fail
   557     if (ex_obj != NULL) {
   558       // Cheat with a preallocated exception object.
   559       if (C->log() != NULL)
   560         C->log()->elem("hot_throw preallocated='1' reason='%s'",
   561                        Deoptimization::trap_reason_name(reason));
   562       const TypeInstPtr* ex_con  = TypeInstPtr::make(ex_obj);
   563       Node*              ex_node = _gvn.transform( ConNode::make(C, ex_con) );
   565       // Clear the detail message of the preallocated exception object.
   566       // Weblogic sometimes mutates the detail message of exceptions
   567       // using reflection.
   568       int offset = java_lang_Throwable::get_detailMessage_offset();
   569       const TypePtr* adr_typ = ex_con->add_offset(offset);
   571       Node *adr = basic_plus_adr(ex_node, ex_node, offset);
   572       const TypeOopPtr* val_type = TypeOopPtr::make_from_klass(env()->String_klass());
   573       Node *store = store_oop_to_object(control(), ex_node, adr, adr_typ, null(), val_type, T_OBJECT);
   575       add_exception_state(make_exception_state(ex_node));
   576       return;
   577     }
   578   }
   580   // %%% Maybe add entry to OptoRuntime which directly throws the exc.?
   581   // It won't be much cheaper than bailing to the interp., since we'll
   582   // have to pass up all the debug-info, and the runtime will have to
   583   // create the stack trace.
   585   // Usual case:  Bail to interpreter.
   586   // Reserve the right to recompile if we haven't seen anything yet.
   588   Deoptimization::DeoptAction action = Deoptimization::Action_maybe_recompile;
   589   if (treat_throw_as_hot
   590       && (method()->method_data()->trap_recompiled_at(bci())
   591           || C->too_many_traps(reason))) {
   592     // We cannot afford to take more traps here.  Suffer in the interpreter.
   593     if (C->log() != NULL)
   594       C->log()->elem("hot_throw preallocated='0' reason='%s' mcount='%d'",
   595                      Deoptimization::trap_reason_name(reason),
   596                      C->trap_count(reason));
   597     action = Deoptimization::Action_none;
   598   }
   600   // "must_throw" prunes the JVM state to include only the stack, if there
   601   // are no local exception handlers.  This should cut down on register
   602   // allocation time and code size, by drastically reducing the number
   603   // of in-edges on the call to the uncommon trap.
   605   uncommon_trap(reason, action, (ciKlass*)NULL, (char*)NULL, must_throw);
   606 }
   609 //----------------------------PreserveJVMState---------------------------------
   610 PreserveJVMState::PreserveJVMState(GraphKit* kit, bool clone_map) {
   611   debug_only(kit->verify_map());
   612   _kit    = kit;
   613   _map    = kit->map();   // preserve the map
   614   _sp     = kit->sp();
   615   kit->set_map(clone_map ? kit->clone_map() : NULL);
   616 #ifdef ASSERT
   617   _bci    = kit->bci();
   618   Parse* parser = kit->is_Parse();
   619   int block = (parser == NULL || parser->block() == NULL) ? -1 : parser->block()->rpo();
   620   _block  = block;
   621 #endif
   622 }
   623 PreserveJVMState::~PreserveJVMState() {
   624   GraphKit* kit = _kit;
   625 #ifdef ASSERT
   626   assert(kit->bci() == _bci, "bci must not shift");
   627   Parse* parser = kit->is_Parse();
   628   int block = (parser == NULL || parser->block() == NULL) ? -1 : parser->block()->rpo();
   629   assert(block == _block,    "block must not shift");
   630 #endif
   631   kit->set_map(_map);
   632   kit->set_sp(_sp);
   633 }
   636 //-----------------------------BuildCutout-------------------------------------
   637 BuildCutout::BuildCutout(GraphKit* kit, Node* p, float prob, float cnt)
   638   : PreserveJVMState(kit)
   639 {
   640   assert(p->is_Con() || p->is_Bool(), "test must be a bool");
   641   SafePointNode* outer_map = _map;   // preserved map is caller's
   642   SafePointNode* inner_map = kit->map();
   643   IfNode* iff = kit->create_and_map_if(outer_map->control(), p, prob, cnt);
   644   outer_map->set_control(kit->gvn().transform( new (kit->C, 1) IfTrueNode(iff) ));
   645   inner_map->set_control(kit->gvn().transform( new (kit->C, 1) IfFalseNode(iff) ));
   646 }
   647 BuildCutout::~BuildCutout() {
   648   GraphKit* kit = _kit;
   649   assert(kit->stopped(), "cutout code must stop, throw, return, etc.");
   650 }
   652 //---------------------------PreserveReexecuteState----------------------------
   653 PreserveReexecuteState::PreserveReexecuteState(GraphKit* kit) {
   654   assert(!kit->stopped(), "must call stopped() before");
   655   _kit    =    kit;
   656   _sp     =    kit->sp();
   657   _reexecute = kit->jvms()->_reexecute;
   658 }
   659 PreserveReexecuteState::~PreserveReexecuteState() {
   660   if (_kit->stopped()) return;
   661   _kit->jvms()->_reexecute = _reexecute;
   662   _kit->set_sp(_sp);
   663 }
   665 //------------------------------clone_map--------------------------------------
   666 // Implementation of PreserveJVMState
   667 //
   668 // Only clone_map(...) here. If this function is only used in the
   669 // PreserveJVMState class we may want to get rid of this extra
   670 // function eventually and do it all there.
   672 SafePointNode* GraphKit::clone_map() {
   673   if (map() == NULL)  return NULL;
   675   // Clone the memory edge first
   676   Node* mem = MergeMemNode::make(C, map()->memory());
   677   gvn().set_type_bottom(mem);
   679   SafePointNode *clonemap = (SafePointNode*)map()->clone();
   680   JVMState* jvms = this->jvms();
   681   JVMState* clonejvms = jvms->clone_shallow(C);
   682   clonemap->set_memory(mem);
   683   clonemap->set_jvms(clonejvms);
   684   clonejvms->set_map(clonemap);
   685   record_for_igvn(clonemap);
   686   gvn().set_type_bottom(clonemap);
   687   return clonemap;
   688 }
   691 //-----------------------------set_map_clone-----------------------------------
   692 void GraphKit::set_map_clone(SafePointNode* m) {
   693   _map = m;
   694   _map = clone_map();
   695   _map->set_next_exception(NULL);
   696   debug_only(verify_map());
   697 }
   700 //----------------------------kill_dead_locals---------------------------------
   701 // Detect any locals which are known to be dead, and force them to top.
   702 void GraphKit::kill_dead_locals() {
   703   // Consult the liveness information for the locals.  If any
   704   // of them are unused, then they can be replaced by top().  This
   705   // should help register allocation time and cut down on the size
   706   // of the deoptimization information.
   708   // This call is made from many of the bytecode handling
   709   // subroutines called from the Big Switch in do_one_bytecode.
   710   // Every bytecode which might include a slow path is responsible
   711   // for killing its dead locals.  The more consistent we
   712   // are about killing deads, the fewer useless phis will be
   713   // constructed for them at various merge points.
   715   // bci can be -1 (InvocationEntryBci).  We return the entry
   716   // liveness for the method.
   718   if (method() == NULL || method()->code_size() == 0) {
   719     // We are building a graph for a call to a native method.
   720     // All locals are live.
   721     return;
   722   }
   724   ResourceMark rm;
   726   // Consult the liveness information for the locals.  If any
   727   // of them are unused, then they can be replaced by top().  This
   728   // should help register allocation time and cut down on the size
   729   // of the deoptimization information.
   730   MethodLivenessResult live_locals = method()->liveness_at_bci(bci());
   732   int len = (int)live_locals.size();
   733   assert(len <= jvms()->loc_size(), "too many live locals");
   734   for (int local = 0; local < len; local++) {
   735     if (!live_locals.at(local)) {
   736       set_local(local, top());
   737     }
   738   }
   739 }
   741 #ifdef ASSERT
   742 //-------------------------dead_locals_are_killed------------------------------
   743 // Return true if all dead locals are set to top in the map.
   744 // Used to assert "clean" debug info at various points.
   745 bool GraphKit::dead_locals_are_killed() {
   746   if (method() == NULL || method()->code_size() == 0) {
   747     // No locals need to be dead, so all is as it should be.
   748     return true;
   749   }
   751   // Make sure somebody called kill_dead_locals upstream.
   752   ResourceMark rm;
   753   for (JVMState* jvms = this->jvms(); jvms != NULL; jvms = jvms->caller()) {
   754     if (jvms->loc_size() == 0)  continue;  // no locals to consult
   755     SafePointNode* map = jvms->map();
   756     ciMethod* method = jvms->method();
   757     int       bci    = jvms->bci();
   758     if (jvms == this->jvms()) {
   759       bci = this->bci();  // it might not yet be synched
   760     }
   761     MethodLivenessResult live_locals = method->liveness_at_bci(bci);
   762     int len = (int)live_locals.size();
   763     if (!live_locals.is_valid() || len == 0)
   764       // This method is trivial, or is poisoned by a breakpoint.
   765       return true;
   766     assert(len == jvms->loc_size(), "live map consistent with locals map");
   767     for (int local = 0; local < len; local++) {
   768       if (!live_locals.at(local) && map->local(jvms, local) != top()) {
   769         if (PrintMiscellaneous && (Verbose || WizardMode)) {
   770           tty->print_cr("Zombie local %d: ", local);
   771           jvms->dump();
   772         }
   773         return false;
   774       }
   775     }
   776   }
   777   return true;
   778 }
   780 #endif //ASSERT
   782 // Helper function for enforcing certain bytecodes to reexecute if
   783 // deoptimization happens
   784 static bool should_reexecute_implied_by_bytecode(JVMState *jvms, bool is_anewarray) {
   785   ciMethod* cur_method = jvms->method();
   786   int       cur_bci   = jvms->bci();
   787   if (cur_method != NULL && cur_bci != InvocationEntryBci) {
   788     Bytecodes::Code code = cur_method->java_code_at_bci(cur_bci);
   789     return Interpreter::bytecode_should_reexecute(code) ||
   790            is_anewarray && code == Bytecodes::_multianewarray;
   791     // Reexecute _multianewarray bytecode which was replaced with
   792     // sequence of [a]newarray. See Parse::do_multianewarray().
   793     //
   794     // Note: interpreter should not have it set since this optimization
   795     // is limited by dimensions and guarded by flag so in some cases
   796     // multianewarray() runtime calls will be generated and
   797     // the bytecode should not be reexecutes (stack will not be reset).
   798   } else
   799     return false;
   800 }
   802 // Helper function for adding JVMState and debug information to node
   803 void GraphKit::add_safepoint_edges(SafePointNode* call, bool must_throw) {
   804   // Add the safepoint edges to the call (or other safepoint).
   806   // Make sure dead locals are set to top.  This
   807   // should help register allocation time and cut down on the size
   808   // of the deoptimization information.
   809   assert(dead_locals_are_killed(), "garbage in debug info before safepoint");
   811   // Walk the inline list to fill in the correct set of JVMState's
   812   // Also fill in the associated edges for each JVMState.
   814   JVMState* youngest_jvms = sync_jvms();
   816   // If we are guaranteed to throw, we can prune everything but the
   817   // input to the current bytecode.
   818   bool can_prune_locals = false;
   819   uint stack_slots_not_pruned = 0;
   820   int inputs = 0, depth = 0;
   821   if (must_throw) {
   822     assert(method() == youngest_jvms->method(), "sanity");
   823     if (compute_stack_effects(inputs, depth)) {
   824       can_prune_locals = true;
   825       stack_slots_not_pruned = inputs;
   826     }
   827   }
   829   if (env()->jvmti_can_access_local_variables()) {
   830     // At any safepoint, this method can get breakpointed, which would
   831     // then require an immediate deoptimization.
   832     can_prune_locals = false;  // do not prune locals
   833     stack_slots_not_pruned = 0;
   834   }
   836   // do not scribble on the input jvms
   837   JVMState* out_jvms = youngest_jvms->clone_deep(C);
   838   call->set_jvms(out_jvms); // Start jvms list for call node
   840   // For a known set of bytecodes, the interpreter should reexecute them if
   841   // deoptimization happens. We set the reexecute state for them here
   842   if (out_jvms->is_reexecute_undefined() && //don't change if already specified
   843       should_reexecute_implied_by_bytecode(out_jvms, call->is_AllocateArray())) {
   844     out_jvms->set_should_reexecute(true); //NOTE: youngest_jvms not changed
   845   }
   847   // Presize the call:
   848   debug_only(uint non_debug_edges = call->req());
   849   call->add_req_batch(top(), youngest_jvms->debug_depth());
   850   assert(call->req() == non_debug_edges + youngest_jvms->debug_depth(), "");
   852   // Set up edges so that the call looks like this:
   853   //  Call [state:] ctl io mem fptr retadr
   854   //       [parms:] parm0 ... parmN
   855   //       [root:]  loc0 ... locN stk0 ... stkSP mon0 obj0 ... monN objN
   856   //    [...mid:]   loc0 ... locN stk0 ... stkSP mon0 obj0 ... monN objN [...]
   857   //       [young:] loc0 ... locN stk0 ... stkSP mon0 obj0 ... monN objN
   858   // Note that caller debug info precedes callee debug info.
   860   // Fill pointer walks backwards from "young:" to "root:" in the diagram above:
   861   uint debug_ptr = call->req();
   863   // Loop over the map input edges associated with jvms, add them
   864   // to the call node, & reset all offsets to match call node array.
   865   for (JVMState* in_jvms = youngest_jvms; in_jvms != NULL; ) {
   866     uint debug_end   = debug_ptr;
   867     uint debug_start = debug_ptr - in_jvms->debug_size();
   868     debug_ptr = debug_start;  // back up the ptr
   870     uint p = debug_start;  // walks forward in [debug_start, debug_end)
   871     uint j, k, l;
   872     SafePointNode* in_map = in_jvms->map();
   873     out_jvms->set_map(call);
   875     if (can_prune_locals) {
   876       assert(in_jvms->method() == out_jvms->method(), "sanity");
   877       // If the current throw can reach an exception handler in this JVMS,
   878       // then we must keep everything live that can reach that handler.
   879       // As a quick and dirty approximation, we look for any handlers at all.
   880       if (in_jvms->method()->has_exception_handlers()) {
   881         can_prune_locals = false;
   882       }
   883     }
   885     // Add the Locals
   886     k = in_jvms->locoff();
   887     l = in_jvms->loc_size();
   888     out_jvms->set_locoff(p);
   889     if (!can_prune_locals) {
   890       for (j = 0; j < l; j++)
   891         call->set_req(p++, in_map->in(k+j));
   892     } else {
   893       p += l;  // already set to top above by add_req_batch
   894     }
   896     // Add the Expression Stack
   897     k = in_jvms->stkoff();
   898     l = in_jvms->sp();
   899     out_jvms->set_stkoff(p);
   900     if (!can_prune_locals) {
   901       for (j = 0; j < l; j++)
   902         call->set_req(p++, in_map->in(k+j));
   903     } else if (can_prune_locals && stack_slots_not_pruned != 0) {
   904       // Divide stack into {S0,...,S1}, where S0 is set to top.
   905       uint s1 = stack_slots_not_pruned;
   906       stack_slots_not_pruned = 0;  // for next iteration
   907       if (s1 > l)  s1 = l;
   908       uint s0 = l - s1;
   909       p += s0;  // skip the tops preinstalled by add_req_batch
   910       for (j = s0; j < l; j++)
   911         call->set_req(p++, in_map->in(k+j));
   912     } else {
   913       p += l;  // already set to top above by add_req_batch
   914     }
   916     // Add the Monitors
   917     k = in_jvms->monoff();
   918     l = in_jvms->mon_size();
   919     out_jvms->set_monoff(p);
   920     for (j = 0; j < l; j++)
   921       call->set_req(p++, in_map->in(k+j));
   923     // Copy any scalar object fields.
   924     k = in_jvms->scloff();
   925     l = in_jvms->scl_size();
   926     out_jvms->set_scloff(p);
   927     for (j = 0; j < l; j++)
   928       call->set_req(p++, in_map->in(k+j));
   930     // Finish the new jvms.
   931     out_jvms->set_endoff(p);
   933     assert(out_jvms->endoff()     == debug_end,             "fill ptr must match");
   934     assert(out_jvms->depth()      == in_jvms->depth(),      "depth must match");
   935     assert(out_jvms->loc_size()   == in_jvms->loc_size(),   "size must match");
   936     assert(out_jvms->mon_size()   == in_jvms->mon_size(),   "size must match");
   937     assert(out_jvms->scl_size()   == in_jvms->scl_size(),   "size must match");
   938     assert(out_jvms->debug_size() == in_jvms->debug_size(), "size must match");
   940     // Update the two tail pointers in parallel.
   941     out_jvms = out_jvms->caller();
   942     in_jvms  = in_jvms->caller();
   943   }
   945   assert(debug_ptr == non_debug_edges, "debug info must fit exactly");
   947   // Test the correctness of JVMState::debug_xxx accessors:
   948   assert(call->jvms()->debug_start() == non_debug_edges, "");
   949   assert(call->jvms()->debug_end()   == call->req(), "");
   950   assert(call->jvms()->debug_depth() == call->req() - non_debug_edges, "");
   951 }
   953 bool GraphKit::compute_stack_effects(int& inputs, int& depth) {
   954   Bytecodes::Code code = java_bc();
   955   if (code == Bytecodes::_wide) {
   956     code = method()->java_code_at_bci(bci() + 1);
   957   }
   959   BasicType rtype = T_ILLEGAL;
   960   int       rsize = 0;
   962   if (code != Bytecodes::_illegal) {
   963     depth = Bytecodes::depth(code); // checkcast=0, athrow=-1
   964     rtype = Bytecodes::result_type(code); // checkcast=P, athrow=V
   965     if (rtype < T_CONFLICT)
   966       rsize = type2size[rtype];
   967   }
   969   switch (code) {
   970   case Bytecodes::_illegal:
   971     return false;
   973   case Bytecodes::_ldc:
   974   case Bytecodes::_ldc_w:
   975   case Bytecodes::_ldc2_w:
   976     inputs = 0;
   977     break;
   979   case Bytecodes::_dup:         inputs = 1;  break;
   980   case Bytecodes::_dup_x1:      inputs = 2;  break;
   981   case Bytecodes::_dup_x2:      inputs = 3;  break;
   982   case Bytecodes::_dup2:        inputs = 2;  break;
   983   case Bytecodes::_dup2_x1:     inputs = 3;  break;
   984   case Bytecodes::_dup2_x2:     inputs = 4;  break;
   985   case Bytecodes::_swap:        inputs = 2;  break;
   986   case Bytecodes::_arraylength: inputs = 1;  break;
   988   case Bytecodes::_getstatic:
   989   case Bytecodes::_putstatic:
   990   case Bytecodes::_getfield:
   991   case Bytecodes::_putfield:
   992     {
   993       bool is_get = (depth >= 0), is_static = (depth & 1);
   994       bool ignore;
   995       ciBytecodeStream iter(method());
   996       iter.reset_to_bci(bci());
   997       iter.next();
   998       ciField* field = iter.get_field(ignore);
   999       int      size  = field->type()->size();
  1000       inputs  = (is_static ? 0 : 1);
  1001       if (is_get) {
  1002         depth = size - inputs;
  1003       } else {
  1004         inputs += size;        // putxxx pops the value from the stack
  1005         depth = - inputs;
  1008     break;
  1010   case Bytecodes::_invokevirtual:
  1011   case Bytecodes::_invokespecial:
  1012   case Bytecodes::_invokestatic:
  1013   case Bytecodes::_invokedynamic:
  1014   case Bytecodes::_invokeinterface:
  1016       bool ignore;
  1017       ciBytecodeStream iter(method());
  1018       iter.reset_to_bci(bci());
  1019       iter.next();
  1020       ciMethod* method = iter.get_method(ignore);
  1021       inputs = method->arg_size_no_receiver();
  1022       // Add a receiver argument, maybe:
  1023       if (code != Bytecodes::_invokestatic &&
  1024           code != Bytecodes::_invokedynamic)
  1025         inputs += 1;
  1026       // (Do not use ciMethod::arg_size(), because
  1027       // it might be an unloaded method, which doesn't
  1028       // know whether it is static or not.)
  1029       int size = method->return_type()->size();
  1030       depth = size - inputs;
  1032     break;
  1034   case Bytecodes::_multianewarray:
  1036       ciBytecodeStream iter(method());
  1037       iter.reset_to_bci(bci());
  1038       iter.next();
  1039       inputs = iter.get_dimensions();
  1040       assert(rsize == 1, "");
  1041       depth = rsize - inputs;
  1043     break;
  1045   case Bytecodes::_ireturn:
  1046   case Bytecodes::_lreturn:
  1047   case Bytecodes::_freturn:
  1048   case Bytecodes::_dreturn:
  1049   case Bytecodes::_areturn:
  1050     assert(rsize = -depth, "");
  1051     inputs = rsize;
  1052     break;
  1054   case Bytecodes::_jsr:
  1055   case Bytecodes::_jsr_w:
  1056     inputs = 0;
  1057     depth  = 1;                  // S.B. depth=1, not zero
  1058     break;
  1060   default:
  1061     // bytecode produces a typed result
  1062     inputs = rsize - depth;
  1063     assert(inputs >= 0, "");
  1064     break;
  1067 #ifdef ASSERT
  1068   // spot check
  1069   int outputs = depth + inputs;
  1070   assert(outputs >= 0, "sanity");
  1071   switch (code) {
  1072   case Bytecodes::_checkcast: assert(inputs == 1 && outputs == 1, ""); break;
  1073   case Bytecodes::_athrow:    assert(inputs == 1 && outputs == 0, ""); break;
  1074   case Bytecodes::_aload_0:   assert(inputs == 0 && outputs == 1, ""); break;
  1075   case Bytecodes::_return:    assert(inputs == 0 && outputs == 0, ""); break;
  1076   case Bytecodes::_drem:      assert(inputs == 4 && outputs == 2, ""); break;
  1078 #endif //ASSERT
  1080   return true;
  1085 //------------------------------basic_plus_adr---------------------------------
  1086 Node* GraphKit::basic_plus_adr(Node* base, Node* ptr, Node* offset) {
  1087   // short-circuit a common case
  1088   if (offset == intcon(0))  return ptr;
  1089   return _gvn.transform( new (C, 4) AddPNode(base, ptr, offset) );
  1092 Node* GraphKit::ConvI2L(Node* offset) {
  1093   // short-circuit a common case
  1094   jint offset_con = find_int_con(offset, Type::OffsetBot);
  1095   if (offset_con != Type::OffsetBot) {
  1096     return longcon((long) offset_con);
  1098   return _gvn.transform( new (C, 2) ConvI2LNode(offset));
  1100 Node* GraphKit::ConvL2I(Node* offset) {
  1101   // short-circuit a common case
  1102   jlong offset_con = find_long_con(offset, (jlong)Type::OffsetBot);
  1103   if (offset_con != (jlong)Type::OffsetBot) {
  1104     return intcon((int) offset_con);
  1106   return _gvn.transform( new (C, 2) ConvL2INode(offset));
  1109 //-------------------------load_object_klass-----------------------------------
  1110 Node* GraphKit::load_object_klass(Node* obj) {
  1111   // Special-case a fresh allocation to avoid building nodes:
  1112   Node* akls = AllocateNode::Ideal_klass(obj, &_gvn);
  1113   if (akls != NULL)  return akls;
  1114   Node* k_adr = basic_plus_adr(obj, oopDesc::klass_offset_in_bytes());
  1115   return _gvn.transform( LoadKlassNode::make(_gvn, immutable_memory(), k_adr, TypeInstPtr::KLASS) );
  1118 //-------------------------load_array_length-----------------------------------
  1119 Node* GraphKit::load_array_length(Node* array) {
  1120   // Special-case a fresh allocation to avoid building nodes:
  1121   AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(array, &_gvn);
  1122   Node *alen;
  1123   if (alloc == NULL) {
  1124     Node *r_adr = basic_plus_adr(array, arrayOopDesc::length_offset_in_bytes());
  1125     alen = _gvn.transform( new (C, 3) LoadRangeNode(0, immutable_memory(), r_adr, TypeInt::POS));
  1126   } else {
  1127     alen = alloc->Ideal_length();
  1128     Node* ccast = alloc->make_ideal_length(_gvn.type(array)->is_oopptr(), &_gvn);
  1129     if (ccast != alen) {
  1130       alen = _gvn.transform(ccast);
  1133   return alen;
  1136 //------------------------------do_null_check----------------------------------
  1137 // Helper function to do a NULL pointer check.  Returned value is
  1138 // the incoming address with NULL casted away.  You are allowed to use the
  1139 // not-null value only if you are control dependent on the test.
  1140 extern int explicit_null_checks_inserted,
  1141            explicit_null_checks_elided;
  1142 Node* GraphKit::null_check_common(Node* value, BasicType type,
  1143                                   // optional arguments for variations:
  1144                                   bool assert_null,
  1145                                   Node* *null_control) {
  1146   assert(!assert_null || null_control == NULL, "not both at once");
  1147   if (stopped())  return top();
  1148   if (!GenerateCompilerNullChecks && !assert_null && null_control == NULL) {
  1149     // For some performance testing, we may wish to suppress null checking.
  1150     value = cast_not_null(value);   // Make it appear to be non-null (4962416).
  1151     return value;
  1153   explicit_null_checks_inserted++;
  1155   // Construct NULL check
  1156   Node *chk = NULL;
  1157   switch(type) {
  1158     case T_LONG   : chk = new (C, 3) CmpLNode(value, _gvn.zerocon(T_LONG)); break;
  1159     case T_INT    : chk = new (C, 3) CmpINode( value, _gvn.intcon(0)); break;
  1160     case T_ARRAY  : // fall through
  1161       type = T_OBJECT;  // simplify further tests
  1162     case T_OBJECT : {
  1163       const Type *t = _gvn.type( value );
  1165       const TypeOopPtr* tp = t->isa_oopptr();
  1166       if (tp != NULL && tp->klass() != NULL && !tp->klass()->is_loaded()
  1167           // Only for do_null_check, not any of its siblings:
  1168           && !assert_null && null_control == NULL) {
  1169         // Usually, any field access or invocation on an unloaded oop type
  1170         // will simply fail to link, since the statically linked class is
  1171         // likely also to be unloaded.  However, in -Xcomp mode, sometimes
  1172         // the static class is loaded but the sharper oop type is not.
  1173         // Rather than checking for this obscure case in lots of places,
  1174         // we simply observe that a null check on an unloaded class
  1175         // will always be followed by a nonsense operation, so we
  1176         // can just issue the uncommon trap here.
  1177         // Our access to the unloaded class will only be correct
  1178         // after it has been loaded and initialized, which requires
  1179         // a trip through the interpreter.
  1180 #ifndef PRODUCT
  1181         if (WizardMode) { tty->print("Null check of unloaded "); tp->klass()->print(); tty->cr(); }
  1182 #endif
  1183         uncommon_trap(Deoptimization::Reason_unloaded,
  1184                       Deoptimization::Action_reinterpret,
  1185                       tp->klass(), "!loaded");
  1186         return top();
  1189       if (assert_null) {
  1190         // See if the type is contained in NULL_PTR.
  1191         // If so, then the value is already null.
  1192         if (t->higher_equal(TypePtr::NULL_PTR)) {
  1193           explicit_null_checks_elided++;
  1194           return value;           // Elided null assert quickly!
  1196       } else {
  1197         // See if mixing in the NULL pointer changes type.
  1198         // If so, then the NULL pointer was not allowed in the original
  1199         // type.  In other words, "value" was not-null.
  1200         if (t->meet(TypePtr::NULL_PTR) != t) {
  1201           // same as: if (!TypePtr::NULL_PTR->higher_equal(t)) ...
  1202           explicit_null_checks_elided++;
  1203           return value;           // Elided null check quickly!
  1206       chk = new (C, 3) CmpPNode( value, null() );
  1207       break;
  1210     default      : ShouldNotReachHere();
  1212   assert(chk != NULL, "sanity check");
  1213   chk = _gvn.transform(chk);
  1215   BoolTest::mask btest = assert_null ? BoolTest::eq : BoolTest::ne;
  1216   BoolNode *btst = new (C, 2) BoolNode( chk, btest);
  1217   Node   *tst = _gvn.transform( btst );
  1219   //-----------
  1220   // if peephole optimizations occurred, a prior test existed.
  1221   // If a prior test existed, maybe it dominates as we can avoid this test.
  1222   if (tst != btst && type == T_OBJECT) {
  1223     // At this point we want to scan up the CFG to see if we can
  1224     // find an identical test (and so avoid this test altogether).
  1225     Node *cfg = control();
  1226     int depth = 0;
  1227     while( depth < 16 ) {       // Limit search depth for speed
  1228       if( cfg->Opcode() == Op_IfTrue &&
  1229           cfg->in(0)->in(1) == tst ) {
  1230         // Found prior test.  Use "cast_not_null" to construct an identical
  1231         // CastPP (and hence hash to) as already exists for the prior test.
  1232         // Return that casted value.
  1233         if (assert_null) {
  1234           replace_in_map(value, null());
  1235           return null();  // do not issue the redundant test
  1237         Node *oldcontrol = control();
  1238         set_control(cfg);
  1239         Node *res = cast_not_null(value);
  1240         set_control(oldcontrol);
  1241         explicit_null_checks_elided++;
  1242         return res;
  1244       cfg = IfNode::up_one_dom(cfg, /*linear_only=*/ true);
  1245       if (cfg == NULL)  break;  // Quit at region nodes
  1246       depth++;
  1250   //-----------
  1251   // Branch to failure if null
  1252   float ok_prob = PROB_MAX;  // a priori estimate:  nulls never happen
  1253   Deoptimization::DeoptReason reason;
  1254   if (assert_null)
  1255     reason = Deoptimization::Reason_null_assert;
  1256   else if (type == T_OBJECT)
  1257     reason = Deoptimization::Reason_null_check;
  1258   else
  1259     reason = Deoptimization::Reason_div0_check;
  1261   // %%% Since Reason_unhandled is not recorded on a per-bytecode basis,
  1262   // ciMethodData::has_trap_at will return a conservative -1 if any
  1263   // must-be-null assertion has failed.  This could cause performance
  1264   // problems for a method after its first do_null_assert failure.
  1265   // Consider using 'Reason_class_check' instead?
  1267   // To cause an implicit null check, we set the not-null probability
  1268   // to the maximum (PROB_MAX).  For an explicit check the probability
  1269   // is set to a smaller value.
  1270   if (null_control != NULL || too_many_traps(reason)) {
  1271     // probability is less likely
  1272     ok_prob =  PROB_LIKELY_MAG(3);
  1273   } else if (!assert_null &&
  1274              (ImplicitNullCheckThreshold > 0) &&
  1275              method() != NULL &&
  1276              (method()->method_data()->trap_count(reason)
  1277               >= (uint)ImplicitNullCheckThreshold)) {
  1278     ok_prob =  PROB_LIKELY_MAG(3);
  1281   if (null_control != NULL) {
  1282     IfNode* iff = create_and_map_if(control(), tst, ok_prob, COUNT_UNKNOWN);
  1283     Node* null_true = _gvn.transform( new (C, 1) IfFalseNode(iff));
  1284     set_control(      _gvn.transform( new (C, 1) IfTrueNode(iff)));
  1285     if (null_true == top())
  1286       explicit_null_checks_elided++;
  1287     (*null_control) = null_true;
  1288   } else {
  1289     BuildCutout unless(this, tst, ok_prob);
  1290     // Check for optimizer eliding test at parse time
  1291     if (stopped()) {
  1292       // Failure not possible; do not bother making uncommon trap.
  1293       explicit_null_checks_elided++;
  1294     } else if (assert_null) {
  1295       uncommon_trap(reason,
  1296                     Deoptimization::Action_make_not_entrant,
  1297                     NULL, "assert_null");
  1298     } else {
  1299       replace_in_map(value, zerocon(type));
  1300       builtin_throw(reason);
  1304   // Must throw exception, fall-thru not possible?
  1305   if (stopped()) {
  1306     return top();               // No result
  1309   if (assert_null) {
  1310     // Cast obj to null on this path.
  1311     replace_in_map(value, zerocon(type));
  1312     return zerocon(type);
  1315   // Cast obj to not-null on this path, if there is no null_control.
  1316   // (If there is a null_control, a non-null value may come back to haunt us.)
  1317   if (type == T_OBJECT) {
  1318     Node* cast = cast_not_null(value, false);
  1319     if (null_control == NULL || (*null_control) == top())
  1320       replace_in_map(value, cast);
  1321     value = cast;
  1324   return value;
  1328 //------------------------------cast_not_null----------------------------------
  1329 // Cast obj to not-null on this path
  1330 Node* GraphKit::cast_not_null(Node* obj, bool do_replace_in_map) {
  1331   const Type *t = _gvn.type(obj);
  1332   const Type *t_not_null = t->join(TypePtr::NOTNULL);
  1333   // Object is already not-null?
  1334   if( t == t_not_null ) return obj;
  1336   Node *cast = new (C, 2) CastPPNode(obj,t_not_null);
  1337   cast->init_req(0, control());
  1338   cast = _gvn.transform( cast );
  1340   // Scan for instances of 'obj' in the current JVM mapping.
  1341   // These instances are known to be not-null after the test.
  1342   if (do_replace_in_map)
  1343     replace_in_map(obj, cast);
  1345   return cast;                  // Return casted value
  1349 //--------------------------replace_in_map-------------------------------------
  1350 void GraphKit::replace_in_map(Node* old, Node* neww) {
  1351   this->map()->replace_edge(old, neww);
  1353   // Note: This operation potentially replaces any edge
  1354   // on the map.  This includes locals, stack, and monitors
  1355   // of the current (innermost) JVM state.
  1357   // We can consider replacing in caller maps.
  1358   // The idea would be that an inlined function's null checks
  1359   // can be shared with the entire inlining tree.
  1360   // The expense of doing this is that the PreserveJVMState class
  1361   // would have to preserve caller states too, with a deep copy.
  1366 //=============================================================================
  1367 //--------------------------------memory---------------------------------------
  1368 Node* GraphKit::memory(uint alias_idx) {
  1369   MergeMemNode* mem = merged_memory();
  1370   Node* p = mem->memory_at(alias_idx);
  1371   _gvn.set_type(p, Type::MEMORY);  // must be mapped
  1372   return p;
  1375 //-----------------------------reset_memory------------------------------------
  1376 Node* GraphKit::reset_memory() {
  1377   Node* mem = map()->memory();
  1378   // do not use this node for any more parsing!
  1379   debug_only( map()->set_memory((Node*)NULL) );
  1380   return _gvn.transform( mem );
  1383 //------------------------------set_all_memory---------------------------------
  1384 void GraphKit::set_all_memory(Node* newmem) {
  1385   Node* mergemem = MergeMemNode::make(C, newmem);
  1386   gvn().set_type_bottom(mergemem);
  1387   map()->set_memory(mergemem);
  1390 //------------------------------set_all_memory_call----------------------------
  1391 void GraphKit::set_all_memory_call(Node* call, bool separate_io_proj) {
  1392   Node* newmem = _gvn.transform( new (C, 1) ProjNode(call, TypeFunc::Memory, separate_io_proj) );
  1393   set_all_memory(newmem);
  1396 //=============================================================================
  1397 //
  1398 // parser factory methods for MemNodes
  1399 //
  1400 // These are layered on top of the factory methods in LoadNode and StoreNode,
  1401 // and integrate with the parser's memory state and _gvn engine.
  1402 //
  1404 // factory methods in "int adr_idx"
  1405 Node* GraphKit::make_load(Node* ctl, Node* adr, const Type* t, BasicType bt,
  1406                           int adr_idx,
  1407                           bool require_atomic_access) {
  1408   assert(adr_idx != Compile::AliasIdxTop, "use other make_load factory" );
  1409   const TypePtr* adr_type = NULL; // debug-mode-only argument
  1410   debug_only(adr_type = C->get_adr_type(adr_idx));
  1411   Node* mem = memory(adr_idx);
  1412   Node* ld;
  1413   if (require_atomic_access && bt == T_LONG) {
  1414     ld = LoadLNode::make_atomic(C, ctl, mem, adr, adr_type, t);
  1415   } else {
  1416     ld = LoadNode::make(_gvn, ctl, mem, adr, adr_type, t, bt);
  1418   return _gvn.transform(ld);
  1421 Node* GraphKit::store_to_memory(Node* ctl, Node* adr, Node *val, BasicType bt,
  1422                                 int adr_idx,
  1423                                 bool require_atomic_access) {
  1424   assert(adr_idx != Compile::AliasIdxTop, "use other store_to_memory factory" );
  1425   const TypePtr* adr_type = NULL;
  1426   debug_only(adr_type = C->get_adr_type(adr_idx));
  1427   Node *mem = memory(adr_idx);
  1428   Node* st;
  1429   if (require_atomic_access && bt == T_LONG) {
  1430     st = StoreLNode::make_atomic(C, ctl, mem, adr, adr_type, val);
  1431   } else {
  1432     st = StoreNode::make(_gvn, ctl, mem, adr, adr_type, val, bt);
  1434   st = _gvn.transform(st);
  1435   set_memory(st, adr_idx);
  1436   // Back-to-back stores can only remove intermediate store with DU info
  1437   // so push on worklist for optimizer.
  1438   if (mem->req() > MemNode::Address && adr == mem->in(MemNode::Address))
  1439     record_for_igvn(st);
  1441   return st;
  1445 void GraphKit::pre_barrier(Node* ctl,
  1446                            Node* obj,
  1447                            Node* adr,
  1448                            uint  adr_idx,
  1449                            Node* val,
  1450                            const TypeOopPtr* val_type,
  1451                            BasicType bt) {
  1452   BarrierSet* bs = Universe::heap()->barrier_set();
  1453   set_control(ctl);
  1454   switch (bs->kind()) {
  1455     case BarrierSet::G1SATBCT:
  1456     case BarrierSet::G1SATBCTLogging:
  1457       g1_write_barrier_pre(obj, adr, adr_idx, val, val_type, bt);
  1458       break;
  1460     case BarrierSet::CardTableModRef:
  1461     case BarrierSet::CardTableExtension:
  1462     case BarrierSet::ModRef:
  1463       break;
  1465     case BarrierSet::Other:
  1466     default      :
  1467       ShouldNotReachHere();
  1472 void GraphKit::post_barrier(Node* ctl,
  1473                             Node* store,
  1474                             Node* obj,
  1475                             Node* adr,
  1476                             uint  adr_idx,
  1477                             Node* val,
  1478                             BasicType bt,
  1479                             bool use_precise) {
  1480   BarrierSet* bs = Universe::heap()->barrier_set();
  1481   set_control(ctl);
  1482   switch (bs->kind()) {
  1483     case BarrierSet::G1SATBCT:
  1484     case BarrierSet::G1SATBCTLogging:
  1485       g1_write_barrier_post(store, obj, adr, adr_idx, val, bt, use_precise);
  1486       break;
  1488     case BarrierSet::CardTableModRef:
  1489     case BarrierSet::CardTableExtension:
  1490       write_barrier_post(store, obj, adr, adr_idx, val, use_precise);
  1491       break;
  1493     case BarrierSet::ModRef:
  1494       break;
  1496     case BarrierSet::Other:
  1497     default      :
  1498       ShouldNotReachHere();
  1503 Node* GraphKit::store_oop(Node* ctl,
  1504                           Node* obj,
  1505                           Node* adr,
  1506                           const TypePtr* adr_type,
  1507                           Node* val,
  1508                           const TypeOopPtr* val_type,
  1509                           BasicType bt,
  1510                           bool use_precise) {
  1512   set_control(ctl);
  1513   if (stopped()) return top(); // Dead path ?
  1515   assert(bt == T_OBJECT, "sanity");
  1516   assert(val != NULL, "not dead path");
  1517   uint adr_idx = C->get_alias_index(adr_type);
  1518   assert(adr_idx != Compile::AliasIdxTop, "use other store_to_memory factory" );
  1520   pre_barrier(control(), obj, adr, adr_idx, val, val_type, bt);
  1521   Node* store = store_to_memory(control(), adr, val, bt, adr_idx);
  1522   post_barrier(control(), store, obj, adr, adr_idx, val, bt, use_precise);
  1523   return store;
  1526 // Could be an array or object we don't know at compile time (unsafe ref.)
  1527 Node* GraphKit::store_oop_to_unknown(Node* ctl,
  1528                              Node* obj,   // containing obj
  1529                              Node* adr,  // actual adress to store val at
  1530                              const TypePtr* adr_type,
  1531                              Node* val,
  1532                              BasicType bt) {
  1533   Compile::AliasType* at = C->alias_type(adr_type);
  1534   const TypeOopPtr* val_type = NULL;
  1535   if (adr_type->isa_instptr()) {
  1536     if (at->field() != NULL) {
  1537       // known field.  This code is a copy of the do_put_xxx logic.
  1538       ciField* field = at->field();
  1539       if (!field->type()->is_loaded()) {
  1540         val_type = TypeInstPtr::BOTTOM;
  1541       } else {
  1542         val_type = TypeOopPtr::make_from_klass(field->type()->as_klass());
  1545   } else if (adr_type->isa_aryptr()) {
  1546     val_type = adr_type->is_aryptr()->elem()->make_oopptr();
  1548   if (val_type == NULL) {
  1549     val_type = TypeInstPtr::BOTTOM;
  1551   return store_oop(ctl, obj, adr, adr_type, val, val_type, bt, true);
  1555 //-------------------------array_element_address-------------------------
  1556 Node* GraphKit::array_element_address(Node* ary, Node* idx, BasicType elembt,
  1557                                       const TypeInt* sizetype) {
  1558   uint shift  = exact_log2(type2aelembytes(elembt));
  1559   uint header = arrayOopDesc::base_offset_in_bytes(elembt);
  1561   // short-circuit a common case (saves lots of confusing waste motion)
  1562   jint idx_con = find_int_con(idx, -1);
  1563   if (idx_con >= 0) {
  1564     intptr_t offset = header + ((intptr_t)idx_con << shift);
  1565     return basic_plus_adr(ary, offset);
  1568   // must be correct type for alignment purposes
  1569   Node* base  = basic_plus_adr(ary, header);
  1570 #ifdef _LP64
  1571   // The scaled index operand to AddP must be a clean 64-bit value.
  1572   // Java allows a 32-bit int to be incremented to a negative
  1573   // value, which appears in a 64-bit register as a large
  1574   // positive number.  Using that large positive number as an
  1575   // operand in pointer arithmetic has bad consequences.
  1576   // On the other hand, 32-bit overflow is rare, and the possibility
  1577   // can often be excluded, if we annotate the ConvI2L node with
  1578   // a type assertion that its value is known to be a small positive
  1579   // number.  (The prior range check has ensured this.)
  1580   // This assertion is used by ConvI2LNode::Ideal.
  1581   int index_max = max_jint - 1;  // array size is max_jint, index is one less
  1582   if (sizetype != NULL)  index_max = sizetype->_hi - 1;
  1583   const TypeLong* lidxtype = TypeLong::make(CONST64(0), index_max, Type::WidenMax);
  1584   idx = _gvn.transform( new (C, 2) ConvI2LNode(idx, lidxtype) );
  1585 #endif
  1586   Node* scale = _gvn.transform( new (C, 3) LShiftXNode(idx, intcon(shift)) );
  1587   return basic_plus_adr(ary, base, scale);
  1590 //-------------------------load_array_element-------------------------
  1591 Node* GraphKit::load_array_element(Node* ctl, Node* ary, Node* idx, const TypeAryPtr* arytype) {
  1592   const Type* elemtype = arytype->elem();
  1593   BasicType elembt = elemtype->array_element_basic_type();
  1594   Node* adr = array_element_address(ary, idx, elembt, arytype->size());
  1595   Node* ld = make_load(ctl, adr, elemtype, elembt, arytype);
  1596   return ld;
  1599 //-------------------------set_arguments_for_java_call-------------------------
  1600 // Arguments (pre-popped from the stack) are taken from the JVMS.
  1601 void GraphKit::set_arguments_for_java_call(CallJavaNode* call) {
  1602   // Add the call arguments:
  1603   uint nargs = call->method()->arg_size();
  1604   for (uint i = 0; i < nargs; i++) {
  1605     Node* arg = argument(i);
  1606     call->init_req(i + TypeFunc::Parms, arg);
  1610 //---------------------------set_edges_for_java_call---------------------------
  1611 // Connect a newly created call into the current JVMS.
  1612 // A return value node (if any) is returned from set_edges_for_java_call.
  1613 void GraphKit::set_edges_for_java_call(CallJavaNode* call, bool must_throw, bool separate_io_proj) {
  1615   // Add the predefined inputs:
  1616   call->init_req( TypeFunc::Control, control() );
  1617   call->init_req( TypeFunc::I_O    , i_o() );
  1618   call->init_req( TypeFunc::Memory , reset_memory() );
  1619   call->init_req( TypeFunc::FramePtr, frameptr() );
  1620   call->init_req( TypeFunc::ReturnAdr, top() );
  1622   add_safepoint_edges(call, must_throw);
  1624   Node* xcall = _gvn.transform(call);
  1626   if (xcall == top()) {
  1627     set_control(top());
  1628     return;
  1630   assert(xcall == call, "call identity is stable");
  1632   // Re-use the current map to produce the result.
  1634   set_control(_gvn.transform(new (C, 1) ProjNode(call, TypeFunc::Control)));
  1635   set_i_o(    _gvn.transform(new (C, 1) ProjNode(call, TypeFunc::I_O    , separate_io_proj)));
  1636   set_all_memory_call(xcall, separate_io_proj);
  1638   //return xcall;   // no need, caller already has it
  1641 Node* GraphKit::set_results_for_java_call(CallJavaNode* call, bool separate_io_proj) {
  1642   if (stopped())  return top();  // maybe the call folded up?
  1644   // Capture the return value, if any.
  1645   Node* ret;
  1646   if (call->method() == NULL ||
  1647       call->method()->return_type()->basic_type() == T_VOID)
  1648         ret = top();
  1649   else  ret = _gvn.transform(new (C, 1) ProjNode(call, TypeFunc::Parms));
  1651   // Note:  Since any out-of-line call can produce an exception,
  1652   // we always insert an I_O projection from the call into the result.
  1654   make_slow_call_ex(call, env()->Throwable_klass(), separate_io_proj);
  1656   if (separate_io_proj) {
  1657     // The caller requested separate projections be used by the fall
  1658     // through and exceptional paths, so replace the projections for
  1659     // the fall through path.
  1660     set_i_o(_gvn.transform( new (C, 1) ProjNode(call, TypeFunc::I_O) ));
  1661     set_all_memory(_gvn.transform( new (C, 1) ProjNode(call, TypeFunc::Memory) ));
  1663   return ret;
  1666 //--------------------set_predefined_input_for_runtime_call--------------------
  1667 // Reading and setting the memory state is way conservative here.
  1668 // The real problem is that I am not doing real Type analysis on memory,
  1669 // so I cannot distinguish card mark stores from other stores.  Across a GC
  1670 // point the Store Barrier and the card mark memory has to agree.  I cannot
  1671 // have a card mark store and its barrier split across the GC point from
  1672 // either above or below.  Here I get that to happen by reading ALL of memory.
  1673 // A better answer would be to separate out card marks from other memory.
  1674 // For now, return the input memory state, so that it can be reused
  1675 // after the call, if this call has restricted memory effects.
  1676 Node* GraphKit::set_predefined_input_for_runtime_call(SafePointNode* call) {
  1677   // Set fixed predefined input arguments
  1678   Node* memory = reset_memory();
  1679   call->init_req( TypeFunc::Control,   control()  );
  1680   call->init_req( TypeFunc::I_O,       top()      ); // does no i/o
  1681   call->init_req( TypeFunc::Memory,    memory     ); // may gc ptrs
  1682   call->init_req( TypeFunc::FramePtr,  frameptr() );
  1683   call->init_req( TypeFunc::ReturnAdr, top()      );
  1684   return memory;
  1687 //-------------------set_predefined_output_for_runtime_call--------------------
  1688 // Set control and memory (not i_o) from the call.
  1689 // If keep_mem is not NULL, use it for the output state,
  1690 // except for the RawPtr output of the call, if hook_mem is TypeRawPtr::BOTTOM.
  1691 // If hook_mem is NULL, this call produces no memory effects at all.
  1692 // If hook_mem is a Java-visible memory slice (such as arraycopy operands),
  1693 // then only that memory slice is taken from the call.
  1694 // In the last case, we must put an appropriate memory barrier before
  1695 // the call, so as to create the correct anti-dependencies on loads
  1696 // preceding the call.
  1697 void GraphKit::set_predefined_output_for_runtime_call(Node* call,
  1698                                                       Node* keep_mem,
  1699                                                       const TypePtr* hook_mem) {
  1700   // no i/o
  1701   set_control(_gvn.transform( new (C, 1) ProjNode(call,TypeFunc::Control) ));
  1702   if (keep_mem) {
  1703     // First clone the existing memory state
  1704     set_all_memory(keep_mem);
  1705     if (hook_mem != NULL) {
  1706       // Make memory for the call
  1707       Node* mem = _gvn.transform( new (C, 1) ProjNode(call, TypeFunc::Memory) );
  1708       // Set the RawPtr memory state only.  This covers all the heap top/GC stuff
  1709       // We also use hook_mem to extract specific effects from arraycopy stubs.
  1710       set_memory(mem, hook_mem);
  1712     // ...else the call has NO memory effects.
  1714     // Make sure the call advertises its memory effects precisely.
  1715     // This lets us build accurate anti-dependences in gcm.cpp.
  1716     assert(C->alias_type(call->adr_type()) == C->alias_type(hook_mem),
  1717            "call node must be constructed correctly");
  1718   } else {
  1719     assert(hook_mem == NULL, "");
  1720     // This is not a "slow path" call; all memory comes from the call.
  1721     set_all_memory_call(call);
  1726 // Replace the call with the current state of the kit.
  1727 void GraphKit::replace_call(CallNode* call, Node* result) {
  1728   JVMState* ejvms = NULL;
  1729   if (has_exceptions()) {
  1730     ejvms = transfer_exceptions_into_jvms();
  1733   SafePointNode* final_state = stop();
  1735   // Find all the needed outputs of this call
  1736   CallProjections callprojs;
  1737   call->extract_projections(&callprojs, true);
  1739   // Replace all the old call edges with the edges from the inlining result
  1740   C->gvn_replace_by(callprojs.fallthrough_catchproj, final_state->in(TypeFunc::Control));
  1741   C->gvn_replace_by(callprojs.fallthrough_memproj,   final_state->in(TypeFunc::Memory));
  1742   C->gvn_replace_by(callprojs.fallthrough_ioproj,    final_state->in(TypeFunc::I_O));
  1743   Node* final_mem = final_state->in(TypeFunc::Memory);
  1745   // Replace the result with the new result if it exists and is used
  1746   if (callprojs.resproj != NULL && result != NULL) {
  1747     C->gvn_replace_by(callprojs.resproj, result);
  1750   if (ejvms == NULL) {
  1751     // No exception edges to simply kill off those paths
  1752     C->gvn_replace_by(callprojs.catchall_catchproj, C->top());
  1753     C->gvn_replace_by(callprojs.catchall_memproj,   C->top());
  1754     C->gvn_replace_by(callprojs.catchall_ioproj,    C->top());
  1756     // Replace the old exception object with top
  1757     if (callprojs.exobj != NULL) {
  1758       C->gvn_replace_by(callprojs.exobj, C->top());
  1760   } else {
  1761     GraphKit ekit(ejvms);
  1763     // Load my combined exception state into the kit, with all phis transformed:
  1764     SafePointNode* ex_map = ekit.combine_and_pop_all_exception_states();
  1766     Node* ex_oop = ekit.use_exception_state(ex_map);
  1768     C->gvn_replace_by(callprojs.catchall_catchproj, ekit.control());
  1769     C->gvn_replace_by(callprojs.catchall_memproj,   ekit.reset_memory());
  1770     C->gvn_replace_by(callprojs.catchall_ioproj,    ekit.i_o());
  1772     // Replace the old exception object with the newly created one
  1773     if (callprojs.exobj != NULL) {
  1774       C->gvn_replace_by(callprojs.exobj, ex_oop);
  1778   // Disconnect the call from the graph
  1779   call->disconnect_inputs(NULL);
  1780   C->gvn_replace_by(call, C->top());
  1782   // Clean up any MergeMems that feed other MergeMems since the
  1783   // optimizer doesn't like that.
  1784   if (final_mem->is_MergeMem()) {
  1785     Node_List wl;
  1786     for (SimpleDUIterator i(final_mem); i.has_next(); i.next()) {
  1787       Node* m = i.get();
  1788       if (m->is_MergeMem() && !wl.contains(m)) {
  1789         wl.push(m);
  1792     while (wl.size()  > 0) {
  1793       _gvn.transform(wl.pop());
  1799 //------------------------------increment_counter------------------------------
  1800 // for statistics: increment a VM counter by 1
  1802 void GraphKit::increment_counter(address counter_addr) {
  1803   Node* adr1 = makecon(TypeRawPtr::make(counter_addr));
  1804   increment_counter(adr1);
  1807 void GraphKit::increment_counter(Node* counter_addr) {
  1808   int adr_type = Compile::AliasIdxRaw;
  1809   Node* ctrl = control();
  1810   Node* cnt  = make_load(ctrl, counter_addr, TypeInt::INT, T_INT, adr_type);
  1811   Node* incr = _gvn.transform(new (C, 3) AddINode(cnt, _gvn.intcon(1)));
  1812   store_to_memory( ctrl, counter_addr, incr, T_INT, adr_type );
  1816 //------------------------------uncommon_trap----------------------------------
  1817 // Bail out to the interpreter in mid-method.  Implemented by calling the
  1818 // uncommon_trap blob.  This helper function inserts a runtime call with the
  1819 // right debug info.
  1820 void GraphKit::uncommon_trap(int trap_request,
  1821                              ciKlass* klass, const char* comment,
  1822                              bool must_throw,
  1823                              bool keep_exact_action) {
  1824   if (failing())  stop();
  1825   if (stopped())  return; // trap reachable?
  1827   // Note:  If ProfileTraps is true, and if a deopt. actually
  1828   // occurs here, the runtime will make sure an MDO exists.  There is
  1829   // no need to call method()->build_method_data() at this point.
  1831 #ifdef ASSERT
  1832   if (!must_throw) {
  1833     // Make sure the stack has at least enough depth to execute
  1834     // the current bytecode.
  1835     int inputs, ignore;
  1836     if (compute_stack_effects(inputs, ignore)) {
  1837       assert(sp() >= inputs, "must have enough JVMS stack to execute");
  1838       // It is a frequent error in library_call.cpp to issue an
  1839       // uncommon trap with the _sp value already popped.
  1842 #endif
  1844   Deoptimization::DeoptReason reason = Deoptimization::trap_request_reason(trap_request);
  1845   Deoptimization::DeoptAction action = Deoptimization::trap_request_action(trap_request);
  1847   switch (action) {
  1848   case Deoptimization::Action_maybe_recompile:
  1849   case Deoptimization::Action_reinterpret:
  1850     // Temporary fix for 6529811 to allow virtual calls to be sure they
  1851     // get the chance to go from mono->bi->mega
  1852     if (!keep_exact_action &&
  1853         Deoptimization::trap_request_index(trap_request) < 0 &&
  1854         too_many_recompiles(reason)) {
  1855       // This BCI is causing too many recompilations.
  1856       action = Deoptimization::Action_none;
  1857       trap_request = Deoptimization::make_trap_request(reason, action);
  1858     } else {
  1859       C->set_trap_can_recompile(true);
  1861     break;
  1862   case Deoptimization::Action_make_not_entrant:
  1863     C->set_trap_can_recompile(true);
  1864     break;
  1865 #ifdef ASSERT
  1866   case Deoptimization::Action_none:
  1867   case Deoptimization::Action_make_not_compilable:
  1868     break;
  1869   default:
  1870     assert(false, "bad action");
  1871 #endif
  1874   if (TraceOptoParse) {
  1875     char buf[100];
  1876     tty->print_cr("Uncommon trap %s at bci:%d",
  1877                   Deoptimization::format_trap_request(buf, sizeof(buf),
  1878                                                       trap_request), bci());
  1881   CompileLog* log = C->log();
  1882   if (log != NULL) {
  1883     int kid = (klass == NULL)? -1: log->identify(klass);
  1884     log->begin_elem("uncommon_trap bci='%d'", bci());
  1885     char buf[100];
  1886     log->print(" %s", Deoptimization::format_trap_request(buf, sizeof(buf),
  1887                                                           trap_request));
  1888     if (kid >= 0)         log->print(" klass='%d'", kid);
  1889     if (comment != NULL)  log->print(" comment='%s'", comment);
  1890     log->end_elem();
  1893   // Make sure any guarding test views this path as very unlikely
  1894   Node *i0 = control()->in(0);
  1895   if (i0 != NULL && i0->is_If()) {        // Found a guarding if test?
  1896     IfNode *iff = i0->as_If();
  1897     float f = iff->_prob;   // Get prob
  1898     if (control()->Opcode() == Op_IfTrue) {
  1899       if (f > PROB_UNLIKELY_MAG(4))
  1900         iff->_prob = PROB_MIN;
  1901     } else {
  1902       if (f < PROB_LIKELY_MAG(4))
  1903         iff->_prob = PROB_MAX;
  1907   // Clear out dead values from the debug info.
  1908   kill_dead_locals();
  1910   // Now insert the uncommon trap subroutine call
  1911   address call_addr = SharedRuntime::uncommon_trap_blob()->entry_point();
  1912   const TypePtr* no_memory_effects = NULL;
  1913   // Pass the index of the class to be loaded
  1914   Node* call = make_runtime_call(RC_NO_LEAF | RC_UNCOMMON |
  1915                                  (must_throw ? RC_MUST_THROW : 0),
  1916                                  OptoRuntime::uncommon_trap_Type(),
  1917                                  call_addr, "uncommon_trap", no_memory_effects,
  1918                                  intcon(trap_request));
  1919   assert(call->as_CallStaticJava()->uncommon_trap_request() == trap_request,
  1920          "must extract request correctly from the graph");
  1921   assert(trap_request != 0, "zero value reserved by uncommon_trap_request");
  1923   call->set_req(TypeFunc::ReturnAdr, returnadr());
  1924   // The debug info is the only real input to this call.
  1926   // Halt-and-catch fire here.  The above call should never return!
  1927   HaltNode* halt = new(C, TypeFunc::Parms) HaltNode(control(), frameptr());
  1928   _gvn.set_type_bottom(halt);
  1929   root()->add_req(halt);
  1931   stop_and_kill_map();
  1935 //--------------------------just_allocated_object------------------------------
  1936 // Report the object that was just allocated.
  1937 // It must be the case that there are no intervening safepoints.
  1938 // We use this to determine if an object is so "fresh" that
  1939 // it does not require card marks.
  1940 Node* GraphKit::just_allocated_object(Node* current_control) {
  1941   if (C->recent_alloc_ctl() == current_control)
  1942     return C->recent_alloc_obj();
  1943   return NULL;
  1947 void GraphKit::round_double_arguments(ciMethod* dest_method) {
  1948   // (Note:  TypeFunc::make has a cache that makes this fast.)
  1949   const TypeFunc* tf    = TypeFunc::make(dest_method);
  1950   int             nargs = tf->_domain->_cnt - TypeFunc::Parms;
  1951   for (int j = 0; j < nargs; j++) {
  1952     const Type *targ = tf->_domain->field_at(j + TypeFunc::Parms);
  1953     if( targ->basic_type() == T_DOUBLE ) {
  1954       // If any parameters are doubles, they must be rounded before
  1955       // the call, dstore_rounding does gvn.transform
  1956       Node *arg = argument(j);
  1957       arg = dstore_rounding(arg);
  1958       set_argument(j, arg);
  1963 void GraphKit::round_double_result(ciMethod* dest_method) {
  1964   // A non-strict method may return a double value which has an extended
  1965   // exponent, but this must not be visible in a caller which is 'strict'
  1966   // If a strict caller invokes a non-strict callee, round a double result
  1968   BasicType result_type = dest_method->return_type()->basic_type();
  1969   assert( method() != NULL, "must have caller context");
  1970   if( result_type == T_DOUBLE && method()->is_strict() && !dest_method->is_strict() ) {
  1971     // Destination method's return value is on top of stack
  1972     // dstore_rounding() does gvn.transform
  1973     Node *result = pop_pair();
  1974     result = dstore_rounding(result);
  1975     push_pair(result);
  1979 // rounding for strict float precision conformance
  1980 Node* GraphKit::precision_rounding(Node* n) {
  1981   return UseStrictFP && _method->flags().is_strict()
  1982     && UseSSE == 0 && Matcher::strict_fp_requires_explicit_rounding
  1983     ? _gvn.transform( new (C, 2) RoundFloatNode(0, n) )
  1984     : n;
  1987 // rounding for strict double precision conformance
  1988 Node* GraphKit::dprecision_rounding(Node *n) {
  1989   return UseStrictFP && _method->flags().is_strict()
  1990     && UseSSE <= 1 && Matcher::strict_fp_requires_explicit_rounding
  1991     ? _gvn.transform( new (C, 2) RoundDoubleNode(0, n) )
  1992     : n;
  1995 // rounding for non-strict double stores
  1996 Node* GraphKit::dstore_rounding(Node* n) {
  1997   return Matcher::strict_fp_requires_explicit_rounding
  1998     && UseSSE <= 1
  1999     ? _gvn.transform( new (C, 2) RoundDoubleNode(0, n) )
  2000     : n;
  2003 //=============================================================================
  2004 // Generate a fast path/slow path idiom.  Graph looks like:
  2005 // [foo] indicates that 'foo' is a parameter
  2006 //
  2007 //              [in]     NULL
  2008 //                 \    /
  2009 //                  CmpP
  2010 //                  Bool ne
  2011 //                   If
  2012 //                  /  \
  2013 //              True    False-<2>
  2014 //              / |
  2015 //             /  cast_not_null
  2016 //           Load  |    |   ^
  2017 //        [fast_test]   |   |
  2018 // gvn to   opt_test    |   |
  2019 //          /    \      |  <1>
  2020 //      True     False  |
  2021 //        |         \\  |
  2022 //   [slow_call]     \[fast_result]
  2023 //    Ctl   Val       \      \
  2024 //     |               \      \
  2025 //    Catch       <1>   \      \
  2026 //   /    \        ^     \      \
  2027 //  Ex    No_Ex    |      \      \
  2028 //  |       \   \  |       \ <2>  \
  2029 //  ...      \  [slow_res] |  |    \   [null_result]
  2030 //            \         \--+--+---  |  |
  2031 //             \           | /    \ | /
  2032 //              --------Region     Phi
  2033 //
  2034 //=============================================================================
  2035 // Code is structured as a series of driver functions all called 'do_XXX' that
  2036 // call a set of helper functions.  Helper functions first, then drivers.
  2038 //------------------------------null_check_oop---------------------------------
  2039 // Null check oop.  Set null-path control into Region in slot 3.
  2040 // Make a cast-not-nullness use the other not-null control.  Return cast.
  2041 Node* GraphKit::null_check_oop(Node* value, Node* *null_control,
  2042                                bool never_see_null) {
  2043   // Initial NULL check taken path
  2044   (*null_control) = top();
  2045   Node* cast = null_check_common(value, T_OBJECT, false, null_control);
  2047   // Generate uncommon_trap:
  2048   if (never_see_null && (*null_control) != top()) {
  2049     // If we see an unexpected null at a check-cast we record it and force a
  2050     // recompile; the offending check-cast will be compiled to handle NULLs.
  2051     // If we see more than one offending BCI, then all checkcasts in the
  2052     // method will be compiled to handle NULLs.
  2053     PreserveJVMState pjvms(this);
  2054     set_control(*null_control);
  2055     replace_in_map(value, null());
  2056     uncommon_trap(Deoptimization::Reason_null_check,
  2057                   Deoptimization::Action_make_not_entrant);
  2058     (*null_control) = top();    // NULL path is dead
  2061   // Cast away null-ness on the result
  2062   return cast;
  2065 //------------------------------opt_iff----------------------------------------
  2066 // Optimize the fast-check IfNode.  Set the fast-path region slot 2.
  2067 // Return slow-path control.
  2068 Node* GraphKit::opt_iff(Node* region, Node* iff) {
  2069   IfNode *opt_iff = _gvn.transform(iff)->as_If();
  2071   // Fast path taken; set region slot 2
  2072   Node *fast_taken = _gvn.transform( new (C, 1) IfFalseNode(opt_iff) );
  2073   region->init_req(2,fast_taken); // Capture fast-control
  2075   // Fast path not-taken, i.e. slow path
  2076   Node *slow_taken = _gvn.transform( new (C, 1) IfTrueNode(opt_iff) );
  2077   return slow_taken;
  2080 //-----------------------------make_runtime_call-------------------------------
  2081 Node* GraphKit::make_runtime_call(int flags,
  2082                                   const TypeFunc* call_type, address call_addr,
  2083                                   const char* call_name,
  2084                                   const TypePtr* adr_type,
  2085                                   // The following parms are all optional.
  2086                                   // The first NULL ends the list.
  2087                                   Node* parm0, Node* parm1,
  2088                                   Node* parm2, Node* parm3,
  2089                                   Node* parm4, Node* parm5,
  2090                                   Node* parm6, Node* parm7) {
  2091   // Slow-path call
  2092   int size = call_type->domain()->cnt();
  2093   bool is_leaf = !(flags & RC_NO_LEAF);
  2094   bool has_io  = (!is_leaf && !(flags & RC_NO_IO));
  2095   if (call_name == NULL) {
  2096     assert(!is_leaf, "must supply name for leaf");
  2097     call_name = OptoRuntime::stub_name(call_addr);
  2099   CallNode* call;
  2100   if (!is_leaf) {
  2101     call = new(C, size) CallStaticJavaNode(call_type, call_addr, call_name,
  2102                                            bci(), adr_type);
  2103   } else if (flags & RC_NO_FP) {
  2104     call = new(C, size) CallLeafNoFPNode(call_type, call_addr, call_name, adr_type);
  2105   } else {
  2106     call = new(C, size) CallLeafNode(call_type, call_addr, call_name, adr_type);
  2109   // The following is similar to set_edges_for_java_call,
  2110   // except that the memory effects of the call are restricted to AliasIdxRaw.
  2112   // Slow path call has no side-effects, uses few values
  2113   bool wide_in  = !(flags & RC_NARROW_MEM);
  2114   bool wide_out = (C->get_alias_index(adr_type) == Compile::AliasIdxBot);
  2116   Node* prev_mem = NULL;
  2117   if (wide_in) {
  2118     prev_mem = set_predefined_input_for_runtime_call(call);
  2119   } else {
  2120     assert(!wide_out, "narrow in => narrow out");
  2121     Node* narrow_mem = memory(adr_type);
  2122     prev_mem = reset_memory();
  2123     map()->set_memory(narrow_mem);
  2124     set_predefined_input_for_runtime_call(call);
  2127   // Hook each parm in order.  Stop looking at the first NULL.
  2128   if (parm0 != NULL) { call->init_req(TypeFunc::Parms+0, parm0);
  2129   if (parm1 != NULL) { call->init_req(TypeFunc::Parms+1, parm1);
  2130   if (parm2 != NULL) { call->init_req(TypeFunc::Parms+2, parm2);
  2131   if (parm3 != NULL) { call->init_req(TypeFunc::Parms+3, parm3);
  2132   if (parm4 != NULL) { call->init_req(TypeFunc::Parms+4, parm4);
  2133   if (parm5 != NULL) { call->init_req(TypeFunc::Parms+5, parm5);
  2134   if (parm6 != NULL) { call->init_req(TypeFunc::Parms+6, parm6);
  2135   if (parm7 != NULL) { call->init_req(TypeFunc::Parms+7, parm7);
  2136     /* close each nested if ===> */  } } } } } } } }
  2137   assert(call->in(call->req()-1) != NULL, "must initialize all parms");
  2139   if (!is_leaf) {
  2140     // Non-leaves can block and take safepoints:
  2141     add_safepoint_edges(call, ((flags & RC_MUST_THROW) != 0));
  2143   // Non-leaves can throw exceptions:
  2144   if (has_io) {
  2145     call->set_req(TypeFunc::I_O, i_o());
  2148   if (flags & RC_UNCOMMON) {
  2149     // Set the count to a tiny probability.  Cf. Estimate_Block_Frequency.
  2150     // (An "if" probability corresponds roughly to an unconditional count.
  2151     // Sort of.)
  2152     call->set_cnt(PROB_UNLIKELY_MAG(4));
  2155   Node* c = _gvn.transform(call);
  2156   assert(c == call, "cannot disappear");
  2158   if (wide_out) {
  2159     // Slow path call has full side-effects.
  2160     set_predefined_output_for_runtime_call(call);
  2161   } else {
  2162     // Slow path call has few side-effects, and/or sets few values.
  2163     set_predefined_output_for_runtime_call(call, prev_mem, adr_type);
  2166   if (has_io) {
  2167     set_i_o(_gvn.transform(new (C, 1) ProjNode(call, TypeFunc::I_O)));
  2169   return call;
  2173 //------------------------------merge_memory-----------------------------------
  2174 // Merge memory from one path into the current memory state.
  2175 void GraphKit::merge_memory(Node* new_mem, Node* region, int new_path) {
  2176   for (MergeMemStream mms(merged_memory(), new_mem->as_MergeMem()); mms.next_non_empty2(); ) {
  2177     Node* old_slice = mms.force_memory();
  2178     Node* new_slice = mms.memory2();
  2179     if (old_slice != new_slice) {
  2180       PhiNode* phi;
  2181       if (new_slice->is_Phi() && new_slice->as_Phi()->region() == region) {
  2182         phi = new_slice->as_Phi();
  2183         #ifdef ASSERT
  2184         if (old_slice->is_Phi() && old_slice->as_Phi()->region() == region)
  2185           old_slice = old_slice->in(new_path);
  2186         // Caller is responsible for ensuring that any pre-existing
  2187         // phis are already aware of old memory.
  2188         int old_path = (new_path > 1) ? 1 : 2;  // choose old_path != new_path
  2189         assert(phi->in(old_path) == old_slice, "pre-existing phis OK");
  2190         #endif
  2191         mms.set_memory(phi);
  2192       } else {
  2193         phi = PhiNode::make(region, old_slice, Type::MEMORY, mms.adr_type(C));
  2194         _gvn.set_type(phi, Type::MEMORY);
  2195         phi->set_req(new_path, new_slice);
  2196         mms.set_memory(_gvn.transform(phi));  // assume it is complete
  2202 //------------------------------make_slow_call_ex------------------------------
  2203 // Make the exception handler hookups for the slow call
  2204 void GraphKit::make_slow_call_ex(Node* call, ciInstanceKlass* ex_klass, bool separate_io_proj) {
  2205   if (stopped())  return;
  2207   // Make a catch node with just two handlers:  fall-through and catch-all
  2208   Node* i_o  = _gvn.transform( new (C, 1) ProjNode(call, TypeFunc::I_O, separate_io_proj) );
  2209   Node* catc = _gvn.transform( new (C, 2) CatchNode(control(), i_o, 2) );
  2210   Node* norm = _gvn.transform( new (C, 1) CatchProjNode(catc, CatchProjNode::fall_through_index, CatchProjNode::no_handler_bci) );
  2211   Node* excp = _gvn.transform( new (C, 1) CatchProjNode(catc, CatchProjNode::catch_all_index,    CatchProjNode::no_handler_bci) );
  2213   { PreserveJVMState pjvms(this);
  2214     set_control(excp);
  2215     set_i_o(i_o);
  2217     if (excp != top()) {
  2218       // Create an exception state also.
  2219       // Use an exact type if the caller has specified a specific exception.
  2220       const Type* ex_type = TypeOopPtr::make_from_klass_unique(ex_klass)->cast_to_ptr_type(TypePtr::NotNull);
  2221       Node*       ex_oop  = new (C, 2) CreateExNode(ex_type, control(), i_o);
  2222       add_exception_state(make_exception_state(_gvn.transform(ex_oop)));
  2226   // Get the no-exception control from the CatchNode.
  2227   set_control(norm);
  2231 //-------------------------------gen_subtype_check-----------------------------
  2232 // Generate a subtyping check.  Takes as input the subtype and supertype.
  2233 // Returns 2 values: sets the default control() to the true path and returns
  2234 // the false path.  Only reads invariant memory; sets no (visible) memory.
  2235 // The PartialSubtypeCheckNode sets the hidden 1-word cache in the encoding
  2236 // but that's not exposed to the optimizer.  This call also doesn't take in an
  2237 // Object; if you wish to check an Object you need to load the Object's class
  2238 // prior to coming here.
  2239 Node* GraphKit::gen_subtype_check(Node* subklass, Node* superklass) {
  2240   // Fast check for identical types, perhaps identical constants.
  2241   // The types can even be identical non-constants, in cases
  2242   // involving Array.newInstance, Object.clone, etc.
  2243   if (subklass == superklass)
  2244     return top();             // false path is dead; no test needed.
  2246   if (_gvn.type(superklass)->singleton()) {
  2247     ciKlass* superk = _gvn.type(superklass)->is_klassptr()->klass();
  2248     ciKlass* subk   = _gvn.type(subklass)->is_klassptr()->klass();
  2250     // In the common case of an exact superklass, try to fold up the
  2251     // test before generating code.  You may ask, why not just generate
  2252     // the code and then let it fold up?  The answer is that the generated
  2253     // code will necessarily include null checks, which do not always
  2254     // completely fold away.  If they are also needless, then they turn
  2255     // into a performance loss.  Example:
  2256     //    Foo[] fa = blah(); Foo x = fa[0]; fa[1] = x;
  2257     // Here, the type of 'fa' is often exact, so the store check
  2258     // of fa[1]=x will fold up, without testing the nullness of x.
  2259     switch (static_subtype_check(superk, subk)) {
  2260     case SSC_always_false:
  2262         Node* always_fail = control();
  2263         set_control(top());
  2264         return always_fail;
  2266     case SSC_always_true:
  2267       return top();
  2268     case SSC_easy_test:
  2270         // Just do a direct pointer compare and be done.
  2271         Node* cmp = _gvn.transform( new(C, 3) CmpPNode(subklass, superklass) );
  2272         Node* bol = _gvn.transform( new(C, 2) BoolNode(cmp, BoolTest::eq) );
  2273         IfNode* iff = create_and_xform_if(control(), bol, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
  2274         set_control( _gvn.transform( new(C, 1) IfTrueNode (iff) ) );
  2275         return       _gvn.transform( new(C, 1) IfFalseNode(iff) );
  2277     case SSC_full_test:
  2278       break;
  2279     default:
  2280       ShouldNotReachHere();
  2284   // %%% Possible further optimization:  Even if the superklass is not exact,
  2285   // if the subklass is the unique subtype of the superklass, the check
  2286   // will always succeed.  We could leave a dependency behind to ensure this.
  2288   // First load the super-klass's check-offset
  2289   Node *p1 = basic_plus_adr( superklass, superklass, sizeof(oopDesc) + Klass::super_check_offset_offset_in_bytes() );
  2290   Node *chk_off = _gvn.transform( new (C, 3) LoadINode( NULL, memory(p1), p1, _gvn.type(p1)->is_ptr() ) );
  2291   int cacheoff_con = sizeof(oopDesc) + Klass::secondary_super_cache_offset_in_bytes();
  2292   bool might_be_cache = (find_int_con(chk_off, cacheoff_con) == cacheoff_con);
  2294   // Load from the sub-klass's super-class display list, or a 1-word cache of
  2295   // the secondary superclass list, or a failing value with a sentinel offset
  2296   // if the super-klass is an interface or exceptionally deep in the Java
  2297   // hierarchy and we have to scan the secondary superclass list the hard way.
  2298   // Worst-case type is a little odd: NULL is allowed as a result (usually
  2299   // klass loads can never produce a NULL).
  2300   Node *chk_off_X = ConvI2X(chk_off);
  2301   Node *p2 = _gvn.transform( new (C, 4) AddPNode(subklass,subklass,chk_off_X) );
  2302   // For some types like interfaces the following loadKlass is from a 1-word
  2303   // cache which is mutable so can't use immutable memory.  Other
  2304   // types load from the super-class display table which is immutable.
  2305   Node *kmem = might_be_cache ? memory(p2) : immutable_memory();
  2306   Node *nkls = _gvn.transform( LoadKlassNode::make( _gvn, kmem, p2, _gvn.type(p2)->is_ptr(), TypeKlassPtr::OBJECT_OR_NULL ) );
  2308   // Compile speed common case: ARE a subtype and we canNOT fail
  2309   if( superklass == nkls )
  2310     return top();             // false path is dead; no test needed.
  2312   // See if we get an immediate positive hit.  Happens roughly 83% of the
  2313   // time.  Test to see if the value loaded just previously from the subklass
  2314   // is exactly the superklass.
  2315   Node *cmp1 = _gvn.transform( new (C, 3) CmpPNode( superklass, nkls ) );
  2316   Node *bol1 = _gvn.transform( new (C, 2) BoolNode( cmp1, BoolTest::eq ) );
  2317   IfNode *iff1 = create_and_xform_if( control(), bol1, PROB_LIKELY(0.83f), COUNT_UNKNOWN );
  2318   Node *iftrue1 = _gvn.transform( new (C, 1) IfTrueNode ( iff1 ) );
  2319   set_control(    _gvn.transform( new (C, 1) IfFalseNode( iff1 ) ) );
  2321   // Compile speed common case: Check for being deterministic right now.  If
  2322   // chk_off is a constant and not equal to cacheoff then we are NOT a
  2323   // subklass.  In this case we need exactly the 1 test above and we can
  2324   // return those results immediately.
  2325   if (!might_be_cache) {
  2326     Node* not_subtype_ctrl = control();
  2327     set_control(iftrue1); // We need exactly the 1 test above
  2328     return not_subtype_ctrl;
  2331   // Gather the various success & failures here
  2332   RegionNode *r_ok_subtype = new (C, 4) RegionNode(4);
  2333   record_for_igvn(r_ok_subtype);
  2334   RegionNode *r_not_subtype = new (C, 3) RegionNode(3);
  2335   record_for_igvn(r_not_subtype);
  2337   r_ok_subtype->init_req(1, iftrue1);
  2339   // Check for immediate negative hit.  Happens roughly 11% of the time (which
  2340   // is roughly 63% of the remaining cases).  Test to see if the loaded
  2341   // check-offset points into the subklass display list or the 1-element
  2342   // cache.  If it points to the display (and NOT the cache) and the display
  2343   // missed then it's not a subtype.
  2344   Node *cacheoff = _gvn.intcon(cacheoff_con);
  2345   Node *cmp2 = _gvn.transform( new (C, 3) CmpINode( chk_off, cacheoff ) );
  2346   Node *bol2 = _gvn.transform( new (C, 2) BoolNode( cmp2, BoolTest::ne ) );
  2347   IfNode *iff2 = create_and_xform_if( control(), bol2, PROB_LIKELY(0.63f), COUNT_UNKNOWN );
  2348   r_not_subtype->init_req(1, _gvn.transform( new (C, 1) IfTrueNode (iff2) ) );
  2349   set_control(                _gvn.transform( new (C, 1) IfFalseNode(iff2) ) );
  2351   // Check for self.  Very rare to get here, but it is taken 1/3 the time.
  2352   // No performance impact (too rare) but allows sharing of secondary arrays
  2353   // which has some footprint reduction.
  2354   Node *cmp3 = _gvn.transform( new (C, 3) CmpPNode( subklass, superklass ) );
  2355   Node *bol3 = _gvn.transform( new (C, 2) BoolNode( cmp3, BoolTest::eq ) );
  2356   IfNode *iff3 = create_and_xform_if( control(), bol3, PROB_LIKELY(0.36f), COUNT_UNKNOWN );
  2357   r_ok_subtype->init_req(2, _gvn.transform( new (C, 1) IfTrueNode ( iff3 ) ) );
  2358   set_control(               _gvn.transform( new (C, 1) IfFalseNode( iff3 ) ) );
  2360   // -- Roads not taken here: --
  2361   // We could also have chosen to perform the self-check at the beginning
  2362   // of this code sequence, as the assembler does.  This would not pay off
  2363   // the same way, since the optimizer, unlike the assembler, can perform
  2364   // static type analysis to fold away many successful self-checks.
  2365   // Non-foldable self checks work better here in second position, because
  2366   // the initial primary superclass check subsumes a self-check for most
  2367   // types.  An exception would be a secondary type like array-of-interface,
  2368   // which does not appear in its own primary supertype display.
  2369   // Finally, we could have chosen to move the self-check into the
  2370   // PartialSubtypeCheckNode, and from there out-of-line in a platform
  2371   // dependent manner.  But it is worthwhile to have the check here,
  2372   // where it can be perhaps be optimized.  The cost in code space is
  2373   // small (register compare, branch).
  2375   // Now do a linear scan of the secondary super-klass array.  Again, no real
  2376   // performance impact (too rare) but it's gotta be done.
  2377   // Since the code is rarely used, there is no penalty for moving it
  2378   // out of line, and it can only improve I-cache density.
  2379   // The decision to inline or out-of-line this final check is platform
  2380   // dependent, and is found in the AD file definition of PartialSubtypeCheck.
  2381   Node* psc = _gvn.transform(
  2382     new (C, 3) PartialSubtypeCheckNode(control(), subklass, superklass) );
  2384   Node *cmp4 = _gvn.transform( new (C, 3) CmpPNode( psc, null() ) );
  2385   Node *bol4 = _gvn.transform( new (C, 2) BoolNode( cmp4, BoolTest::ne ) );
  2386   IfNode *iff4 = create_and_xform_if( control(), bol4, PROB_FAIR, COUNT_UNKNOWN );
  2387   r_not_subtype->init_req(2, _gvn.transform( new (C, 1) IfTrueNode (iff4) ) );
  2388   r_ok_subtype ->init_req(3, _gvn.transform( new (C, 1) IfFalseNode(iff4) ) );
  2390   // Return false path; set default control to true path.
  2391   set_control( _gvn.transform(r_ok_subtype) );
  2392   return _gvn.transform(r_not_subtype);
  2395 //----------------------------static_subtype_check-----------------------------
  2396 // Shortcut important common cases when superklass is exact:
  2397 // (0) superklass is java.lang.Object (can occur in reflective code)
  2398 // (1) subklass is already limited to a subtype of superklass => always ok
  2399 // (2) subklass does not overlap with superklass => always fail
  2400 // (3) superklass has NO subtypes and we can check with a simple compare.
  2401 int GraphKit::static_subtype_check(ciKlass* superk, ciKlass* subk) {
  2402   if (StressReflectiveCode) {
  2403     return SSC_full_test;       // Let caller generate the general case.
  2406   if (superk == env()->Object_klass()) {
  2407     return SSC_always_true;     // (0) this test cannot fail
  2410   ciType* superelem = superk;
  2411   if (superelem->is_array_klass())
  2412     superelem = superelem->as_array_klass()->base_element_type();
  2414   if (!subk->is_interface()) {  // cannot trust static interface types yet
  2415     if (subk->is_subtype_of(superk)) {
  2416       return SSC_always_true;   // (1) false path dead; no dynamic test needed
  2418     if (!(superelem->is_klass() && superelem->as_klass()->is_interface()) &&
  2419         !superk->is_subtype_of(subk)) {
  2420       return SSC_always_false;
  2424   // If casting to an instance klass, it must have no subtypes
  2425   if (superk->is_interface()) {
  2426     // Cannot trust interfaces yet.
  2427     // %%% S.B. superk->nof_implementors() == 1
  2428   } else if (superelem->is_instance_klass()) {
  2429     ciInstanceKlass* ik = superelem->as_instance_klass();
  2430     if (!ik->has_subklass() && !ik->is_interface()) {
  2431       if (!ik->is_final()) {
  2432         // Add a dependency if there is a chance of a later subclass.
  2433         C->dependencies()->assert_leaf_type(ik);
  2435       return SSC_easy_test;     // (3) caller can do a simple ptr comparison
  2437   } else {
  2438     // A primitive array type has no subtypes.
  2439     return SSC_easy_test;       // (3) caller can do a simple ptr comparison
  2442   return SSC_full_test;
  2445 // Profile-driven exact type check:
  2446 Node* GraphKit::type_check_receiver(Node* receiver, ciKlass* klass,
  2447                                     float prob,
  2448                                     Node* *casted_receiver) {
  2449   const TypeKlassPtr* tklass = TypeKlassPtr::make(klass);
  2450   Node* recv_klass = load_object_klass(receiver);
  2451   Node* want_klass = makecon(tklass);
  2452   Node* cmp = _gvn.transform( new(C, 3) CmpPNode(recv_klass, want_klass) );
  2453   Node* bol = _gvn.transform( new(C, 2) BoolNode(cmp, BoolTest::eq) );
  2454   IfNode* iff = create_and_xform_if(control(), bol, prob, COUNT_UNKNOWN);
  2455   set_control( _gvn.transform( new(C, 1) IfTrueNode (iff) ));
  2456   Node* fail = _gvn.transform( new(C, 1) IfFalseNode(iff) );
  2458   const TypeOopPtr* recv_xtype = tklass->as_instance_type();
  2459   assert(recv_xtype->klass_is_exact(), "");
  2461   // Subsume downstream occurrences of receiver with a cast to
  2462   // recv_xtype, since now we know what the type will be.
  2463   Node* cast = new(C, 2) CheckCastPPNode(control(), receiver, recv_xtype);
  2464   (*casted_receiver) = _gvn.transform(cast);
  2465   // (User must make the replace_in_map call.)
  2467   return fail;
  2471 //------------------------------seems_never_null-------------------------------
  2472 // Use null_seen information if it is available from the profile.
  2473 // If we see an unexpected null at a type check we record it and force a
  2474 // recompile; the offending check will be recompiled to handle NULLs.
  2475 // If we see several offending BCIs, then all checks in the
  2476 // method will be recompiled.
  2477 bool GraphKit::seems_never_null(Node* obj, ciProfileData* data) {
  2478   if (UncommonNullCast               // Cutout for this technique
  2479       && obj != null()               // And not the -Xcomp stupid case?
  2480       && !too_many_traps(Deoptimization::Reason_null_check)
  2481       ) {
  2482     if (data == NULL)
  2483       // Edge case:  no mature data.  Be optimistic here.
  2484       return true;
  2485     // If the profile has not seen a null, assume it won't happen.
  2486     assert(java_bc() == Bytecodes::_checkcast ||
  2487            java_bc() == Bytecodes::_instanceof ||
  2488            java_bc() == Bytecodes::_aastore, "MDO must collect null_seen bit here");
  2489     return !data->as_BitData()->null_seen();
  2491   return false;
  2494 //------------------------maybe_cast_profiled_receiver-------------------------
  2495 // If the profile has seen exactly one type, narrow to exactly that type.
  2496 // Subsequent type checks will always fold up.
  2497 Node* GraphKit::maybe_cast_profiled_receiver(Node* not_null_obj,
  2498                                              ciProfileData* data,
  2499                                              ciKlass* require_klass) {
  2500   if (!UseTypeProfile || !TypeProfileCasts) return NULL;
  2501   if (data == NULL)  return NULL;
  2503   // Make sure we haven't already deoptimized from this tactic.
  2504   if (too_many_traps(Deoptimization::Reason_class_check))
  2505     return NULL;
  2507   // (No, this isn't a call, but it's enough like a virtual call
  2508   // to use the same ciMethod accessor to get the profile info...)
  2509   ciCallProfile profile = method()->call_profile_at_bci(bci());
  2510   if (profile.count() >= 0 &&         // no cast failures here
  2511       profile.has_receiver(0) &&
  2512       profile.morphism() == 1) {
  2513     ciKlass* exact_kls = profile.receiver(0);
  2514     if (require_klass == NULL ||
  2515         static_subtype_check(require_klass, exact_kls) == SSC_always_true) {
  2516       // If we narrow the type to match what the type profile sees,
  2517       // we can then remove the rest of the cast.
  2518       // This is a win, even if the exact_kls is very specific,
  2519       // because downstream operations, such as method calls,
  2520       // will often benefit from the sharper type.
  2521       Node* exact_obj = not_null_obj; // will get updated in place...
  2522       Node* slow_ctl  = type_check_receiver(exact_obj, exact_kls, 1.0,
  2523                                             &exact_obj);
  2524       { PreserveJVMState pjvms(this);
  2525         set_control(slow_ctl);
  2526         uncommon_trap(Deoptimization::Reason_class_check,
  2527                       Deoptimization::Action_maybe_recompile);
  2529       replace_in_map(not_null_obj, exact_obj);
  2530       return exact_obj;
  2532     // assert(ssc == SSC_always_true)... except maybe the profile lied to us.
  2535   return NULL;
  2539 //-------------------------------gen_instanceof--------------------------------
  2540 // Generate an instance-of idiom.  Used by both the instance-of bytecode
  2541 // and the reflective instance-of call.
  2542 Node* GraphKit::gen_instanceof(Node* obj, Node* superklass) {
  2543   kill_dead_locals();           // Benefit all the uncommon traps
  2544   assert( !stopped(), "dead parse path should be checked in callers" );
  2545   assert(!TypePtr::NULL_PTR->higher_equal(_gvn.type(superklass)->is_klassptr()),
  2546          "must check for not-null not-dead klass in callers");
  2548   // Make the merge point
  2549   enum { _obj_path = 1, _fail_path, _null_path, PATH_LIMIT };
  2550   RegionNode* region = new(C, PATH_LIMIT) RegionNode(PATH_LIMIT);
  2551   Node*       phi    = new(C, PATH_LIMIT) PhiNode(region, TypeInt::BOOL);
  2552   C->set_has_split_ifs(true); // Has chance for split-if optimization
  2554   ciProfileData* data = NULL;
  2555   if (java_bc() == Bytecodes::_instanceof) {  // Only for the bytecode
  2556     data = method()->method_data()->bci_to_data(bci());
  2558   bool never_see_null = (ProfileDynamicTypes  // aggressive use of profile
  2559                          && seems_never_null(obj, data));
  2561   // Null check; get casted pointer; set region slot 3
  2562   Node* null_ctl = top();
  2563   Node* not_null_obj = null_check_oop(obj, &null_ctl, never_see_null);
  2565   // If not_null_obj is dead, only null-path is taken
  2566   if (stopped()) {              // Doing instance-of on a NULL?
  2567     set_control(null_ctl);
  2568     return intcon(0);
  2570   region->init_req(_null_path, null_ctl);
  2571   phi   ->init_req(_null_path, intcon(0)); // Set null path value
  2572   if (null_ctl == top()) {
  2573     // Do this eagerly, so that pattern matches like is_diamond_phi
  2574     // will work even during parsing.
  2575     assert(_null_path == PATH_LIMIT-1, "delete last");
  2576     region->del_req(_null_path);
  2577     phi   ->del_req(_null_path);
  2580   if (ProfileDynamicTypes && data != NULL) {
  2581     Node* cast_obj = maybe_cast_profiled_receiver(not_null_obj, data, NULL);
  2582     if (stopped()) {            // Profile disagrees with this path.
  2583       set_control(null_ctl);    // Null is the only remaining possibility.
  2584       return intcon(0);
  2586     if (cast_obj != NULL)
  2587       not_null_obj = cast_obj;
  2590   // Load the object's klass
  2591   Node* obj_klass = load_object_klass(not_null_obj);
  2593   // Generate the subtype check
  2594   Node* not_subtype_ctrl = gen_subtype_check(obj_klass, superklass);
  2596   // Plug in the success path to the general merge in slot 1.
  2597   region->init_req(_obj_path, control());
  2598   phi   ->init_req(_obj_path, intcon(1));
  2600   // Plug in the failing path to the general merge in slot 2.
  2601   region->init_req(_fail_path, not_subtype_ctrl);
  2602   phi   ->init_req(_fail_path, intcon(0));
  2604   // Return final merged results
  2605   set_control( _gvn.transform(region) );
  2606   record_for_igvn(region);
  2607   return _gvn.transform(phi);
  2610 //-------------------------------gen_checkcast---------------------------------
  2611 // Generate a checkcast idiom.  Used by both the checkcast bytecode and the
  2612 // array store bytecode.  Stack must be as-if BEFORE doing the bytecode so the
  2613 // uncommon-trap paths work.  Adjust stack after this call.
  2614 // If failure_control is supplied and not null, it is filled in with
  2615 // the control edge for the cast failure.  Otherwise, an appropriate
  2616 // uncommon trap or exception is thrown.
  2617 Node* GraphKit::gen_checkcast(Node *obj, Node* superklass,
  2618                               Node* *failure_control) {
  2619   kill_dead_locals();           // Benefit all the uncommon traps
  2620   const TypeKlassPtr *tk = _gvn.type(superklass)->is_klassptr();
  2621   const Type *toop = TypeOopPtr::make_from_klass(tk->klass());
  2623   // Fast cutout:  Check the case that the cast is vacuously true.
  2624   // This detects the common cases where the test will short-circuit
  2625   // away completely.  We do this before we perform the null check,
  2626   // because if the test is going to turn into zero code, we don't
  2627   // want a residual null check left around.  (Causes a slowdown,
  2628   // for example, in some objArray manipulations, such as a[i]=a[j].)
  2629   if (tk->singleton()) {
  2630     const TypeOopPtr* objtp = _gvn.type(obj)->isa_oopptr();
  2631     if (objtp != NULL && objtp->klass() != NULL) {
  2632       switch (static_subtype_check(tk->klass(), objtp->klass())) {
  2633       case SSC_always_true:
  2634         return obj;
  2635       case SSC_always_false:
  2636         // It needs a null check because a null will *pass* the cast check.
  2637         // A non-null value will always produce an exception.
  2638         return do_null_assert(obj, T_OBJECT);
  2643   ciProfileData* data = NULL;
  2644   if (failure_control == NULL) {        // use MDO in regular case only
  2645     assert(java_bc() == Bytecodes::_aastore ||
  2646            java_bc() == Bytecodes::_checkcast,
  2647            "interpreter profiles type checks only for these BCs");
  2648     data = method()->method_data()->bci_to_data(bci());
  2651   // Make the merge point
  2652   enum { _obj_path = 1, _null_path, PATH_LIMIT };
  2653   RegionNode* region = new (C, PATH_LIMIT) RegionNode(PATH_LIMIT);
  2654   Node*       phi    = new (C, PATH_LIMIT) PhiNode(region, toop);
  2655   C->set_has_split_ifs(true); // Has chance for split-if optimization
  2657   // Use null-cast information if it is available
  2658   bool never_see_null = ((failure_control == NULL)  // regular case only
  2659                          && seems_never_null(obj, data));
  2661   // Null check; get casted pointer; set region slot 3
  2662   Node* null_ctl = top();
  2663   Node* not_null_obj = null_check_oop(obj, &null_ctl, never_see_null);
  2665   // If not_null_obj is dead, only null-path is taken
  2666   if (stopped()) {              // Doing instance-of on a NULL?
  2667     set_control(null_ctl);
  2668     return null();
  2670   region->init_req(_null_path, null_ctl);
  2671   phi   ->init_req(_null_path, null());  // Set null path value
  2672   if (null_ctl == top()) {
  2673     // Do this eagerly, so that pattern matches like is_diamond_phi
  2674     // will work even during parsing.
  2675     assert(_null_path == PATH_LIMIT-1, "delete last");
  2676     region->del_req(_null_path);
  2677     phi   ->del_req(_null_path);
  2680   Node* cast_obj = NULL;
  2681   if (data != NULL &&
  2682       // Counter has never been decremented (due to cast failure).
  2683       // ...This is a reasonable thing to expect.  It is true of
  2684       // all casts inserted by javac to implement generic types.
  2685       data->as_CounterData()->count() >= 0) {
  2686     cast_obj = maybe_cast_profiled_receiver(not_null_obj, data, tk->klass());
  2687     if (cast_obj != NULL) {
  2688       if (failure_control != NULL) // failure is now impossible
  2689         (*failure_control) = top();
  2690       // adjust the type of the phi to the exact klass:
  2691       phi->raise_bottom_type(_gvn.type(cast_obj)->meet(TypePtr::NULL_PTR));
  2695   if (cast_obj == NULL) {
  2696     // Load the object's klass
  2697     Node* obj_klass = load_object_klass(not_null_obj);
  2699     // Generate the subtype check
  2700     Node* not_subtype_ctrl = gen_subtype_check( obj_klass, superklass );
  2702     // Plug in success path into the merge
  2703     cast_obj = _gvn.transform(new (C, 2) CheckCastPPNode(control(),
  2704                                                          not_null_obj, toop));
  2705     // Failure path ends in uncommon trap (or may be dead - failure impossible)
  2706     if (failure_control == NULL) {
  2707       if (not_subtype_ctrl != top()) { // If failure is possible
  2708         PreserveJVMState pjvms(this);
  2709         set_control(not_subtype_ctrl);
  2710         builtin_throw(Deoptimization::Reason_class_check, obj_klass);
  2712     } else {
  2713       (*failure_control) = not_subtype_ctrl;
  2717   region->init_req(_obj_path, control());
  2718   phi   ->init_req(_obj_path, cast_obj);
  2720   // A merge of NULL or Casted-NotNull obj
  2721   Node* res = _gvn.transform(phi);
  2723   // Note I do NOT always 'replace_in_map(obj,result)' here.
  2724   //  if( tk->klass()->can_be_primary_super()  )
  2725     // This means that if I successfully store an Object into an array-of-String
  2726     // I 'forget' that the Object is really now known to be a String.  I have to
  2727     // do this because we don't have true union types for interfaces - if I store
  2728     // a Baz into an array-of-Interface and then tell the optimizer it's an
  2729     // Interface, I forget that it's also a Baz and cannot do Baz-like field
  2730     // references to it.  FIX THIS WHEN UNION TYPES APPEAR!
  2731   //  replace_in_map( obj, res );
  2733   // Return final merged results
  2734   set_control( _gvn.transform(region) );
  2735   record_for_igvn(region);
  2736   return res;
  2739 //------------------------------next_monitor-----------------------------------
  2740 // What number should be given to the next monitor?
  2741 int GraphKit::next_monitor() {
  2742   int current = jvms()->monitor_depth()* C->sync_stack_slots();
  2743   int next = current + C->sync_stack_slots();
  2744   // Keep the toplevel high water mark current:
  2745   if (C->fixed_slots() < next)  C->set_fixed_slots(next);
  2746   return current;
  2749 //------------------------------insert_mem_bar---------------------------------
  2750 // Memory barrier to avoid floating things around
  2751 // The membar serves as a pinch point between both control and all memory slices.
  2752 Node* GraphKit::insert_mem_bar(int opcode, Node* precedent) {
  2753   MemBarNode* mb = MemBarNode::make(C, opcode, Compile::AliasIdxBot, precedent);
  2754   mb->init_req(TypeFunc::Control, control());
  2755   mb->init_req(TypeFunc::Memory,  reset_memory());
  2756   Node* membar = _gvn.transform(mb);
  2757   set_control(_gvn.transform(new (C, 1) ProjNode(membar,TypeFunc::Control) ));
  2758   set_all_memory_call(membar);
  2759   return membar;
  2762 //-------------------------insert_mem_bar_volatile----------------------------
  2763 // Memory barrier to avoid floating things around
  2764 // The membar serves as a pinch point between both control and memory(alias_idx).
  2765 // If you want to make a pinch point on all memory slices, do not use this
  2766 // function (even with AliasIdxBot); use insert_mem_bar() instead.
  2767 Node* GraphKit::insert_mem_bar_volatile(int opcode, int alias_idx, Node* precedent) {
  2768   // When Parse::do_put_xxx updates a volatile field, it appends a series
  2769   // of MemBarVolatile nodes, one for *each* volatile field alias category.
  2770   // The first membar is on the same memory slice as the field store opcode.
  2771   // This forces the membar to follow the store.  (Bug 6500685 broke this.)
  2772   // All the other membars (for other volatile slices, including AliasIdxBot,
  2773   // which stands for all unknown volatile slices) are control-dependent
  2774   // on the first membar.  This prevents later volatile loads or stores
  2775   // from sliding up past the just-emitted store.
  2777   MemBarNode* mb = MemBarNode::make(C, opcode, alias_idx, precedent);
  2778   mb->set_req(TypeFunc::Control,control());
  2779   if (alias_idx == Compile::AliasIdxBot) {
  2780     mb->set_req(TypeFunc::Memory, merged_memory()->base_memory());
  2781   } else {
  2782     assert(!(opcode == Op_Initialize && alias_idx != Compile::AliasIdxRaw), "fix caller");
  2783     mb->set_req(TypeFunc::Memory, memory(alias_idx));
  2785   Node* membar = _gvn.transform(mb);
  2786   set_control(_gvn.transform(new (C, 1) ProjNode(membar, TypeFunc::Control)));
  2787   if (alias_idx == Compile::AliasIdxBot) {
  2788     merged_memory()->set_base_memory(_gvn.transform(new (C, 1) ProjNode(membar, TypeFunc::Memory)));
  2789   } else {
  2790     set_memory(_gvn.transform(new (C, 1) ProjNode(membar, TypeFunc::Memory)),alias_idx);
  2792   return membar;
  2795 //------------------------------shared_lock------------------------------------
  2796 // Emit locking code.
  2797 FastLockNode* GraphKit::shared_lock(Node* obj) {
  2798   // bci is either a monitorenter bc or InvocationEntryBci
  2799   // %%% SynchronizationEntryBCI is redundant; use InvocationEntryBci in interfaces
  2800   assert(SynchronizationEntryBCI == InvocationEntryBci, "");
  2802   if( !GenerateSynchronizationCode )
  2803     return NULL;                // Not locking things?
  2804   if (stopped())                // Dead monitor?
  2805     return NULL;
  2807   assert(dead_locals_are_killed(), "should kill locals before sync. point");
  2809   // Box the stack location
  2810   Node* box = _gvn.transform(new (C, 1) BoxLockNode(next_monitor()));
  2811   Node* mem = reset_memory();
  2813   FastLockNode * flock = _gvn.transform(new (C, 3) FastLockNode(0, obj, box) )->as_FastLock();
  2814   if (PrintPreciseBiasedLockingStatistics) {
  2815     // Create the counters for this fast lock.
  2816     flock->create_lock_counter(sync_jvms()); // sync_jvms used to get current bci
  2818   // Add monitor to debug info for the slow path.  If we block inside the
  2819   // slow path and de-opt, we need the monitor hanging around
  2820   map()->push_monitor( flock );
  2822   const TypeFunc *tf = LockNode::lock_type();
  2823   LockNode *lock = new (C, tf->domain()->cnt()) LockNode(C, tf);
  2825   lock->init_req( TypeFunc::Control, control() );
  2826   lock->init_req( TypeFunc::Memory , mem );
  2827   lock->init_req( TypeFunc::I_O    , top() )     ;   // does no i/o
  2828   lock->init_req( TypeFunc::FramePtr, frameptr() );
  2829   lock->init_req( TypeFunc::ReturnAdr, top() );
  2831   lock->init_req(TypeFunc::Parms + 0, obj);
  2832   lock->init_req(TypeFunc::Parms + 1, box);
  2833   lock->init_req(TypeFunc::Parms + 2, flock);
  2834   add_safepoint_edges(lock);
  2836   lock = _gvn.transform( lock )->as_Lock();
  2838   // lock has no side-effects, sets few values
  2839   set_predefined_output_for_runtime_call(lock, mem, TypeRawPtr::BOTTOM);
  2841   insert_mem_bar(Op_MemBarAcquire);
  2843   // Add this to the worklist so that the lock can be eliminated
  2844   record_for_igvn(lock);
  2846 #ifndef PRODUCT
  2847   if (PrintLockStatistics) {
  2848     // Update the counter for this lock.  Don't bother using an atomic
  2849     // operation since we don't require absolute accuracy.
  2850     lock->create_lock_counter(map()->jvms());
  2851     increment_counter(lock->counter()->addr());
  2853 #endif
  2855   return flock;
  2859 //------------------------------shared_unlock----------------------------------
  2860 // Emit unlocking code.
  2861 void GraphKit::shared_unlock(Node* box, Node* obj) {
  2862   // bci is either a monitorenter bc or InvocationEntryBci
  2863   // %%% SynchronizationEntryBCI is redundant; use InvocationEntryBci in interfaces
  2864   assert(SynchronizationEntryBCI == InvocationEntryBci, "");
  2866   if( !GenerateSynchronizationCode )
  2867     return;
  2868   if (stopped()) {               // Dead monitor?
  2869     map()->pop_monitor();        // Kill monitor from debug info
  2870     return;
  2873   // Memory barrier to avoid floating things down past the locked region
  2874   insert_mem_bar(Op_MemBarRelease);
  2876   const TypeFunc *tf = OptoRuntime::complete_monitor_exit_Type();
  2877   UnlockNode *unlock = new (C, tf->domain()->cnt()) UnlockNode(C, tf);
  2878   uint raw_idx = Compile::AliasIdxRaw;
  2879   unlock->init_req( TypeFunc::Control, control() );
  2880   unlock->init_req( TypeFunc::Memory , memory(raw_idx) );
  2881   unlock->init_req( TypeFunc::I_O    , top() )     ;   // does no i/o
  2882   unlock->init_req( TypeFunc::FramePtr, frameptr() );
  2883   unlock->init_req( TypeFunc::ReturnAdr, top() );
  2885   unlock->init_req(TypeFunc::Parms + 0, obj);
  2886   unlock->init_req(TypeFunc::Parms + 1, box);
  2887   unlock = _gvn.transform(unlock)->as_Unlock();
  2889   Node* mem = reset_memory();
  2891   // unlock has no side-effects, sets few values
  2892   set_predefined_output_for_runtime_call(unlock, mem, TypeRawPtr::BOTTOM);
  2894   // Kill monitor from debug info
  2895   map()->pop_monitor( );
  2898 //-------------------------------get_layout_helper-----------------------------
  2899 // If the given klass is a constant or known to be an array,
  2900 // fetch the constant layout helper value into constant_value
  2901 // and return (Node*)NULL.  Otherwise, load the non-constant
  2902 // layout helper value, and return the node which represents it.
  2903 // This two-faced routine is useful because allocation sites
  2904 // almost always feature constant types.
  2905 Node* GraphKit::get_layout_helper(Node* klass_node, jint& constant_value) {
  2906   const TypeKlassPtr* inst_klass = _gvn.type(klass_node)->isa_klassptr();
  2907   if (!StressReflectiveCode && inst_klass != NULL) {
  2908     ciKlass* klass = inst_klass->klass();
  2909     bool    xklass = inst_klass->klass_is_exact();
  2910     if (xklass || klass->is_array_klass()) {
  2911       jint lhelper = klass->layout_helper();
  2912       if (lhelper != Klass::_lh_neutral_value) {
  2913         constant_value = lhelper;
  2914         return (Node*) NULL;
  2918   constant_value = Klass::_lh_neutral_value;  // put in a known value
  2919   Node* lhp = basic_plus_adr(klass_node, klass_node, Klass::layout_helper_offset_in_bytes() + sizeof(oopDesc));
  2920   return make_load(NULL, lhp, TypeInt::INT, T_INT);
  2923 // We just put in an allocate/initialize with a big raw-memory effect.
  2924 // Hook selected additional alias categories on the initialization.
  2925 static void hook_memory_on_init(GraphKit& kit, int alias_idx,
  2926                                 MergeMemNode* init_in_merge,
  2927                                 Node* init_out_raw) {
  2928   DEBUG_ONLY(Node* init_in_raw = init_in_merge->base_memory());
  2929   assert(init_in_merge->memory_at(alias_idx) == init_in_raw, "");
  2931   Node* prevmem = kit.memory(alias_idx);
  2932   init_in_merge->set_memory_at(alias_idx, prevmem);
  2933   kit.set_memory(init_out_raw, alias_idx);
  2936 //---------------------------set_output_for_allocation-------------------------
  2937 Node* GraphKit::set_output_for_allocation(AllocateNode* alloc,
  2938                                           const TypeOopPtr* oop_type,
  2939                                           bool raw_mem_only) {
  2940   int rawidx = Compile::AliasIdxRaw;
  2941   alloc->set_req( TypeFunc::FramePtr, frameptr() );
  2942   add_safepoint_edges(alloc);
  2943   Node* allocx = _gvn.transform(alloc);
  2944   set_control( _gvn.transform(new (C, 1) ProjNode(allocx, TypeFunc::Control) ) );
  2945   // create memory projection for i_o
  2946   set_memory ( _gvn.transform( new (C, 1) ProjNode(allocx, TypeFunc::Memory, true) ), rawidx );
  2947   make_slow_call_ex(allocx, env()->OutOfMemoryError_klass(), true);
  2949   // create a memory projection as for the normal control path
  2950   Node* malloc = _gvn.transform(new (C, 1) ProjNode(allocx, TypeFunc::Memory));
  2951   set_memory(malloc, rawidx);
  2953   // a normal slow-call doesn't change i_o, but an allocation does
  2954   // we create a separate i_o projection for the normal control path
  2955   set_i_o(_gvn.transform( new (C, 1) ProjNode(allocx, TypeFunc::I_O, false) ) );
  2956   Node* rawoop = _gvn.transform( new (C, 1) ProjNode(allocx, TypeFunc::Parms) );
  2958   // put in an initialization barrier
  2959   InitializeNode* init = insert_mem_bar_volatile(Op_Initialize, rawidx,
  2960                                                  rawoop)->as_Initialize();
  2961   assert(alloc->initialization() == init,  "2-way macro link must work");
  2962   assert(init ->allocation()     == alloc, "2-way macro link must work");
  2963   if (ReduceFieldZeroing && !raw_mem_only) {
  2964     // Extract memory strands which may participate in the new object's
  2965     // initialization, and source them from the new InitializeNode.
  2966     // This will allow us to observe initializations when they occur,
  2967     // and link them properly (as a group) to the InitializeNode.
  2968     assert(init->in(InitializeNode::Memory) == malloc, "");
  2969     MergeMemNode* minit_in = MergeMemNode::make(C, malloc);
  2970     init->set_req(InitializeNode::Memory, minit_in);
  2971     record_for_igvn(minit_in); // fold it up later, if possible
  2972     Node* minit_out = memory(rawidx);
  2973     assert(minit_out->is_Proj() && minit_out->in(0) == init, "");
  2974     if (oop_type->isa_aryptr()) {
  2975       const TypePtr* telemref = oop_type->add_offset(Type::OffsetBot);
  2976       int            elemidx  = C->get_alias_index(telemref);
  2977       hook_memory_on_init(*this, elemidx, minit_in, minit_out);
  2978     } else if (oop_type->isa_instptr()) {
  2979       ciInstanceKlass* ik = oop_type->klass()->as_instance_klass();
  2980       for (int i = 0, len = ik->nof_nonstatic_fields(); i < len; i++) {
  2981         ciField* field = ik->nonstatic_field_at(i);
  2982         if (field->offset() >= TrackedInitializationLimit * HeapWordSize)
  2983           continue;  // do not bother to track really large numbers of fields
  2984         // Find (or create) the alias category for this field:
  2985         int fieldidx = C->alias_type(field)->index();
  2986         hook_memory_on_init(*this, fieldidx, minit_in, minit_out);
  2991   // Cast raw oop to the real thing...
  2992   Node* javaoop = new (C, 2) CheckCastPPNode(control(), rawoop, oop_type);
  2993   javaoop = _gvn.transform(javaoop);
  2994   C->set_recent_alloc(control(), javaoop);
  2995   assert(just_allocated_object(control()) == javaoop, "just allocated");
  2997 #ifdef ASSERT
  2998   { // Verify that the AllocateNode::Ideal_allocation recognizers work:
  2999     assert(AllocateNode::Ideal_allocation(rawoop, &_gvn) == alloc,
  3000            "Ideal_allocation works");
  3001     assert(AllocateNode::Ideal_allocation(javaoop, &_gvn) == alloc,
  3002            "Ideal_allocation works");
  3003     if (alloc->is_AllocateArray()) {
  3004       assert(AllocateArrayNode::Ideal_array_allocation(rawoop, &_gvn) == alloc->as_AllocateArray(),
  3005              "Ideal_allocation works");
  3006       assert(AllocateArrayNode::Ideal_array_allocation(javaoop, &_gvn) == alloc->as_AllocateArray(),
  3007              "Ideal_allocation works");
  3008     } else {
  3009       assert(alloc->in(AllocateNode::ALength)->is_top(), "no length, please");
  3012 #endif //ASSERT
  3014   return javaoop;
  3017 //---------------------------new_instance--------------------------------------
  3018 // This routine takes a klass_node which may be constant (for a static type)
  3019 // or may be non-constant (for reflective code).  It will work equally well
  3020 // for either, and the graph will fold nicely if the optimizer later reduces
  3021 // the type to a constant.
  3022 // The optional arguments are for specialized use by intrinsics:
  3023 //  - If 'extra_slow_test' if not null is an extra condition for the slow-path.
  3024 //  - If 'raw_mem_only', do not cast the result to an oop.
  3025 //  - If 'return_size_val', report the the total object size to the caller.
  3026 Node* GraphKit::new_instance(Node* klass_node,
  3027                              Node* extra_slow_test,
  3028                              bool raw_mem_only, // affect only raw memory
  3029                              Node* *return_size_val) {
  3030   // Compute size in doublewords
  3031   // The size is always an integral number of doublewords, represented
  3032   // as a positive bytewise size stored in the klass's layout_helper.
  3033   // The layout_helper also encodes (in a low bit) the need for a slow path.
  3034   jint  layout_con = Klass::_lh_neutral_value;
  3035   Node* layout_val = get_layout_helper(klass_node, layout_con);
  3036   int   layout_is_con = (layout_val == NULL);
  3038   if (extra_slow_test == NULL)  extra_slow_test = intcon(0);
  3039   // Generate the initial go-slow test.  It's either ALWAYS (return a
  3040   // Node for 1) or NEVER (return a NULL) or perhaps (in the reflective
  3041   // case) a computed value derived from the layout_helper.
  3042   Node* initial_slow_test = NULL;
  3043   if (layout_is_con) {
  3044     assert(!StressReflectiveCode, "stress mode does not use these paths");
  3045     bool must_go_slow = Klass::layout_helper_needs_slow_path(layout_con);
  3046     initial_slow_test = must_go_slow? intcon(1): extra_slow_test;
  3048   } else {   // reflective case
  3049     // This reflective path is used by Unsafe.allocateInstance.
  3050     // (It may be stress-tested by specifying StressReflectiveCode.)
  3051     // Basically, we want to get into the VM is there's an illegal argument.
  3052     Node* bit = intcon(Klass::_lh_instance_slow_path_bit);
  3053     initial_slow_test = _gvn.transform( new (C, 3) AndINode(layout_val, bit) );
  3054     if (extra_slow_test != intcon(0)) {
  3055       initial_slow_test = _gvn.transform( new (C, 3) OrINode(initial_slow_test, extra_slow_test) );
  3057     // (Macro-expander will further convert this to a Bool, if necessary.)
  3060   // Find the size in bytes.  This is easy; it's the layout_helper.
  3061   // The size value must be valid even if the slow path is taken.
  3062   Node* size = NULL;
  3063   if (layout_is_con) {
  3064     size = MakeConX(Klass::layout_helper_size_in_bytes(layout_con));
  3065   } else {   // reflective case
  3066     // This reflective path is used by clone and Unsafe.allocateInstance.
  3067     size = ConvI2X(layout_val);
  3069     // Clear the low bits to extract layout_helper_size_in_bytes:
  3070     assert((int)Klass::_lh_instance_slow_path_bit < BytesPerLong, "clear bit");
  3071     Node* mask = MakeConX(~ (intptr_t)right_n_bits(LogBytesPerLong));
  3072     size = _gvn.transform( new (C, 3) AndXNode(size, mask) );
  3074   if (return_size_val != NULL) {
  3075     (*return_size_val) = size;
  3078   // This is a precise notnull oop of the klass.
  3079   // (Actually, it need not be precise if this is a reflective allocation.)
  3080   // It's what we cast the result to.
  3081   const TypeKlassPtr* tklass = _gvn.type(klass_node)->isa_klassptr();
  3082   if (!tklass)  tklass = TypeKlassPtr::OBJECT;
  3083   const TypeOopPtr* oop_type = tklass->as_instance_type();
  3085   // Now generate allocation code
  3087   // The entire memory state is needed for slow path of the allocation
  3088   // since GC and deoptimization can happened.
  3089   Node *mem = reset_memory();
  3090   set_all_memory(mem); // Create new memory state
  3092   AllocateNode* alloc
  3093     = new (C, AllocateNode::ParmLimit)
  3094         AllocateNode(C, AllocateNode::alloc_type(),
  3095                      control(), mem, i_o(),
  3096                      size, klass_node,
  3097                      initial_slow_test);
  3099   return set_output_for_allocation(alloc, oop_type, raw_mem_only);
  3102 //-------------------------------new_array-------------------------------------
  3103 // helper for both newarray and anewarray
  3104 // The 'length' parameter is (obviously) the length of the array.
  3105 // See comments on new_instance for the meaning of the other arguments.
  3106 Node* GraphKit::new_array(Node* klass_node,     // array klass (maybe variable)
  3107                           Node* length,         // number of array elements
  3108                           int   nargs,          // number of arguments to push back for uncommon trap
  3109                           bool raw_mem_only,    // affect only raw memory
  3110                           Node* *return_size_val) {
  3111   jint  layout_con = Klass::_lh_neutral_value;
  3112   Node* layout_val = get_layout_helper(klass_node, layout_con);
  3113   int   layout_is_con = (layout_val == NULL);
  3115   if (!layout_is_con && !StressReflectiveCode &&
  3116       !too_many_traps(Deoptimization::Reason_class_check)) {
  3117     // This is a reflective array creation site.
  3118     // Optimistically assume that it is a subtype of Object[],
  3119     // so that we can fold up all the address arithmetic.
  3120     layout_con = Klass::array_layout_helper(T_OBJECT);
  3121     Node* cmp_lh = _gvn.transform( new(C, 3) CmpINode(layout_val, intcon(layout_con)) );
  3122     Node* bol_lh = _gvn.transform( new(C, 2) BoolNode(cmp_lh, BoolTest::eq) );
  3123     { BuildCutout unless(this, bol_lh, PROB_MAX);
  3124       _sp += nargs;
  3125       uncommon_trap(Deoptimization::Reason_class_check,
  3126                     Deoptimization::Action_maybe_recompile);
  3128     layout_val = NULL;
  3129     layout_is_con = true;
  3132   // Generate the initial go-slow test.  Make sure we do not overflow
  3133   // if length is huge (near 2Gig) or negative!  We do not need
  3134   // exact double-words here, just a close approximation of needed
  3135   // double-words.  We can't add any offset or rounding bits, lest we
  3136   // take a size -1 of bytes and make it positive.  Use an unsigned
  3137   // compare, so negative sizes look hugely positive.
  3138   int fast_size_limit = FastAllocateSizeLimit;
  3139   if (layout_is_con) {
  3140     assert(!StressReflectiveCode, "stress mode does not use these paths");
  3141     // Increase the size limit if we have exact knowledge of array type.
  3142     int log2_esize = Klass::layout_helper_log2_element_size(layout_con);
  3143     fast_size_limit <<= (LogBytesPerLong - log2_esize);
  3146   Node* initial_slow_cmp  = _gvn.transform( new (C, 3) CmpUNode( length, intcon( fast_size_limit ) ) );
  3147   Node* initial_slow_test = _gvn.transform( new (C, 2) BoolNode( initial_slow_cmp, BoolTest::gt ) );
  3148   if (initial_slow_test->is_Bool()) {
  3149     // Hide it behind a CMoveI, or else PhaseIdealLoop::split_up will get sick.
  3150     initial_slow_test = initial_slow_test->as_Bool()->as_int_value(&_gvn);
  3153   // --- Size Computation ---
  3154   // array_size = round_to_heap(array_header + (length << elem_shift));
  3155   // where round_to_heap(x) == round_to(x, MinObjAlignmentInBytes)
  3156   // and round_to(x, y) == ((x + y-1) & ~(y-1))
  3157   // The rounding mask is strength-reduced, if possible.
  3158   int round_mask = MinObjAlignmentInBytes - 1;
  3159   Node* header_size = NULL;
  3160   int   header_size_min  = arrayOopDesc::base_offset_in_bytes(T_BYTE);
  3161   // (T_BYTE has the weakest alignment and size restrictions...)
  3162   if (layout_is_con) {
  3163     int       hsize  = Klass::layout_helper_header_size(layout_con);
  3164     int       eshift = Klass::layout_helper_log2_element_size(layout_con);
  3165     BasicType etype  = Klass::layout_helper_element_type(layout_con);
  3166     if ((round_mask & ~right_n_bits(eshift)) == 0)
  3167       round_mask = 0;  // strength-reduce it if it goes away completely
  3168     assert((hsize & right_n_bits(eshift)) == 0, "hsize is pre-rounded");
  3169     assert(header_size_min <= hsize, "generic minimum is smallest");
  3170     header_size_min = hsize;
  3171     header_size = intcon(hsize + round_mask);
  3172   } else {
  3173     Node* hss   = intcon(Klass::_lh_header_size_shift);
  3174     Node* hsm   = intcon(Klass::_lh_header_size_mask);
  3175     Node* hsize = _gvn.transform( new(C, 3) URShiftINode(layout_val, hss) );
  3176     hsize       = _gvn.transform( new(C, 3) AndINode(hsize, hsm) );
  3177     Node* mask  = intcon(round_mask);
  3178     header_size = _gvn.transform( new(C, 3) AddINode(hsize, mask) );
  3181   Node* elem_shift = NULL;
  3182   if (layout_is_con) {
  3183     int eshift = Klass::layout_helper_log2_element_size(layout_con);
  3184     if (eshift != 0)
  3185       elem_shift = intcon(eshift);
  3186   } else {
  3187     // There is no need to mask or shift this value.
  3188     // The semantics of LShiftINode include an implicit mask to 0x1F.
  3189     assert(Klass::_lh_log2_element_size_shift == 0, "use shift in place");
  3190     elem_shift = layout_val;
  3193   // Transition to native address size for all offset calculations:
  3194   Node* lengthx = ConvI2X(length);
  3195   Node* headerx = ConvI2X(header_size);
  3196 #ifdef _LP64
  3197   { const TypeLong* tllen = _gvn.find_long_type(lengthx);
  3198     if (tllen != NULL && tllen->_lo < 0) {
  3199       // Add a manual constraint to a positive range.  Cf. array_element_address.
  3200       jlong size_max = arrayOopDesc::max_array_length(T_BYTE);
  3201       if (size_max > tllen->_hi)  size_max = tllen->_hi;
  3202       const TypeLong* tlcon = TypeLong::make(CONST64(0), size_max, Type::WidenMin);
  3203       lengthx = _gvn.transform( new (C, 2) ConvI2LNode(length, tlcon));
  3206 #endif
  3208   // Combine header size (plus rounding) and body size.  Then round down.
  3209   // This computation cannot overflow, because it is used only in two
  3210   // places, one where the length is sharply limited, and the other
  3211   // after a successful allocation.
  3212   Node* abody = lengthx;
  3213   if (elem_shift != NULL)
  3214     abody     = _gvn.transform( new(C, 3) LShiftXNode(lengthx, elem_shift) );
  3215   Node* size  = _gvn.transform( new(C, 3) AddXNode(headerx, abody) );
  3216   if (round_mask != 0) {
  3217     Node* mask = MakeConX(~round_mask);
  3218     size       = _gvn.transform( new(C, 3) AndXNode(size, mask) );
  3220   // else if round_mask == 0, the size computation is self-rounding
  3222   if (return_size_val != NULL) {
  3223     // This is the size
  3224     (*return_size_val) = size;
  3227   // Now generate allocation code
  3229   // The entire memory state is needed for slow path of the allocation
  3230   // since GC and deoptimization can happened.
  3231   Node *mem = reset_memory();
  3232   set_all_memory(mem); // Create new memory state
  3234   // Create the AllocateArrayNode and its result projections
  3235   AllocateArrayNode* alloc
  3236     = new (C, AllocateArrayNode::ParmLimit)
  3237         AllocateArrayNode(C, AllocateArrayNode::alloc_type(),
  3238                           control(), mem, i_o(),
  3239                           size, klass_node,
  3240                           initial_slow_test,
  3241                           length);
  3243   // Cast to correct type.  Note that the klass_node may be constant or not,
  3244   // and in the latter case the actual array type will be inexact also.
  3245   // (This happens via a non-constant argument to inline_native_newArray.)
  3246   // In any case, the value of klass_node provides the desired array type.
  3247   const TypeInt* length_type = _gvn.find_int_type(length);
  3248   const TypeOopPtr* ary_type = _gvn.type(klass_node)->is_klassptr()->as_instance_type();
  3249   if (ary_type->isa_aryptr() && length_type != NULL) {
  3250     // Try to get a better type than POS for the size
  3251     ary_type = ary_type->is_aryptr()->cast_to_size(length_type);
  3254   Node* javaoop = set_output_for_allocation(alloc, ary_type, raw_mem_only);
  3256   // Cast length on remaining path to be as narrow as possible
  3257   if (map()->find_edge(length) >= 0) {
  3258     Node* ccast = alloc->make_ideal_length(ary_type, &_gvn);
  3259     if (ccast != length) {
  3260       _gvn.set_type_bottom(ccast);
  3261       record_for_igvn(ccast);
  3262       replace_in_map(length, ccast);
  3266   return javaoop;
  3269 // The following "Ideal_foo" functions are placed here because they recognize
  3270 // the graph shapes created by the functions immediately above.
  3272 //---------------------------Ideal_allocation----------------------------------
  3273 // Given an oop pointer or raw pointer, see if it feeds from an AllocateNode.
  3274 AllocateNode* AllocateNode::Ideal_allocation(Node* ptr, PhaseTransform* phase) {
  3275   if (ptr == NULL) {     // reduce dumb test in callers
  3276     return NULL;
  3278   if (ptr->is_CheckCastPP()) {  // strip a raw-to-oop cast
  3279     ptr = ptr->in(1);
  3280     if (ptr == NULL)  return NULL;
  3282   if (ptr->is_Proj()) {
  3283     Node* allo = ptr->in(0);
  3284     if (allo != NULL && allo->is_Allocate()) {
  3285       return allo->as_Allocate();
  3288   // Report failure to match.
  3289   return NULL;
  3292 // Fancy version which also strips off an offset (and reports it to caller).
  3293 AllocateNode* AllocateNode::Ideal_allocation(Node* ptr, PhaseTransform* phase,
  3294                                              intptr_t& offset) {
  3295   Node* base = AddPNode::Ideal_base_and_offset(ptr, phase, offset);
  3296   if (base == NULL)  return NULL;
  3297   return Ideal_allocation(base, phase);
  3300 // Trace Initialize <- Proj[Parm] <- Allocate
  3301 AllocateNode* InitializeNode::allocation() {
  3302   Node* rawoop = in(InitializeNode::RawAddress);
  3303   if (rawoop->is_Proj()) {
  3304     Node* alloc = rawoop->in(0);
  3305     if (alloc->is_Allocate()) {
  3306       return alloc->as_Allocate();
  3309   return NULL;
  3312 // Trace Allocate -> Proj[Parm] -> Initialize
  3313 InitializeNode* AllocateNode::initialization() {
  3314   ProjNode* rawoop = proj_out(AllocateNode::RawAddress);
  3315   if (rawoop == NULL)  return NULL;
  3316   for (DUIterator_Fast imax, i = rawoop->fast_outs(imax); i < imax; i++) {
  3317     Node* init = rawoop->fast_out(i);
  3318     if (init->is_Initialize()) {
  3319       assert(init->as_Initialize()->allocation() == this, "2-way link");
  3320       return init->as_Initialize();
  3323   return NULL;
  3326 //----------------------------- store barriers ----------------------------
  3327 #define __ ideal.
  3329 void GraphKit::sync_kit(IdealKit& ideal) {
  3330   // Final sync IdealKit and graphKit.
  3331   __ drain_delay_transform();
  3332   set_all_memory(__ merged_memory());
  3333   set_control(__ ctrl());
  3336 // vanilla/CMS post barrier
  3337 // Insert a write-barrier store.  This is to let generational GC work; we have
  3338 // to flag all oop-stores before the next GC point.
  3339 void GraphKit::write_barrier_post(Node* oop_store,
  3340                                   Node* obj,
  3341                                   Node* adr,
  3342                                   uint  adr_idx,
  3343                                   Node* val,
  3344                                   bool use_precise) {
  3345   // No store check needed if we're storing a NULL or an old object
  3346   // (latter case is probably a string constant). The concurrent
  3347   // mark sweep garbage collector, however, needs to have all nonNull
  3348   // oop updates flagged via card-marks.
  3349   if (val != NULL && val->is_Con()) {
  3350     // must be either an oop or NULL
  3351     const Type* t = val->bottom_type();
  3352     if (t == TypePtr::NULL_PTR || t == Type::TOP)
  3353       // stores of null never (?) need barriers
  3354       return;
  3355     ciObject* con = t->is_oopptr()->const_oop();
  3356     if (con != NULL
  3357         && con->is_perm()
  3358         && Universe::heap()->can_elide_permanent_oop_store_barriers())
  3359       // no store barrier needed, because no old-to-new ref created
  3360       return;
  3363   if (use_ReduceInitialCardMarks()
  3364       && obj == just_allocated_object(control())) {
  3365     // We can skip marks on a freshly-allocated object in Eden.
  3366     // Keep this code in sync with new_store_pre_barrier() in runtime.cpp.
  3367     // That routine informs GC to take appropriate compensating steps,
  3368     // upon a slow-path allocation, so as to make this card-mark
  3369     // elision safe.
  3370     return;
  3373   if (!use_precise) {
  3374     // All card marks for a (non-array) instance are in one place:
  3375     adr = obj;
  3377   // (Else it's an array (or unknown), and we want more precise card marks.)
  3378   assert(adr != NULL, "");
  3380   IdealKit ideal(gvn(), control(), merged_memory(), true);
  3382   // Convert the pointer to an int prior to doing math on it
  3383   Node* cast = __ CastPX(__ ctrl(), adr);
  3385   // Divide by card size
  3386   assert(Universe::heap()->barrier_set()->kind() == BarrierSet::CardTableModRef,
  3387          "Only one we handle so far.");
  3388   Node* card_offset = __ URShiftX( cast, __ ConI(CardTableModRefBS::card_shift) );
  3390   // Combine card table base and card offset
  3391   Node* card_adr = __ AddP(__ top(), byte_map_base_node(), card_offset );
  3393   // Get the alias_index for raw card-mark memory
  3394   int adr_type = Compile::AliasIdxRaw;
  3395   // Smash zero into card
  3396   Node*   zero = __ ConI(0);
  3397   BasicType bt = T_BYTE;
  3398   if( !UseConcMarkSweepGC ) {
  3399     __ store(__ ctrl(), card_adr, zero, bt, adr_type);
  3400   } else {
  3401     // Specialized path for CM store barrier
  3402     __ storeCM(__ ctrl(), card_adr, zero, oop_store, adr_idx, bt, adr_type);
  3405   // Final sync IdealKit and GraphKit.
  3406   sync_kit(ideal);
  3409 // G1 pre/post barriers
  3410 void GraphKit::g1_write_barrier_pre(Node* obj,
  3411                                     Node* adr,
  3412                                     uint alias_idx,
  3413                                     Node* val,
  3414                                     const TypeOopPtr* val_type,
  3415                                     BasicType bt) {
  3416   IdealKit ideal(gvn(), control(), merged_memory(), true);
  3418   Node* tls = __ thread(); // ThreadLocalStorage
  3420   Node* no_ctrl = NULL;
  3421   Node* no_base = __ top();
  3422   Node* zero = __ ConI(0);
  3424   float likely  = PROB_LIKELY(0.999);
  3425   float unlikely  = PROB_UNLIKELY(0.999);
  3427   BasicType active_type = in_bytes(PtrQueue::byte_width_of_active()) == 4 ? T_INT : T_BYTE;
  3428   assert(in_bytes(PtrQueue::byte_width_of_active()) == 4 || in_bytes(PtrQueue::byte_width_of_active()) == 1, "flag width");
  3430   // Offsets into the thread
  3431   const int marking_offset = in_bytes(JavaThread::satb_mark_queue_offset() +  // 648
  3432                                           PtrQueue::byte_offset_of_active());
  3433   const int index_offset   = in_bytes(JavaThread::satb_mark_queue_offset() +  // 656
  3434                                           PtrQueue::byte_offset_of_index());
  3435   const int buffer_offset  = in_bytes(JavaThread::satb_mark_queue_offset() +  // 652
  3436                                           PtrQueue::byte_offset_of_buf());
  3437   // Now the actual pointers into the thread
  3439   // set_control( ctl);
  3441   Node* marking_adr = __ AddP(no_base, tls, __ ConX(marking_offset));
  3442   Node* buffer_adr  = __ AddP(no_base, tls, __ ConX(buffer_offset));
  3443   Node* index_adr   = __ AddP(no_base, tls, __ ConX(index_offset));
  3445   // Now some of the values
  3447   Node* marking = __ load(__ ctrl(), marking_adr, TypeInt::INT, active_type, Compile::AliasIdxRaw);
  3449   // if (!marking)
  3450   __ if_then(marking, BoolTest::ne, zero); {
  3451     Node* index   = __ load(__ ctrl(), index_adr, TypeInt::INT, T_INT, Compile::AliasIdxRaw);
  3453     const Type* t1 = adr->bottom_type();
  3454     const Type* t2 = val->bottom_type();
  3456     Node* orig = __ load(no_ctrl, adr, val_type, bt, alias_idx);
  3457     // if (orig != NULL)
  3458     __ if_then(orig, BoolTest::ne, null()); {
  3459       Node* buffer  = __ load(__ ctrl(), buffer_adr, TypeRawPtr::NOTNULL, T_ADDRESS, Compile::AliasIdxRaw);
  3461       // load original value
  3462       // alias_idx correct??
  3464       // is the queue for this thread full?
  3465       __ if_then(index, BoolTest::ne, zero, likely); {
  3467         // decrement the index
  3468         Node* next_index = __ SubI(index,  __ ConI(sizeof(intptr_t)));
  3469         Node* next_indexX = next_index;
  3470 #ifdef _LP64
  3471         // We could refine the type for what it's worth
  3472         // const TypeLong* lidxtype = TypeLong::make(CONST64(0), get_size_from_queue);
  3473         next_indexX = _gvn.transform( new (C, 2) ConvI2LNode(next_index, TypeLong::make(0, max_jlong, Type::WidenMax)) );
  3474 #endif
  3476         // Now get the buffer location we will log the original value into and store it
  3477         Node *log_addr = __ AddP(no_base, buffer, next_indexX);
  3478         __ store(__ ctrl(), log_addr, orig, T_OBJECT, Compile::AliasIdxRaw);
  3480         // update the index
  3481         __ store(__ ctrl(), index_adr, next_index, T_INT, Compile::AliasIdxRaw);
  3483       } __ else_(); {
  3485         // logging buffer is full, call the runtime
  3486         const TypeFunc *tf = OptoRuntime::g1_wb_pre_Type();
  3487         __ make_leaf_call(tf, CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_pre), "g1_wb_pre", orig, tls);
  3488       } __ end_if();  // (!index)
  3489     } __ end_if();  // (orig != NULL)
  3490   } __ end_if();  // (!marking)
  3492   // Final sync IdealKit and GraphKit.
  3493   sync_kit(ideal);
  3496 //
  3497 // Update the card table and add card address to the queue
  3498 //
  3499 void GraphKit::g1_mark_card(IdealKit& ideal,
  3500                             Node* card_adr,
  3501                             Node* oop_store,
  3502                             uint oop_alias_idx,
  3503                             Node* index,
  3504                             Node* index_adr,
  3505                             Node* buffer,
  3506                             const TypeFunc* tf) {
  3508   Node* zero = __ ConI(0);
  3509   Node* no_base = __ top();
  3510   BasicType card_bt = T_BYTE;
  3511   // Smash zero into card. MUST BE ORDERED WRT TO STORE
  3512   __ storeCM(__ ctrl(), card_adr, zero, oop_store, oop_alias_idx, card_bt, Compile::AliasIdxRaw);
  3514   //  Now do the queue work
  3515   __ if_then(index, BoolTest::ne, zero); {
  3517     Node* next_index = __ SubI(index, __ ConI(sizeof(intptr_t)));
  3518     Node* next_indexX = next_index;
  3519 #ifdef _LP64
  3520     // We could refine the type for what it's worth
  3521     // const TypeLong* lidxtype = TypeLong::make(CONST64(0), get_size_from_queue);
  3522     next_indexX = _gvn.transform( new (C, 2) ConvI2LNode(next_index, TypeLong::make(0, max_jlong, Type::WidenMax)) );
  3523 #endif // _LP64
  3524     Node* log_addr = __ AddP(no_base, buffer, next_indexX);
  3526     __ store(__ ctrl(), log_addr, card_adr, T_ADDRESS, Compile::AliasIdxRaw);
  3527     __ store(__ ctrl(), index_adr, next_index, T_INT, Compile::AliasIdxRaw);
  3529   } __ else_(); {
  3530     __ make_leaf_call(tf, CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_post), "g1_wb_post", card_adr, __ thread());
  3531   } __ end_if();
  3535 void GraphKit::g1_write_barrier_post(Node* oop_store,
  3536                                      Node* obj,
  3537                                      Node* adr,
  3538                                      uint alias_idx,
  3539                                      Node* val,
  3540                                      BasicType bt,
  3541                                      bool use_precise) {
  3542   // If we are writing a NULL then we need no post barrier
  3544   if (val != NULL && val->is_Con() && val->bottom_type() == TypePtr::NULL_PTR) {
  3545     // Must be NULL
  3546     const Type* t = val->bottom_type();
  3547     assert(t == Type::TOP || t == TypePtr::NULL_PTR, "must be NULL");
  3548     // No post barrier if writing NULLx
  3549     return;
  3552   if (!use_precise) {
  3553     // All card marks for a (non-array) instance are in one place:
  3554     adr = obj;
  3556   // (Else it's an array (or unknown), and we want more precise card marks.)
  3557   assert(adr != NULL, "");
  3559   IdealKit ideal(gvn(), control(), merged_memory(), true);
  3561   Node* tls = __ thread(); // ThreadLocalStorage
  3563   Node* no_base = __ top();
  3564   float likely  = PROB_LIKELY(0.999);
  3565   float unlikely  = PROB_UNLIKELY(0.999);
  3566   Node* zero = __ ConI(0);
  3567   Node* zeroX = __ ConX(0);
  3569   // Get the alias_index for raw card-mark memory
  3570   const TypePtr* card_type = TypeRawPtr::BOTTOM;
  3572   const TypeFunc *tf = OptoRuntime::g1_wb_post_Type();
  3574   // Offsets into the thread
  3575   const int index_offset  = in_bytes(JavaThread::dirty_card_queue_offset() +
  3576                                      PtrQueue::byte_offset_of_index());
  3577   const int buffer_offset = in_bytes(JavaThread::dirty_card_queue_offset() +
  3578                                      PtrQueue::byte_offset_of_buf());
  3580   // Pointers into the thread
  3582   Node* buffer_adr = __ AddP(no_base, tls, __ ConX(buffer_offset));
  3583   Node* index_adr =  __ AddP(no_base, tls, __ ConX(index_offset));
  3585   // Now some values
  3586   // Use ctrl to avoid hoisting these values past a safepoint, which could
  3587   // potentially reset these fields in the JavaThread.
  3588   Node* index  = __ load(__ ctrl(), index_adr, TypeInt::INT, T_INT, Compile::AliasIdxRaw);
  3589   Node* buffer = __ load(__ ctrl(), buffer_adr, TypeRawPtr::NOTNULL, T_ADDRESS, Compile::AliasIdxRaw);
  3591   // Convert the store obj pointer to an int prior to doing math on it
  3592   // Must use ctrl to prevent "integerized oop" existing across safepoint
  3593   Node* cast =  __ CastPX(__ ctrl(), adr);
  3595   // Divide pointer by card size
  3596   Node* card_offset = __ URShiftX( cast, __ ConI(CardTableModRefBS::card_shift) );
  3598   // Combine card table base and card offset
  3599   Node* card_adr = __ AddP(no_base, byte_map_base_node(), card_offset );
  3601   // If we know the value being stored does it cross regions?
  3603   if (val != NULL) {
  3604     // Does the store cause us to cross regions?
  3606     // Should be able to do an unsigned compare of region_size instead of
  3607     // and extra shift. Do we have an unsigned compare??
  3608     // Node* region_size = __ ConI(1 << HeapRegion::LogOfHRGrainBytes);
  3609     Node* xor_res =  __ URShiftX ( __ XorX( cast,  __ CastPX(__ ctrl(), val)), __ ConI(HeapRegion::LogOfHRGrainBytes));
  3611     // if (xor_res == 0) same region so skip
  3612     __ if_then(xor_res, BoolTest::ne, zeroX); {
  3614       // No barrier if we are storing a NULL
  3615       __ if_then(val, BoolTest::ne, null(), unlikely); {
  3617         // Ok must mark the card if not already dirty
  3619         // load the original value of the card
  3620         Node* card_val = __ load(__ ctrl(), card_adr, TypeInt::INT, T_BYTE, Compile::AliasIdxRaw);
  3622         __ if_then(card_val, BoolTest::ne, zero); {
  3623           g1_mark_card(ideal, card_adr, oop_store, alias_idx, index, index_adr, buffer, tf);
  3624         } __ end_if();
  3625       } __ end_if();
  3626     } __ end_if();
  3627   } else {
  3628     // Object.clone() instrinsic uses this path.
  3629     g1_mark_card(ideal, card_adr, oop_store, alias_idx, index, index_adr, buffer, tf);
  3632   // Final sync IdealKit and GraphKit.
  3633   sync_kit(ideal);
  3635 #undef __

mercurial