src/share/vm/memory/genCollectedHeap.cpp

Mon, 29 Apr 2013 16:13:57 -0400

author
hseigel
date
Mon, 29 Apr 2013 16:13:57 -0400
changeset 4987
f258c5828eb8
parent 4904
7b835924c31c
child 5011
a08c80e9e1e5
permissions
-rw-r--r--

8011773: Some tests on Interned String crashed JVM with OOM
Summary: Instead of terminating the VM, throw OutOfMemoryError exceptions.
Reviewed-by: coleenp, dholmes

     1 /*
     2  * Copyright (c) 2000, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "classfile/symbolTable.hpp"
    27 #include "classfile/systemDictionary.hpp"
    28 #include "classfile/vmSymbols.hpp"
    29 #include "code/icBuffer.hpp"
    30 #include "gc_implementation/shared/collectorCounters.hpp"
    31 #include "gc_implementation/shared/vmGCOperations.hpp"
    32 #include "gc_interface/collectedHeap.inline.hpp"
    33 #include "memory/filemap.hpp"
    34 #include "memory/gcLocker.inline.hpp"
    35 #include "memory/genCollectedHeap.hpp"
    36 #include "memory/genOopClosures.inline.hpp"
    37 #include "memory/generation.inline.hpp"
    38 #include "memory/generationSpec.hpp"
    39 #include "memory/resourceArea.hpp"
    40 #include "memory/sharedHeap.hpp"
    41 #include "memory/space.hpp"
    42 #include "oops/oop.inline.hpp"
    43 #include "oops/oop.inline2.hpp"
    44 #include "runtime/aprofiler.hpp"
    45 #include "runtime/biasedLocking.hpp"
    46 #include "runtime/fprofiler.hpp"
    47 #include "runtime/handles.hpp"
    48 #include "runtime/handles.inline.hpp"
    49 #include "runtime/java.hpp"
    50 #include "runtime/vmThread.hpp"
    51 #include "services/memoryService.hpp"
    52 #include "utilities/vmError.hpp"
    53 #include "utilities/workgroup.hpp"
    54 #include "utilities/macros.hpp"
    55 #if INCLUDE_ALL_GCS
    56 #include "gc_implementation/concurrentMarkSweep/concurrentMarkSweepThread.hpp"
    57 #include "gc_implementation/concurrentMarkSweep/vmCMSOperations.hpp"
    58 #endif // INCLUDE_ALL_GCS
    60 GenCollectedHeap* GenCollectedHeap::_gch;
    61 NOT_PRODUCT(size_t GenCollectedHeap::_skip_header_HeapWords = 0;)
    63 // The set of potentially parallel tasks in strong root scanning.
    64 enum GCH_process_strong_roots_tasks {
    65   // We probably want to parallelize both of these internally, but for now...
    66   GCH_PS_younger_gens,
    67   // Leave this one last.
    68   GCH_PS_NumElements
    69 };
    71 GenCollectedHeap::GenCollectedHeap(GenCollectorPolicy *policy) :
    72   SharedHeap(policy),
    73   _gen_policy(policy),
    74   _gen_process_strong_tasks(new SubTasksDone(GCH_PS_NumElements)),
    75   _full_collections_completed(0)
    76 {
    77   if (_gen_process_strong_tasks == NULL ||
    78       !_gen_process_strong_tasks->valid()) {
    79     vm_exit_during_initialization("Failed necessary allocation.");
    80   }
    81   assert(policy != NULL, "Sanity check");
    82 }
    84 jint GenCollectedHeap::initialize() {
    85   CollectedHeap::pre_initialize();
    87   int i;
    88   _n_gens = gen_policy()->number_of_generations();
    90   // While there are no constraints in the GC code that HeapWordSize
    91   // be any particular value, there are multiple other areas in the
    92   // system which believe this to be true (e.g. oop->object_size in some
    93   // cases incorrectly returns the size in wordSize units rather than
    94   // HeapWordSize).
    95   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
    97   // The heap must be at least as aligned as generations.
    98   size_t alignment = Generation::GenGrain;
   100   _gen_specs = gen_policy()->generations();
   102   // Make sure the sizes are all aligned.
   103   for (i = 0; i < _n_gens; i++) {
   104     _gen_specs[i]->align(alignment);
   105   }
   107   // Allocate space for the heap.
   109   char* heap_address;
   110   size_t total_reserved = 0;
   111   int n_covered_regions = 0;
   112   ReservedSpace heap_rs(0);
   114   heap_address = allocate(alignment, &total_reserved,
   115                           &n_covered_regions, &heap_rs);
   117   if (!heap_rs.is_reserved()) {
   118     vm_shutdown_during_initialization(
   119       "Could not reserve enough space for object heap");
   120     return JNI_ENOMEM;
   121   }
   123   _reserved = MemRegion((HeapWord*)heap_rs.base(),
   124                         (HeapWord*)(heap_rs.base() + heap_rs.size()));
   126   // It is important to do this in a way such that concurrent readers can't
   127   // temporarily think somethings in the heap.  (Seen this happen in asserts.)
   128   _reserved.set_word_size(0);
   129   _reserved.set_start((HeapWord*)heap_rs.base());
   130   size_t actual_heap_size = heap_rs.size();
   131   _reserved.set_end((HeapWord*)(heap_rs.base() + actual_heap_size));
   133   _rem_set = collector_policy()->create_rem_set(_reserved, n_covered_regions);
   134   set_barrier_set(rem_set()->bs());
   136   _gch = this;
   138   for (i = 0; i < _n_gens; i++) {
   139     ReservedSpace this_rs = heap_rs.first_part(_gen_specs[i]->max_size(), false, false);
   140     _gens[i] = _gen_specs[i]->init(this_rs, i, rem_set());
   141     heap_rs = heap_rs.last_part(_gen_specs[i]->max_size());
   142   }
   143   clear_incremental_collection_failed();
   145 #if INCLUDE_ALL_GCS
   146   // If we are running CMS, create the collector responsible
   147   // for collecting the CMS generations.
   148   if (collector_policy()->is_concurrent_mark_sweep_policy()) {
   149     bool success = create_cms_collector();
   150     if (!success) return JNI_ENOMEM;
   151   }
   152 #endif // INCLUDE_ALL_GCS
   154   return JNI_OK;
   155 }
   158 char* GenCollectedHeap::allocate(size_t alignment,
   159                                  size_t* _total_reserved,
   160                                  int* _n_covered_regions,
   161                                  ReservedSpace* heap_rs){
   162   const char overflow_msg[] = "The size of the object heap + VM data exceeds "
   163     "the maximum representable size";
   165   // Now figure out the total size.
   166   size_t total_reserved = 0;
   167   int n_covered_regions = 0;
   168   const size_t pageSize = UseLargePages ?
   169       os::large_page_size() : os::vm_page_size();
   171   for (int i = 0; i < _n_gens; i++) {
   172     total_reserved += _gen_specs[i]->max_size();
   173     if (total_reserved < _gen_specs[i]->max_size()) {
   174       vm_exit_during_initialization(overflow_msg);
   175     }
   176     n_covered_regions += _gen_specs[i]->n_covered_regions();
   177   }
   178   assert(total_reserved % pageSize == 0,
   179          err_msg("Gen size; total_reserved=" SIZE_FORMAT ", pageSize="
   180                  SIZE_FORMAT, total_reserved, pageSize));
   182   // Needed until the cardtable is fixed to have the right number
   183   // of covered regions.
   184   n_covered_regions += 2;
   186   if (UseLargePages) {
   187     assert(total_reserved != 0, "total_reserved cannot be 0");
   188     total_reserved = round_to(total_reserved, os::large_page_size());
   189     if (total_reserved < os::large_page_size()) {
   190       vm_exit_during_initialization(overflow_msg);
   191     }
   192   }
   194       *_total_reserved = total_reserved;
   195       *_n_covered_regions = n_covered_regions;
   196   *heap_rs = Universe::reserve_heap(total_reserved, alignment);
   197   return heap_rs->base();
   198 }
   201 void GenCollectedHeap::post_initialize() {
   202   SharedHeap::post_initialize();
   203   TwoGenerationCollectorPolicy *policy =
   204     (TwoGenerationCollectorPolicy *)collector_policy();
   205   guarantee(policy->is_two_generation_policy(), "Illegal policy type");
   206   DefNewGeneration* def_new_gen = (DefNewGeneration*) get_gen(0);
   207   assert(def_new_gen->kind() == Generation::DefNew ||
   208          def_new_gen->kind() == Generation::ParNew ||
   209          def_new_gen->kind() == Generation::ASParNew,
   210          "Wrong generation kind");
   212   Generation* old_gen = get_gen(1);
   213   assert(old_gen->kind() == Generation::ConcurrentMarkSweep ||
   214          old_gen->kind() == Generation::ASConcurrentMarkSweep ||
   215          old_gen->kind() == Generation::MarkSweepCompact,
   216     "Wrong generation kind");
   218   policy->initialize_size_policy(def_new_gen->eden()->capacity(),
   219                                  old_gen->capacity(),
   220                                  def_new_gen->from()->capacity());
   221   policy->initialize_gc_policy_counters();
   222 }
   224 void GenCollectedHeap::ref_processing_init() {
   225   SharedHeap::ref_processing_init();
   226   for (int i = 0; i < _n_gens; i++) {
   227     _gens[i]->ref_processor_init();
   228   }
   229 }
   231 size_t GenCollectedHeap::capacity() const {
   232   size_t res = 0;
   233   for (int i = 0; i < _n_gens; i++) {
   234     res += _gens[i]->capacity();
   235   }
   236   return res;
   237 }
   239 size_t GenCollectedHeap::used() const {
   240   size_t res = 0;
   241   for (int i = 0; i < _n_gens; i++) {
   242     res += _gens[i]->used();
   243   }
   244   return res;
   245 }
   247 // Save the "used_region" for generations level and lower.
   248 void GenCollectedHeap::save_used_regions(int level) {
   249   assert(level < _n_gens, "Illegal level parameter");
   250   for (int i = level; i >= 0; i--) {
   251     _gens[i]->save_used_region();
   252   }
   253 }
   255 size_t GenCollectedHeap::max_capacity() const {
   256   size_t res = 0;
   257   for (int i = 0; i < _n_gens; i++) {
   258     res += _gens[i]->max_capacity();
   259   }
   260   return res;
   261 }
   263 // Update the _full_collections_completed counter
   264 // at the end of a stop-world full GC.
   265 unsigned int GenCollectedHeap::update_full_collections_completed() {
   266   MonitorLockerEx ml(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
   267   assert(_full_collections_completed <= _total_full_collections,
   268          "Can't complete more collections than were started");
   269   _full_collections_completed = _total_full_collections;
   270   ml.notify_all();
   271   return _full_collections_completed;
   272 }
   274 // Update the _full_collections_completed counter, as appropriate,
   275 // at the end of a concurrent GC cycle. Note the conditional update
   276 // below to allow this method to be called by a concurrent collector
   277 // without synchronizing in any manner with the VM thread (which
   278 // may already have initiated a STW full collection "concurrently").
   279 unsigned int GenCollectedHeap::update_full_collections_completed(unsigned int count) {
   280   MonitorLockerEx ml(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
   281   assert((_full_collections_completed <= _total_full_collections) &&
   282          (count <= _total_full_collections),
   283          "Can't complete more collections than were started");
   284   if (count > _full_collections_completed) {
   285     _full_collections_completed = count;
   286     ml.notify_all();
   287   }
   288   return _full_collections_completed;
   289 }
   292 #ifndef PRODUCT
   293 // Override of memory state checking method in CollectedHeap:
   294 // Some collectors (CMS for example) can't have badHeapWordVal written
   295 // in the first two words of an object. (For instance , in the case of
   296 // CMS these words hold state used to synchronize between certain
   297 // (concurrent) GC steps and direct allocating mutators.)
   298 // The skip_header_HeapWords() method below, allows us to skip
   299 // over the requisite number of HeapWord's. Note that (for
   300 // generational collectors) this means that those many words are
   301 // skipped in each object, irrespective of the generation in which
   302 // that object lives. The resultant loss of precision seems to be
   303 // harmless and the pain of avoiding that imprecision appears somewhat
   304 // higher than we are prepared to pay for such rudimentary debugging
   305 // support.
   306 void GenCollectedHeap::check_for_non_bad_heap_word_value(HeapWord* addr,
   307                                                          size_t size) {
   308   if (CheckMemoryInitialization && ZapUnusedHeapArea) {
   309     // We are asked to check a size in HeapWords,
   310     // but the memory is mangled in juint words.
   311     juint* start = (juint*) (addr + skip_header_HeapWords());
   312     juint* end   = (juint*) (addr + size);
   313     for (juint* slot = start; slot < end; slot += 1) {
   314       assert(*slot == badHeapWordVal,
   315              "Found non badHeapWordValue in pre-allocation check");
   316     }
   317   }
   318 }
   319 #endif
   321 HeapWord* GenCollectedHeap::attempt_allocation(size_t size,
   322                                                bool is_tlab,
   323                                                bool first_only) {
   324   HeapWord* res;
   325   for (int i = 0; i < _n_gens; i++) {
   326     if (_gens[i]->should_allocate(size, is_tlab)) {
   327       res = _gens[i]->allocate(size, is_tlab);
   328       if (res != NULL) return res;
   329       else if (first_only) break;
   330     }
   331   }
   332   // Otherwise...
   333   return NULL;
   334 }
   336 HeapWord* GenCollectedHeap::mem_allocate(size_t size,
   337                                          bool* gc_overhead_limit_was_exceeded) {
   338   return collector_policy()->mem_allocate_work(size,
   339                                                false /* is_tlab */,
   340                                                gc_overhead_limit_was_exceeded);
   341 }
   343 bool GenCollectedHeap::must_clear_all_soft_refs() {
   344   return _gc_cause == GCCause::_last_ditch_collection;
   345 }
   347 bool GenCollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
   348   return UseConcMarkSweepGC &&
   349          ((cause == GCCause::_gc_locker && GCLockerInvokesConcurrent) ||
   350           (cause == GCCause::_java_lang_system_gc && ExplicitGCInvokesConcurrent));
   351 }
   353 void GenCollectedHeap::do_collection(bool  full,
   354                                      bool   clear_all_soft_refs,
   355                                      size_t size,
   356                                      bool   is_tlab,
   357                                      int    max_level) {
   358   bool prepared_for_verification = false;
   359   ResourceMark rm;
   360   DEBUG_ONLY(Thread* my_thread = Thread::current();)
   362   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
   363   assert(my_thread->is_VM_thread() ||
   364          my_thread->is_ConcurrentGC_thread(),
   365          "incorrect thread type capability");
   366   assert(Heap_lock->is_locked(),
   367          "the requesting thread should have the Heap_lock");
   368   guarantee(!is_gc_active(), "collection is not reentrant");
   369   assert(max_level < n_gens(), "sanity check");
   371   if (GC_locker::check_active_before_gc()) {
   372     return; // GC is disabled (e.g. JNI GetXXXCritical operation)
   373   }
   375   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
   376                           collector_policy()->should_clear_all_soft_refs();
   378   ClearedAllSoftRefs casr(do_clear_all_soft_refs, collector_policy());
   380   const size_t metadata_prev_used = MetaspaceAux::used_in_bytes();
   382   print_heap_before_gc();
   384   {
   385     FlagSetting fl(_is_gc_active, true);
   387     bool complete = full && (max_level == (n_gens()-1));
   388     const char* gc_cause_prefix = complete ? "Full GC" : "GC";
   389     gclog_or_tty->date_stamp(PrintGC && PrintGCDateStamps);
   390     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
   391     TraceTime t(GCCauseString(gc_cause_prefix, gc_cause()), PrintGCDetails, false, gclog_or_tty);
   393     gc_prologue(complete);
   394     increment_total_collections(complete);
   396     size_t gch_prev_used = used();
   398     int starting_level = 0;
   399     if (full) {
   400       // Search for the oldest generation which will collect all younger
   401       // generations, and start collection loop there.
   402       for (int i = max_level; i >= 0; i--) {
   403         if (_gens[i]->full_collects_younger_generations()) {
   404           starting_level = i;
   405           break;
   406         }
   407       }
   408     }
   410     bool must_restore_marks_for_biased_locking = false;
   412     int max_level_collected = starting_level;
   413     for (int i = starting_level; i <= max_level; i++) {
   414       if (_gens[i]->should_collect(full, size, is_tlab)) {
   415         if (i == n_gens() - 1) {  // a major collection is to happen
   416           if (!complete) {
   417             // The full_collections increment was missed above.
   418             increment_total_full_collections();
   419           }
   420           pre_full_gc_dump();    // do any pre full gc dumps
   421         }
   422         // Timer for individual generations. Last argument is false: no CR
   423         TraceTime t1(_gens[i]->short_name(), PrintGCDetails, false, gclog_or_tty);
   424         TraceCollectorStats tcs(_gens[i]->counters());
   425         TraceMemoryManagerStats tmms(_gens[i]->kind(),gc_cause());
   427         size_t prev_used = _gens[i]->used();
   428         _gens[i]->stat_record()->invocations++;
   429         _gens[i]->stat_record()->accumulated_time.start();
   431         // Must be done anew before each collection because
   432         // a previous collection will do mangling and will
   433         // change top of some spaces.
   434         record_gen_tops_before_GC();
   436         if (PrintGC && Verbose) {
   437           gclog_or_tty->print("level=%d invoke=%d size=" SIZE_FORMAT,
   438                      i,
   439                      _gens[i]->stat_record()->invocations,
   440                      size*HeapWordSize);
   441         }
   443         if (VerifyBeforeGC && i >= VerifyGCLevel &&
   444             total_collections() >= VerifyGCStartAt) {
   445           HandleMark hm;  // Discard invalid handles created during verification
   446           if (!prepared_for_verification) {
   447             prepare_for_verify();
   448             prepared_for_verification = true;
   449           }
   450           gclog_or_tty->print(" VerifyBeforeGC:");
   451           Universe::verify();
   452         }
   453         COMPILER2_PRESENT(DerivedPointerTable::clear());
   455         if (!must_restore_marks_for_biased_locking &&
   456             _gens[i]->performs_in_place_marking()) {
   457           // We perform this mark word preservation work lazily
   458           // because it's only at this point that we know whether we
   459           // absolutely have to do it; we want to avoid doing it for
   460           // scavenge-only collections where it's unnecessary
   461           must_restore_marks_for_biased_locking = true;
   462           BiasedLocking::preserve_marks();
   463         }
   465         // Do collection work
   466         {
   467           // Note on ref discovery: For what appear to be historical reasons,
   468           // GCH enables and disabled (by enqueing) refs discovery.
   469           // In the future this should be moved into the generation's
   470           // collect method so that ref discovery and enqueueing concerns
   471           // are local to a generation. The collect method could return
   472           // an appropriate indication in the case that notification on
   473           // the ref lock was needed. This will make the treatment of
   474           // weak refs more uniform (and indeed remove such concerns
   475           // from GCH). XXX
   477           HandleMark hm;  // Discard invalid handles created during gc
   478           save_marks();   // save marks for all gens
   479           // We want to discover references, but not process them yet.
   480           // This mode is disabled in process_discovered_references if the
   481           // generation does some collection work, or in
   482           // enqueue_discovered_references if the generation returns
   483           // without doing any work.
   484           ReferenceProcessor* rp = _gens[i]->ref_processor();
   485           // If the discovery of ("weak") refs in this generation is
   486           // atomic wrt other collectors in this configuration, we
   487           // are guaranteed to have empty discovered ref lists.
   488           if (rp->discovery_is_atomic()) {
   489             rp->enable_discovery(true /*verify_disabled*/, true /*verify_no_refs*/);
   490             rp->setup_policy(do_clear_all_soft_refs);
   491           } else {
   492             // collect() below will enable discovery as appropriate
   493           }
   494           _gens[i]->collect(full, do_clear_all_soft_refs, size, is_tlab);
   495           if (!rp->enqueuing_is_done()) {
   496             rp->enqueue_discovered_references();
   497           } else {
   498             rp->set_enqueuing_is_done(false);
   499           }
   500           rp->verify_no_references_recorded();
   501         }
   502         max_level_collected = i;
   504         // Determine if allocation request was met.
   505         if (size > 0) {
   506           if (!is_tlab || _gens[i]->supports_tlab_allocation()) {
   507             if (size*HeapWordSize <= _gens[i]->unsafe_max_alloc_nogc()) {
   508               size = 0;
   509             }
   510           }
   511         }
   513         COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
   515         _gens[i]->stat_record()->accumulated_time.stop();
   517         update_gc_stats(i, full);
   519         if (VerifyAfterGC && i >= VerifyGCLevel &&
   520             total_collections() >= VerifyGCStartAt) {
   521           HandleMark hm;  // Discard invalid handles created during verification
   522           gclog_or_tty->print(" VerifyAfterGC:");
   523           Universe::verify();
   524         }
   526         if (PrintGCDetails) {
   527           gclog_or_tty->print(":");
   528           _gens[i]->print_heap_change(prev_used);
   529         }
   530       }
   531     }
   533     // Update "complete" boolean wrt what actually transpired --
   534     // for instance, a promotion failure could have led to
   535     // a whole heap collection.
   536     complete = complete || (max_level_collected == n_gens() - 1);
   538     if (complete) { // We did a "major" collection
   539       post_full_gc_dump();   // do any post full gc dumps
   540     }
   542     if (PrintGCDetails) {
   543       print_heap_change(gch_prev_used);
   545       // Print metaspace info for full GC with PrintGCDetails flag.
   546       if (complete) {
   547         MetaspaceAux::print_metaspace_change(metadata_prev_used);
   548       }
   549     }
   551     for (int j = max_level_collected; j >= 0; j -= 1) {
   552       // Adjust generation sizes.
   553       _gens[j]->compute_new_size();
   554     }
   556     if (complete) {
   557       // Delete metaspaces for unloaded class loaders and clean up loader_data graph
   558       ClassLoaderDataGraph::purge();
   559       // Resize the metaspace capacity after full collections
   560       MetaspaceGC::compute_new_size();
   561       update_full_collections_completed();
   562     }
   564     // Track memory usage and detect low memory after GC finishes
   565     MemoryService::track_memory_usage();
   567     gc_epilogue(complete);
   569     if (must_restore_marks_for_biased_locking) {
   570       BiasedLocking::restore_marks();
   571     }
   572   }
   574   AdaptiveSizePolicy* sp = gen_policy()->size_policy();
   575   AdaptiveSizePolicyOutput(sp, total_collections());
   577   print_heap_after_gc();
   579 #ifdef TRACESPINNING
   580   ParallelTaskTerminator::print_termination_counts();
   581 #endif
   582 }
   584 HeapWord* GenCollectedHeap::satisfy_failed_allocation(size_t size, bool is_tlab) {
   585   return collector_policy()->satisfy_failed_allocation(size, is_tlab);
   586 }
   588 void GenCollectedHeap::set_par_threads(uint t) {
   589   SharedHeap::set_par_threads(t);
   590   _gen_process_strong_tasks->set_n_threads(t);
   591 }
   593 void GenCollectedHeap::
   594 gen_process_strong_roots(int level,
   595                          bool younger_gens_as_roots,
   596                          bool activate_scope,
   597                          bool is_scavenging,
   598                          SharedHeap::ScanningOption so,
   599                          OopsInGenClosure* not_older_gens,
   600                          bool do_code_roots,
   601                          OopsInGenClosure* older_gens,
   602                          KlassClosure* klass_closure) {
   603   // General strong roots.
   605   if (!do_code_roots) {
   606     SharedHeap::process_strong_roots(activate_scope, is_scavenging, so,
   607                                      not_older_gens, NULL, klass_closure);
   608   } else {
   609     bool do_code_marking = (activate_scope || nmethod::oops_do_marking_is_active());
   610     CodeBlobToOopClosure code_roots(not_older_gens, /*do_marking=*/ do_code_marking);
   611     SharedHeap::process_strong_roots(activate_scope, is_scavenging, so,
   612                                      not_older_gens, &code_roots, klass_closure);
   613   }
   615   if (younger_gens_as_roots) {
   616     if (!_gen_process_strong_tasks->is_task_claimed(GCH_PS_younger_gens)) {
   617       for (int i = 0; i < level; i++) {
   618         not_older_gens->set_generation(_gens[i]);
   619         _gens[i]->oop_iterate(not_older_gens);
   620       }
   621       not_older_gens->reset_generation();
   622     }
   623   }
   624   // When collection is parallel, all threads get to cooperate to do
   625   // older-gen scanning.
   626   for (int i = level+1; i < _n_gens; i++) {
   627     older_gens->set_generation(_gens[i]);
   628     rem_set()->younger_refs_iterate(_gens[i], older_gens);
   629     older_gens->reset_generation();
   630   }
   632   _gen_process_strong_tasks->all_tasks_completed();
   633 }
   635 void GenCollectedHeap::gen_process_weak_roots(OopClosure* root_closure,
   636                                               CodeBlobClosure* code_roots,
   637                                               OopClosure* non_root_closure) {
   638   SharedHeap::process_weak_roots(root_closure, code_roots, non_root_closure);
   639   // "Local" "weak" refs
   640   for (int i = 0; i < _n_gens; i++) {
   641     _gens[i]->ref_processor()->weak_oops_do(root_closure);
   642   }
   643 }
   645 #define GCH_SINCE_SAVE_MARKS_ITERATE_DEFN(OopClosureType, nv_suffix)    \
   646 void GenCollectedHeap::                                                 \
   647 oop_since_save_marks_iterate(int level,                                 \
   648                              OopClosureType* cur,                       \
   649                              OopClosureType* older) {                   \
   650   _gens[level]->oop_since_save_marks_iterate##nv_suffix(cur);           \
   651   for (int i = level+1; i < n_gens(); i++) {                            \
   652     _gens[i]->oop_since_save_marks_iterate##nv_suffix(older);           \
   653   }                                                                     \
   654 }
   656 ALL_SINCE_SAVE_MARKS_CLOSURES(GCH_SINCE_SAVE_MARKS_ITERATE_DEFN)
   658 #undef GCH_SINCE_SAVE_MARKS_ITERATE_DEFN
   660 bool GenCollectedHeap::no_allocs_since_save_marks(int level) {
   661   for (int i = level; i < _n_gens; i++) {
   662     if (!_gens[i]->no_allocs_since_save_marks()) return false;
   663   }
   664   return true;
   665 }
   667 bool GenCollectedHeap::supports_inline_contig_alloc() const {
   668   return _gens[0]->supports_inline_contig_alloc();
   669 }
   671 HeapWord** GenCollectedHeap::top_addr() const {
   672   return _gens[0]->top_addr();
   673 }
   675 HeapWord** GenCollectedHeap::end_addr() const {
   676   return _gens[0]->end_addr();
   677 }
   679 size_t GenCollectedHeap::unsafe_max_alloc() {
   680   return _gens[0]->unsafe_max_alloc_nogc();
   681 }
   683 // public collection interfaces
   685 void GenCollectedHeap::collect(GCCause::Cause cause) {
   686   if (should_do_concurrent_full_gc(cause)) {
   687 #if INCLUDE_ALL_GCS
   688     // mostly concurrent full collection
   689     collect_mostly_concurrent(cause);
   690 #else  // INCLUDE_ALL_GCS
   691     ShouldNotReachHere();
   692 #endif // INCLUDE_ALL_GCS
   693   } else {
   694 #ifdef ASSERT
   695     if (cause == GCCause::_scavenge_alot) {
   696       // minor collection only
   697       collect(cause, 0);
   698     } else {
   699       // Stop-the-world full collection
   700       collect(cause, n_gens() - 1);
   701     }
   702 #else
   703     // Stop-the-world full collection
   704     collect(cause, n_gens() - 1);
   705 #endif
   706   }
   707 }
   709 void GenCollectedHeap::collect(GCCause::Cause cause, int max_level) {
   710   // The caller doesn't have the Heap_lock
   711   assert(!Heap_lock->owned_by_self(), "this thread should not own the Heap_lock");
   712   MutexLocker ml(Heap_lock);
   713   collect_locked(cause, max_level);
   714 }
   716 void GenCollectedHeap::collect_locked(GCCause::Cause cause) {
   717   // The caller has the Heap_lock
   718   assert(Heap_lock->owned_by_self(), "this thread should own the Heap_lock");
   719   collect_locked(cause, n_gens() - 1);
   720 }
   722 // this is the private collection interface
   723 // The Heap_lock is expected to be held on entry.
   725 void GenCollectedHeap::collect_locked(GCCause::Cause cause, int max_level) {
   726   // Read the GC count while holding the Heap_lock
   727   unsigned int gc_count_before      = total_collections();
   728   unsigned int full_gc_count_before = total_full_collections();
   729   {
   730     MutexUnlocker mu(Heap_lock);  // give up heap lock, execute gets it back
   731     VM_GenCollectFull op(gc_count_before, full_gc_count_before,
   732                          cause, max_level);
   733     VMThread::execute(&op);
   734   }
   735 }
   737 #if INCLUDE_ALL_GCS
   738 bool GenCollectedHeap::create_cms_collector() {
   740   assert(((_gens[1]->kind() == Generation::ConcurrentMarkSweep) ||
   741          (_gens[1]->kind() == Generation::ASConcurrentMarkSweep)),
   742          "Unexpected generation kinds");
   743   // Skip two header words in the block content verification
   744   NOT_PRODUCT(_skip_header_HeapWords = CMSCollector::skip_header_HeapWords();)
   745   CMSCollector* collector = new CMSCollector(
   746     (ConcurrentMarkSweepGeneration*)_gens[1],
   747     _rem_set->as_CardTableRS(),
   748     (ConcurrentMarkSweepPolicy*) collector_policy());
   750   if (collector == NULL || !collector->completed_initialization()) {
   751     if (collector) {
   752       delete collector;  // Be nice in embedded situation
   753     }
   754     vm_shutdown_during_initialization("Could not create CMS collector");
   755     return false;
   756   }
   757   return true;  // success
   758 }
   760 void GenCollectedHeap::collect_mostly_concurrent(GCCause::Cause cause) {
   761   assert(!Heap_lock->owned_by_self(), "Should not own Heap_lock");
   763   MutexLocker ml(Heap_lock);
   764   // Read the GC counts while holding the Heap_lock
   765   unsigned int full_gc_count_before = total_full_collections();
   766   unsigned int gc_count_before      = total_collections();
   767   {
   768     MutexUnlocker mu(Heap_lock);
   769     VM_GenCollectFullConcurrent op(gc_count_before, full_gc_count_before, cause);
   770     VMThread::execute(&op);
   771   }
   772 }
   773 #endif // INCLUDE_ALL_GCS
   775 void GenCollectedHeap::do_full_collection(bool clear_all_soft_refs) {
   776    do_full_collection(clear_all_soft_refs, _n_gens - 1);
   777 }
   779 void GenCollectedHeap::do_full_collection(bool clear_all_soft_refs,
   780                                           int max_level) {
   781   int local_max_level;
   782   if (!incremental_collection_will_fail(false /* don't consult_young */) &&
   783       gc_cause() == GCCause::_gc_locker) {
   784     local_max_level = 0;
   785   } else {
   786     local_max_level = max_level;
   787   }
   789   do_collection(true                 /* full */,
   790                 clear_all_soft_refs  /* clear_all_soft_refs */,
   791                 0                    /* size */,
   792                 false                /* is_tlab */,
   793                 local_max_level      /* max_level */);
   794   // Hack XXX FIX ME !!!
   795   // A scavenge may not have been attempted, or may have
   796   // been attempted and failed, because the old gen was too full
   797   if (local_max_level == 0 && gc_cause() == GCCause::_gc_locker &&
   798       incremental_collection_will_fail(false /* don't consult_young */)) {
   799     if (PrintGCDetails) {
   800       gclog_or_tty->print_cr("GC locker: Trying a full collection "
   801                              "because scavenge failed");
   802     }
   803     // This time allow the old gen to be collected as well
   804     do_collection(true                 /* full */,
   805                   clear_all_soft_refs  /* clear_all_soft_refs */,
   806                   0                    /* size */,
   807                   false                /* is_tlab */,
   808                   n_gens() - 1         /* max_level */);
   809   }
   810 }
   812 bool GenCollectedHeap::is_in_young(oop p) {
   813   bool result = ((HeapWord*)p) < _gens[_n_gens - 1]->reserved().start();
   814   assert(result == _gens[0]->is_in_reserved(p),
   815          err_msg("incorrect test - result=%d, p=" PTR_FORMAT, result, (void*)p));
   816   return result;
   817 }
   819 // Returns "TRUE" iff "p" points into the committed areas of the heap.
   820 bool GenCollectedHeap::is_in(const void* p) const {
   821   #ifndef ASSERT
   822   guarantee(VerifyBeforeGC      ||
   823             VerifyDuringGC      ||
   824             VerifyBeforeExit    ||
   825             VerifyDuringStartup ||
   826             PrintAssembly       ||
   827             tty->count() != 0   ||   // already printing
   828             VerifyAfterGC       ||
   829     VMError::fatal_error_in_progress(), "too expensive");
   831   #endif
   832   // This might be sped up with a cache of the last generation that
   833   // answered yes.
   834   for (int i = 0; i < _n_gens; i++) {
   835     if (_gens[i]->is_in(p)) return true;
   836   }
   837   // Otherwise...
   838   return false;
   839 }
   841 #ifdef ASSERT
   842 // Don't implement this by using is_in_young().  This method is used
   843 // in some cases to check that is_in_young() is correct.
   844 bool GenCollectedHeap::is_in_partial_collection(const void* p) {
   845   assert(is_in_reserved(p) || p == NULL,
   846     "Does not work if address is non-null and outside of the heap");
   847   return p < _gens[_n_gens - 2]->reserved().end() && p != NULL;
   848 }
   849 #endif
   851 void GenCollectedHeap::oop_iterate(ExtendedOopClosure* cl) {
   852   for (int i = 0; i < _n_gens; i++) {
   853     _gens[i]->oop_iterate(cl);
   854   }
   855 }
   857 void GenCollectedHeap::oop_iterate(MemRegion mr, ExtendedOopClosure* cl) {
   858   for (int i = 0; i < _n_gens; i++) {
   859     _gens[i]->oop_iterate(mr, cl);
   860   }
   861 }
   863 void GenCollectedHeap::object_iterate(ObjectClosure* cl) {
   864   for (int i = 0; i < _n_gens; i++) {
   865     _gens[i]->object_iterate(cl);
   866   }
   867 }
   869 void GenCollectedHeap::safe_object_iterate(ObjectClosure* cl) {
   870   for (int i = 0; i < _n_gens; i++) {
   871     _gens[i]->safe_object_iterate(cl);
   872   }
   873 }
   875 void GenCollectedHeap::object_iterate_since_last_GC(ObjectClosure* cl) {
   876   for (int i = 0; i < _n_gens; i++) {
   877     _gens[i]->object_iterate_since_last_GC(cl);
   878   }
   879 }
   881 Space* GenCollectedHeap::space_containing(const void* addr) const {
   882   for (int i = 0; i < _n_gens; i++) {
   883     Space* res = _gens[i]->space_containing(addr);
   884     if (res != NULL) return res;
   885   }
   886   // Otherwise...
   887   assert(false, "Could not find containing space");
   888   return NULL;
   889 }
   892 HeapWord* GenCollectedHeap::block_start(const void* addr) const {
   893   assert(is_in_reserved(addr), "block_start of address outside of heap");
   894   for (int i = 0; i < _n_gens; i++) {
   895     if (_gens[i]->is_in_reserved(addr)) {
   896       assert(_gens[i]->is_in(addr),
   897              "addr should be in allocated part of generation");
   898       return _gens[i]->block_start(addr);
   899     }
   900   }
   901   assert(false, "Some generation should contain the address");
   902   return NULL;
   903 }
   905 size_t GenCollectedHeap::block_size(const HeapWord* addr) const {
   906   assert(is_in_reserved(addr), "block_size of address outside of heap");
   907   for (int i = 0; i < _n_gens; i++) {
   908     if (_gens[i]->is_in_reserved(addr)) {
   909       assert(_gens[i]->is_in(addr),
   910              "addr should be in allocated part of generation");
   911       return _gens[i]->block_size(addr);
   912     }
   913   }
   914   assert(false, "Some generation should contain the address");
   915   return 0;
   916 }
   918 bool GenCollectedHeap::block_is_obj(const HeapWord* addr) const {
   919   assert(is_in_reserved(addr), "block_is_obj of address outside of heap");
   920   assert(block_start(addr) == addr, "addr must be a block start");
   921   for (int i = 0; i < _n_gens; i++) {
   922     if (_gens[i]->is_in_reserved(addr)) {
   923       return _gens[i]->block_is_obj(addr);
   924     }
   925   }
   926   assert(false, "Some generation should contain the address");
   927   return false;
   928 }
   930 bool GenCollectedHeap::supports_tlab_allocation() const {
   931   for (int i = 0; i < _n_gens; i += 1) {
   932     if (_gens[i]->supports_tlab_allocation()) {
   933       return true;
   934     }
   935   }
   936   return false;
   937 }
   939 size_t GenCollectedHeap::tlab_capacity(Thread* thr) const {
   940   size_t result = 0;
   941   for (int i = 0; i < _n_gens; i += 1) {
   942     if (_gens[i]->supports_tlab_allocation()) {
   943       result += _gens[i]->tlab_capacity();
   944     }
   945   }
   946   return result;
   947 }
   949 size_t GenCollectedHeap::unsafe_max_tlab_alloc(Thread* thr) const {
   950   size_t result = 0;
   951   for (int i = 0; i < _n_gens; i += 1) {
   952     if (_gens[i]->supports_tlab_allocation()) {
   953       result += _gens[i]->unsafe_max_tlab_alloc();
   954     }
   955   }
   956   return result;
   957 }
   959 HeapWord* GenCollectedHeap::allocate_new_tlab(size_t size) {
   960   bool gc_overhead_limit_was_exceeded;
   961   return collector_policy()->mem_allocate_work(size /* size */,
   962                                                true /* is_tlab */,
   963                                                &gc_overhead_limit_was_exceeded);
   964 }
   966 // Requires "*prev_ptr" to be non-NULL.  Deletes and a block of minimal size
   967 // from the list headed by "*prev_ptr".
   968 static ScratchBlock *removeSmallestScratch(ScratchBlock **prev_ptr) {
   969   bool first = true;
   970   size_t min_size = 0;   // "first" makes this conceptually infinite.
   971   ScratchBlock **smallest_ptr, *smallest;
   972   ScratchBlock  *cur = *prev_ptr;
   973   while (cur) {
   974     assert(*prev_ptr == cur, "just checking");
   975     if (first || cur->num_words < min_size) {
   976       smallest_ptr = prev_ptr;
   977       smallest     = cur;
   978       min_size     = smallest->num_words;
   979       first        = false;
   980     }
   981     prev_ptr = &cur->next;
   982     cur     =  cur->next;
   983   }
   984   smallest      = *smallest_ptr;
   985   *smallest_ptr = smallest->next;
   986   return smallest;
   987 }
   989 // Sort the scratch block list headed by res into decreasing size order,
   990 // and set "res" to the result.
   991 static void sort_scratch_list(ScratchBlock*& list) {
   992   ScratchBlock* sorted = NULL;
   993   ScratchBlock* unsorted = list;
   994   while (unsorted) {
   995     ScratchBlock *smallest = removeSmallestScratch(&unsorted);
   996     smallest->next  = sorted;
   997     sorted          = smallest;
   998   }
   999   list = sorted;
  1002 ScratchBlock* GenCollectedHeap::gather_scratch(Generation* requestor,
  1003                                                size_t max_alloc_words) {
  1004   ScratchBlock* res = NULL;
  1005   for (int i = 0; i < _n_gens; i++) {
  1006     _gens[i]->contribute_scratch(res, requestor, max_alloc_words);
  1008   sort_scratch_list(res);
  1009   return res;
  1012 void GenCollectedHeap::release_scratch() {
  1013   for (int i = 0; i < _n_gens; i++) {
  1014     _gens[i]->reset_scratch();
  1018 class GenPrepareForVerifyClosure: public GenCollectedHeap::GenClosure {
  1019   void do_generation(Generation* gen) {
  1020     gen->prepare_for_verify();
  1022 };
  1024 void GenCollectedHeap::prepare_for_verify() {
  1025   ensure_parsability(false);        // no need to retire TLABs
  1026   GenPrepareForVerifyClosure blk;
  1027   generation_iterate(&blk, false);
  1031 void GenCollectedHeap::generation_iterate(GenClosure* cl,
  1032                                           bool old_to_young) {
  1033   if (old_to_young) {
  1034     for (int i = _n_gens-1; i >= 0; i--) {
  1035       cl->do_generation(_gens[i]);
  1037   } else {
  1038     for (int i = 0; i < _n_gens; i++) {
  1039       cl->do_generation(_gens[i]);
  1044 void GenCollectedHeap::space_iterate(SpaceClosure* cl) {
  1045   for (int i = 0; i < _n_gens; i++) {
  1046     _gens[i]->space_iterate(cl, true);
  1050 bool GenCollectedHeap::is_maximal_no_gc() const {
  1051   for (int i = 0; i < _n_gens; i++) {
  1052     if (!_gens[i]->is_maximal_no_gc()) {
  1053       return false;
  1056   return true;
  1059 void GenCollectedHeap::save_marks() {
  1060   for (int i = 0; i < _n_gens; i++) {
  1061     _gens[i]->save_marks();
  1065 void GenCollectedHeap::compute_new_generation_sizes(int collectedGen) {
  1066   for (int i = 0; i <= collectedGen; i++) {
  1067     _gens[i]->compute_new_size();
  1071 GenCollectedHeap* GenCollectedHeap::heap() {
  1072   assert(_gch != NULL, "Uninitialized access to GenCollectedHeap::heap()");
  1073   assert(_gch->kind() == CollectedHeap::GenCollectedHeap, "not a generational heap");
  1074   return _gch;
  1078 void GenCollectedHeap::prepare_for_compaction() {
  1079   Generation* scanning_gen = _gens[_n_gens-1];
  1080   // Start by compacting into same gen.
  1081   CompactPoint cp(scanning_gen, NULL, NULL);
  1082   while (scanning_gen != NULL) {
  1083     scanning_gen->prepare_for_compaction(&cp);
  1084     scanning_gen = prev_gen(scanning_gen);
  1088 GCStats* GenCollectedHeap::gc_stats(int level) const {
  1089   return _gens[level]->gc_stats();
  1092 void GenCollectedHeap::verify(bool silent, VerifyOption option /* ignored */) {
  1093   for (int i = _n_gens-1; i >= 0; i--) {
  1094     Generation* g = _gens[i];
  1095     if (!silent) {
  1096       gclog_or_tty->print(g->name());
  1097       gclog_or_tty->print(" ");
  1099     g->verify();
  1101   if (!silent) {
  1102     gclog_or_tty->print("remset ");
  1104   rem_set()->verify();
  1107 void GenCollectedHeap::print_on(outputStream* st) const {
  1108   for (int i = 0; i < _n_gens; i++) {
  1109     _gens[i]->print_on(st);
  1111   MetaspaceAux::print_on(st);
  1114 void GenCollectedHeap::gc_threads_do(ThreadClosure* tc) const {
  1115   if (workers() != NULL) {
  1116     workers()->threads_do(tc);
  1118 #if INCLUDE_ALL_GCS
  1119   if (UseConcMarkSweepGC) {
  1120     ConcurrentMarkSweepThread::threads_do(tc);
  1122 #endif // INCLUDE_ALL_GCS
  1125 void GenCollectedHeap::print_gc_threads_on(outputStream* st) const {
  1126 #if INCLUDE_ALL_GCS
  1127   if (UseParNewGC) {
  1128     workers()->print_worker_threads_on(st);
  1130   if (UseConcMarkSweepGC) {
  1131     ConcurrentMarkSweepThread::print_all_on(st);
  1133 #endif // INCLUDE_ALL_GCS
  1136 void GenCollectedHeap::print_on_error(outputStream* st) const {
  1137   this->CollectedHeap::print_on_error(st);
  1139 #if INCLUDE_ALL_GCS
  1140   if (UseConcMarkSweepGC) {
  1141     st->cr();
  1142     CMSCollector::print_on_error(st);
  1144 #endif // INCLUDE_ALL_GCS
  1147 void GenCollectedHeap::print_tracing_info() const {
  1148   if (TraceGen0Time) {
  1149     get_gen(0)->print_summary_info();
  1151   if (TraceGen1Time) {
  1152     get_gen(1)->print_summary_info();
  1156 void GenCollectedHeap::print_heap_change(size_t prev_used) const {
  1157   if (PrintGCDetails && Verbose) {
  1158     gclog_or_tty->print(" "  SIZE_FORMAT
  1159                         "->" SIZE_FORMAT
  1160                         "("  SIZE_FORMAT ")",
  1161                         prev_used, used(), capacity());
  1162   } else {
  1163     gclog_or_tty->print(" "  SIZE_FORMAT "K"
  1164                         "->" SIZE_FORMAT "K"
  1165                         "("  SIZE_FORMAT "K)",
  1166                         prev_used / K, used() / K, capacity() / K);
  1170 class GenGCPrologueClosure: public GenCollectedHeap::GenClosure {
  1171  private:
  1172   bool _full;
  1173  public:
  1174   void do_generation(Generation* gen) {
  1175     gen->gc_prologue(_full);
  1177   GenGCPrologueClosure(bool full) : _full(full) {};
  1178 };
  1180 void GenCollectedHeap::gc_prologue(bool full) {
  1181   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
  1183   always_do_update_barrier = false;
  1184   // Fill TLAB's and such
  1185   CollectedHeap::accumulate_statistics_all_tlabs();
  1186   ensure_parsability(true);   // retire TLABs
  1188   // Call allocation profiler
  1189   AllocationProfiler::iterate_since_last_gc();
  1190   // Walk generations
  1191   GenGCPrologueClosure blk(full);
  1192   generation_iterate(&blk, false);  // not old-to-young.
  1193 };
  1195 class GenGCEpilogueClosure: public GenCollectedHeap::GenClosure {
  1196  private:
  1197   bool _full;
  1198  public:
  1199   void do_generation(Generation* gen) {
  1200     gen->gc_epilogue(_full);
  1202   GenGCEpilogueClosure(bool full) : _full(full) {};
  1203 };
  1205 void GenCollectedHeap::gc_epilogue(bool full) {
  1206 #ifdef COMPILER2
  1207   assert(DerivedPointerTable::is_empty(), "derived pointer present");
  1208   size_t actual_gap = pointer_delta((HeapWord*) (max_uintx-3), *(end_addr()));
  1209   guarantee(actual_gap > (size_t)FastAllocateSizeLimit, "inline allocation wraps");
  1210 #endif /* COMPILER2 */
  1212   resize_all_tlabs();
  1214   GenGCEpilogueClosure blk(full);
  1215   generation_iterate(&blk, false);  // not old-to-young.
  1217   if (!CleanChunkPoolAsync) {
  1218     Chunk::clean_chunk_pool();
  1221   MetaspaceCounters::update_performance_counters();
  1223   always_do_update_barrier = UseConcMarkSweepGC;
  1224 };
  1226 #ifndef PRODUCT
  1227 class GenGCSaveTopsBeforeGCClosure: public GenCollectedHeap::GenClosure {
  1228  private:
  1229  public:
  1230   void do_generation(Generation* gen) {
  1231     gen->record_spaces_top();
  1233 };
  1235 void GenCollectedHeap::record_gen_tops_before_GC() {
  1236   if (ZapUnusedHeapArea) {
  1237     GenGCSaveTopsBeforeGCClosure blk;
  1238     generation_iterate(&blk, false);  // not old-to-young.
  1241 #endif  // not PRODUCT
  1243 class GenEnsureParsabilityClosure: public GenCollectedHeap::GenClosure {
  1244  public:
  1245   void do_generation(Generation* gen) {
  1246     gen->ensure_parsability();
  1248 };
  1250 void GenCollectedHeap::ensure_parsability(bool retire_tlabs) {
  1251   CollectedHeap::ensure_parsability(retire_tlabs);
  1252   GenEnsureParsabilityClosure ep_cl;
  1253   generation_iterate(&ep_cl, false);
  1256 oop GenCollectedHeap::handle_failed_promotion(Generation* gen,
  1257                                               oop obj,
  1258                                               size_t obj_size) {
  1259   assert(obj_size == (size_t)obj->size(), "bad obj_size passed in");
  1260   HeapWord* result = NULL;
  1262   // First give each higher generation a chance to allocate the promoted object.
  1263   Generation* allocator = next_gen(gen);
  1264   if (allocator != NULL) {
  1265     do {
  1266       result = allocator->allocate(obj_size, false);
  1267     } while (result == NULL && (allocator = next_gen(allocator)) != NULL);
  1270   if (result == NULL) {
  1271     // Then give gen and higher generations a chance to expand and allocate the
  1272     // object.
  1273     do {
  1274       result = gen->expand_and_allocate(obj_size, false);
  1275     } while (result == NULL && (gen = next_gen(gen)) != NULL);
  1278   if (result != NULL) {
  1279     Copy::aligned_disjoint_words((HeapWord*)obj, result, obj_size);
  1281   return oop(result);
  1284 class GenTimeOfLastGCClosure: public GenCollectedHeap::GenClosure {
  1285   jlong _time;   // in ms
  1286   jlong _now;    // in ms
  1288  public:
  1289   GenTimeOfLastGCClosure(jlong now) : _time(now), _now(now) { }
  1291   jlong time() { return _time; }
  1293   void do_generation(Generation* gen) {
  1294     _time = MIN2(_time, gen->time_of_last_gc(_now));
  1296 };
  1298 jlong GenCollectedHeap::millis_since_last_gc() {
  1299   // We need a monotonically non-deccreasing time in ms but
  1300   // os::javaTimeMillis() does not guarantee monotonicity.
  1301   jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
  1302   GenTimeOfLastGCClosure tolgc_cl(now);
  1303   // iterate over generations getting the oldest
  1304   // time that a generation was collected
  1305   generation_iterate(&tolgc_cl, false);
  1307   // javaTimeNanos() is guaranteed to be monotonically non-decreasing
  1308   // provided the underlying platform provides such a time source
  1309   // (and it is bug free). So we still have to guard against getting
  1310   // back a time later than 'now'.
  1311   jlong retVal = now - tolgc_cl.time();
  1312   if (retVal < 0) {
  1313     NOT_PRODUCT(warning("time warp: "INT64_FORMAT, retVal);)
  1314     return 0;
  1316   return retVal;

mercurial