src/share/vm/memory/collectorPolicy.cpp

Mon, 29 Apr 2013 16:13:57 -0400

author
hseigel
date
Mon, 29 Apr 2013 16:13:57 -0400
changeset 4987
f258c5828eb8
parent 4967
5a9fa2ba85f0
child 5071
f14063dcd52a
permissions
-rw-r--r--

8011773: Some tests on Interned String crashed JVM with OOM
Summary: Instead of terminating the VM, throw OutOfMemoryError exceptions.
Reviewed-by: coleenp, dholmes

     1 /*
     2  * Copyright (c) 2001, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "gc_implementation/shared/adaptiveSizePolicy.hpp"
    27 #include "gc_implementation/shared/gcPolicyCounters.hpp"
    28 #include "gc_implementation/shared/vmGCOperations.hpp"
    29 #include "memory/cardTableRS.hpp"
    30 #include "memory/collectorPolicy.hpp"
    31 #include "memory/gcLocker.inline.hpp"
    32 #include "memory/genCollectedHeap.hpp"
    33 #include "memory/generationSpec.hpp"
    34 #include "memory/space.hpp"
    35 #include "memory/universe.hpp"
    36 #include "runtime/arguments.hpp"
    37 #include "runtime/globals_extension.hpp"
    38 #include "runtime/handles.inline.hpp"
    39 #include "runtime/java.hpp"
    40 #include "runtime/thread.inline.hpp"
    41 #include "runtime/vmThread.hpp"
    42 #include "utilities/macros.hpp"
    43 #if INCLUDE_ALL_GCS
    44 #include "gc_implementation/concurrentMarkSweep/cmsAdaptiveSizePolicy.hpp"
    45 #include "gc_implementation/concurrentMarkSweep/cmsGCAdaptivePolicyCounters.hpp"
    46 #endif // INCLUDE_ALL_GCS
    48 // CollectorPolicy methods.
    50 void CollectorPolicy::initialize_flags() {
    51   if (MetaspaceSize > MaxMetaspaceSize) {
    52     MaxMetaspaceSize = MetaspaceSize;
    53   }
    54   MetaspaceSize = MAX2(min_alignment(), align_size_down_(MetaspaceSize, min_alignment()));
    55   // Don't increase Metaspace size limit above specified.
    56   MaxMetaspaceSize = align_size_down(MaxMetaspaceSize, max_alignment());
    57   if (MetaspaceSize > MaxMetaspaceSize) {
    58     MetaspaceSize = MaxMetaspaceSize;
    59   }
    61   MinMetaspaceExpansion = MAX2(min_alignment(), align_size_down_(MinMetaspaceExpansion, min_alignment()));
    62   MaxMetaspaceExpansion = MAX2(min_alignment(), align_size_down_(MaxMetaspaceExpansion, min_alignment()));
    64   MinHeapDeltaBytes = align_size_up(MinHeapDeltaBytes, min_alignment());
    66   assert(MetaspaceSize    % min_alignment() == 0, "metapace alignment");
    67   assert(MaxMetaspaceSize % max_alignment() == 0, "maximum metaspace alignment");
    68   if (MetaspaceSize < 256*K) {
    69     vm_exit_during_initialization("Too small initial Metaspace size");
    70   }
    71 }
    73 void CollectorPolicy::initialize_size_info() {
    74   // User inputs from -mx and ms are aligned
    75   set_initial_heap_byte_size(InitialHeapSize);
    76   if (initial_heap_byte_size() == 0) {
    77     set_initial_heap_byte_size(NewSize + OldSize);
    78   }
    79   set_initial_heap_byte_size(align_size_up(_initial_heap_byte_size,
    80                                            min_alignment()));
    82   set_min_heap_byte_size(Arguments::min_heap_size());
    83   if (min_heap_byte_size() == 0) {
    84     set_min_heap_byte_size(NewSize + OldSize);
    85   }
    86   set_min_heap_byte_size(align_size_up(_min_heap_byte_size,
    87                                        min_alignment()));
    89   set_max_heap_byte_size(align_size_up(MaxHeapSize, max_alignment()));
    91   // Check heap parameter properties
    92   if (initial_heap_byte_size() < M) {
    93     vm_exit_during_initialization("Too small initial heap");
    94   }
    95   // Check heap parameter properties
    96   if (min_heap_byte_size() < M) {
    97     vm_exit_during_initialization("Too small minimum heap");
    98   }
    99   if (initial_heap_byte_size() <= NewSize) {
   100      // make sure there is at least some room in old space
   101     vm_exit_during_initialization("Too small initial heap for new size specified");
   102   }
   103   if (max_heap_byte_size() < min_heap_byte_size()) {
   104     vm_exit_during_initialization("Incompatible minimum and maximum heap sizes specified");
   105   }
   106   if (initial_heap_byte_size() < min_heap_byte_size()) {
   107     vm_exit_during_initialization("Incompatible minimum and initial heap sizes specified");
   108   }
   109   if (max_heap_byte_size() < initial_heap_byte_size()) {
   110     vm_exit_during_initialization("Incompatible initial and maximum heap sizes specified");
   111   }
   113   if (PrintGCDetails && Verbose) {
   114     gclog_or_tty->print_cr("Minimum heap " SIZE_FORMAT "  Initial heap "
   115       SIZE_FORMAT "  Maximum heap " SIZE_FORMAT,
   116       min_heap_byte_size(), initial_heap_byte_size(), max_heap_byte_size());
   117   }
   118 }
   120 bool CollectorPolicy::use_should_clear_all_soft_refs(bool v) {
   121   bool result = _should_clear_all_soft_refs;
   122   set_should_clear_all_soft_refs(false);
   123   return result;
   124 }
   126 GenRemSet* CollectorPolicy::create_rem_set(MemRegion whole_heap,
   127                                            int max_covered_regions) {
   128   switch (rem_set_name()) {
   129   case GenRemSet::CardTable: {
   130     CardTableRS* res = new CardTableRS(whole_heap, max_covered_regions);
   131     return res;
   132   }
   133   default:
   134     guarantee(false, "unrecognized GenRemSet::Name");
   135     return NULL;
   136   }
   137 }
   139 void CollectorPolicy::cleared_all_soft_refs() {
   140   // If near gc overhear limit, continue to clear SoftRefs.  SoftRefs may
   141   // have been cleared in the last collection but if the gc overhear
   142   // limit continues to be near, SoftRefs should still be cleared.
   143   if (size_policy() != NULL) {
   144     _should_clear_all_soft_refs = size_policy()->gc_overhead_limit_near();
   145   }
   146   _all_soft_refs_clear = true;
   147 }
   150 // GenCollectorPolicy methods.
   152 size_t GenCollectorPolicy::scale_by_NewRatio_aligned(size_t base_size) {
   153   size_t x = base_size / (NewRatio+1);
   154   size_t new_gen_size = x > min_alignment() ?
   155                      align_size_down(x, min_alignment()) :
   156                      min_alignment();
   157   return new_gen_size;
   158 }
   160 size_t GenCollectorPolicy::bound_minus_alignment(size_t desired_size,
   161                                                  size_t maximum_size) {
   162   size_t alignment = min_alignment();
   163   size_t max_minus = maximum_size - alignment;
   164   return desired_size < max_minus ? desired_size : max_minus;
   165 }
   168 void GenCollectorPolicy::initialize_size_policy(size_t init_eden_size,
   169                                                 size_t init_promo_size,
   170                                                 size_t init_survivor_size) {
   171   const double max_gc_pause_sec = ((double) MaxGCPauseMillis)/1000.0;
   172   _size_policy = new AdaptiveSizePolicy(init_eden_size,
   173                                         init_promo_size,
   174                                         init_survivor_size,
   175                                         max_gc_pause_sec,
   176                                         GCTimeRatio);
   177 }
   179 size_t GenCollectorPolicy::compute_max_alignment() {
   180   // The card marking array and the offset arrays for old generations are
   181   // committed in os pages as well. Make sure they are entirely full (to
   182   // avoid partial page problems), e.g. if 512 bytes heap corresponds to 1
   183   // byte entry and the os page size is 4096, the maximum heap size should
   184   // be 512*4096 = 2MB aligned.
   185   size_t alignment = GenRemSet::max_alignment_constraint(rem_set_name());
   187   // Parallel GC does its own alignment of the generations to avoid requiring a
   188   // large page (256M on some platforms) for the permanent generation.  The
   189   // other collectors should also be updated to do their own alignment and then
   190   // this use of lcm() should be removed.
   191   if (UseLargePages && !UseParallelGC) {
   192       // in presence of large pages we have to make sure that our
   193       // alignment is large page aware
   194       alignment = lcm(os::large_page_size(), alignment);
   195   }
   197   return alignment;
   198 }
   200 void GenCollectorPolicy::initialize_flags() {
   201   // All sizes must be multiples of the generation granularity.
   202   set_min_alignment((uintx) Generation::GenGrain);
   203   set_max_alignment(compute_max_alignment());
   204   assert(max_alignment() >= min_alignment() &&
   205          max_alignment() % min_alignment() == 0,
   206          "invalid alignment constraints");
   208   CollectorPolicy::initialize_flags();
   210   // All generational heaps have a youngest gen; handle those flags here.
   212   // Adjust max size parameters
   213   if (NewSize > MaxNewSize) {
   214     MaxNewSize = NewSize;
   215   }
   216   NewSize = align_size_down(NewSize, min_alignment());
   217   MaxNewSize = align_size_down(MaxNewSize, min_alignment());
   219   // Check validity of heap flags
   220   assert(NewSize     % min_alignment() == 0, "eden space alignment");
   221   assert(MaxNewSize  % min_alignment() == 0, "survivor space alignment");
   223   if (NewSize < 3*min_alignment()) {
   224      // make sure there room for eden and two survivor spaces
   225     vm_exit_during_initialization("Too small new size specified");
   226   }
   227   if (SurvivorRatio < 1 || NewRatio < 1) {
   228     vm_exit_during_initialization("Invalid heap ratio specified");
   229   }
   230 }
   232 void TwoGenerationCollectorPolicy::initialize_flags() {
   233   GenCollectorPolicy::initialize_flags();
   235   OldSize = align_size_down(OldSize, min_alignment());
   236   if (NewSize + OldSize > MaxHeapSize) {
   237     MaxHeapSize = NewSize + OldSize;
   238   }
   240   if (FLAG_IS_CMDLINE(OldSize) && FLAG_IS_DEFAULT(NewSize)) {
   241     // NewRatio will be used later to set the young generation size so we use
   242     // it to calculate how big the heap should be based on the requested OldSize
   243     // and NewRatio.
   244     assert(NewRatio > 0, "NewRatio should have been set up earlier");
   245     size_t calculated_heapsize = (OldSize / NewRatio) * (NewRatio + 1);
   247     calculated_heapsize = align_size_up(calculated_heapsize, max_alignment());
   248     MaxHeapSize = calculated_heapsize;
   249     InitialHeapSize = calculated_heapsize;
   250   }
   251   MaxHeapSize = align_size_up(MaxHeapSize, max_alignment());
   253   always_do_update_barrier = UseConcMarkSweepGC;
   255   // Check validity of heap flags
   256   assert(OldSize     % min_alignment() == 0, "old space alignment");
   257   assert(MaxHeapSize % max_alignment() == 0, "maximum heap alignment");
   258 }
   260 // Values set on the command line win over any ergonomically
   261 // set command line parameters.
   262 // Ergonomic choice of parameters are done before this
   263 // method is called.  Values for command line parameters such as NewSize
   264 // and MaxNewSize feed those ergonomic choices into this method.
   265 // This method makes the final generation sizings consistent with
   266 // themselves and with overall heap sizings.
   267 // In the absence of explicitly set command line flags, policies
   268 // such as the use of NewRatio are used to size the generation.
   269 void GenCollectorPolicy::initialize_size_info() {
   270   CollectorPolicy::initialize_size_info();
   272   // min_alignment() is used for alignment within a generation.
   273   // There is additional alignment done down stream for some
   274   // collectors that sometimes causes unwanted rounding up of
   275   // generations sizes.
   277   // Determine maximum size of gen0
   279   size_t max_new_size = 0;
   280   if (FLAG_IS_CMDLINE(MaxNewSize) || FLAG_IS_ERGO(MaxNewSize)) {
   281     if (MaxNewSize < min_alignment()) {
   282       max_new_size = min_alignment();
   283     }
   284     if (MaxNewSize >= max_heap_byte_size()) {
   285       max_new_size = align_size_down(max_heap_byte_size() - min_alignment(),
   286                                      min_alignment());
   287       warning("MaxNewSize (" SIZE_FORMAT "k) is equal to or "
   288         "greater than the entire heap (" SIZE_FORMAT "k).  A "
   289         "new generation size of " SIZE_FORMAT "k will be used.",
   290         MaxNewSize/K, max_heap_byte_size()/K, max_new_size/K);
   291     } else {
   292       max_new_size = align_size_down(MaxNewSize, min_alignment());
   293     }
   295   // The case for FLAG_IS_ERGO(MaxNewSize) could be treated
   296   // specially at this point to just use an ergonomically set
   297   // MaxNewSize to set max_new_size.  For cases with small
   298   // heaps such a policy often did not work because the MaxNewSize
   299   // was larger than the entire heap.  The interpretation given
   300   // to ergonomically set flags is that the flags are set
   301   // by different collectors for their own special needs but
   302   // are not allowed to badly shape the heap.  This allows the
   303   // different collectors to decide what's best for themselves
   304   // without having to factor in the overall heap shape.  It
   305   // can be the case in the future that the collectors would
   306   // only make "wise" ergonomics choices and this policy could
   307   // just accept those choices.  The choices currently made are
   308   // not always "wise".
   309   } else {
   310     max_new_size = scale_by_NewRatio_aligned(max_heap_byte_size());
   311     // Bound the maximum size by NewSize below (since it historically
   312     // would have been NewSize and because the NewRatio calculation could
   313     // yield a size that is too small) and bound it by MaxNewSize above.
   314     // Ergonomics plays here by previously calculating the desired
   315     // NewSize and MaxNewSize.
   316     max_new_size = MIN2(MAX2(max_new_size, NewSize), MaxNewSize);
   317   }
   318   assert(max_new_size > 0, "All paths should set max_new_size");
   320   // Given the maximum gen0 size, determine the initial and
   321   // minimum gen0 sizes.
   323   if (max_heap_byte_size() == min_heap_byte_size()) {
   324     // The maximum and minimum heap sizes are the same so
   325     // the generations minimum and initial must be the
   326     // same as its maximum.
   327     set_min_gen0_size(max_new_size);
   328     set_initial_gen0_size(max_new_size);
   329     set_max_gen0_size(max_new_size);
   330   } else {
   331     size_t desired_new_size = 0;
   332     if (!FLAG_IS_DEFAULT(NewSize)) {
   333       // If NewSize is set ergonomically (for example by cms), it
   334       // would make sense to use it.  If it is used, also use it
   335       // to set the initial size.  Although there is no reason
   336       // the minimum size and the initial size have to be the same,
   337       // the current implementation gets into trouble during the calculation
   338       // of the tenured generation sizes if they are different.
   339       // Note that this makes the initial size and the minimum size
   340       // generally small compared to the NewRatio calculation.
   341       _min_gen0_size = NewSize;
   342       desired_new_size = NewSize;
   343       max_new_size = MAX2(max_new_size, NewSize);
   344     } else {
   345       // For the case where NewSize is the default, use NewRatio
   346       // to size the minimum and initial generation sizes.
   347       // Use the default NewSize as the floor for these values.  If
   348       // NewRatio is overly large, the resulting sizes can be too
   349       // small.
   350       _min_gen0_size = MAX2(scale_by_NewRatio_aligned(min_heap_byte_size()),
   351                           NewSize);
   352       desired_new_size =
   353         MAX2(scale_by_NewRatio_aligned(initial_heap_byte_size()),
   354              NewSize);
   355     }
   357     assert(_min_gen0_size > 0, "Sanity check");
   358     set_initial_gen0_size(desired_new_size);
   359     set_max_gen0_size(max_new_size);
   361     // At this point the desirable initial and minimum sizes have been
   362     // determined without regard to the maximum sizes.
   364     // Bound the sizes by the corresponding overall heap sizes.
   365     set_min_gen0_size(
   366       bound_minus_alignment(_min_gen0_size, min_heap_byte_size()));
   367     set_initial_gen0_size(
   368       bound_minus_alignment(_initial_gen0_size, initial_heap_byte_size()));
   369     set_max_gen0_size(
   370       bound_minus_alignment(_max_gen0_size, max_heap_byte_size()));
   372     // At this point all three sizes have been checked against the
   373     // maximum sizes but have not been checked for consistency
   374     // among the three.
   376     // Final check min <= initial <= max
   377     set_min_gen0_size(MIN2(_min_gen0_size, _max_gen0_size));
   378     set_initial_gen0_size(
   379       MAX2(MIN2(_initial_gen0_size, _max_gen0_size), _min_gen0_size));
   380     set_min_gen0_size(MIN2(_min_gen0_size, _initial_gen0_size));
   381   }
   383   if (PrintGCDetails && Verbose) {
   384     gclog_or_tty->print_cr("1: Minimum gen0 " SIZE_FORMAT "  Initial gen0 "
   385       SIZE_FORMAT "  Maximum gen0 " SIZE_FORMAT,
   386       min_gen0_size(), initial_gen0_size(), max_gen0_size());
   387   }
   388 }
   390 // Call this method during the sizing of the gen1 to make
   391 // adjustments to gen0 because of gen1 sizing policy.  gen0 initially has
   392 // the most freedom in sizing because it is done before the
   393 // policy for gen1 is applied.  Once gen1 policies have been applied,
   394 // there may be conflicts in the shape of the heap and this method
   395 // is used to make the needed adjustments.  The application of the
   396 // policies could be more sophisticated (iterative for example) but
   397 // keeping it simple also seems a worthwhile goal.
   398 bool TwoGenerationCollectorPolicy::adjust_gen0_sizes(size_t* gen0_size_ptr,
   399                                                      size_t* gen1_size_ptr,
   400                                                      const size_t heap_size,
   401                                                      const size_t min_gen1_size) {
   402   bool result = false;
   404   if ((*gen1_size_ptr + *gen0_size_ptr) > heap_size) {
   405     if ((heap_size < (*gen0_size_ptr + min_gen1_size)) &&
   406         (heap_size >= min_gen1_size + min_alignment())) {
   407       // Adjust gen0 down to accommodate min_gen1_size
   408       *gen0_size_ptr = heap_size - min_gen1_size;
   409       *gen0_size_ptr =
   410         MAX2((uintx)align_size_down(*gen0_size_ptr, min_alignment()),
   411              min_alignment());
   412       assert(*gen0_size_ptr > 0, "Min gen0 is too large");
   413       result = true;
   414     } else {
   415       *gen1_size_ptr = heap_size - *gen0_size_ptr;
   416       *gen1_size_ptr =
   417         MAX2((uintx)align_size_down(*gen1_size_ptr, min_alignment()),
   418                        min_alignment());
   419     }
   420   }
   421   return result;
   422 }
   424 // Minimum sizes of the generations may be different than
   425 // the initial sizes.  An inconsistently is permitted here
   426 // in the total size that can be specified explicitly by
   427 // command line specification of OldSize and NewSize and
   428 // also a command line specification of -Xms.  Issue a warning
   429 // but allow the values to pass.
   431 void TwoGenerationCollectorPolicy::initialize_size_info() {
   432   GenCollectorPolicy::initialize_size_info();
   434   // At this point the minimum, initial and maximum sizes
   435   // of the overall heap and of gen0 have been determined.
   436   // The maximum gen1 size can be determined from the maximum gen0
   437   // and maximum heap size since no explicit flags exits
   438   // for setting the gen1 maximum.
   439   _max_gen1_size = max_heap_byte_size() - _max_gen0_size;
   440   _max_gen1_size =
   441     MAX2((uintx)align_size_down(_max_gen1_size, min_alignment()),
   442          min_alignment());
   443   // If no explicit command line flag has been set for the
   444   // gen1 size, use what is left for gen1.
   445   if (FLAG_IS_DEFAULT(OldSize) || FLAG_IS_ERGO(OldSize)) {
   446     // The user has not specified any value or ergonomics
   447     // has chosen a value (which may or may not be consistent
   448     // with the overall heap size).  In either case make
   449     // the minimum, maximum and initial sizes consistent
   450     // with the gen0 sizes and the overall heap sizes.
   451     assert(min_heap_byte_size() > _min_gen0_size,
   452       "gen0 has an unexpected minimum size");
   453     set_min_gen1_size(min_heap_byte_size() - min_gen0_size());
   454     set_min_gen1_size(
   455       MAX2((uintx)align_size_down(_min_gen1_size, min_alignment()),
   456            min_alignment()));
   457     set_initial_gen1_size(initial_heap_byte_size() - initial_gen0_size());
   458     set_initial_gen1_size(
   459       MAX2((uintx)align_size_down(_initial_gen1_size, min_alignment()),
   460            min_alignment()));
   462   } else {
   463     // It's been explicitly set on the command line.  Use the
   464     // OldSize and then determine the consequences.
   465     set_min_gen1_size(OldSize);
   466     set_initial_gen1_size(OldSize);
   468     // If the user has explicitly set an OldSize that is inconsistent
   469     // with other command line flags, issue a warning.
   470     // The generation minimums and the overall heap mimimum should
   471     // be within one heap alignment.
   472     if ((_min_gen1_size + _min_gen0_size + min_alignment()) <
   473            min_heap_byte_size()) {
   474       warning("Inconsistency between minimum heap size and minimum "
   475           "generation sizes: using minimum heap = " SIZE_FORMAT,
   476           min_heap_byte_size());
   477     }
   478     if ((OldSize > _max_gen1_size)) {
   479       warning("Inconsistency between maximum heap size and maximum "
   480           "generation sizes: using maximum heap = " SIZE_FORMAT
   481           " -XX:OldSize flag is being ignored",
   482           max_heap_byte_size());
   483     }
   484     // If there is an inconsistency between the OldSize and the minimum and/or
   485     // initial size of gen0, since OldSize was explicitly set, OldSize wins.
   486     if (adjust_gen0_sizes(&_min_gen0_size, &_min_gen1_size,
   487                           min_heap_byte_size(), OldSize)) {
   488       if (PrintGCDetails && Verbose) {
   489         gclog_or_tty->print_cr("2: Minimum gen0 " SIZE_FORMAT "  Initial gen0 "
   490               SIZE_FORMAT "  Maximum gen0 " SIZE_FORMAT,
   491               min_gen0_size(), initial_gen0_size(), max_gen0_size());
   492       }
   493     }
   494     // Initial size
   495     if (adjust_gen0_sizes(&_initial_gen0_size, &_initial_gen1_size,
   496                          initial_heap_byte_size(), OldSize)) {
   497       if (PrintGCDetails && Verbose) {
   498         gclog_or_tty->print_cr("3: Minimum gen0 " SIZE_FORMAT "  Initial gen0 "
   499           SIZE_FORMAT "  Maximum gen0 " SIZE_FORMAT,
   500           min_gen0_size(), initial_gen0_size(), max_gen0_size());
   501       }
   502     }
   503   }
   504   // Enforce the maximum gen1 size.
   505   set_min_gen1_size(MIN2(_min_gen1_size, _max_gen1_size));
   507   // Check that min gen1 <= initial gen1 <= max gen1
   508   set_initial_gen1_size(MAX2(_initial_gen1_size, _min_gen1_size));
   509   set_initial_gen1_size(MIN2(_initial_gen1_size, _max_gen1_size));
   511   if (PrintGCDetails && Verbose) {
   512     gclog_or_tty->print_cr("Minimum gen1 " SIZE_FORMAT "  Initial gen1 "
   513       SIZE_FORMAT "  Maximum gen1 " SIZE_FORMAT,
   514       min_gen1_size(), initial_gen1_size(), max_gen1_size());
   515   }
   516 }
   518 HeapWord* GenCollectorPolicy::mem_allocate_work(size_t size,
   519                                         bool is_tlab,
   520                                         bool* gc_overhead_limit_was_exceeded) {
   521   GenCollectedHeap *gch = GenCollectedHeap::heap();
   523   debug_only(gch->check_for_valid_allocation_state());
   524   assert(gch->no_gc_in_progress(), "Allocation during gc not allowed");
   526   // In general gc_overhead_limit_was_exceeded should be false so
   527   // set it so here and reset it to true only if the gc time
   528   // limit is being exceeded as checked below.
   529   *gc_overhead_limit_was_exceeded = false;
   531   HeapWord* result = NULL;
   533   // Loop until the allocation is satisified,
   534   // or unsatisfied after GC.
   535   for (int try_count = 1, gclocker_stalled_count = 0; /* return or throw */; try_count += 1) {
   536     HandleMark hm; // discard any handles allocated in each iteration
   538     // First allocation attempt is lock-free.
   539     Generation *gen0 = gch->get_gen(0);
   540     assert(gen0->supports_inline_contig_alloc(),
   541       "Otherwise, must do alloc within heap lock");
   542     if (gen0->should_allocate(size, is_tlab)) {
   543       result = gen0->par_allocate(size, is_tlab);
   544       if (result != NULL) {
   545         assert(gch->is_in_reserved(result), "result not in heap");
   546         return result;
   547       }
   548     }
   549     unsigned int gc_count_before;  // read inside the Heap_lock locked region
   550     {
   551       MutexLocker ml(Heap_lock);
   552       if (PrintGC && Verbose) {
   553         gclog_or_tty->print_cr("TwoGenerationCollectorPolicy::mem_allocate_work:"
   554                       " attempting locked slow path allocation");
   555       }
   556       // Note that only large objects get a shot at being
   557       // allocated in later generations.
   558       bool first_only = ! should_try_older_generation_allocation(size);
   560       result = gch->attempt_allocation(size, is_tlab, first_only);
   561       if (result != NULL) {
   562         assert(gch->is_in_reserved(result), "result not in heap");
   563         return result;
   564       }
   566       if (GC_locker::is_active_and_needs_gc()) {
   567         if (is_tlab) {
   568           return NULL;  // Caller will retry allocating individual object
   569         }
   570         if (!gch->is_maximal_no_gc()) {
   571           // Try and expand heap to satisfy request
   572           result = expand_heap_and_allocate(size, is_tlab);
   573           // result could be null if we are out of space
   574           if (result != NULL) {
   575             return result;
   576           }
   577         }
   579         if (gclocker_stalled_count > GCLockerRetryAllocationCount) {
   580           return NULL; // we didn't get to do a GC and we didn't get any memory
   581         }
   583         // If this thread is not in a jni critical section, we stall
   584         // the requestor until the critical section has cleared and
   585         // GC allowed. When the critical section clears, a GC is
   586         // initiated by the last thread exiting the critical section; so
   587         // we retry the allocation sequence from the beginning of the loop,
   588         // rather than causing more, now probably unnecessary, GC attempts.
   589         JavaThread* jthr = JavaThread::current();
   590         if (!jthr->in_critical()) {
   591           MutexUnlocker mul(Heap_lock);
   592           // Wait for JNI critical section to be exited
   593           GC_locker::stall_until_clear();
   594           gclocker_stalled_count += 1;
   595           continue;
   596         } else {
   597           if (CheckJNICalls) {
   598             fatal("Possible deadlock due to allocating while"
   599                   " in jni critical section");
   600           }
   601           return NULL;
   602         }
   603       }
   605       // Read the gc count while the heap lock is held.
   606       gc_count_before = Universe::heap()->total_collections();
   607     }
   609     VM_GenCollectForAllocation op(size,
   610                                   is_tlab,
   611                                   gc_count_before);
   612     VMThread::execute(&op);
   613     if (op.prologue_succeeded()) {
   614       result = op.result();
   615       if (op.gc_locked()) {
   616          assert(result == NULL, "must be NULL if gc_locked() is true");
   617          continue;  // retry and/or stall as necessary
   618       }
   620       // Allocation has failed and a collection
   621       // has been done.  If the gc time limit was exceeded the
   622       // this time, return NULL so that an out-of-memory
   623       // will be thrown.  Clear gc_overhead_limit_exceeded
   624       // so that the overhead exceeded does not persist.
   626       const bool limit_exceeded = size_policy()->gc_overhead_limit_exceeded();
   627       const bool softrefs_clear = all_soft_refs_clear();
   629       if (limit_exceeded && softrefs_clear) {
   630         *gc_overhead_limit_was_exceeded = true;
   631         size_policy()->set_gc_overhead_limit_exceeded(false);
   632         if (op.result() != NULL) {
   633           CollectedHeap::fill_with_object(op.result(), size);
   634         }
   635         return NULL;
   636       }
   637       assert(result == NULL || gch->is_in_reserved(result),
   638              "result not in heap");
   639       return result;
   640     }
   642     // Give a warning if we seem to be looping forever.
   643     if ((QueuedAllocationWarningCount > 0) &&
   644         (try_count % QueuedAllocationWarningCount == 0)) {
   645           warning("TwoGenerationCollectorPolicy::mem_allocate_work retries %d times \n\t"
   646                   " size=%d %s", try_count, size, is_tlab ? "(TLAB)" : "");
   647     }
   648   }
   649 }
   651 HeapWord* GenCollectorPolicy::expand_heap_and_allocate(size_t size,
   652                                                        bool   is_tlab) {
   653   GenCollectedHeap *gch = GenCollectedHeap::heap();
   654   HeapWord* result = NULL;
   655   for (int i = number_of_generations() - 1; i >= 0 && result == NULL; i--) {
   656     Generation *gen = gch->get_gen(i);
   657     if (gen->should_allocate(size, is_tlab)) {
   658       result = gen->expand_and_allocate(size, is_tlab);
   659     }
   660   }
   661   assert(result == NULL || gch->is_in_reserved(result), "result not in heap");
   662   return result;
   663 }
   665 HeapWord* GenCollectorPolicy::satisfy_failed_allocation(size_t size,
   666                                                         bool   is_tlab) {
   667   GenCollectedHeap *gch = GenCollectedHeap::heap();
   668   GCCauseSetter x(gch, GCCause::_allocation_failure);
   669   HeapWord* result = NULL;
   671   assert(size != 0, "Precondition violated");
   672   if (GC_locker::is_active_and_needs_gc()) {
   673     // GC locker is active; instead of a collection we will attempt
   674     // to expand the heap, if there's room for expansion.
   675     if (!gch->is_maximal_no_gc()) {
   676       result = expand_heap_and_allocate(size, is_tlab);
   677     }
   678     return result;   // could be null if we are out of space
   679   } else if (!gch->incremental_collection_will_fail(false /* don't consult_young */)) {
   680     // Do an incremental collection.
   681     gch->do_collection(false            /* full */,
   682                        false            /* clear_all_soft_refs */,
   683                        size             /* size */,
   684                        is_tlab          /* is_tlab */,
   685                        number_of_generations() - 1 /* max_level */);
   686   } else {
   687     if (Verbose && PrintGCDetails) {
   688       gclog_or_tty->print(" :: Trying full because partial may fail :: ");
   689     }
   690     // Try a full collection; see delta for bug id 6266275
   691     // for the original code and why this has been simplified
   692     // with from-space allocation criteria modified and
   693     // such allocation moved out of the safepoint path.
   694     gch->do_collection(true             /* full */,
   695                        false            /* clear_all_soft_refs */,
   696                        size             /* size */,
   697                        is_tlab          /* is_tlab */,
   698                        number_of_generations() - 1 /* max_level */);
   699   }
   701   result = gch->attempt_allocation(size, is_tlab, false /*first_only*/);
   703   if (result != NULL) {
   704     assert(gch->is_in_reserved(result), "result not in heap");
   705     return result;
   706   }
   708   // OK, collection failed, try expansion.
   709   result = expand_heap_and_allocate(size, is_tlab);
   710   if (result != NULL) {
   711     return result;
   712   }
   714   // If we reach this point, we're really out of memory. Try every trick
   715   // we can to reclaim memory. Force collection of soft references. Force
   716   // a complete compaction of the heap. Any additional methods for finding
   717   // free memory should be here, especially if they are expensive. If this
   718   // attempt fails, an OOM exception will be thrown.
   719   {
   720     IntFlagSetting flag_change(MarkSweepAlwaysCompactCount, 1); // Make sure the heap is fully compacted
   722     gch->do_collection(true             /* full */,
   723                        true             /* clear_all_soft_refs */,
   724                        size             /* size */,
   725                        is_tlab          /* is_tlab */,
   726                        number_of_generations() - 1 /* max_level */);
   727   }
   729   result = gch->attempt_allocation(size, is_tlab, false /* first_only */);
   730   if (result != NULL) {
   731     assert(gch->is_in_reserved(result), "result not in heap");
   732     return result;
   733   }
   735   assert(!should_clear_all_soft_refs(),
   736     "Flag should have been handled and cleared prior to this point");
   738   // What else?  We might try synchronous finalization later.  If the total
   739   // space available is large enough for the allocation, then a more
   740   // complete compaction phase than we've tried so far might be
   741   // appropriate.
   742   return NULL;
   743 }
   745 MetaWord* CollectorPolicy::satisfy_failed_metadata_allocation(
   746                                                  ClassLoaderData* loader_data,
   747                                                  size_t word_size,
   748                                                  Metaspace::MetadataType mdtype) {
   749   uint loop_count = 0;
   750   uint gc_count = 0;
   751   uint full_gc_count = 0;
   753   assert(!Heap_lock->owned_by_self(), "Should not be holding the Heap_lock");
   755   do {
   756     MetaWord* result = NULL;
   757     if (GC_locker::is_active_and_needs_gc()) {
   758       // If the GC_locker is active, just expand and allocate.
   759       // If that does not succeed, wait if this thread is not
   760       // in a critical section itself.
   761       result =
   762         loader_data->metaspace_non_null()->expand_and_allocate(word_size,
   763                                                                mdtype);
   764       if (result != NULL) {
   765         return result;
   766       }
   767       JavaThread* jthr = JavaThread::current();
   768       if (!jthr->in_critical()) {
   769         // Wait for JNI critical section to be exited
   770         GC_locker::stall_until_clear();
   771         // The GC invoked by the last thread leaving the critical
   772         // section will be a young collection and a full collection
   773         // is (currently) needed for unloading classes so continue
   774         // to the next iteration to get a full GC.
   775         continue;
   776       } else {
   777         if (CheckJNICalls) {
   778           fatal("Possible deadlock due to allocating while"
   779                 " in jni critical section");
   780         }
   781         return NULL;
   782       }
   783     }
   785     {  // Need lock to get self consistent gc_count's
   786       MutexLocker ml(Heap_lock);
   787       gc_count      = Universe::heap()->total_collections();
   788       full_gc_count = Universe::heap()->total_full_collections();
   789     }
   791     // Generate a VM operation
   792     VM_CollectForMetadataAllocation op(loader_data,
   793                                        word_size,
   794                                        mdtype,
   795                                        gc_count,
   796                                        full_gc_count,
   797                                        GCCause::_metadata_GC_threshold);
   798     VMThread::execute(&op);
   800     // If GC was locked out, try again.  Check
   801     // before checking success because the prologue
   802     // could have succeeded and the GC still have
   803     // been locked out.
   804     if (op.gc_locked()) {
   805       continue;
   806     }
   808     if (op.prologue_succeeded()) {
   809       return op.result();
   810     }
   811     loop_count++;
   812     if ((QueuedAllocationWarningCount > 0) &&
   813         (loop_count % QueuedAllocationWarningCount == 0)) {
   814       warning("satisfy_failed_metadata_allocation() retries %d times \n\t"
   815               " size=%d", loop_count, word_size);
   816     }
   817   } while (true);  // Until a GC is done
   818 }
   820 // Return true if any of the following is true:
   821 // . the allocation won't fit into the current young gen heap
   822 // . gc locker is occupied (jni critical section)
   823 // . heap memory is tight -- the most recent previous collection
   824 //   was a full collection because a partial collection (would
   825 //   have) failed and is likely to fail again
   826 bool GenCollectorPolicy::should_try_older_generation_allocation(
   827         size_t word_size) const {
   828   GenCollectedHeap* gch = GenCollectedHeap::heap();
   829   size_t gen0_capacity = gch->get_gen(0)->capacity_before_gc();
   830   return    (word_size > heap_word_size(gen0_capacity))
   831          || GC_locker::is_active_and_needs_gc()
   832          || gch->incremental_collection_failed();
   833 }
   836 //
   837 // MarkSweepPolicy methods
   838 //
   840 MarkSweepPolicy::MarkSweepPolicy() {
   841   initialize_all();
   842 }
   844 void MarkSweepPolicy::initialize_generations() {
   845   _generations = new GenerationSpecPtr[number_of_generations()];
   846   if (_generations == NULL)
   847     vm_exit_during_initialization("Unable to allocate gen spec");
   849   if (UseParNewGC) {
   850     _generations[0] = new GenerationSpec(Generation::ParNew, _initial_gen0_size, _max_gen0_size);
   851   } else {
   852     _generations[0] = new GenerationSpec(Generation::DefNew, _initial_gen0_size, _max_gen0_size);
   853   }
   854   _generations[1] = new GenerationSpec(Generation::MarkSweepCompact, _initial_gen1_size, _max_gen1_size);
   856   if (_generations[0] == NULL || _generations[1] == NULL)
   857     vm_exit_during_initialization("Unable to allocate gen spec");
   858 }
   860 void MarkSweepPolicy::initialize_gc_policy_counters() {
   861   // initialize the policy counters - 2 collectors, 3 generations
   862   if (UseParNewGC) {
   863     _gc_policy_counters = new GCPolicyCounters("ParNew:MSC", 2, 3);
   864   } else {
   865     _gc_policy_counters = new GCPolicyCounters("Copy:MSC", 2, 3);
   866   }
   867 }

mercurial