src/cpu/x86/vm/templateTable_x86_64.cpp

Tue, 02 Aug 2011 18:36:40 +0200

author
roland
date
Tue, 02 Aug 2011 18:36:40 +0200
changeset 3047
f1c12354c3f7
parent 2982
ddd894528dbc
child 3050
fdb992d83a87
permissions
-rw-r--r--

7074017: Introduce MemBarAcquireLock/MemBarReleaseLock nodes for monitor enter/exit code paths
Summary: replace MemBarAcquire/MemBarRelease nodes on the monitor enter/exit code paths with new MemBarAcquireLock/MemBarReleaseLock nodes
Reviewed-by: kvn, twisti

     1 /*
     2  * Copyright (c) 2003, 2011, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "interpreter/interpreter.hpp"
    27 #include "interpreter/interpreterRuntime.hpp"
    28 #include "interpreter/templateTable.hpp"
    29 #include "memory/universe.inline.hpp"
    30 #include "oops/methodDataOop.hpp"
    31 #include "oops/objArrayKlass.hpp"
    32 #include "oops/oop.inline.hpp"
    33 #include "prims/methodHandles.hpp"
    34 #include "runtime/sharedRuntime.hpp"
    35 #include "runtime/stubRoutines.hpp"
    36 #include "runtime/synchronizer.hpp"
    38 #ifndef CC_INTERP
    40 #define __ _masm->
    42 // Platform-dependent initialization
    44 void TemplateTable::pd_initialize() {
    45   // No amd64 specific initialization
    46 }
    48 // Address computation: local variables
    50 static inline Address iaddress(int n) {
    51   return Address(r14, Interpreter::local_offset_in_bytes(n));
    52 }
    54 static inline Address laddress(int n) {
    55   return iaddress(n + 1);
    56 }
    58 static inline Address faddress(int n) {
    59   return iaddress(n);
    60 }
    62 static inline Address daddress(int n) {
    63   return laddress(n);
    64 }
    66 static inline Address aaddress(int n) {
    67   return iaddress(n);
    68 }
    70 static inline Address iaddress(Register r) {
    71   return Address(r14, r, Address::times_8);
    72 }
    74 static inline Address laddress(Register r) {
    75   return Address(r14, r, Address::times_8, Interpreter::local_offset_in_bytes(1));
    76 }
    78 static inline Address faddress(Register r) {
    79   return iaddress(r);
    80 }
    82 static inline Address daddress(Register r) {
    83   return laddress(r);
    84 }
    86 static inline Address aaddress(Register r) {
    87   return iaddress(r);
    88 }
    90 static inline Address at_rsp() {
    91   return Address(rsp, 0);
    92 }
    94 // At top of Java expression stack which may be different than esp().  It
    95 // isn't for category 1 objects.
    96 static inline Address at_tos   () {
    97   return Address(rsp,  Interpreter::expr_offset_in_bytes(0));
    98 }
   100 static inline Address at_tos_p1() {
   101   return Address(rsp,  Interpreter::expr_offset_in_bytes(1));
   102 }
   104 static inline Address at_tos_p2() {
   105   return Address(rsp,  Interpreter::expr_offset_in_bytes(2));
   106 }
   108 static inline Address at_tos_p3() {
   109   return Address(rsp,  Interpreter::expr_offset_in_bytes(3));
   110 }
   112 // Condition conversion
   113 static Assembler::Condition j_not(TemplateTable::Condition cc) {
   114   switch (cc) {
   115   case TemplateTable::equal        : return Assembler::notEqual;
   116   case TemplateTable::not_equal    : return Assembler::equal;
   117   case TemplateTable::less         : return Assembler::greaterEqual;
   118   case TemplateTable::less_equal   : return Assembler::greater;
   119   case TemplateTable::greater      : return Assembler::lessEqual;
   120   case TemplateTable::greater_equal: return Assembler::less;
   121   }
   122   ShouldNotReachHere();
   123   return Assembler::zero;
   124 }
   127 // Miscelaneous helper routines
   128 // Store an oop (or NULL) at the address described by obj.
   129 // If val == noreg this means store a NULL
   131 static void do_oop_store(InterpreterMacroAssembler* _masm,
   132                          Address obj,
   133                          Register val,
   134                          BarrierSet::Name barrier,
   135                          bool precise) {
   136   assert(val == noreg || val == rax, "parameter is just for looks");
   137   switch (barrier) {
   138 #ifndef SERIALGC
   139     case BarrierSet::G1SATBCT:
   140     case BarrierSet::G1SATBCTLogging:
   141       {
   142         // flatten object address if needed
   143         if (obj.index() == noreg && obj.disp() == 0) {
   144           if (obj.base() != rdx) {
   145             __ movq(rdx, obj.base());
   146           }
   147         } else {
   148           __ leaq(rdx, obj);
   149         }
   150         __ g1_write_barrier_pre(rdx /* obj */,
   151                                 rbx /* pre_val */,
   152                                 r15_thread /* thread */,
   153                                 r8  /* tmp */,
   154                                 val != noreg /* tosca_live */,
   155                                 false /* expand_call */);
   156         if (val == noreg) {
   157           __ store_heap_oop_null(Address(rdx, 0));
   158         } else {
   159           __ store_heap_oop(Address(rdx, 0), val);
   160           __ g1_write_barrier_post(rdx /* store_adr */,
   161                                    val /* new_val */,
   162                                    r15_thread /* thread */,
   163                                    r8 /* tmp */,
   164                                    rbx /* tmp2 */);
   165         }
   167       }
   168       break;
   169 #endif // SERIALGC
   170     case BarrierSet::CardTableModRef:
   171     case BarrierSet::CardTableExtension:
   172       {
   173         if (val == noreg) {
   174           __ store_heap_oop_null(obj);
   175         } else {
   176           __ store_heap_oop(obj, val);
   177           // flatten object address if needed
   178           if (!precise || (obj.index() == noreg && obj.disp() == 0)) {
   179             __ store_check(obj.base());
   180           } else {
   181             __ leaq(rdx, obj);
   182             __ store_check(rdx);
   183           }
   184         }
   185       }
   186       break;
   187     case BarrierSet::ModRef:
   188     case BarrierSet::Other:
   189       if (val == noreg) {
   190         __ store_heap_oop_null(obj);
   191       } else {
   192         __ store_heap_oop(obj, val);
   193       }
   194       break;
   195     default      :
   196       ShouldNotReachHere();
   198   }
   199 }
   201 Address TemplateTable::at_bcp(int offset) {
   202   assert(_desc->uses_bcp(), "inconsistent uses_bcp information");
   203   return Address(r13, offset);
   204 }
   206 void TemplateTable::patch_bytecode(Bytecodes::Code bytecode, Register bc,
   207                                    Register scratch,
   208                                    bool load_bc_into_scratch/*=true*/) {
   209   if (!RewriteBytecodes) {
   210     return;
   211   }
   212   // the pair bytecodes have already done the load.
   213   if (load_bc_into_scratch) {
   214     __ movl(bc, bytecode);
   215   }
   216   Label patch_done;
   217   if (JvmtiExport::can_post_breakpoint()) {
   218     Label fast_patch;
   219     // if a breakpoint is present we can't rewrite the stream directly
   220     __ movzbl(scratch, at_bcp(0));
   221     __ cmpl(scratch, Bytecodes::_breakpoint);
   222     __ jcc(Assembler::notEqual, fast_patch);
   223     __ get_method(scratch);
   224     // Let breakpoint table handling rewrite to quicker bytecode
   225     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::set_original_bytecode_at), scratch, r13, bc);
   226 #ifndef ASSERT
   227     __ jmpb(patch_done);
   228 #else
   229     __ jmp(patch_done);
   230 #endif
   231     __ bind(fast_patch);
   232   }
   233 #ifdef ASSERT
   234   Label okay;
   235   __ load_unsigned_byte(scratch, at_bcp(0));
   236   __ cmpl(scratch, (int) Bytecodes::java_code(bytecode));
   237   __ jcc(Assembler::equal, okay);
   238   __ cmpl(scratch, bc);
   239   __ jcc(Assembler::equal, okay);
   240   __ stop("patching the wrong bytecode");
   241   __ bind(okay);
   242 #endif
   243   // patch bytecode
   244   __ movb(at_bcp(0), bc);
   245   __ bind(patch_done);
   246 }
   249 // Individual instructions
   251 void TemplateTable::nop() {
   252   transition(vtos, vtos);
   253   // nothing to do
   254 }
   256 void TemplateTable::shouldnotreachhere() {
   257   transition(vtos, vtos);
   258   __ stop("shouldnotreachhere bytecode");
   259 }
   261 void TemplateTable::aconst_null() {
   262   transition(vtos, atos);
   263   __ xorl(rax, rax);
   264 }
   266 void TemplateTable::iconst(int value) {
   267   transition(vtos, itos);
   268   if (value == 0) {
   269     __ xorl(rax, rax);
   270   } else {
   271     __ movl(rax, value);
   272   }
   273 }
   275 void TemplateTable::lconst(int value) {
   276   transition(vtos, ltos);
   277   if (value == 0) {
   278     __ xorl(rax, rax);
   279   } else {
   280     __ movl(rax, value);
   281   }
   282 }
   284 void TemplateTable::fconst(int value) {
   285   transition(vtos, ftos);
   286   static float one = 1.0f, two = 2.0f;
   287   switch (value) {
   288   case 0:
   289     __ xorps(xmm0, xmm0);
   290     break;
   291   case 1:
   292     __ movflt(xmm0, ExternalAddress((address) &one));
   293     break;
   294   case 2:
   295     __ movflt(xmm0, ExternalAddress((address) &two));
   296     break;
   297   default:
   298     ShouldNotReachHere();
   299     break;
   300   }
   301 }
   303 void TemplateTable::dconst(int value) {
   304   transition(vtos, dtos);
   305   static double one = 1.0;
   306   switch (value) {
   307   case 0:
   308     __ xorpd(xmm0, xmm0);
   309     break;
   310   case 1:
   311     __ movdbl(xmm0, ExternalAddress((address) &one));
   312     break;
   313   default:
   314     ShouldNotReachHere();
   315     break;
   316   }
   317 }
   319 void TemplateTable::bipush() {
   320   transition(vtos, itos);
   321   __ load_signed_byte(rax, at_bcp(1));
   322 }
   324 void TemplateTable::sipush() {
   325   transition(vtos, itos);
   326   __ load_unsigned_short(rax, at_bcp(1));
   327   __ bswapl(rax);
   328   __ sarl(rax, 16);
   329 }
   331 void TemplateTable::ldc(bool wide) {
   332   transition(vtos, vtos);
   333   Label call_ldc, notFloat, notClass, Done;
   335   if (wide) {
   336     __ get_unsigned_2_byte_index_at_bcp(rbx, 1);
   337   } else {
   338     __ load_unsigned_byte(rbx, at_bcp(1));
   339   }
   341   __ get_cpool_and_tags(rcx, rax);
   342   const int base_offset = constantPoolOopDesc::header_size() * wordSize;
   343   const int tags_offset = typeArrayOopDesc::header_size(T_BYTE) * wordSize;
   345   // get type
   346   __ movzbl(rdx, Address(rax, rbx, Address::times_1, tags_offset));
   348   // unresolved string - get the resolved string
   349   __ cmpl(rdx, JVM_CONSTANT_UnresolvedString);
   350   __ jccb(Assembler::equal, call_ldc);
   352   // unresolved class - get the resolved class
   353   __ cmpl(rdx, JVM_CONSTANT_UnresolvedClass);
   354   __ jccb(Assembler::equal, call_ldc);
   356   // unresolved class in error state - call into runtime to throw the error
   357   // from the first resolution attempt
   358   __ cmpl(rdx, JVM_CONSTANT_UnresolvedClassInError);
   359   __ jccb(Assembler::equal, call_ldc);
   361   // resolved class - need to call vm to get java mirror of the class
   362   __ cmpl(rdx, JVM_CONSTANT_Class);
   363   __ jcc(Assembler::notEqual, notClass);
   365   __ bind(call_ldc);
   366   __ movl(c_rarg1, wide);
   367   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::ldc), c_rarg1);
   368   __ push_ptr(rax);
   369   __ verify_oop(rax);
   370   __ jmp(Done);
   372   __ bind(notClass);
   373   __ cmpl(rdx, JVM_CONSTANT_Float);
   374   __ jccb(Assembler::notEqual, notFloat);
   375   // ftos
   376   __ movflt(xmm0, Address(rcx, rbx, Address::times_8, base_offset));
   377   __ push_f();
   378   __ jmp(Done);
   380   __ bind(notFloat);
   381 #ifdef ASSERT
   382   {
   383     Label L;
   384     __ cmpl(rdx, JVM_CONSTANT_Integer);
   385     __ jcc(Assembler::equal, L);
   386     __ cmpl(rdx, JVM_CONSTANT_String);
   387     __ jcc(Assembler::equal, L);
   388     __ cmpl(rdx, JVM_CONSTANT_Object);
   389     __ jcc(Assembler::equal, L);
   390     __ stop("unexpected tag type in ldc");
   391     __ bind(L);
   392   }
   393 #endif
   394   // atos and itos
   395   Label isOop;
   396   __ cmpl(rdx, JVM_CONSTANT_Integer);
   397   __ jcc(Assembler::notEqual, isOop);
   398   __ movl(rax, Address(rcx, rbx, Address::times_8, base_offset));
   399   __ push_i(rax);
   400   __ jmp(Done);
   402   __ bind(isOop);
   403   __ movptr(rax, Address(rcx, rbx, Address::times_8, base_offset));
   404   __ push_ptr(rax);
   406   if (VerifyOops) {
   407     __ verify_oop(rax);
   408   }
   410   __ bind(Done);
   411 }
   413 // Fast path for caching oop constants.
   414 // %%% We should use this to handle Class and String constants also.
   415 // %%% It will simplify the ldc/primitive path considerably.
   416 void TemplateTable::fast_aldc(bool wide) {
   417   transition(vtos, atos);
   419   if (!EnableInvokeDynamic) {
   420     // We should not encounter this bytecode if !EnableInvokeDynamic.
   421     // The verifier will stop it.  However, if we get past the verifier,
   422     // this will stop the thread in a reasonable way, without crashing the JVM.
   423     __ call_VM(noreg, CAST_FROM_FN_PTR(address,
   424                      InterpreterRuntime::throw_IncompatibleClassChangeError));
   425     // the call_VM checks for exception, so we should never return here.
   426     __ should_not_reach_here();
   427     return;
   428   }
   430   const Register cache = rcx;
   431   const Register index = rdx;
   433   resolve_cache_and_index(f1_oop, rax, cache, index, wide ? sizeof(u2) : sizeof(u1));
   434   if (VerifyOops) {
   435     __ verify_oop(rax);
   436   }
   438   Label L_done, L_throw_exception;
   439   const Register con_klass_temp = rcx;  // same as cache
   440   const Register array_klass_temp = rdx;  // same as index
   441   __ load_klass(con_klass_temp, rax);
   442   __ lea(array_klass_temp, ExternalAddress((address)Universe::systemObjArrayKlassObj_addr()));
   443   __ cmpptr(con_klass_temp, Address(array_klass_temp, 0));
   444   __ jcc(Assembler::notEqual, L_done);
   445   __ cmpl(Address(rax, arrayOopDesc::length_offset_in_bytes()), 0);
   446   __ jcc(Assembler::notEqual, L_throw_exception);
   447   __ xorptr(rax, rax);
   448   __ jmp(L_done);
   450   // Load the exception from the system-array which wraps it:
   451   __ bind(L_throw_exception);
   452   __ load_heap_oop(rax, Address(rax, arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
   453   __ jump(ExternalAddress(Interpreter::throw_exception_entry()));
   455   __ bind(L_done);
   456 }
   458 void TemplateTable::ldc2_w() {
   459   transition(vtos, vtos);
   460   Label Long, Done;
   461   __ get_unsigned_2_byte_index_at_bcp(rbx, 1);
   463   __ get_cpool_and_tags(rcx, rax);
   464   const int base_offset = constantPoolOopDesc::header_size() * wordSize;
   465   const int tags_offset = typeArrayOopDesc::header_size(T_BYTE) * wordSize;
   467   // get type
   468   __ cmpb(Address(rax, rbx, Address::times_1, tags_offset),
   469           JVM_CONSTANT_Double);
   470   __ jccb(Assembler::notEqual, Long);
   471   // dtos
   472   __ movdbl(xmm0, Address(rcx, rbx, Address::times_8, base_offset));
   473   __ push_d();
   474   __ jmpb(Done);
   476   __ bind(Long);
   477   // ltos
   478   __ movq(rax, Address(rcx, rbx, Address::times_8, base_offset));
   479   __ push_l();
   481   __ bind(Done);
   482 }
   484 void TemplateTable::locals_index(Register reg, int offset) {
   485   __ load_unsigned_byte(reg, at_bcp(offset));
   486   __ negptr(reg);
   487 }
   489 void TemplateTable::iload() {
   490   transition(vtos, itos);
   491   if (RewriteFrequentPairs) {
   492     Label rewrite, done;
   493     const Register bc = c_rarg3;
   494     assert(rbx != bc, "register damaged");
   496     // get next byte
   497     __ load_unsigned_byte(rbx,
   498                           at_bcp(Bytecodes::length_for(Bytecodes::_iload)));
   499     // if _iload, wait to rewrite to iload2.  We only want to rewrite the
   500     // last two iloads in a pair.  Comparing against fast_iload means that
   501     // the next bytecode is neither an iload or a caload, and therefore
   502     // an iload pair.
   503     __ cmpl(rbx, Bytecodes::_iload);
   504     __ jcc(Assembler::equal, done);
   506     __ cmpl(rbx, Bytecodes::_fast_iload);
   507     __ movl(bc, Bytecodes::_fast_iload2);
   508     __ jccb(Assembler::equal, rewrite);
   510     // if _caload, rewrite to fast_icaload
   511     __ cmpl(rbx, Bytecodes::_caload);
   512     __ movl(bc, Bytecodes::_fast_icaload);
   513     __ jccb(Assembler::equal, rewrite);
   515     // rewrite so iload doesn't check again.
   516     __ movl(bc, Bytecodes::_fast_iload);
   518     // rewrite
   519     // bc: fast bytecode
   520     __ bind(rewrite);
   521     patch_bytecode(Bytecodes::_iload, bc, rbx, false);
   522     __ bind(done);
   523   }
   525   // Get the local value into tos
   526   locals_index(rbx);
   527   __ movl(rax, iaddress(rbx));
   528 }
   530 void TemplateTable::fast_iload2() {
   531   transition(vtos, itos);
   532   locals_index(rbx);
   533   __ movl(rax, iaddress(rbx));
   534   __ push(itos);
   535   locals_index(rbx, 3);
   536   __ movl(rax, iaddress(rbx));
   537 }
   539 void TemplateTable::fast_iload() {
   540   transition(vtos, itos);
   541   locals_index(rbx);
   542   __ movl(rax, iaddress(rbx));
   543 }
   545 void TemplateTable::lload() {
   546   transition(vtos, ltos);
   547   locals_index(rbx);
   548   __ movq(rax, laddress(rbx));
   549 }
   551 void TemplateTable::fload() {
   552   transition(vtos, ftos);
   553   locals_index(rbx);
   554   __ movflt(xmm0, faddress(rbx));
   555 }
   557 void TemplateTable::dload() {
   558   transition(vtos, dtos);
   559   locals_index(rbx);
   560   __ movdbl(xmm0, daddress(rbx));
   561 }
   563 void TemplateTable::aload() {
   564   transition(vtos, atos);
   565   locals_index(rbx);
   566   __ movptr(rax, aaddress(rbx));
   567 }
   569 void TemplateTable::locals_index_wide(Register reg) {
   570   __ movl(reg, at_bcp(2));
   571   __ bswapl(reg);
   572   __ shrl(reg, 16);
   573   __ negptr(reg);
   574 }
   576 void TemplateTable::wide_iload() {
   577   transition(vtos, itos);
   578   locals_index_wide(rbx);
   579   __ movl(rax, iaddress(rbx));
   580 }
   582 void TemplateTable::wide_lload() {
   583   transition(vtos, ltos);
   584   locals_index_wide(rbx);
   585   __ movq(rax, laddress(rbx));
   586 }
   588 void TemplateTable::wide_fload() {
   589   transition(vtos, ftos);
   590   locals_index_wide(rbx);
   591   __ movflt(xmm0, faddress(rbx));
   592 }
   594 void TemplateTable::wide_dload() {
   595   transition(vtos, dtos);
   596   locals_index_wide(rbx);
   597   __ movdbl(xmm0, daddress(rbx));
   598 }
   600 void TemplateTable::wide_aload() {
   601   transition(vtos, atos);
   602   locals_index_wide(rbx);
   603   __ movptr(rax, aaddress(rbx));
   604 }
   606 void TemplateTable::index_check(Register array, Register index) {
   607   // destroys rbx
   608   // check array
   609   __ null_check(array, arrayOopDesc::length_offset_in_bytes());
   610   // sign extend index for use by indexed load
   611   __ movl2ptr(index, index);
   612   // check index
   613   __ cmpl(index, Address(array, arrayOopDesc::length_offset_in_bytes()));
   614   if (index != rbx) {
   615     // ??? convention: move aberrant index into ebx for exception message
   616     assert(rbx != array, "different registers");
   617     __ movl(rbx, index);
   618   }
   619   __ jump_cc(Assembler::aboveEqual,
   620              ExternalAddress(Interpreter::_throw_ArrayIndexOutOfBoundsException_entry));
   621 }
   623 void TemplateTable::iaload() {
   624   transition(itos, itos);
   625   __ pop_ptr(rdx);
   626   // eax: index
   627   // rdx: array
   628   index_check(rdx, rax); // kills rbx
   629   __ movl(rax, Address(rdx, rax,
   630                        Address::times_4,
   631                        arrayOopDesc::base_offset_in_bytes(T_INT)));
   632 }
   634 void TemplateTable::laload() {
   635   transition(itos, ltos);
   636   __ pop_ptr(rdx);
   637   // eax: index
   638   // rdx: array
   639   index_check(rdx, rax); // kills rbx
   640   __ movq(rax, Address(rdx, rbx,
   641                        Address::times_8,
   642                        arrayOopDesc::base_offset_in_bytes(T_LONG)));
   643 }
   645 void TemplateTable::faload() {
   646   transition(itos, ftos);
   647   __ pop_ptr(rdx);
   648   // eax: index
   649   // rdx: array
   650   index_check(rdx, rax); // kills rbx
   651   __ movflt(xmm0, Address(rdx, rax,
   652                          Address::times_4,
   653                          arrayOopDesc::base_offset_in_bytes(T_FLOAT)));
   654 }
   656 void TemplateTable::daload() {
   657   transition(itos, dtos);
   658   __ pop_ptr(rdx);
   659   // eax: index
   660   // rdx: array
   661   index_check(rdx, rax); // kills rbx
   662   __ movdbl(xmm0, Address(rdx, rax,
   663                           Address::times_8,
   664                           arrayOopDesc::base_offset_in_bytes(T_DOUBLE)));
   665 }
   667 void TemplateTable::aaload() {
   668   transition(itos, atos);
   669   __ pop_ptr(rdx);
   670   // eax: index
   671   // rdx: array
   672   index_check(rdx, rax); // kills rbx
   673   __ load_heap_oop(rax, Address(rdx, rax,
   674                                 UseCompressedOops ? Address::times_4 : Address::times_8,
   675                                 arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
   676 }
   678 void TemplateTable::baload() {
   679   transition(itos, itos);
   680   __ pop_ptr(rdx);
   681   // eax: index
   682   // rdx: array
   683   index_check(rdx, rax); // kills rbx
   684   __ load_signed_byte(rax,
   685                       Address(rdx, rax,
   686                               Address::times_1,
   687                               arrayOopDesc::base_offset_in_bytes(T_BYTE)));
   688 }
   690 void TemplateTable::caload() {
   691   transition(itos, itos);
   692   __ pop_ptr(rdx);
   693   // eax: index
   694   // rdx: array
   695   index_check(rdx, rax); // kills rbx
   696   __ load_unsigned_short(rax,
   697                          Address(rdx, rax,
   698                                  Address::times_2,
   699                                  arrayOopDesc::base_offset_in_bytes(T_CHAR)));
   700 }
   702 // iload followed by caload frequent pair
   703 void TemplateTable::fast_icaload() {
   704   transition(vtos, itos);
   705   // load index out of locals
   706   locals_index(rbx);
   707   __ movl(rax, iaddress(rbx));
   709   // eax: index
   710   // rdx: array
   711   __ pop_ptr(rdx);
   712   index_check(rdx, rax); // kills rbx
   713   __ load_unsigned_short(rax,
   714                          Address(rdx, rax,
   715                                  Address::times_2,
   716                                  arrayOopDesc::base_offset_in_bytes(T_CHAR)));
   717 }
   719 void TemplateTable::saload() {
   720   transition(itos, itos);
   721   __ pop_ptr(rdx);
   722   // eax: index
   723   // rdx: array
   724   index_check(rdx, rax); // kills rbx
   725   __ load_signed_short(rax,
   726                        Address(rdx, rax,
   727                                Address::times_2,
   728                                arrayOopDesc::base_offset_in_bytes(T_SHORT)));
   729 }
   731 void TemplateTable::iload(int n) {
   732   transition(vtos, itos);
   733   __ movl(rax, iaddress(n));
   734 }
   736 void TemplateTable::lload(int n) {
   737   transition(vtos, ltos);
   738   __ movq(rax, laddress(n));
   739 }
   741 void TemplateTable::fload(int n) {
   742   transition(vtos, ftos);
   743   __ movflt(xmm0, faddress(n));
   744 }
   746 void TemplateTable::dload(int n) {
   747   transition(vtos, dtos);
   748   __ movdbl(xmm0, daddress(n));
   749 }
   751 void TemplateTable::aload(int n) {
   752   transition(vtos, atos);
   753   __ movptr(rax, aaddress(n));
   754 }
   756 void TemplateTable::aload_0() {
   757   transition(vtos, atos);
   758   // According to bytecode histograms, the pairs:
   759   //
   760   // _aload_0, _fast_igetfield
   761   // _aload_0, _fast_agetfield
   762   // _aload_0, _fast_fgetfield
   763   //
   764   // occur frequently. If RewriteFrequentPairs is set, the (slow)
   765   // _aload_0 bytecode checks if the next bytecode is either
   766   // _fast_igetfield, _fast_agetfield or _fast_fgetfield and then
   767   // rewrites the current bytecode into a pair bytecode; otherwise it
   768   // rewrites the current bytecode into _fast_aload_0 that doesn't do
   769   // the pair check anymore.
   770   //
   771   // Note: If the next bytecode is _getfield, the rewrite must be
   772   //       delayed, otherwise we may miss an opportunity for a pair.
   773   //
   774   // Also rewrite frequent pairs
   775   //   aload_0, aload_1
   776   //   aload_0, iload_1
   777   // These bytecodes with a small amount of code are most profitable
   778   // to rewrite
   779   if (RewriteFrequentPairs) {
   780     Label rewrite, done;
   781     const Register bc = c_rarg3;
   782     assert(rbx != bc, "register damaged");
   783     // get next byte
   784     __ load_unsigned_byte(rbx,
   785                           at_bcp(Bytecodes::length_for(Bytecodes::_aload_0)));
   787     // do actual aload_0
   788     aload(0);
   790     // if _getfield then wait with rewrite
   791     __ cmpl(rbx, Bytecodes::_getfield);
   792     __ jcc(Assembler::equal, done);
   794     // if _igetfield then reqrite to _fast_iaccess_0
   795     assert(Bytecodes::java_code(Bytecodes::_fast_iaccess_0) ==
   796            Bytecodes::_aload_0,
   797            "fix bytecode definition");
   798     __ cmpl(rbx, Bytecodes::_fast_igetfield);
   799     __ movl(bc, Bytecodes::_fast_iaccess_0);
   800     __ jccb(Assembler::equal, rewrite);
   802     // if _agetfield then reqrite to _fast_aaccess_0
   803     assert(Bytecodes::java_code(Bytecodes::_fast_aaccess_0) ==
   804            Bytecodes::_aload_0,
   805            "fix bytecode definition");
   806     __ cmpl(rbx, Bytecodes::_fast_agetfield);
   807     __ movl(bc, Bytecodes::_fast_aaccess_0);
   808     __ jccb(Assembler::equal, rewrite);
   810     // if _fgetfield then reqrite to _fast_faccess_0
   811     assert(Bytecodes::java_code(Bytecodes::_fast_faccess_0) ==
   812            Bytecodes::_aload_0,
   813            "fix bytecode definition");
   814     __ cmpl(rbx, Bytecodes::_fast_fgetfield);
   815     __ movl(bc, Bytecodes::_fast_faccess_0);
   816     __ jccb(Assembler::equal, rewrite);
   818     // else rewrite to _fast_aload0
   819     assert(Bytecodes::java_code(Bytecodes::_fast_aload_0) ==
   820            Bytecodes::_aload_0,
   821            "fix bytecode definition");
   822     __ movl(bc, Bytecodes::_fast_aload_0);
   824     // rewrite
   825     // bc: fast bytecode
   826     __ bind(rewrite);
   827     patch_bytecode(Bytecodes::_aload_0, bc, rbx, false);
   829     __ bind(done);
   830   } else {
   831     aload(0);
   832   }
   833 }
   835 void TemplateTable::istore() {
   836   transition(itos, vtos);
   837   locals_index(rbx);
   838   __ movl(iaddress(rbx), rax);
   839 }
   841 void TemplateTable::lstore() {
   842   transition(ltos, vtos);
   843   locals_index(rbx);
   844   __ movq(laddress(rbx), rax);
   845 }
   847 void TemplateTable::fstore() {
   848   transition(ftos, vtos);
   849   locals_index(rbx);
   850   __ movflt(faddress(rbx), xmm0);
   851 }
   853 void TemplateTable::dstore() {
   854   transition(dtos, vtos);
   855   locals_index(rbx);
   856   __ movdbl(daddress(rbx), xmm0);
   857 }
   859 void TemplateTable::astore() {
   860   transition(vtos, vtos);
   861   __ pop_ptr(rax);
   862   locals_index(rbx);
   863   __ movptr(aaddress(rbx), rax);
   864 }
   866 void TemplateTable::wide_istore() {
   867   transition(vtos, vtos);
   868   __ pop_i();
   869   locals_index_wide(rbx);
   870   __ movl(iaddress(rbx), rax);
   871 }
   873 void TemplateTable::wide_lstore() {
   874   transition(vtos, vtos);
   875   __ pop_l();
   876   locals_index_wide(rbx);
   877   __ movq(laddress(rbx), rax);
   878 }
   880 void TemplateTable::wide_fstore() {
   881   transition(vtos, vtos);
   882   __ pop_f();
   883   locals_index_wide(rbx);
   884   __ movflt(faddress(rbx), xmm0);
   885 }
   887 void TemplateTable::wide_dstore() {
   888   transition(vtos, vtos);
   889   __ pop_d();
   890   locals_index_wide(rbx);
   891   __ movdbl(daddress(rbx), xmm0);
   892 }
   894 void TemplateTable::wide_astore() {
   895   transition(vtos, vtos);
   896   __ pop_ptr(rax);
   897   locals_index_wide(rbx);
   898   __ movptr(aaddress(rbx), rax);
   899 }
   901 void TemplateTable::iastore() {
   902   transition(itos, vtos);
   903   __ pop_i(rbx);
   904   __ pop_ptr(rdx);
   905   // eax: value
   906   // ebx: index
   907   // rdx: array
   908   index_check(rdx, rbx); // prefer index in ebx
   909   __ movl(Address(rdx, rbx,
   910                   Address::times_4,
   911                   arrayOopDesc::base_offset_in_bytes(T_INT)),
   912           rax);
   913 }
   915 void TemplateTable::lastore() {
   916   transition(ltos, vtos);
   917   __ pop_i(rbx);
   918   __ pop_ptr(rdx);
   919   // rax: value
   920   // ebx: index
   921   // rdx: array
   922   index_check(rdx, rbx); // prefer index in ebx
   923   __ movq(Address(rdx, rbx,
   924                   Address::times_8,
   925                   arrayOopDesc::base_offset_in_bytes(T_LONG)),
   926           rax);
   927 }
   929 void TemplateTable::fastore() {
   930   transition(ftos, vtos);
   931   __ pop_i(rbx);
   932   __ pop_ptr(rdx);
   933   // xmm0: value
   934   // ebx:  index
   935   // rdx:  array
   936   index_check(rdx, rbx); // prefer index in ebx
   937   __ movflt(Address(rdx, rbx,
   938                    Address::times_4,
   939                    arrayOopDesc::base_offset_in_bytes(T_FLOAT)),
   940            xmm0);
   941 }
   943 void TemplateTable::dastore() {
   944   transition(dtos, vtos);
   945   __ pop_i(rbx);
   946   __ pop_ptr(rdx);
   947   // xmm0: value
   948   // ebx:  index
   949   // rdx:  array
   950   index_check(rdx, rbx); // prefer index in ebx
   951   __ movdbl(Address(rdx, rbx,
   952                    Address::times_8,
   953                    arrayOopDesc::base_offset_in_bytes(T_DOUBLE)),
   954            xmm0);
   955 }
   957 void TemplateTable::aastore() {
   958   Label is_null, ok_is_subtype, done;
   959   transition(vtos, vtos);
   960   // stack: ..., array, index, value
   961   __ movptr(rax, at_tos());    // value
   962   __ movl(rcx, at_tos_p1()); // index
   963   __ movptr(rdx, at_tos_p2()); // array
   965   Address element_address(rdx, rcx,
   966                           UseCompressedOops? Address::times_4 : Address::times_8,
   967                           arrayOopDesc::base_offset_in_bytes(T_OBJECT));
   969   index_check(rdx, rcx);     // kills rbx
   970   // do array store check - check for NULL value first
   971   __ testptr(rax, rax);
   972   __ jcc(Assembler::zero, is_null);
   974   // Move subklass into rbx
   975   __ load_klass(rbx, rax);
   976   // Move superklass into rax
   977   __ load_klass(rax, rdx);
   978   __ movptr(rax, Address(rax,
   979                          sizeof(oopDesc) +
   980                          objArrayKlass::element_klass_offset_in_bytes()));
   981   // Compress array + index*oopSize + 12 into a single register.  Frees rcx.
   982   __ lea(rdx, element_address);
   984   // Generate subtype check.  Blows rcx, rdi
   985   // Superklass in rax.  Subklass in rbx.
   986   __ gen_subtype_check(rbx, ok_is_subtype);
   988   // Come here on failure
   989   // object is at TOS
   990   __ jump(ExternalAddress(Interpreter::_throw_ArrayStoreException_entry));
   992   // Come here on success
   993   __ bind(ok_is_subtype);
   995   // Get the value we will store
   996   __ movptr(rax, at_tos());
   997   // Now store using the appropriate barrier
   998   do_oop_store(_masm, Address(rdx, 0), rax, _bs->kind(), true);
   999   __ jmp(done);
  1001   // Have a NULL in rax, rdx=array, ecx=index.  Store NULL at ary[idx]
  1002   __ bind(is_null);
  1003   __ profile_null_seen(rbx);
  1005   // Store a NULL
  1006   do_oop_store(_masm, element_address, noreg, _bs->kind(), true);
  1008   // Pop stack arguments
  1009   __ bind(done);
  1010   __ addptr(rsp, 3 * Interpreter::stackElementSize);
  1013 void TemplateTable::bastore() {
  1014   transition(itos, vtos);
  1015   __ pop_i(rbx);
  1016   __ pop_ptr(rdx);
  1017   // eax: value
  1018   // ebx: index
  1019   // rdx: array
  1020   index_check(rdx, rbx); // prefer index in ebx
  1021   __ movb(Address(rdx, rbx,
  1022                   Address::times_1,
  1023                   arrayOopDesc::base_offset_in_bytes(T_BYTE)),
  1024           rax);
  1027 void TemplateTable::castore() {
  1028   transition(itos, vtos);
  1029   __ pop_i(rbx);
  1030   __ pop_ptr(rdx);
  1031   // eax: value
  1032   // ebx: index
  1033   // rdx: array
  1034   index_check(rdx, rbx);  // prefer index in ebx
  1035   __ movw(Address(rdx, rbx,
  1036                   Address::times_2,
  1037                   arrayOopDesc::base_offset_in_bytes(T_CHAR)),
  1038           rax);
  1041 void TemplateTable::sastore() {
  1042   castore();
  1045 void TemplateTable::istore(int n) {
  1046   transition(itos, vtos);
  1047   __ movl(iaddress(n), rax);
  1050 void TemplateTable::lstore(int n) {
  1051   transition(ltos, vtos);
  1052   __ movq(laddress(n), rax);
  1055 void TemplateTable::fstore(int n) {
  1056   transition(ftos, vtos);
  1057   __ movflt(faddress(n), xmm0);
  1060 void TemplateTable::dstore(int n) {
  1061   transition(dtos, vtos);
  1062   __ movdbl(daddress(n), xmm0);
  1065 void TemplateTable::astore(int n) {
  1066   transition(vtos, vtos);
  1067   __ pop_ptr(rax);
  1068   __ movptr(aaddress(n), rax);
  1071 void TemplateTable::pop() {
  1072   transition(vtos, vtos);
  1073   __ addptr(rsp, Interpreter::stackElementSize);
  1076 void TemplateTable::pop2() {
  1077   transition(vtos, vtos);
  1078   __ addptr(rsp, 2 * Interpreter::stackElementSize);
  1081 void TemplateTable::dup() {
  1082   transition(vtos, vtos);
  1083   __ load_ptr(0, rax);
  1084   __ push_ptr(rax);
  1085   // stack: ..., a, a
  1088 void TemplateTable::dup_x1() {
  1089   transition(vtos, vtos);
  1090   // stack: ..., a, b
  1091   __ load_ptr( 0, rax);  // load b
  1092   __ load_ptr( 1, rcx);  // load a
  1093   __ store_ptr(1, rax);  // store b
  1094   __ store_ptr(0, rcx);  // store a
  1095   __ push_ptr(rax);      // push b
  1096   // stack: ..., b, a, b
  1099 void TemplateTable::dup_x2() {
  1100   transition(vtos, vtos);
  1101   // stack: ..., a, b, c
  1102   __ load_ptr( 0, rax);  // load c
  1103   __ load_ptr( 2, rcx);  // load a
  1104   __ store_ptr(2, rax);  // store c in a
  1105   __ push_ptr(rax);      // push c
  1106   // stack: ..., c, b, c, c
  1107   __ load_ptr( 2, rax);  // load b
  1108   __ store_ptr(2, rcx);  // store a in b
  1109   // stack: ..., c, a, c, c
  1110   __ store_ptr(1, rax);  // store b in c
  1111   // stack: ..., c, a, b, c
  1114 void TemplateTable::dup2() {
  1115   transition(vtos, vtos);
  1116   // stack: ..., a, b
  1117   __ load_ptr(1, rax);  // load a
  1118   __ push_ptr(rax);     // push a
  1119   __ load_ptr(1, rax);  // load b
  1120   __ push_ptr(rax);     // push b
  1121   // stack: ..., a, b, a, b
  1124 void TemplateTable::dup2_x1() {
  1125   transition(vtos, vtos);
  1126   // stack: ..., a, b, c
  1127   __ load_ptr( 0, rcx);  // load c
  1128   __ load_ptr( 1, rax);  // load b
  1129   __ push_ptr(rax);      // push b
  1130   __ push_ptr(rcx);      // push c
  1131   // stack: ..., a, b, c, b, c
  1132   __ store_ptr(3, rcx);  // store c in b
  1133   // stack: ..., a, c, c, b, c
  1134   __ load_ptr( 4, rcx);  // load a
  1135   __ store_ptr(2, rcx);  // store a in 2nd c
  1136   // stack: ..., a, c, a, b, c
  1137   __ store_ptr(4, rax);  // store b in a
  1138   // stack: ..., b, c, a, b, c
  1141 void TemplateTable::dup2_x2() {
  1142   transition(vtos, vtos);
  1143   // stack: ..., a, b, c, d
  1144   __ load_ptr( 0, rcx);  // load d
  1145   __ load_ptr( 1, rax);  // load c
  1146   __ push_ptr(rax);      // push c
  1147   __ push_ptr(rcx);      // push d
  1148   // stack: ..., a, b, c, d, c, d
  1149   __ load_ptr( 4, rax);  // load b
  1150   __ store_ptr(2, rax);  // store b in d
  1151   __ store_ptr(4, rcx);  // store d in b
  1152   // stack: ..., a, d, c, b, c, d
  1153   __ load_ptr( 5, rcx);  // load a
  1154   __ load_ptr( 3, rax);  // load c
  1155   __ store_ptr(3, rcx);  // store a in c
  1156   __ store_ptr(5, rax);  // store c in a
  1157   // stack: ..., c, d, a, b, c, d
  1160 void TemplateTable::swap() {
  1161   transition(vtos, vtos);
  1162   // stack: ..., a, b
  1163   __ load_ptr( 1, rcx);  // load a
  1164   __ load_ptr( 0, rax);  // load b
  1165   __ store_ptr(0, rcx);  // store a in b
  1166   __ store_ptr(1, rax);  // store b in a
  1167   // stack: ..., b, a
  1170 void TemplateTable::iop2(Operation op) {
  1171   transition(itos, itos);
  1172   switch (op) {
  1173   case add  :                    __ pop_i(rdx); __ addl (rax, rdx); break;
  1174   case sub  : __ movl(rdx, rax); __ pop_i(rax); __ subl (rax, rdx); break;
  1175   case mul  :                    __ pop_i(rdx); __ imull(rax, rdx); break;
  1176   case _and :                    __ pop_i(rdx); __ andl (rax, rdx); break;
  1177   case _or  :                    __ pop_i(rdx); __ orl  (rax, rdx); break;
  1178   case _xor :                    __ pop_i(rdx); __ xorl (rax, rdx); break;
  1179   case shl  : __ movl(rcx, rax); __ pop_i(rax); __ shll (rax);      break;
  1180   case shr  : __ movl(rcx, rax); __ pop_i(rax); __ sarl (rax);      break;
  1181   case ushr : __ movl(rcx, rax); __ pop_i(rax); __ shrl (rax);      break;
  1182   default   : ShouldNotReachHere();
  1186 void TemplateTable::lop2(Operation op) {
  1187   transition(ltos, ltos);
  1188   switch (op) {
  1189   case add  :                    __ pop_l(rdx); __ addptr(rax, rdx); break;
  1190   case sub  : __ mov(rdx, rax);  __ pop_l(rax); __ subptr(rax, rdx); break;
  1191   case _and :                    __ pop_l(rdx); __ andptr(rax, rdx); break;
  1192   case _or  :                    __ pop_l(rdx); __ orptr (rax, rdx); break;
  1193   case _xor :                    __ pop_l(rdx); __ xorptr(rax, rdx); break;
  1194   default   : ShouldNotReachHere();
  1198 void TemplateTable::idiv() {
  1199   transition(itos, itos);
  1200   __ movl(rcx, rax);
  1201   __ pop_i(rax);
  1202   // Note: could xor eax and ecx and compare with (-1 ^ min_int). If
  1203   //       they are not equal, one could do a normal division (no correction
  1204   //       needed), which may speed up this implementation for the common case.
  1205   //       (see also JVM spec., p.243 & p.271)
  1206   __ corrected_idivl(rcx);
  1209 void TemplateTable::irem() {
  1210   transition(itos, itos);
  1211   __ movl(rcx, rax);
  1212   __ pop_i(rax);
  1213   // Note: could xor eax and ecx and compare with (-1 ^ min_int). If
  1214   //       they are not equal, one could do a normal division (no correction
  1215   //       needed), which may speed up this implementation for the common case.
  1216   //       (see also JVM spec., p.243 & p.271)
  1217   __ corrected_idivl(rcx);
  1218   __ movl(rax, rdx);
  1221 void TemplateTable::lmul() {
  1222   transition(ltos, ltos);
  1223   __ pop_l(rdx);
  1224   __ imulq(rax, rdx);
  1227 void TemplateTable::ldiv() {
  1228   transition(ltos, ltos);
  1229   __ mov(rcx, rax);
  1230   __ pop_l(rax);
  1231   // generate explicit div0 check
  1232   __ testq(rcx, rcx);
  1233   __ jump_cc(Assembler::zero,
  1234              ExternalAddress(Interpreter::_throw_ArithmeticException_entry));
  1235   // Note: could xor rax and rcx and compare with (-1 ^ min_int). If
  1236   //       they are not equal, one could do a normal division (no correction
  1237   //       needed), which may speed up this implementation for the common case.
  1238   //       (see also JVM spec., p.243 & p.271)
  1239   __ corrected_idivq(rcx); // kills rbx
  1242 void TemplateTable::lrem() {
  1243   transition(ltos, ltos);
  1244   __ mov(rcx, rax);
  1245   __ pop_l(rax);
  1246   __ testq(rcx, rcx);
  1247   __ jump_cc(Assembler::zero,
  1248              ExternalAddress(Interpreter::_throw_ArithmeticException_entry));
  1249   // Note: could xor rax and rcx and compare with (-1 ^ min_int). If
  1250   //       they are not equal, one could do a normal division (no correction
  1251   //       needed), which may speed up this implementation for the common case.
  1252   //       (see also JVM spec., p.243 & p.271)
  1253   __ corrected_idivq(rcx); // kills rbx
  1254   __ mov(rax, rdx);
  1257 void TemplateTable::lshl() {
  1258   transition(itos, ltos);
  1259   __ movl(rcx, rax);                             // get shift count
  1260   __ pop_l(rax);                                 // get shift value
  1261   __ shlq(rax);
  1264 void TemplateTable::lshr() {
  1265   transition(itos, ltos);
  1266   __ movl(rcx, rax);                             // get shift count
  1267   __ pop_l(rax);                                 // get shift value
  1268   __ sarq(rax);
  1271 void TemplateTable::lushr() {
  1272   transition(itos, ltos);
  1273   __ movl(rcx, rax);                             // get shift count
  1274   __ pop_l(rax);                                 // get shift value
  1275   __ shrq(rax);
  1278 void TemplateTable::fop2(Operation op) {
  1279   transition(ftos, ftos);
  1280   switch (op) {
  1281   case add:
  1282     __ addss(xmm0, at_rsp());
  1283     __ addptr(rsp, Interpreter::stackElementSize);
  1284     break;
  1285   case sub:
  1286     __ movflt(xmm1, xmm0);
  1287     __ pop_f(xmm0);
  1288     __ subss(xmm0, xmm1);
  1289     break;
  1290   case mul:
  1291     __ mulss(xmm0, at_rsp());
  1292     __ addptr(rsp, Interpreter::stackElementSize);
  1293     break;
  1294   case div:
  1295     __ movflt(xmm1, xmm0);
  1296     __ pop_f(xmm0);
  1297     __ divss(xmm0, xmm1);
  1298     break;
  1299   case rem:
  1300     __ movflt(xmm1, xmm0);
  1301     __ pop_f(xmm0);
  1302     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::frem), 2);
  1303     break;
  1304   default:
  1305     ShouldNotReachHere();
  1306     break;
  1310 void TemplateTable::dop2(Operation op) {
  1311   transition(dtos, dtos);
  1312   switch (op) {
  1313   case add:
  1314     __ addsd(xmm0, at_rsp());
  1315     __ addptr(rsp, 2 * Interpreter::stackElementSize);
  1316     break;
  1317   case sub:
  1318     __ movdbl(xmm1, xmm0);
  1319     __ pop_d(xmm0);
  1320     __ subsd(xmm0, xmm1);
  1321     break;
  1322   case mul:
  1323     __ mulsd(xmm0, at_rsp());
  1324     __ addptr(rsp, 2 * Interpreter::stackElementSize);
  1325     break;
  1326   case div:
  1327     __ movdbl(xmm1, xmm0);
  1328     __ pop_d(xmm0);
  1329     __ divsd(xmm0, xmm1);
  1330     break;
  1331   case rem:
  1332     __ movdbl(xmm1, xmm0);
  1333     __ pop_d(xmm0);
  1334     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::drem), 2);
  1335     break;
  1336   default:
  1337     ShouldNotReachHere();
  1338     break;
  1342 void TemplateTable::ineg() {
  1343   transition(itos, itos);
  1344   __ negl(rax);
  1347 void TemplateTable::lneg() {
  1348   transition(ltos, ltos);
  1349   __ negq(rax);
  1352 // Note: 'double' and 'long long' have 32-bits alignment on x86.
  1353 static jlong* double_quadword(jlong *adr, jlong lo, jlong hi) {
  1354   // Use the expression (adr)&(~0xF) to provide 128-bits aligned address
  1355   // of 128-bits operands for SSE instructions.
  1356   jlong *operand = (jlong*)(((intptr_t)adr)&((intptr_t)(~0xF)));
  1357   // Store the value to a 128-bits operand.
  1358   operand[0] = lo;
  1359   operand[1] = hi;
  1360   return operand;
  1363 // Buffer for 128-bits masks used by SSE instructions.
  1364 static jlong float_signflip_pool[2*2];
  1365 static jlong double_signflip_pool[2*2];
  1367 void TemplateTable::fneg() {
  1368   transition(ftos, ftos);
  1369   static jlong *float_signflip  = double_quadword(&float_signflip_pool[1], 0x8000000080000000, 0x8000000080000000);
  1370   __ xorps(xmm0, ExternalAddress((address) float_signflip));
  1373 void TemplateTable::dneg() {
  1374   transition(dtos, dtos);
  1375   static jlong *double_signflip  = double_quadword(&double_signflip_pool[1], 0x8000000000000000, 0x8000000000000000);
  1376   __ xorpd(xmm0, ExternalAddress((address) double_signflip));
  1379 void TemplateTable::iinc() {
  1380   transition(vtos, vtos);
  1381   __ load_signed_byte(rdx, at_bcp(2)); // get constant
  1382   locals_index(rbx);
  1383   __ addl(iaddress(rbx), rdx);
  1386 void TemplateTable::wide_iinc() {
  1387   transition(vtos, vtos);
  1388   __ movl(rdx, at_bcp(4)); // get constant
  1389   locals_index_wide(rbx);
  1390   __ bswapl(rdx); // swap bytes & sign-extend constant
  1391   __ sarl(rdx, 16);
  1392   __ addl(iaddress(rbx), rdx);
  1393   // Note: should probably use only one movl to get both
  1394   //       the index and the constant -> fix this
  1397 void TemplateTable::convert() {
  1398   // Checking
  1399 #ifdef ASSERT
  1401     TosState tos_in  = ilgl;
  1402     TosState tos_out = ilgl;
  1403     switch (bytecode()) {
  1404     case Bytecodes::_i2l: // fall through
  1405     case Bytecodes::_i2f: // fall through
  1406     case Bytecodes::_i2d: // fall through
  1407     case Bytecodes::_i2b: // fall through
  1408     case Bytecodes::_i2c: // fall through
  1409     case Bytecodes::_i2s: tos_in = itos; break;
  1410     case Bytecodes::_l2i: // fall through
  1411     case Bytecodes::_l2f: // fall through
  1412     case Bytecodes::_l2d: tos_in = ltos; break;
  1413     case Bytecodes::_f2i: // fall through
  1414     case Bytecodes::_f2l: // fall through
  1415     case Bytecodes::_f2d: tos_in = ftos; break;
  1416     case Bytecodes::_d2i: // fall through
  1417     case Bytecodes::_d2l: // fall through
  1418     case Bytecodes::_d2f: tos_in = dtos; break;
  1419     default             : ShouldNotReachHere();
  1421     switch (bytecode()) {
  1422     case Bytecodes::_l2i: // fall through
  1423     case Bytecodes::_f2i: // fall through
  1424     case Bytecodes::_d2i: // fall through
  1425     case Bytecodes::_i2b: // fall through
  1426     case Bytecodes::_i2c: // fall through
  1427     case Bytecodes::_i2s: tos_out = itos; break;
  1428     case Bytecodes::_i2l: // fall through
  1429     case Bytecodes::_f2l: // fall through
  1430     case Bytecodes::_d2l: tos_out = ltos; break;
  1431     case Bytecodes::_i2f: // fall through
  1432     case Bytecodes::_l2f: // fall through
  1433     case Bytecodes::_d2f: tos_out = ftos; break;
  1434     case Bytecodes::_i2d: // fall through
  1435     case Bytecodes::_l2d: // fall through
  1436     case Bytecodes::_f2d: tos_out = dtos; break;
  1437     default             : ShouldNotReachHere();
  1439     transition(tos_in, tos_out);
  1441 #endif // ASSERT
  1443   static const int64_t is_nan = 0x8000000000000000L;
  1445   // Conversion
  1446   switch (bytecode()) {
  1447   case Bytecodes::_i2l:
  1448     __ movslq(rax, rax);
  1449     break;
  1450   case Bytecodes::_i2f:
  1451     __ cvtsi2ssl(xmm0, rax);
  1452     break;
  1453   case Bytecodes::_i2d:
  1454     __ cvtsi2sdl(xmm0, rax);
  1455     break;
  1456   case Bytecodes::_i2b:
  1457     __ movsbl(rax, rax);
  1458     break;
  1459   case Bytecodes::_i2c:
  1460     __ movzwl(rax, rax);
  1461     break;
  1462   case Bytecodes::_i2s:
  1463     __ movswl(rax, rax);
  1464     break;
  1465   case Bytecodes::_l2i:
  1466     __ movl(rax, rax);
  1467     break;
  1468   case Bytecodes::_l2f:
  1469     __ cvtsi2ssq(xmm0, rax);
  1470     break;
  1471   case Bytecodes::_l2d:
  1472     __ cvtsi2sdq(xmm0, rax);
  1473     break;
  1474   case Bytecodes::_f2i:
  1476     Label L;
  1477     __ cvttss2sil(rax, xmm0);
  1478     __ cmpl(rax, 0x80000000); // NaN or overflow/underflow?
  1479     __ jcc(Assembler::notEqual, L);
  1480     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2i), 1);
  1481     __ bind(L);
  1483     break;
  1484   case Bytecodes::_f2l:
  1486     Label L;
  1487     __ cvttss2siq(rax, xmm0);
  1488     // NaN or overflow/underflow?
  1489     __ cmp64(rax, ExternalAddress((address) &is_nan));
  1490     __ jcc(Assembler::notEqual, L);
  1491     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2l), 1);
  1492     __ bind(L);
  1494     break;
  1495   case Bytecodes::_f2d:
  1496     __ cvtss2sd(xmm0, xmm0);
  1497     break;
  1498   case Bytecodes::_d2i:
  1500     Label L;
  1501     __ cvttsd2sil(rax, xmm0);
  1502     __ cmpl(rax, 0x80000000); // NaN or overflow/underflow?
  1503     __ jcc(Assembler::notEqual, L);
  1504     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2i), 1);
  1505     __ bind(L);
  1507     break;
  1508   case Bytecodes::_d2l:
  1510     Label L;
  1511     __ cvttsd2siq(rax, xmm0);
  1512     // NaN or overflow/underflow?
  1513     __ cmp64(rax, ExternalAddress((address) &is_nan));
  1514     __ jcc(Assembler::notEqual, L);
  1515     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2l), 1);
  1516     __ bind(L);
  1518     break;
  1519   case Bytecodes::_d2f:
  1520     __ cvtsd2ss(xmm0, xmm0);
  1521     break;
  1522   default:
  1523     ShouldNotReachHere();
  1527 void TemplateTable::lcmp() {
  1528   transition(ltos, itos);
  1529   Label done;
  1530   __ pop_l(rdx);
  1531   __ cmpq(rdx, rax);
  1532   __ movl(rax, -1);
  1533   __ jccb(Assembler::less, done);
  1534   __ setb(Assembler::notEqual, rax);
  1535   __ movzbl(rax, rax);
  1536   __ bind(done);
  1539 void TemplateTable::float_cmp(bool is_float, int unordered_result) {
  1540   Label done;
  1541   if (is_float) {
  1542     // XXX get rid of pop here, use ... reg, mem32
  1543     __ pop_f(xmm1);
  1544     __ ucomiss(xmm1, xmm0);
  1545   } else {
  1546     // XXX get rid of pop here, use ... reg, mem64
  1547     __ pop_d(xmm1);
  1548     __ ucomisd(xmm1, xmm0);
  1550   if (unordered_result < 0) {
  1551     __ movl(rax, -1);
  1552     __ jccb(Assembler::parity, done);
  1553     __ jccb(Assembler::below, done);
  1554     __ setb(Assembler::notEqual, rdx);
  1555     __ movzbl(rax, rdx);
  1556   } else {
  1557     __ movl(rax, 1);
  1558     __ jccb(Assembler::parity, done);
  1559     __ jccb(Assembler::above, done);
  1560     __ movl(rax, 0);
  1561     __ jccb(Assembler::equal, done);
  1562     __ decrementl(rax);
  1564   __ bind(done);
  1567 void TemplateTable::branch(bool is_jsr, bool is_wide) {
  1568   __ get_method(rcx); // rcx holds method
  1569   __ profile_taken_branch(rax, rbx); // rax holds updated MDP, rbx
  1570                                      // holds bumped taken count
  1572   const ByteSize be_offset = methodOopDesc::backedge_counter_offset() +
  1573                              InvocationCounter::counter_offset();
  1574   const ByteSize inv_offset = methodOopDesc::invocation_counter_offset() +
  1575                               InvocationCounter::counter_offset();
  1576   const int method_offset = frame::interpreter_frame_method_offset * wordSize;
  1578   // Load up edx with the branch displacement
  1579   __ movl(rdx, at_bcp(1));
  1580   __ bswapl(rdx);
  1582   if (!is_wide) {
  1583     __ sarl(rdx, 16);
  1585   __ movl2ptr(rdx, rdx);
  1587   // Handle all the JSR stuff here, then exit.
  1588   // It's much shorter and cleaner than intermingling with the non-JSR
  1589   // normal-branch stuff occurring below.
  1590   if (is_jsr) {
  1591     // Pre-load the next target bytecode into rbx
  1592     __ load_unsigned_byte(rbx, Address(r13, rdx, Address::times_1, 0));
  1594     // compute return address as bci in rax
  1595     __ lea(rax, at_bcp((is_wide ? 5 : 3) -
  1596                         in_bytes(constMethodOopDesc::codes_offset())));
  1597     __ subptr(rax, Address(rcx, methodOopDesc::const_offset()));
  1598     // Adjust the bcp in r13 by the displacement in rdx
  1599     __ addptr(r13, rdx);
  1600     // jsr returns atos that is not an oop
  1601     __ push_i(rax);
  1602     __ dispatch_only(vtos);
  1603     return;
  1606   // Normal (non-jsr) branch handling
  1608   // Adjust the bcp in r13 by the displacement in rdx
  1609   __ addptr(r13, rdx);
  1611   assert(UseLoopCounter || !UseOnStackReplacement,
  1612          "on-stack-replacement requires loop counters");
  1613   Label backedge_counter_overflow;
  1614   Label profile_method;
  1615   Label dispatch;
  1616   if (UseLoopCounter) {
  1617     // increment backedge counter for backward branches
  1618     // rax: MDO
  1619     // ebx: MDO bumped taken-count
  1620     // rcx: method
  1621     // rdx: target offset
  1622     // r13: target bcp
  1623     // r14: locals pointer
  1624     __ testl(rdx, rdx);             // check if forward or backward branch
  1625     __ jcc(Assembler::positive, dispatch); // count only if backward branch
  1626     if (TieredCompilation) {
  1627       Label no_mdo;
  1628       int increment = InvocationCounter::count_increment;
  1629       int mask = ((1 << Tier0BackedgeNotifyFreqLog) - 1) << InvocationCounter::count_shift;
  1630       if (ProfileInterpreter) {
  1631         // Are we profiling?
  1632         __ movptr(rbx, Address(rcx, in_bytes(methodOopDesc::method_data_offset())));
  1633         __ testptr(rbx, rbx);
  1634         __ jccb(Assembler::zero, no_mdo);
  1635         // Increment the MDO backedge counter
  1636         const Address mdo_backedge_counter(rbx, in_bytes(methodDataOopDesc::backedge_counter_offset()) +
  1637                                            in_bytes(InvocationCounter::counter_offset()));
  1638         __ increment_mask_and_jump(mdo_backedge_counter, increment, mask,
  1639                                    rax, false, Assembler::zero, &backedge_counter_overflow);
  1640         __ jmp(dispatch);
  1642       __ bind(no_mdo);
  1643       // Increment backedge counter in methodOop
  1644       __ increment_mask_and_jump(Address(rcx, be_offset), increment, mask,
  1645                                  rax, false, Assembler::zero, &backedge_counter_overflow);
  1646     } else {
  1647       // increment counter
  1648       __ movl(rax, Address(rcx, be_offset));        // load backedge counter
  1649       __ incrementl(rax, InvocationCounter::count_increment); // increment counter
  1650       __ movl(Address(rcx, be_offset), rax);        // store counter
  1652       __ movl(rax, Address(rcx, inv_offset));    // load invocation counter
  1653       __ andl(rax, InvocationCounter::count_mask_value); // and the status bits
  1654       __ addl(rax, Address(rcx, be_offset));        // add both counters
  1656       if (ProfileInterpreter) {
  1657         // Test to see if we should create a method data oop
  1658         __ cmp32(rax,
  1659                  ExternalAddress((address) &InvocationCounter::InterpreterProfileLimit));
  1660         __ jcc(Assembler::less, dispatch);
  1662         // if no method data exists, go to profile method
  1663         __ test_method_data_pointer(rax, profile_method);
  1665         if (UseOnStackReplacement) {
  1666           // check for overflow against ebx which is the MDO taken count
  1667           __ cmp32(rbx,
  1668                    ExternalAddress((address) &InvocationCounter::InterpreterBackwardBranchLimit));
  1669           __ jcc(Assembler::below, dispatch);
  1671           // When ProfileInterpreter is on, the backedge_count comes
  1672           // from the methodDataOop, which value does not get reset on
  1673           // the call to frequency_counter_overflow().  To avoid
  1674           // excessive calls to the overflow routine while the method is
  1675           // being compiled, add a second test to make sure the overflow
  1676           // function is called only once every overflow_frequency.
  1677           const int overflow_frequency = 1024;
  1678           __ andl(rbx, overflow_frequency - 1);
  1679           __ jcc(Assembler::zero, backedge_counter_overflow);
  1682       } else {
  1683         if (UseOnStackReplacement) {
  1684           // check for overflow against eax, which is the sum of the
  1685           // counters
  1686           __ cmp32(rax,
  1687                    ExternalAddress((address) &InvocationCounter::InterpreterBackwardBranchLimit));
  1688           __ jcc(Assembler::aboveEqual, backedge_counter_overflow);
  1693     __ bind(dispatch);
  1696   // Pre-load the next target bytecode into rbx
  1697   __ load_unsigned_byte(rbx, Address(r13, 0));
  1699   // continue with the bytecode @ target
  1700   // eax: return bci for jsr's, unused otherwise
  1701   // ebx: target bytecode
  1702   // r13: target bcp
  1703   __ dispatch_only(vtos);
  1705   if (UseLoopCounter) {
  1706     if (ProfileInterpreter) {
  1707       // Out-of-line code to allocate method data oop.
  1708       __ bind(profile_method);
  1709       __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::profile_method));
  1710       __ load_unsigned_byte(rbx, Address(r13, 0));  // restore target bytecode
  1711       __ set_method_data_pointer_for_bcp();
  1712       __ jmp(dispatch);
  1715     if (UseOnStackReplacement) {
  1716       // invocation counter overflow
  1717       __ bind(backedge_counter_overflow);
  1718       __ negptr(rdx);
  1719       __ addptr(rdx, r13); // branch bcp
  1720       // IcoResult frequency_counter_overflow([JavaThread*], address branch_bcp)
  1721       __ call_VM(noreg,
  1722                  CAST_FROM_FN_PTR(address,
  1723                                   InterpreterRuntime::frequency_counter_overflow),
  1724                  rdx);
  1725       __ load_unsigned_byte(rbx, Address(r13, 0));  // restore target bytecode
  1727       // rax: osr nmethod (osr ok) or NULL (osr not possible)
  1728       // ebx: target bytecode
  1729       // rdx: scratch
  1730       // r14: locals pointer
  1731       // r13: bcp
  1732       __ testptr(rax, rax);                        // test result
  1733       __ jcc(Assembler::zero, dispatch);         // no osr if null
  1734       // nmethod may have been invalidated (VM may block upon call_VM return)
  1735       __ movl(rcx, Address(rax, nmethod::entry_bci_offset()));
  1736       __ cmpl(rcx, InvalidOSREntryBci);
  1737       __ jcc(Assembler::equal, dispatch);
  1739       // We have the address of an on stack replacement routine in eax
  1740       // We need to prepare to execute the OSR method. First we must
  1741       // migrate the locals and monitors off of the stack.
  1743       __ mov(r13, rax);                             // save the nmethod
  1745       call_VM(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_begin));
  1747       // eax is OSR buffer, move it to expected parameter location
  1748       __ mov(j_rarg0, rax);
  1750       // We use j_rarg definitions here so that registers don't conflict as parameter
  1751       // registers change across platforms as we are in the midst of a calling
  1752       // sequence to the OSR nmethod and we don't want collision. These are NOT parameters.
  1754       const Register retaddr = j_rarg2;
  1755       const Register sender_sp = j_rarg1;
  1757       // pop the interpreter frame
  1758       __ movptr(sender_sp, Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize)); // get sender sp
  1759       __ leave();                                // remove frame anchor
  1760       __ pop(retaddr);                           // get return address
  1761       __ mov(rsp, sender_sp);                   // set sp to sender sp
  1762       // Ensure compiled code always sees stack at proper alignment
  1763       __ andptr(rsp, -(StackAlignmentInBytes));
  1765       // unlike x86 we need no specialized return from compiled code
  1766       // to the interpreter or the call stub.
  1768       // push the return address
  1769       __ push(retaddr);
  1771       // and begin the OSR nmethod
  1772       __ jmp(Address(r13, nmethod::osr_entry_point_offset()));
  1778 void TemplateTable::if_0cmp(Condition cc) {
  1779   transition(itos, vtos);
  1780   // assume branch is more often taken than not (loops use backward branches)
  1781   Label not_taken;
  1782   __ testl(rax, rax);
  1783   __ jcc(j_not(cc), not_taken);
  1784   branch(false, false);
  1785   __ bind(not_taken);
  1786   __ profile_not_taken_branch(rax);
  1789 void TemplateTable::if_icmp(Condition cc) {
  1790   transition(itos, vtos);
  1791   // assume branch is more often taken than not (loops use backward branches)
  1792   Label not_taken;
  1793   __ pop_i(rdx);
  1794   __ cmpl(rdx, rax);
  1795   __ jcc(j_not(cc), not_taken);
  1796   branch(false, false);
  1797   __ bind(not_taken);
  1798   __ profile_not_taken_branch(rax);
  1801 void TemplateTable::if_nullcmp(Condition cc) {
  1802   transition(atos, vtos);
  1803   // assume branch is more often taken than not (loops use backward branches)
  1804   Label not_taken;
  1805   __ testptr(rax, rax);
  1806   __ jcc(j_not(cc), not_taken);
  1807   branch(false, false);
  1808   __ bind(not_taken);
  1809   __ profile_not_taken_branch(rax);
  1812 void TemplateTable::if_acmp(Condition cc) {
  1813   transition(atos, vtos);
  1814   // assume branch is more often taken than not (loops use backward branches)
  1815   Label not_taken;
  1816   __ pop_ptr(rdx);
  1817   __ cmpptr(rdx, rax);
  1818   __ jcc(j_not(cc), not_taken);
  1819   branch(false, false);
  1820   __ bind(not_taken);
  1821   __ profile_not_taken_branch(rax);
  1824 void TemplateTable::ret() {
  1825   transition(vtos, vtos);
  1826   locals_index(rbx);
  1827   __ movslq(rbx, iaddress(rbx)); // get return bci, compute return bcp
  1828   __ profile_ret(rbx, rcx);
  1829   __ get_method(rax);
  1830   __ movptr(r13, Address(rax, methodOopDesc::const_offset()));
  1831   __ lea(r13, Address(r13, rbx, Address::times_1,
  1832                       constMethodOopDesc::codes_offset()));
  1833   __ dispatch_next(vtos);
  1836 void TemplateTable::wide_ret() {
  1837   transition(vtos, vtos);
  1838   locals_index_wide(rbx);
  1839   __ movptr(rbx, aaddress(rbx)); // get return bci, compute return bcp
  1840   __ profile_ret(rbx, rcx);
  1841   __ get_method(rax);
  1842   __ movptr(r13, Address(rax, methodOopDesc::const_offset()));
  1843   __ lea(r13, Address(r13, rbx, Address::times_1, constMethodOopDesc::codes_offset()));
  1844   __ dispatch_next(vtos);
  1847 void TemplateTable::tableswitch() {
  1848   Label default_case, continue_execution;
  1849   transition(itos, vtos);
  1850   // align r13
  1851   __ lea(rbx, at_bcp(BytesPerInt));
  1852   __ andptr(rbx, -BytesPerInt);
  1853   // load lo & hi
  1854   __ movl(rcx, Address(rbx, BytesPerInt));
  1855   __ movl(rdx, Address(rbx, 2 * BytesPerInt));
  1856   __ bswapl(rcx);
  1857   __ bswapl(rdx);
  1858   // check against lo & hi
  1859   __ cmpl(rax, rcx);
  1860   __ jcc(Assembler::less, default_case);
  1861   __ cmpl(rax, rdx);
  1862   __ jcc(Assembler::greater, default_case);
  1863   // lookup dispatch offset
  1864   __ subl(rax, rcx);
  1865   __ movl(rdx, Address(rbx, rax, Address::times_4, 3 * BytesPerInt));
  1866   __ profile_switch_case(rax, rbx, rcx);
  1867   // continue execution
  1868   __ bind(continue_execution);
  1869   __ bswapl(rdx);
  1870   __ movl2ptr(rdx, rdx);
  1871   __ load_unsigned_byte(rbx, Address(r13, rdx, Address::times_1));
  1872   __ addptr(r13, rdx);
  1873   __ dispatch_only(vtos);
  1874   // handle default
  1875   __ bind(default_case);
  1876   __ profile_switch_default(rax);
  1877   __ movl(rdx, Address(rbx, 0));
  1878   __ jmp(continue_execution);
  1881 void TemplateTable::lookupswitch() {
  1882   transition(itos, itos);
  1883   __ stop("lookupswitch bytecode should have been rewritten");
  1886 void TemplateTable::fast_linearswitch() {
  1887   transition(itos, vtos);
  1888   Label loop_entry, loop, found, continue_execution;
  1889   // bswap rax so we can avoid bswapping the table entries
  1890   __ bswapl(rax);
  1891   // align r13
  1892   __ lea(rbx, at_bcp(BytesPerInt)); // btw: should be able to get rid of
  1893                                     // this instruction (change offsets
  1894                                     // below)
  1895   __ andptr(rbx, -BytesPerInt);
  1896   // set counter
  1897   __ movl(rcx, Address(rbx, BytesPerInt));
  1898   __ bswapl(rcx);
  1899   __ jmpb(loop_entry);
  1900   // table search
  1901   __ bind(loop);
  1902   __ cmpl(rax, Address(rbx, rcx, Address::times_8, 2 * BytesPerInt));
  1903   __ jcc(Assembler::equal, found);
  1904   __ bind(loop_entry);
  1905   __ decrementl(rcx);
  1906   __ jcc(Assembler::greaterEqual, loop);
  1907   // default case
  1908   __ profile_switch_default(rax);
  1909   __ movl(rdx, Address(rbx, 0));
  1910   __ jmp(continue_execution);
  1911   // entry found -> get offset
  1912   __ bind(found);
  1913   __ movl(rdx, Address(rbx, rcx, Address::times_8, 3 * BytesPerInt));
  1914   __ profile_switch_case(rcx, rax, rbx);
  1915   // continue execution
  1916   __ bind(continue_execution);
  1917   __ bswapl(rdx);
  1918   __ movl2ptr(rdx, rdx);
  1919   __ load_unsigned_byte(rbx, Address(r13, rdx, Address::times_1));
  1920   __ addptr(r13, rdx);
  1921   __ dispatch_only(vtos);
  1924 void TemplateTable::fast_binaryswitch() {
  1925   transition(itos, vtos);
  1926   // Implementation using the following core algorithm:
  1927   //
  1928   // int binary_search(int key, LookupswitchPair* array, int n) {
  1929   //   // Binary search according to "Methodik des Programmierens" by
  1930   //   // Edsger W. Dijkstra and W.H.J. Feijen, Addison Wesley Germany 1985.
  1931   //   int i = 0;
  1932   //   int j = n;
  1933   //   while (i+1 < j) {
  1934   //     // invariant P: 0 <= i < j <= n and (a[i] <= key < a[j] or Q)
  1935   //     // with      Q: for all i: 0 <= i < n: key < a[i]
  1936   //     // where a stands for the array and assuming that the (inexisting)
  1937   //     // element a[n] is infinitely big.
  1938   //     int h = (i + j) >> 1;
  1939   //     // i < h < j
  1940   //     if (key < array[h].fast_match()) {
  1941   //       j = h;
  1942   //     } else {
  1943   //       i = h;
  1944   //     }
  1945   //   }
  1946   //   // R: a[i] <= key < a[i+1] or Q
  1947   //   // (i.e., if key is within array, i is the correct index)
  1948   //   return i;
  1949   // }
  1951   // Register allocation
  1952   const Register key   = rax; // already set (tosca)
  1953   const Register array = rbx;
  1954   const Register i     = rcx;
  1955   const Register j     = rdx;
  1956   const Register h     = rdi;
  1957   const Register temp  = rsi;
  1959   // Find array start
  1960   __ lea(array, at_bcp(3 * BytesPerInt)); // btw: should be able to
  1961                                           // get rid of this
  1962                                           // instruction (change
  1963                                           // offsets below)
  1964   __ andptr(array, -BytesPerInt);
  1966   // Initialize i & j
  1967   __ xorl(i, i);                            // i = 0;
  1968   __ movl(j, Address(array, -BytesPerInt)); // j = length(array);
  1970   // Convert j into native byteordering
  1971   __ bswapl(j);
  1973   // And start
  1974   Label entry;
  1975   __ jmp(entry);
  1977   // binary search loop
  1979     Label loop;
  1980     __ bind(loop);
  1981     // int h = (i + j) >> 1;
  1982     __ leal(h, Address(i, j, Address::times_1)); // h = i + j;
  1983     __ sarl(h, 1);                               // h = (i + j) >> 1;
  1984     // if (key < array[h].fast_match()) {
  1985     //   j = h;
  1986     // } else {
  1987     //   i = h;
  1988     // }
  1989     // Convert array[h].match to native byte-ordering before compare
  1990     __ movl(temp, Address(array, h, Address::times_8));
  1991     __ bswapl(temp);
  1992     __ cmpl(key, temp);
  1993     // j = h if (key <  array[h].fast_match())
  1994     __ cmovl(Assembler::less, j, h);
  1995     // i = h if (key >= array[h].fast_match())
  1996     __ cmovl(Assembler::greaterEqual, i, h);
  1997     // while (i+1 < j)
  1998     __ bind(entry);
  1999     __ leal(h, Address(i, 1)); // i+1
  2000     __ cmpl(h, j);             // i+1 < j
  2001     __ jcc(Assembler::less, loop);
  2004   // end of binary search, result index is i (must check again!)
  2005   Label default_case;
  2006   // Convert array[i].match to native byte-ordering before compare
  2007   __ movl(temp, Address(array, i, Address::times_8));
  2008   __ bswapl(temp);
  2009   __ cmpl(key, temp);
  2010   __ jcc(Assembler::notEqual, default_case);
  2012   // entry found -> j = offset
  2013   __ movl(j , Address(array, i, Address::times_8, BytesPerInt));
  2014   __ profile_switch_case(i, key, array);
  2015   __ bswapl(j);
  2016   __ movl2ptr(j, j);
  2017   __ load_unsigned_byte(rbx, Address(r13, j, Address::times_1));
  2018   __ addptr(r13, j);
  2019   __ dispatch_only(vtos);
  2021   // default case -> j = default offset
  2022   __ bind(default_case);
  2023   __ profile_switch_default(i);
  2024   __ movl(j, Address(array, -2 * BytesPerInt));
  2025   __ bswapl(j);
  2026   __ movl2ptr(j, j);
  2027   __ load_unsigned_byte(rbx, Address(r13, j, Address::times_1));
  2028   __ addptr(r13, j);
  2029   __ dispatch_only(vtos);
  2033 void TemplateTable::_return(TosState state) {
  2034   transition(state, state);
  2035   assert(_desc->calls_vm(),
  2036          "inconsistent calls_vm information"); // call in remove_activation
  2038   if (_desc->bytecode() == Bytecodes::_return_register_finalizer) {
  2039     assert(state == vtos, "only valid state");
  2040     __ movptr(c_rarg1, aaddress(0));
  2041     __ load_klass(rdi, c_rarg1);
  2042     __ movl(rdi, Address(rdi, Klass::access_flags_offset_in_bytes() + sizeof(oopDesc)));
  2043     __ testl(rdi, JVM_ACC_HAS_FINALIZER);
  2044     Label skip_register_finalizer;
  2045     __ jcc(Assembler::zero, skip_register_finalizer);
  2047     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::register_finalizer), c_rarg1);
  2049     __ bind(skip_register_finalizer);
  2052   __ remove_activation(state, r13);
  2053   __ jmp(r13);
  2056 // ----------------------------------------------------------------------------
  2057 // Volatile variables demand their effects be made known to all CPU's
  2058 // in order.  Store buffers on most chips allow reads & writes to
  2059 // reorder; the JMM's ReadAfterWrite.java test fails in -Xint mode
  2060 // without some kind of memory barrier (i.e., it's not sufficient that
  2061 // the interpreter does not reorder volatile references, the hardware
  2062 // also must not reorder them).
  2063 //
  2064 // According to the new Java Memory Model (JMM):
  2065 // (1) All volatiles are serialized wrt to each other.  ALSO reads &
  2066 //     writes act as aquire & release, so:
  2067 // (2) A read cannot let unrelated NON-volatile memory refs that
  2068 //     happen after the read float up to before the read.  It's OK for
  2069 //     non-volatile memory refs that happen before the volatile read to
  2070 //     float down below it.
  2071 // (3) Similar a volatile write cannot let unrelated NON-volatile
  2072 //     memory refs that happen BEFORE the write float down to after the
  2073 //     write.  It's OK for non-volatile memory refs that happen after the
  2074 //     volatile write to float up before it.
  2075 //
  2076 // We only put in barriers around volatile refs (they are expensive),
  2077 // not _between_ memory refs (that would require us to track the
  2078 // flavor of the previous memory refs).  Requirements (2) and (3)
  2079 // require some barriers before volatile stores and after volatile
  2080 // loads.  These nearly cover requirement (1) but miss the
  2081 // volatile-store-volatile-load case.  This final case is placed after
  2082 // volatile-stores although it could just as well go before
  2083 // volatile-loads.
  2084 void TemplateTable::volatile_barrier(Assembler::Membar_mask_bits
  2085                                      order_constraint) {
  2086   // Helper function to insert a is-volatile test and memory barrier
  2087   if (os::is_MP()) { // Not needed on single CPU
  2088     __ membar(order_constraint);
  2092 void TemplateTable::resolve_cache_and_index(int byte_no,
  2093                                             Register result,
  2094                                             Register Rcache,
  2095                                             Register index,
  2096                                             size_t index_size) {
  2097   const Register temp = rbx;
  2098   assert_different_registers(result, Rcache, index, temp);
  2100   Label resolved;
  2101   __ get_cache_and_index_at_bcp(Rcache, index, 1, index_size);
  2102   if (byte_no == f1_oop) {
  2103     // We are resolved if the f1 field contains a non-null object (CallSite, etc.)
  2104     // This kind of CP cache entry does not need to match the flags byte, because
  2105     // there is a 1-1 relation between bytecode type and CP entry type.
  2106     assert(result != noreg, ""); //else do cmpptr(Address(...), (int32_t) NULL_WORD)
  2107     __ movptr(result, Address(Rcache, index, Address::times_ptr, constantPoolCacheOopDesc::base_offset() + ConstantPoolCacheEntry::f1_offset()));
  2108     __ testptr(result, result);
  2109     __ jcc(Assembler::notEqual, resolved);
  2110   } else {
  2111     assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range");
  2112     assert(result == noreg, "");  //else change code for setting result
  2113     const int shift_count = (1 + byte_no) * BitsPerByte;
  2114     __ movl(temp, Address(Rcache, index, Address::times_ptr, constantPoolCacheOopDesc::base_offset() + ConstantPoolCacheEntry::indices_offset()));
  2115     __ shrl(temp, shift_count);
  2116     // have we resolved this bytecode?
  2117     __ andl(temp, 0xFF);
  2118     __ cmpl(temp, (int) bytecode());
  2119     __ jcc(Assembler::equal, resolved);
  2122   // resolve first time through
  2123   address entry;
  2124   switch (bytecode()) {
  2125   case Bytecodes::_getstatic:
  2126   case Bytecodes::_putstatic:
  2127   case Bytecodes::_getfield:
  2128   case Bytecodes::_putfield:
  2129     entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_get_put);
  2130     break;
  2131   case Bytecodes::_invokevirtual:
  2132   case Bytecodes::_invokespecial:
  2133   case Bytecodes::_invokestatic:
  2134   case Bytecodes::_invokeinterface:
  2135     entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_invoke);
  2136     break;
  2137   case Bytecodes::_invokedynamic:
  2138     entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_invokedynamic);
  2139     break;
  2140   case Bytecodes::_fast_aldc:
  2141     entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_ldc);
  2142     break;
  2143   case Bytecodes::_fast_aldc_w:
  2144     entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_ldc);
  2145     break;
  2146   default:
  2147     ShouldNotReachHere();
  2148     break;
  2150   __ movl(temp, (int) bytecode());
  2151   __ call_VM(noreg, entry, temp);
  2153   // Update registers with resolved info
  2154   __ get_cache_and_index_at_bcp(Rcache, index, 1, index_size);
  2155   if (result != noreg)
  2156     __ movptr(result, Address(Rcache, index, Address::times_ptr, constantPoolCacheOopDesc::base_offset() + ConstantPoolCacheEntry::f1_offset()));
  2157   __ bind(resolved);
  2160 // The Rcache and index registers must be set before call
  2161 void TemplateTable::load_field_cp_cache_entry(Register obj,
  2162                                               Register cache,
  2163                                               Register index,
  2164                                               Register off,
  2165                                               Register flags,
  2166                                               bool is_static = false) {
  2167   assert_different_registers(cache, index, flags, off);
  2169   ByteSize cp_base_offset = constantPoolCacheOopDesc::base_offset();
  2170   // Field offset
  2171   __ movptr(off, Address(cache, index, Address::times_8,
  2172                          in_bytes(cp_base_offset +
  2173                                   ConstantPoolCacheEntry::f2_offset())));
  2174   // Flags
  2175   __ movl(flags, Address(cache, index, Address::times_8,
  2176                          in_bytes(cp_base_offset +
  2177                                   ConstantPoolCacheEntry::flags_offset())));
  2179   // klass overwrite register
  2180   if (is_static) {
  2181     __ movptr(obj, Address(cache, index, Address::times_8,
  2182                            in_bytes(cp_base_offset +
  2183                                     ConstantPoolCacheEntry::f1_offset())));
  2187 void TemplateTable::load_invoke_cp_cache_entry(int byte_no,
  2188                                                Register method,
  2189                                                Register itable_index,
  2190                                                Register flags,
  2191                                                bool is_invokevirtual,
  2192                                                bool is_invokevfinal, /*unused*/
  2193                                                bool is_invokedynamic) {
  2194   // setup registers
  2195   const Register cache = rcx;
  2196   const Register index = rdx;
  2197   assert_different_registers(method, flags);
  2198   assert_different_registers(method, cache, index);
  2199   assert_different_registers(itable_index, flags);
  2200   assert_different_registers(itable_index, cache, index);
  2201   // determine constant pool cache field offsets
  2202   const int method_offset = in_bytes(
  2203     constantPoolCacheOopDesc::base_offset() +
  2204       (is_invokevirtual
  2205        ? ConstantPoolCacheEntry::f2_offset()
  2206        : ConstantPoolCacheEntry::f1_offset()));
  2207   const int flags_offset = in_bytes(constantPoolCacheOopDesc::base_offset() +
  2208                                     ConstantPoolCacheEntry::flags_offset());
  2209   // access constant pool cache fields
  2210   const int index_offset = in_bytes(constantPoolCacheOopDesc::base_offset() +
  2211                                     ConstantPoolCacheEntry::f2_offset());
  2213   if (byte_no == f1_oop) {
  2214     // Resolved f1_oop goes directly into 'method' register.
  2215     assert(is_invokedynamic, "");
  2216     resolve_cache_and_index(byte_no, method, cache, index, sizeof(u4));
  2217   } else {
  2218     resolve_cache_and_index(byte_no, noreg, cache, index, sizeof(u2));
  2219     __ movptr(method, Address(cache, index, Address::times_ptr, method_offset));
  2221   if (itable_index != noreg) {
  2222     __ movptr(itable_index, Address(cache, index, Address::times_ptr, index_offset));
  2224   __ movl(flags, Address(cache, index, Address::times_ptr, flags_offset));
  2228 // The registers cache and index expected to be set before call.
  2229 // Correct values of the cache and index registers are preserved.
  2230 void TemplateTable::jvmti_post_field_access(Register cache, Register index,
  2231                                             bool is_static, bool has_tos) {
  2232   // do the JVMTI work here to avoid disturbing the register state below
  2233   // We use c_rarg registers here because we want to use the register used in
  2234   // the call to the VM
  2235   if (JvmtiExport::can_post_field_access()) {
  2236     // Check to see if a field access watch has been set before we
  2237     // take the time to call into the VM.
  2238     Label L1;
  2239     assert_different_registers(cache, index, rax);
  2240     __ mov32(rax, ExternalAddress((address) JvmtiExport::get_field_access_count_addr()));
  2241     __ testl(rax, rax);
  2242     __ jcc(Assembler::zero, L1);
  2244     __ get_cache_and_index_at_bcp(c_rarg2, c_rarg3, 1);
  2246     // cache entry pointer
  2247     __ addptr(c_rarg2, in_bytes(constantPoolCacheOopDesc::base_offset()));
  2248     __ shll(c_rarg3, LogBytesPerWord);
  2249     __ addptr(c_rarg2, c_rarg3);
  2250     if (is_static) {
  2251       __ xorl(c_rarg1, c_rarg1); // NULL object reference
  2252     } else {
  2253       __ movptr(c_rarg1, at_tos()); // get object pointer without popping it
  2254       __ verify_oop(c_rarg1);
  2256     // c_rarg1: object pointer or NULL
  2257     // c_rarg2: cache entry pointer
  2258     // c_rarg3: jvalue object on the stack
  2259     __ call_VM(noreg, CAST_FROM_FN_PTR(address,
  2260                                        InterpreterRuntime::post_field_access),
  2261                c_rarg1, c_rarg2, c_rarg3);
  2262     __ get_cache_and_index_at_bcp(cache, index, 1);
  2263     __ bind(L1);
  2267 void TemplateTable::pop_and_check_object(Register r) {
  2268   __ pop_ptr(r);
  2269   __ null_check(r);  // for field access must check obj.
  2270   __ verify_oop(r);
  2273 void TemplateTable::getfield_or_static(int byte_no, bool is_static) {
  2274   transition(vtos, vtos);
  2276   const Register cache = rcx;
  2277   const Register index = rdx;
  2278   const Register obj   = c_rarg3;
  2279   const Register off   = rbx;
  2280   const Register flags = rax;
  2281   const Register bc = c_rarg3; // uses same reg as obj, so don't mix them
  2283   resolve_cache_and_index(byte_no, noreg, cache, index, sizeof(u2));
  2284   jvmti_post_field_access(cache, index, is_static, false);
  2285   load_field_cp_cache_entry(obj, cache, index, off, flags, is_static);
  2287   if (!is_static) {
  2288     // obj is on the stack
  2289     pop_and_check_object(obj);
  2292   const Address field(obj, off, Address::times_1);
  2294   Label Done, notByte, notInt, notShort, notChar,
  2295               notLong, notFloat, notObj, notDouble;
  2297   __ shrl(flags, ConstantPoolCacheEntry::tosBits);
  2298   assert(btos == 0, "change code, btos != 0");
  2300   __ andl(flags, 0x0F);
  2301   __ jcc(Assembler::notZero, notByte);
  2302   // btos
  2303   __ load_signed_byte(rax, field);
  2304   __ push(btos);
  2305   // Rewrite bytecode to be faster
  2306   if (!is_static) {
  2307     patch_bytecode(Bytecodes::_fast_bgetfield, bc, rbx);
  2309   __ jmp(Done);
  2311   __ bind(notByte);
  2312   __ cmpl(flags, atos);
  2313   __ jcc(Assembler::notEqual, notObj);
  2314   // atos
  2315   __ load_heap_oop(rax, field);
  2316   __ push(atos);
  2317   if (!is_static) {
  2318     patch_bytecode(Bytecodes::_fast_agetfield, bc, rbx);
  2320   __ jmp(Done);
  2322   __ bind(notObj);
  2323   __ cmpl(flags, itos);
  2324   __ jcc(Assembler::notEqual, notInt);
  2325   // itos
  2326   __ movl(rax, field);
  2327   __ push(itos);
  2328   // Rewrite bytecode to be faster
  2329   if (!is_static) {
  2330     patch_bytecode(Bytecodes::_fast_igetfield, bc, rbx);
  2332   __ jmp(Done);
  2334   __ bind(notInt);
  2335   __ cmpl(flags, ctos);
  2336   __ jcc(Assembler::notEqual, notChar);
  2337   // ctos
  2338   __ load_unsigned_short(rax, field);
  2339   __ push(ctos);
  2340   // Rewrite bytecode to be faster
  2341   if (!is_static) {
  2342     patch_bytecode(Bytecodes::_fast_cgetfield, bc, rbx);
  2344   __ jmp(Done);
  2346   __ bind(notChar);
  2347   __ cmpl(flags, stos);
  2348   __ jcc(Assembler::notEqual, notShort);
  2349   // stos
  2350   __ load_signed_short(rax, field);
  2351   __ push(stos);
  2352   // Rewrite bytecode to be faster
  2353   if (!is_static) {
  2354     patch_bytecode(Bytecodes::_fast_sgetfield, bc, rbx);
  2356   __ jmp(Done);
  2358   __ bind(notShort);
  2359   __ cmpl(flags, ltos);
  2360   __ jcc(Assembler::notEqual, notLong);
  2361   // ltos
  2362   __ movq(rax, field);
  2363   __ push(ltos);
  2364   // Rewrite bytecode to be faster
  2365   if (!is_static) {
  2366     patch_bytecode(Bytecodes::_fast_lgetfield, bc, rbx);
  2368   __ jmp(Done);
  2370   __ bind(notLong);
  2371   __ cmpl(flags, ftos);
  2372   __ jcc(Assembler::notEqual, notFloat);
  2373   // ftos
  2374   __ movflt(xmm0, field);
  2375   __ push(ftos);
  2376   // Rewrite bytecode to be faster
  2377   if (!is_static) {
  2378     patch_bytecode(Bytecodes::_fast_fgetfield, bc, rbx);
  2380   __ jmp(Done);
  2382   __ bind(notFloat);
  2383 #ifdef ASSERT
  2384   __ cmpl(flags, dtos);
  2385   __ jcc(Assembler::notEqual, notDouble);
  2386 #endif
  2387   // dtos
  2388   __ movdbl(xmm0, field);
  2389   __ push(dtos);
  2390   // Rewrite bytecode to be faster
  2391   if (!is_static) {
  2392     patch_bytecode(Bytecodes::_fast_dgetfield, bc, rbx);
  2394 #ifdef ASSERT
  2395   __ jmp(Done);
  2397   __ bind(notDouble);
  2398   __ stop("Bad state");
  2399 #endif
  2401   __ bind(Done);
  2402   // [jk] not needed currently
  2403   // volatile_barrier(Assembler::Membar_mask_bits(Assembler::LoadLoad |
  2404   //                                              Assembler::LoadStore));
  2408 void TemplateTable::getfield(int byte_no) {
  2409   getfield_or_static(byte_no, false);
  2412 void TemplateTable::getstatic(int byte_no) {
  2413   getfield_or_static(byte_no, true);
  2416 // The registers cache and index expected to be set before call.
  2417 // The function may destroy various registers, just not the cache and index registers.
  2418 void TemplateTable::jvmti_post_field_mod(Register cache, Register index, bool is_static) {
  2419   transition(vtos, vtos);
  2421   ByteSize cp_base_offset = constantPoolCacheOopDesc::base_offset();
  2423   if (JvmtiExport::can_post_field_modification()) {
  2424     // Check to see if a field modification watch has been set before
  2425     // we take the time to call into the VM.
  2426     Label L1;
  2427     assert_different_registers(cache, index, rax);
  2428     __ mov32(rax, ExternalAddress((address)JvmtiExport::get_field_modification_count_addr()));
  2429     __ testl(rax, rax);
  2430     __ jcc(Assembler::zero, L1);
  2432     __ get_cache_and_index_at_bcp(c_rarg2, rscratch1, 1);
  2434     if (is_static) {
  2435       // Life is simple.  Null out the object pointer.
  2436       __ xorl(c_rarg1, c_rarg1);
  2437     } else {
  2438       // Life is harder. The stack holds the value on top, followed by
  2439       // the object.  We don't know the size of the value, though; it
  2440       // could be one or two words depending on its type. As a result,
  2441       // we must find the type to determine where the object is.
  2442       __ movl(c_rarg3, Address(c_rarg2, rscratch1,
  2443                            Address::times_8,
  2444                            in_bytes(cp_base_offset +
  2445                                      ConstantPoolCacheEntry::flags_offset())));
  2446       __ shrl(c_rarg3, ConstantPoolCacheEntry::tosBits);
  2447       // Make sure we don't need to mask rcx for tosBits after the
  2448       // above shift
  2449       ConstantPoolCacheEntry::verify_tosBits();
  2450       __ movptr(c_rarg1, at_tos_p1());  // initially assume a one word jvalue
  2451       __ cmpl(c_rarg3, ltos);
  2452       __ cmovptr(Assembler::equal,
  2453                  c_rarg1, at_tos_p2()); // ltos (two word jvalue)
  2454       __ cmpl(c_rarg3, dtos);
  2455       __ cmovptr(Assembler::equal,
  2456                  c_rarg1, at_tos_p2()); // dtos (two word jvalue)
  2458     // cache entry pointer
  2459     __ addptr(c_rarg2, in_bytes(cp_base_offset));
  2460     __ shll(rscratch1, LogBytesPerWord);
  2461     __ addptr(c_rarg2, rscratch1);
  2462     // object (tos)
  2463     __ mov(c_rarg3, rsp);
  2464     // c_rarg1: object pointer set up above (NULL if static)
  2465     // c_rarg2: cache entry pointer
  2466     // c_rarg3: jvalue object on the stack
  2467     __ call_VM(noreg,
  2468                CAST_FROM_FN_PTR(address,
  2469                                 InterpreterRuntime::post_field_modification),
  2470                c_rarg1, c_rarg2, c_rarg3);
  2471     __ get_cache_and_index_at_bcp(cache, index, 1);
  2472     __ bind(L1);
  2476 void TemplateTable::putfield_or_static(int byte_no, bool is_static) {
  2477   transition(vtos, vtos);
  2479   const Register cache = rcx;
  2480   const Register index = rdx;
  2481   const Register obj   = rcx;
  2482   const Register off   = rbx;
  2483   const Register flags = rax;
  2484   const Register bc    = c_rarg3;
  2486   resolve_cache_and_index(byte_no, noreg, cache, index, sizeof(u2));
  2487   jvmti_post_field_mod(cache, index, is_static);
  2488   load_field_cp_cache_entry(obj, cache, index, off, flags, is_static);
  2490   // [jk] not needed currently
  2491   // volatile_barrier(Assembler::Membar_mask_bits(Assembler::LoadStore |
  2492   //                                              Assembler::StoreStore));
  2494   Label notVolatile, Done;
  2495   __ movl(rdx, flags);
  2496   __ shrl(rdx, ConstantPoolCacheEntry::volatileField);
  2497   __ andl(rdx, 0x1);
  2499   // field address
  2500   const Address field(obj, off, Address::times_1);
  2502   Label notByte, notInt, notShort, notChar,
  2503         notLong, notFloat, notObj, notDouble;
  2505   __ shrl(flags, ConstantPoolCacheEntry::tosBits);
  2507   assert(btos == 0, "change code, btos != 0");
  2508   __ andl(flags, 0x0f);
  2509   __ jcc(Assembler::notZero, notByte);
  2510   // btos
  2511   __ pop(btos);
  2512   if (!is_static) pop_and_check_object(obj);
  2513   __ movb(field, rax);
  2514   if (!is_static) {
  2515     patch_bytecode(Bytecodes::_fast_bputfield, bc, rbx);
  2517   __ jmp(Done);
  2519   __ bind(notByte);
  2520   __ cmpl(flags, atos);
  2521   __ jcc(Assembler::notEqual, notObj);
  2522   // atos
  2523   __ pop(atos);
  2524   if (!is_static) pop_and_check_object(obj);
  2526   // Store into the field
  2527   do_oop_store(_masm, field, rax, _bs->kind(), false);
  2529   if (!is_static) {
  2530     patch_bytecode(Bytecodes::_fast_aputfield, bc, rbx);
  2532   __ jmp(Done);
  2534   __ bind(notObj);
  2535   __ cmpl(flags, itos);
  2536   __ jcc(Assembler::notEqual, notInt);
  2537   // itos
  2538   __ pop(itos);
  2539   if (!is_static) pop_and_check_object(obj);
  2540   __ movl(field, rax);
  2541   if (!is_static) {
  2542     patch_bytecode(Bytecodes::_fast_iputfield, bc, rbx);
  2544   __ jmp(Done);
  2546   __ bind(notInt);
  2547   __ cmpl(flags, ctos);
  2548   __ jcc(Assembler::notEqual, notChar);
  2549   // ctos
  2550   __ pop(ctos);
  2551   if (!is_static) pop_and_check_object(obj);
  2552   __ movw(field, rax);
  2553   if (!is_static) {
  2554     patch_bytecode(Bytecodes::_fast_cputfield, bc, rbx);
  2556   __ jmp(Done);
  2558   __ bind(notChar);
  2559   __ cmpl(flags, stos);
  2560   __ jcc(Assembler::notEqual, notShort);
  2561   // stos
  2562   __ pop(stos);
  2563   if (!is_static) pop_and_check_object(obj);
  2564   __ movw(field, rax);
  2565   if (!is_static) {
  2566     patch_bytecode(Bytecodes::_fast_sputfield, bc, rbx);
  2568   __ jmp(Done);
  2570   __ bind(notShort);
  2571   __ cmpl(flags, ltos);
  2572   __ jcc(Assembler::notEqual, notLong);
  2573   // ltos
  2574   __ pop(ltos);
  2575   if (!is_static) pop_and_check_object(obj);
  2576   __ movq(field, rax);
  2577   if (!is_static) {
  2578     patch_bytecode(Bytecodes::_fast_lputfield, bc, rbx);
  2580   __ jmp(Done);
  2582   __ bind(notLong);
  2583   __ cmpl(flags, ftos);
  2584   __ jcc(Assembler::notEqual, notFloat);
  2585   // ftos
  2586   __ pop(ftos);
  2587   if (!is_static) pop_and_check_object(obj);
  2588   __ movflt(field, xmm0);
  2589   if (!is_static) {
  2590     patch_bytecode(Bytecodes::_fast_fputfield, bc, rbx);
  2592   __ jmp(Done);
  2594   __ bind(notFloat);
  2595 #ifdef ASSERT
  2596   __ cmpl(flags, dtos);
  2597   __ jcc(Assembler::notEqual, notDouble);
  2598 #endif
  2599   // dtos
  2600   __ pop(dtos);
  2601   if (!is_static) pop_and_check_object(obj);
  2602   __ movdbl(field, xmm0);
  2603   if (!is_static) {
  2604     patch_bytecode(Bytecodes::_fast_dputfield, bc, rbx);
  2607 #ifdef ASSERT
  2608   __ jmp(Done);
  2610   __ bind(notDouble);
  2611   __ stop("Bad state");
  2612 #endif
  2614   __ bind(Done);
  2615   // Check for volatile store
  2616   __ testl(rdx, rdx);
  2617   __ jcc(Assembler::zero, notVolatile);
  2618   volatile_barrier(Assembler::Membar_mask_bits(Assembler::StoreLoad |
  2619                                                Assembler::StoreStore));
  2621   __ bind(notVolatile);
  2624 void TemplateTable::putfield(int byte_no) {
  2625   putfield_or_static(byte_no, false);
  2628 void TemplateTable::putstatic(int byte_no) {
  2629   putfield_or_static(byte_no, true);
  2632 void TemplateTable::jvmti_post_fast_field_mod() {
  2633   if (JvmtiExport::can_post_field_modification()) {
  2634     // Check to see if a field modification watch has been set before
  2635     // we take the time to call into the VM.
  2636     Label L2;
  2637     __ mov32(c_rarg3, ExternalAddress((address)JvmtiExport::get_field_modification_count_addr()));
  2638     __ testl(c_rarg3, c_rarg3);
  2639     __ jcc(Assembler::zero, L2);
  2640     __ pop_ptr(rbx);                  // copy the object pointer from tos
  2641     __ verify_oop(rbx);
  2642     __ push_ptr(rbx);                 // put the object pointer back on tos
  2643     __ subptr(rsp, sizeof(jvalue));  // add space for a jvalue object
  2644     __ mov(c_rarg3, rsp);
  2645     const Address field(c_rarg3, 0);
  2647     switch (bytecode()) {          // load values into the jvalue object
  2648     case Bytecodes::_fast_aputfield: __ movq(field, rax); break;
  2649     case Bytecodes::_fast_lputfield: __ movq(field, rax); break;
  2650     case Bytecodes::_fast_iputfield: __ movl(field, rax); break;
  2651     case Bytecodes::_fast_bputfield: __ movb(field, rax); break;
  2652     case Bytecodes::_fast_sputfield: // fall through
  2653     case Bytecodes::_fast_cputfield: __ movw(field, rax); break;
  2654     case Bytecodes::_fast_fputfield: __ movflt(field, xmm0); break;
  2655     case Bytecodes::_fast_dputfield: __ movdbl(field, xmm0); break;
  2656     default:
  2657       ShouldNotReachHere();
  2660     // Save rax because call_VM() will clobber it, then use it for
  2661     // JVMTI purposes
  2662     __ push(rax);
  2663     // access constant pool cache entry
  2664     __ get_cache_entry_pointer_at_bcp(c_rarg2, rax, 1);
  2665     __ verify_oop(rbx);
  2666     // rbx: object pointer copied above
  2667     // c_rarg2: cache entry pointer
  2668     // c_rarg3: jvalue object on the stack
  2669     __ call_VM(noreg,
  2670                CAST_FROM_FN_PTR(address,
  2671                                 InterpreterRuntime::post_field_modification),
  2672                rbx, c_rarg2, c_rarg3);
  2673     __ pop(rax);     // restore lower value
  2674     __ addptr(rsp, sizeof(jvalue));  // release jvalue object space
  2675     __ bind(L2);
  2679 void TemplateTable::fast_storefield(TosState state) {
  2680   transition(state, vtos);
  2682   ByteSize base = constantPoolCacheOopDesc::base_offset();
  2684   jvmti_post_fast_field_mod();
  2686   // access constant pool cache
  2687   __ get_cache_and_index_at_bcp(rcx, rbx, 1);
  2689   // test for volatile with rdx
  2690   __ movl(rdx, Address(rcx, rbx, Address::times_8,
  2691                        in_bytes(base +
  2692                                 ConstantPoolCacheEntry::flags_offset())));
  2694   // replace index with field offset from cache entry
  2695   __ movptr(rbx, Address(rcx, rbx, Address::times_8,
  2696                          in_bytes(base + ConstantPoolCacheEntry::f2_offset())));
  2698   // [jk] not needed currently
  2699   // volatile_barrier(Assembler::Membar_mask_bits(Assembler::LoadStore |
  2700   //                                              Assembler::StoreStore));
  2702   Label notVolatile;
  2703   __ shrl(rdx, ConstantPoolCacheEntry::volatileField);
  2704   __ andl(rdx, 0x1);
  2706   // Get object from stack
  2707   pop_and_check_object(rcx);
  2709   // field address
  2710   const Address field(rcx, rbx, Address::times_1);
  2712   // access field
  2713   switch (bytecode()) {
  2714   case Bytecodes::_fast_aputfield:
  2715     do_oop_store(_masm, field, rax, _bs->kind(), false);
  2716     break;
  2717   case Bytecodes::_fast_lputfield:
  2718     __ movq(field, rax);
  2719     break;
  2720   case Bytecodes::_fast_iputfield:
  2721     __ movl(field, rax);
  2722     break;
  2723   case Bytecodes::_fast_bputfield:
  2724     __ movb(field, rax);
  2725     break;
  2726   case Bytecodes::_fast_sputfield:
  2727     // fall through
  2728   case Bytecodes::_fast_cputfield:
  2729     __ movw(field, rax);
  2730     break;
  2731   case Bytecodes::_fast_fputfield:
  2732     __ movflt(field, xmm0);
  2733     break;
  2734   case Bytecodes::_fast_dputfield:
  2735     __ movdbl(field, xmm0);
  2736     break;
  2737   default:
  2738     ShouldNotReachHere();
  2741   // Check for volatile store
  2742   __ testl(rdx, rdx);
  2743   __ jcc(Assembler::zero, notVolatile);
  2744   volatile_barrier(Assembler::Membar_mask_bits(Assembler::StoreLoad |
  2745                                                Assembler::StoreStore));
  2746   __ bind(notVolatile);
  2750 void TemplateTable::fast_accessfield(TosState state) {
  2751   transition(atos, state);
  2753   // Do the JVMTI work here to avoid disturbing the register state below
  2754   if (JvmtiExport::can_post_field_access()) {
  2755     // Check to see if a field access watch has been set before we
  2756     // take the time to call into the VM.
  2757     Label L1;
  2758     __ mov32(rcx, ExternalAddress((address) JvmtiExport::get_field_access_count_addr()));
  2759     __ testl(rcx, rcx);
  2760     __ jcc(Assembler::zero, L1);
  2761     // access constant pool cache entry
  2762     __ get_cache_entry_pointer_at_bcp(c_rarg2, rcx, 1);
  2763     __ verify_oop(rax);
  2764     __ push_ptr(rax);  // save object pointer before call_VM() clobbers it
  2765     __ mov(c_rarg1, rax);
  2766     // c_rarg1: object pointer copied above
  2767     // c_rarg2: cache entry pointer
  2768     __ call_VM(noreg,
  2769                CAST_FROM_FN_PTR(address,
  2770                                 InterpreterRuntime::post_field_access),
  2771                c_rarg1, c_rarg2);
  2772     __ pop_ptr(rax); // restore object pointer
  2773     __ bind(L1);
  2776   // access constant pool cache
  2777   __ get_cache_and_index_at_bcp(rcx, rbx, 1);
  2778   // replace index with field offset from cache entry
  2779   // [jk] not needed currently
  2780   // if (os::is_MP()) {
  2781   //   __ movl(rdx, Address(rcx, rbx, Address::times_8,
  2782   //                        in_bytes(constantPoolCacheOopDesc::base_offset() +
  2783   //                                 ConstantPoolCacheEntry::flags_offset())));
  2784   //   __ shrl(rdx, ConstantPoolCacheEntry::volatileField);
  2785   //   __ andl(rdx, 0x1);
  2786   // }
  2787   __ movptr(rbx, Address(rcx, rbx, Address::times_8,
  2788                          in_bytes(constantPoolCacheOopDesc::base_offset() +
  2789                                   ConstantPoolCacheEntry::f2_offset())));
  2791   // rax: object
  2792   __ verify_oop(rax);
  2793   __ null_check(rax);
  2794   Address field(rax, rbx, Address::times_1);
  2796   // access field
  2797   switch (bytecode()) {
  2798   case Bytecodes::_fast_agetfield:
  2799     __ load_heap_oop(rax, field);
  2800     __ verify_oop(rax);
  2801     break;
  2802   case Bytecodes::_fast_lgetfield:
  2803     __ movq(rax, field);
  2804     break;
  2805   case Bytecodes::_fast_igetfield:
  2806     __ movl(rax, field);
  2807     break;
  2808   case Bytecodes::_fast_bgetfield:
  2809     __ movsbl(rax, field);
  2810     break;
  2811   case Bytecodes::_fast_sgetfield:
  2812     __ load_signed_short(rax, field);
  2813     break;
  2814   case Bytecodes::_fast_cgetfield:
  2815     __ load_unsigned_short(rax, field);
  2816     break;
  2817   case Bytecodes::_fast_fgetfield:
  2818     __ movflt(xmm0, field);
  2819     break;
  2820   case Bytecodes::_fast_dgetfield:
  2821     __ movdbl(xmm0, field);
  2822     break;
  2823   default:
  2824     ShouldNotReachHere();
  2826   // [jk] not needed currently
  2827   // if (os::is_MP()) {
  2828   //   Label notVolatile;
  2829   //   __ testl(rdx, rdx);
  2830   //   __ jcc(Assembler::zero, notVolatile);
  2831   //   __ membar(Assembler::LoadLoad);
  2832   //   __ bind(notVolatile);
  2833   //};
  2836 void TemplateTable::fast_xaccess(TosState state) {
  2837   transition(vtos, state);
  2839   // get receiver
  2840   __ movptr(rax, aaddress(0));
  2841   // access constant pool cache
  2842   __ get_cache_and_index_at_bcp(rcx, rdx, 2);
  2843   __ movptr(rbx,
  2844             Address(rcx, rdx, Address::times_8,
  2845                     in_bytes(constantPoolCacheOopDesc::base_offset() +
  2846                              ConstantPoolCacheEntry::f2_offset())));
  2847   // make sure exception is reported in correct bcp range (getfield is
  2848   // next instruction)
  2849   __ increment(r13);
  2850   __ null_check(rax);
  2851   switch (state) {
  2852   case itos:
  2853     __ movl(rax, Address(rax, rbx, Address::times_1));
  2854     break;
  2855   case atos:
  2856     __ load_heap_oop(rax, Address(rax, rbx, Address::times_1));
  2857     __ verify_oop(rax);
  2858     break;
  2859   case ftos:
  2860     __ movflt(xmm0, Address(rax, rbx, Address::times_1));
  2861     break;
  2862   default:
  2863     ShouldNotReachHere();
  2866   // [jk] not needed currently
  2867   // if (os::is_MP()) {
  2868   //   Label notVolatile;
  2869   //   __ movl(rdx, Address(rcx, rdx, Address::times_8,
  2870   //                        in_bytes(constantPoolCacheOopDesc::base_offset() +
  2871   //                                 ConstantPoolCacheEntry::flags_offset())));
  2872   //   __ shrl(rdx, ConstantPoolCacheEntry::volatileField);
  2873   //   __ testl(rdx, 0x1);
  2874   //   __ jcc(Assembler::zero, notVolatile);
  2875   //   __ membar(Assembler::LoadLoad);
  2876   //   __ bind(notVolatile);
  2877   // }
  2879   __ decrement(r13);
  2884 //-----------------------------------------------------------------------------
  2885 // Calls
  2887 void TemplateTable::count_calls(Register method, Register temp) {
  2888   // implemented elsewhere
  2889   ShouldNotReachHere();
  2892 void TemplateTable::prepare_invoke(Register method, Register index, int byte_no) {
  2893   // determine flags
  2894   Bytecodes::Code code = bytecode();
  2895   const bool is_invokeinterface  = code == Bytecodes::_invokeinterface;
  2896   const bool is_invokedynamic    = code == Bytecodes::_invokedynamic;
  2897   const bool is_invokevirtual    = code == Bytecodes::_invokevirtual;
  2898   const bool is_invokespecial    = code == Bytecodes::_invokespecial;
  2899   const bool load_receiver      = (code != Bytecodes::_invokestatic && code != Bytecodes::_invokedynamic);
  2900   const bool receiver_null_check = is_invokespecial;
  2901   const bool save_flags = is_invokeinterface || is_invokevirtual;
  2902   // setup registers & access constant pool cache
  2903   const Register recv   = rcx;
  2904   const Register flags  = rdx;
  2905   assert_different_registers(method, index, recv, flags);
  2907   // save 'interpreter return address'
  2908   __ save_bcp();
  2910   load_invoke_cp_cache_entry(byte_no, method, index, flags, is_invokevirtual, false, is_invokedynamic);
  2912   // load receiver if needed (note: no return address pushed yet)
  2913   if (load_receiver) {
  2914     assert(!is_invokedynamic, "");
  2915     __ movl(recv, flags);
  2916     __ andl(recv, 0xFF);
  2917     Address recv_addr(rsp, recv, Address::times_8, -Interpreter::expr_offset_in_bytes(1));
  2918     __ movptr(recv, recv_addr);
  2919     __ verify_oop(recv);
  2922   // do null check if needed
  2923   if (receiver_null_check) {
  2924     __ null_check(recv);
  2927   if (save_flags) {
  2928     __ movl(r13, flags);
  2931   // compute return type
  2932   __ shrl(flags, ConstantPoolCacheEntry::tosBits);
  2933   // Make sure we don't need to mask flags for tosBits after the above shift
  2934   ConstantPoolCacheEntry::verify_tosBits();
  2935   // load return address
  2937     address table_addr;
  2938     if (is_invokeinterface || is_invokedynamic)
  2939       table_addr = (address)Interpreter::return_5_addrs_by_index_table();
  2940     else
  2941       table_addr = (address)Interpreter::return_3_addrs_by_index_table();
  2942     ExternalAddress table(table_addr);
  2943     __ lea(rscratch1, table);
  2944     __ movptr(flags, Address(rscratch1, flags, Address::times_ptr));
  2947   // push return address
  2948   __ push(flags);
  2950   // Restore flag field from the constant pool cache, and restore esi
  2951   // for later null checks.  r13 is the bytecode pointer
  2952   if (save_flags) {
  2953     __ movl(flags, r13);
  2954     __ restore_bcp();
  2959 void TemplateTable::invokevirtual_helper(Register index,
  2960                                          Register recv,
  2961                                          Register flags) {
  2962   // Uses temporary registers rax, rdx
  2963   assert_different_registers(index, recv, rax, rdx);
  2965   // Test for an invoke of a final method
  2966   Label notFinal;
  2967   __ movl(rax, flags);
  2968   __ andl(rax, (1 << ConstantPoolCacheEntry::vfinalMethod));
  2969   __ jcc(Assembler::zero, notFinal);
  2971   const Register method = index;  // method must be rbx
  2972   assert(method == rbx,
  2973          "methodOop must be rbx for interpreter calling convention");
  2975   // do the call - the index is actually the method to call
  2976   __ verify_oop(method);
  2978   // It's final, need a null check here!
  2979   __ null_check(recv);
  2981   // profile this call
  2982   __ profile_final_call(rax);
  2984   __ jump_from_interpreted(method, rax);
  2986   __ bind(notFinal);
  2988   // get receiver klass
  2989   __ null_check(recv, oopDesc::klass_offset_in_bytes());
  2990   __ load_klass(rax, recv);
  2992   __ verify_oop(rax);
  2994   // profile this call
  2995   __ profile_virtual_call(rax, r14, rdx);
  2997   // get target methodOop & entry point
  2998   const int base = instanceKlass::vtable_start_offset() * wordSize;
  2999   assert(vtableEntry::size() * wordSize == 8,
  3000          "adjust the scaling in the code below");
  3001   __ movptr(method, Address(rax, index,
  3002                                  Address::times_8,
  3003                                  base + vtableEntry::method_offset_in_bytes()));
  3004   __ movptr(rdx, Address(method, methodOopDesc::interpreter_entry_offset()));
  3005   __ jump_from_interpreted(method, rdx);
  3009 void TemplateTable::invokevirtual(int byte_no) {
  3010   transition(vtos, vtos);
  3011   assert(byte_no == f2_byte, "use this argument");
  3012   prepare_invoke(rbx, noreg, byte_no);
  3014   // rbx: index
  3015   // rcx: receiver
  3016   // rdx: flags
  3018   invokevirtual_helper(rbx, rcx, rdx);
  3022 void TemplateTable::invokespecial(int byte_no) {
  3023   transition(vtos, vtos);
  3024   assert(byte_no == f1_byte, "use this argument");
  3025   prepare_invoke(rbx, noreg, byte_no);
  3026   // do the call
  3027   __ verify_oop(rbx);
  3028   __ profile_call(rax);
  3029   __ jump_from_interpreted(rbx, rax);
  3033 void TemplateTable::invokestatic(int byte_no) {
  3034   transition(vtos, vtos);
  3035   assert(byte_no == f1_byte, "use this argument");
  3036   prepare_invoke(rbx, noreg, byte_no);
  3037   // do the call
  3038   __ verify_oop(rbx);
  3039   __ profile_call(rax);
  3040   __ jump_from_interpreted(rbx, rax);
  3043 void TemplateTable::fast_invokevfinal(int byte_no) {
  3044   transition(vtos, vtos);
  3045   assert(byte_no == f2_byte, "use this argument");
  3046   __ stop("fast_invokevfinal not used on amd64");
  3049 void TemplateTable::invokeinterface(int byte_no) {
  3050   transition(vtos, vtos);
  3051   assert(byte_no == f1_byte, "use this argument");
  3052   prepare_invoke(rax, rbx, byte_no);
  3054   // rax: Interface
  3055   // rbx: index
  3056   // rcx: receiver
  3057   // rdx: flags
  3059   // Special case of invokeinterface called for virtual method of
  3060   // java.lang.Object.  See cpCacheOop.cpp for details.
  3061   // This code isn't produced by javac, but could be produced by
  3062   // another compliant java compiler.
  3063   Label notMethod;
  3064   __ movl(r14, rdx);
  3065   __ andl(r14, (1 << ConstantPoolCacheEntry::methodInterface));
  3066   __ jcc(Assembler::zero, notMethod);
  3068   invokevirtual_helper(rbx, rcx, rdx);
  3069   __ bind(notMethod);
  3071   // Get receiver klass into rdx - also a null check
  3072   __ restore_locals(); // restore r14
  3073   __ load_klass(rdx, rcx);
  3074   __ verify_oop(rdx);
  3076   // profile this call
  3077   __ profile_virtual_call(rdx, r13, r14);
  3079   Label no_such_interface, no_such_method;
  3081   __ lookup_interface_method(// inputs: rec. class, interface, itable index
  3082                              rdx, rax, rbx,
  3083                              // outputs: method, scan temp. reg
  3084                              rbx, r13,
  3085                              no_such_interface);
  3087   // rbx,: methodOop to call
  3088   // rcx: receiver
  3089   // Check for abstract method error
  3090   // Note: This should be done more efficiently via a throw_abstract_method_error
  3091   //       interpreter entry point and a conditional jump to it in case of a null
  3092   //       method.
  3093   __ testptr(rbx, rbx);
  3094   __ jcc(Assembler::zero, no_such_method);
  3096   // do the call
  3097   // rcx: receiver
  3098   // rbx,: methodOop
  3099   __ jump_from_interpreted(rbx, rdx);
  3100   __ should_not_reach_here();
  3102   // exception handling code follows...
  3103   // note: must restore interpreter registers to canonical
  3104   //       state for exception handling to work correctly!
  3106   __ bind(no_such_method);
  3107   // throw exception
  3108   __ pop(rbx);           // pop return address (pushed by prepare_invoke)
  3109   __ restore_bcp();      // r13 must be correct for exception handler   (was destroyed)
  3110   __ restore_locals();   // make sure locals pointer is correct as well (was destroyed)
  3111   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_AbstractMethodError));
  3112   // the call_VM checks for exception, so we should never return here.
  3113   __ should_not_reach_here();
  3115   __ bind(no_such_interface);
  3116   // throw exception
  3117   __ pop(rbx);           // pop return address (pushed by prepare_invoke)
  3118   __ restore_bcp();      // r13 must be correct for exception handler   (was destroyed)
  3119   __ restore_locals();   // make sure locals pointer is correct as well (was destroyed)
  3120   __ call_VM(noreg, CAST_FROM_FN_PTR(address,
  3121                    InterpreterRuntime::throw_IncompatibleClassChangeError));
  3122   // the call_VM checks for exception, so we should never return here.
  3123   __ should_not_reach_here();
  3124   return;
  3127 void TemplateTable::invokedynamic(int byte_no) {
  3128   transition(vtos, vtos);
  3129   assert(byte_no == f1_oop, "use this argument");
  3131   if (!EnableInvokeDynamic) {
  3132     // We should not encounter this bytecode if !EnableInvokeDynamic.
  3133     // The verifier will stop it.  However, if we get past the verifier,
  3134     // this will stop the thread in a reasonable way, without crashing the JVM.
  3135     __ call_VM(noreg, CAST_FROM_FN_PTR(address,
  3136                      InterpreterRuntime::throw_IncompatibleClassChangeError));
  3137     // the call_VM checks for exception, so we should never return here.
  3138     __ should_not_reach_here();
  3139     return;
  3142   prepare_invoke(rax, rbx, byte_no);
  3144   // rax: CallSite object (f1)
  3145   // rbx: unused (f2)
  3146   // rcx: receiver address
  3147   // rdx: flags (unused)
  3149   Register rax_callsite      = rax;
  3150   Register rcx_method_handle = rcx;
  3152   // %%% should make a type profile for any invokedynamic that takes a ref argument
  3153   // profile this call
  3154   __ profile_call(r13);
  3156   __ verify_oop(rax_callsite);
  3157   __ load_heap_oop(rcx_method_handle, Address(rax_callsite, __ delayed_value(java_lang_invoke_CallSite::target_offset_in_bytes, rdx)));
  3158   __ null_check(rcx_method_handle);
  3159   __ verify_oop(rcx_method_handle);
  3160   __ prepare_to_jump_from_interpreted();
  3161   __ jump_to_method_handle_entry(rcx_method_handle, rdx);
  3165 //-----------------------------------------------------------------------------
  3166 // Allocation
  3168 void TemplateTable::_new() {
  3169   transition(vtos, atos);
  3170   __ get_unsigned_2_byte_index_at_bcp(rdx, 1);
  3171   Label slow_case;
  3172   Label done;
  3173   Label initialize_header;
  3174   Label initialize_object; // including clearing the fields
  3175   Label allocate_shared;
  3177   __ get_cpool_and_tags(rsi, rax);
  3178   // Make sure the class we're about to instantiate has been resolved.
  3179   // This is done before loading instanceKlass to be consistent with the order
  3180   // how Constant Pool is updated (see constantPoolOopDesc::klass_at_put)
  3181   const int tags_offset = typeArrayOopDesc::header_size(T_BYTE) * wordSize;
  3182   __ cmpb(Address(rax, rdx, Address::times_1, tags_offset),
  3183           JVM_CONSTANT_Class);
  3184   __ jcc(Assembler::notEqual, slow_case);
  3186   // get instanceKlass
  3187   __ movptr(rsi, Address(rsi, rdx,
  3188             Address::times_8, sizeof(constantPoolOopDesc)));
  3190   // make sure klass is initialized & doesn't have finalizer
  3191   // make sure klass is fully initialized
  3192   __ cmpl(Address(rsi,
  3193                   instanceKlass::init_state_offset_in_bytes() +
  3194                   sizeof(oopDesc)),
  3195           instanceKlass::fully_initialized);
  3196   __ jcc(Assembler::notEqual, slow_case);
  3198   // get instance_size in instanceKlass (scaled to a count of bytes)
  3199   __ movl(rdx,
  3200           Address(rsi,
  3201                   Klass::layout_helper_offset_in_bytes() + sizeof(oopDesc)));
  3202   // test to see if it has a finalizer or is malformed in some way
  3203   __ testl(rdx, Klass::_lh_instance_slow_path_bit);
  3204   __ jcc(Assembler::notZero, slow_case);
  3206   // Allocate the instance
  3207   // 1) Try to allocate in the TLAB
  3208   // 2) if fail and the object is large allocate in the shared Eden
  3209   // 3) if the above fails (or is not applicable), go to a slow case
  3210   // (creates a new TLAB, etc.)
  3212   const bool allow_shared_alloc =
  3213     Universe::heap()->supports_inline_contig_alloc() && !CMSIncrementalMode;
  3215   if (UseTLAB) {
  3216     __ movptr(rax, Address(r15_thread, in_bytes(JavaThread::tlab_top_offset())));
  3217     __ lea(rbx, Address(rax, rdx, Address::times_1));
  3218     __ cmpptr(rbx, Address(r15_thread, in_bytes(JavaThread::tlab_end_offset())));
  3219     __ jcc(Assembler::above, allow_shared_alloc ? allocate_shared : slow_case);
  3220     __ movptr(Address(r15_thread, in_bytes(JavaThread::tlab_top_offset())), rbx);
  3221     if (ZeroTLAB) {
  3222       // the fields have been already cleared
  3223       __ jmp(initialize_header);
  3224     } else {
  3225       // initialize both the header and fields
  3226       __ jmp(initialize_object);
  3230   // Allocation in the shared Eden, if allowed.
  3231   //
  3232   // rdx: instance size in bytes
  3233   if (allow_shared_alloc) {
  3234     __ bind(allocate_shared);
  3236     ExternalAddress top((address)Universe::heap()->top_addr());
  3237     ExternalAddress end((address)Universe::heap()->end_addr());
  3239     const Register RtopAddr = rscratch1;
  3240     const Register RendAddr = rscratch2;
  3242     __ lea(RtopAddr, top);
  3243     __ lea(RendAddr, end);
  3244     __ movptr(rax, Address(RtopAddr, 0));
  3246     // For retries rax gets set by cmpxchgq
  3247     Label retry;
  3248     __ bind(retry);
  3249     __ lea(rbx, Address(rax, rdx, Address::times_1));
  3250     __ cmpptr(rbx, Address(RendAddr, 0));
  3251     __ jcc(Assembler::above, slow_case);
  3253     // Compare rax with the top addr, and if still equal, store the new
  3254     // top addr in rbx at the address of the top addr pointer. Sets ZF if was
  3255     // equal, and clears it otherwise. Use lock prefix for atomicity on MPs.
  3256     //
  3257     // rax: object begin
  3258     // rbx: object end
  3259     // rdx: instance size in bytes
  3260     if (os::is_MP()) {
  3261       __ lock();
  3263     __ cmpxchgptr(rbx, Address(RtopAddr, 0));
  3265     // if someone beat us on the allocation, try again, otherwise continue
  3266     __ jcc(Assembler::notEqual, retry);
  3268     __ incr_allocated_bytes(r15_thread, rdx, 0);
  3271   if (UseTLAB || Universe::heap()->supports_inline_contig_alloc()) {
  3272     // The object is initialized before the header.  If the object size is
  3273     // zero, go directly to the header initialization.
  3274     __ bind(initialize_object);
  3275     __ decrementl(rdx, sizeof(oopDesc));
  3276     __ jcc(Assembler::zero, initialize_header);
  3278     // Initialize object fields
  3279     __ xorl(rcx, rcx); // use zero reg to clear memory (shorter code)
  3280     __ shrl(rdx, LogBytesPerLong);  // divide by oopSize to simplify the loop
  3282       Label loop;
  3283       __ bind(loop);
  3284       __ movq(Address(rax, rdx, Address::times_8,
  3285                       sizeof(oopDesc) - oopSize),
  3286               rcx);
  3287       __ decrementl(rdx);
  3288       __ jcc(Assembler::notZero, loop);
  3291     // initialize object header only.
  3292     __ bind(initialize_header);
  3293     if (UseBiasedLocking) {
  3294       __ movptr(rscratch1, Address(rsi, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes()));
  3295       __ movptr(Address(rax, oopDesc::mark_offset_in_bytes()), rscratch1);
  3296     } else {
  3297       __ movptr(Address(rax, oopDesc::mark_offset_in_bytes()),
  3298                (intptr_t) markOopDesc::prototype()); // header (address 0x1)
  3300     __ xorl(rcx, rcx); // use zero reg to clear memory (shorter code)
  3301     __ store_klass_gap(rax, rcx);  // zero klass gap for compressed oops
  3302     __ store_klass(rax, rsi);      // store klass last
  3305       SkipIfEqual skip(_masm, &DTraceAllocProbes, false);
  3306       // Trigger dtrace event for fastpath
  3307       __ push(atos); // save the return value
  3308       __ call_VM_leaf(
  3309            CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_object_alloc), rax);
  3310       __ pop(atos); // restore the return value
  3313     __ jmp(done);
  3317   // slow case
  3318   __ bind(slow_case);
  3319   __ get_constant_pool(c_rarg1);
  3320   __ get_unsigned_2_byte_index_at_bcp(c_rarg2, 1);
  3321   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::_new), c_rarg1, c_rarg2);
  3322   __ verify_oop(rax);
  3324   // continue
  3325   __ bind(done);
  3328 void TemplateTable::newarray() {
  3329   transition(itos, atos);
  3330   __ load_unsigned_byte(c_rarg1, at_bcp(1));
  3331   __ movl(c_rarg2, rax);
  3332   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::newarray),
  3333           c_rarg1, c_rarg2);
  3336 void TemplateTable::anewarray() {
  3337   transition(itos, atos);
  3338   __ get_unsigned_2_byte_index_at_bcp(c_rarg2, 1);
  3339   __ get_constant_pool(c_rarg1);
  3340   __ movl(c_rarg3, rax);
  3341   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::anewarray),
  3342           c_rarg1, c_rarg2, c_rarg3);
  3345 void TemplateTable::arraylength() {
  3346   transition(atos, itos);
  3347   __ null_check(rax, arrayOopDesc::length_offset_in_bytes());
  3348   __ movl(rax, Address(rax, arrayOopDesc::length_offset_in_bytes()));
  3351 void TemplateTable::checkcast() {
  3352   transition(atos, atos);
  3353   Label done, is_null, ok_is_subtype, quicked, resolved;
  3354   __ testptr(rax, rax); // object is in rax
  3355   __ jcc(Assembler::zero, is_null);
  3357   // Get cpool & tags index
  3358   __ get_cpool_and_tags(rcx, rdx); // rcx=cpool, rdx=tags array
  3359   __ get_unsigned_2_byte_index_at_bcp(rbx, 1); // rbx=index
  3360   // See if bytecode has already been quicked
  3361   __ cmpb(Address(rdx, rbx,
  3362                   Address::times_1,
  3363                   typeArrayOopDesc::header_size(T_BYTE) * wordSize),
  3364           JVM_CONSTANT_Class);
  3365   __ jcc(Assembler::equal, quicked);
  3366   __ push(atos); // save receiver for result, and for GC
  3367   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc));
  3368   __ pop_ptr(rdx); // restore receiver
  3369   __ jmpb(resolved);
  3371   // Get superklass in rax and subklass in rbx
  3372   __ bind(quicked);
  3373   __ mov(rdx, rax); // Save object in rdx; rax needed for subtype check
  3374   __ movptr(rax, Address(rcx, rbx,
  3375                        Address::times_8, sizeof(constantPoolOopDesc)));
  3377   __ bind(resolved);
  3378   __ load_klass(rbx, rdx);
  3380   // Generate subtype check.  Blows rcx, rdi.  Object in rdx.
  3381   // Superklass in rax.  Subklass in rbx.
  3382   __ gen_subtype_check(rbx, ok_is_subtype);
  3384   // Come here on failure
  3385   __ push_ptr(rdx);
  3386   // object is at TOS
  3387   __ jump(ExternalAddress(Interpreter::_throw_ClassCastException_entry));
  3389   // Come here on success
  3390   __ bind(ok_is_subtype);
  3391   __ mov(rax, rdx); // Restore object in rdx
  3393   // Collect counts on whether this check-cast sees NULLs a lot or not.
  3394   if (ProfileInterpreter) {
  3395     __ jmp(done);
  3396     __ bind(is_null);
  3397     __ profile_null_seen(rcx);
  3398   } else {
  3399     __ bind(is_null);   // same as 'done'
  3401   __ bind(done);
  3404 void TemplateTable::instanceof() {
  3405   transition(atos, itos);
  3406   Label done, is_null, ok_is_subtype, quicked, resolved;
  3407   __ testptr(rax, rax);
  3408   __ jcc(Assembler::zero, is_null);
  3410   // Get cpool & tags index
  3411   __ get_cpool_and_tags(rcx, rdx); // rcx=cpool, rdx=tags array
  3412   __ get_unsigned_2_byte_index_at_bcp(rbx, 1); // rbx=index
  3413   // See if bytecode has already been quicked
  3414   __ cmpb(Address(rdx, rbx,
  3415                   Address::times_1,
  3416                   typeArrayOopDesc::header_size(T_BYTE) * wordSize),
  3417           JVM_CONSTANT_Class);
  3418   __ jcc(Assembler::equal, quicked);
  3420   __ push(atos); // save receiver for result, and for GC
  3421   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc));
  3422   __ pop_ptr(rdx); // restore receiver
  3423   __ verify_oop(rdx);
  3424   __ load_klass(rdx, rdx);
  3425   __ jmpb(resolved);
  3427   // Get superklass in rax and subklass in rdx
  3428   __ bind(quicked);
  3429   __ load_klass(rdx, rax);
  3430   __ movptr(rax, Address(rcx, rbx,
  3431                          Address::times_8, sizeof(constantPoolOopDesc)));
  3433   __ bind(resolved);
  3435   // Generate subtype check.  Blows rcx, rdi
  3436   // Superklass in rax.  Subklass in rdx.
  3437   __ gen_subtype_check(rdx, ok_is_subtype);
  3439   // Come here on failure
  3440   __ xorl(rax, rax);
  3441   __ jmpb(done);
  3442   // Come here on success
  3443   __ bind(ok_is_subtype);
  3444   __ movl(rax, 1);
  3446   // Collect counts on whether this test sees NULLs a lot or not.
  3447   if (ProfileInterpreter) {
  3448     __ jmp(done);
  3449     __ bind(is_null);
  3450     __ profile_null_seen(rcx);
  3451   } else {
  3452     __ bind(is_null);   // same as 'done'
  3454   __ bind(done);
  3455   // rax = 0: obj == NULL or  obj is not an instanceof the specified klass
  3456   // rax = 1: obj != NULL and obj is     an instanceof the specified klass
  3459 //-----------------------------------------------------------------------------
  3460 // Breakpoints
  3461 void TemplateTable::_breakpoint() {
  3462   // Note: We get here even if we are single stepping..
  3463   // jbug inists on setting breakpoints at every bytecode
  3464   // even if we are in single step mode.
  3466   transition(vtos, vtos);
  3468   // get the unpatched byte code
  3469   __ get_method(c_rarg1);
  3470   __ call_VM(noreg,
  3471              CAST_FROM_FN_PTR(address,
  3472                               InterpreterRuntime::get_original_bytecode_at),
  3473              c_rarg1, r13);
  3474   __ mov(rbx, rax);
  3476   // post the breakpoint event
  3477   __ get_method(c_rarg1);
  3478   __ call_VM(noreg,
  3479              CAST_FROM_FN_PTR(address, InterpreterRuntime::_breakpoint),
  3480              c_rarg1, r13);
  3482   // complete the execution of original bytecode
  3483   __ dispatch_only_normal(vtos);
  3486 //-----------------------------------------------------------------------------
  3487 // Exceptions
  3489 void TemplateTable::athrow() {
  3490   transition(atos, vtos);
  3491   __ null_check(rax);
  3492   __ jump(ExternalAddress(Interpreter::throw_exception_entry()));
  3495 //-----------------------------------------------------------------------------
  3496 // Synchronization
  3497 //
  3498 // Note: monitorenter & exit are symmetric routines; which is reflected
  3499 //       in the assembly code structure as well
  3500 //
  3501 // Stack layout:
  3502 //
  3503 // [expressions  ] <--- rsp               = expression stack top
  3504 // ..
  3505 // [expressions  ]
  3506 // [monitor entry] <--- monitor block top = expression stack bot
  3507 // ..
  3508 // [monitor entry]
  3509 // [frame data   ] <--- monitor block bot
  3510 // ...
  3511 // [saved rbp    ] <--- rbp
  3512 void TemplateTable::monitorenter() {
  3513   transition(atos, vtos);
  3515   // check for NULL object
  3516   __ null_check(rax);
  3518   const Address monitor_block_top(
  3519         rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
  3520   const Address monitor_block_bot(
  3521         rbp, frame::interpreter_frame_initial_sp_offset * wordSize);
  3522   const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
  3524   Label allocated;
  3526   // initialize entry pointer
  3527   __ xorl(c_rarg1, c_rarg1); // points to free slot or NULL
  3529   // find a free slot in the monitor block (result in c_rarg1)
  3531     Label entry, loop, exit;
  3532     __ movptr(c_rarg3, monitor_block_top); // points to current entry,
  3533                                      // starting with top-most entry
  3534     __ lea(c_rarg2, monitor_block_bot); // points to word before bottom
  3535                                      // of monitor block
  3536     __ jmpb(entry);
  3538     __ bind(loop);
  3539     // check if current entry is used
  3540     __ cmpptr(Address(c_rarg3, BasicObjectLock::obj_offset_in_bytes()), (int32_t) NULL_WORD);
  3541     // if not used then remember entry in c_rarg1
  3542     __ cmov(Assembler::equal, c_rarg1, c_rarg3);
  3543     // check if current entry is for same object
  3544     __ cmpptr(rax, Address(c_rarg3, BasicObjectLock::obj_offset_in_bytes()));
  3545     // if same object then stop searching
  3546     __ jccb(Assembler::equal, exit);
  3547     // otherwise advance to next entry
  3548     __ addptr(c_rarg3, entry_size);
  3549     __ bind(entry);
  3550     // check if bottom reached
  3551     __ cmpptr(c_rarg3, c_rarg2);
  3552     // if not at bottom then check this entry
  3553     __ jcc(Assembler::notEqual, loop);
  3554     __ bind(exit);
  3557   __ testptr(c_rarg1, c_rarg1); // check if a slot has been found
  3558   __ jcc(Assembler::notZero, allocated); // if found, continue with that one
  3560   // allocate one if there's no free slot
  3562     Label entry, loop;
  3563     // 1. compute new pointers             // rsp: old expression stack top
  3564     __ movptr(c_rarg1, monitor_block_bot); // c_rarg1: old expression stack bottom
  3565     __ subptr(rsp, entry_size);            // move expression stack top
  3566     __ subptr(c_rarg1, entry_size);        // move expression stack bottom
  3567     __ mov(c_rarg3, rsp);                  // set start value for copy loop
  3568     __ movptr(monitor_block_bot, c_rarg1); // set new monitor block bottom
  3569     __ jmp(entry);
  3570     // 2. move expression stack contents
  3571     __ bind(loop);
  3572     __ movptr(c_rarg2, Address(c_rarg3, entry_size)); // load expression stack
  3573                                                       // word from old location
  3574     __ movptr(Address(c_rarg3, 0), c_rarg2);          // and store it at new location
  3575     __ addptr(c_rarg3, wordSize);                     // advance to next word
  3576     __ bind(entry);
  3577     __ cmpptr(c_rarg3, c_rarg1);            // check if bottom reached
  3578     __ jcc(Assembler::notEqual, loop);      // if not at bottom then
  3579                                             // copy next word
  3582   // call run-time routine
  3583   // c_rarg1: points to monitor entry
  3584   __ bind(allocated);
  3586   // Increment bcp to point to the next bytecode, so exception
  3587   // handling for async. exceptions work correctly.
  3588   // The object has already been poped from the stack, so the
  3589   // expression stack looks correct.
  3590   __ increment(r13);
  3592   // store object
  3593   __ movptr(Address(c_rarg1, BasicObjectLock::obj_offset_in_bytes()), rax);
  3594   __ lock_object(c_rarg1);
  3596   // check to make sure this monitor doesn't cause stack overflow after locking
  3597   __ save_bcp();  // in case of exception
  3598   __ generate_stack_overflow_check(0);
  3600   // The bcp has already been incremented. Just need to dispatch to
  3601   // next instruction.
  3602   __ dispatch_next(vtos);
  3606 void TemplateTable::monitorexit() {
  3607   transition(atos, vtos);
  3609   // check for NULL object
  3610   __ null_check(rax);
  3612   const Address monitor_block_top(
  3613         rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
  3614   const Address monitor_block_bot(
  3615         rbp, frame::interpreter_frame_initial_sp_offset * wordSize);
  3616   const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
  3618   Label found;
  3620   // find matching slot
  3622     Label entry, loop;
  3623     __ movptr(c_rarg1, monitor_block_top); // points to current entry,
  3624                                      // starting with top-most entry
  3625     __ lea(c_rarg2, monitor_block_bot); // points to word before bottom
  3626                                      // of monitor block
  3627     __ jmpb(entry);
  3629     __ bind(loop);
  3630     // check if current entry is for same object
  3631     __ cmpptr(rax, Address(c_rarg1, BasicObjectLock::obj_offset_in_bytes()));
  3632     // if same object then stop searching
  3633     __ jcc(Assembler::equal, found);
  3634     // otherwise advance to next entry
  3635     __ addptr(c_rarg1, entry_size);
  3636     __ bind(entry);
  3637     // check if bottom reached
  3638     __ cmpptr(c_rarg1, c_rarg2);
  3639     // if not at bottom then check this entry
  3640     __ jcc(Assembler::notEqual, loop);
  3643   // error handling. Unlocking was not block-structured
  3644   __ call_VM(noreg, CAST_FROM_FN_PTR(address,
  3645                    InterpreterRuntime::throw_illegal_monitor_state_exception));
  3646   __ should_not_reach_here();
  3648   // call run-time routine
  3649   // rsi: points to monitor entry
  3650   __ bind(found);
  3651   __ push_ptr(rax); // make sure object is on stack (contract with oopMaps)
  3652   __ unlock_object(c_rarg1);
  3653   __ pop_ptr(rax); // discard object
  3657 // Wide instructions
  3658 void TemplateTable::wide() {
  3659   transition(vtos, vtos);
  3660   __ load_unsigned_byte(rbx, at_bcp(1));
  3661   __ lea(rscratch1, ExternalAddress((address)Interpreter::_wentry_point));
  3662   __ jmp(Address(rscratch1, rbx, Address::times_8));
  3663   // Note: the r13 increment step is part of the individual wide
  3664   // bytecode implementations
  3668 // Multi arrays
  3669 void TemplateTable::multianewarray() {
  3670   transition(vtos, atos);
  3671   __ load_unsigned_byte(rax, at_bcp(3)); // get number of dimensions
  3672   // last dim is on top of stack; we want address of first one:
  3673   // first_addr = last_addr + (ndims - 1) * wordSize
  3674   __ lea(c_rarg1, Address(rsp, rax, Address::times_8, -wordSize));
  3675   call_VM(rax,
  3676           CAST_FROM_FN_PTR(address, InterpreterRuntime::multianewarray),
  3677           c_rarg1);
  3678   __ load_unsigned_byte(rbx, at_bcp(3));
  3679   __ lea(rsp, Address(rsp, rbx, Address::times_8));
  3681 #endif // !CC_INTERP

mercurial