src/cpu/x86/vm/templateTable_x86_32.cpp

Tue, 02 Aug 2011 18:36:40 +0200

author
roland
date
Tue, 02 Aug 2011 18:36:40 +0200
changeset 3047
f1c12354c3f7
parent 2982
ddd894528dbc
child 3050
fdb992d83a87
permissions
-rw-r--r--

7074017: Introduce MemBarAcquireLock/MemBarReleaseLock nodes for monitor enter/exit code paths
Summary: replace MemBarAcquire/MemBarRelease nodes on the monitor enter/exit code paths with new MemBarAcquireLock/MemBarReleaseLock nodes
Reviewed-by: kvn, twisti

     1 /*
     2  * Copyright (c) 1997, 2011, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "asm/assembler.hpp"
    27 #include "interpreter/interpreter.hpp"
    28 #include "interpreter/interpreterRuntime.hpp"
    29 #include "interpreter/templateTable.hpp"
    30 #include "memory/universe.inline.hpp"
    31 #include "oops/methodDataOop.hpp"
    32 #include "oops/objArrayKlass.hpp"
    33 #include "oops/oop.inline.hpp"
    34 #include "prims/methodHandles.hpp"
    35 #include "runtime/sharedRuntime.hpp"
    36 #include "runtime/stubRoutines.hpp"
    37 #include "runtime/synchronizer.hpp"
    39 #ifndef CC_INTERP
    40 #define __ _masm->
    42 //----------------------------------------------------------------------------------------------------
    43 // Platform-dependent initialization
    45 void TemplateTable::pd_initialize() {
    46   // No i486 specific initialization
    47 }
    49 //----------------------------------------------------------------------------------------------------
    50 // Address computation
    52 // local variables
    53 static inline Address iaddress(int n)            {
    54   return Address(rdi, Interpreter::local_offset_in_bytes(n));
    55 }
    57 static inline Address laddress(int n)            { return iaddress(n + 1); }
    58 static inline Address haddress(int n)            { return iaddress(n + 0); }
    59 static inline Address faddress(int n)            { return iaddress(n); }
    60 static inline Address daddress(int n)            { return laddress(n); }
    61 static inline Address aaddress(int n)            { return iaddress(n); }
    63 static inline Address iaddress(Register r)       {
    64   return Address(rdi, r, Interpreter::stackElementScale());
    65 }
    66 static inline Address laddress(Register r)       {
    67   return Address(rdi, r, Interpreter::stackElementScale(), Interpreter::local_offset_in_bytes(1));
    68 }
    69 static inline Address haddress(Register r)       {
    70   return Address(rdi, r, Interpreter::stackElementScale(), Interpreter::local_offset_in_bytes(0));
    71 }
    73 static inline Address faddress(Register r)       { return iaddress(r); }
    74 static inline Address daddress(Register r)       { return laddress(r); }
    75 static inline Address aaddress(Register r)       { return iaddress(r); }
    77 // expression stack
    78 // (Note: Must not use symmetric equivalents at_rsp_m1/2 since they store
    79 // data beyond the rsp which is potentially unsafe in an MT environment;
    80 // an interrupt may overwrite that data.)
    81 static inline Address at_rsp   () {
    82   return Address(rsp, 0);
    83 }
    85 // At top of Java expression stack which may be different than rsp().  It
    86 // isn't for category 1 objects.
    87 static inline Address at_tos   () {
    88   Address tos = Address(rsp,  Interpreter::expr_offset_in_bytes(0));
    89   return tos;
    90 }
    92 static inline Address at_tos_p1() {
    93   return Address(rsp,  Interpreter::expr_offset_in_bytes(1));
    94 }
    96 static inline Address at_tos_p2() {
    97   return Address(rsp,  Interpreter::expr_offset_in_bytes(2));
    98 }
   100 // Condition conversion
   101 static Assembler::Condition j_not(TemplateTable::Condition cc) {
   102   switch (cc) {
   103     case TemplateTable::equal        : return Assembler::notEqual;
   104     case TemplateTable::not_equal    : return Assembler::equal;
   105     case TemplateTable::less         : return Assembler::greaterEqual;
   106     case TemplateTable::less_equal   : return Assembler::greater;
   107     case TemplateTable::greater      : return Assembler::lessEqual;
   108     case TemplateTable::greater_equal: return Assembler::less;
   109   }
   110   ShouldNotReachHere();
   111   return Assembler::zero;
   112 }
   115 //----------------------------------------------------------------------------------------------------
   116 // Miscelaneous helper routines
   118 // Store an oop (or NULL) at the address described by obj.
   119 // If val == noreg this means store a NULL
   121 static void do_oop_store(InterpreterMacroAssembler* _masm,
   122                          Address obj,
   123                          Register val,
   124                          BarrierSet::Name barrier,
   125                          bool precise) {
   126   assert(val == noreg || val == rax, "parameter is just for looks");
   127   switch (barrier) {
   128 #ifndef SERIALGC
   129     case BarrierSet::G1SATBCT:
   130     case BarrierSet::G1SATBCTLogging:
   131       {
   132         // flatten object address if needed
   133         // We do it regardless of precise because we need the registers
   134         if (obj.index() == noreg && obj.disp() == 0) {
   135           if (obj.base() != rdx) {
   136             __ movl(rdx, obj.base());
   137           }
   138         } else {
   139           __ leal(rdx, obj);
   140         }
   141         __ get_thread(rcx);
   142         __ save_bcp();
   143         __ g1_write_barrier_pre(rdx /* obj */,
   144                                 rbx /* pre_val */,
   145                                 rcx /* thread */,
   146                                 rsi /* tmp */,
   147                                 val != noreg /* tosca_live */,
   148                                 false /* expand_call */);
   150         // Do the actual store
   151         // noreg means NULL
   152         if (val == noreg) {
   153           __ movptr(Address(rdx, 0), NULL_WORD);
   154           // No post barrier for NULL
   155         } else {
   156           __ movl(Address(rdx, 0), val);
   157           __ g1_write_barrier_post(rdx /* store_adr */,
   158                                    val /* new_val */,
   159                                    rcx /* thread */,
   160                                    rbx /* tmp */,
   161                                    rsi /* tmp2 */);
   162         }
   163         __ restore_bcp();
   165       }
   166       break;
   167 #endif // SERIALGC
   168     case BarrierSet::CardTableModRef:
   169     case BarrierSet::CardTableExtension:
   170       {
   171         if (val == noreg) {
   172           __ movptr(obj, NULL_WORD);
   173         } else {
   174           __ movl(obj, val);
   175           // flatten object address if needed
   176           if (!precise || (obj.index() == noreg && obj.disp() == 0)) {
   177             __ store_check(obj.base());
   178           } else {
   179             __ leal(rdx, obj);
   180             __ store_check(rdx);
   181           }
   182         }
   183       }
   184       break;
   185     case BarrierSet::ModRef:
   186     case BarrierSet::Other:
   187       if (val == noreg) {
   188         __ movptr(obj, NULL_WORD);
   189       } else {
   190         __ movl(obj, val);
   191       }
   192       break;
   193     default      :
   194       ShouldNotReachHere();
   196   }
   197 }
   199 Address TemplateTable::at_bcp(int offset) {
   200   assert(_desc->uses_bcp(), "inconsistent uses_bcp information");
   201   return Address(rsi, offset);
   202 }
   205 void TemplateTable::patch_bytecode(Bytecodes::Code bytecode, Register bc,
   206                                    Register scratch,
   207                                    bool load_bc_into_scratch/*=true*/) {
   209   if (!RewriteBytecodes) return;
   210   // the pair bytecodes have already done the load.
   211   if (load_bc_into_scratch) {
   212     __ movl(bc, bytecode);
   213   }
   214   Label patch_done;
   215   if (JvmtiExport::can_post_breakpoint()) {
   216     Label fast_patch;
   217     // if a breakpoint is present we can't rewrite the stream directly
   218     __ movzbl(scratch, at_bcp(0));
   219     __ cmpl(scratch, Bytecodes::_breakpoint);
   220     __ jcc(Assembler::notEqual, fast_patch);
   221     __ get_method(scratch);
   222     // Let breakpoint table handling rewrite to quicker bytecode
   223     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::set_original_bytecode_at), scratch, rsi, bc);
   224 #ifndef ASSERT
   225     __ jmpb(patch_done);
   226 #else
   227     __ jmp(patch_done);
   228 #endif
   229     __ bind(fast_patch);
   230   }
   231 #ifdef ASSERT
   232   Label okay;
   233   __ load_unsigned_byte(scratch, at_bcp(0));
   234   __ cmpl(scratch, (int)Bytecodes::java_code(bytecode));
   235   __ jccb(Assembler::equal, okay);
   236   __ cmpl(scratch, bc);
   237   __ jcc(Assembler::equal, okay);
   238   __ stop("patching the wrong bytecode");
   239   __ bind(okay);
   240 #endif
   241   // patch bytecode
   242   __ movb(at_bcp(0), bc);
   243   __ bind(patch_done);
   244 }
   246 //----------------------------------------------------------------------------------------------------
   247 // Individual instructions
   249 void TemplateTable::nop() {
   250   transition(vtos, vtos);
   251   // nothing to do
   252 }
   254 void TemplateTable::shouldnotreachhere() {
   255   transition(vtos, vtos);
   256   __ stop("shouldnotreachhere bytecode");
   257 }
   261 void TemplateTable::aconst_null() {
   262   transition(vtos, atos);
   263   __ xorptr(rax, rax);
   264 }
   267 void TemplateTable::iconst(int value) {
   268   transition(vtos, itos);
   269   if (value == 0) {
   270     __ xorptr(rax, rax);
   271   } else {
   272     __ movptr(rax, value);
   273   }
   274 }
   277 void TemplateTable::lconst(int value) {
   278   transition(vtos, ltos);
   279   if (value == 0) {
   280     __ xorptr(rax, rax);
   281   } else {
   282     __ movptr(rax, value);
   283   }
   284   assert(value >= 0, "check this code");
   285   __ xorptr(rdx, rdx);
   286 }
   289 void TemplateTable::fconst(int value) {
   290   transition(vtos, ftos);
   291          if (value == 0) { __ fldz();
   292   } else if (value == 1) { __ fld1();
   293   } else if (value == 2) { __ fld1(); __ fld1(); __ faddp(); // should do a better solution here
   294   } else                 { ShouldNotReachHere();
   295   }
   296 }
   299 void TemplateTable::dconst(int value) {
   300   transition(vtos, dtos);
   301          if (value == 0) { __ fldz();
   302   } else if (value == 1) { __ fld1();
   303   } else                 { ShouldNotReachHere();
   304   }
   305 }
   308 void TemplateTable::bipush() {
   309   transition(vtos, itos);
   310   __ load_signed_byte(rax, at_bcp(1));
   311 }
   314 void TemplateTable::sipush() {
   315   transition(vtos, itos);
   316   __ load_unsigned_short(rax, at_bcp(1));
   317   __ bswapl(rax);
   318   __ sarl(rax, 16);
   319 }
   321 void TemplateTable::ldc(bool wide) {
   322   transition(vtos, vtos);
   323   Label call_ldc, notFloat, notClass, Done;
   325   if (wide) {
   326     __ get_unsigned_2_byte_index_at_bcp(rbx, 1);
   327   } else {
   328     __ load_unsigned_byte(rbx, at_bcp(1));
   329   }
   330   __ get_cpool_and_tags(rcx, rax);
   331   const int base_offset = constantPoolOopDesc::header_size() * wordSize;
   332   const int tags_offset = typeArrayOopDesc::header_size(T_BYTE) * wordSize;
   334   // get type
   335   __ xorptr(rdx, rdx);
   336   __ movb(rdx, Address(rax, rbx, Address::times_1, tags_offset));
   338   // unresolved string - get the resolved string
   339   __ cmpl(rdx, JVM_CONSTANT_UnresolvedString);
   340   __ jccb(Assembler::equal, call_ldc);
   342   // unresolved class - get the resolved class
   343   __ cmpl(rdx, JVM_CONSTANT_UnresolvedClass);
   344   __ jccb(Assembler::equal, call_ldc);
   346   // unresolved class in error (resolution failed) - call into runtime
   347   // so that the same error from first resolution attempt is thrown.
   348   __ cmpl(rdx, JVM_CONSTANT_UnresolvedClassInError);
   349   __ jccb(Assembler::equal, call_ldc);
   351   // resolved class - need to call vm to get java mirror of the class
   352   __ cmpl(rdx, JVM_CONSTANT_Class);
   353   __ jcc(Assembler::notEqual, notClass);
   355   __ bind(call_ldc);
   356   __ movl(rcx, wide);
   357   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::ldc), rcx);
   358   __ push(atos);
   359   __ jmp(Done);
   361   __ bind(notClass);
   362   __ cmpl(rdx, JVM_CONSTANT_Float);
   363   __ jccb(Assembler::notEqual, notFloat);
   364   // ftos
   365   __ fld_s(    Address(rcx, rbx, Address::times_ptr, base_offset));
   366   __ push(ftos);
   367   __ jmp(Done);
   369   __ bind(notFloat);
   370 #ifdef ASSERT
   371   { Label L;
   372     __ cmpl(rdx, JVM_CONSTANT_Integer);
   373     __ jcc(Assembler::equal, L);
   374     __ cmpl(rdx, JVM_CONSTANT_String);
   375     __ jcc(Assembler::equal, L);
   376     __ cmpl(rdx, JVM_CONSTANT_Object);
   377     __ jcc(Assembler::equal, L);
   378     __ stop("unexpected tag type in ldc");
   379     __ bind(L);
   380   }
   381 #endif
   382   Label isOop;
   383   // atos and itos
   384   // Integer is only non-oop type we will see here
   385   __ cmpl(rdx, JVM_CONSTANT_Integer);
   386   __ jccb(Assembler::notEqual, isOop);
   387   __ movl(rax, Address(rcx, rbx, Address::times_ptr, base_offset));
   388   __ push(itos);
   389   __ jmp(Done);
   390   __ bind(isOop);
   391   __ movptr(rax, Address(rcx, rbx, Address::times_ptr, base_offset));
   392   __ push(atos);
   394   if (VerifyOops) {
   395     __ verify_oop(rax);
   396   }
   397   __ bind(Done);
   398 }
   400 // Fast path for caching oop constants.
   401 // %%% We should use this to handle Class and String constants also.
   402 // %%% It will simplify the ldc/primitive path considerably.
   403 void TemplateTable::fast_aldc(bool wide) {
   404   transition(vtos, atos);
   406   if (!EnableInvokeDynamic) {
   407     // We should not encounter this bytecode if !EnableInvokeDynamic.
   408     // The verifier will stop it.  However, if we get past the verifier,
   409     // this will stop the thread in a reasonable way, without crashing the JVM.
   410     __ call_VM(noreg, CAST_FROM_FN_PTR(address,
   411                      InterpreterRuntime::throw_IncompatibleClassChangeError));
   412     // the call_VM checks for exception, so we should never return here.
   413     __ should_not_reach_here();
   414     return;
   415   }
   417   const Register cache = rcx;
   418   const Register index = rdx;
   420   resolve_cache_and_index(f1_oop, rax, cache, index, wide ? sizeof(u2) : sizeof(u1));
   421   if (VerifyOops) {
   422     __ verify_oop(rax);
   423   }
   425   Label L_done, L_throw_exception;
   426   const Register con_klass_temp = rcx;  // same as Rcache
   427   __ load_klass(con_klass_temp, rax);
   428   __ cmpptr(con_klass_temp, ExternalAddress((address)Universe::systemObjArrayKlassObj_addr()));
   429   __ jcc(Assembler::notEqual, L_done);
   430   __ cmpl(Address(rax, arrayOopDesc::length_offset_in_bytes()), 0);
   431   __ jcc(Assembler::notEqual, L_throw_exception);
   432   __ xorptr(rax, rax);
   433   __ jmp(L_done);
   435   // Load the exception from the system-array which wraps it:
   436   __ bind(L_throw_exception);
   437   __ load_heap_oop(rax, Address(rax, arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
   438   __ jump(ExternalAddress(Interpreter::throw_exception_entry()));
   440   __ bind(L_done);
   441 }
   443 void TemplateTable::ldc2_w() {
   444   transition(vtos, vtos);
   445   Label Long, Done;
   446   __ get_unsigned_2_byte_index_at_bcp(rbx, 1);
   448   __ get_cpool_and_tags(rcx, rax);
   449   const int base_offset = constantPoolOopDesc::header_size() * wordSize;
   450   const int tags_offset = typeArrayOopDesc::header_size(T_BYTE) * wordSize;
   452   // get type
   453   __ cmpb(Address(rax, rbx, Address::times_1, tags_offset), JVM_CONSTANT_Double);
   454   __ jccb(Assembler::notEqual, Long);
   455   // dtos
   456   __ fld_d(    Address(rcx, rbx, Address::times_ptr, base_offset));
   457   __ push(dtos);
   458   __ jmpb(Done);
   460   __ bind(Long);
   461   // ltos
   462   __ movptr(rax, Address(rcx, rbx, Address::times_ptr, base_offset + 0 * wordSize));
   463   NOT_LP64(__ movptr(rdx, Address(rcx, rbx, Address::times_ptr, base_offset + 1 * wordSize)));
   465   __ push(ltos);
   467   __ bind(Done);
   468 }
   471 void TemplateTable::locals_index(Register reg, int offset) {
   472   __ load_unsigned_byte(reg, at_bcp(offset));
   473   __ negptr(reg);
   474 }
   477 void TemplateTable::iload() {
   478   transition(vtos, itos);
   479   if (RewriteFrequentPairs) {
   480     Label rewrite, done;
   482     // get next byte
   483     __ load_unsigned_byte(rbx, at_bcp(Bytecodes::length_for(Bytecodes::_iload)));
   484     // if _iload, wait to rewrite to iload2.  We only want to rewrite the
   485     // last two iloads in a pair.  Comparing against fast_iload means that
   486     // the next bytecode is neither an iload or a caload, and therefore
   487     // an iload pair.
   488     __ cmpl(rbx, Bytecodes::_iload);
   489     __ jcc(Assembler::equal, done);
   491     __ cmpl(rbx, Bytecodes::_fast_iload);
   492     __ movl(rcx, Bytecodes::_fast_iload2);
   493     __ jccb(Assembler::equal, rewrite);
   495     // if _caload, rewrite to fast_icaload
   496     __ cmpl(rbx, Bytecodes::_caload);
   497     __ movl(rcx, Bytecodes::_fast_icaload);
   498     __ jccb(Assembler::equal, rewrite);
   500     // rewrite so iload doesn't check again.
   501     __ movl(rcx, Bytecodes::_fast_iload);
   503     // rewrite
   504     // rcx: fast bytecode
   505     __ bind(rewrite);
   506     patch_bytecode(Bytecodes::_iload, rcx, rbx, false);
   507     __ bind(done);
   508   }
   510   // Get the local value into tos
   511   locals_index(rbx);
   512   __ movl(rax, iaddress(rbx));
   513 }
   516 void TemplateTable::fast_iload2() {
   517   transition(vtos, itos);
   518   locals_index(rbx);
   519   __ movl(rax, iaddress(rbx));
   520   __ push(itos);
   521   locals_index(rbx, 3);
   522   __ movl(rax, iaddress(rbx));
   523 }
   525 void TemplateTable::fast_iload() {
   526   transition(vtos, itos);
   527   locals_index(rbx);
   528   __ movl(rax, iaddress(rbx));
   529 }
   532 void TemplateTable::lload() {
   533   transition(vtos, ltos);
   534   locals_index(rbx);
   535   __ movptr(rax, laddress(rbx));
   536   NOT_LP64(__ movl(rdx, haddress(rbx)));
   537 }
   540 void TemplateTable::fload() {
   541   transition(vtos, ftos);
   542   locals_index(rbx);
   543   __ fld_s(faddress(rbx));
   544 }
   547 void TemplateTable::dload() {
   548   transition(vtos, dtos);
   549   locals_index(rbx);
   550   __ fld_d(daddress(rbx));
   551 }
   554 void TemplateTable::aload() {
   555   transition(vtos, atos);
   556   locals_index(rbx);
   557   __ movptr(rax, aaddress(rbx));
   558 }
   561 void TemplateTable::locals_index_wide(Register reg) {
   562   __ movl(reg, at_bcp(2));
   563   __ bswapl(reg);
   564   __ shrl(reg, 16);
   565   __ negptr(reg);
   566 }
   569 void TemplateTable::wide_iload() {
   570   transition(vtos, itos);
   571   locals_index_wide(rbx);
   572   __ movl(rax, iaddress(rbx));
   573 }
   576 void TemplateTable::wide_lload() {
   577   transition(vtos, ltos);
   578   locals_index_wide(rbx);
   579   __ movptr(rax, laddress(rbx));
   580   NOT_LP64(__ movl(rdx, haddress(rbx)));
   581 }
   584 void TemplateTable::wide_fload() {
   585   transition(vtos, ftos);
   586   locals_index_wide(rbx);
   587   __ fld_s(faddress(rbx));
   588 }
   591 void TemplateTable::wide_dload() {
   592   transition(vtos, dtos);
   593   locals_index_wide(rbx);
   594   __ fld_d(daddress(rbx));
   595 }
   598 void TemplateTable::wide_aload() {
   599   transition(vtos, atos);
   600   locals_index_wide(rbx);
   601   __ movptr(rax, aaddress(rbx));
   602 }
   604 void TemplateTable::index_check(Register array, Register index) {
   605   // Pop ptr into array
   606   __ pop_ptr(array);
   607   index_check_without_pop(array, index);
   608 }
   610 void TemplateTable::index_check_without_pop(Register array, Register index) {
   611   // destroys rbx,
   612   // check array
   613   __ null_check(array, arrayOopDesc::length_offset_in_bytes());
   614   LP64_ONLY(__ movslq(index, index));
   615   // check index
   616   __ cmpl(index, Address(array, arrayOopDesc::length_offset_in_bytes()));
   617   if (index != rbx) {
   618     // ??? convention: move aberrant index into rbx, for exception message
   619     assert(rbx != array, "different registers");
   620     __ mov(rbx, index);
   621   }
   622   __ jump_cc(Assembler::aboveEqual,
   623              ExternalAddress(Interpreter::_throw_ArrayIndexOutOfBoundsException_entry));
   624 }
   627 void TemplateTable::iaload() {
   628   transition(itos, itos);
   629   // rdx: array
   630   index_check(rdx, rax);  // kills rbx,
   631   // rax,: index
   632   __ movl(rax, Address(rdx, rax, Address::times_4, arrayOopDesc::base_offset_in_bytes(T_INT)));
   633 }
   636 void TemplateTable::laload() {
   637   transition(itos, ltos);
   638   // rax,: index
   639   // rdx: array
   640   index_check(rdx, rax);
   641   __ mov(rbx, rax);
   642   // rbx,: index
   643   __ movptr(rax, Address(rdx, rbx, Address::times_8, arrayOopDesc::base_offset_in_bytes(T_LONG) + 0 * wordSize));
   644   NOT_LP64(__ movl(rdx, Address(rdx, rbx, Address::times_8, arrayOopDesc::base_offset_in_bytes(T_LONG) + 1 * wordSize)));
   645 }
   648 void TemplateTable::faload() {
   649   transition(itos, ftos);
   650   // rdx: array
   651   index_check(rdx, rax);  // kills rbx,
   652   // rax,: index
   653   __ fld_s(Address(rdx, rax, Address::times_4, arrayOopDesc::base_offset_in_bytes(T_FLOAT)));
   654 }
   657 void TemplateTable::daload() {
   658   transition(itos, dtos);
   659   // rdx: array
   660   index_check(rdx, rax);  // kills rbx,
   661   // rax,: index
   662   __ fld_d(Address(rdx, rax, Address::times_8, arrayOopDesc::base_offset_in_bytes(T_DOUBLE)));
   663 }
   666 void TemplateTable::aaload() {
   667   transition(itos, atos);
   668   // rdx: array
   669   index_check(rdx, rax);  // kills rbx,
   670   // rax,: index
   671   __ movptr(rax, Address(rdx, rax, Address::times_ptr, arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
   672 }
   675 void TemplateTable::baload() {
   676   transition(itos, itos);
   677   // rdx: array
   678   index_check(rdx, rax);  // kills rbx,
   679   // rax,: index
   680   // can do better code for P5 - fix this at some point
   681   __ load_signed_byte(rbx, Address(rdx, rax, Address::times_1, arrayOopDesc::base_offset_in_bytes(T_BYTE)));
   682   __ mov(rax, rbx);
   683 }
   686 void TemplateTable::caload() {
   687   transition(itos, itos);
   688   // rdx: array
   689   index_check(rdx, rax);  // kills rbx,
   690   // rax,: index
   691   // can do better code for P5 - may want to improve this at some point
   692   __ load_unsigned_short(rbx, Address(rdx, rax, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_CHAR)));
   693   __ mov(rax, rbx);
   694 }
   696 // iload followed by caload frequent pair
   697 void TemplateTable::fast_icaload() {
   698   transition(vtos, itos);
   699   // load index out of locals
   700   locals_index(rbx);
   701   __ movl(rax, iaddress(rbx));
   703   // rdx: array
   704   index_check(rdx, rax);
   705   // rax,: index
   706   __ load_unsigned_short(rbx, Address(rdx, rax, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_CHAR)));
   707   __ mov(rax, rbx);
   708 }
   710 void TemplateTable::saload() {
   711   transition(itos, itos);
   712   // rdx: array
   713   index_check(rdx, rax);  // kills rbx,
   714   // rax,: index
   715   // can do better code for P5 - may want to improve this at some point
   716   __ load_signed_short(rbx, Address(rdx, rax, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_SHORT)));
   717   __ mov(rax, rbx);
   718 }
   721 void TemplateTable::iload(int n) {
   722   transition(vtos, itos);
   723   __ movl(rax, iaddress(n));
   724 }
   727 void TemplateTable::lload(int n) {
   728   transition(vtos, ltos);
   729   __ movptr(rax, laddress(n));
   730   NOT_LP64(__ movptr(rdx, haddress(n)));
   731 }
   734 void TemplateTable::fload(int n) {
   735   transition(vtos, ftos);
   736   __ fld_s(faddress(n));
   737 }
   740 void TemplateTable::dload(int n) {
   741   transition(vtos, dtos);
   742   __ fld_d(daddress(n));
   743 }
   746 void TemplateTable::aload(int n) {
   747   transition(vtos, atos);
   748   __ movptr(rax, aaddress(n));
   749 }
   752 void TemplateTable::aload_0() {
   753   transition(vtos, atos);
   754   // According to bytecode histograms, the pairs:
   755   //
   756   // _aload_0, _fast_igetfield
   757   // _aload_0, _fast_agetfield
   758   // _aload_0, _fast_fgetfield
   759   //
   760   // occur frequently. If RewriteFrequentPairs is set, the (slow) _aload_0
   761   // bytecode checks if the next bytecode is either _fast_igetfield,
   762   // _fast_agetfield or _fast_fgetfield and then rewrites the
   763   // current bytecode into a pair bytecode; otherwise it rewrites the current
   764   // bytecode into _fast_aload_0 that doesn't do the pair check anymore.
   765   //
   766   // Note: If the next bytecode is _getfield, the rewrite must be delayed,
   767   //       otherwise we may miss an opportunity for a pair.
   768   //
   769   // Also rewrite frequent pairs
   770   //   aload_0, aload_1
   771   //   aload_0, iload_1
   772   // These bytecodes with a small amount of code are most profitable to rewrite
   773   if (RewriteFrequentPairs) {
   774     Label rewrite, done;
   775     // get next byte
   776     __ load_unsigned_byte(rbx, at_bcp(Bytecodes::length_for(Bytecodes::_aload_0)));
   778     // do actual aload_0
   779     aload(0);
   781     // if _getfield then wait with rewrite
   782     __ cmpl(rbx, Bytecodes::_getfield);
   783     __ jcc(Assembler::equal, done);
   785     // if _igetfield then reqrite to _fast_iaccess_0
   786     assert(Bytecodes::java_code(Bytecodes::_fast_iaccess_0) == Bytecodes::_aload_0, "fix bytecode definition");
   787     __ cmpl(rbx, Bytecodes::_fast_igetfield);
   788     __ movl(rcx, Bytecodes::_fast_iaccess_0);
   789     __ jccb(Assembler::equal, rewrite);
   791     // if _agetfield then reqrite to _fast_aaccess_0
   792     assert(Bytecodes::java_code(Bytecodes::_fast_aaccess_0) == Bytecodes::_aload_0, "fix bytecode definition");
   793     __ cmpl(rbx, Bytecodes::_fast_agetfield);
   794     __ movl(rcx, Bytecodes::_fast_aaccess_0);
   795     __ jccb(Assembler::equal, rewrite);
   797     // if _fgetfield then reqrite to _fast_faccess_0
   798     assert(Bytecodes::java_code(Bytecodes::_fast_faccess_0) == Bytecodes::_aload_0, "fix bytecode definition");
   799     __ cmpl(rbx, Bytecodes::_fast_fgetfield);
   800     __ movl(rcx, Bytecodes::_fast_faccess_0);
   801     __ jccb(Assembler::equal, rewrite);
   803     // else rewrite to _fast_aload0
   804     assert(Bytecodes::java_code(Bytecodes::_fast_aload_0) == Bytecodes::_aload_0, "fix bytecode definition");
   805     __ movl(rcx, Bytecodes::_fast_aload_0);
   807     // rewrite
   808     // rcx: fast bytecode
   809     __ bind(rewrite);
   810     patch_bytecode(Bytecodes::_aload_0, rcx, rbx, false);
   812     __ bind(done);
   813   } else {
   814     aload(0);
   815   }
   816 }
   818 void TemplateTable::istore() {
   819   transition(itos, vtos);
   820   locals_index(rbx);
   821   __ movl(iaddress(rbx), rax);
   822 }
   825 void TemplateTable::lstore() {
   826   transition(ltos, vtos);
   827   locals_index(rbx);
   828   __ movptr(laddress(rbx), rax);
   829   NOT_LP64(__ movptr(haddress(rbx), rdx));
   830 }
   833 void TemplateTable::fstore() {
   834   transition(ftos, vtos);
   835   locals_index(rbx);
   836   __ fstp_s(faddress(rbx));
   837 }
   840 void TemplateTable::dstore() {
   841   transition(dtos, vtos);
   842   locals_index(rbx);
   843   __ fstp_d(daddress(rbx));
   844 }
   847 void TemplateTable::astore() {
   848   transition(vtos, vtos);
   849   __ pop_ptr(rax);
   850   locals_index(rbx);
   851   __ movptr(aaddress(rbx), rax);
   852 }
   855 void TemplateTable::wide_istore() {
   856   transition(vtos, vtos);
   857   __ pop_i(rax);
   858   locals_index_wide(rbx);
   859   __ movl(iaddress(rbx), rax);
   860 }
   863 void TemplateTable::wide_lstore() {
   864   transition(vtos, vtos);
   865   __ pop_l(rax, rdx);
   866   locals_index_wide(rbx);
   867   __ movptr(laddress(rbx), rax);
   868   NOT_LP64(__ movl(haddress(rbx), rdx));
   869 }
   872 void TemplateTable::wide_fstore() {
   873   wide_istore();
   874 }
   877 void TemplateTable::wide_dstore() {
   878   wide_lstore();
   879 }
   882 void TemplateTable::wide_astore() {
   883   transition(vtos, vtos);
   884   __ pop_ptr(rax);
   885   locals_index_wide(rbx);
   886   __ movptr(aaddress(rbx), rax);
   887 }
   890 void TemplateTable::iastore() {
   891   transition(itos, vtos);
   892   __ pop_i(rbx);
   893   // rax,: value
   894   // rdx: array
   895   index_check(rdx, rbx);  // prefer index in rbx,
   896   // rbx,: index
   897   __ movl(Address(rdx, rbx, Address::times_4, arrayOopDesc::base_offset_in_bytes(T_INT)), rax);
   898 }
   901 void TemplateTable::lastore() {
   902   transition(ltos, vtos);
   903   __ pop_i(rbx);
   904   // rax,: low(value)
   905   // rcx: array
   906   // rdx: high(value)
   907   index_check(rcx, rbx);  // prefer index in rbx,
   908   // rbx,: index
   909   __ movptr(Address(rcx, rbx, Address::times_8, arrayOopDesc::base_offset_in_bytes(T_LONG) + 0 * wordSize), rax);
   910   NOT_LP64(__ movl(Address(rcx, rbx, Address::times_8, arrayOopDesc::base_offset_in_bytes(T_LONG) + 1 * wordSize), rdx));
   911 }
   914 void TemplateTable::fastore() {
   915   transition(ftos, vtos);
   916   __ pop_i(rbx);
   917   // rdx: array
   918   // st0: value
   919   index_check(rdx, rbx);  // prefer index in rbx,
   920   // rbx,: index
   921   __ fstp_s(Address(rdx, rbx, Address::times_4, arrayOopDesc::base_offset_in_bytes(T_FLOAT)));
   922 }
   925 void TemplateTable::dastore() {
   926   transition(dtos, vtos);
   927   __ pop_i(rbx);
   928   // rdx: array
   929   // st0: value
   930   index_check(rdx, rbx);  // prefer index in rbx,
   931   // rbx,: index
   932   __ fstp_d(Address(rdx, rbx, Address::times_8, arrayOopDesc::base_offset_in_bytes(T_DOUBLE)));
   933 }
   936 void TemplateTable::aastore() {
   937   Label is_null, ok_is_subtype, done;
   938   transition(vtos, vtos);
   939   // stack: ..., array, index, value
   940   __ movptr(rax, at_tos());     // Value
   941   __ movl(rcx, at_tos_p1());  // Index
   942   __ movptr(rdx, at_tos_p2());  // Array
   944   Address element_address(rdx, rcx, Address::times_4, arrayOopDesc::base_offset_in_bytes(T_OBJECT));
   945   index_check_without_pop(rdx, rcx);      // kills rbx,
   946   // do array store check - check for NULL value first
   947   __ testptr(rax, rax);
   948   __ jcc(Assembler::zero, is_null);
   950   // Move subklass into EBX
   951   __ load_klass(rbx, rax);
   952   // Move superklass into EAX
   953   __ load_klass(rax, rdx);
   954   __ movptr(rax, Address(rax, sizeof(oopDesc) + objArrayKlass::element_klass_offset_in_bytes()));
   955   // Compress array+index*wordSize+12 into a single register.  Frees ECX.
   956   __ lea(rdx, element_address);
   958   // Generate subtype check.  Blows ECX.  Resets EDI to locals.
   959   // Superklass in EAX.  Subklass in EBX.
   960   __ gen_subtype_check( rbx, ok_is_subtype );
   962   // Come here on failure
   963   // object is at TOS
   964   __ jump(ExternalAddress(Interpreter::_throw_ArrayStoreException_entry));
   966   // Come here on success
   967   __ bind(ok_is_subtype);
   969   // Get the value to store
   970   __ movptr(rax, at_rsp());
   971   // and store it with appropriate barrier
   972   do_oop_store(_masm, Address(rdx, 0), rax, _bs->kind(), true);
   974   __ jmp(done);
   976   // Have a NULL in EAX, EDX=array, ECX=index.  Store NULL at ary[idx]
   977   __ bind(is_null);
   978   __ profile_null_seen(rbx);
   980   // Store NULL, (noreg means NULL to do_oop_store)
   981   do_oop_store(_masm, element_address, noreg, _bs->kind(), true);
   983   // Pop stack arguments
   984   __ bind(done);
   985   __ addptr(rsp, 3 * Interpreter::stackElementSize);
   986 }
   989 void TemplateTable::bastore() {
   990   transition(itos, vtos);
   991   __ pop_i(rbx);
   992   // rax,: value
   993   // rdx: array
   994   index_check(rdx, rbx);  // prefer index in rbx,
   995   // rbx,: index
   996   __ movb(Address(rdx, rbx, Address::times_1, arrayOopDesc::base_offset_in_bytes(T_BYTE)), rax);
   997 }
  1000 void TemplateTable::castore() {
  1001   transition(itos, vtos);
  1002   __ pop_i(rbx);
  1003   // rax,: value
  1004   // rdx: array
  1005   index_check(rdx, rbx);  // prefer index in rbx,
  1006   // rbx,: index
  1007   __ movw(Address(rdx, rbx, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_CHAR)), rax);
  1011 void TemplateTable::sastore() {
  1012   castore();
  1016 void TemplateTable::istore(int n) {
  1017   transition(itos, vtos);
  1018   __ movl(iaddress(n), rax);
  1022 void TemplateTable::lstore(int n) {
  1023   transition(ltos, vtos);
  1024   __ movptr(laddress(n), rax);
  1025   NOT_LP64(__ movptr(haddress(n), rdx));
  1029 void TemplateTable::fstore(int n) {
  1030   transition(ftos, vtos);
  1031   __ fstp_s(faddress(n));
  1035 void TemplateTable::dstore(int n) {
  1036   transition(dtos, vtos);
  1037   __ fstp_d(daddress(n));
  1041 void TemplateTable::astore(int n) {
  1042   transition(vtos, vtos);
  1043   __ pop_ptr(rax);
  1044   __ movptr(aaddress(n), rax);
  1048 void TemplateTable::pop() {
  1049   transition(vtos, vtos);
  1050   __ addptr(rsp, Interpreter::stackElementSize);
  1054 void TemplateTable::pop2() {
  1055   transition(vtos, vtos);
  1056   __ addptr(rsp, 2*Interpreter::stackElementSize);
  1060 void TemplateTable::dup() {
  1061   transition(vtos, vtos);
  1062   // stack: ..., a
  1063   __ load_ptr(0, rax);
  1064   __ push_ptr(rax);
  1065   // stack: ..., a, a
  1069 void TemplateTable::dup_x1() {
  1070   transition(vtos, vtos);
  1071   // stack: ..., a, b
  1072   __ load_ptr( 0, rax);  // load b
  1073   __ load_ptr( 1, rcx);  // load a
  1074   __ store_ptr(1, rax);  // store b
  1075   __ store_ptr(0, rcx);  // store a
  1076   __ push_ptr(rax);      // push b
  1077   // stack: ..., b, a, b
  1081 void TemplateTable::dup_x2() {
  1082   transition(vtos, vtos);
  1083   // stack: ..., a, b, c
  1084   __ load_ptr( 0, rax);  // load c
  1085   __ load_ptr( 2, rcx);  // load a
  1086   __ store_ptr(2, rax);  // store c in a
  1087   __ push_ptr(rax);      // push c
  1088   // stack: ..., c, b, c, c
  1089   __ load_ptr( 2, rax);  // load b
  1090   __ store_ptr(2, rcx);  // store a in b
  1091   // stack: ..., c, a, c, c
  1092   __ store_ptr(1, rax);  // store b in c
  1093   // stack: ..., c, a, b, c
  1097 void TemplateTable::dup2() {
  1098   transition(vtos, vtos);
  1099   // stack: ..., a, b
  1100   __ load_ptr(1, rax);  // load a
  1101   __ push_ptr(rax);     // push a
  1102   __ load_ptr(1, rax);  // load b
  1103   __ push_ptr(rax);     // push b
  1104   // stack: ..., a, b, a, b
  1108 void TemplateTable::dup2_x1() {
  1109   transition(vtos, vtos);
  1110   // stack: ..., a, b, c
  1111   __ load_ptr( 0, rcx);  // load c
  1112   __ load_ptr( 1, rax);  // load b
  1113   __ push_ptr(rax);      // push b
  1114   __ push_ptr(rcx);      // push c
  1115   // stack: ..., a, b, c, b, c
  1116   __ store_ptr(3, rcx);  // store c in b
  1117   // stack: ..., a, c, c, b, c
  1118   __ load_ptr( 4, rcx);  // load a
  1119   __ store_ptr(2, rcx);  // store a in 2nd c
  1120   // stack: ..., a, c, a, b, c
  1121   __ store_ptr(4, rax);  // store b in a
  1122   // stack: ..., b, c, a, b, c
  1123   // stack: ..., b, c, a, b, c
  1127 void TemplateTable::dup2_x2() {
  1128   transition(vtos, vtos);
  1129   // stack: ..., a, b, c, d
  1130   __ load_ptr( 0, rcx);  // load d
  1131   __ load_ptr( 1, rax);  // load c
  1132   __ push_ptr(rax);      // push c
  1133   __ push_ptr(rcx);      // push d
  1134   // stack: ..., a, b, c, d, c, d
  1135   __ load_ptr( 4, rax);  // load b
  1136   __ store_ptr(2, rax);  // store b in d
  1137   __ store_ptr(4, rcx);  // store d in b
  1138   // stack: ..., a, d, c, b, c, d
  1139   __ load_ptr( 5, rcx);  // load a
  1140   __ load_ptr( 3, rax);  // load c
  1141   __ store_ptr(3, rcx);  // store a in c
  1142   __ store_ptr(5, rax);  // store c in a
  1143   // stack: ..., c, d, a, b, c, d
  1144   // stack: ..., c, d, a, b, c, d
  1148 void TemplateTable::swap() {
  1149   transition(vtos, vtos);
  1150   // stack: ..., a, b
  1151   __ load_ptr( 1, rcx);  // load a
  1152   __ load_ptr( 0, rax);  // load b
  1153   __ store_ptr(0, rcx);  // store a in b
  1154   __ store_ptr(1, rax);  // store b in a
  1155   // stack: ..., b, a
  1159 void TemplateTable::iop2(Operation op) {
  1160   transition(itos, itos);
  1161   switch (op) {
  1162     case add  :                   __ pop_i(rdx); __ addl (rax, rdx); break;
  1163     case sub  : __ mov(rdx, rax); __ pop_i(rax); __ subl (rax, rdx); break;
  1164     case mul  :                   __ pop_i(rdx); __ imull(rax, rdx); break;
  1165     case _and :                   __ pop_i(rdx); __ andl (rax, rdx); break;
  1166     case _or  :                   __ pop_i(rdx); __ orl  (rax, rdx); break;
  1167     case _xor :                   __ pop_i(rdx); __ xorl (rax, rdx); break;
  1168     case shl  : __ mov(rcx, rax); __ pop_i(rax); __ shll (rax);      break; // implicit masking of lower 5 bits by Intel shift instr.
  1169     case shr  : __ mov(rcx, rax); __ pop_i(rax); __ sarl (rax);      break; // implicit masking of lower 5 bits by Intel shift instr.
  1170     case ushr : __ mov(rcx, rax); __ pop_i(rax); __ shrl (rax);      break; // implicit masking of lower 5 bits by Intel shift instr.
  1171     default   : ShouldNotReachHere();
  1176 void TemplateTable::lop2(Operation op) {
  1177   transition(ltos, ltos);
  1178   __ pop_l(rbx, rcx);
  1179   switch (op) {
  1180     case add  : __ addl(rax, rbx); __ adcl(rdx, rcx); break;
  1181     case sub  : __ subl(rbx, rax); __ sbbl(rcx, rdx);
  1182                 __ mov (rax, rbx); __ mov (rdx, rcx); break;
  1183     case _and : __ andl(rax, rbx); __ andl(rdx, rcx); break;
  1184     case _or  : __ orl (rax, rbx); __ orl (rdx, rcx); break;
  1185     case _xor : __ xorl(rax, rbx); __ xorl(rdx, rcx); break;
  1186     default   : ShouldNotReachHere();
  1191 void TemplateTable::idiv() {
  1192   transition(itos, itos);
  1193   __ mov(rcx, rax);
  1194   __ pop_i(rax);
  1195   // Note: could xor rax, and rcx and compare with (-1 ^ min_int). If
  1196   //       they are not equal, one could do a normal division (no correction
  1197   //       needed), which may speed up this implementation for the common case.
  1198   //       (see also JVM spec., p.243 & p.271)
  1199   __ corrected_idivl(rcx);
  1203 void TemplateTable::irem() {
  1204   transition(itos, itos);
  1205   __ mov(rcx, rax);
  1206   __ pop_i(rax);
  1207   // Note: could xor rax, and rcx and compare with (-1 ^ min_int). If
  1208   //       they are not equal, one could do a normal division (no correction
  1209   //       needed), which may speed up this implementation for the common case.
  1210   //       (see also JVM spec., p.243 & p.271)
  1211   __ corrected_idivl(rcx);
  1212   __ mov(rax, rdx);
  1216 void TemplateTable::lmul() {
  1217   transition(ltos, ltos);
  1218   __ pop_l(rbx, rcx);
  1219   __ push(rcx); __ push(rbx);
  1220   __ push(rdx); __ push(rax);
  1221   __ lmul(2 * wordSize, 0);
  1222   __ addptr(rsp, 4 * wordSize);  // take off temporaries
  1226 void TemplateTable::ldiv() {
  1227   transition(ltos, ltos);
  1228   __ pop_l(rbx, rcx);
  1229   __ push(rcx); __ push(rbx);
  1230   __ push(rdx); __ push(rax);
  1231   // check if y = 0
  1232   __ orl(rax, rdx);
  1233   __ jump_cc(Assembler::zero,
  1234              ExternalAddress(Interpreter::_throw_ArithmeticException_entry));
  1235   __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::ldiv));
  1236   __ addptr(rsp, 4 * wordSize);  // take off temporaries
  1240 void TemplateTable::lrem() {
  1241   transition(ltos, ltos);
  1242   __ pop_l(rbx, rcx);
  1243   __ push(rcx); __ push(rbx);
  1244   __ push(rdx); __ push(rax);
  1245   // check if y = 0
  1246   __ orl(rax, rdx);
  1247   __ jump_cc(Assembler::zero,
  1248              ExternalAddress(Interpreter::_throw_ArithmeticException_entry));
  1249   __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::lrem));
  1250   __ addptr(rsp, 4 * wordSize);
  1254 void TemplateTable::lshl() {
  1255   transition(itos, ltos);
  1256   __ movl(rcx, rax);                             // get shift count
  1257   __ pop_l(rax, rdx);                            // get shift value
  1258   __ lshl(rdx, rax);
  1262 void TemplateTable::lshr() {
  1263   transition(itos, ltos);
  1264   __ mov(rcx, rax);                              // get shift count
  1265   __ pop_l(rax, rdx);                            // get shift value
  1266   __ lshr(rdx, rax, true);
  1270 void TemplateTable::lushr() {
  1271   transition(itos, ltos);
  1272   __ mov(rcx, rax);                              // get shift count
  1273   __ pop_l(rax, rdx);                            // get shift value
  1274   __ lshr(rdx, rax);
  1278 void TemplateTable::fop2(Operation op) {
  1279   transition(ftos, ftos);
  1280   switch (op) {
  1281     case add: __ fadd_s (at_rsp());                break;
  1282     case sub: __ fsubr_s(at_rsp());                break;
  1283     case mul: __ fmul_s (at_rsp());                break;
  1284     case div: __ fdivr_s(at_rsp());                break;
  1285     case rem: __ fld_s  (at_rsp()); __ fremr(rax); break;
  1286     default : ShouldNotReachHere();
  1288   __ f2ieee();
  1289   __ pop(rax);  // pop float thing off
  1293 void TemplateTable::dop2(Operation op) {
  1294   transition(dtos, dtos);
  1296   switch (op) {
  1297     case add: __ fadd_d (at_rsp());                break;
  1298     case sub: __ fsubr_d(at_rsp());                break;
  1299     case mul: {
  1300       Label L_strict;
  1301       Label L_join;
  1302       const Address access_flags      (rcx, methodOopDesc::access_flags_offset());
  1303       __ get_method(rcx);
  1304       __ movl(rcx, access_flags);
  1305       __ testl(rcx, JVM_ACC_STRICT);
  1306       __ jccb(Assembler::notZero, L_strict);
  1307       __ fmul_d (at_rsp());
  1308       __ jmpb(L_join);
  1309       __ bind(L_strict);
  1310       __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias1()));
  1311       __ fmulp();
  1312       __ fmul_d (at_rsp());
  1313       __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias2()));
  1314       __ fmulp();
  1315       __ bind(L_join);
  1316       break;
  1318     case div: {
  1319       Label L_strict;
  1320       Label L_join;
  1321       const Address access_flags      (rcx, methodOopDesc::access_flags_offset());
  1322       __ get_method(rcx);
  1323       __ movl(rcx, access_flags);
  1324       __ testl(rcx, JVM_ACC_STRICT);
  1325       __ jccb(Assembler::notZero, L_strict);
  1326       __ fdivr_d(at_rsp());
  1327       __ jmp(L_join);
  1328       __ bind(L_strict);
  1329       __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias1()));
  1330       __ fmul_d (at_rsp());
  1331       __ fdivrp();
  1332       __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias2()));
  1333       __ fmulp();
  1334       __ bind(L_join);
  1335       break;
  1337     case rem: __ fld_d  (at_rsp()); __ fremr(rax); break;
  1338     default : ShouldNotReachHere();
  1340   __ d2ieee();
  1341   // Pop double precision number from rsp.
  1342   __ pop(rax);
  1343   __ pop(rdx);
  1347 void TemplateTable::ineg() {
  1348   transition(itos, itos);
  1349   __ negl(rax);
  1353 void TemplateTable::lneg() {
  1354   transition(ltos, ltos);
  1355   __ lneg(rdx, rax);
  1359 void TemplateTable::fneg() {
  1360   transition(ftos, ftos);
  1361   __ fchs();
  1365 void TemplateTable::dneg() {
  1366   transition(dtos, dtos);
  1367   __ fchs();
  1371 void TemplateTable::iinc() {
  1372   transition(vtos, vtos);
  1373   __ load_signed_byte(rdx, at_bcp(2));           // get constant
  1374   locals_index(rbx);
  1375   __ addl(iaddress(rbx), rdx);
  1379 void TemplateTable::wide_iinc() {
  1380   transition(vtos, vtos);
  1381   __ movl(rdx, at_bcp(4));                       // get constant
  1382   locals_index_wide(rbx);
  1383   __ bswapl(rdx);                                 // swap bytes & sign-extend constant
  1384   __ sarl(rdx, 16);
  1385   __ addl(iaddress(rbx), rdx);
  1386   // Note: should probably use only one movl to get both
  1387   //       the index and the constant -> fix this
  1391 void TemplateTable::convert() {
  1392   // Checking
  1393 #ifdef ASSERT
  1394   { TosState tos_in  = ilgl;
  1395     TosState tos_out = ilgl;
  1396     switch (bytecode()) {
  1397       case Bytecodes::_i2l: // fall through
  1398       case Bytecodes::_i2f: // fall through
  1399       case Bytecodes::_i2d: // fall through
  1400       case Bytecodes::_i2b: // fall through
  1401       case Bytecodes::_i2c: // fall through
  1402       case Bytecodes::_i2s: tos_in = itos; break;
  1403       case Bytecodes::_l2i: // fall through
  1404       case Bytecodes::_l2f: // fall through
  1405       case Bytecodes::_l2d: tos_in = ltos; break;
  1406       case Bytecodes::_f2i: // fall through
  1407       case Bytecodes::_f2l: // fall through
  1408       case Bytecodes::_f2d: tos_in = ftos; break;
  1409       case Bytecodes::_d2i: // fall through
  1410       case Bytecodes::_d2l: // fall through
  1411       case Bytecodes::_d2f: tos_in = dtos; break;
  1412       default             : ShouldNotReachHere();
  1414     switch (bytecode()) {
  1415       case Bytecodes::_l2i: // fall through
  1416       case Bytecodes::_f2i: // fall through
  1417       case Bytecodes::_d2i: // fall through
  1418       case Bytecodes::_i2b: // fall through
  1419       case Bytecodes::_i2c: // fall through
  1420       case Bytecodes::_i2s: tos_out = itos; break;
  1421       case Bytecodes::_i2l: // fall through
  1422       case Bytecodes::_f2l: // fall through
  1423       case Bytecodes::_d2l: tos_out = ltos; break;
  1424       case Bytecodes::_i2f: // fall through
  1425       case Bytecodes::_l2f: // fall through
  1426       case Bytecodes::_d2f: tos_out = ftos; break;
  1427       case Bytecodes::_i2d: // fall through
  1428       case Bytecodes::_l2d: // fall through
  1429       case Bytecodes::_f2d: tos_out = dtos; break;
  1430       default             : ShouldNotReachHere();
  1432     transition(tos_in, tos_out);
  1434 #endif // ASSERT
  1436   // Conversion
  1437   // (Note: use push(rcx)/pop(rcx) for 1/2-word stack-ptr manipulation)
  1438   switch (bytecode()) {
  1439     case Bytecodes::_i2l:
  1440       __ extend_sign(rdx, rax);
  1441       break;
  1442     case Bytecodes::_i2f:
  1443       __ push(rax);          // store int on tos
  1444       __ fild_s(at_rsp());   // load int to ST0
  1445       __ f2ieee();           // truncate to float size
  1446       __ pop(rcx);           // adjust rsp
  1447       break;
  1448     case Bytecodes::_i2d:
  1449       __ push(rax);          // add one slot for d2ieee()
  1450       __ push(rax);          // store int on tos
  1451       __ fild_s(at_rsp());   // load int to ST0
  1452       __ d2ieee();           // truncate to double size
  1453       __ pop(rcx);           // adjust rsp
  1454       __ pop(rcx);
  1455       break;
  1456     case Bytecodes::_i2b:
  1457       __ shll(rax, 24);      // truncate upper 24 bits
  1458       __ sarl(rax, 24);      // and sign-extend byte
  1459       LP64_ONLY(__ movsbl(rax, rax));
  1460       break;
  1461     case Bytecodes::_i2c:
  1462       __ andl(rax, 0xFFFF);  // truncate upper 16 bits
  1463       LP64_ONLY(__ movzwl(rax, rax));
  1464       break;
  1465     case Bytecodes::_i2s:
  1466       __ shll(rax, 16);      // truncate upper 16 bits
  1467       __ sarl(rax, 16);      // and sign-extend short
  1468       LP64_ONLY(__ movswl(rax, rax));
  1469       break;
  1470     case Bytecodes::_l2i:
  1471       /* nothing to do */
  1472       break;
  1473     case Bytecodes::_l2f:
  1474       __ push(rdx);          // store long on tos
  1475       __ push(rax);
  1476       __ fild_d(at_rsp());   // load long to ST0
  1477       __ f2ieee();           // truncate to float size
  1478       __ pop(rcx);           // adjust rsp
  1479       __ pop(rcx);
  1480       break;
  1481     case Bytecodes::_l2d:
  1482       __ push(rdx);          // store long on tos
  1483       __ push(rax);
  1484       __ fild_d(at_rsp());   // load long to ST0
  1485       __ d2ieee();           // truncate to double size
  1486       __ pop(rcx);           // adjust rsp
  1487       __ pop(rcx);
  1488       break;
  1489     case Bytecodes::_f2i:
  1490       __ push(rcx);          // reserve space for argument
  1491       __ fstp_s(at_rsp());   // pass float argument on stack
  1492       __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2i), 1);
  1493       break;
  1494     case Bytecodes::_f2l:
  1495       __ push(rcx);          // reserve space for argument
  1496       __ fstp_s(at_rsp());   // pass float argument on stack
  1497       __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2l), 1);
  1498       break;
  1499     case Bytecodes::_f2d:
  1500       /* nothing to do */
  1501       break;
  1502     case Bytecodes::_d2i:
  1503       __ push(rcx);          // reserve space for argument
  1504       __ push(rcx);
  1505       __ fstp_d(at_rsp());   // pass double argument on stack
  1506       __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2i), 2);
  1507       break;
  1508     case Bytecodes::_d2l:
  1509       __ push(rcx);          // reserve space for argument
  1510       __ push(rcx);
  1511       __ fstp_d(at_rsp());   // pass double argument on stack
  1512       __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2l), 2);
  1513       break;
  1514     case Bytecodes::_d2f:
  1515       __ push(rcx);          // reserve space for f2ieee()
  1516       __ f2ieee();           // truncate to float size
  1517       __ pop(rcx);           // adjust rsp
  1518       break;
  1519     default             :
  1520       ShouldNotReachHere();
  1525 void TemplateTable::lcmp() {
  1526   transition(ltos, itos);
  1527   // y = rdx:rax
  1528   __ pop_l(rbx, rcx);             // get x = rcx:rbx
  1529   __ lcmp2int(rcx, rbx, rdx, rax);// rcx := cmp(x, y)
  1530   __ mov(rax, rcx);
  1534 void TemplateTable::float_cmp(bool is_float, int unordered_result) {
  1535   if (is_float) {
  1536     __ fld_s(at_rsp());
  1537   } else {
  1538     __ fld_d(at_rsp());
  1539     __ pop(rdx);
  1541   __ pop(rcx);
  1542   __ fcmp2int(rax, unordered_result < 0);
  1546 void TemplateTable::branch(bool is_jsr, bool is_wide) {
  1547   __ get_method(rcx);           // ECX holds method
  1548   __ profile_taken_branch(rax,rbx); // EAX holds updated MDP, EBX holds bumped taken count
  1550   const ByteSize be_offset = methodOopDesc::backedge_counter_offset() + InvocationCounter::counter_offset();
  1551   const ByteSize inv_offset = methodOopDesc::invocation_counter_offset() + InvocationCounter::counter_offset();
  1552   const int method_offset = frame::interpreter_frame_method_offset * wordSize;
  1554   // Load up EDX with the branch displacement
  1555   __ movl(rdx, at_bcp(1));
  1556   __ bswapl(rdx);
  1557   if (!is_wide) __ sarl(rdx, 16);
  1558   LP64_ONLY(__ movslq(rdx, rdx));
  1561   // Handle all the JSR stuff here, then exit.
  1562   // It's much shorter and cleaner than intermingling with the
  1563   // non-JSR normal-branch stuff occurring below.
  1564   if (is_jsr) {
  1565     // Pre-load the next target bytecode into EBX
  1566     __ load_unsigned_byte(rbx, Address(rsi, rdx, Address::times_1, 0));
  1568     // compute return address as bci in rax,
  1569     __ lea(rax, at_bcp((is_wide ? 5 : 3) - in_bytes(constMethodOopDesc::codes_offset())));
  1570     __ subptr(rax, Address(rcx, methodOopDesc::const_offset()));
  1571     // Adjust the bcp in RSI by the displacement in EDX
  1572     __ addptr(rsi, rdx);
  1573     // Push return address
  1574     __ push_i(rax);
  1575     // jsr returns vtos
  1576     __ dispatch_only_noverify(vtos);
  1577     return;
  1580   // Normal (non-jsr) branch handling
  1582   // Adjust the bcp in RSI by the displacement in EDX
  1583   __ addptr(rsi, rdx);
  1585   assert(UseLoopCounter || !UseOnStackReplacement, "on-stack-replacement requires loop counters");
  1586   Label backedge_counter_overflow;
  1587   Label profile_method;
  1588   Label dispatch;
  1589   if (UseLoopCounter) {
  1590     // increment backedge counter for backward branches
  1591     // rax,: MDO
  1592     // rbx,: MDO bumped taken-count
  1593     // rcx: method
  1594     // rdx: target offset
  1595     // rsi: target bcp
  1596     // rdi: locals pointer
  1597     __ testl(rdx, rdx);             // check if forward or backward branch
  1598     __ jcc(Assembler::positive, dispatch); // count only if backward branch
  1600     if (TieredCompilation) {
  1601       Label no_mdo;
  1602       int increment = InvocationCounter::count_increment;
  1603       int mask = ((1 << Tier0BackedgeNotifyFreqLog) - 1) << InvocationCounter::count_shift;
  1604       if (ProfileInterpreter) {
  1605         // Are we profiling?
  1606         __ movptr(rbx, Address(rcx, in_bytes(methodOopDesc::method_data_offset())));
  1607         __ testptr(rbx, rbx);
  1608         __ jccb(Assembler::zero, no_mdo);
  1609         // Increment the MDO backedge counter
  1610         const Address mdo_backedge_counter(rbx, in_bytes(methodDataOopDesc::backedge_counter_offset()) +
  1611                                                 in_bytes(InvocationCounter::counter_offset()));
  1612         __ increment_mask_and_jump(mdo_backedge_counter, increment, mask,
  1613                                    rax, false, Assembler::zero, &backedge_counter_overflow);
  1614         __ jmp(dispatch);
  1616       __ bind(no_mdo);
  1617       // Increment backedge counter in methodOop
  1618       __ increment_mask_and_jump(Address(rcx, be_offset), increment, mask,
  1619                                  rax, false, Assembler::zero, &backedge_counter_overflow);
  1620     } else {
  1621       // increment counter
  1622       __ movl(rax, Address(rcx, be_offset));        // load backedge counter
  1623       __ incrementl(rax, InvocationCounter::count_increment); // increment counter
  1624       __ movl(Address(rcx, be_offset), rax);        // store counter
  1626       __ movl(rax, Address(rcx, inv_offset));    // load invocation counter
  1627       __ andl(rax, InvocationCounter::count_mask_value);     // and the status bits
  1628       __ addl(rax, Address(rcx, be_offset));        // add both counters
  1630       if (ProfileInterpreter) {
  1631         // Test to see if we should create a method data oop
  1632         __ cmp32(rax,
  1633                  ExternalAddress((address) &InvocationCounter::InterpreterProfileLimit));
  1634         __ jcc(Assembler::less, dispatch);
  1636         // if no method data exists, go to profile method
  1637         __ test_method_data_pointer(rax, profile_method);
  1639         if (UseOnStackReplacement) {
  1640           // check for overflow against rbx, which is the MDO taken count
  1641           __ cmp32(rbx,
  1642                    ExternalAddress((address) &InvocationCounter::InterpreterBackwardBranchLimit));
  1643           __ jcc(Assembler::below, dispatch);
  1645           // When ProfileInterpreter is on, the backedge_count comes from the
  1646           // methodDataOop, which value does not get reset on the call to
  1647           // frequency_counter_overflow().  To avoid excessive calls to the overflow
  1648           // routine while the method is being compiled, add a second test to make
  1649           // sure the overflow function is called only once every overflow_frequency.
  1650           const int overflow_frequency = 1024;
  1651           __ andptr(rbx, overflow_frequency-1);
  1652           __ jcc(Assembler::zero, backedge_counter_overflow);
  1654       } else {
  1655         if (UseOnStackReplacement) {
  1656           // check for overflow against rax, which is the sum of the counters
  1657           __ cmp32(rax,
  1658                    ExternalAddress((address) &InvocationCounter::InterpreterBackwardBranchLimit));
  1659           __ jcc(Assembler::aboveEqual, backedge_counter_overflow);
  1664     __ bind(dispatch);
  1667   // Pre-load the next target bytecode into EBX
  1668   __ load_unsigned_byte(rbx, Address(rsi, 0));
  1670   // continue with the bytecode @ target
  1671   // rax,: return bci for jsr's, unused otherwise
  1672   // rbx,: target bytecode
  1673   // rsi: target bcp
  1674   __ dispatch_only(vtos);
  1676   if (UseLoopCounter) {
  1677     if (ProfileInterpreter) {
  1678       // Out-of-line code to allocate method data oop.
  1679       __ bind(profile_method);
  1680       __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::profile_method));
  1681       __ load_unsigned_byte(rbx, Address(rsi, 0));  // restore target bytecode
  1682       __ set_method_data_pointer_for_bcp();
  1683       __ jmp(dispatch);
  1686     if (UseOnStackReplacement) {
  1688       // invocation counter overflow
  1689       __ bind(backedge_counter_overflow);
  1690       __ negptr(rdx);
  1691       __ addptr(rdx, rsi);        // branch bcp
  1692       call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::frequency_counter_overflow), rdx);
  1693       __ load_unsigned_byte(rbx, Address(rsi, 0));  // restore target bytecode
  1695       // rax,: osr nmethod (osr ok) or NULL (osr not possible)
  1696       // rbx,: target bytecode
  1697       // rdx: scratch
  1698       // rdi: locals pointer
  1699       // rsi: bcp
  1700       __ testptr(rax, rax);                      // test result
  1701       __ jcc(Assembler::zero, dispatch);         // no osr if null
  1702       // nmethod may have been invalidated (VM may block upon call_VM return)
  1703       __ movl(rcx, Address(rax, nmethod::entry_bci_offset()));
  1704       __ cmpl(rcx, InvalidOSREntryBci);
  1705       __ jcc(Assembler::equal, dispatch);
  1707       // We have the address of an on stack replacement routine in rax,
  1708       // We need to prepare to execute the OSR method. First we must
  1709       // migrate the locals and monitors off of the stack.
  1711       __ mov(rbx, rax);                             // save the nmethod
  1713       const Register thread = rcx;
  1714       __ get_thread(thread);
  1715       call_VM(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_begin));
  1716       // rax, is OSR buffer, move it to expected parameter location
  1717       __ mov(rcx, rax);
  1719       // pop the interpreter frame
  1720       __ movptr(rdx, Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize)); // get sender sp
  1721       __ leave();                                // remove frame anchor
  1722       __ pop(rdi);                               // get return address
  1723       __ mov(rsp, rdx);                          // set sp to sender sp
  1725       // Align stack pointer for compiled code (note that caller is
  1726       // responsible for undoing this fixup by remembering the old SP
  1727       // in an rbp,-relative location)
  1728       __ andptr(rsp, -(StackAlignmentInBytes));
  1730       // push the (possibly adjusted) return address
  1731       __ push(rdi);
  1733       // and begin the OSR nmethod
  1734       __ jmp(Address(rbx, nmethod::osr_entry_point_offset()));
  1740 void TemplateTable::if_0cmp(Condition cc) {
  1741   transition(itos, vtos);
  1742   // assume branch is more often taken than not (loops use backward branches)
  1743   Label not_taken;
  1744   __ testl(rax, rax);
  1745   __ jcc(j_not(cc), not_taken);
  1746   branch(false, false);
  1747   __ bind(not_taken);
  1748   __ profile_not_taken_branch(rax);
  1752 void TemplateTable::if_icmp(Condition cc) {
  1753   transition(itos, vtos);
  1754   // assume branch is more often taken than not (loops use backward branches)
  1755   Label not_taken;
  1756   __ pop_i(rdx);
  1757   __ cmpl(rdx, rax);
  1758   __ jcc(j_not(cc), not_taken);
  1759   branch(false, false);
  1760   __ bind(not_taken);
  1761   __ profile_not_taken_branch(rax);
  1765 void TemplateTable::if_nullcmp(Condition cc) {
  1766   transition(atos, vtos);
  1767   // assume branch is more often taken than not (loops use backward branches)
  1768   Label not_taken;
  1769   __ testptr(rax, rax);
  1770   __ jcc(j_not(cc), not_taken);
  1771   branch(false, false);
  1772   __ bind(not_taken);
  1773   __ profile_not_taken_branch(rax);
  1777 void TemplateTable::if_acmp(Condition cc) {
  1778   transition(atos, vtos);
  1779   // assume branch is more often taken than not (loops use backward branches)
  1780   Label not_taken;
  1781   __ pop_ptr(rdx);
  1782   __ cmpptr(rdx, rax);
  1783   __ jcc(j_not(cc), not_taken);
  1784   branch(false, false);
  1785   __ bind(not_taken);
  1786   __ profile_not_taken_branch(rax);
  1790 void TemplateTable::ret() {
  1791   transition(vtos, vtos);
  1792   locals_index(rbx);
  1793   __ movptr(rbx, iaddress(rbx));                   // get return bci, compute return bcp
  1794   __ profile_ret(rbx, rcx);
  1795   __ get_method(rax);
  1796   __ movptr(rsi, Address(rax, methodOopDesc::const_offset()));
  1797   __ lea(rsi, Address(rsi, rbx, Address::times_1,
  1798                       constMethodOopDesc::codes_offset()));
  1799   __ dispatch_next(vtos);
  1803 void TemplateTable::wide_ret() {
  1804   transition(vtos, vtos);
  1805   locals_index_wide(rbx);
  1806   __ movptr(rbx, iaddress(rbx));                   // get return bci, compute return bcp
  1807   __ profile_ret(rbx, rcx);
  1808   __ get_method(rax);
  1809   __ movptr(rsi, Address(rax, methodOopDesc::const_offset()));
  1810   __ lea(rsi, Address(rsi, rbx, Address::times_1, constMethodOopDesc::codes_offset()));
  1811   __ dispatch_next(vtos);
  1815 void TemplateTable::tableswitch() {
  1816   Label default_case, continue_execution;
  1817   transition(itos, vtos);
  1818   // align rsi
  1819   __ lea(rbx, at_bcp(wordSize));
  1820   __ andptr(rbx, -wordSize);
  1821   // load lo & hi
  1822   __ movl(rcx, Address(rbx, 1 * wordSize));
  1823   __ movl(rdx, Address(rbx, 2 * wordSize));
  1824   __ bswapl(rcx);
  1825   __ bswapl(rdx);
  1826   // check against lo & hi
  1827   __ cmpl(rax, rcx);
  1828   __ jccb(Assembler::less, default_case);
  1829   __ cmpl(rax, rdx);
  1830   __ jccb(Assembler::greater, default_case);
  1831   // lookup dispatch offset
  1832   __ subl(rax, rcx);
  1833   __ movl(rdx, Address(rbx, rax, Address::times_4, 3 * BytesPerInt));
  1834   __ profile_switch_case(rax, rbx, rcx);
  1835   // continue execution
  1836   __ bind(continue_execution);
  1837   __ bswapl(rdx);
  1838   __ load_unsigned_byte(rbx, Address(rsi, rdx, Address::times_1));
  1839   __ addptr(rsi, rdx);
  1840   __ dispatch_only(vtos);
  1841   // handle default
  1842   __ bind(default_case);
  1843   __ profile_switch_default(rax);
  1844   __ movl(rdx, Address(rbx, 0));
  1845   __ jmp(continue_execution);
  1849 void TemplateTable::lookupswitch() {
  1850   transition(itos, itos);
  1851   __ stop("lookupswitch bytecode should have been rewritten");
  1855 void TemplateTable::fast_linearswitch() {
  1856   transition(itos, vtos);
  1857   Label loop_entry, loop, found, continue_execution;
  1858   // bswapl rax, so we can avoid bswapping the table entries
  1859   __ bswapl(rax);
  1860   // align rsi
  1861   __ lea(rbx, at_bcp(wordSize));                // btw: should be able to get rid of this instruction (change offsets below)
  1862   __ andptr(rbx, -wordSize);
  1863   // set counter
  1864   __ movl(rcx, Address(rbx, wordSize));
  1865   __ bswapl(rcx);
  1866   __ jmpb(loop_entry);
  1867   // table search
  1868   __ bind(loop);
  1869   __ cmpl(rax, Address(rbx, rcx, Address::times_8, 2 * wordSize));
  1870   __ jccb(Assembler::equal, found);
  1871   __ bind(loop_entry);
  1872   __ decrementl(rcx);
  1873   __ jcc(Assembler::greaterEqual, loop);
  1874   // default case
  1875   __ profile_switch_default(rax);
  1876   __ movl(rdx, Address(rbx, 0));
  1877   __ jmpb(continue_execution);
  1878   // entry found -> get offset
  1879   __ bind(found);
  1880   __ movl(rdx, Address(rbx, rcx, Address::times_8, 3 * wordSize));
  1881   __ profile_switch_case(rcx, rax, rbx);
  1882   // continue execution
  1883   __ bind(continue_execution);
  1884   __ bswapl(rdx);
  1885   __ load_unsigned_byte(rbx, Address(rsi, rdx, Address::times_1));
  1886   __ addptr(rsi, rdx);
  1887   __ dispatch_only(vtos);
  1891 void TemplateTable::fast_binaryswitch() {
  1892   transition(itos, vtos);
  1893   // Implementation using the following core algorithm:
  1894   //
  1895   // int binary_search(int key, LookupswitchPair* array, int n) {
  1896   //   // Binary search according to "Methodik des Programmierens" by
  1897   //   // Edsger W. Dijkstra and W.H.J. Feijen, Addison Wesley Germany 1985.
  1898   //   int i = 0;
  1899   //   int j = n;
  1900   //   while (i+1 < j) {
  1901   //     // invariant P: 0 <= i < j <= n and (a[i] <= key < a[j] or Q)
  1902   //     // with      Q: for all i: 0 <= i < n: key < a[i]
  1903   //     // where a stands for the array and assuming that the (inexisting)
  1904   //     // element a[n] is infinitely big.
  1905   //     int h = (i + j) >> 1;
  1906   //     // i < h < j
  1907   //     if (key < array[h].fast_match()) {
  1908   //       j = h;
  1909   //     } else {
  1910   //       i = h;
  1911   //     }
  1912   //   }
  1913   //   // R: a[i] <= key < a[i+1] or Q
  1914   //   // (i.e., if key is within array, i is the correct index)
  1915   //   return i;
  1916   // }
  1918   // register allocation
  1919   const Register key   = rax;                    // already set (tosca)
  1920   const Register array = rbx;
  1921   const Register i     = rcx;
  1922   const Register j     = rdx;
  1923   const Register h     = rdi;                    // needs to be restored
  1924   const Register temp  = rsi;
  1925   // setup array
  1926   __ save_bcp();
  1928   __ lea(array, at_bcp(3*wordSize));             // btw: should be able to get rid of this instruction (change offsets below)
  1929   __ andptr(array, -wordSize);
  1930   // initialize i & j
  1931   __ xorl(i, i);                                 // i = 0;
  1932   __ movl(j, Address(array, -wordSize));         // j = length(array);
  1933   // Convert j into native byteordering
  1934   __ bswapl(j);
  1935   // and start
  1936   Label entry;
  1937   __ jmp(entry);
  1939   // binary search loop
  1940   { Label loop;
  1941     __ bind(loop);
  1942     // int h = (i + j) >> 1;
  1943     __ leal(h, Address(i, j, Address::times_1)); // h = i + j;
  1944     __ sarl(h, 1);                               // h = (i + j) >> 1;
  1945     // if (key < array[h].fast_match()) {
  1946     //   j = h;
  1947     // } else {
  1948     //   i = h;
  1949     // }
  1950     // Convert array[h].match to native byte-ordering before compare
  1951     __ movl(temp, Address(array, h, Address::times_8, 0*wordSize));
  1952     __ bswapl(temp);
  1953     __ cmpl(key, temp);
  1954     // j = h if (key <  array[h].fast_match())
  1955     __ cmov32(Assembler::less        , j, h);
  1956     // i = h if (key >= array[h].fast_match())
  1957     __ cmov32(Assembler::greaterEqual, i, h);
  1958     // while (i+1 < j)
  1959     __ bind(entry);
  1960     __ leal(h, Address(i, 1));                   // i+1
  1961     __ cmpl(h, j);                               // i+1 < j
  1962     __ jcc(Assembler::less, loop);
  1965   // end of binary search, result index is i (must check again!)
  1966   Label default_case;
  1967   // Convert array[i].match to native byte-ordering before compare
  1968   __ movl(temp, Address(array, i, Address::times_8, 0*wordSize));
  1969   __ bswapl(temp);
  1970   __ cmpl(key, temp);
  1971   __ jcc(Assembler::notEqual, default_case);
  1973   // entry found -> j = offset
  1974   __ movl(j , Address(array, i, Address::times_8, 1*wordSize));
  1975   __ profile_switch_case(i, key, array);
  1976   __ bswapl(j);
  1977   LP64_ONLY(__ movslq(j, j));
  1978   __ restore_bcp();
  1979   __ restore_locals();                           // restore rdi
  1980   __ load_unsigned_byte(rbx, Address(rsi, j, Address::times_1));
  1982   __ addptr(rsi, j);
  1983   __ dispatch_only(vtos);
  1985   // default case -> j = default offset
  1986   __ bind(default_case);
  1987   __ profile_switch_default(i);
  1988   __ movl(j, Address(array, -2*wordSize));
  1989   __ bswapl(j);
  1990   LP64_ONLY(__ movslq(j, j));
  1991   __ restore_bcp();
  1992   __ restore_locals();                           // restore rdi
  1993   __ load_unsigned_byte(rbx, Address(rsi, j, Address::times_1));
  1994   __ addptr(rsi, j);
  1995   __ dispatch_only(vtos);
  1999 void TemplateTable::_return(TosState state) {
  2000   transition(state, state);
  2001   assert(_desc->calls_vm(), "inconsistent calls_vm information"); // call in remove_activation
  2003   if (_desc->bytecode() == Bytecodes::_return_register_finalizer) {
  2004     assert(state == vtos, "only valid state");
  2005     __ movptr(rax, aaddress(0));
  2006     __ load_klass(rdi, rax);
  2007     __ movl(rdi, Address(rdi, Klass::access_flags_offset_in_bytes() + sizeof(oopDesc)));
  2008     __ testl(rdi, JVM_ACC_HAS_FINALIZER);
  2009     Label skip_register_finalizer;
  2010     __ jcc(Assembler::zero, skip_register_finalizer);
  2012     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::register_finalizer), rax);
  2014     __ bind(skip_register_finalizer);
  2017   __ remove_activation(state, rsi);
  2018   __ jmp(rsi);
  2022 // ----------------------------------------------------------------------------
  2023 // Volatile variables demand their effects be made known to all CPU's in
  2024 // order.  Store buffers on most chips allow reads & writes to reorder; the
  2025 // JMM's ReadAfterWrite.java test fails in -Xint mode without some kind of
  2026 // memory barrier (i.e., it's not sufficient that the interpreter does not
  2027 // reorder volatile references, the hardware also must not reorder them).
  2028 //
  2029 // According to the new Java Memory Model (JMM):
  2030 // (1) All volatiles are serialized wrt to each other.
  2031 // ALSO reads & writes act as aquire & release, so:
  2032 // (2) A read cannot let unrelated NON-volatile memory refs that happen after
  2033 // the read float up to before the read.  It's OK for non-volatile memory refs
  2034 // that happen before the volatile read to float down below it.
  2035 // (3) Similar a volatile write cannot let unrelated NON-volatile memory refs
  2036 // that happen BEFORE the write float down to after the write.  It's OK for
  2037 // non-volatile memory refs that happen after the volatile write to float up
  2038 // before it.
  2039 //
  2040 // We only put in barriers around volatile refs (they are expensive), not
  2041 // _between_ memory refs (that would require us to track the flavor of the
  2042 // previous memory refs).  Requirements (2) and (3) require some barriers
  2043 // before volatile stores and after volatile loads.  These nearly cover
  2044 // requirement (1) but miss the volatile-store-volatile-load case.  This final
  2045 // case is placed after volatile-stores although it could just as well go
  2046 // before volatile-loads.
  2047 void TemplateTable::volatile_barrier(Assembler::Membar_mask_bits order_constraint ) {
  2048   // Helper function to insert a is-volatile test and memory barrier
  2049   if( !os::is_MP() ) return;    // Not needed on single CPU
  2050   __ membar(order_constraint);
  2053 void TemplateTable::resolve_cache_and_index(int byte_no,
  2054                                             Register result,
  2055                                             Register Rcache,
  2056                                             Register index,
  2057                                             size_t index_size) {
  2058   Register temp = rbx;
  2060   assert_different_registers(result, Rcache, index, temp);
  2062   Label resolved;
  2063   __ get_cache_and_index_at_bcp(Rcache, index, 1, index_size);
  2064   if (byte_no == f1_oop) {
  2065     // We are resolved if the f1 field contains a non-null object (CallSite, etc.)
  2066     // This kind of CP cache entry does not need to match the flags byte, because
  2067     // there is a 1-1 relation between bytecode type and CP entry type.
  2068     assert(result != noreg, ""); //else do cmpptr(Address(...), (int32_t) NULL_WORD)
  2069     __ movptr(result, Address(Rcache, index, Address::times_ptr, constantPoolCacheOopDesc::base_offset() + ConstantPoolCacheEntry::f1_offset()));
  2070     __ testptr(result, result);
  2071     __ jcc(Assembler::notEqual, resolved);
  2072   } else {
  2073     assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range");
  2074     assert(result == noreg, "");  //else change code for setting result
  2075     const int shift_count = (1 + byte_no)*BitsPerByte;
  2076     __ movl(temp, Address(Rcache, index, Address::times_4, constantPoolCacheOopDesc::base_offset() + ConstantPoolCacheEntry::indices_offset()));
  2077     __ shrl(temp, shift_count);
  2078     // have we resolved this bytecode?
  2079     __ andl(temp, 0xFF);
  2080     __ cmpl(temp, (int)bytecode());
  2081     __ jcc(Assembler::equal, resolved);
  2084   // resolve first time through
  2085   address entry;
  2086   switch (bytecode()) {
  2087     case Bytecodes::_getstatic      : // fall through
  2088     case Bytecodes::_putstatic      : // fall through
  2089     case Bytecodes::_getfield       : // fall through
  2090     case Bytecodes::_putfield       : entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_get_put); break;
  2091     case Bytecodes::_invokevirtual  : // fall through
  2092     case Bytecodes::_invokespecial  : // fall through
  2093     case Bytecodes::_invokestatic   : // fall through
  2094     case Bytecodes::_invokeinterface: entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_invoke);  break;
  2095     case Bytecodes::_invokedynamic  : entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_invokedynamic); break;
  2096     case Bytecodes::_fast_aldc      : entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_ldc);     break;
  2097     case Bytecodes::_fast_aldc_w    : entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_ldc);     break;
  2098     default                         : ShouldNotReachHere();                                 break;
  2100   __ movl(temp, (int)bytecode());
  2101   __ call_VM(noreg, entry, temp);
  2102   // Update registers with resolved info
  2103   __ get_cache_and_index_at_bcp(Rcache, index, 1, index_size);
  2104   if (result != noreg)
  2105     __ movptr(result, Address(Rcache, index, Address::times_ptr, constantPoolCacheOopDesc::base_offset() + ConstantPoolCacheEntry::f1_offset()));
  2106   __ bind(resolved);
  2110 // The cache and index registers must be set before call
  2111 void TemplateTable::load_field_cp_cache_entry(Register obj,
  2112                                               Register cache,
  2113                                               Register index,
  2114                                               Register off,
  2115                                               Register flags,
  2116                                               bool is_static = false) {
  2117   assert_different_registers(cache, index, flags, off);
  2119   ByteSize cp_base_offset = constantPoolCacheOopDesc::base_offset();
  2120   // Field offset
  2121   __ movptr(off, Address(cache, index, Address::times_ptr,
  2122                          in_bytes(cp_base_offset + ConstantPoolCacheEntry::f2_offset())));
  2123   // Flags
  2124   __ movl(flags, Address(cache, index, Address::times_ptr,
  2125            in_bytes(cp_base_offset + ConstantPoolCacheEntry::flags_offset())));
  2127   // klass     overwrite register
  2128   if (is_static) {
  2129     __ movptr(obj, Address(cache, index, Address::times_ptr,
  2130                            in_bytes(cp_base_offset + ConstantPoolCacheEntry::f1_offset())));
  2134 void TemplateTable::load_invoke_cp_cache_entry(int byte_no,
  2135                                                Register method,
  2136                                                Register itable_index,
  2137                                                Register flags,
  2138                                                bool is_invokevirtual,
  2139                                                bool is_invokevfinal /*unused*/,
  2140                                                bool is_invokedynamic) {
  2141   // setup registers
  2142   const Register cache = rcx;
  2143   const Register index = rdx;
  2144   assert_different_registers(method, flags);
  2145   assert_different_registers(method, cache, index);
  2146   assert_different_registers(itable_index, flags);
  2147   assert_different_registers(itable_index, cache, index);
  2148   // determine constant pool cache field offsets
  2149   const int method_offset = in_bytes(
  2150     constantPoolCacheOopDesc::base_offset() +
  2151       (is_invokevirtual
  2152        ? ConstantPoolCacheEntry::f2_offset()
  2153        : ConstantPoolCacheEntry::f1_offset()
  2155     );
  2156   const int flags_offset = in_bytes(constantPoolCacheOopDesc::base_offset() +
  2157                                     ConstantPoolCacheEntry::flags_offset());
  2158   // access constant pool cache fields
  2159   const int index_offset = in_bytes(constantPoolCacheOopDesc::base_offset() +
  2160                                     ConstantPoolCacheEntry::f2_offset());
  2162   if (byte_no == f1_oop) {
  2163     // Resolved f1_oop goes directly into 'method' register.
  2164     assert(is_invokedynamic, "");
  2165     resolve_cache_and_index(byte_no, method, cache, index, sizeof(u4));
  2166   } else {
  2167     resolve_cache_and_index(byte_no, noreg, cache, index, sizeof(u2));
  2168     __ movptr(method, Address(cache, index, Address::times_ptr, method_offset));
  2170   if (itable_index != noreg) {
  2171     __ movptr(itable_index, Address(cache, index, Address::times_ptr, index_offset));
  2173   __ movl(flags, Address(cache, index, Address::times_ptr, flags_offset));
  2177 // The registers cache and index expected to be set before call.
  2178 // Correct values of the cache and index registers are preserved.
  2179 void TemplateTable::jvmti_post_field_access(Register cache,
  2180                                             Register index,
  2181                                             bool is_static,
  2182                                             bool has_tos) {
  2183   if (JvmtiExport::can_post_field_access()) {
  2184     // Check to see if a field access watch has been set before we take
  2185     // the time to call into the VM.
  2186     Label L1;
  2187     assert_different_registers(cache, index, rax);
  2188     __ mov32(rax, ExternalAddress((address) JvmtiExport::get_field_access_count_addr()));
  2189     __ testl(rax,rax);
  2190     __ jcc(Assembler::zero, L1);
  2192     // cache entry pointer
  2193     __ addptr(cache, in_bytes(constantPoolCacheOopDesc::base_offset()));
  2194     __ shll(index, LogBytesPerWord);
  2195     __ addptr(cache, index);
  2196     if (is_static) {
  2197       __ xorptr(rax, rax);      // NULL object reference
  2198     } else {
  2199       __ pop(atos);         // Get the object
  2200       __ verify_oop(rax);
  2201       __ push(atos);        // Restore stack state
  2203     // rax,:   object pointer or NULL
  2204     // cache: cache entry pointer
  2205     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_access),
  2206                rax, cache);
  2207     __ get_cache_and_index_at_bcp(cache, index, 1);
  2208     __ bind(L1);
  2212 void TemplateTable::pop_and_check_object(Register r) {
  2213   __ pop_ptr(r);
  2214   __ null_check(r);  // for field access must check obj.
  2215   __ verify_oop(r);
  2218 void TemplateTable::getfield_or_static(int byte_no, bool is_static) {
  2219   transition(vtos, vtos);
  2221   const Register cache = rcx;
  2222   const Register index = rdx;
  2223   const Register obj   = rcx;
  2224   const Register off   = rbx;
  2225   const Register flags = rax;
  2227   resolve_cache_and_index(byte_no, noreg, cache, index, sizeof(u2));
  2228   jvmti_post_field_access(cache, index, is_static, false);
  2229   load_field_cp_cache_entry(obj, cache, index, off, flags, is_static);
  2231   if (!is_static) pop_and_check_object(obj);
  2233   const Address lo(obj, off, Address::times_1, 0*wordSize);
  2234   const Address hi(obj, off, Address::times_1, 1*wordSize);
  2236   Label Done, notByte, notInt, notShort, notChar, notLong, notFloat, notObj, notDouble;
  2238   __ shrl(flags, ConstantPoolCacheEntry::tosBits);
  2239   assert(btos == 0, "change code, btos != 0");
  2240   // btos
  2241   __ andptr(flags, 0x0f);
  2242   __ jcc(Assembler::notZero, notByte);
  2244   __ load_signed_byte(rax, lo );
  2245   __ push(btos);
  2246   // Rewrite bytecode to be faster
  2247   if (!is_static) {
  2248     patch_bytecode(Bytecodes::_fast_bgetfield, rcx, rbx);
  2250   __ jmp(Done);
  2252   __ bind(notByte);
  2253   // itos
  2254   __ cmpl(flags, itos );
  2255   __ jcc(Assembler::notEqual, notInt);
  2257   __ movl(rax, lo );
  2258   __ push(itos);
  2259   // Rewrite bytecode to be faster
  2260   if (!is_static) {
  2261     patch_bytecode(Bytecodes::_fast_igetfield, rcx, rbx);
  2263   __ jmp(Done);
  2265   __ bind(notInt);
  2266   // atos
  2267   __ cmpl(flags, atos );
  2268   __ jcc(Assembler::notEqual, notObj);
  2270   __ movl(rax, lo );
  2271   __ push(atos);
  2272   if (!is_static) {
  2273     patch_bytecode(Bytecodes::_fast_agetfield, rcx, rbx);
  2275   __ jmp(Done);
  2277   __ bind(notObj);
  2278   // ctos
  2279   __ cmpl(flags, ctos );
  2280   __ jcc(Assembler::notEqual, notChar);
  2282   __ load_unsigned_short(rax, lo );
  2283   __ push(ctos);
  2284   if (!is_static) {
  2285     patch_bytecode(Bytecodes::_fast_cgetfield, rcx, rbx);
  2287   __ jmp(Done);
  2289   __ bind(notChar);
  2290   // stos
  2291   __ cmpl(flags, stos );
  2292   __ jcc(Assembler::notEqual, notShort);
  2294   __ load_signed_short(rax, lo );
  2295   __ push(stos);
  2296   if (!is_static) {
  2297     patch_bytecode(Bytecodes::_fast_sgetfield, rcx, rbx);
  2299   __ jmp(Done);
  2301   __ bind(notShort);
  2302   // ltos
  2303   __ cmpl(flags, ltos );
  2304   __ jcc(Assembler::notEqual, notLong);
  2306   // Generate code as if volatile.  There just aren't enough registers to
  2307   // save that information and this code is faster than the test.
  2308   __ fild_d(lo);                // Must load atomically
  2309   __ subptr(rsp,2*wordSize);    // Make space for store
  2310   __ fistp_d(Address(rsp,0));
  2311   __ pop(rax);
  2312   __ pop(rdx);
  2314   __ push(ltos);
  2315   // Don't rewrite to _fast_lgetfield for potential volatile case.
  2316   __ jmp(Done);
  2318   __ bind(notLong);
  2319   // ftos
  2320   __ cmpl(flags, ftos );
  2321   __ jcc(Assembler::notEqual, notFloat);
  2323   __ fld_s(lo);
  2324   __ push(ftos);
  2325   if (!is_static) {
  2326     patch_bytecode(Bytecodes::_fast_fgetfield, rcx, rbx);
  2328   __ jmp(Done);
  2330   __ bind(notFloat);
  2331   // dtos
  2332   __ cmpl(flags, dtos );
  2333   __ jcc(Assembler::notEqual, notDouble);
  2335   __ fld_d(lo);
  2336   __ push(dtos);
  2337   if (!is_static) {
  2338     patch_bytecode(Bytecodes::_fast_dgetfield, rcx, rbx);
  2340   __ jmpb(Done);
  2342   __ bind(notDouble);
  2344   __ stop("Bad state");
  2346   __ bind(Done);
  2347   // Doug Lea believes this is not needed with current Sparcs (TSO) and Intel (PSO).
  2348   // volatile_barrier( );
  2352 void TemplateTable::getfield(int byte_no) {
  2353   getfield_or_static(byte_no, false);
  2357 void TemplateTable::getstatic(int byte_no) {
  2358   getfield_or_static(byte_no, true);
  2361 // The registers cache and index expected to be set before call.
  2362 // The function may destroy various registers, just not the cache and index registers.
  2363 void TemplateTable::jvmti_post_field_mod(Register cache, Register index, bool is_static) {
  2365   ByteSize cp_base_offset = constantPoolCacheOopDesc::base_offset();
  2367   if (JvmtiExport::can_post_field_modification()) {
  2368     // Check to see if a field modification watch has been set before we take
  2369     // the time to call into the VM.
  2370     Label L1;
  2371     assert_different_registers(cache, index, rax);
  2372     __ mov32(rax, ExternalAddress((address)JvmtiExport::get_field_modification_count_addr()));
  2373     __ testl(rax, rax);
  2374     __ jcc(Assembler::zero, L1);
  2376     // The cache and index registers have been already set.
  2377     // This allows to eliminate this call but the cache and index
  2378     // registers have to be correspondingly used after this line.
  2379     __ get_cache_and_index_at_bcp(rax, rdx, 1);
  2381     if (is_static) {
  2382       // Life is simple.  Null out the object pointer.
  2383       __ xorptr(rbx, rbx);
  2384     } else {
  2385       // Life is harder. The stack holds the value on top, followed by the object.
  2386       // We don't know the size of the value, though; it could be one or two words
  2387       // depending on its type. As a result, we must find the type to determine where
  2388       // the object is.
  2389       Label two_word, valsize_known;
  2390       __ movl(rcx, Address(rax, rdx, Address::times_ptr, in_bytes(cp_base_offset +
  2391                                    ConstantPoolCacheEntry::flags_offset())));
  2392       __ mov(rbx, rsp);
  2393       __ shrl(rcx, ConstantPoolCacheEntry::tosBits);
  2394       // Make sure we don't need to mask rcx for tosBits after the above shift
  2395       ConstantPoolCacheEntry::verify_tosBits();
  2396       __ cmpl(rcx, ltos);
  2397       __ jccb(Assembler::equal, two_word);
  2398       __ cmpl(rcx, dtos);
  2399       __ jccb(Assembler::equal, two_word);
  2400       __ addptr(rbx, Interpreter::expr_offset_in_bytes(1)); // one word jvalue (not ltos, dtos)
  2401       __ jmpb(valsize_known);
  2403       __ bind(two_word);
  2404       __ addptr(rbx, Interpreter::expr_offset_in_bytes(2)); // two words jvalue
  2406       __ bind(valsize_known);
  2407       // setup object pointer
  2408       __ movptr(rbx, Address(rbx, 0));
  2410     // cache entry pointer
  2411     __ addptr(rax, in_bytes(cp_base_offset));
  2412     __ shll(rdx, LogBytesPerWord);
  2413     __ addptr(rax, rdx);
  2414     // object (tos)
  2415     __ mov(rcx, rsp);
  2416     // rbx,: object pointer set up above (NULL if static)
  2417     // rax,: cache entry pointer
  2418     // rcx: jvalue object on the stack
  2419     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_modification),
  2420                rbx, rax, rcx);
  2421     __ get_cache_and_index_at_bcp(cache, index, 1);
  2422     __ bind(L1);
  2427 void TemplateTable::putfield_or_static(int byte_no, bool is_static) {
  2428   transition(vtos, vtos);
  2430   const Register cache = rcx;
  2431   const Register index = rdx;
  2432   const Register obj   = rcx;
  2433   const Register off   = rbx;
  2434   const Register flags = rax;
  2436   resolve_cache_and_index(byte_no, noreg, cache, index, sizeof(u2));
  2437   jvmti_post_field_mod(cache, index, is_static);
  2438   load_field_cp_cache_entry(obj, cache, index, off, flags, is_static);
  2440   // Doug Lea believes this is not needed with current Sparcs (TSO) and Intel (PSO).
  2441   // volatile_barrier( );
  2443   Label notVolatile, Done;
  2444   __ movl(rdx, flags);
  2445   __ shrl(rdx, ConstantPoolCacheEntry::volatileField);
  2446   __ andl(rdx, 0x1);
  2448   // field addresses
  2449   const Address lo(obj, off, Address::times_1, 0*wordSize);
  2450   const Address hi(obj, off, Address::times_1, 1*wordSize);
  2452   Label notByte, notInt, notShort, notChar, notLong, notFloat, notObj, notDouble;
  2454   __ shrl(flags, ConstantPoolCacheEntry::tosBits);
  2455   assert(btos == 0, "change code, btos != 0");
  2456   // btos
  2457   __ andl(flags, 0x0f);
  2458   __ jcc(Assembler::notZero, notByte);
  2460   __ pop(btos);
  2461   if (!is_static) pop_and_check_object(obj);
  2462   __ movb(lo, rax );
  2463   if (!is_static) {
  2464     patch_bytecode(Bytecodes::_fast_bputfield, rcx, rbx);
  2466   __ jmp(Done);
  2468   __ bind(notByte);
  2469   // itos
  2470   __ cmpl(flags, itos );
  2471   __ jcc(Assembler::notEqual, notInt);
  2473   __ pop(itos);
  2474   if (!is_static) pop_and_check_object(obj);
  2476   __ movl(lo, rax );
  2477   if (!is_static) {
  2478     patch_bytecode(Bytecodes::_fast_iputfield, rcx, rbx);
  2480   __ jmp(Done);
  2482   __ bind(notInt);
  2483   // atos
  2484   __ cmpl(flags, atos );
  2485   __ jcc(Assembler::notEqual, notObj);
  2487   __ pop(atos);
  2488   if (!is_static) pop_and_check_object(obj);
  2490   do_oop_store(_masm, lo, rax, _bs->kind(), false);
  2492   if (!is_static) {
  2493     patch_bytecode(Bytecodes::_fast_aputfield, rcx, rbx);
  2496   __ jmp(Done);
  2498   __ bind(notObj);
  2499   // ctos
  2500   __ cmpl(flags, ctos );
  2501   __ jcc(Assembler::notEqual, notChar);
  2503   __ pop(ctos);
  2504   if (!is_static) pop_and_check_object(obj);
  2505   __ movw(lo, rax );
  2506   if (!is_static) {
  2507     patch_bytecode(Bytecodes::_fast_cputfield, rcx, rbx);
  2509   __ jmp(Done);
  2511   __ bind(notChar);
  2512   // stos
  2513   __ cmpl(flags, stos );
  2514   __ jcc(Assembler::notEqual, notShort);
  2516   __ pop(stos);
  2517   if (!is_static) pop_and_check_object(obj);
  2518   __ movw(lo, rax );
  2519   if (!is_static) {
  2520     patch_bytecode(Bytecodes::_fast_sputfield, rcx, rbx);
  2522   __ jmp(Done);
  2524   __ bind(notShort);
  2525   // ltos
  2526   __ cmpl(flags, ltos );
  2527   __ jcc(Assembler::notEqual, notLong);
  2529   Label notVolatileLong;
  2530   __ testl(rdx, rdx);
  2531   __ jcc(Assembler::zero, notVolatileLong);
  2533   __ pop(ltos);  // overwrites rdx, do this after testing volatile.
  2534   if (!is_static) pop_and_check_object(obj);
  2536   // Replace with real volatile test
  2537   __ push(rdx);
  2538   __ push(rax);                 // Must update atomically with FIST
  2539   __ fild_d(Address(rsp,0));    // So load into FPU register
  2540   __ fistp_d(lo);               // and put into memory atomically
  2541   __ addptr(rsp, 2*wordSize);
  2542   // volatile_barrier();
  2543   volatile_barrier(Assembler::Membar_mask_bits(Assembler::StoreLoad |
  2544                                                Assembler::StoreStore));
  2545   // Don't rewrite volatile version
  2546   __ jmp(notVolatile);
  2548   __ bind(notVolatileLong);
  2550   __ pop(ltos);  // overwrites rdx
  2551   if (!is_static) pop_and_check_object(obj);
  2552   NOT_LP64(__ movptr(hi, rdx));
  2553   __ movptr(lo, rax);
  2554   if (!is_static) {
  2555     patch_bytecode(Bytecodes::_fast_lputfield, rcx, rbx);
  2557   __ jmp(notVolatile);
  2559   __ bind(notLong);
  2560   // ftos
  2561   __ cmpl(flags, ftos );
  2562   __ jcc(Assembler::notEqual, notFloat);
  2564   __ pop(ftos);
  2565   if (!is_static) pop_and_check_object(obj);
  2566   __ fstp_s(lo);
  2567   if (!is_static) {
  2568     patch_bytecode(Bytecodes::_fast_fputfield, rcx, rbx);
  2570   __ jmp(Done);
  2572   __ bind(notFloat);
  2573   // dtos
  2574   __ cmpl(flags, dtos );
  2575   __ jcc(Assembler::notEqual, notDouble);
  2577   __ pop(dtos);
  2578   if (!is_static) pop_and_check_object(obj);
  2579   __ fstp_d(lo);
  2580   if (!is_static) {
  2581     patch_bytecode(Bytecodes::_fast_dputfield, rcx, rbx);
  2583   __ jmp(Done);
  2585   __ bind(notDouble);
  2587   __ stop("Bad state");
  2589   __ bind(Done);
  2591   // Check for volatile store
  2592   __ testl(rdx, rdx);
  2593   __ jcc(Assembler::zero, notVolatile);
  2594   volatile_barrier(Assembler::Membar_mask_bits(Assembler::StoreLoad |
  2595                                                Assembler::StoreStore));
  2596   __ bind(notVolatile);
  2600 void TemplateTable::putfield(int byte_no) {
  2601   putfield_or_static(byte_no, false);
  2605 void TemplateTable::putstatic(int byte_no) {
  2606   putfield_or_static(byte_no, true);
  2609 void TemplateTable::jvmti_post_fast_field_mod() {
  2610   if (JvmtiExport::can_post_field_modification()) {
  2611     // Check to see if a field modification watch has been set before we take
  2612     // the time to call into the VM.
  2613     Label L2;
  2614     __ mov32(rcx, ExternalAddress((address)JvmtiExport::get_field_modification_count_addr()));
  2615     __ testl(rcx,rcx);
  2616     __ jcc(Assembler::zero, L2);
  2617     __ pop_ptr(rbx);               // copy the object pointer from tos
  2618     __ verify_oop(rbx);
  2619     __ push_ptr(rbx);              // put the object pointer back on tos
  2620     __ subptr(rsp, sizeof(jvalue));  // add space for a jvalue object
  2621     __ mov(rcx, rsp);
  2622     __ push_ptr(rbx);                 // save object pointer so we can steal rbx,
  2623     __ xorptr(rbx, rbx);
  2624     const Address lo_value(rcx, rbx, Address::times_1, 0*wordSize);
  2625     const Address hi_value(rcx, rbx, Address::times_1, 1*wordSize);
  2626     switch (bytecode()) {          // load values into the jvalue object
  2627     case Bytecodes::_fast_bputfield: __ movb(lo_value, rax); break;
  2628     case Bytecodes::_fast_sputfield: __ movw(lo_value, rax); break;
  2629     case Bytecodes::_fast_cputfield: __ movw(lo_value, rax); break;
  2630     case Bytecodes::_fast_iputfield: __ movl(lo_value, rax);                         break;
  2631     case Bytecodes::_fast_lputfield:
  2632       NOT_LP64(__ movptr(hi_value, rdx));
  2633       __ movptr(lo_value, rax);
  2634       break;
  2636     // need to call fld_s() after fstp_s() to restore the value for below
  2637     case Bytecodes::_fast_fputfield: __ fstp_s(lo_value); __ fld_s(lo_value);        break;
  2639     // need to call fld_d() after fstp_d() to restore the value for below
  2640     case Bytecodes::_fast_dputfield: __ fstp_d(lo_value); __ fld_d(lo_value);        break;
  2642     // since rcx is not an object we don't call store_check() here
  2643     case Bytecodes::_fast_aputfield: __ movptr(lo_value, rax);                       break;
  2645     default:  ShouldNotReachHere();
  2647     __ pop_ptr(rbx);  // restore copy of object pointer
  2649     // Save rax, and sometimes rdx because call_VM() will clobber them,
  2650     // then use them for JVM/DI purposes
  2651     __ push(rax);
  2652     if (bytecode() == Bytecodes::_fast_lputfield) __ push(rdx);
  2653     // access constant pool cache entry
  2654     __ get_cache_entry_pointer_at_bcp(rax, rdx, 1);
  2655     __ verify_oop(rbx);
  2656     // rbx,: object pointer copied above
  2657     // rax,: cache entry pointer
  2658     // rcx: jvalue object on the stack
  2659     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_modification), rbx, rax, rcx);
  2660     if (bytecode() == Bytecodes::_fast_lputfield) __ pop(rdx);  // restore high value
  2661     __ pop(rax);     // restore lower value
  2662     __ addptr(rsp, sizeof(jvalue));  // release jvalue object space
  2663     __ bind(L2);
  2667 void TemplateTable::fast_storefield(TosState state) {
  2668   transition(state, vtos);
  2670   ByteSize base = constantPoolCacheOopDesc::base_offset();
  2672   jvmti_post_fast_field_mod();
  2674   // access constant pool cache
  2675   __ get_cache_and_index_at_bcp(rcx, rbx, 1);
  2677   // test for volatile with rdx but rdx is tos register for lputfield.
  2678   if (bytecode() == Bytecodes::_fast_lputfield) __ push(rdx);
  2679   __ movl(rdx, Address(rcx, rbx, Address::times_ptr, in_bytes(base +
  2680                        ConstantPoolCacheEntry::flags_offset())));
  2682   // replace index with field offset from cache entry
  2683   __ movptr(rbx, Address(rcx, rbx, Address::times_ptr, in_bytes(base + ConstantPoolCacheEntry::f2_offset())));
  2685   // Doug Lea believes this is not needed with current Sparcs (TSO) and Intel (PSO).
  2686   // volatile_barrier( );
  2688   Label notVolatile, Done;
  2689   __ shrl(rdx, ConstantPoolCacheEntry::volatileField);
  2690   __ andl(rdx, 0x1);
  2691   // Check for volatile store
  2692   __ testl(rdx, rdx);
  2693   __ jcc(Assembler::zero, notVolatile);
  2695   if (bytecode() == Bytecodes::_fast_lputfield) __ pop(rdx);
  2697   // Get object from stack
  2698   pop_and_check_object(rcx);
  2700   // field addresses
  2701   const Address lo(rcx, rbx, Address::times_1, 0*wordSize);
  2702   const Address hi(rcx, rbx, Address::times_1, 1*wordSize);
  2704   // access field
  2705   switch (bytecode()) {
  2706     case Bytecodes::_fast_bputfield: __ movb(lo, rax); break;
  2707     case Bytecodes::_fast_sputfield: // fall through
  2708     case Bytecodes::_fast_cputfield: __ movw(lo, rax); break;
  2709     case Bytecodes::_fast_iputfield: __ movl(lo, rax); break;
  2710     case Bytecodes::_fast_lputfield:
  2711       NOT_LP64(__ movptr(hi, rdx));
  2712       __ movptr(lo, rax);
  2713       break;
  2714     case Bytecodes::_fast_fputfield: __ fstp_s(lo); break;
  2715     case Bytecodes::_fast_dputfield: __ fstp_d(lo); break;
  2716     case Bytecodes::_fast_aputfield: {
  2717       do_oop_store(_masm, lo, rax, _bs->kind(), false);
  2718       break;
  2720     default:
  2721       ShouldNotReachHere();
  2724   Label done;
  2725   volatile_barrier(Assembler::Membar_mask_bits(Assembler::StoreLoad |
  2726                                                Assembler::StoreStore));
  2727   // Barriers are so large that short branch doesn't reach!
  2728   __ jmp(done);
  2730   // Same code as above, but don't need rdx to test for volatile.
  2731   __ bind(notVolatile);
  2733   if (bytecode() == Bytecodes::_fast_lputfield) __ pop(rdx);
  2735   // Get object from stack
  2736   pop_and_check_object(rcx);
  2738   // access field
  2739   switch (bytecode()) {
  2740     case Bytecodes::_fast_bputfield: __ movb(lo, rax); break;
  2741     case Bytecodes::_fast_sputfield: // fall through
  2742     case Bytecodes::_fast_cputfield: __ movw(lo, rax); break;
  2743     case Bytecodes::_fast_iputfield: __ movl(lo, rax); break;
  2744     case Bytecodes::_fast_lputfield:
  2745       NOT_LP64(__ movptr(hi, rdx));
  2746       __ movptr(lo, rax);
  2747       break;
  2748     case Bytecodes::_fast_fputfield: __ fstp_s(lo); break;
  2749     case Bytecodes::_fast_dputfield: __ fstp_d(lo); break;
  2750     case Bytecodes::_fast_aputfield: {
  2751       do_oop_store(_masm, lo, rax, _bs->kind(), false);
  2752       break;
  2754     default:
  2755       ShouldNotReachHere();
  2757   __ bind(done);
  2761 void TemplateTable::fast_accessfield(TosState state) {
  2762   transition(atos, state);
  2764   // do the JVMTI work here to avoid disturbing the register state below
  2765   if (JvmtiExport::can_post_field_access()) {
  2766     // Check to see if a field access watch has been set before we take
  2767     // the time to call into the VM.
  2768     Label L1;
  2769     __ mov32(rcx, ExternalAddress((address) JvmtiExport::get_field_access_count_addr()));
  2770     __ testl(rcx,rcx);
  2771     __ jcc(Assembler::zero, L1);
  2772     // access constant pool cache entry
  2773     __ get_cache_entry_pointer_at_bcp(rcx, rdx, 1);
  2774     __ push_ptr(rax);  // save object pointer before call_VM() clobbers it
  2775     __ verify_oop(rax);
  2776     // rax,: object pointer copied above
  2777     // rcx: cache entry pointer
  2778     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_access), rax, rcx);
  2779     __ pop_ptr(rax);   // restore object pointer
  2780     __ bind(L1);
  2783   // access constant pool cache
  2784   __ get_cache_and_index_at_bcp(rcx, rbx, 1);
  2785   // replace index with field offset from cache entry
  2786   __ movptr(rbx, Address(rcx,
  2787                          rbx,
  2788                          Address::times_ptr,
  2789                          in_bytes(constantPoolCacheOopDesc::base_offset() + ConstantPoolCacheEntry::f2_offset())));
  2792   // rax,: object
  2793   __ verify_oop(rax);
  2794   __ null_check(rax);
  2795   // field addresses
  2796   const Address lo = Address(rax, rbx, Address::times_1, 0*wordSize);
  2797   const Address hi = Address(rax, rbx, Address::times_1, 1*wordSize);
  2799   // access field
  2800   switch (bytecode()) {
  2801     case Bytecodes::_fast_bgetfield: __ movsbl(rax, lo );                 break;
  2802     case Bytecodes::_fast_sgetfield: __ load_signed_short(rax, lo );      break;
  2803     case Bytecodes::_fast_cgetfield: __ load_unsigned_short(rax, lo );    break;
  2804     case Bytecodes::_fast_igetfield: __ movl(rax, lo);                    break;
  2805     case Bytecodes::_fast_lgetfield: __ stop("should not be rewritten");  break;
  2806     case Bytecodes::_fast_fgetfield: __ fld_s(lo);                        break;
  2807     case Bytecodes::_fast_dgetfield: __ fld_d(lo);                        break;
  2808     case Bytecodes::_fast_agetfield: __ movptr(rax, lo); __ verify_oop(rax); break;
  2809     default:
  2810       ShouldNotReachHere();
  2813   // Doug Lea believes this is not needed with current Sparcs(TSO) and Intel(PSO)
  2814   // volatile_barrier( );
  2817 void TemplateTable::fast_xaccess(TosState state) {
  2818   transition(vtos, state);
  2819   // get receiver
  2820   __ movptr(rax, aaddress(0));
  2821   // access constant pool cache
  2822   __ get_cache_and_index_at_bcp(rcx, rdx, 2);
  2823   __ movptr(rbx, Address(rcx,
  2824                          rdx,
  2825                          Address::times_ptr,
  2826                          in_bytes(constantPoolCacheOopDesc::base_offset() + ConstantPoolCacheEntry::f2_offset())));
  2827   // make sure exception is reported in correct bcp range (getfield is next instruction)
  2828   __ increment(rsi);
  2829   __ null_check(rax);
  2830   const Address lo = Address(rax, rbx, Address::times_1, 0*wordSize);
  2831   if (state == itos) {
  2832     __ movl(rax, lo);
  2833   } else if (state == atos) {
  2834     __ movptr(rax, lo);
  2835     __ verify_oop(rax);
  2836   } else if (state == ftos) {
  2837     __ fld_s(lo);
  2838   } else {
  2839     ShouldNotReachHere();
  2841   __ decrement(rsi);
  2846 //----------------------------------------------------------------------------------------------------
  2847 // Calls
  2849 void TemplateTable::count_calls(Register method, Register temp) {
  2850   // implemented elsewhere
  2851   ShouldNotReachHere();
  2855 void TemplateTable::prepare_invoke(Register method, Register index, int byte_no) {
  2856   // determine flags
  2857   Bytecodes::Code code = bytecode();
  2858   const bool is_invokeinterface  = code == Bytecodes::_invokeinterface;
  2859   const bool is_invokedynamic    = code == Bytecodes::_invokedynamic;
  2860   const bool is_invokevirtual    = code == Bytecodes::_invokevirtual;
  2861   const bool is_invokespecial    = code == Bytecodes::_invokespecial;
  2862   const bool load_receiver      = (code != Bytecodes::_invokestatic && code != Bytecodes::_invokedynamic);
  2863   const bool receiver_null_check = is_invokespecial;
  2864   const bool save_flags = is_invokeinterface || is_invokevirtual;
  2865   // setup registers & access constant pool cache
  2866   const Register recv   = rcx;
  2867   const Register flags  = rdx;
  2868   assert_different_registers(method, index, recv, flags);
  2870   // save 'interpreter return address'
  2871   __ save_bcp();
  2873   load_invoke_cp_cache_entry(byte_no, method, index, flags, is_invokevirtual, false, is_invokedynamic);
  2875   // load receiver if needed (note: no return address pushed yet)
  2876   if (load_receiver) {
  2877     assert(!is_invokedynamic, "");
  2878     __ movl(recv, flags);
  2879     __ andl(recv, 0xFF);
  2880     // recv count is 0 based?
  2881     Address recv_addr(rsp, recv, Interpreter::stackElementScale(), -Interpreter::expr_offset_in_bytes(1));
  2882     __ movptr(recv, recv_addr);
  2883     __ verify_oop(recv);
  2886   // do null check if needed
  2887   if (receiver_null_check) {
  2888     __ null_check(recv);
  2891   if (save_flags) {
  2892     __ mov(rsi, flags);
  2895   // compute return type
  2896   __ shrl(flags, ConstantPoolCacheEntry::tosBits);
  2897   // Make sure we don't need to mask flags for tosBits after the above shift
  2898   ConstantPoolCacheEntry::verify_tosBits();
  2899   // load return address
  2901     address table_addr;
  2902     if (is_invokeinterface || is_invokedynamic)
  2903       table_addr = (address)Interpreter::return_5_addrs_by_index_table();
  2904     else
  2905       table_addr = (address)Interpreter::return_3_addrs_by_index_table();
  2906     ExternalAddress table(table_addr);
  2907     __ movptr(flags, ArrayAddress(table, Address(noreg, flags, Address::times_ptr)));
  2910   // push return address
  2911   __ push(flags);
  2913   // Restore flag value from the constant pool cache, and restore rsi
  2914   // for later null checks.  rsi is the bytecode pointer
  2915   if (save_flags) {
  2916     __ mov(flags, rsi);
  2917     __ restore_bcp();
  2922 void TemplateTable::invokevirtual_helper(Register index, Register recv,
  2923                         Register flags) {
  2925   // Uses temporary registers rax, rdx
  2926   assert_different_registers(index, recv, rax, rdx);
  2928   // Test for an invoke of a final method
  2929   Label notFinal;
  2930   __ movl(rax, flags);
  2931   __ andl(rax, (1 << ConstantPoolCacheEntry::vfinalMethod));
  2932   __ jcc(Assembler::zero, notFinal);
  2934   Register method = index;  // method must be rbx,
  2935   assert(method == rbx, "methodOop must be rbx, for interpreter calling convention");
  2937   // do the call - the index is actually the method to call
  2938   __ verify_oop(method);
  2940   // It's final, need a null check here!
  2941   __ null_check(recv);
  2943   // profile this call
  2944   __ profile_final_call(rax);
  2946   __ jump_from_interpreted(method, rax);
  2948   __ bind(notFinal);
  2950   // get receiver klass
  2951   __ null_check(recv, oopDesc::klass_offset_in_bytes());
  2952   // Keep recv in rcx for callee expects it there
  2953   __ load_klass(rax, recv);
  2954   __ verify_oop(rax);
  2956   // profile this call
  2957   __ profile_virtual_call(rax, rdi, rdx);
  2959   // get target methodOop & entry point
  2960   const int base = instanceKlass::vtable_start_offset() * wordSize;
  2961   assert(vtableEntry::size() * wordSize == 4, "adjust the scaling in the code below");
  2962   __ movptr(method, Address(rax, index, Address::times_ptr, base + vtableEntry::method_offset_in_bytes()));
  2963   __ jump_from_interpreted(method, rdx);
  2967 void TemplateTable::invokevirtual(int byte_no) {
  2968   transition(vtos, vtos);
  2969   assert(byte_no == f2_byte, "use this argument");
  2970   prepare_invoke(rbx, noreg, byte_no);
  2972   // rbx,: index
  2973   // rcx: receiver
  2974   // rdx: flags
  2976   invokevirtual_helper(rbx, rcx, rdx);
  2980 void TemplateTable::invokespecial(int byte_no) {
  2981   transition(vtos, vtos);
  2982   assert(byte_no == f1_byte, "use this argument");
  2983   prepare_invoke(rbx, noreg, byte_no);
  2984   // do the call
  2985   __ verify_oop(rbx);
  2986   __ profile_call(rax);
  2987   __ jump_from_interpreted(rbx, rax);
  2991 void TemplateTable::invokestatic(int byte_no) {
  2992   transition(vtos, vtos);
  2993   assert(byte_no == f1_byte, "use this argument");
  2994   prepare_invoke(rbx, noreg, byte_no);
  2995   // do the call
  2996   __ verify_oop(rbx);
  2997   __ profile_call(rax);
  2998   __ jump_from_interpreted(rbx, rax);
  3002 void TemplateTable::fast_invokevfinal(int byte_no) {
  3003   transition(vtos, vtos);
  3004   assert(byte_no == f2_byte, "use this argument");
  3005   __ stop("fast_invokevfinal not used on x86");
  3009 void TemplateTable::invokeinterface(int byte_no) {
  3010   transition(vtos, vtos);
  3011   assert(byte_no == f1_byte, "use this argument");
  3012   prepare_invoke(rax, rbx, byte_no);
  3014   // rax,: Interface
  3015   // rbx,: index
  3016   // rcx: receiver
  3017   // rdx: flags
  3019   // Special case of invokeinterface called for virtual method of
  3020   // java.lang.Object.  See cpCacheOop.cpp for details.
  3021   // This code isn't produced by javac, but could be produced by
  3022   // another compliant java compiler.
  3023   Label notMethod;
  3024   __ movl(rdi, rdx);
  3025   __ andl(rdi, (1 << ConstantPoolCacheEntry::methodInterface));
  3026   __ jcc(Assembler::zero, notMethod);
  3028   invokevirtual_helper(rbx, rcx, rdx);
  3029   __ bind(notMethod);
  3031   // Get receiver klass into rdx - also a null check
  3032   __ restore_locals();  // restore rdi
  3033   __ load_klass(rdx, rcx);
  3034   __ verify_oop(rdx);
  3036   // profile this call
  3037   __ profile_virtual_call(rdx, rsi, rdi);
  3039   Label no_such_interface, no_such_method;
  3041   __ lookup_interface_method(// inputs: rec. class, interface, itable index
  3042                              rdx, rax, rbx,
  3043                              // outputs: method, scan temp. reg
  3044                              rbx, rsi,
  3045                              no_such_interface);
  3047   // rbx,: methodOop to call
  3048   // rcx: receiver
  3049   // Check for abstract method error
  3050   // Note: This should be done more efficiently via a throw_abstract_method_error
  3051   //       interpreter entry point and a conditional jump to it in case of a null
  3052   //       method.
  3053   __ testptr(rbx, rbx);
  3054   __ jcc(Assembler::zero, no_such_method);
  3056   // do the call
  3057   // rcx: receiver
  3058   // rbx,: methodOop
  3059   __ jump_from_interpreted(rbx, rdx);
  3060   __ should_not_reach_here();
  3062   // exception handling code follows...
  3063   // note: must restore interpreter registers to canonical
  3064   //       state for exception handling to work correctly!
  3066   __ bind(no_such_method);
  3067   // throw exception
  3068   __ pop(rbx);           // pop return address (pushed by prepare_invoke)
  3069   __ restore_bcp();      // rsi must be correct for exception handler   (was destroyed)
  3070   __ restore_locals();   // make sure locals pointer is correct as well (was destroyed)
  3071   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_AbstractMethodError));
  3072   // the call_VM checks for exception, so we should never return here.
  3073   __ should_not_reach_here();
  3075   __ bind(no_such_interface);
  3076   // throw exception
  3077   __ pop(rbx);           // pop return address (pushed by prepare_invoke)
  3078   __ restore_bcp();      // rsi must be correct for exception handler   (was destroyed)
  3079   __ restore_locals();   // make sure locals pointer is correct as well (was destroyed)
  3080   __ call_VM(noreg, CAST_FROM_FN_PTR(address,
  3081                    InterpreterRuntime::throw_IncompatibleClassChangeError));
  3082   // the call_VM checks for exception, so we should never return here.
  3083   __ should_not_reach_here();
  3086 void TemplateTable::invokedynamic(int byte_no) {
  3087   transition(vtos, vtos);
  3088   assert(byte_no == f1_oop, "use this argument");
  3090   if (!EnableInvokeDynamic) {
  3091     // We should not encounter this bytecode if !EnableInvokeDynamic.
  3092     // The verifier will stop it.  However, if we get past the verifier,
  3093     // this will stop the thread in a reasonable way, without crashing the JVM.
  3094     __ call_VM(noreg, CAST_FROM_FN_PTR(address,
  3095                      InterpreterRuntime::throw_IncompatibleClassChangeError));
  3096     // the call_VM checks for exception, so we should never return here.
  3097     __ should_not_reach_here();
  3098     return;
  3101   prepare_invoke(rax, rbx, byte_no);
  3103   // rax: CallSite object (f1)
  3104   // rbx: unused (f2)
  3105   // rcx: receiver address
  3106   // rdx: flags (unused)
  3108   Register rax_callsite      = rax;
  3109   Register rcx_method_handle = rcx;
  3111   // %%% should make a type profile for any invokedynamic that takes a ref argument
  3112   // profile this call
  3113   __ profile_call(rsi);
  3115   __ verify_oop(rax_callsite);
  3116   __ load_heap_oop(rcx_method_handle, Address(rax_callsite, __ delayed_value(java_lang_invoke_CallSite::target_offset_in_bytes, rdx)));
  3117   __ null_check(rcx_method_handle);
  3118   __ verify_oop(rcx_method_handle);
  3119   __ prepare_to_jump_from_interpreted();
  3120   __ jump_to_method_handle_entry(rcx_method_handle, rdx);
  3123 //----------------------------------------------------------------------------------------------------
  3124 // Allocation
  3126 void TemplateTable::_new() {
  3127   transition(vtos, atos);
  3128   __ get_unsigned_2_byte_index_at_bcp(rdx, 1);
  3129   Label slow_case;
  3130   Label slow_case_no_pop;
  3131   Label done;
  3132   Label initialize_header;
  3133   Label initialize_object;  // including clearing the fields
  3134   Label allocate_shared;
  3136   __ get_cpool_and_tags(rcx, rax);
  3138   // Make sure the class we're about to instantiate has been resolved.
  3139   // This is done before loading instanceKlass to be consistent with the order
  3140   // how Constant Pool is updated (see constantPoolOopDesc::klass_at_put)
  3141   const int tags_offset = typeArrayOopDesc::header_size(T_BYTE) * wordSize;
  3142   __ cmpb(Address(rax, rdx, Address::times_1, tags_offset), JVM_CONSTANT_Class);
  3143   __ jcc(Assembler::notEqual, slow_case_no_pop);
  3145   // get instanceKlass
  3146   __ movptr(rcx, Address(rcx, rdx, Address::times_ptr, sizeof(constantPoolOopDesc)));
  3147   __ push(rcx);  // save the contexts of klass for initializing the header
  3149   // make sure klass is initialized & doesn't have finalizer
  3150   // make sure klass is fully initialized
  3151   __ cmpl(Address(rcx, instanceKlass::init_state_offset_in_bytes() + sizeof(oopDesc)), instanceKlass::fully_initialized);
  3152   __ jcc(Assembler::notEqual, slow_case);
  3154   // get instance_size in instanceKlass (scaled to a count of bytes)
  3155   __ movl(rdx, Address(rcx, Klass::layout_helper_offset_in_bytes() + sizeof(oopDesc)));
  3156   // test to see if it has a finalizer or is malformed in some way
  3157   __ testl(rdx, Klass::_lh_instance_slow_path_bit);
  3158   __ jcc(Assembler::notZero, slow_case);
  3160   //
  3161   // Allocate the instance
  3162   // 1) Try to allocate in the TLAB
  3163   // 2) if fail and the object is large allocate in the shared Eden
  3164   // 3) if the above fails (or is not applicable), go to a slow case
  3165   // (creates a new TLAB, etc.)
  3167   const bool allow_shared_alloc =
  3168     Universe::heap()->supports_inline_contig_alloc() && !CMSIncrementalMode;
  3170   const Register thread = rcx;
  3171   if (UseTLAB || allow_shared_alloc) {
  3172     __ get_thread(thread);
  3175   if (UseTLAB) {
  3176     __ movptr(rax, Address(thread, in_bytes(JavaThread::tlab_top_offset())));
  3177     __ lea(rbx, Address(rax, rdx, Address::times_1));
  3178     __ cmpptr(rbx, Address(thread, in_bytes(JavaThread::tlab_end_offset())));
  3179     __ jcc(Assembler::above, allow_shared_alloc ? allocate_shared : slow_case);
  3180     __ movptr(Address(thread, in_bytes(JavaThread::tlab_top_offset())), rbx);
  3181     if (ZeroTLAB) {
  3182       // the fields have been already cleared
  3183       __ jmp(initialize_header);
  3184     } else {
  3185       // initialize both the header and fields
  3186       __ jmp(initialize_object);
  3190   // Allocation in the shared Eden, if allowed.
  3191   //
  3192   // rdx: instance size in bytes
  3193   if (allow_shared_alloc) {
  3194     __ bind(allocate_shared);
  3196     ExternalAddress heap_top((address)Universe::heap()->top_addr());
  3198     Label retry;
  3199     __ bind(retry);
  3200     __ movptr(rax, heap_top);
  3201     __ lea(rbx, Address(rax, rdx, Address::times_1));
  3202     __ cmpptr(rbx, ExternalAddress((address)Universe::heap()->end_addr()));
  3203     __ jcc(Assembler::above, slow_case);
  3205     // Compare rax, with the top addr, and if still equal, store the new
  3206     // top addr in rbx, at the address of the top addr pointer. Sets ZF if was
  3207     // equal, and clears it otherwise. Use lock prefix for atomicity on MPs.
  3208     //
  3209     // rax,: object begin
  3210     // rbx,: object end
  3211     // rdx: instance size in bytes
  3212     __ locked_cmpxchgptr(rbx, heap_top);
  3214     // if someone beat us on the allocation, try again, otherwise continue
  3215     __ jcc(Assembler::notEqual, retry);
  3217     __ incr_allocated_bytes(thread, rdx, 0);
  3220   if (UseTLAB || Universe::heap()->supports_inline_contig_alloc()) {
  3221     // The object is initialized before the header.  If the object size is
  3222     // zero, go directly to the header initialization.
  3223     __ bind(initialize_object);
  3224     __ decrement(rdx, sizeof(oopDesc));
  3225     __ jcc(Assembler::zero, initialize_header);
  3227     // Initialize topmost object field, divide rdx by 8, check if odd and
  3228     // test if zero.
  3229     __ xorl(rcx, rcx);    // use zero reg to clear memory (shorter code)
  3230     __ shrl(rdx, LogBytesPerLong); // divide by 2*oopSize and set carry flag if odd
  3232     // rdx must have been multiple of 8
  3233 #ifdef ASSERT
  3234     // make sure rdx was multiple of 8
  3235     Label L;
  3236     // Ignore partial flag stall after shrl() since it is debug VM
  3237     __ jccb(Assembler::carryClear, L);
  3238     __ stop("object size is not multiple of 2 - adjust this code");
  3239     __ bind(L);
  3240     // rdx must be > 0, no extra check needed here
  3241 #endif
  3243     // initialize remaining object fields: rdx was a multiple of 8
  3244     { Label loop;
  3245     __ bind(loop);
  3246     __ movptr(Address(rax, rdx, Address::times_8, sizeof(oopDesc) - 1*oopSize), rcx);
  3247     NOT_LP64(__ movptr(Address(rax, rdx, Address::times_8, sizeof(oopDesc) - 2*oopSize), rcx));
  3248     __ decrement(rdx);
  3249     __ jcc(Assembler::notZero, loop);
  3252     // initialize object header only.
  3253     __ bind(initialize_header);
  3254     if (UseBiasedLocking) {
  3255       __ pop(rcx);   // get saved klass back in the register.
  3256       __ movptr(rbx, Address(rcx, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes()));
  3257       __ movptr(Address(rax, oopDesc::mark_offset_in_bytes ()), rbx);
  3258     } else {
  3259       __ movptr(Address(rax, oopDesc::mark_offset_in_bytes ()),
  3260                 (int32_t)markOopDesc::prototype()); // header
  3261       __ pop(rcx);   // get saved klass back in the register.
  3263     __ store_klass(rax, rcx);  // klass
  3266       SkipIfEqual skip_if(_masm, &DTraceAllocProbes, 0);
  3267       // Trigger dtrace event for fastpath
  3268       __ push(atos);
  3269       __ call_VM_leaf(
  3270            CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_object_alloc), rax);
  3271       __ pop(atos);
  3274     __ jmp(done);
  3277   // slow case
  3278   __ bind(slow_case);
  3279   __ pop(rcx);   // restore stack pointer to what it was when we came in.
  3280   __ bind(slow_case_no_pop);
  3281   __ get_constant_pool(rax);
  3282   __ get_unsigned_2_byte_index_at_bcp(rdx, 1);
  3283   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::_new), rax, rdx);
  3285   // continue
  3286   __ bind(done);
  3290 void TemplateTable::newarray() {
  3291   transition(itos, atos);
  3292   __ push_i(rax);                                 // make sure everything is on the stack
  3293   __ load_unsigned_byte(rdx, at_bcp(1));
  3294   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::newarray), rdx, rax);
  3295   __ pop_i(rdx);                                  // discard size
  3299 void TemplateTable::anewarray() {
  3300   transition(itos, atos);
  3301   __ get_unsigned_2_byte_index_at_bcp(rdx, 1);
  3302   __ get_constant_pool(rcx);
  3303   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::anewarray), rcx, rdx, rax);
  3307 void TemplateTable::arraylength() {
  3308   transition(atos, itos);
  3309   __ null_check(rax, arrayOopDesc::length_offset_in_bytes());
  3310   __ movl(rax, Address(rax, arrayOopDesc::length_offset_in_bytes()));
  3314 void TemplateTable::checkcast() {
  3315   transition(atos, atos);
  3316   Label done, is_null, ok_is_subtype, quicked, resolved;
  3317   __ testptr(rax, rax);   // Object is in EAX
  3318   __ jcc(Assembler::zero, is_null);
  3320   // Get cpool & tags index
  3321   __ get_cpool_and_tags(rcx, rdx); // ECX=cpool, EDX=tags array
  3322   __ get_unsigned_2_byte_index_at_bcp(rbx, 1); // EBX=index
  3323   // See if bytecode has already been quicked
  3324   __ cmpb(Address(rdx, rbx, Address::times_1, typeArrayOopDesc::header_size(T_BYTE) * wordSize), JVM_CONSTANT_Class);
  3325   __ jcc(Assembler::equal, quicked);
  3327   __ push(atos);
  3328   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc) );
  3329   __ pop_ptr(rdx);
  3330   __ jmpb(resolved);
  3332   // Get superklass in EAX and subklass in EBX
  3333   __ bind(quicked);
  3334   __ mov(rdx, rax);          // Save object in EDX; EAX needed for subtype check
  3335   __ movptr(rax, Address(rcx, rbx, Address::times_ptr, sizeof(constantPoolOopDesc)));
  3337   __ bind(resolved);
  3338   __ load_klass(rbx, rdx);
  3340   // Generate subtype check.  Blows ECX.  Resets EDI.  Object in EDX.
  3341   // Superklass in EAX.  Subklass in EBX.
  3342   __ gen_subtype_check( rbx, ok_is_subtype );
  3344   // Come here on failure
  3345   __ push(rdx);
  3346   // object is at TOS
  3347   __ jump(ExternalAddress(Interpreter::_throw_ClassCastException_entry));
  3349   // Come here on success
  3350   __ bind(ok_is_subtype);
  3351   __ mov(rax,rdx);           // Restore object in EDX
  3353   // Collect counts on whether this check-cast sees NULLs a lot or not.
  3354   if (ProfileInterpreter) {
  3355     __ jmp(done);
  3356     __ bind(is_null);
  3357     __ profile_null_seen(rcx);
  3358   } else {
  3359     __ bind(is_null);   // same as 'done'
  3361   __ bind(done);
  3365 void TemplateTable::instanceof() {
  3366   transition(atos, itos);
  3367   Label done, is_null, ok_is_subtype, quicked, resolved;
  3368   __ testptr(rax, rax);
  3369   __ jcc(Assembler::zero, is_null);
  3371   // Get cpool & tags index
  3372   __ get_cpool_and_tags(rcx, rdx); // ECX=cpool, EDX=tags array
  3373   __ get_unsigned_2_byte_index_at_bcp(rbx, 1); // EBX=index
  3374   // See if bytecode has already been quicked
  3375   __ cmpb(Address(rdx, rbx, Address::times_1, typeArrayOopDesc::header_size(T_BYTE) * wordSize), JVM_CONSTANT_Class);
  3376   __ jcc(Assembler::equal, quicked);
  3378   __ push(atos);
  3379   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc) );
  3380   __ pop_ptr(rdx);
  3381   __ load_klass(rdx, rdx);
  3382   __ jmp(resolved);
  3384   // Get superklass in EAX and subklass in EDX
  3385   __ bind(quicked);
  3386   __ load_klass(rdx, rax);
  3387   __ movptr(rax, Address(rcx, rbx, Address::times_ptr, sizeof(constantPoolOopDesc)));
  3389   __ bind(resolved);
  3391   // Generate subtype check.  Blows ECX.  Resets EDI.
  3392   // Superklass in EAX.  Subklass in EDX.
  3393   __ gen_subtype_check( rdx, ok_is_subtype );
  3395   // Come here on failure
  3396   __ xorl(rax,rax);
  3397   __ jmpb(done);
  3398   // Come here on success
  3399   __ bind(ok_is_subtype);
  3400   __ movl(rax, 1);
  3402   // Collect counts on whether this test sees NULLs a lot or not.
  3403   if (ProfileInterpreter) {
  3404     __ jmp(done);
  3405     __ bind(is_null);
  3406     __ profile_null_seen(rcx);
  3407   } else {
  3408     __ bind(is_null);   // same as 'done'
  3410   __ bind(done);
  3411   // rax, = 0: obj == NULL or  obj is not an instanceof the specified klass
  3412   // rax, = 1: obj != NULL and obj is     an instanceof the specified klass
  3416 //----------------------------------------------------------------------------------------------------
  3417 // Breakpoints
  3418 void TemplateTable::_breakpoint() {
  3420   // Note: We get here even if we are single stepping..
  3421   // jbug inists on setting breakpoints at every bytecode
  3422   // even if we are in single step mode.
  3424   transition(vtos, vtos);
  3426   // get the unpatched byte code
  3427   __ get_method(rcx);
  3428   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::get_original_bytecode_at), rcx, rsi);
  3429   __ mov(rbx, rax);
  3431   // post the breakpoint event
  3432   __ get_method(rcx);
  3433   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::_breakpoint), rcx, rsi);
  3435   // complete the execution of original bytecode
  3436   __ dispatch_only_normal(vtos);
  3440 //----------------------------------------------------------------------------------------------------
  3441 // Exceptions
  3443 void TemplateTable::athrow() {
  3444   transition(atos, vtos);
  3445   __ null_check(rax);
  3446   __ jump(ExternalAddress(Interpreter::throw_exception_entry()));
  3450 //----------------------------------------------------------------------------------------------------
  3451 // Synchronization
  3452 //
  3453 // Note: monitorenter & exit are symmetric routines; which is reflected
  3454 //       in the assembly code structure as well
  3455 //
  3456 // Stack layout:
  3457 //
  3458 // [expressions  ] <--- rsp               = expression stack top
  3459 // ..
  3460 // [expressions  ]
  3461 // [monitor entry] <--- monitor block top = expression stack bot
  3462 // ..
  3463 // [monitor entry]
  3464 // [frame data   ] <--- monitor block bot
  3465 // ...
  3466 // [saved rbp,    ] <--- rbp,
  3469 void TemplateTable::monitorenter() {
  3470   transition(atos, vtos);
  3472   // check for NULL object
  3473   __ null_check(rax);
  3475   const Address monitor_block_top(rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
  3476   const Address monitor_block_bot(rbp, frame::interpreter_frame_initial_sp_offset        * wordSize);
  3477   const int entry_size =         (     frame::interpreter_frame_monitor_size()           * wordSize);
  3478   Label allocated;
  3480   // initialize entry pointer
  3481   __ xorl(rdx, rdx);                             // points to free slot or NULL
  3483   // find a free slot in the monitor block (result in rdx)
  3484   { Label entry, loop, exit;
  3485     __ movptr(rcx, monitor_block_top);           // points to current entry, starting with top-most entry
  3487     __ lea(rbx, monitor_block_bot);              // points to word before bottom of monitor block
  3488     __ jmpb(entry);
  3490     __ bind(loop);
  3491     __ cmpptr(Address(rcx, BasicObjectLock::obj_offset_in_bytes()), (int32_t)NULL_WORD);  // check if current entry is used
  3492     __ cmovptr(Assembler::equal, rdx, rcx);      // if not used then remember entry in rdx
  3493     __ cmpptr(rax, Address(rcx, BasicObjectLock::obj_offset_in_bytes()));   // check if current entry is for same object
  3494     __ jccb(Assembler::equal, exit);             // if same object then stop searching
  3495     __ addptr(rcx, entry_size);                  // otherwise advance to next entry
  3496     __ bind(entry);
  3497     __ cmpptr(rcx, rbx);                         // check if bottom reached
  3498     __ jcc(Assembler::notEqual, loop);           // if not at bottom then check this entry
  3499     __ bind(exit);
  3502   __ testptr(rdx, rdx);                          // check if a slot has been found
  3503   __ jccb(Assembler::notZero, allocated);        // if found, continue with that one
  3505   // allocate one if there's no free slot
  3506   { Label entry, loop;
  3507     // 1. compute new pointers                   // rsp: old expression stack top
  3508     __ movptr(rdx, monitor_block_bot);           // rdx: old expression stack bottom
  3509     __ subptr(rsp, entry_size);                  // move expression stack top
  3510     __ subptr(rdx, entry_size);                  // move expression stack bottom
  3511     __ mov(rcx, rsp);                            // set start value for copy loop
  3512     __ movptr(monitor_block_bot, rdx);           // set new monitor block top
  3513     __ jmp(entry);
  3514     // 2. move expression stack contents
  3515     __ bind(loop);
  3516     __ movptr(rbx, Address(rcx, entry_size));    // load expression stack word from old location
  3517     __ movptr(Address(rcx, 0), rbx);             // and store it at new location
  3518     __ addptr(rcx, wordSize);                    // advance to next word
  3519     __ bind(entry);
  3520     __ cmpptr(rcx, rdx);                         // check if bottom reached
  3521     __ jcc(Assembler::notEqual, loop);           // if not at bottom then copy next word
  3524   // call run-time routine
  3525   // rdx: points to monitor entry
  3526   __ bind(allocated);
  3528   // Increment bcp to point to the next bytecode, so exception handling for async. exceptions work correctly.
  3529   // The object has already been poped from the stack, so the expression stack looks correct.
  3530   __ increment(rsi);
  3532   __ movptr(Address(rdx, BasicObjectLock::obj_offset_in_bytes()), rax);     // store object
  3533   __ lock_object(rdx);
  3535   // check to make sure this monitor doesn't cause stack overflow after locking
  3536   __ save_bcp();  // in case of exception
  3537   __ generate_stack_overflow_check(0);
  3539   // The bcp has already been incremented. Just need to dispatch to next instruction.
  3540   __ dispatch_next(vtos);
  3544 void TemplateTable::monitorexit() {
  3545   transition(atos, vtos);
  3547   // check for NULL object
  3548   __ null_check(rax);
  3550   const Address monitor_block_top(rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
  3551   const Address monitor_block_bot(rbp, frame::interpreter_frame_initial_sp_offset        * wordSize);
  3552   const int entry_size =         (     frame::interpreter_frame_monitor_size()           * wordSize);
  3553   Label found;
  3555   // find matching slot
  3556   { Label entry, loop;
  3557     __ movptr(rdx, monitor_block_top);           // points to current entry, starting with top-most entry
  3558     __ lea(rbx, monitor_block_bot);             // points to word before bottom of monitor block
  3559     __ jmpb(entry);
  3561     __ bind(loop);
  3562     __ cmpptr(rax, Address(rdx, BasicObjectLock::obj_offset_in_bytes()));   // check if current entry is for same object
  3563     __ jcc(Assembler::equal, found);             // if same object then stop searching
  3564     __ addptr(rdx, entry_size);                  // otherwise advance to next entry
  3565     __ bind(entry);
  3566     __ cmpptr(rdx, rbx);                         // check if bottom reached
  3567     __ jcc(Assembler::notEqual, loop);           // if not at bottom then check this entry
  3570   // error handling. Unlocking was not block-structured
  3571   Label end;
  3572   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception));
  3573   __ should_not_reach_here();
  3575   // call run-time routine
  3576   // rcx: points to monitor entry
  3577   __ bind(found);
  3578   __ push_ptr(rax);                                 // make sure object is on stack (contract with oopMaps)
  3579   __ unlock_object(rdx);
  3580   __ pop_ptr(rax);                                  // discard object
  3581   __ bind(end);
  3585 //----------------------------------------------------------------------------------------------------
  3586 // Wide instructions
  3588 void TemplateTable::wide() {
  3589   transition(vtos, vtos);
  3590   __ load_unsigned_byte(rbx, at_bcp(1));
  3591   ExternalAddress wtable((address)Interpreter::_wentry_point);
  3592   __ jump(ArrayAddress(wtable, Address(noreg, rbx, Address::times_ptr)));
  3593   // Note: the rsi increment step is part of the individual wide bytecode implementations
  3597 //----------------------------------------------------------------------------------------------------
  3598 // Multi arrays
  3600 void TemplateTable::multianewarray() {
  3601   transition(vtos, atos);
  3602   __ load_unsigned_byte(rax, at_bcp(3)); // get number of dimensions
  3603   // last dim is on top of stack; we want address of first one:
  3604   // first_addr = last_addr + (ndims - 1) * stackElementSize - 1*wordsize
  3605   // the latter wordSize to point to the beginning of the array.
  3606   __ lea(  rax, Address(rsp, rax, Interpreter::stackElementScale(), -wordSize));
  3607   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::multianewarray), rax);     // pass in rax,
  3608   __ load_unsigned_byte(rbx, at_bcp(3));
  3609   __ lea(rsp, Address(rsp, rbx, Interpreter::stackElementScale()));  // get rid of counts
  3612 #endif /* !CC_INTERP */

mercurial