src/cpu/x86/vm/templateInterpreter_x86_32.cpp

Tue, 02 Aug 2011 18:36:40 +0200

author
roland
date
Tue, 02 Aug 2011 18:36:40 +0200
changeset 3047
f1c12354c3f7
parent 2978
d83ac25d0304
child 3238
b20d64f83668
permissions
-rw-r--r--

7074017: Introduce MemBarAcquireLock/MemBarReleaseLock nodes for monitor enter/exit code paths
Summary: replace MemBarAcquire/MemBarRelease nodes on the monitor enter/exit code paths with new MemBarAcquireLock/MemBarReleaseLock nodes
Reviewed-by: kvn, twisti

     1 /*
     2  * Copyright (c) 1997, 2011, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "asm/assembler.hpp"
    27 #include "interpreter/bytecodeHistogram.hpp"
    28 #include "interpreter/interpreter.hpp"
    29 #include "interpreter/interpreterGenerator.hpp"
    30 #include "interpreter/interpreterRuntime.hpp"
    31 #include "interpreter/templateTable.hpp"
    32 #include "oops/arrayOop.hpp"
    33 #include "oops/methodDataOop.hpp"
    34 #include "oops/methodOop.hpp"
    35 #include "oops/oop.inline.hpp"
    36 #include "prims/jvmtiExport.hpp"
    37 #include "prims/jvmtiThreadState.hpp"
    38 #include "runtime/arguments.hpp"
    39 #include "runtime/deoptimization.hpp"
    40 #include "runtime/frame.inline.hpp"
    41 #include "runtime/sharedRuntime.hpp"
    42 #include "runtime/stubRoutines.hpp"
    43 #include "runtime/synchronizer.hpp"
    44 #include "runtime/timer.hpp"
    45 #include "runtime/vframeArray.hpp"
    46 #include "utilities/debug.hpp"
    48 #define __ _masm->
    51 #ifndef CC_INTERP
    52 const int method_offset = frame::interpreter_frame_method_offset * wordSize;
    53 const int bci_offset    = frame::interpreter_frame_bcx_offset    * wordSize;
    54 const int locals_offset = frame::interpreter_frame_locals_offset * wordSize;
    56 //------------------------------------------------------------------------------------------------------------------------
    58 address TemplateInterpreterGenerator::generate_StackOverflowError_handler() {
    59   address entry = __ pc();
    61   // Note: There should be a minimal interpreter frame set up when stack
    62   // overflow occurs since we check explicitly for it now.
    63   //
    64 #ifdef ASSERT
    65   { Label L;
    66     __ lea(rax, Address(rbp,
    67                 frame::interpreter_frame_monitor_block_top_offset * wordSize));
    68     __ cmpptr(rax, rsp);  // rax, = maximal rsp for current rbp,
    69                         //  (stack grows negative)
    70     __ jcc(Assembler::aboveEqual, L); // check if frame is complete
    71     __ stop ("interpreter frame not set up");
    72     __ bind(L);
    73   }
    74 #endif // ASSERT
    75   // Restore bcp under the assumption that the current frame is still
    76   // interpreted
    77   __ restore_bcp();
    79   // expression stack must be empty before entering the VM if an exception
    80   // happened
    81   __ empty_expression_stack();
    82   __ empty_FPU_stack();
    83   // throw exception
    84   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_StackOverflowError));
    85   return entry;
    86 }
    88 address TemplateInterpreterGenerator::generate_ArrayIndexOutOfBounds_handler(const char* name) {
    89   address entry = __ pc();
    90   // expression stack must be empty before entering the VM if an exception happened
    91   __ empty_expression_stack();
    92   __ empty_FPU_stack();
    93   // setup parameters
    94   // ??? convention: expect aberrant index in register rbx,
    95   __ lea(rax, ExternalAddress((address)name));
    96   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_ArrayIndexOutOfBoundsException), rax, rbx);
    97   return entry;
    98 }
   100 address TemplateInterpreterGenerator::generate_ClassCastException_handler() {
   101   address entry = __ pc();
   102   // object is at TOS
   103   __ pop(rax);
   104   // expression stack must be empty before entering the VM if an exception
   105   // happened
   106   __ empty_expression_stack();
   107   __ empty_FPU_stack();
   108   __ call_VM(noreg,
   109              CAST_FROM_FN_PTR(address,
   110                               InterpreterRuntime::throw_ClassCastException),
   111              rax);
   112   return entry;
   113 }
   115 address TemplateInterpreterGenerator::generate_exception_handler_common(const char* name, const char* message, bool pass_oop) {
   116   assert(!pass_oop || message == NULL, "either oop or message but not both");
   117   address entry = __ pc();
   118   if (pass_oop) {
   119     // object is at TOS
   120     __ pop(rbx);
   121   }
   122   // expression stack must be empty before entering the VM if an exception happened
   123   __ empty_expression_stack();
   124   __ empty_FPU_stack();
   125   // setup parameters
   126   __ lea(rax, ExternalAddress((address)name));
   127   if (pass_oop) {
   128     __ call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::create_klass_exception), rax, rbx);
   129   } else {
   130     if (message != NULL) {
   131       __ lea(rbx, ExternalAddress((address)message));
   132     } else {
   133       __ movptr(rbx, NULL_WORD);
   134     }
   135     __ call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::create_exception), rax, rbx);
   136   }
   137   // throw exception
   138   __ jump(ExternalAddress(Interpreter::throw_exception_entry()));
   139   return entry;
   140 }
   143 address TemplateInterpreterGenerator::generate_continuation_for(TosState state) {
   144   address entry = __ pc();
   145   // NULL last_sp until next java call
   146   __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), NULL_WORD);
   147   __ dispatch_next(state);
   148   return entry;
   149 }
   152 address TemplateInterpreterGenerator::generate_return_entry_for(TosState state, int step) {
   153   TosState incoming_state = state;
   154   address entry = __ pc();
   156 #ifdef COMPILER2
   157   // The FPU stack is clean if UseSSE >= 2 but must be cleaned in other cases
   158   if ((incoming_state == ftos && UseSSE < 1) || (incoming_state == dtos && UseSSE < 2)) {
   159     for (int i = 1; i < 8; i++) {
   160         __ ffree(i);
   161     }
   162   } else if (UseSSE < 2) {
   163     __ empty_FPU_stack();
   164   }
   165 #endif
   166   if ((incoming_state == ftos && UseSSE < 1) || (incoming_state == dtos && UseSSE < 2)) {
   167     __ MacroAssembler::verify_FPU(1, "generate_return_entry_for compiled");
   168   } else {
   169     __ MacroAssembler::verify_FPU(0, "generate_return_entry_for compiled");
   170   }
   172   // In SSE mode, interpreter returns FP results in xmm0 but they need
   173   // to end up back on the FPU so it can operate on them.
   174   if (incoming_state == ftos && UseSSE >= 1) {
   175     __ subptr(rsp, wordSize);
   176     __ movflt(Address(rsp, 0), xmm0);
   177     __ fld_s(Address(rsp, 0));
   178     __ addptr(rsp, wordSize);
   179   } else if (incoming_state == dtos && UseSSE >= 2) {
   180     __ subptr(rsp, 2*wordSize);
   181     __ movdbl(Address(rsp, 0), xmm0);
   182     __ fld_d(Address(rsp, 0));
   183     __ addptr(rsp, 2*wordSize);
   184   }
   186   __ MacroAssembler::verify_FPU(state == ftos || state == dtos ? 1 : 0, "generate_return_entry_for in interpreter");
   188   // Restore stack bottom in case i2c adjusted stack
   189   __ movptr(rsp, Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize));
   190   // and NULL it as marker that rsp is now tos until next java call
   191   __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), NULL_WORD);
   193   __ restore_bcp();
   194   __ restore_locals();
   196   Label L_got_cache, L_giant_index;
   197   if (EnableInvokeDynamic) {
   198     __ cmpb(Address(rsi, 0), Bytecodes::_invokedynamic);
   199     __ jcc(Assembler::equal, L_giant_index);
   200   }
   201   __ get_cache_and_index_at_bcp(rbx, rcx, 1, sizeof(u2));
   202   __ bind(L_got_cache);
   203   __ movl(rbx, Address(rbx, rcx,
   204                     Address::times_ptr, constantPoolCacheOopDesc::base_offset() +
   205                     ConstantPoolCacheEntry::flags_offset()));
   206   __ andptr(rbx, 0xFF);
   207   __ lea(rsp, Address(rsp, rbx, Interpreter::stackElementScale()));
   208   __ dispatch_next(state, step);
   210   // out of the main line of code...
   211   if (EnableInvokeDynamic) {
   212     __ bind(L_giant_index);
   213     __ get_cache_and_index_at_bcp(rbx, rcx, 1, sizeof(u4));
   214     __ jmp(L_got_cache);
   215   }
   217   return entry;
   218 }
   221 address TemplateInterpreterGenerator::generate_deopt_entry_for(TosState state, int step) {
   222   address entry = __ pc();
   224   // In SSE mode, FP results are in xmm0
   225   if (state == ftos && UseSSE > 0) {
   226     __ subptr(rsp, wordSize);
   227     __ movflt(Address(rsp, 0), xmm0);
   228     __ fld_s(Address(rsp, 0));
   229     __ addptr(rsp, wordSize);
   230   } else if (state == dtos && UseSSE >= 2) {
   231     __ subptr(rsp, 2*wordSize);
   232     __ movdbl(Address(rsp, 0), xmm0);
   233     __ fld_d(Address(rsp, 0));
   234     __ addptr(rsp, 2*wordSize);
   235   }
   237   __ MacroAssembler::verify_FPU(state == ftos || state == dtos ? 1 : 0, "generate_deopt_entry_for in interpreter");
   239   // The stack is not extended by deopt but we must NULL last_sp as this
   240   // entry is like a "return".
   241   __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), NULL_WORD);
   242   __ restore_bcp();
   243   __ restore_locals();
   244   // handle exceptions
   245   { Label L;
   246     const Register thread = rcx;
   247     __ get_thread(thread);
   248     __ cmpptr(Address(thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
   249     __ jcc(Assembler::zero, L);
   250     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_pending_exception));
   251     __ should_not_reach_here();
   252     __ bind(L);
   253   }
   254   __ dispatch_next(state, step);
   255   return entry;
   256 }
   259 int AbstractInterpreter::BasicType_as_index(BasicType type) {
   260   int i = 0;
   261   switch (type) {
   262     case T_BOOLEAN: i = 0; break;
   263     case T_CHAR   : i = 1; break;
   264     case T_BYTE   : i = 2; break;
   265     case T_SHORT  : i = 3; break;
   266     case T_INT    : // fall through
   267     case T_LONG   : // fall through
   268     case T_VOID   : i = 4; break;
   269     case T_FLOAT  : i = 5; break;  // have to treat float and double separately for SSE
   270     case T_DOUBLE : i = 6; break;
   271     case T_OBJECT : // fall through
   272     case T_ARRAY  : i = 7; break;
   273     default       : ShouldNotReachHere();
   274   }
   275   assert(0 <= i && i < AbstractInterpreter::number_of_result_handlers, "index out of bounds");
   276   return i;
   277 }
   280 address TemplateInterpreterGenerator::generate_result_handler_for(BasicType type) {
   281   address entry = __ pc();
   282   switch (type) {
   283     case T_BOOLEAN: __ c2bool(rax);            break;
   284     case T_CHAR   : __ andptr(rax, 0xFFFF);    break;
   285     case T_BYTE   : __ sign_extend_byte (rax); break;
   286     case T_SHORT  : __ sign_extend_short(rax); break;
   287     case T_INT    : /* nothing to do */        break;
   288     case T_DOUBLE :
   289     case T_FLOAT  :
   290       { const Register t = InterpreterRuntime::SignatureHandlerGenerator::temp();
   291         __ pop(t);                            // remove return address first
   292         // Must return a result for interpreter or compiler. In SSE
   293         // mode, results are returned in xmm0 and the FPU stack must
   294         // be empty.
   295         if (type == T_FLOAT && UseSSE >= 1) {
   296           // Load ST0
   297           __ fld_d(Address(rsp, 0));
   298           // Store as float and empty fpu stack
   299           __ fstp_s(Address(rsp, 0));
   300           // and reload
   301           __ movflt(xmm0, Address(rsp, 0));
   302         } else if (type == T_DOUBLE && UseSSE >= 2 ) {
   303           __ movdbl(xmm0, Address(rsp, 0));
   304         } else {
   305           // restore ST0
   306           __ fld_d(Address(rsp, 0));
   307         }
   308         // and pop the temp
   309         __ addptr(rsp, 2 * wordSize);
   310         __ push(t);                           // restore return address
   311       }
   312       break;
   313     case T_OBJECT :
   314       // retrieve result from frame
   315       __ movptr(rax, Address(rbp, frame::interpreter_frame_oop_temp_offset*wordSize));
   316       // and verify it
   317       __ verify_oop(rax);
   318       break;
   319     default       : ShouldNotReachHere();
   320   }
   321   __ ret(0);                                   // return from result handler
   322   return entry;
   323 }
   325 address TemplateInterpreterGenerator::generate_safept_entry_for(TosState state, address runtime_entry) {
   326   address entry = __ pc();
   327   __ push(state);
   328   __ call_VM(noreg, runtime_entry);
   329   __ dispatch_via(vtos, Interpreter::_normal_table.table_for(vtos));
   330   return entry;
   331 }
   334 // Helpers for commoning out cases in the various type of method entries.
   335 //
   337 // increment invocation count & check for overflow
   338 //
   339 // Note: checking for negative value instead of overflow
   340 //       so we have a 'sticky' overflow test
   341 //
   342 // rbx,: method
   343 // rcx: invocation counter
   344 //
   345 void InterpreterGenerator::generate_counter_incr(Label* overflow, Label* profile_method, Label* profile_method_continue) {
   346   const Address invocation_counter(rbx, in_bytes(methodOopDesc::invocation_counter_offset()) +
   347                                         in_bytes(InvocationCounter::counter_offset()));
   348   // Note: In tiered we increment either counters in methodOop or in MDO depending if we're profiling or not.
   349   if (TieredCompilation) {
   350     int increment = InvocationCounter::count_increment;
   351     int mask = ((1 << Tier0InvokeNotifyFreqLog)  - 1) << InvocationCounter::count_shift;
   352     Label no_mdo, done;
   353     if (ProfileInterpreter) {
   354       // Are we profiling?
   355       __ movptr(rax, Address(rbx, methodOopDesc::method_data_offset()));
   356       __ testptr(rax, rax);
   357       __ jccb(Assembler::zero, no_mdo);
   358       // Increment counter in the MDO
   359       const Address mdo_invocation_counter(rax, in_bytes(methodDataOopDesc::invocation_counter_offset()) +
   360                                                 in_bytes(InvocationCounter::counter_offset()));
   361       __ increment_mask_and_jump(mdo_invocation_counter, increment, mask, rcx, false, Assembler::zero, overflow);
   362       __ jmpb(done);
   363     }
   364     __ bind(no_mdo);
   365     // Increment counter in methodOop (we don't need to load it, it's in rcx).
   366     __ increment_mask_and_jump(invocation_counter, increment, mask, rcx, true, Assembler::zero, overflow);
   367     __ bind(done);
   368   } else {
   369     const Address backedge_counter  (rbx, methodOopDesc::backedge_counter_offset() +
   370                                           InvocationCounter::counter_offset());
   372     if (ProfileInterpreter) { // %%% Merge this into methodDataOop
   373       __ incrementl(Address(rbx,methodOopDesc::interpreter_invocation_counter_offset()));
   374     }
   375     // Update standard invocation counters
   376     __ movl(rax, backedge_counter);               // load backedge counter
   378     __ incrementl(rcx, InvocationCounter::count_increment);
   379     __ andl(rax, InvocationCounter::count_mask_value);  // mask out the status bits
   381     __ movl(invocation_counter, rcx);             // save invocation count
   382     __ addl(rcx, rax);                            // add both counters
   384     // profile_method is non-null only for interpreted method so
   385     // profile_method != NULL == !native_call
   386     // BytecodeInterpreter only calls for native so code is elided.
   388     if (ProfileInterpreter && profile_method != NULL) {
   389       // Test to see if we should create a method data oop
   390       __ cmp32(rcx,
   391                ExternalAddress((address)&InvocationCounter::InterpreterProfileLimit));
   392       __ jcc(Assembler::less, *profile_method_continue);
   394       // if no method data exists, go to profile_method
   395       __ test_method_data_pointer(rax, *profile_method);
   396     }
   398     __ cmp32(rcx,
   399              ExternalAddress((address)&InvocationCounter::InterpreterInvocationLimit));
   400     __ jcc(Assembler::aboveEqual, *overflow);
   401   }
   402 }
   404 void InterpreterGenerator::generate_counter_overflow(Label* do_continue) {
   406   // Asm interpreter on entry
   407   // rdi - locals
   408   // rsi - bcp
   409   // rbx, - method
   410   // rdx - cpool
   411   // rbp, - interpreter frame
   413   // C++ interpreter on entry
   414   // rsi - new interpreter state pointer
   415   // rbp - interpreter frame pointer
   416   // rbx - method
   418   // On return (i.e. jump to entry_point) [ back to invocation of interpreter ]
   419   // rbx, - method
   420   // rcx - rcvr (assuming there is one)
   421   // top of stack return address of interpreter caller
   422   // rsp - sender_sp
   424   // C++ interpreter only
   425   // rsi - previous interpreter state pointer
   427   const Address size_of_parameters(rbx, methodOopDesc::size_of_parameters_offset());
   429   // InterpreterRuntime::frequency_counter_overflow takes one argument
   430   // indicating if the counter overflow occurs at a backwards branch (non-NULL bcp).
   431   // The call returns the address of the verified entry point for the method or NULL
   432   // if the compilation did not complete (either went background or bailed out).
   433   __ movptr(rax, (intptr_t)false);
   434   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::frequency_counter_overflow), rax);
   436   __ movptr(rbx, Address(rbp, method_offset));   // restore methodOop
   438   // Preserve invariant that rsi/rdi contain bcp/locals of sender frame
   439   // and jump to the interpreted entry.
   440   __ jmp(*do_continue, relocInfo::none);
   442 }
   444 void InterpreterGenerator::generate_stack_overflow_check(void) {
   445   // see if we've got enough room on the stack for locals plus overhead.
   446   // the expression stack grows down incrementally, so the normal guard
   447   // page mechanism will work for that.
   448   //
   449   // Registers live on entry:
   450   //
   451   // Asm interpreter
   452   // rdx: number of additional locals this frame needs (what we must check)
   453   // rbx,: methodOop
   455   // destroyed on exit
   456   // rax,
   458   // NOTE:  since the additional locals are also always pushed (wasn't obvious in
   459   // generate_method_entry) so the guard should work for them too.
   460   //
   462   // monitor entry size: see picture of stack set (generate_method_entry) and frame_x86.hpp
   463   const int entry_size    = frame::interpreter_frame_monitor_size() * wordSize;
   465   // total overhead size: entry_size + (saved rbp, thru expr stack bottom).
   466   // be sure to change this if you add/subtract anything to/from the overhead area
   467   const int overhead_size = -(frame::interpreter_frame_initial_sp_offset*wordSize) + entry_size;
   469   const int page_size = os::vm_page_size();
   471   Label after_frame_check;
   473   // see if the frame is greater than one page in size. If so,
   474   // then we need to verify there is enough stack space remaining
   475   // for the additional locals.
   476   __ cmpl(rdx, (page_size - overhead_size)/Interpreter::stackElementSize);
   477   __ jcc(Assembler::belowEqual, after_frame_check);
   479   // compute rsp as if this were going to be the last frame on
   480   // the stack before the red zone
   482   Label after_frame_check_pop;
   484   __ push(rsi);
   486   const Register thread = rsi;
   488   __ get_thread(thread);
   490   const Address stack_base(thread, Thread::stack_base_offset());
   491   const Address stack_size(thread, Thread::stack_size_offset());
   493   // locals + overhead, in bytes
   494   __ lea(rax, Address(noreg, rdx, Interpreter::stackElementScale(), overhead_size));
   496 #ifdef ASSERT
   497   Label stack_base_okay, stack_size_okay;
   498   // verify that thread stack base is non-zero
   499   __ cmpptr(stack_base, (int32_t)NULL_WORD);
   500   __ jcc(Assembler::notEqual, stack_base_okay);
   501   __ stop("stack base is zero");
   502   __ bind(stack_base_okay);
   503   // verify that thread stack size is non-zero
   504   __ cmpptr(stack_size, 0);
   505   __ jcc(Assembler::notEqual, stack_size_okay);
   506   __ stop("stack size is zero");
   507   __ bind(stack_size_okay);
   508 #endif
   510   // Add stack base to locals and subtract stack size
   511   __ addptr(rax, stack_base);
   512   __ subptr(rax, stack_size);
   514   // Use the maximum number of pages we might bang.
   515   const int max_pages = StackShadowPages > (StackRedPages+StackYellowPages) ? StackShadowPages :
   516                                                                               (StackRedPages+StackYellowPages);
   517   __ addptr(rax, max_pages * page_size);
   519   // check against the current stack bottom
   520   __ cmpptr(rsp, rax);
   521   __ jcc(Assembler::above, after_frame_check_pop);
   523   __ pop(rsi);  // get saved bcp / (c++ prev state ).
   525   __ pop(rax);  // get return address
   526   __ jump(ExternalAddress(Interpreter::throw_StackOverflowError_entry()));
   528   // all done with frame size check
   529   __ bind(after_frame_check_pop);
   530   __ pop(rsi);
   532   __ bind(after_frame_check);
   533 }
   535 // Allocate monitor and lock method (asm interpreter)
   536 // rbx, - methodOop
   537 //
   538 void InterpreterGenerator::lock_method(void) {
   539   // synchronize method
   540   const Address access_flags      (rbx, methodOopDesc::access_flags_offset());
   541   const Address monitor_block_top (rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
   542   const int entry_size            = frame::interpreter_frame_monitor_size() * wordSize;
   544   #ifdef ASSERT
   545     { Label L;
   546       __ movl(rax, access_flags);
   547       __ testl(rax, JVM_ACC_SYNCHRONIZED);
   548       __ jcc(Assembler::notZero, L);
   549       __ stop("method doesn't need synchronization");
   550       __ bind(L);
   551     }
   552   #endif // ASSERT
   553   // get synchronization object
   554   { Label done;
   555     const int mirror_offset = klassOopDesc::klass_part_offset_in_bytes() + Klass::java_mirror_offset_in_bytes();
   556     __ movl(rax, access_flags);
   557     __ testl(rax, JVM_ACC_STATIC);
   558     __ movptr(rax, Address(rdi, Interpreter::local_offset_in_bytes(0)));  // get receiver (assume this is frequent case)
   559     __ jcc(Assembler::zero, done);
   560     __ movptr(rax, Address(rbx, methodOopDesc::constants_offset()));
   561     __ movptr(rax, Address(rax, constantPoolOopDesc::pool_holder_offset_in_bytes()));
   562     __ movptr(rax, Address(rax, mirror_offset));
   563     __ bind(done);
   564   }
   565   // add space for monitor & lock
   566   __ subptr(rsp, entry_size);                                           // add space for a monitor entry
   567   __ movptr(monitor_block_top, rsp);                                    // set new monitor block top
   568   __ movptr(Address(rsp, BasicObjectLock::obj_offset_in_bytes()), rax); // store object
   569   __ mov(rdx, rsp);                                                    // object address
   570   __ lock_object(rdx);
   571 }
   573 //
   574 // Generate a fixed interpreter frame. This is identical setup for interpreted methods
   575 // and for native methods hence the shared code.
   577 void TemplateInterpreterGenerator::generate_fixed_frame(bool native_call) {
   578   // initialize fixed part of activation frame
   579   __ push(rax);                                       // save return address
   580   __ enter();                                         // save old & set new rbp,
   583   __ push(rsi);                                       // set sender sp
   584   __ push((int32_t)NULL_WORD);                        // leave last_sp as null
   585   __ movptr(rsi, Address(rbx,methodOopDesc::const_offset())); // get constMethodOop
   586   __ lea(rsi, Address(rsi,constMethodOopDesc::codes_offset())); // get codebase
   587   __ push(rbx);                                      // save methodOop
   588   if (ProfileInterpreter) {
   589     Label method_data_continue;
   590     __ movptr(rdx, Address(rbx, in_bytes(methodOopDesc::method_data_offset())));
   591     __ testptr(rdx, rdx);
   592     __ jcc(Assembler::zero, method_data_continue);
   593     __ addptr(rdx, in_bytes(methodDataOopDesc::data_offset()));
   594     __ bind(method_data_continue);
   595     __ push(rdx);                                       // set the mdp (method data pointer)
   596   } else {
   597     __ push(0);
   598   }
   600   __ movptr(rdx, Address(rbx, methodOopDesc::constants_offset()));
   601   __ movptr(rdx, Address(rdx, constantPoolOopDesc::cache_offset_in_bytes()));
   602   __ push(rdx);                                       // set constant pool cache
   603   __ push(rdi);                                       // set locals pointer
   604   if (native_call) {
   605     __ push(0);                                       // no bcp
   606   } else {
   607     __ push(rsi);                                     // set bcp
   608     }
   609   __ push(0);                                         // reserve word for pointer to expression stack bottom
   610   __ movptr(Address(rsp, 0), rsp);                    // set expression stack bottom
   611 }
   613 // End of helpers
   615 //
   616 // Various method entries
   617 //------------------------------------------------------------------------------------------------------------------------
   618 //
   619 //
   621 // Call an accessor method (assuming it is resolved, otherwise drop into vanilla (slow path) entry
   623 address InterpreterGenerator::generate_accessor_entry(void) {
   625   // rbx,: methodOop
   626   // rcx: receiver (preserve for slow entry into asm interpreter)
   628   // rsi: senderSP must preserved for slow path, set SP to it on fast path
   630   address entry_point = __ pc();
   631   Label xreturn_path;
   633   // do fastpath for resolved accessor methods
   634   if (UseFastAccessorMethods) {
   635     Label slow_path;
   636     // If we need a safepoint check, generate full interpreter entry.
   637     ExternalAddress state(SafepointSynchronize::address_of_state());
   638     __ cmp32(ExternalAddress(SafepointSynchronize::address_of_state()),
   639              SafepointSynchronize::_not_synchronized);
   641     __ jcc(Assembler::notEqual, slow_path);
   642     // ASM/C++ Interpreter
   643     // Code: _aload_0, _(i|a)getfield, _(i|a)return or any rewrites thereof; parameter size = 1
   644     // Note: We can only use this code if the getfield has been resolved
   645     //       and if we don't have a null-pointer exception => check for
   646     //       these conditions first and use slow path if necessary.
   647     // rbx,: method
   648     // rcx: receiver
   649     __ movptr(rax, Address(rsp, wordSize));
   651     // check if local 0 != NULL and read field
   652     __ testptr(rax, rax);
   653     __ jcc(Assembler::zero, slow_path);
   655     __ movptr(rdi, Address(rbx, methodOopDesc::constants_offset()));
   656     // read first instruction word and extract bytecode @ 1 and index @ 2
   657     __ movptr(rdx, Address(rbx, methodOopDesc::const_offset()));
   658     __ movl(rdx, Address(rdx, constMethodOopDesc::codes_offset()));
   659     // Shift codes right to get the index on the right.
   660     // The bytecode fetched looks like <index><0xb4><0x2a>
   661     __ shrl(rdx, 2*BitsPerByte);
   662     __ shll(rdx, exact_log2(in_words(ConstantPoolCacheEntry::size())));
   663     __ movptr(rdi, Address(rdi, constantPoolOopDesc::cache_offset_in_bytes()));
   665     // rax,: local 0
   666     // rbx,: method
   667     // rcx: receiver - do not destroy since it is needed for slow path!
   668     // rcx: scratch
   669     // rdx: constant pool cache index
   670     // rdi: constant pool cache
   671     // rsi: sender sp
   673     // check if getfield has been resolved and read constant pool cache entry
   674     // check the validity of the cache entry by testing whether _indices field
   675     // contains Bytecode::_getfield in b1 byte.
   676     assert(in_words(ConstantPoolCacheEntry::size()) == 4, "adjust shift below");
   677     __ movl(rcx,
   678             Address(rdi,
   679                     rdx,
   680                     Address::times_ptr, constantPoolCacheOopDesc::base_offset() + ConstantPoolCacheEntry::indices_offset()));
   681     __ shrl(rcx, 2*BitsPerByte);
   682     __ andl(rcx, 0xFF);
   683     __ cmpl(rcx, Bytecodes::_getfield);
   684     __ jcc(Assembler::notEqual, slow_path);
   686     // Note: constant pool entry is not valid before bytecode is resolved
   687     __ movptr(rcx,
   688               Address(rdi,
   689                       rdx,
   690                       Address::times_ptr, constantPoolCacheOopDesc::base_offset() + ConstantPoolCacheEntry::f2_offset()));
   691     __ movl(rdx,
   692             Address(rdi,
   693                     rdx,
   694                     Address::times_ptr, constantPoolCacheOopDesc::base_offset() + ConstantPoolCacheEntry::flags_offset()));
   696     Label notByte, notShort, notChar;
   697     const Address field_address (rax, rcx, Address::times_1);
   699     // Need to differentiate between igetfield, agetfield, bgetfield etc.
   700     // because they are different sizes.
   701     // Use the type from the constant pool cache
   702     __ shrl(rdx, ConstantPoolCacheEntry::tosBits);
   703     // Make sure we don't need to mask rdx for tosBits after the above shift
   704     ConstantPoolCacheEntry::verify_tosBits();
   705     __ cmpl(rdx, btos);
   706     __ jcc(Assembler::notEqual, notByte);
   707     __ load_signed_byte(rax, field_address);
   708     __ jmp(xreturn_path);
   710     __ bind(notByte);
   711     __ cmpl(rdx, stos);
   712     __ jcc(Assembler::notEqual, notShort);
   713     __ load_signed_short(rax, field_address);
   714     __ jmp(xreturn_path);
   716     __ bind(notShort);
   717     __ cmpl(rdx, ctos);
   718     __ jcc(Assembler::notEqual, notChar);
   719     __ load_unsigned_short(rax, field_address);
   720     __ jmp(xreturn_path);
   722     __ bind(notChar);
   723 #ifdef ASSERT
   724     Label okay;
   725     __ cmpl(rdx, atos);
   726     __ jcc(Assembler::equal, okay);
   727     __ cmpl(rdx, itos);
   728     __ jcc(Assembler::equal, okay);
   729     __ stop("what type is this?");
   730     __ bind(okay);
   731 #endif // ASSERT
   732     // All the rest are a 32 bit wordsize
   733     // This is ok for now. Since fast accessors should be going away
   734     __ movptr(rax, field_address);
   736     __ bind(xreturn_path);
   738     // _ireturn/_areturn
   739     __ pop(rdi);                               // get return address
   740     __ mov(rsp, rsi);                          // set sp to sender sp
   741     __ jmp(rdi);
   743     // generate a vanilla interpreter entry as the slow path
   744     __ bind(slow_path);
   746     (void) generate_normal_entry(false);
   747     return entry_point;
   748   }
   749   return NULL;
   751 }
   753 // Method entry for java.lang.ref.Reference.get.
   754 address InterpreterGenerator::generate_Reference_get_entry(void) {
   755 #ifndef SERIALGC
   756   // Code: _aload_0, _getfield, _areturn
   757   // parameter size = 1
   758   //
   759   // The code that gets generated by this routine is split into 2 parts:
   760   //    1. The "intrinsified" code for G1 (or any SATB based GC),
   761   //    2. The slow path - which is an expansion of the regular method entry.
   762   //
   763   // Notes:-
   764   // * In the G1 code we do not check whether we need to block for
   765   //   a safepoint. If G1 is enabled then we must execute the specialized
   766   //   code for Reference.get (except when the Reference object is null)
   767   //   so that we can log the value in the referent field with an SATB
   768   //   update buffer.
   769   //   If the code for the getfield template is modified so that the
   770   //   G1 pre-barrier code is executed when the current method is
   771   //   Reference.get() then going through the normal method entry
   772   //   will be fine.
   773   // * The G1 code below can, however, check the receiver object (the instance
   774   //   of java.lang.Reference) and jump to the slow path if null. If the
   775   //   Reference object is null then we obviously cannot fetch the referent
   776   //   and so we don't need to call the G1 pre-barrier. Thus we can use the
   777   //   regular method entry code to generate the NPE.
   778   //
   779   // This code is based on generate_accessor_enty.
   781   // rbx,: methodOop
   782   // rcx: receiver (preserve for slow entry into asm interpreter)
   784   // rsi: senderSP must preserved for slow path, set SP to it on fast path
   786   address entry = __ pc();
   788   const int referent_offset = java_lang_ref_Reference::referent_offset;
   789   guarantee(referent_offset > 0, "referent offset not initialized");
   791   if (UseG1GC) {
   792     Label slow_path;
   794     // Check if local 0 != NULL
   795     // If the receiver is null then it is OK to jump to the slow path.
   796     __ movptr(rax, Address(rsp, wordSize));
   797     __ testptr(rax, rax);
   798     __ jcc(Assembler::zero, slow_path);
   800     // rax: local 0 (must be preserved across the G1 barrier call)
   801     //
   802     // rbx: method (at this point it's scratch)
   803     // rcx: receiver (at this point it's scratch)
   804     // rdx: scratch
   805     // rdi: scratch
   806     //
   807     // rsi: sender sp
   809     // Preserve the sender sp in case the pre-barrier
   810     // calls the runtime
   811     __ push(rsi);
   813     // Load the value of the referent field.
   814     const Address field_address(rax, referent_offset);
   815     __ movptr(rax, field_address);
   817     // Generate the G1 pre-barrier code to log the value of
   818     // the referent field in an SATB buffer.
   819     __ get_thread(rcx);
   820     __ g1_write_barrier_pre(noreg /* obj */,
   821                             rax /* pre_val */,
   822                             rcx /* thread */,
   823                             rbx /* tmp */,
   824                             true /* tosca_save */,
   825                             true /* expand_call */);
   827     // _areturn
   828     __ pop(rsi);                // get sender sp
   829     __ pop(rdi);                // get return address
   830     __ mov(rsp, rsi);           // set sp to sender sp
   831     __ jmp(rdi);
   833     __ bind(slow_path);
   834     (void) generate_normal_entry(false);
   836     return entry;
   837   }
   838 #endif // SERIALGC
   840   // If G1 is not enabled then attempt to go through the accessor entry point
   841   // Reference.get is an accessor
   842   return generate_accessor_entry();
   843 }
   845 //
   846 // Interpreter stub for calling a native method. (asm interpreter)
   847 // This sets up a somewhat different looking stack for calling the native method
   848 // than the typical interpreter frame setup.
   849 //
   851 address InterpreterGenerator::generate_native_entry(bool synchronized) {
   852   // determine code generation flags
   853   bool inc_counter  = UseCompiler || CountCompiledCalls;
   855   // rbx,: methodOop
   856   // rsi: sender sp
   857   // rsi: previous interpreter state (C++ interpreter) must preserve
   858   address entry_point = __ pc();
   861   const Address size_of_parameters(rbx, methodOopDesc::size_of_parameters_offset());
   862   const Address invocation_counter(rbx, methodOopDesc::invocation_counter_offset() + InvocationCounter::counter_offset());
   863   const Address access_flags      (rbx, methodOopDesc::access_flags_offset());
   865   // get parameter size (always needed)
   866   __ load_unsigned_short(rcx, size_of_parameters);
   868   // native calls don't need the stack size check since they have no expression stack
   869   // and the arguments are already on the stack and we only add a handful of words
   870   // to the stack
   872   // rbx,: methodOop
   873   // rcx: size of parameters
   874   // rsi: sender sp
   876   __ pop(rax);                                       // get return address
   877   // for natives the size of locals is zero
   879   // compute beginning of parameters (rdi)
   880   __ lea(rdi, Address(rsp, rcx, Interpreter::stackElementScale(), -wordSize));
   883   // add 2 zero-initialized slots for native calls
   884   // NULL result handler
   885   __ push((int32_t)NULL_WORD);
   886   // NULL oop temp (mirror or jni oop result)
   887   __ push((int32_t)NULL_WORD);
   889   if (inc_counter) __ movl(rcx, invocation_counter);  // (pre-)fetch invocation count
   890   // initialize fixed part of activation frame
   892   generate_fixed_frame(true);
   894   // make sure method is native & not abstract
   895 #ifdef ASSERT
   896   __ movl(rax, access_flags);
   897   {
   898     Label L;
   899     __ testl(rax, JVM_ACC_NATIVE);
   900     __ jcc(Assembler::notZero, L);
   901     __ stop("tried to execute non-native method as native");
   902     __ bind(L);
   903   }
   904   { Label L;
   905     __ testl(rax, JVM_ACC_ABSTRACT);
   906     __ jcc(Assembler::zero, L);
   907     __ stop("tried to execute abstract method in interpreter");
   908     __ bind(L);
   909   }
   910 #endif
   912   // Since at this point in the method invocation the exception handler
   913   // would try to exit the monitor of synchronized methods which hasn't
   914   // been entered yet, we set the thread local variable
   915   // _do_not_unlock_if_synchronized to true. The remove_activation will
   916   // check this flag.
   918   __ get_thread(rax);
   919   const Address do_not_unlock_if_synchronized(rax,
   920         in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()));
   921   __ movbool(do_not_unlock_if_synchronized, true);
   923   // increment invocation count & check for overflow
   924   Label invocation_counter_overflow;
   925   if (inc_counter) {
   926     generate_counter_incr(&invocation_counter_overflow, NULL, NULL);
   927   }
   929   Label continue_after_compile;
   930   __ bind(continue_after_compile);
   932   bang_stack_shadow_pages(true);
   934   // reset the _do_not_unlock_if_synchronized flag
   935   __ get_thread(rax);
   936   __ movbool(do_not_unlock_if_synchronized, false);
   938   // check for synchronized methods
   939   // Must happen AFTER invocation_counter check and stack overflow check,
   940   // so method is not locked if overflows.
   941   //
   942   if (synchronized) {
   943     lock_method();
   944   } else {
   945     // no synchronization necessary
   946 #ifdef ASSERT
   947       { Label L;
   948         __ movl(rax, access_flags);
   949         __ testl(rax, JVM_ACC_SYNCHRONIZED);
   950         __ jcc(Assembler::zero, L);
   951         __ stop("method needs synchronization");
   952         __ bind(L);
   953       }
   954 #endif
   955   }
   957   // start execution
   958 #ifdef ASSERT
   959   { Label L;
   960     const Address monitor_block_top (rbp,
   961                  frame::interpreter_frame_monitor_block_top_offset * wordSize);
   962     __ movptr(rax, monitor_block_top);
   963     __ cmpptr(rax, rsp);
   964     __ jcc(Assembler::equal, L);
   965     __ stop("broken stack frame setup in interpreter");
   966     __ bind(L);
   967   }
   968 #endif
   970   // jvmti/dtrace support
   971   __ notify_method_entry();
   973   // work registers
   974   const Register method = rbx;
   975   const Register thread = rdi;
   976   const Register t      = rcx;
   978   // allocate space for parameters
   979   __ get_method(method);
   980   __ verify_oop(method);
   981   __ load_unsigned_short(t, Address(method, methodOopDesc::size_of_parameters_offset()));
   982   __ shlptr(t, Interpreter::logStackElementSize);
   983   __ addptr(t, 2*wordSize);     // allocate two more slots for JNIEnv and possible mirror
   984   __ subptr(rsp, t);
   985   __ andptr(rsp, -(StackAlignmentInBytes)); // gcc needs 16 byte aligned stacks to do XMM intrinsics
   987   // get signature handler
   988   { Label L;
   989     __ movptr(t, Address(method, methodOopDesc::signature_handler_offset()));
   990     __ testptr(t, t);
   991     __ jcc(Assembler::notZero, L);
   992     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::prepare_native_call), method);
   993     __ get_method(method);
   994     __ movptr(t, Address(method, methodOopDesc::signature_handler_offset()));
   995     __ bind(L);
   996   }
   998   // call signature handler
   999   assert(InterpreterRuntime::SignatureHandlerGenerator::from() == rdi, "adjust this code");
  1000   assert(InterpreterRuntime::SignatureHandlerGenerator::to  () == rsp, "adjust this code");
  1001   assert(InterpreterRuntime::SignatureHandlerGenerator::temp() == t  , "adjust this code");
  1002   // The generated handlers do not touch RBX (the method oop).
  1003   // However, large signatures cannot be cached and are generated
  1004   // each time here.  The slow-path generator will blow RBX
  1005   // sometime, so we must reload it after the call.
  1006   __ call(t);
  1007   __ get_method(method);        // slow path call blows RBX on DevStudio 5.0
  1009   // result handler is in rax,
  1010   // set result handler
  1011   __ movptr(Address(rbp, frame::interpreter_frame_result_handler_offset*wordSize), rax);
  1013   // pass mirror handle if static call
  1014   { Label L;
  1015     const int mirror_offset = klassOopDesc::klass_part_offset_in_bytes() + Klass::java_mirror_offset_in_bytes();
  1016     __ movl(t, Address(method, methodOopDesc::access_flags_offset()));
  1017     __ testl(t, JVM_ACC_STATIC);
  1018     __ jcc(Assembler::zero, L);
  1019     // get mirror
  1020     __ movptr(t, Address(method, methodOopDesc:: constants_offset()));
  1021     __ movptr(t, Address(t, constantPoolOopDesc::pool_holder_offset_in_bytes()));
  1022     __ movptr(t, Address(t, mirror_offset));
  1023     // copy mirror into activation frame
  1024     __ movptr(Address(rbp, frame::interpreter_frame_oop_temp_offset * wordSize), t);
  1025     // pass handle to mirror
  1026     __ lea(t, Address(rbp, frame::interpreter_frame_oop_temp_offset * wordSize));
  1027     __ movptr(Address(rsp, wordSize), t);
  1028     __ bind(L);
  1031   // get native function entry point
  1032   { Label L;
  1033     __ movptr(rax, Address(method, methodOopDesc::native_function_offset()));
  1034     ExternalAddress unsatisfied(SharedRuntime::native_method_throw_unsatisfied_link_error_entry());
  1035     __ cmpptr(rax, unsatisfied.addr());
  1036     __ jcc(Assembler::notEqual, L);
  1037     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::prepare_native_call), method);
  1038     __ get_method(method);
  1039     __ verify_oop(method);
  1040     __ movptr(rax, Address(method, methodOopDesc::native_function_offset()));
  1041     __ bind(L);
  1044   // pass JNIEnv
  1045   __ get_thread(thread);
  1046   __ lea(t, Address(thread, JavaThread::jni_environment_offset()));
  1047   __ movptr(Address(rsp, 0), t);
  1049   // set_last_Java_frame_before_call
  1050   // It is enough that the pc()
  1051   // points into the right code segment. It does not have to be the correct return pc.
  1052   __ set_last_Java_frame(thread, noreg, rbp, __ pc());
  1054   // change thread state
  1055 #ifdef ASSERT
  1056   { Label L;
  1057     __ movl(t, Address(thread, JavaThread::thread_state_offset()));
  1058     __ cmpl(t, _thread_in_Java);
  1059     __ jcc(Assembler::equal, L);
  1060     __ stop("Wrong thread state in native stub");
  1061     __ bind(L);
  1063 #endif
  1065   // Change state to native
  1066   __ movl(Address(thread, JavaThread::thread_state_offset()), _thread_in_native);
  1067   __ call(rax);
  1069   // result potentially in rdx:rax or ST0
  1071   // Either restore the MXCSR register after returning from the JNI Call
  1072   // or verify that it wasn't changed.
  1073   if (VM_Version::supports_sse()) {
  1074     if (RestoreMXCSROnJNICalls) {
  1075       __ ldmxcsr(ExternalAddress(StubRoutines::addr_mxcsr_std()));
  1077     else if (CheckJNICalls ) {
  1078       __ call(RuntimeAddress(StubRoutines::x86::verify_mxcsr_entry()));
  1082   // Either restore the x87 floating pointer control word after returning
  1083   // from the JNI call or verify that it wasn't changed.
  1084   if (CheckJNICalls) {
  1085     __ call(RuntimeAddress(StubRoutines::x86::verify_fpu_cntrl_wrd_entry()));
  1088   // save potential result in ST(0) & rdx:rax
  1089   // (if result handler is the T_FLOAT or T_DOUBLE handler, result must be in ST0 -
  1090   // the check is necessary to avoid potential Intel FPU overflow problems by saving/restoring 'empty' FPU registers)
  1091   // It is safe to do this push because state is _thread_in_native and return address will be found
  1092   // via _last_native_pc and not via _last_jave_sp
  1094   // NOTE: the order of theses push(es) is known to frame::interpreter_frame_result.
  1095   // If the order changes or anything else is added to the stack the code in
  1096   // interpreter_frame_result will have to be changed.
  1098   { Label L;
  1099     Label push_double;
  1100     ExternalAddress float_handler(AbstractInterpreter::result_handler(T_FLOAT));
  1101     ExternalAddress double_handler(AbstractInterpreter::result_handler(T_DOUBLE));
  1102     __ cmpptr(Address(rbp, (frame::interpreter_frame_oop_temp_offset + 1)*wordSize),
  1103               float_handler.addr());
  1104     __ jcc(Assembler::equal, push_double);
  1105     __ cmpptr(Address(rbp, (frame::interpreter_frame_oop_temp_offset + 1)*wordSize),
  1106               double_handler.addr());
  1107     __ jcc(Assembler::notEqual, L);
  1108     __ bind(push_double);
  1109     __ push(dtos);
  1110     __ bind(L);
  1112   __ push(ltos);
  1114   // change thread state
  1115   __ get_thread(thread);
  1116   __ movl(Address(thread, JavaThread::thread_state_offset()), _thread_in_native_trans);
  1117   if(os::is_MP()) {
  1118     if (UseMembar) {
  1119       // Force this write out before the read below
  1120       __ membar(Assembler::Membar_mask_bits(
  1121            Assembler::LoadLoad | Assembler::LoadStore |
  1122            Assembler::StoreLoad | Assembler::StoreStore));
  1123     } else {
  1124       // Write serialization page so VM thread can do a pseudo remote membar.
  1125       // We use the current thread pointer to calculate a thread specific
  1126       // offset to write to within the page. This minimizes bus traffic
  1127       // due to cache line collision.
  1128       __ serialize_memory(thread, rcx);
  1132   if (AlwaysRestoreFPU) {
  1133     //  Make sure the control word is correct.
  1134     __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
  1137   // check for safepoint operation in progress and/or pending suspend requests
  1138   { Label Continue;
  1140     __ cmp32(ExternalAddress(SafepointSynchronize::address_of_state()),
  1141              SafepointSynchronize::_not_synchronized);
  1143     Label L;
  1144     __ jcc(Assembler::notEqual, L);
  1145     __ cmpl(Address(thread, JavaThread::suspend_flags_offset()), 0);
  1146     __ jcc(Assembler::equal, Continue);
  1147     __ bind(L);
  1149     // Don't use call_VM as it will see a possible pending exception and forward it
  1150     // and never return here preventing us from clearing _last_native_pc down below.
  1151     // Also can't use call_VM_leaf either as it will check to see if rsi & rdi are
  1152     // preserved and correspond to the bcp/locals pointers. So we do a runtime call
  1153     // by hand.
  1154     //
  1155     __ push(thread);
  1156     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address,
  1157                                             JavaThread::check_special_condition_for_native_trans)));
  1158     __ increment(rsp, wordSize);
  1159     __ get_thread(thread);
  1161     __ bind(Continue);
  1164   // change thread state
  1165   __ movl(Address(thread, JavaThread::thread_state_offset()), _thread_in_Java);
  1167   __ reset_last_Java_frame(thread, true, true);
  1169   // reset handle block
  1170   __ movptr(t, Address(thread, JavaThread::active_handles_offset()));
  1171   __ movptr(Address(t, JNIHandleBlock::top_offset_in_bytes()), NULL_WORD);
  1173   // If result was an oop then unbox and save it in the frame
  1174   { Label L;
  1175     Label no_oop, store_result;
  1176     ExternalAddress handler(AbstractInterpreter::result_handler(T_OBJECT));
  1177     __ cmpptr(Address(rbp, frame::interpreter_frame_result_handler_offset*wordSize),
  1178               handler.addr());
  1179     __ jcc(Assembler::notEqual, no_oop);
  1180     __ cmpptr(Address(rsp, 0), (int32_t)NULL_WORD);
  1181     __ pop(ltos);
  1182     __ testptr(rax, rax);
  1183     __ jcc(Assembler::zero, store_result);
  1184     // unbox
  1185     __ movptr(rax, Address(rax, 0));
  1186     __ bind(store_result);
  1187     __ movptr(Address(rbp, (frame::interpreter_frame_oop_temp_offset)*wordSize), rax);
  1188     // keep stack depth as expected by pushing oop which will eventually be discarded
  1189     __ push(ltos);
  1190     __ bind(no_oop);
  1194      Label no_reguard;
  1195      __ cmpl(Address(thread, JavaThread::stack_guard_state_offset()), JavaThread::stack_guard_yellow_disabled);
  1196      __ jcc(Assembler::notEqual, no_reguard);
  1198      __ pusha();
  1199      __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages)));
  1200      __ popa();
  1202      __ bind(no_reguard);
  1205   // restore rsi to have legal interpreter frame,
  1206   // i.e., bci == 0 <=> rsi == code_base()
  1207   // Can't call_VM until bcp is within reasonable.
  1208   __ get_method(method);      // method is junk from thread_in_native to now.
  1209   __ verify_oop(method);
  1210   __ movptr(rsi, Address(method,methodOopDesc::const_offset()));   // get constMethodOop
  1211   __ lea(rsi, Address(rsi,constMethodOopDesc::codes_offset()));    // get codebase
  1213   // handle exceptions (exception handling will handle unlocking!)
  1214   { Label L;
  1215     __ cmpptr(Address(thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
  1216     __ jcc(Assembler::zero, L);
  1217     // Note: At some point we may want to unify this with the code used in call_VM_base();
  1218     //       i.e., we should use the StubRoutines::forward_exception code. For now this
  1219     //       doesn't work here because the rsp is not correctly set at this point.
  1220     __ MacroAssembler::call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_pending_exception));
  1221     __ should_not_reach_here();
  1222     __ bind(L);
  1225   // do unlocking if necessary
  1226   { Label L;
  1227     __ movl(t, Address(method, methodOopDesc::access_flags_offset()));
  1228     __ testl(t, JVM_ACC_SYNCHRONIZED);
  1229     __ jcc(Assembler::zero, L);
  1230     // the code below should be shared with interpreter macro assembler implementation
  1231     { Label unlock;
  1232       // BasicObjectLock will be first in list, since this is a synchronized method. However, need
  1233       // to check that the object has not been unlocked by an explicit monitorexit bytecode.
  1234       const Address monitor(rbp, frame::interpreter_frame_initial_sp_offset * wordSize - (int)sizeof(BasicObjectLock));
  1236       __ lea(rdx, monitor);                   // address of first monitor
  1238       __ movptr(t, Address(rdx, BasicObjectLock::obj_offset_in_bytes()));
  1239       __ testptr(t, t);
  1240       __ jcc(Assembler::notZero, unlock);
  1242       // Entry already unlocked, need to throw exception
  1243       __ MacroAssembler::call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception));
  1244       __ should_not_reach_here();
  1246       __ bind(unlock);
  1247       __ unlock_object(rdx);
  1249     __ bind(L);
  1252   // jvmti/dtrace support
  1253   // Note: This must happen _after_ handling/throwing any exceptions since
  1254   //       the exception handler code notifies the runtime of method exits
  1255   //       too. If this happens before, method entry/exit notifications are
  1256   //       not properly paired (was bug - gri 11/22/99).
  1257   __ notify_method_exit(vtos, InterpreterMacroAssembler::NotifyJVMTI);
  1259   // restore potential result in rdx:rax, call result handler to restore potential result in ST0 & handle result
  1260   __ pop(ltos);
  1261   __ movptr(t, Address(rbp, frame::interpreter_frame_result_handler_offset*wordSize));
  1262   __ call(t);
  1264   // remove activation
  1265   __ movptr(t, Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize)); // get sender sp
  1266   __ leave();                                // remove frame anchor
  1267   __ pop(rdi);                               // get return address
  1268   __ mov(rsp, t);                            // set sp to sender sp
  1269   __ jmp(rdi);
  1271   if (inc_counter) {
  1272     // Handle overflow of counter and compile method
  1273     __ bind(invocation_counter_overflow);
  1274     generate_counter_overflow(&continue_after_compile);
  1277   return entry_point;
  1280 //
  1281 // Generic interpreted method entry to (asm) interpreter
  1282 //
  1283 address InterpreterGenerator::generate_normal_entry(bool synchronized) {
  1284   // determine code generation flags
  1285   bool inc_counter  = UseCompiler || CountCompiledCalls;
  1287   // rbx,: methodOop
  1288   // rsi: sender sp
  1289   address entry_point = __ pc();
  1292   const Address size_of_parameters(rbx, methodOopDesc::size_of_parameters_offset());
  1293   const Address size_of_locals    (rbx, methodOopDesc::size_of_locals_offset());
  1294   const Address invocation_counter(rbx, methodOopDesc::invocation_counter_offset() + InvocationCounter::counter_offset());
  1295   const Address access_flags      (rbx, methodOopDesc::access_flags_offset());
  1297   // get parameter size (always needed)
  1298   __ load_unsigned_short(rcx, size_of_parameters);
  1300   // rbx,: methodOop
  1301   // rcx: size of parameters
  1303   // rsi: sender_sp (could differ from sp+wordSize if we were called via c2i )
  1305   __ load_unsigned_short(rdx, size_of_locals);       // get size of locals in words
  1306   __ subl(rdx, rcx);                                // rdx = no. of additional locals
  1308   // see if we've got enough room on the stack for locals plus overhead.
  1309   generate_stack_overflow_check();
  1311   // get return address
  1312   __ pop(rax);
  1314   // compute beginning of parameters (rdi)
  1315   __ lea(rdi, Address(rsp, rcx, Interpreter::stackElementScale(), -wordSize));
  1317   // rdx - # of additional locals
  1318   // allocate space for locals
  1319   // explicitly initialize locals
  1321     Label exit, loop;
  1322     __ testl(rdx, rdx);
  1323     __ jcc(Assembler::lessEqual, exit);               // do nothing if rdx <= 0
  1324     __ bind(loop);
  1325     __ push((int32_t)NULL_WORD);                      // initialize local variables
  1326     __ decrement(rdx);                                // until everything initialized
  1327     __ jcc(Assembler::greater, loop);
  1328     __ bind(exit);
  1331   if (inc_counter) __ movl(rcx, invocation_counter);  // (pre-)fetch invocation count
  1332   // initialize fixed part of activation frame
  1333   generate_fixed_frame(false);
  1335   // make sure method is not native & not abstract
  1336 #ifdef ASSERT
  1337   __ movl(rax, access_flags);
  1339     Label L;
  1340     __ testl(rax, JVM_ACC_NATIVE);
  1341     __ jcc(Assembler::zero, L);
  1342     __ stop("tried to execute native method as non-native");
  1343     __ bind(L);
  1345   { Label L;
  1346     __ testl(rax, JVM_ACC_ABSTRACT);
  1347     __ jcc(Assembler::zero, L);
  1348     __ stop("tried to execute abstract method in interpreter");
  1349     __ bind(L);
  1351 #endif
  1353   // Since at this point in the method invocation the exception handler
  1354   // would try to exit the monitor of synchronized methods which hasn't
  1355   // been entered yet, we set the thread local variable
  1356   // _do_not_unlock_if_synchronized to true. The remove_activation will
  1357   // check this flag.
  1359   __ get_thread(rax);
  1360   const Address do_not_unlock_if_synchronized(rax,
  1361         in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()));
  1362   __ movbool(do_not_unlock_if_synchronized, true);
  1364   // increment invocation count & check for overflow
  1365   Label invocation_counter_overflow;
  1366   Label profile_method;
  1367   Label profile_method_continue;
  1368   if (inc_counter) {
  1369     generate_counter_incr(&invocation_counter_overflow, &profile_method, &profile_method_continue);
  1370     if (ProfileInterpreter) {
  1371       __ bind(profile_method_continue);
  1374   Label continue_after_compile;
  1375   __ bind(continue_after_compile);
  1377   bang_stack_shadow_pages(false);
  1379   // reset the _do_not_unlock_if_synchronized flag
  1380   __ get_thread(rax);
  1381   __ movbool(do_not_unlock_if_synchronized, false);
  1383   // check for synchronized methods
  1384   // Must happen AFTER invocation_counter check and stack overflow check,
  1385   // so method is not locked if overflows.
  1386   //
  1387   if (synchronized) {
  1388     // Allocate monitor and lock method
  1389     lock_method();
  1390   } else {
  1391     // no synchronization necessary
  1392 #ifdef ASSERT
  1393       { Label L;
  1394         __ movl(rax, access_flags);
  1395         __ testl(rax, JVM_ACC_SYNCHRONIZED);
  1396         __ jcc(Assembler::zero, L);
  1397         __ stop("method needs synchronization");
  1398         __ bind(L);
  1400 #endif
  1403   // start execution
  1404 #ifdef ASSERT
  1405   { Label L;
  1406      const Address monitor_block_top (rbp,
  1407                  frame::interpreter_frame_monitor_block_top_offset * wordSize);
  1408     __ movptr(rax, monitor_block_top);
  1409     __ cmpptr(rax, rsp);
  1410     __ jcc(Assembler::equal, L);
  1411     __ stop("broken stack frame setup in interpreter");
  1412     __ bind(L);
  1414 #endif
  1416   // jvmti support
  1417   __ notify_method_entry();
  1419   __ dispatch_next(vtos);
  1421   // invocation counter overflow
  1422   if (inc_counter) {
  1423     if (ProfileInterpreter) {
  1424       // We have decided to profile this method in the interpreter
  1425       __ bind(profile_method);
  1426       __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::profile_method));
  1427       __ set_method_data_pointer_for_bcp();
  1428       __ get_method(rbx);
  1429       __ jmp(profile_method_continue);
  1431     // Handle overflow of counter and compile method
  1432     __ bind(invocation_counter_overflow);
  1433     generate_counter_overflow(&continue_after_compile);
  1436   return entry_point;
  1439 //------------------------------------------------------------------------------------------------------------------------
  1440 // Entry points
  1441 //
  1442 // Here we generate the various kind of entries into the interpreter.
  1443 // The two main entry type are generic bytecode methods and native call method.
  1444 // These both come in synchronized and non-synchronized versions but the
  1445 // frame layout they create is very similar. The other method entry
  1446 // types are really just special purpose entries that are really entry
  1447 // and interpretation all in one. These are for trivial methods like
  1448 // accessor, empty, or special math methods.
  1449 //
  1450 // When control flow reaches any of the entry types for the interpreter
  1451 // the following holds ->
  1452 //
  1453 // Arguments:
  1454 //
  1455 // rbx,: methodOop
  1456 // rcx: receiver
  1457 //
  1458 //
  1459 // Stack layout immediately at entry
  1460 //
  1461 // [ return address     ] <--- rsp
  1462 // [ parameter n        ]
  1463 //   ...
  1464 // [ parameter 1        ]
  1465 // [ expression stack   ] (caller's java expression stack)
  1467 // Assuming that we don't go to one of the trivial specialized
  1468 // entries the stack will look like below when we are ready to execute
  1469 // the first bytecode (or call the native routine). The register usage
  1470 // will be as the template based interpreter expects (see interpreter_x86.hpp).
  1471 //
  1472 // local variables follow incoming parameters immediately; i.e.
  1473 // the return address is moved to the end of the locals).
  1474 //
  1475 // [ monitor entry      ] <--- rsp
  1476 //   ...
  1477 // [ monitor entry      ]
  1478 // [ expr. stack bottom ]
  1479 // [ saved rsi          ]
  1480 // [ current rdi        ]
  1481 // [ methodOop          ]
  1482 // [ saved rbp,          ] <--- rbp,
  1483 // [ return address     ]
  1484 // [ local variable m   ]
  1485 //   ...
  1486 // [ local variable 1   ]
  1487 // [ parameter n        ]
  1488 //   ...
  1489 // [ parameter 1        ] <--- rdi
  1491 address AbstractInterpreterGenerator::generate_method_entry(AbstractInterpreter::MethodKind kind) {
  1492   // determine code generation flags
  1493   bool synchronized = false;
  1494   address entry_point = NULL;
  1496   switch (kind) {
  1497     case Interpreter::zerolocals             :                                                                             break;
  1498     case Interpreter::zerolocals_synchronized: synchronized = true;                                                        break;
  1499     case Interpreter::native                 : entry_point = ((InterpreterGenerator*)this)->generate_native_entry(false);  break;
  1500     case Interpreter::native_synchronized    : entry_point = ((InterpreterGenerator*)this)->generate_native_entry(true);   break;
  1501     case Interpreter::empty                  : entry_point = ((InterpreterGenerator*)this)->generate_empty_entry();        break;
  1502     case Interpreter::accessor               : entry_point = ((InterpreterGenerator*)this)->generate_accessor_entry();     break;
  1503     case Interpreter::abstract               : entry_point = ((InterpreterGenerator*)this)->generate_abstract_entry();     break;
  1504     case Interpreter::method_handle          : entry_point = ((InterpreterGenerator*)this)->generate_method_handle_entry(); break;
  1506     case Interpreter::java_lang_math_sin     : // fall thru
  1507     case Interpreter::java_lang_math_cos     : // fall thru
  1508     case Interpreter::java_lang_math_tan     : // fall thru
  1509     case Interpreter::java_lang_math_abs     : // fall thru
  1510     case Interpreter::java_lang_math_log     : // fall thru
  1511     case Interpreter::java_lang_math_log10   : // fall thru
  1512     case Interpreter::java_lang_math_sqrt    : entry_point = ((InterpreterGenerator*)this)->generate_math_entry(kind);     break;
  1513     case Interpreter::java_lang_ref_reference_get
  1514                                              : entry_point = ((InterpreterGenerator*)this)->generate_Reference_get_entry(); break;
  1515     default                                  : ShouldNotReachHere();                                                       break;
  1518   if (entry_point) return entry_point;
  1520   return ((InterpreterGenerator*)this)->generate_normal_entry(synchronized);
  1524 // These should never be compiled since the interpreter will prefer
  1525 // the compiled version to the intrinsic version.
  1526 bool AbstractInterpreter::can_be_compiled(methodHandle m) {
  1527   switch (method_kind(m)) {
  1528     case Interpreter::java_lang_math_sin     : // fall thru
  1529     case Interpreter::java_lang_math_cos     : // fall thru
  1530     case Interpreter::java_lang_math_tan     : // fall thru
  1531     case Interpreter::java_lang_math_abs     : // fall thru
  1532     case Interpreter::java_lang_math_log     : // fall thru
  1533     case Interpreter::java_lang_math_log10   : // fall thru
  1534     case Interpreter::java_lang_math_sqrt    :
  1535       return false;
  1536     default:
  1537       return true;
  1541 // How much stack a method activation needs in words.
  1542 int AbstractInterpreter::size_top_interpreter_activation(methodOop method) {
  1544   const int stub_code = 4;  // see generate_call_stub
  1545   // Save space for one monitor to get into the interpreted method in case
  1546   // the method is synchronized
  1547   int monitor_size    = method->is_synchronized() ?
  1548                                 1*frame::interpreter_frame_monitor_size() : 0;
  1550   // total overhead size: entry_size + (saved rbp, thru expr stack bottom).
  1551   // be sure to change this if you add/subtract anything to/from the overhead area
  1552   const int overhead_size = -frame::interpreter_frame_initial_sp_offset;
  1554   const int extra_stack = methodOopDesc::extra_stack_entries();
  1555   const int method_stack = (method->max_locals() + method->max_stack() + extra_stack) *
  1556                            Interpreter::stackElementWords;
  1557   return overhead_size + method_stack + stub_code;
  1560 // asm based interpreter deoptimization helpers
  1562 int AbstractInterpreter::layout_activation(methodOop method,
  1563                                            int tempcount,
  1564                                            int popframe_extra_args,
  1565                                            int moncount,
  1566                                            int caller_actual_parameters,
  1567                                            int callee_param_count,
  1568                                            int callee_locals,
  1569                                            frame* caller,
  1570                                            frame* interpreter_frame,
  1571                                            bool is_top_frame) {
  1572   // Note: This calculation must exactly parallel the frame setup
  1573   // in AbstractInterpreterGenerator::generate_method_entry.
  1574   // If interpreter_frame!=NULL, set up the method, locals, and monitors.
  1575   // The frame interpreter_frame, if not NULL, is guaranteed to be the right size,
  1576   // as determined by a previous call to this method.
  1577   // It is also guaranteed to be walkable even though it is in a skeletal state
  1578   // NOTE: return size is in words not bytes
  1580   // fixed size of an interpreter frame:
  1581   int max_locals = method->max_locals() * Interpreter::stackElementWords;
  1582   int extra_locals = (method->max_locals() - method->size_of_parameters()) *
  1583                      Interpreter::stackElementWords;
  1585   int overhead = frame::sender_sp_offset - frame::interpreter_frame_initial_sp_offset;
  1587   // Our locals were accounted for by the caller (or last_frame_adjust on the transistion)
  1588   // Since the callee parameters already account for the callee's params we only need to account for
  1589   // the extra locals.
  1592   int size = overhead +
  1593          ((callee_locals - callee_param_count)*Interpreter::stackElementWords) +
  1594          (moncount*frame::interpreter_frame_monitor_size()) +
  1595          tempcount*Interpreter::stackElementWords + popframe_extra_args;
  1597   if (interpreter_frame != NULL) {
  1598 #ifdef ASSERT
  1599     if (!EnableInvokeDynamic)
  1600       // @@@ FIXME: Should we correct interpreter_frame_sender_sp in the calling sequences?
  1601       // Probably, since deoptimization doesn't work yet.
  1602       assert(caller->unextended_sp() == interpreter_frame->interpreter_frame_sender_sp(), "Frame not properly walkable");
  1603     assert(caller->sp() == interpreter_frame->sender_sp(), "Frame not properly walkable(2)");
  1604 #endif
  1606     interpreter_frame->interpreter_frame_set_method(method);
  1607     // NOTE the difference in using sender_sp and interpreter_frame_sender_sp
  1608     // interpreter_frame_sender_sp is the original sp of the caller (the unextended_sp)
  1609     // and sender_sp is fp+8
  1610     intptr_t* locals = interpreter_frame->sender_sp() + max_locals - 1;
  1612     interpreter_frame->interpreter_frame_set_locals(locals);
  1613     BasicObjectLock* montop = interpreter_frame->interpreter_frame_monitor_begin();
  1614     BasicObjectLock* monbot = montop - moncount;
  1615     interpreter_frame->interpreter_frame_set_monitor_end(monbot);
  1617     // Set last_sp
  1618     intptr_t*  rsp = (intptr_t*) monbot  -
  1619                      tempcount*Interpreter::stackElementWords -
  1620                      popframe_extra_args;
  1621     interpreter_frame->interpreter_frame_set_last_sp(rsp);
  1623     // All frames but the initial (oldest) interpreter frame we fill in have a
  1624     // value for sender_sp that allows walking the stack but isn't
  1625     // truly correct. Correct the value here.
  1627     if (extra_locals != 0 &&
  1628         interpreter_frame->sender_sp() == interpreter_frame->interpreter_frame_sender_sp() ) {
  1629       interpreter_frame->set_interpreter_frame_sender_sp(caller->sp() + extra_locals);
  1631     *interpreter_frame->interpreter_frame_cache_addr() =
  1632       method->constants()->cache();
  1634   return size;
  1638 //------------------------------------------------------------------------------------------------------------------------
  1639 // Exceptions
  1641 void TemplateInterpreterGenerator::generate_throw_exception() {
  1642   // Entry point in previous activation (i.e., if the caller was interpreted)
  1643   Interpreter::_rethrow_exception_entry = __ pc();
  1644   const Register thread = rcx;
  1646   // Restore sp to interpreter_frame_last_sp even though we are going
  1647   // to empty the expression stack for the exception processing.
  1648   __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), NULL_WORD);
  1649   // rax,: exception
  1650   // rdx: return address/pc that threw exception
  1651   __ restore_bcp();                              // rsi points to call/send
  1652   __ restore_locals();
  1654   // Entry point for exceptions thrown within interpreter code
  1655   Interpreter::_throw_exception_entry = __ pc();
  1656   // expression stack is undefined here
  1657   // rax,: exception
  1658   // rsi: exception bcp
  1659   __ verify_oop(rax);
  1661   // expression stack must be empty before entering the VM in case of an exception
  1662   __ empty_expression_stack();
  1663   __ empty_FPU_stack();
  1664   // find exception handler address and preserve exception oop
  1665   __ call_VM(rdx, CAST_FROM_FN_PTR(address, InterpreterRuntime::exception_handler_for_exception), rax);
  1666   // rax,: exception handler entry point
  1667   // rdx: preserved exception oop
  1668   // rsi: bcp for exception handler
  1669   __ push_ptr(rdx);                              // push exception which is now the only value on the stack
  1670   __ jmp(rax);                                   // jump to exception handler (may be _remove_activation_entry!)
  1672   // If the exception is not handled in the current frame the frame is removed and
  1673   // the exception is rethrown (i.e. exception continuation is _rethrow_exception).
  1674   //
  1675   // Note: At this point the bci is still the bxi for the instruction which caused
  1676   //       the exception and the expression stack is empty. Thus, for any VM calls
  1677   //       at this point, GC will find a legal oop map (with empty expression stack).
  1679   // In current activation
  1680   // tos: exception
  1681   // rsi: exception bcp
  1683   //
  1684   // JVMTI PopFrame support
  1685   //
  1687    Interpreter::_remove_activation_preserving_args_entry = __ pc();
  1688   __ empty_expression_stack();
  1689   __ empty_FPU_stack();
  1690   // Set the popframe_processing bit in pending_popframe_condition indicating that we are
  1691   // currently handling popframe, so that call_VMs that may happen later do not trigger new
  1692   // popframe handling cycles.
  1693   __ get_thread(thread);
  1694   __ movl(rdx, Address(thread, JavaThread::popframe_condition_offset()));
  1695   __ orl(rdx, JavaThread::popframe_processing_bit);
  1696   __ movl(Address(thread, JavaThread::popframe_condition_offset()), rdx);
  1699     // Check to see whether we are returning to a deoptimized frame.
  1700     // (The PopFrame call ensures that the caller of the popped frame is
  1701     // either interpreted or compiled and deoptimizes it if compiled.)
  1702     // In this case, we can't call dispatch_next() after the frame is
  1703     // popped, but instead must save the incoming arguments and restore
  1704     // them after deoptimization has occurred.
  1705     //
  1706     // Note that we don't compare the return PC against the
  1707     // deoptimization blob's unpack entry because of the presence of
  1708     // adapter frames in C2.
  1709     Label caller_not_deoptimized;
  1710     __ movptr(rdx, Address(rbp, frame::return_addr_offset * wordSize));
  1711     __ super_call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::interpreter_contains), rdx);
  1712     __ testl(rax, rax);
  1713     __ jcc(Assembler::notZero, caller_not_deoptimized);
  1715     // Compute size of arguments for saving when returning to deoptimized caller
  1716     __ get_method(rax);
  1717     __ verify_oop(rax);
  1718     __ load_unsigned_short(rax, Address(rax, in_bytes(methodOopDesc::size_of_parameters_offset())));
  1719     __ shlptr(rax, Interpreter::logStackElementSize);
  1720     __ restore_locals();
  1721     __ subptr(rdi, rax);
  1722     __ addptr(rdi, wordSize);
  1723     // Save these arguments
  1724     __ get_thread(thread);
  1725     __ super_call_VM_leaf(CAST_FROM_FN_PTR(address, Deoptimization::popframe_preserve_args), thread, rax, rdi);
  1727     __ remove_activation(vtos, rdx,
  1728                          /* throw_monitor_exception */ false,
  1729                          /* install_monitor_exception */ false,
  1730                          /* notify_jvmdi */ false);
  1732     // Inform deoptimization that it is responsible for restoring these arguments
  1733     __ get_thread(thread);
  1734     __ movl(Address(thread, JavaThread::popframe_condition_offset()), JavaThread::popframe_force_deopt_reexecution_bit);
  1736     // Continue in deoptimization handler
  1737     __ jmp(rdx);
  1739     __ bind(caller_not_deoptimized);
  1742   __ remove_activation(vtos, rdx,
  1743                        /* throw_monitor_exception */ false,
  1744                        /* install_monitor_exception */ false,
  1745                        /* notify_jvmdi */ false);
  1747   // Finish with popframe handling
  1748   // A previous I2C followed by a deoptimization might have moved the
  1749   // outgoing arguments further up the stack. PopFrame expects the
  1750   // mutations to those outgoing arguments to be preserved and other
  1751   // constraints basically require this frame to look exactly as
  1752   // though it had previously invoked an interpreted activation with
  1753   // no space between the top of the expression stack (current
  1754   // last_sp) and the top of stack. Rather than force deopt to
  1755   // maintain this kind of invariant all the time we call a small
  1756   // fixup routine to move the mutated arguments onto the top of our
  1757   // expression stack if necessary.
  1758   __ mov(rax, rsp);
  1759   __ movptr(rbx, Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize));
  1760   __ get_thread(thread);
  1761   // PC must point into interpreter here
  1762   __ set_last_Java_frame(thread, noreg, rbp, __ pc());
  1763   __ super_call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::popframe_move_outgoing_args), thread, rax, rbx);
  1764   __ get_thread(thread);
  1765   __ reset_last_Java_frame(thread, true, true);
  1766   // Restore the last_sp and null it out
  1767   __ movptr(rsp, Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize));
  1768   __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), NULL_WORD);
  1770   __ restore_bcp();
  1771   __ restore_locals();
  1772   // The method data pointer was incremented already during
  1773   // call profiling. We have to restore the mdp for the current bcp.
  1774   if (ProfileInterpreter) {
  1775     __ set_method_data_pointer_for_bcp();
  1778   // Clear the popframe condition flag
  1779   __ get_thread(thread);
  1780   __ movl(Address(thread, JavaThread::popframe_condition_offset()), JavaThread::popframe_inactive);
  1782   __ dispatch_next(vtos);
  1783   // end of PopFrame support
  1785   Interpreter::_remove_activation_entry = __ pc();
  1787   // preserve exception over this code sequence
  1788   __ pop_ptr(rax);
  1789   __ get_thread(thread);
  1790   __ movptr(Address(thread, JavaThread::vm_result_offset()), rax);
  1791   // remove the activation (without doing throws on illegalMonitorExceptions)
  1792   __ remove_activation(vtos, rdx, false, true, false);
  1793   // restore exception
  1794   __ get_thread(thread);
  1795   __ movptr(rax, Address(thread, JavaThread::vm_result_offset()));
  1796   __ movptr(Address(thread, JavaThread::vm_result_offset()), NULL_WORD);
  1797   __ verify_oop(rax);
  1799   // Inbetween activations - previous activation type unknown yet
  1800   // compute continuation point - the continuation point expects
  1801   // the following registers set up:
  1802   //
  1803   // rax: exception
  1804   // rdx: return address/pc that threw exception
  1805   // rsp: expression stack of caller
  1806   // rbp: rbp, of caller
  1807   __ push(rax);                                  // save exception
  1808   __ push(rdx);                                  // save return address
  1809   __ super_call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address), thread, rdx);
  1810   __ mov(rbx, rax);                              // save exception handler
  1811   __ pop(rdx);                                   // restore return address
  1812   __ pop(rax);                                   // restore exception
  1813   // Note that an "issuing PC" is actually the next PC after the call
  1814   __ jmp(rbx);                                   // jump to exception handler of caller
  1818 //
  1819 // JVMTI ForceEarlyReturn support
  1820 //
  1821 address TemplateInterpreterGenerator::generate_earlyret_entry_for(TosState state) {
  1822   address entry = __ pc();
  1823   const Register thread = rcx;
  1825   __ restore_bcp();
  1826   __ restore_locals();
  1827   __ empty_expression_stack();
  1828   __ empty_FPU_stack();
  1829   __ load_earlyret_value(state);
  1831   __ get_thread(thread);
  1832   __ movptr(rcx, Address(thread, JavaThread::jvmti_thread_state_offset()));
  1833   const Address cond_addr(rcx, JvmtiThreadState::earlyret_state_offset());
  1835   // Clear the earlyret state
  1836   __ movl(cond_addr, JvmtiThreadState::earlyret_inactive);
  1838   __ remove_activation(state, rsi,
  1839                        false, /* throw_monitor_exception */
  1840                        false, /* install_monitor_exception */
  1841                        true); /* notify_jvmdi */
  1842   __ jmp(rsi);
  1843   return entry;
  1844 } // end of ForceEarlyReturn support
  1847 //------------------------------------------------------------------------------------------------------------------------
  1848 // Helper for vtos entry point generation
  1850 void TemplateInterpreterGenerator::set_vtos_entry_points (Template* t, address& bep, address& cep, address& sep, address& aep, address& iep, address& lep, address& fep, address& dep, address& vep) {
  1851   assert(t->is_valid() && t->tos_in() == vtos, "illegal template");
  1852   Label L;
  1853   fep = __ pc(); __ push(ftos); __ jmp(L);
  1854   dep = __ pc(); __ push(dtos); __ jmp(L);
  1855   lep = __ pc(); __ push(ltos); __ jmp(L);
  1856   aep = __ pc(); __ push(atos); __ jmp(L);
  1857   bep = cep = sep =             // fall through
  1858   iep = __ pc(); __ push(itos); // fall through
  1859   vep = __ pc(); __ bind(L);    // fall through
  1860   generate_and_dispatch(t);
  1863 //------------------------------------------------------------------------------------------------------------------------
  1864 // Generation of individual instructions
  1866 // helpers for generate_and_dispatch
  1870 InterpreterGenerator::InterpreterGenerator(StubQueue* code)
  1871  : TemplateInterpreterGenerator(code) {
  1872    generate_all(); // down here so it can be "virtual"
  1875 //------------------------------------------------------------------------------------------------------------------------
  1877 // Non-product code
  1878 #ifndef PRODUCT
  1879 address TemplateInterpreterGenerator::generate_trace_code(TosState state) {
  1880   address entry = __ pc();
  1882   // prepare expression stack
  1883   __ pop(rcx);          // pop return address so expression stack is 'pure'
  1884   __ push(state);       // save tosca
  1886   // pass tosca registers as arguments & call tracer
  1887   __ call_VM(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::trace_bytecode), rcx, rax, rdx);
  1888   __ mov(rcx, rax);     // make sure return address is not destroyed by pop(state)
  1889   __ pop(state);        // restore tosca
  1891   // return
  1892   __ jmp(rcx);
  1894   return entry;
  1898 void TemplateInterpreterGenerator::count_bytecode() {
  1899   __ incrementl(ExternalAddress((address) &BytecodeCounter::_counter_value));
  1903 void TemplateInterpreterGenerator::histogram_bytecode(Template* t) {
  1904   __ incrementl(ExternalAddress((address) &BytecodeHistogram::_counters[t->bytecode()]));
  1908 void TemplateInterpreterGenerator::histogram_bytecode_pair(Template* t) {
  1909   __ mov32(ExternalAddress((address) &BytecodePairHistogram::_index), rbx);
  1910   __ shrl(rbx, BytecodePairHistogram::log2_number_of_codes);
  1911   __ orl(rbx, ((int)t->bytecode()) << BytecodePairHistogram::log2_number_of_codes);
  1912   ExternalAddress table((address) BytecodePairHistogram::_counters);
  1913   Address index(noreg, rbx, Address::times_4);
  1914   __ incrementl(ArrayAddress(table, index));
  1918 void TemplateInterpreterGenerator::trace_bytecode(Template* t) {
  1919   // Call a little run-time stub to avoid blow-up for each bytecode.
  1920   // The run-time runtime saves the right registers, depending on
  1921   // the tosca in-state for the given template.
  1922   assert(Interpreter::trace_code(t->tos_in()) != NULL,
  1923          "entry must have been generated");
  1924   __ call(RuntimeAddress(Interpreter::trace_code(t->tos_in())));
  1928 void TemplateInterpreterGenerator::stop_interpreter_at() {
  1929   Label L;
  1930   __ cmp32(ExternalAddress((address) &BytecodeCounter::_counter_value),
  1931            StopInterpreterAt);
  1932   __ jcc(Assembler::notEqual, L);
  1933   __ int3();
  1934   __ bind(L);
  1936 #endif // !PRODUCT
  1937 #endif // CC_INTERP

mercurial