src/cpu/x86/vm/nativeInst_x86.hpp

Tue, 02 Aug 2011 18:36:40 +0200

author
roland
date
Tue, 02 Aug 2011 18:36:40 +0200
changeset 3047
f1c12354c3f7
parent 2686
b40d4fa697bf
child 3388
127b3692c168
permissions
-rw-r--r--

7074017: Introduce MemBarAcquireLock/MemBarReleaseLock nodes for monitor enter/exit code paths
Summary: replace MemBarAcquire/MemBarRelease nodes on the monitor enter/exit code paths with new MemBarAcquireLock/MemBarReleaseLock nodes
Reviewed-by: kvn, twisti

     1 /*
     2  * Copyright (c) 1997, 2011, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef CPU_X86_VM_NATIVEINST_X86_HPP
    26 #define CPU_X86_VM_NATIVEINST_X86_HPP
    28 #include "asm/assembler.hpp"
    29 #include "memory/allocation.hpp"
    30 #include "runtime/icache.hpp"
    31 #include "runtime/os.hpp"
    32 #include "utilities/top.hpp"
    34 // We have interfaces for the following instructions:
    35 // - NativeInstruction
    36 // - - NativeCall
    37 // - - NativeMovConstReg
    38 // - - NativeMovConstRegPatching
    39 // - - NativeMovRegMem
    40 // - - NativeMovRegMemPatching
    41 // - - NativeJump
    42 // - - NativeIllegalOpCode
    43 // - - NativeGeneralJump
    44 // - - NativeReturn
    45 // - - NativeReturnX (return with argument)
    46 // - - NativePushConst
    47 // - - NativeTstRegMem
    49 // The base class for different kinds of native instruction abstractions.
    50 // Provides the primitive operations to manipulate code relative to this.
    52 class NativeInstruction VALUE_OBJ_CLASS_SPEC {
    53   friend class Relocation;
    55  public:
    56   enum Intel_specific_constants {
    57     nop_instruction_code        = 0x90,
    58     nop_instruction_size        =    1
    59   };
    61   bool is_nop()                        { return ubyte_at(0) == nop_instruction_code; }
    62   bool is_dtrace_trap();
    63   inline bool is_call();
    64   inline bool is_illegal();
    65   inline bool is_return();
    66   inline bool is_jump();
    67   inline bool is_cond_jump();
    68   inline bool is_safepoint_poll();
    69   inline bool is_mov_literal64();
    71  protected:
    72   address addr_at(int offset) const    { return address(this) + offset; }
    74   s_char sbyte_at(int offset) const    { return *(s_char*) addr_at(offset); }
    75   u_char ubyte_at(int offset) const    { return *(u_char*) addr_at(offset); }
    77   jint int_at(int offset) const         { return *(jint*) addr_at(offset); }
    79   intptr_t ptr_at(int offset) const    { return *(intptr_t*) addr_at(offset); }
    81   oop  oop_at (int offset) const       { return *(oop*) addr_at(offset); }
    84   void set_char_at(int offset, char c)        { *addr_at(offset) = (u_char)c; wrote(offset); }
    85   void set_int_at(int offset, jint  i)        { *(jint*)addr_at(offset) = i;  wrote(offset); }
    86   void set_ptr_at (int offset, intptr_t  ptr) { *(intptr_t*) addr_at(offset) = ptr;  wrote(offset); }
    87   void set_oop_at (int offset, oop  o)        { *(oop*) addr_at(offset) = o;  wrote(offset); }
    89   // This doesn't really do anything on Intel, but it is the place where
    90   // cache invalidation belongs, generically:
    91   void wrote(int offset);
    93  public:
    95   // unit test stuff
    96   static void test() {}                 // override for testing
    98   inline friend NativeInstruction* nativeInstruction_at(address address);
    99 };
   101 inline NativeInstruction* nativeInstruction_at(address address) {
   102   NativeInstruction* inst = (NativeInstruction*)address;
   103 #ifdef ASSERT
   104   //inst->verify();
   105 #endif
   106   return inst;
   107 }
   109 inline NativeCall* nativeCall_at(address address);
   110 // The NativeCall is an abstraction for accessing/manipulating native call imm32/rel32off
   111 // instructions (used to manipulate inline caches, primitive & dll calls, etc.).
   113 class NativeCall: public NativeInstruction {
   114  public:
   115   enum Intel_specific_constants {
   116     instruction_code            = 0xE8,
   117     instruction_size            =    5,
   118     instruction_offset          =    0,
   119     displacement_offset         =    1,
   120     return_address_offset       =    5
   121   };
   123   enum { cache_line_size = BytesPerWord };  // conservative estimate!
   125   address instruction_address() const       { return addr_at(instruction_offset); }
   126   address next_instruction_address() const  { return addr_at(return_address_offset); }
   127   int   displacement() const                { return (jint) int_at(displacement_offset); }
   128   address displacement_address() const      { return addr_at(displacement_offset); }
   129   address return_address() const            { return addr_at(return_address_offset); }
   130   address destination() const;
   131   void  set_destination(address dest)       {
   132 #ifdef AMD64
   133     assert((labs((intptr_t) dest - (intptr_t) return_address())  &
   134             0xFFFFFFFF00000000) == 0,
   135            "must be 32bit offset");
   136 #endif // AMD64
   137     set_int_at(displacement_offset, dest - return_address());
   138   }
   139   void  set_destination_mt_safe(address dest);
   141   void  verify_alignment() { assert((intptr_t)addr_at(displacement_offset) % BytesPerInt == 0, "must be aligned"); }
   142   void  verify();
   143   void  print();
   145   // Creation
   146   inline friend NativeCall* nativeCall_at(address address);
   147   inline friend NativeCall* nativeCall_before(address return_address);
   149   static bool is_call_at(address instr) {
   150     return ((*instr) & 0xFF) == NativeCall::instruction_code;
   151   }
   153   static bool is_call_before(address return_address) {
   154     return is_call_at(return_address - NativeCall::return_address_offset);
   155   }
   157   static bool is_call_to(address instr, address target) {
   158     return nativeInstruction_at(instr)->is_call() &&
   159       nativeCall_at(instr)->destination() == target;
   160   }
   162   // MT-safe patching of a call instruction.
   163   static void insert(address code_pos, address entry);
   165   static void replace_mt_safe(address instr_addr, address code_buffer);
   166 };
   168 inline NativeCall* nativeCall_at(address address) {
   169   NativeCall* call = (NativeCall*)(address - NativeCall::instruction_offset);
   170 #ifdef ASSERT
   171   call->verify();
   172 #endif
   173   return call;
   174 }
   176 inline NativeCall* nativeCall_before(address return_address) {
   177   NativeCall* call = (NativeCall*)(return_address - NativeCall::return_address_offset);
   178 #ifdef ASSERT
   179   call->verify();
   180 #endif
   181   return call;
   182 }
   184 // An interface for accessing/manipulating native mov reg, imm32 instructions.
   185 // (used to manipulate inlined 32bit data dll calls, etc.)
   186 class NativeMovConstReg: public NativeInstruction {
   187 #ifdef AMD64
   188   static const bool has_rex = true;
   189   static const int rex_size = 1;
   190 #else
   191   static const bool has_rex = false;
   192   static const int rex_size = 0;
   193 #endif // AMD64
   194  public:
   195   enum Intel_specific_constants {
   196     instruction_code            = 0xB8,
   197     instruction_size            =    1 + rex_size + wordSize,
   198     instruction_offset          =    0,
   199     data_offset                 =    1 + rex_size,
   200     next_instruction_offset     =    instruction_size,
   201     register_mask               = 0x07
   202   };
   204   address instruction_address() const       { return addr_at(instruction_offset); }
   205   address next_instruction_address() const  { return addr_at(next_instruction_offset); }
   206   intptr_t data() const                     { return ptr_at(data_offset); }
   207   void  set_data(intptr_t x)                { set_ptr_at(data_offset, x); }
   209   void  verify();
   210   void  print();
   212   // unit test stuff
   213   static void test() {}
   215   // Creation
   216   inline friend NativeMovConstReg* nativeMovConstReg_at(address address);
   217   inline friend NativeMovConstReg* nativeMovConstReg_before(address address);
   218 };
   220 inline NativeMovConstReg* nativeMovConstReg_at(address address) {
   221   NativeMovConstReg* test = (NativeMovConstReg*)(address - NativeMovConstReg::instruction_offset);
   222 #ifdef ASSERT
   223   test->verify();
   224 #endif
   225   return test;
   226 }
   228 inline NativeMovConstReg* nativeMovConstReg_before(address address) {
   229   NativeMovConstReg* test = (NativeMovConstReg*)(address - NativeMovConstReg::instruction_size - NativeMovConstReg::instruction_offset);
   230 #ifdef ASSERT
   231   test->verify();
   232 #endif
   233   return test;
   234 }
   236 class NativeMovConstRegPatching: public NativeMovConstReg {
   237  private:
   238     friend NativeMovConstRegPatching* nativeMovConstRegPatching_at(address address) {
   239     NativeMovConstRegPatching* test = (NativeMovConstRegPatching*)(address - instruction_offset);
   240     #ifdef ASSERT
   241       test->verify();
   242     #endif
   243     return test;
   244   }
   245 };
   247 // An interface for accessing/manipulating native moves of the form:
   248 //      mov[b/w/l/q] [reg + offset], reg   (instruction_code_reg2mem)
   249 //      mov[b/w/l/q] reg, [reg+offset]     (instruction_code_mem2reg
   250 //      mov[s/z]x[w/b/q] [reg + offset], reg
   251 //      fld_s  [reg+offset]
   252 //      fld_d  [reg+offset]
   253 //      fstp_s [reg + offset]
   254 //      fstp_d [reg + offset]
   255 //      mov_literal64  scratch,<pointer> ; mov[b/w/l/q] 0(scratch),reg | mov[b/w/l/q] reg,0(scratch)
   256 //
   257 // Warning: These routines must be able to handle any instruction sequences
   258 // that are generated as a result of the load/store byte,word,long
   259 // macros.  For example: The load_unsigned_byte instruction generates
   260 // an xor reg,reg inst prior to generating the movb instruction.  This
   261 // class must skip the xor instruction.
   263 class NativeMovRegMem: public NativeInstruction {
   264  public:
   265   enum Intel_specific_constants {
   266     instruction_prefix_wide_lo          = Assembler::REX,
   267     instruction_prefix_wide_hi          = Assembler::REX_WRXB,
   268     instruction_code_xor                = 0x33,
   269     instruction_extended_prefix         = 0x0F,
   270     instruction_code_mem2reg_movslq     = 0x63,
   271     instruction_code_mem2reg_movzxb     = 0xB6,
   272     instruction_code_mem2reg_movsxb     = 0xBE,
   273     instruction_code_mem2reg_movzxw     = 0xB7,
   274     instruction_code_mem2reg_movsxw     = 0xBF,
   275     instruction_operandsize_prefix      = 0x66,
   276     instruction_code_reg2mem            = 0x89,
   277     instruction_code_mem2reg            = 0x8b,
   278     instruction_code_reg2memb           = 0x88,
   279     instruction_code_mem2regb           = 0x8a,
   280     instruction_code_float_s            = 0xd9,
   281     instruction_code_float_d            = 0xdd,
   282     instruction_code_long_volatile      = 0xdf,
   283     instruction_code_xmm_ss_prefix      = 0xf3,
   284     instruction_code_xmm_sd_prefix      = 0xf2,
   285     instruction_code_xmm_code           = 0x0f,
   286     instruction_code_xmm_load           = 0x10,
   287     instruction_code_xmm_store          = 0x11,
   288     instruction_code_xmm_lpd            = 0x12,
   290     instruction_size                    = 4,
   291     instruction_offset                  = 0,
   292     data_offset                         = 2,
   293     next_instruction_offset             = 4
   294   };
   296   // helper
   297   int instruction_start() const;
   299   address instruction_address() const;
   301   address next_instruction_address() const;
   303   int   offset() const;
   305   void  set_offset(int x);
   307   void  add_offset_in_bytes(int add_offset)     { set_offset ( ( offset() + add_offset ) ); }
   309   void verify();
   310   void print ();
   312   // unit test stuff
   313   static void test() {}
   315  private:
   316   inline friend NativeMovRegMem* nativeMovRegMem_at (address address);
   317 };
   319 inline NativeMovRegMem* nativeMovRegMem_at (address address) {
   320   NativeMovRegMem* test = (NativeMovRegMem*)(address - NativeMovRegMem::instruction_offset);
   321 #ifdef ASSERT
   322   test->verify();
   323 #endif
   324   return test;
   325 }
   327 class NativeMovRegMemPatching: public NativeMovRegMem {
   328  private:
   329   friend NativeMovRegMemPatching* nativeMovRegMemPatching_at (address address) {
   330     NativeMovRegMemPatching* test = (NativeMovRegMemPatching*)(address - instruction_offset);
   331     #ifdef ASSERT
   332       test->verify();
   333     #endif
   334     return test;
   335   }
   336 };
   340 // An interface for accessing/manipulating native leal instruction of form:
   341 //        leal reg, [reg + offset]
   343 class NativeLoadAddress: public NativeMovRegMem {
   344 #ifdef AMD64
   345   static const bool has_rex = true;
   346   static const int rex_size = 1;
   347 #else
   348   static const bool has_rex = false;
   349   static const int rex_size = 0;
   350 #endif // AMD64
   351  public:
   352   enum Intel_specific_constants {
   353     instruction_prefix_wide             = Assembler::REX_W,
   354     instruction_prefix_wide_extended    = Assembler::REX_WB,
   355     lea_instruction_code                = 0x8D,
   356     mov64_instruction_code              = 0xB8
   357   };
   359   void verify();
   360   void print ();
   362   // unit test stuff
   363   static void test() {}
   365  private:
   366   friend NativeLoadAddress* nativeLoadAddress_at (address address) {
   367     NativeLoadAddress* test = (NativeLoadAddress*)(address - instruction_offset);
   368     #ifdef ASSERT
   369       test->verify();
   370     #endif
   371     return test;
   372   }
   373 };
   375 // jump rel32off
   377 class NativeJump: public NativeInstruction {
   378  public:
   379   enum Intel_specific_constants {
   380     instruction_code            = 0xe9,
   381     instruction_size            =    5,
   382     instruction_offset          =    0,
   383     data_offset                 =    1,
   384     next_instruction_offset     =    5
   385   };
   387   address instruction_address() const       { return addr_at(instruction_offset); }
   388   address next_instruction_address() const  { return addr_at(next_instruction_offset); }
   389   address jump_destination() const          {
   390      address dest = (int_at(data_offset)+next_instruction_address());
   391      // 32bit used to encode unresolved jmp as jmp -1
   392      // 64bit can't produce this so it used jump to self.
   393      // Now 32bit and 64bit use jump to self as the unresolved address
   394      // which the inline cache code (and relocs) know about
   396      // return -1 if jump to self
   397     dest = (dest == (address) this) ? (address) -1 : dest;
   398     return dest;
   399   }
   401   void  set_jump_destination(address dest)  {
   402     intptr_t val = dest - next_instruction_address();
   403     if (dest == (address) -1) {
   404       val = -5; // jump to self
   405     }
   406 #ifdef AMD64
   407     assert((labs(val)  & 0xFFFFFFFF00000000) == 0 || dest == (address)-1, "must be 32bit offset or -1");
   408 #endif // AMD64
   409     set_int_at(data_offset, (jint)val);
   410   }
   412   // Creation
   413   inline friend NativeJump* nativeJump_at(address address);
   415   void verify();
   417   // Unit testing stuff
   418   static void test() {}
   420   // Insertion of native jump instruction
   421   static void insert(address code_pos, address entry);
   422   // MT-safe insertion of native jump at verified method entry
   423   static void check_verified_entry_alignment(address entry, address verified_entry);
   424   static void patch_verified_entry(address entry, address verified_entry, address dest);
   425 };
   427 inline NativeJump* nativeJump_at(address address) {
   428   NativeJump* jump = (NativeJump*)(address - NativeJump::instruction_offset);
   429 #ifdef ASSERT
   430   jump->verify();
   431 #endif
   432   return jump;
   433 }
   435 // Handles all kinds of jump on Intel. Long/far, conditional/unconditional
   436 class NativeGeneralJump: public NativeInstruction {
   437  public:
   438   enum Intel_specific_constants {
   439     // Constants does not apply, since the lengths and offsets depends on the actual jump
   440     // used
   441     // Instruction codes:
   442     //   Unconditional jumps: 0xE9    (rel32off), 0xEB (rel8off)
   443     //   Conditional jumps:   0x0F8x  (rel32off), 0x7x (rel8off)
   444     unconditional_long_jump  = 0xe9,
   445     unconditional_short_jump = 0xeb,
   446     instruction_size = 5
   447   };
   449   address instruction_address() const       { return addr_at(0); }
   450   address jump_destination()    const;
   452   // Creation
   453   inline friend NativeGeneralJump* nativeGeneralJump_at(address address);
   455   // Insertion of native general jump instruction
   456   static void insert_unconditional(address code_pos, address entry);
   457   static void replace_mt_safe(address instr_addr, address code_buffer);
   459   void verify();
   460 };
   462 inline NativeGeneralJump* nativeGeneralJump_at(address address) {
   463   NativeGeneralJump* jump = (NativeGeneralJump*)(address);
   464   debug_only(jump->verify();)
   465   return jump;
   466 }
   468 class NativePopReg : public NativeInstruction {
   469  public:
   470   enum Intel_specific_constants {
   471     instruction_code            = 0x58,
   472     instruction_size            =    1,
   473     instruction_offset          =    0,
   474     data_offset                 =    1,
   475     next_instruction_offset     =    1
   476   };
   478   // Insert a pop instruction
   479   static void insert(address code_pos, Register reg);
   480 };
   483 class NativeIllegalInstruction: public NativeInstruction {
   484  public:
   485   enum Intel_specific_constants {
   486     instruction_code            = 0x0B0F,    // Real byte order is: 0x0F, 0x0B
   487     instruction_size            =    2,
   488     instruction_offset          =    0,
   489     next_instruction_offset     =    2
   490   };
   492   // Insert illegal opcode as specific address
   493   static void insert(address code_pos);
   494 };
   496 // return instruction that does not pop values of the stack
   497 class NativeReturn: public NativeInstruction {
   498  public:
   499   enum Intel_specific_constants {
   500     instruction_code            = 0xC3,
   501     instruction_size            =    1,
   502     instruction_offset          =    0,
   503     next_instruction_offset     =    1
   504   };
   505 };
   507 // return instruction that does pop values of the stack
   508 class NativeReturnX: public NativeInstruction {
   509  public:
   510   enum Intel_specific_constants {
   511     instruction_code            = 0xC2,
   512     instruction_size            =    2,
   513     instruction_offset          =    0,
   514     next_instruction_offset     =    2
   515   };
   516 };
   518 // Simple test vs memory
   519 class NativeTstRegMem: public NativeInstruction {
   520  public:
   521   enum Intel_specific_constants {
   522     instruction_rex_prefix_mask = 0xF0,
   523     instruction_rex_prefix      = Assembler::REX,
   524     instruction_code_memXregl   = 0x85,
   525     modrm_mask                  = 0x38, // select reg from the ModRM byte
   526     modrm_reg                   = 0x00  // rax
   527   };
   528 };
   530 inline bool NativeInstruction::is_illegal()      { return (short)int_at(0) == (short)NativeIllegalInstruction::instruction_code; }
   531 inline bool NativeInstruction::is_call()         { return ubyte_at(0) == NativeCall::instruction_code; }
   532 inline bool NativeInstruction::is_return()       { return ubyte_at(0) == NativeReturn::instruction_code ||
   533                                                           ubyte_at(0) == NativeReturnX::instruction_code; }
   534 inline bool NativeInstruction::is_jump()         { return ubyte_at(0) == NativeJump::instruction_code ||
   535                                                           ubyte_at(0) == 0xEB; /* short jump */ }
   536 inline bool NativeInstruction::is_cond_jump()    { return (int_at(0) & 0xF0FF) == 0x800F /* long jump */ ||
   537                                                           (ubyte_at(0) & 0xF0) == 0x70;  /* short jump */ }
   538 inline bool NativeInstruction::is_safepoint_poll() {
   539 #ifdef AMD64
   540   if (Assembler::is_polling_page_far()) {
   541     // two cases, depending on the choice of the base register in the address.
   542     if (((ubyte_at(0) & NativeTstRegMem::instruction_rex_prefix_mask) == NativeTstRegMem::instruction_rex_prefix &&
   543          ubyte_at(1) == NativeTstRegMem::instruction_code_memXregl &&
   544          (ubyte_at(2) & NativeTstRegMem::modrm_mask) == NativeTstRegMem::modrm_reg) ||
   545         ubyte_at(0) == NativeTstRegMem::instruction_code_memXregl &&
   546         (ubyte_at(1) & NativeTstRegMem::modrm_mask) == NativeTstRegMem::modrm_reg) {
   547       return true;
   548     } else {
   549       return false;
   550     }
   551   } else {
   552     if (ubyte_at(0) == NativeTstRegMem::instruction_code_memXregl &&
   553         ubyte_at(1) == 0x05) { // 00 rax 101
   554       address fault = addr_at(6) + int_at(2);
   555       return os::is_poll_address(fault);
   556     } else {
   557       return false;
   558     }
   559   }
   560 #else
   561   return ( ubyte_at(0) == NativeMovRegMem::instruction_code_mem2reg ||
   562            ubyte_at(0) == NativeTstRegMem::instruction_code_memXregl ) &&
   563            (ubyte_at(1)&0xC7) == 0x05 && /* Mod R/M == disp32 */
   564            (os::is_poll_address((address)int_at(2)));
   565 #endif // AMD64
   566 }
   568 inline bool NativeInstruction::is_mov_literal64() {
   569 #ifdef AMD64
   570   return ((ubyte_at(0) == Assembler::REX_W || ubyte_at(0) == Assembler::REX_WB) &&
   571           (ubyte_at(1) & (0xff ^ NativeMovConstReg::register_mask)) == 0xB8);
   572 #else
   573   return false;
   574 #endif // AMD64
   575 }
   577 #endif // CPU_X86_VM_NATIVEINST_X86_HPP

mercurial