src/share/vm/asm/codeBuffer.cpp

Thu, 06 Dec 2012 09:57:41 -0800

author
twisti
date
Thu, 06 Dec 2012 09:57:41 -0800
changeset 4323
f0c2369fda5a
parent 4318
cd3d6a6b95d9
child 4325
d2f8c38e543d
permissions
-rw-r--r--

8003250: SPARC: move MacroAssembler into separate file
Reviewed-by: jrose, kvn

     1 /*
     2  * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "asm/codeBuffer.hpp"
    27 #include "compiler/disassembler.hpp"
    28 #include "memory/gcLocker.hpp"
    29 #include "oops/methodData.hpp"
    30 #include "oops/oop.inline.hpp"
    31 #include "utilities/copy.hpp"
    32 #include "utilities/xmlstream.hpp"
    34 // The structure of a CodeSection:
    35 //
    36 //    _start ->           +----------------+
    37 //                        | machine code...|
    38 //    _end ->             |----------------|
    39 //                        |                |
    40 //                        |    (empty)     |
    41 //                        |                |
    42 //                        |                |
    43 //                        +----------------+
    44 //    _limit ->           |                |
    45 //
    46 //    _locs_start ->      +----------------+
    47 //                        |reloc records...|
    48 //                        |----------------|
    49 //    _locs_end ->        |                |
    50 //                        |                |
    51 //                        |    (empty)     |
    52 //                        |                |
    53 //                        |                |
    54 //                        +----------------+
    55 //    _locs_limit ->      |                |
    56 // The _end (resp. _limit) pointer refers to the first
    57 // unused (resp. unallocated) byte.
    59 // The structure of the CodeBuffer while code is being accumulated:
    60 //
    61 //    _total_start ->    \
    62 //    _insts._start ->              +----------------+
    63 //                                  |                |
    64 //                                  |     Code       |
    65 //                                  |                |
    66 //    _stubs._start ->              |----------------|
    67 //                                  |                |
    68 //                                  |    Stubs       | (also handlers for deopt/exception)
    69 //                                  |                |
    70 //    _consts._start ->             |----------------|
    71 //                                  |                |
    72 //                                  |   Constants    |
    73 //                                  |                |
    74 //                                  +----------------+
    75 //    + _total_size ->              |                |
    76 //
    77 // When the code and relocations are copied to the code cache,
    78 // the empty parts of each section are removed, and everything
    79 // is copied into contiguous locations.
    81 typedef CodeBuffer::csize_t csize_t;  // file-local definition
    83 // External buffer, in a predefined CodeBlob.
    84 // Important: The code_start must be taken exactly, and not realigned.
    85 CodeBuffer::CodeBuffer(CodeBlob* blob) {
    86   initialize_misc("static buffer");
    87   initialize(blob->content_begin(), blob->content_size());
    88   verify_section_allocation();
    89 }
    91 void CodeBuffer::initialize(csize_t code_size, csize_t locs_size) {
    92   // Compute maximal alignment.
    93   int align = _insts.alignment();
    94   // Always allow for empty slop around each section.
    95   int slop = (int) CodeSection::end_slop();
    97   assert(blob() == NULL, "only once");
    98   set_blob(BufferBlob::create(_name, code_size + (align+slop) * (SECT_LIMIT+1)));
    99   if (blob() == NULL) {
   100     // The assembler constructor will throw a fatal on an empty CodeBuffer.
   101     return;  // caller must test this
   102   }
   104   // Set up various pointers into the blob.
   105   initialize(_total_start, _total_size);
   107   assert((uintptr_t)insts_begin() % CodeEntryAlignment == 0, "instruction start not code entry aligned");
   109   pd_initialize();
   111   if (locs_size != 0) {
   112     _insts.initialize_locs(locs_size / sizeof(relocInfo));
   113   }
   115   verify_section_allocation();
   116 }
   119 CodeBuffer::~CodeBuffer() {
   120   verify_section_allocation();
   122   // If we allocate our code buffer from the CodeCache
   123   // via a BufferBlob, and it's not permanent, then
   124   // free the BufferBlob.
   125   // The rest of the memory will be freed when the ResourceObj
   126   // is released.
   127   for (CodeBuffer* cb = this; cb != NULL; cb = cb->before_expand()) {
   128     // Previous incarnations of this buffer are held live, so that internal
   129     // addresses constructed before expansions will not be confused.
   130     cb->free_blob();
   131   }
   133   // free any overflow storage
   134   delete _overflow_arena;
   136 #ifdef ASSERT
   137   // Save allocation type to execute assert in ~ResourceObj()
   138   // which is called after this destructor.
   139   assert(_default_oop_recorder.allocated_on_stack(), "should be embedded object");
   140   ResourceObj::allocation_type at = _default_oop_recorder.get_allocation_type();
   141   Copy::fill_to_bytes(this, sizeof(*this), badResourceValue);
   142   ResourceObj::set_allocation_type((address)(&_default_oop_recorder), at);
   143 #endif
   144 }
   146 void CodeBuffer::initialize_oop_recorder(OopRecorder* r) {
   147   assert(_oop_recorder == &_default_oop_recorder && _default_oop_recorder.is_unused(), "do this once");
   148   DEBUG_ONLY(_default_oop_recorder.freeze());  // force unused OR to be frozen
   149   _oop_recorder = r;
   150 }
   152 void CodeBuffer::initialize_section_size(CodeSection* cs, csize_t size) {
   153   assert(cs != &_insts, "insts is the memory provider, not the consumer");
   154   csize_t slop = CodeSection::end_slop();  // margin between sections
   155   int align = cs->alignment();
   156   assert(is_power_of_2(align), "sanity");
   157   address start  = _insts._start;
   158   address limit  = _insts._limit;
   159   address middle = limit - size;
   160   middle -= (intptr_t)middle & (align-1);  // align the division point downward
   161   guarantee(middle - slop > start, "need enough space to divide up");
   162   _insts._limit = middle - slop;  // subtract desired space, plus slop
   163   cs->initialize(middle, limit - middle);
   164   assert(cs->start() == middle, "sanity");
   165   assert(cs->limit() == limit,  "sanity");
   166   // give it some relocations to start with, if the main section has them
   167   if (_insts.has_locs())  cs->initialize_locs(1);
   168 }
   170 void CodeBuffer::freeze_section(CodeSection* cs) {
   171   CodeSection* next_cs = (cs == consts())? NULL: code_section(cs->index()+1);
   172   csize_t frozen_size = cs->size();
   173   if (next_cs != NULL) {
   174     frozen_size = next_cs->align_at_start(frozen_size);
   175   }
   176   address old_limit = cs->limit();
   177   address new_limit = cs->start() + frozen_size;
   178   relocInfo* old_locs_limit = cs->locs_limit();
   179   relocInfo* new_locs_limit = cs->locs_end();
   180   // Patch the limits.
   181   cs->_limit = new_limit;
   182   cs->_locs_limit = new_locs_limit;
   183   cs->_frozen = true;
   184   if (!next_cs->is_allocated() && !next_cs->is_frozen()) {
   185     // Give remaining buffer space to the following section.
   186     next_cs->initialize(new_limit, old_limit - new_limit);
   187     next_cs->initialize_shared_locs(new_locs_limit,
   188                                     old_locs_limit - new_locs_limit);
   189   }
   190 }
   192 void CodeBuffer::set_blob(BufferBlob* blob) {
   193   _blob = blob;
   194   if (blob != NULL) {
   195     address start = blob->content_begin();
   196     address end   = blob->content_end();
   197     // Round up the starting address.
   198     int align = _insts.alignment();
   199     start += (-(intptr_t)start) & (align-1);
   200     _total_start = start;
   201     _total_size  = end - start;
   202   } else {
   203 #ifdef ASSERT
   204     // Clean out dangling pointers.
   205     _total_start    = badAddress;
   206     _consts._start  = _consts._end  = badAddress;
   207     _insts._start   = _insts._end   = badAddress;
   208     _stubs._start   = _stubs._end   = badAddress;
   209 #endif //ASSERT
   210   }
   211 }
   213 void CodeBuffer::free_blob() {
   214   if (_blob != NULL) {
   215     BufferBlob::free(_blob);
   216     set_blob(NULL);
   217   }
   218 }
   220 const char* CodeBuffer::code_section_name(int n) {
   221 #ifdef PRODUCT
   222   return NULL;
   223 #else //PRODUCT
   224   switch (n) {
   225   case SECT_CONSTS:            return "consts";
   226   case SECT_INSTS:             return "insts";
   227   case SECT_STUBS:             return "stubs";
   228   default:                     return NULL;
   229   }
   230 #endif //PRODUCT
   231 }
   233 int CodeBuffer::section_index_of(address addr) const {
   234   for (int n = 0; n < (int)SECT_LIMIT; n++) {
   235     const CodeSection* cs = code_section(n);
   236     if (cs->allocates(addr))  return n;
   237   }
   238   return SECT_NONE;
   239 }
   241 int CodeBuffer::locator(address addr) const {
   242   for (int n = 0; n < (int)SECT_LIMIT; n++) {
   243     const CodeSection* cs = code_section(n);
   244     if (cs->allocates(addr)) {
   245       return locator(addr - cs->start(), n);
   246     }
   247   }
   248   return -1;
   249 }
   251 address CodeBuffer::locator_address(int locator) const {
   252   if (locator < 0)  return NULL;
   253   address start = code_section(locator_sect(locator))->start();
   254   return start + locator_pos(locator);
   255 }
   257 bool CodeBuffer::is_backward_branch(Label& L) {
   258   return L.is_bound() && insts_end() <= locator_address(L.loc());
   259 }
   261 address CodeBuffer::decode_begin() {
   262   address begin = _insts.start();
   263   if (_decode_begin != NULL && _decode_begin > begin)
   264     begin = _decode_begin;
   265   return begin;
   266 }
   269 GrowableArray<int>* CodeBuffer::create_patch_overflow() {
   270   if (_overflow_arena == NULL) {
   271     _overflow_arena = new (mtCode) Arena();
   272   }
   273   return new (_overflow_arena) GrowableArray<int>(_overflow_arena, 8, 0, 0);
   274 }
   277 // Helper function for managing labels and their target addresses.
   278 // Returns a sensible address, and if it is not the label's final
   279 // address, notes the dependency (at 'branch_pc') on the label.
   280 address CodeSection::target(Label& L, address branch_pc) {
   281   if (L.is_bound()) {
   282     int loc = L.loc();
   283     if (index() == CodeBuffer::locator_sect(loc)) {
   284       return start() + CodeBuffer::locator_pos(loc);
   285     } else {
   286       return outer()->locator_address(loc);
   287     }
   288   } else {
   289     assert(allocates2(branch_pc), "sanity");
   290     address base = start();
   291     int patch_loc = CodeBuffer::locator(branch_pc - base, index());
   292     L.add_patch_at(outer(), patch_loc);
   294     // Need to return a pc, doesn't matter what it is since it will be
   295     // replaced during resolution later.
   296     // Don't return NULL or badAddress, since branches shouldn't overflow.
   297     // Don't return base either because that could overflow displacements
   298     // for shorter branches.  It will get checked when bound.
   299     return branch_pc;
   300   }
   301 }
   303 void CodeSection::relocate(address at, RelocationHolder const& spec, int format) {
   304   Relocation* reloc = spec.reloc();
   305   relocInfo::relocType rtype = (relocInfo::relocType) reloc->type();
   306   if (rtype == relocInfo::none)  return;
   308   // The assertion below has been adjusted, to also work for
   309   // relocation for fixup.  Sometimes we want to put relocation
   310   // information for the next instruction, since it will be patched
   311   // with a call.
   312   assert(start() <= at && at <= end()+1,
   313          "cannot relocate data outside code boundaries");
   315   if (!has_locs()) {
   316     // no space for relocation information provided => code cannot be
   317     // relocated.  Make sure that relocate is only called with rtypes
   318     // that can be ignored for this kind of code.
   319     assert(rtype == relocInfo::none              ||
   320            rtype == relocInfo::runtime_call_type ||
   321            rtype == relocInfo::internal_word_type||
   322            rtype == relocInfo::section_word_type ||
   323            rtype == relocInfo::external_word_type,
   324            "code needs relocation information");
   325     // leave behind an indication that we attempted a relocation
   326     DEBUG_ONLY(_locs_start = _locs_limit = (relocInfo*)badAddress);
   327     return;
   328   }
   330   // Advance the point, noting the offset we'll have to record.
   331   csize_t offset = at - locs_point();
   332   set_locs_point(at);
   334   // Test for a couple of overflow conditions; maybe expand the buffer.
   335   relocInfo* end = locs_end();
   336   relocInfo* req = end + relocInfo::length_limit;
   337   // Check for (potential) overflow
   338   if (req >= locs_limit() || offset >= relocInfo::offset_limit()) {
   339     req += (uint)offset / (uint)relocInfo::offset_limit();
   340     if (req >= locs_limit()) {
   341       // Allocate or reallocate.
   342       expand_locs(locs_count() + (req - end));
   343       // reload pointer
   344       end = locs_end();
   345     }
   346   }
   348   // If the offset is giant, emit filler relocs, of type 'none', but
   349   // each carrying the largest possible offset, to advance the locs_point.
   350   while (offset >= relocInfo::offset_limit()) {
   351     assert(end < locs_limit(), "adjust previous paragraph of code");
   352     *end++ = filler_relocInfo();
   353     offset -= filler_relocInfo().addr_offset();
   354   }
   356   // If it's a simple reloc with no data, we'll just write (rtype | offset).
   357   (*end) = relocInfo(rtype, offset, format);
   359   // If it has data, insert the prefix, as (data_prefix_tag | data1), data2.
   360   end->initialize(this, reloc);
   361 }
   363 void CodeSection::initialize_locs(int locs_capacity) {
   364   assert(_locs_start == NULL, "only one locs init step, please");
   365   // Apply a priori lower limits to relocation size:
   366   csize_t min_locs = MAX2(size() / 16, (csize_t)4);
   367   if (locs_capacity < min_locs)  locs_capacity = min_locs;
   368   relocInfo* locs_start = NEW_RESOURCE_ARRAY(relocInfo, locs_capacity);
   369   _locs_start    = locs_start;
   370   _locs_end      = locs_start;
   371   _locs_limit    = locs_start + locs_capacity;
   372   _locs_own      = true;
   373 }
   375 void CodeSection::initialize_shared_locs(relocInfo* buf, int length) {
   376   assert(_locs_start == NULL, "do this before locs are allocated");
   377   // Internal invariant:  locs buf must be fully aligned.
   378   // See copy_relocations_to() below.
   379   while ((uintptr_t)buf % HeapWordSize != 0 && length > 0) {
   380     ++buf; --length;
   381   }
   382   if (length > 0) {
   383     _locs_start = buf;
   384     _locs_end   = buf;
   385     _locs_limit = buf + length;
   386     _locs_own   = false;
   387   }
   388 }
   390 void CodeSection::initialize_locs_from(const CodeSection* source_cs) {
   391   int lcount = source_cs->locs_count();
   392   if (lcount != 0) {
   393     initialize_shared_locs(source_cs->locs_start(), lcount);
   394     _locs_end = _locs_limit = _locs_start + lcount;
   395     assert(is_allocated(), "must have copied code already");
   396     set_locs_point(start() + source_cs->locs_point_off());
   397   }
   398   assert(this->locs_count() == source_cs->locs_count(), "sanity");
   399 }
   401 void CodeSection::expand_locs(int new_capacity) {
   402   if (_locs_start == NULL) {
   403     initialize_locs(new_capacity);
   404     return;
   405   } else {
   406     int old_count    = locs_count();
   407     int old_capacity = locs_capacity();
   408     if (new_capacity < old_capacity * 2)
   409       new_capacity = old_capacity * 2;
   410     relocInfo* locs_start;
   411     if (_locs_own) {
   412       locs_start = REALLOC_RESOURCE_ARRAY(relocInfo, _locs_start, old_capacity, new_capacity);
   413     } else {
   414       locs_start = NEW_RESOURCE_ARRAY(relocInfo, new_capacity);
   415       Copy::conjoint_jbytes(_locs_start, locs_start, old_capacity * sizeof(relocInfo));
   416       _locs_own = true;
   417     }
   418     _locs_start    = locs_start;
   419     _locs_end      = locs_start + old_count;
   420     _locs_limit    = locs_start + new_capacity;
   421   }
   422 }
   425 /// Support for emitting the code to its final location.
   426 /// The pattern is the same for all functions.
   427 /// We iterate over all the sections, padding each to alignment.
   429 csize_t CodeBuffer::total_content_size() const {
   430   csize_t size_so_far = 0;
   431   for (int n = 0; n < (int)SECT_LIMIT; n++) {
   432     const CodeSection* cs = code_section(n);
   433     if (cs->is_empty())  continue;  // skip trivial section
   434     size_so_far = cs->align_at_start(size_so_far);
   435     size_so_far += cs->size();
   436   }
   437   return size_so_far;
   438 }
   440 void CodeBuffer::compute_final_layout(CodeBuffer* dest) const {
   441   address buf = dest->_total_start;
   442   csize_t buf_offset = 0;
   443   assert(dest->_total_size >= total_content_size(), "must be big enough");
   445   {
   446     // not sure why this is here, but why not...
   447     int alignSize = MAX2((intx) sizeof(jdouble), CodeEntryAlignment);
   448     assert( (dest->_total_start - _insts.start()) % alignSize == 0, "copy must preserve alignment");
   449   }
   451   const CodeSection* prev_cs      = NULL;
   452   CodeSection*       prev_dest_cs = NULL;
   454   for (int n = (int) SECT_FIRST; n < (int) SECT_LIMIT; n++) {
   455     // figure compact layout of each section
   456     const CodeSection* cs = code_section(n);
   457     csize_t csize = cs->size();
   459     CodeSection* dest_cs = dest->code_section(n);
   460     if (!cs->is_empty()) {
   461       // Compute initial padding; assign it to the previous non-empty guy.
   462       // Cf. figure_expanded_capacities.
   463       csize_t padding = cs->align_at_start(buf_offset) - buf_offset;
   464       if (padding != 0) {
   465         buf_offset += padding;
   466         assert(prev_dest_cs != NULL, "sanity");
   467         prev_dest_cs->_limit += padding;
   468       }
   469       #ifdef ASSERT
   470       if (prev_cs != NULL && prev_cs->is_frozen() && n < (SECT_LIMIT - 1)) {
   471         // Make sure the ends still match up.
   472         // This is important because a branch in a frozen section
   473         // might target code in a following section, via a Label,
   474         // and without a relocation record.  See Label::patch_instructions.
   475         address dest_start = buf+buf_offset;
   476         csize_t start2start = cs->start() - prev_cs->start();
   477         csize_t dest_start2start = dest_start - prev_dest_cs->start();
   478         assert(start2start == dest_start2start, "cannot stretch frozen sect");
   479       }
   480       #endif //ASSERT
   481       prev_dest_cs = dest_cs;
   482       prev_cs      = cs;
   483     }
   485     debug_only(dest_cs->_start = NULL);  // defeat double-initialization assert
   486     dest_cs->initialize(buf+buf_offset, csize);
   487     dest_cs->set_end(buf+buf_offset+csize);
   488     assert(dest_cs->is_allocated(), "must always be allocated");
   489     assert(cs->is_empty() == dest_cs->is_empty(), "sanity");
   491     buf_offset += csize;
   492   }
   494   // Done calculating sections; did it come out to the right end?
   495   assert(buf_offset == total_content_size(), "sanity");
   496   dest->verify_section_allocation();
   497 }
   499 void CodeBuffer::finalize_oop_references(methodHandle mh) {
   500   No_Safepoint_Verifier nsv;
   502   GrowableArray<oop> oops;
   504   // Make sure that immediate metadata records something in the OopRecorder
   505   for (int n = (int) SECT_FIRST; n < (int) SECT_LIMIT; n++) {
   506     // pull code out of each section
   507     CodeSection* cs = code_section(n);
   508     if (cs->is_empty())  continue;  // skip trivial section
   509     RelocIterator iter(cs);
   510     while (iter.next()) {
   511       if (iter.type() == relocInfo::metadata_type) {
   512         metadata_Relocation* md = iter.metadata_reloc();
   513         if (md->metadata_is_immediate()) {
   514           Metadata* m = md->metadata_value();
   515           if (oop_recorder()->is_real(m)) {
   516             oop o = NULL;
   517             if (m->is_methodData()) {
   518               m = ((MethodData*)m)->method();
   519             }
   520             if (m->is_method()) {
   521               m = ((Method*)m)->method_holder();
   522             }
   523             if (m->is_klass()) {
   524               o = ((Klass*)m)->class_loader();
   525             } else {
   526               // XXX This will currently occur for MDO which don't
   527               // have a backpointer.  This has to be fixed later.
   528               m->print();
   529               ShouldNotReachHere();
   530             }
   531             if (o != NULL && oops.find(o) == -1) {
   532               oops.append(o);
   533             }
   534           }
   535         }
   536       }
   537     }
   538   }
   540   if (!oop_recorder()->is_unused()) {
   541     for (int i = 0; i < oop_recorder()->metadata_count(); i++) {
   542       Metadata* m = oop_recorder()->metadata_at(i);
   543       if (oop_recorder()->is_real(m)) {
   544         oop o = NULL;
   545         if (m->is_methodData()) {
   546           m = ((MethodData*)m)->method();
   547         }
   548         if (m->is_method()) {
   549           m = ((Method*)m)->method_holder();
   550         }
   551         if (m->is_klass()) {
   552           o = ((Klass*)m)->class_loader();
   553         } else {
   554           m->print();
   555           ShouldNotReachHere();
   556         }
   557         if (o != NULL && oops.find(o) == -1) {
   558           oops.append(o);
   559         }
   560       }
   561     }
   563   }
   565   // Add the class loader of Method* for the nmethod itself
   566   oop cl = mh->method_holder()->class_loader();
   567   if (cl != NULL) {
   568     oops.append(cl);
   569   }
   571   // Add any oops that we've found
   572   Thread* thread = Thread::current();
   573   for (int i = 0; i < oops.length(); i++) {
   574     oop_recorder()->find_index((jobject)thread->handle_area()->allocate_handle(oops.at(i)));
   575   }
   576 }
   580 csize_t CodeBuffer::total_offset_of(CodeSection* cs) const {
   581   csize_t size_so_far = 0;
   582   for (int n = (int) SECT_FIRST; n < (int) SECT_LIMIT; n++) {
   583     const CodeSection* cur_cs = code_section(n);
   584     if (!cur_cs->is_empty()) {
   585       size_so_far = cur_cs->align_at_start(size_so_far);
   586     }
   587     if (cur_cs->index() == cs->index()) {
   588       return size_so_far;
   589     }
   590     size_so_far += cur_cs->size();
   591   }
   592   ShouldNotReachHere();
   593   return -1;
   594 }
   596 csize_t CodeBuffer::total_relocation_size() const {
   597   csize_t lsize = copy_relocations_to(NULL);  // dry run only
   598   csize_t csize = total_content_size();
   599   csize_t total = RelocIterator::locs_and_index_size(csize, lsize);
   600   return (csize_t) align_size_up(total, HeapWordSize);
   601 }
   603 csize_t CodeBuffer::copy_relocations_to(CodeBlob* dest) const {
   604   address buf = NULL;
   605   csize_t buf_offset = 0;
   606   csize_t buf_limit = 0;
   607   if (dest != NULL) {
   608     buf = (address)dest->relocation_begin();
   609     buf_limit = (address)dest->relocation_end() - buf;
   610     assert((uintptr_t)buf % HeapWordSize == 0, "buf must be fully aligned");
   611     assert(buf_limit % HeapWordSize == 0, "buf must be evenly sized");
   612   }
   613   // if dest == NULL, this is just the sizing pass
   615   csize_t code_end_so_far = 0;
   616   csize_t code_point_so_far = 0;
   617   for (int n = (int) SECT_FIRST; n < (int)SECT_LIMIT; n++) {
   618     // pull relocs out of each section
   619     const CodeSection* cs = code_section(n);
   620     assert(!(cs->is_empty() && cs->locs_count() > 0), "sanity");
   621     if (cs->is_empty())  continue;  // skip trivial section
   622     relocInfo* lstart = cs->locs_start();
   623     relocInfo* lend   = cs->locs_end();
   624     csize_t    lsize  = (csize_t)( (address)lend - (address)lstart );
   625     csize_t    csize  = cs->size();
   626     code_end_so_far = cs->align_at_start(code_end_so_far);
   628     if (lsize > 0) {
   629       // Figure out how to advance the combined relocation point
   630       // first to the beginning of this section.
   631       // We'll insert one or more filler relocs to span that gap.
   632       // (Don't bother to improve this by editing the first reloc's offset.)
   633       csize_t new_code_point = code_end_so_far;
   634       for (csize_t jump;
   635            code_point_so_far < new_code_point;
   636            code_point_so_far += jump) {
   637         jump = new_code_point - code_point_so_far;
   638         relocInfo filler = filler_relocInfo();
   639         if (jump >= filler.addr_offset()) {
   640           jump = filler.addr_offset();
   641         } else {  // else shrink the filler to fit
   642           filler = relocInfo(relocInfo::none, jump);
   643         }
   644         if (buf != NULL) {
   645           assert(buf_offset + (csize_t)sizeof(filler) <= buf_limit, "filler in bounds");
   646           *(relocInfo*)(buf+buf_offset) = filler;
   647         }
   648         buf_offset += sizeof(filler);
   649       }
   651       // Update code point and end to skip past this section:
   652       csize_t last_code_point = code_end_so_far + cs->locs_point_off();
   653       assert(code_point_so_far <= last_code_point, "sanity");
   654       code_point_so_far = last_code_point; // advance past this guy's relocs
   655     }
   656     code_end_so_far += csize;  // advance past this guy's instructions too
   658     // Done with filler; emit the real relocations:
   659     if (buf != NULL && lsize != 0) {
   660       assert(buf_offset + lsize <= buf_limit, "target in bounds");
   661       assert((uintptr_t)lstart % HeapWordSize == 0, "sane start");
   662       if (buf_offset % HeapWordSize == 0) {
   663         // Use wordwise copies if possible:
   664         Copy::disjoint_words((HeapWord*)lstart,
   665                              (HeapWord*)(buf+buf_offset),
   666                              (lsize + HeapWordSize-1) / HeapWordSize);
   667       } else {
   668         Copy::conjoint_jbytes(lstart, buf+buf_offset, lsize);
   669       }
   670     }
   671     buf_offset += lsize;
   672   }
   674   // Align end of relocation info in target.
   675   while (buf_offset % HeapWordSize != 0) {
   676     if (buf != NULL) {
   677       relocInfo padding = relocInfo(relocInfo::none, 0);
   678       assert(buf_offset + (csize_t)sizeof(padding) <= buf_limit, "padding in bounds");
   679       *(relocInfo*)(buf+buf_offset) = padding;
   680     }
   681     buf_offset += sizeof(relocInfo);
   682   }
   684   assert(code_end_so_far == total_content_size(), "sanity");
   686   // Account for index:
   687   if (buf != NULL) {
   688     RelocIterator::create_index(dest->relocation_begin(),
   689                                 buf_offset / sizeof(relocInfo),
   690                                 dest->relocation_end());
   691   }
   693   return buf_offset;
   694 }
   696 void CodeBuffer::copy_code_to(CodeBlob* dest_blob) {
   697 #ifndef PRODUCT
   698   if (PrintNMethods && (WizardMode || Verbose)) {
   699     tty->print("done with CodeBuffer:");
   700     ((CodeBuffer*)this)->print();
   701   }
   702 #endif //PRODUCT
   704   CodeBuffer dest(dest_blob);
   705   assert(dest_blob->content_size() >= total_content_size(), "good sizing");
   706   this->compute_final_layout(&dest);
   707   relocate_code_to(&dest);
   709   // transfer comments from buffer to blob
   710   dest_blob->set_comments(_comments);
   712   // Done moving code bytes; were they the right size?
   713   assert(round_to(dest.total_content_size(), oopSize) == dest_blob->content_size(), "sanity");
   715   // Flush generated code
   716   ICache::invalidate_range(dest_blob->code_begin(), dest_blob->code_size());
   717 }
   719 // Move all my code into another code buffer.  Consult applicable
   720 // relocs to repair embedded addresses.  The layout in the destination
   721 // CodeBuffer is different to the source CodeBuffer: the destination
   722 // CodeBuffer gets the final layout (consts, insts, stubs in order of
   723 // ascending address).
   724 void CodeBuffer::relocate_code_to(CodeBuffer* dest) const {
   725   address dest_end = dest->_total_start + dest->_total_size;
   726   address dest_filled = NULL;
   727   for (int n = (int) SECT_FIRST; n < (int) SECT_LIMIT; n++) {
   728     // pull code out of each section
   729     const CodeSection* cs = code_section(n);
   730     if (cs->is_empty())  continue;  // skip trivial section
   731     CodeSection* dest_cs = dest->code_section(n);
   732     assert(cs->size() == dest_cs->size(), "sanity");
   733     csize_t usize = dest_cs->size();
   734     csize_t wsize = align_size_up(usize, HeapWordSize);
   735     assert(dest_cs->start() + wsize <= dest_end, "no overflow");
   736     // Copy the code as aligned machine words.
   737     // This may also include an uninitialized partial word at the end.
   738     Copy::disjoint_words((HeapWord*)cs->start(),
   739                          (HeapWord*)dest_cs->start(),
   740                          wsize / HeapWordSize);
   742     if (dest->blob() == NULL) {
   743       // Destination is a final resting place, not just another buffer.
   744       // Normalize uninitialized bytes in the final padding.
   745       Copy::fill_to_bytes(dest_cs->end(), dest_cs->remaining(),
   746                           Assembler::code_fill_byte());
   747     }
   748     // Keep track of the highest filled address
   749     dest_filled = MAX2(dest_filled, dest_cs->end() + dest_cs->remaining());
   751     assert(cs->locs_start() != (relocInfo*)badAddress,
   752            "this section carries no reloc storage, but reloc was attempted");
   754     // Make the new code copy use the old copy's relocations:
   755     dest_cs->initialize_locs_from(cs);
   756   }
   758   // Do relocation after all sections are copied.
   759   // This is necessary if the code uses constants in stubs, which are
   760   // relocated when the corresponding instruction in the code (e.g., a
   761   // call) is relocated. Stubs are placed behind the main code
   762   // section, so that section has to be copied before relocating.
   763   for (int n = (int) SECT_FIRST; n < (int)SECT_LIMIT; n++) {
   764     // pull code out of each section
   765     const CodeSection* cs = code_section(n);
   766     if (cs->is_empty()) continue;  // skip trivial section
   767     CodeSection* dest_cs = dest->code_section(n);
   768     { // Repair the pc relative information in the code after the move
   769       RelocIterator iter(dest_cs);
   770       while (iter.next()) {
   771         iter.reloc()->fix_relocation_after_move(this, dest);
   772       }
   773     }
   774   }
   776   if (dest->blob() == NULL && dest_filled != NULL) {
   777     // Destination is a final resting place, not just another buffer.
   778     // Normalize uninitialized bytes in the final padding.
   779     Copy::fill_to_bytes(dest_filled, dest_end - dest_filled,
   780                         Assembler::code_fill_byte());
   782   }
   783 }
   785 csize_t CodeBuffer::figure_expanded_capacities(CodeSection* which_cs,
   786                                                csize_t amount,
   787                                                csize_t* new_capacity) {
   788   csize_t new_total_cap = 0;
   790   for (int n = (int) SECT_FIRST; n < (int) SECT_LIMIT; n++) {
   791     const CodeSection* sect = code_section(n);
   793     if (!sect->is_empty()) {
   794       // Compute initial padding; assign it to the previous section,
   795       // even if it's empty (e.g. consts section can be empty).
   796       // Cf. compute_final_layout
   797       csize_t padding = sect->align_at_start(new_total_cap) - new_total_cap;
   798       if (padding != 0) {
   799         new_total_cap += padding;
   800         assert(n - 1 >= SECT_FIRST, "sanity");
   801         new_capacity[n - 1] += padding;
   802       }
   803     }
   805     csize_t exp = sect->size();  // 100% increase
   806     if ((uint)exp < 4*K)  exp = 4*K;       // minimum initial increase
   807     if (sect == which_cs) {
   808       if (exp < amount)  exp = amount;
   809       if (StressCodeBuffers)  exp = amount;  // expand only slightly
   810     } else if (n == SECT_INSTS) {
   811       // scale down inst increases to a more modest 25%
   812       exp = 4*K + ((exp - 4*K) >> 2);
   813       if (StressCodeBuffers)  exp = amount / 2;  // expand only slightly
   814     } else if (sect->is_empty()) {
   815       // do not grow an empty secondary section
   816       exp = 0;
   817     }
   818     // Allow for inter-section slop:
   819     exp += CodeSection::end_slop();
   820     csize_t new_cap = sect->size() + exp;
   821     if (new_cap < sect->capacity()) {
   822       // No need to expand after all.
   823       new_cap = sect->capacity();
   824     }
   825     new_capacity[n] = new_cap;
   826     new_total_cap += new_cap;
   827   }
   829   return new_total_cap;
   830 }
   832 void CodeBuffer::expand(CodeSection* which_cs, csize_t amount) {
   833 #ifndef PRODUCT
   834   if (PrintNMethods && (WizardMode || Verbose)) {
   835     tty->print("expanding CodeBuffer:");
   836     this->print();
   837   }
   839   if (StressCodeBuffers && blob() != NULL) {
   840     static int expand_count = 0;
   841     if (expand_count >= 0)  expand_count += 1;
   842     if (expand_count > 100 && is_power_of_2(expand_count)) {
   843       tty->print_cr("StressCodeBuffers: have expanded %d times", expand_count);
   844       // simulate an occasional allocation failure:
   845       free_blob();
   846     }
   847   }
   848 #endif //PRODUCT
   850   // Resizing must be allowed
   851   {
   852     if (blob() == NULL)  return;  // caller must check for blob == NULL
   853     for (int n = 0; n < (int)SECT_LIMIT; n++) {
   854       guarantee(!code_section(n)->is_frozen(), "resizing not allowed when frozen");
   855     }
   856   }
   858   // Figure new capacity for each section.
   859   csize_t new_capacity[SECT_LIMIT];
   860   csize_t new_total_cap
   861     = figure_expanded_capacities(which_cs, amount, new_capacity);
   863   // Create a new (temporary) code buffer to hold all the new data
   864   CodeBuffer cb(name(), new_total_cap, 0);
   865   if (cb.blob() == NULL) {
   866     // Failed to allocate in code cache.
   867     free_blob();
   868     return;
   869   }
   871   // Create an old code buffer to remember which addresses used to go where.
   872   // This will be useful when we do final assembly into the code cache,
   873   // because we will need to know how to warp any internal address that
   874   // has been created at any time in this CodeBuffer's past.
   875   CodeBuffer* bxp = new CodeBuffer(_total_start, _total_size);
   876   bxp->take_over_code_from(this);  // remember the old undersized blob
   877   DEBUG_ONLY(this->_blob = NULL);  // silence a later assert
   878   bxp->_before_expand = this->_before_expand;
   879   this->_before_expand = bxp;
   881   // Give each section its required (expanded) capacity.
   882   for (int n = (int)SECT_LIMIT-1; n >= SECT_FIRST; n--) {
   883     CodeSection* cb_sect   = cb.code_section(n);
   884     CodeSection* this_sect = code_section(n);
   885     if (new_capacity[n] == 0)  continue;  // already nulled out
   886     if (n != SECT_INSTS) {
   887       cb.initialize_section_size(cb_sect, new_capacity[n]);
   888     }
   889     assert(cb_sect->capacity() >= new_capacity[n], "big enough");
   890     address cb_start = cb_sect->start();
   891     cb_sect->set_end(cb_start + this_sect->size());
   892     if (this_sect->mark() == NULL) {
   893       cb_sect->clear_mark();
   894     } else {
   895       cb_sect->set_mark(cb_start + this_sect->mark_off());
   896     }
   897   }
   899   // Move all the code and relocations to the new blob:
   900   relocate_code_to(&cb);
   902   // Copy the temporary code buffer into the current code buffer.
   903   // Basically, do {*this = cb}, except for some control information.
   904   this->take_over_code_from(&cb);
   905   cb.set_blob(NULL);
   907   // Zap the old code buffer contents, to avoid mistakenly using them.
   908   debug_only(Copy::fill_to_bytes(bxp->_total_start, bxp->_total_size,
   909                                  badCodeHeapFreeVal));
   911   _decode_begin = NULL;  // sanity
   913   // Make certain that the new sections are all snugly inside the new blob.
   914   verify_section_allocation();
   916 #ifndef PRODUCT
   917   if (PrintNMethods && (WizardMode || Verbose)) {
   918     tty->print("expanded CodeBuffer:");
   919     this->print();
   920   }
   921 #endif //PRODUCT
   922 }
   924 void CodeBuffer::take_over_code_from(CodeBuffer* cb) {
   925   // Must already have disposed of the old blob somehow.
   926   assert(blob() == NULL, "must be empty");
   927 #ifdef ASSERT
   929 #endif
   930   // Take the new blob away from cb.
   931   set_blob(cb->blob());
   932   // Take over all the section pointers.
   933   for (int n = 0; n < (int)SECT_LIMIT; n++) {
   934     CodeSection* cb_sect   = cb->code_section(n);
   935     CodeSection* this_sect = code_section(n);
   936     this_sect->take_over_code_from(cb_sect);
   937   }
   938   _overflow_arena = cb->_overflow_arena;
   939   // Make sure the old cb won't try to use it or free it.
   940   DEBUG_ONLY(cb->_blob = (BufferBlob*)badAddress);
   941 }
   943 void CodeBuffer::verify_section_allocation() {
   944   address tstart = _total_start;
   945   if (tstart == badAddress)  return;  // smashed by set_blob(NULL)
   946   address tend   = tstart + _total_size;
   947   if (_blob != NULL) {
   949     guarantee(tstart >= _blob->content_begin(), "sanity");
   950     guarantee(tend   <= _blob->content_end(),   "sanity");
   951   }
   952   // Verify disjointness.
   953   for (int n = (int) SECT_FIRST; n < (int) SECT_LIMIT; n++) {
   954     CodeSection* sect = code_section(n);
   955     if (!sect->is_allocated() || sect->is_empty())  continue;
   956     guarantee((intptr_t)sect->start() % sect->alignment() == 0
   957            || sect->is_empty() || _blob == NULL,
   958            "start is aligned");
   959     for (int m = (int) SECT_FIRST; m < (int) SECT_LIMIT; m++) {
   960       CodeSection* other = code_section(m);
   961       if (!other->is_allocated() || other == sect)  continue;
   962       guarantee(!other->contains(sect->start()    ), "sanity");
   963       // limit is an exclusive address and can be the start of another
   964       // section.
   965       guarantee(!other->contains(sect->limit() - 1), "sanity");
   966     }
   967     guarantee(sect->end() <= tend, "sanity");
   968     guarantee(sect->end() <= sect->limit(), "sanity");
   969   }
   970 }
   972 void CodeBuffer::log_section_sizes(const char* name) {
   973   if (xtty != NULL) {
   974     // log info about buffer usage
   975     xtty->print_cr("<blob name='%s' size='%d'>", name, _total_size);
   976     for (int n = (int) CodeBuffer::SECT_FIRST; n < (int) CodeBuffer::SECT_LIMIT; n++) {
   977       CodeSection* sect = code_section(n);
   978       if (!sect->is_allocated() || sect->is_empty())  continue;
   979       xtty->print_cr("<sect index='%d' size='" SIZE_FORMAT "' free='" SIZE_FORMAT "'/>",
   980                      n, sect->limit() - sect->start(), sect->limit() - sect->end());
   981     }
   982     xtty->print_cr("</blob>");
   983   }
   984 }
   986 #ifndef PRODUCT
   988 void CodeSection::dump() {
   989   address ptr = start();
   990   for (csize_t step; ptr < end(); ptr += step) {
   991     step = end() - ptr;
   992     if (step > jintSize * 4)  step = jintSize * 4;
   993     tty->print(PTR_FORMAT ": ", ptr);
   994     while (step > 0) {
   995       tty->print(" " PTR32_FORMAT, *(jint*)ptr);
   996       ptr += jintSize;
   997     }
   998     tty->cr();
   999   }
  1003 void CodeSection::decode() {
  1004   Disassembler::decode(start(), end());
  1008 void CodeBuffer::block_comment(intptr_t offset, const char * comment) {
  1009   _comments.add_comment(offset, comment);
  1012 class CodeComment: public CHeapObj<mtCode> {
  1013  private:
  1014   friend class CodeComments;
  1015   intptr_t     _offset;
  1016   const char * _comment;
  1017   CodeComment* _next;
  1019   ~CodeComment() {
  1020     assert(_next == NULL, "wrong interface for freeing list");
  1021     os::free((void*)_comment, mtCode);
  1024  public:
  1025   CodeComment(intptr_t offset, const char * comment) {
  1026     _offset = offset;
  1027     _comment = os::strdup(comment, mtCode);
  1028     _next = NULL;
  1031   intptr_t     offset()  const { return _offset;  }
  1032   const char * comment() const { return _comment; }
  1033   CodeComment* next()          { return _next; }
  1035   void set_next(CodeComment* next) { _next = next; }
  1037   CodeComment* find(intptr_t offset) {
  1038     CodeComment* a = this;
  1039     while (a != NULL && a->_offset != offset) {
  1040       a = a->_next;
  1042     return a;
  1045   // Convenience for add_comment.
  1046   CodeComment* find_last(intptr_t offset) {
  1047     CodeComment* a = find(offset);
  1048     if (a != NULL) {
  1049       while ((a->_next != NULL) && (a->_next->_offset == offset)) {
  1050         a = a->_next;
  1053     return a;
  1055 };
  1058 void CodeComments::add_comment(intptr_t offset, const char * comment) {
  1059   CodeComment* c      = new CodeComment(offset, comment);
  1060   CodeComment* inspos = (_comments == NULL) ? NULL : _comments->find_last(offset);
  1062   if (inspos) {
  1063     // insert after already existing comments with same offset
  1064     c->set_next(inspos->next());
  1065     inspos->set_next(c);
  1066   } else {
  1067     // no comments with such offset, yet. Insert before anything else.
  1068     c->set_next(_comments);
  1069     _comments = c;
  1074 void CodeComments::assign(CodeComments& other) {
  1075   _comments = other._comments;
  1079 void CodeComments::print_block_comment(outputStream* stream, intptr_t offset) const {
  1080   if (_comments != NULL) {
  1081     CodeComment* c = _comments->find(offset);
  1082     while (c && c->offset() == offset) {
  1083       stream->bol();
  1084       stream->print("  ;; ");
  1085       stream->print_cr(c->comment());
  1086       c = c->next();
  1092 void CodeComments::free() {
  1093   CodeComment* n = _comments;
  1094   while (n) {
  1095     // unlink the node from the list saving a pointer to the next
  1096     CodeComment* p = n->_next;
  1097     n->_next = NULL;
  1098     delete n;
  1099     n = p;
  1101   _comments = NULL;
  1106 void CodeBuffer::decode() {
  1107   ttyLocker ttyl;
  1108   Disassembler::decode(decode_begin(), insts_end());
  1109   _decode_begin = insts_end();
  1113 void CodeBuffer::skip_decode() {
  1114   _decode_begin = insts_end();
  1118 void CodeBuffer::decode_all() {
  1119   ttyLocker ttyl;
  1120   for (int n = 0; n < (int)SECT_LIMIT; n++) {
  1121     // dump contents of each section
  1122     CodeSection* cs = code_section(n);
  1123     tty->print_cr("! %s:", code_section_name(n));
  1124     if (cs != consts())
  1125       cs->decode();
  1126     else
  1127       cs->dump();
  1132 void CodeSection::print(const char* name) {
  1133   csize_t locs_size = locs_end() - locs_start();
  1134   tty->print_cr(" %7s.code = " PTR_FORMAT " : " PTR_FORMAT " : " PTR_FORMAT " (%d of %d)%s",
  1135                 name, start(), end(), limit(), size(), capacity(),
  1136                 is_frozen()? " [frozen]": "");
  1137   tty->print_cr(" %7s.locs = " PTR_FORMAT " : " PTR_FORMAT " : " PTR_FORMAT " (%d of %d) point=%d",
  1138                 name, locs_start(), locs_end(), locs_limit(), locs_size, locs_capacity(), locs_point_off());
  1139   if (PrintRelocations) {
  1140     RelocIterator iter(this);
  1141     iter.print();
  1145 void CodeBuffer::print() {
  1146   if (this == NULL) {
  1147     tty->print_cr("NULL CodeBuffer pointer");
  1148     return;
  1151   tty->print_cr("CodeBuffer:");
  1152   for (int n = 0; n < (int)SECT_LIMIT; n++) {
  1153     // print each section
  1154     CodeSection* cs = code_section(n);
  1155     cs->print(code_section_name(n));
  1159 #endif // PRODUCT

mercurial