src/cpu/x86/vm/macroAssembler_x86.cpp

Thu, 06 Dec 2012 09:57:41 -0800

author
twisti
date
Thu, 06 Dec 2012 09:57:41 -0800
changeset 4323
f0c2369fda5a
parent 4318
cd3d6a6b95d9
child 4363
2c7f594145dc
permissions
-rw-r--r--

8003250: SPARC: move MacroAssembler into separate file
Reviewed-by: jrose, kvn

     1 /*
     2  * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "asm/assembler.hpp"
    27 #include "asm/assembler.inline.hpp"
    28 #include "compiler/disassembler.hpp"
    29 #include "gc_interface/collectedHeap.inline.hpp"
    30 #include "interpreter/interpreter.hpp"
    31 #include "memory/cardTableModRefBS.hpp"
    32 #include "memory/resourceArea.hpp"
    33 #include "prims/methodHandles.hpp"
    34 #include "runtime/biasedLocking.hpp"
    35 #include "runtime/interfaceSupport.hpp"
    36 #include "runtime/objectMonitor.hpp"
    37 #include "runtime/os.hpp"
    38 #include "runtime/sharedRuntime.hpp"
    39 #include "runtime/stubRoutines.hpp"
    40 #ifndef SERIALGC
    41 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
    42 #include "gc_implementation/g1/g1SATBCardTableModRefBS.hpp"
    43 #include "gc_implementation/g1/heapRegion.hpp"
    44 #endif
    46 #ifdef PRODUCT
    47 #define BLOCK_COMMENT(str) /* nothing */
    48 #define STOP(error) stop(error)
    49 #else
    50 #define BLOCK_COMMENT(str) block_comment(str)
    51 #define STOP(error) block_comment(error); stop(error)
    52 #endif
    54 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
    57 #ifdef ASSERT
    58 bool AbstractAssembler::pd_check_instruction_mark() { return true; }
    59 #endif
    61 static Assembler::Condition reverse[] = {
    62     Assembler::noOverflow     /* overflow      = 0x0 */ ,
    63     Assembler::overflow       /* noOverflow    = 0x1 */ ,
    64     Assembler::aboveEqual     /* carrySet      = 0x2, below         = 0x2 */ ,
    65     Assembler::below          /* aboveEqual    = 0x3, carryClear    = 0x3 */ ,
    66     Assembler::notZero        /* zero          = 0x4, equal         = 0x4 */ ,
    67     Assembler::zero           /* notZero       = 0x5, notEqual      = 0x5 */ ,
    68     Assembler::above          /* belowEqual    = 0x6 */ ,
    69     Assembler::belowEqual     /* above         = 0x7 */ ,
    70     Assembler::positive       /* negative      = 0x8 */ ,
    71     Assembler::negative       /* positive      = 0x9 */ ,
    72     Assembler::noParity       /* parity        = 0xa */ ,
    73     Assembler::parity         /* noParity      = 0xb */ ,
    74     Assembler::greaterEqual   /* less          = 0xc */ ,
    75     Assembler::less           /* greaterEqual  = 0xd */ ,
    76     Assembler::greater        /* lessEqual     = 0xe */ ,
    77     Assembler::lessEqual      /* greater       = 0xf, */
    79 };
    82 // Implementation of MacroAssembler
    84 // First all the versions that have distinct versions depending on 32/64 bit
    85 // Unless the difference is trivial (1 line or so).
    87 #ifndef _LP64
    89 // 32bit versions
    91 Address MacroAssembler::as_Address(AddressLiteral adr) {
    92   return Address(adr.target(), adr.rspec());
    93 }
    95 Address MacroAssembler::as_Address(ArrayAddress adr) {
    96   return Address::make_array(adr);
    97 }
    99 int MacroAssembler::biased_locking_enter(Register lock_reg,
   100                                          Register obj_reg,
   101                                          Register swap_reg,
   102                                          Register tmp_reg,
   103                                          bool swap_reg_contains_mark,
   104                                          Label& done,
   105                                          Label* slow_case,
   106                                          BiasedLockingCounters* counters) {
   107   assert(UseBiasedLocking, "why call this otherwise?");
   108   assert(swap_reg == rax, "swap_reg must be rax, for cmpxchg");
   109   assert_different_registers(lock_reg, obj_reg, swap_reg);
   111   if (PrintBiasedLockingStatistics && counters == NULL)
   112     counters = BiasedLocking::counters();
   114   bool need_tmp_reg = false;
   115   if (tmp_reg == noreg) {
   116     need_tmp_reg = true;
   117     tmp_reg = lock_reg;
   118   } else {
   119     assert_different_registers(lock_reg, obj_reg, swap_reg, tmp_reg);
   120   }
   121   assert(markOopDesc::age_shift == markOopDesc::lock_bits + markOopDesc::biased_lock_bits, "biased locking makes assumptions about bit layout");
   122   Address mark_addr      (obj_reg, oopDesc::mark_offset_in_bytes());
   123   Address klass_addr     (obj_reg, oopDesc::klass_offset_in_bytes());
   124   Address saved_mark_addr(lock_reg, 0);
   126   // Biased locking
   127   // See whether the lock is currently biased toward our thread and
   128   // whether the epoch is still valid
   129   // Note that the runtime guarantees sufficient alignment of JavaThread
   130   // pointers to allow age to be placed into low bits
   131   // First check to see whether biasing is even enabled for this object
   132   Label cas_label;
   133   int null_check_offset = -1;
   134   if (!swap_reg_contains_mark) {
   135     null_check_offset = offset();
   136     movl(swap_reg, mark_addr);
   137   }
   138   if (need_tmp_reg) {
   139     push(tmp_reg);
   140   }
   141   movl(tmp_reg, swap_reg);
   142   andl(tmp_reg, markOopDesc::biased_lock_mask_in_place);
   143   cmpl(tmp_reg, markOopDesc::biased_lock_pattern);
   144   if (need_tmp_reg) {
   145     pop(tmp_reg);
   146   }
   147   jcc(Assembler::notEqual, cas_label);
   148   // The bias pattern is present in the object's header. Need to check
   149   // whether the bias owner and the epoch are both still current.
   150   // Note that because there is no current thread register on x86 we
   151   // need to store off the mark word we read out of the object to
   152   // avoid reloading it and needing to recheck invariants below. This
   153   // store is unfortunate but it makes the overall code shorter and
   154   // simpler.
   155   movl(saved_mark_addr, swap_reg);
   156   if (need_tmp_reg) {
   157     push(tmp_reg);
   158   }
   159   get_thread(tmp_reg);
   160   xorl(swap_reg, tmp_reg);
   161   if (swap_reg_contains_mark) {
   162     null_check_offset = offset();
   163   }
   164   movl(tmp_reg, klass_addr);
   165   xorl(swap_reg, Address(tmp_reg, Klass::prototype_header_offset()));
   166   andl(swap_reg, ~((int) markOopDesc::age_mask_in_place));
   167   if (need_tmp_reg) {
   168     pop(tmp_reg);
   169   }
   170   if (counters != NULL) {
   171     cond_inc32(Assembler::zero,
   172                ExternalAddress((address)counters->biased_lock_entry_count_addr()));
   173   }
   174   jcc(Assembler::equal, done);
   176   Label try_revoke_bias;
   177   Label try_rebias;
   179   // At this point we know that the header has the bias pattern and
   180   // that we are not the bias owner in the current epoch. We need to
   181   // figure out more details about the state of the header in order to
   182   // know what operations can be legally performed on the object's
   183   // header.
   185   // If the low three bits in the xor result aren't clear, that means
   186   // the prototype header is no longer biased and we have to revoke
   187   // the bias on this object.
   188   testl(swap_reg, markOopDesc::biased_lock_mask_in_place);
   189   jcc(Assembler::notZero, try_revoke_bias);
   191   // Biasing is still enabled for this data type. See whether the
   192   // epoch of the current bias is still valid, meaning that the epoch
   193   // bits of the mark word are equal to the epoch bits of the
   194   // prototype header. (Note that the prototype header's epoch bits
   195   // only change at a safepoint.) If not, attempt to rebias the object
   196   // toward the current thread. Note that we must be absolutely sure
   197   // that the current epoch is invalid in order to do this because
   198   // otherwise the manipulations it performs on the mark word are
   199   // illegal.
   200   testl(swap_reg, markOopDesc::epoch_mask_in_place);
   201   jcc(Assembler::notZero, try_rebias);
   203   // The epoch of the current bias is still valid but we know nothing
   204   // about the owner; it might be set or it might be clear. Try to
   205   // acquire the bias of the object using an atomic operation. If this
   206   // fails we will go in to the runtime to revoke the object's bias.
   207   // Note that we first construct the presumed unbiased header so we
   208   // don't accidentally blow away another thread's valid bias.
   209   movl(swap_reg, saved_mark_addr);
   210   andl(swap_reg,
   211        markOopDesc::biased_lock_mask_in_place | markOopDesc::age_mask_in_place | markOopDesc::epoch_mask_in_place);
   212   if (need_tmp_reg) {
   213     push(tmp_reg);
   214   }
   215   get_thread(tmp_reg);
   216   orl(tmp_reg, swap_reg);
   217   if (os::is_MP()) {
   218     lock();
   219   }
   220   cmpxchgptr(tmp_reg, Address(obj_reg, 0));
   221   if (need_tmp_reg) {
   222     pop(tmp_reg);
   223   }
   224   // If the biasing toward our thread failed, this means that
   225   // another thread succeeded in biasing it toward itself and we
   226   // need to revoke that bias. The revocation will occur in the
   227   // interpreter runtime in the slow case.
   228   if (counters != NULL) {
   229     cond_inc32(Assembler::zero,
   230                ExternalAddress((address)counters->anonymously_biased_lock_entry_count_addr()));
   231   }
   232   if (slow_case != NULL) {
   233     jcc(Assembler::notZero, *slow_case);
   234   }
   235   jmp(done);
   237   bind(try_rebias);
   238   // At this point we know the epoch has expired, meaning that the
   239   // current "bias owner", if any, is actually invalid. Under these
   240   // circumstances _only_, we are allowed to use the current header's
   241   // value as the comparison value when doing the cas to acquire the
   242   // bias in the current epoch. In other words, we allow transfer of
   243   // the bias from one thread to another directly in this situation.
   244   //
   245   // FIXME: due to a lack of registers we currently blow away the age
   246   // bits in this situation. Should attempt to preserve them.
   247   if (need_tmp_reg) {
   248     push(tmp_reg);
   249   }
   250   get_thread(tmp_reg);
   251   movl(swap_reg, klass_addr);
   252   orl(tmp_reg, Address(swap_reg, Klass::prototype_header_offset()));
   253   movl(swap_reg, saved_mark_addr);
   254   if (os::is_MP()) {
   255     lock();
   256   }
   257   cmpxchgptr(tmp_reg, Address(obj_reg, 0));
   258   if (need_tmp_reg) {
   259     pop(tmp_reg);
   260   }
   261   // If the biasing toward our thread failed, then another thread
   262   // succeeded in biasing it toward itself and we need to revoke that
   263   // bias. The revocation will occur in the runtime in the slow case.
   264   if (counters != NULL) {
   265     cond_inc32(Assembler::zero,
   266                ExternalAddress((address)counters->rebiased_lock_entry_count_addr()));
   267   }
   268   if (slow_case != NULL) {
   269     jcc(Assembler::notZero, *slow_case);
   270   }
   271   jmp(done);
   273   bind(try_revoke_bias);
   274   // The prototype mark in the klass doesn't have the bias bit set any
   275   // more, indicating that objects of this data type are not supposed
   276   // to be biased any more. We are going to try to reset the mark of
   277   // this object to the prototype value and fall through to the
   278   // CAS-based locking scheme. Note that if our CAS fails, it means
   279   // that another thread raced us for the privilege of revoking the
   280   // bias of this particular object, so it's okay to continue in the
   281   // normal locking code.
   282   //
   283   // FIXME: due to a lack of registers we currently blow away the age
   284   // bits in this situation. Should attempt to preserve them.
   285   movl(swap_reg, saved_mark_addr);
   286   if (need_tmp_reg) {
   287     push(tmp_reg);
   288   }
   289   movl(tmp_reg, klass_addr);
   290   movl(tmp_reg, Address(tmp_reg, Klass::prototype_header_offset()));
   291   if (os::is_MP()) {
   292     lock();
   293   }
   294   cmpxchgptr(tmp_reg, Address(obj_reg, 0));
   295   if (need_tmp_reg) {
   296     pop(tmp_reg);
   297   }
   298   // Fall through to the normal CAS-based lock, because no matter what
   299   // the result of the above CAS, some thread must have succeeded in
   300   // removing the bias bit from the object's header.
   301   if (counters != NULL) {
   302     cond_inc32(Assembler::zero,
   303                ExternalAddress((address)counters->revoked_lock_entry_count_addr()));
   304   }
   306   bind(cas_label);
   308   return null_check_offset;
   309 }
   310 void MacroAssembler::call_VM_leaf_base(address entry_point,
   311                                        int number_of_arguments) {
   312   call(RuntimeAddress(entry_point));
   313   increment(rsp, number_of_arguments * wordSize);
   314 }
   316 void MacroAssembler::cmpklass(Address src1, Metadata* obj) {
   317   cmp_literal32(src1, (int32_t)obj, metadata_Relocation::spec_for_immediate());
   318 }
   320 void MacroAssembler::cmpklass(Register src1, Metadata* obj) {
   321   cmp_literal32(src1, (int32_t)obj, metadata_Relocation::spec_for_immediate());
   322 }
   324 void MacroAssembler::cmpoop(Address src1, jobject obj) {
   325   cmp_literal32(src1, (int32_t)obj, oop_Relocation::spec_for_immediate());
   326 }
   328 void MacroAssembler::cmpoop(Register src1, jobject obj) {
   329   cmp_literal32(src1, (int32_t)obj, oop_Relocation::spec_for_immediate());
   330 }
   332 void MacroAssembler::extend_sign(Register hi, Register lo) {
   333   // According to Intel Doc. AP-526, "Integer Divide", p.18.
   334   if (VM_Version::is_P6() && hi == rdx && lo == rax) {
   335     cdql();
   336   } else {
   337     movl(hi, lo);
   338     sarl(hi, 31);
   339   }
   340 }
   342 void MacroAssembler::jC2(Register tmp, Label& L) {
   343   // set parity bit if FPU flag C2 is set (via rax)
   344   save_rax(tmp);
   345   fwait(); fnstsw_ax();
   346   sahf();
   347   restore_rax(tmp);
   348   // branch
   349   jcc(Assembler::parity, L);
   350 }
   352 void MacroAssembler::jnC2(Register tmp, Label& L) {
   353   // set parity bit if FPU flag C2 is set (via rax)
   354   save_rax(tmp);
   355   fwait(); fnstsw_ax();
   356   sahf();
   357   restore_rax(tmp);
   358   // branch
   359   jcc(Assembler::noParity, L);
   360 }
   362 // 32bit can do a case table jump in one instruction but we no longer allow the base
   363 // to be installed in the Address class
   364 void MacroAssembler::jump(ArrayAddress entry) {
   365   jmp(as_Address(entry));
   366 }
   368 // Note: y_lo will be destroyed
   369 void MacroAssembler::lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo) {
   370   // Long compare for Java (semantics as described in JVM spec.)
   371   Label high, low, done;
   373   cmpl(x_hi, y_hi);
   374   jcc(Assembler::less, low);
   375   jcc(Assembler::greater, high);
   376   // x_hi is the return register
   377   xorl(x_hi, x_hi);
   378   cmpl(x_lo, y_lo);
   379   jcc(Assembler::below, low);
   380   jcc(Assembler::equal, done);
   382   bind(high);
   383   xorl(x_hi, x_hi);
   384   increment(x_hi);
   385   jmp(done);
   387   bind(low);
   388   xorl(x_hi, x_hi);
   389   decrementl(x_hi);
   391   bind(done);
   392 }
   394 void MacroAssembler::lea(Register dst, AddressLiteral src) {
   395     mov_literal32(dst, (int32_t)src.target(), src.rspec());
   396 }
   398 void MacroAssembler::lea(Address dst, AddressLiteral adr) {
   399   // leal(dst, as_Address(adr));
   400   // see note in movl as to why we must use a move
   401   mov_literal32(dst, (int32_t) adr.target(), adr.rspec());
   402 }
   404 void MacroAssembler::leave() {
   405   mov(rsp, rbp);
   406   pop(rbp);
   407 }
   409 void MacroAssembler::lmul(int x_rsp_offset, int y_rsp_offset) {
   410   // Multiplication of two Java long values stored on the stack
   411   // as illustrated below. Result is in rdx:rax.
   412   //
   413   // rsp ---> [  ??  ] \               \
   414   //            ....    | y_rsp_offset  |
   415   //          [ y_lo ] /  (in bytes)    | x_rsp_offset
   416   //          [ y_hi ]                  | (in bytes)
   417   //            ....                    |
   418   //          [ x_lo ]                 /
   419   //          [ x_hi ]
   420   //            ....
   421   //
   422   // Basic idea: lo(result) = lo(x_lo * y_lo)
   423   //             hi(result) = hi(x_lo * y_lo) + lo(x_hi * y_lo) + lo(x_lo * y_hi)
   424   Address x_hi(rsp, x_rsp_offset + wordSize); Address x_lo(rsp, x_rsp_offset);
   425   Address y_hi(rsp, y_rsp_offset + wordSize); Address y_lo(rsp, y_rsp_offset);
   426   Label quick;
   427   // load x_hi, y_hi and check if quick
   428   // multiplication is possible
   429   movl(rbx, x_hi);
   430   movl(rcx, y_hi);
   431   movl(rax, rbx);
   432   orl(rbx, rcx);                                 // rbx, = 0 <=> x_hi = 0 and y_hi = 0
   433   jcc(Assembler::zero, quick);                   // if rbx, = 0 do quick multiply
   434   // do full multiplication
   435   // 1st step
   436   mull(y_lo);                                    // x_hi * y_lo
   437   movl(rbx, rax);                                // save lo(x_hi * y_lo) in rbx,
   438   // 2nd step
   439   movl(rax, x_lo);
   440   mull(rcx);                                     // x_lo * y_hi
   441   addl(rbx, rax);                                // add lo(x_lo * y_hi) to rbx,
   442   // 3rd step
   443   bind(quick);                                   // note: rbx, = 0 if quick multiply!
   444   movl(rax, x_lo);
   445   mull(y_lo);                                    // x_lo * y_lo
   446   addl(rdx, rbx);                                // correct hi(x_lo * y_lo)
   447 }
   449 void MacroAssembler::lneg(Register hi, Register lo) {
   450   negl(lo);
   451   adcl(hi, 0);
   452   negl(hi);
   453 }
   455 void MacroAssembler::lshl(Register hi, Register lo) {
   456   // Java shift left long support (semantics as described in JVM spec., p.305)
   457   // (basic idea for shift counts s >= n: x << s == (x << n) << (s - n))
   458   // shift value is in rcx !
   459   assert(hi != rcx, "must not use rcx");
   460   assert(lo != rcx, "must not use rcx");
   461   const Register s = rcx;                        // shift count
   462   const int      n = BitsPerWord;
   463   Label L;
   464   andl(s, 0x3f);                                 // s := s & 0x3f (s < 0x40)
   465   cmpl(s, n);                                    // if (s < n)
   466   jcc(Assembler::less, L);                       // else (s >= n)
   467   movl(hi, lo);                                  // x := x << n
   468   xorl(lo, lo);
   469   // Note: subl(s, n) is not needed since the Intel shift instructions work rcx mod n!
   470   bind(L);                                       // s (mod n) < n
   471   shldl(hi, lo);                                 // x := x << s
   472   shll(lo);
   473 }
   476 void MacroAssembler::lshr(Register hi, Register lo, bool sign_extension) {
   477   // Java shift right long support (semantics as described in JVM spec., p.306 & p.310)
   478   // (basic idea for shift counts s >= n: x >> s == (x >> n) >> (s - n))
   479   assert(hi != rcx, "must not use rcx");
   480   assert(lo != rcx, "must not use rcx");
   481   const Register s = rcx;                        // shift count
   482   const int      n = BitsPerWord;
   483   Label L;
   484   andl(s, 0x3f);                                 // s := s & 0x3f (s < 0x40)
   485   cmpl(s, n);                                    // if (s < n)
   486   jcc(Assembler::less, L);                       // else (s >= n)
   487   movl(lo, hi);                                  // x := x >> n
   488   if (sign_extension) sarl(hi, 31);
   489   else                xorl(hi, hi);
   490   // Note: subl(s, n) is not needed since the Intel shift instructions work rcx mod n!
   491   bind(L);                                       // s (mod n) < n
   492   shrdl(lo, hi);                                 // x := x >> s
   493   if (sign_extension) sarl(hi);
   494   else                shrl(hi);
   495 }
   497 void MacroAssembler::movoop(Register dst, jobject obj) {
   498   mov_literal32(dst, (int32_t)obj, oop_Relocation::spec_for_immediate());
   499 }
   501 void MacroAssembler::movoop(Address dst, jobject obj) {
   502   mov_literal32(dst, (int32_t)obj, oop_Relocation::spec_for_immediate());
   503 }
   505 void MacroAssembler::mov_metadata(Register dst, Metadata* obj) {
   506   mov_literal32(dst, (int32_t)obj, metadata_Relocation::spec_for_immediate());
   507 }
   509 void MacroAssembler::mov_metadata(Address dst, Metadata* obj) {
   510   mov_literal32(dst, (int32_t)obj, metadata_Relocation::spec_for_immediate());
   511 }
   513 void MacroAssembler::movptr(Register dst, AddressLiteral src) {
   514   if (src.is_lval()) {
   515     mov_literal32(dst, (intptr_t)src.target(), src.rspec());
   516   } else {
   517     movl(dst, as_Address(src));
   518   }
   519 }
   521 void MacroAssembler::movptr(ArrayAddress dst, Register src) {
   522   movl(as_Address(dst), src);
   523 }
   525 void MacroAssembler::movptr(Register dst, ArrayAddress src) {
   526   movl(dst, as_Address(src));
   527 }
   529 // src should NEVER be a real pointer. Use AddressLiteral for true pointers
   530 void MacroAssembler::movptr(Address dst, intptr_t src) {
   531   movl(dst, src);
   532 }
   535 void MacroAssembler::pop_callee_saved_registers() {
   536   pop(rcx);
   537   pop(rdx);
   538   pop(rdi);
   539   pop(rsi);
   540 }
   542 void MacroAssembler::pop_fTOS() {
   543   fld_d(Address(rsp, 0));
   544   addl(rsp, 2 * wordSize);
   545 }
   547 void MacroAssembler::push_callee_saved_registers() {
   548   push(rsi);
   549   push(rdi);
   550   push(rdx);
   551   push(rcx);
   552 }
   554 void MacroAssembler::push_fTOS() {
   555   subl(rsp, 2 * wordSize);
   556   fstp_d(Address(rsp, 0));
   557 }
   560 void MacroAssembler::pushoop(jobject obj) {
   561   push_literal32((int32_t)obj, oop_Relocation::spec_for_immediate());
   562 }
   564 void MacroAssembler::pushklass(Metadata* obj) {
   565   push_literal32((int32_t)obj, metadata_Relocation::spec_for_immediate());
   566 }
   568 void MacroAssembler::pushptr(AddressLiteral src) {
   569   if (src.is_lval()) {
   570     push_literal32((int32_t)src.target(), src.rspec());
   571   } else {
   572     pushl(as_Address(src));
   573   }
   574 }
   576 void MacroAssembler::set_word_if_not_zero(Register dst) {
   577   xorl(dst, dst);
   578   set_byte_if_not_zero(dst);
   579 }
   581 static void pass_arg0(MacroAssembler* masm, Register arg) {
   582   masm->push(arg);
   583 }
   585 static void pass_arg1(MacroAssembler* masm, Register arg) {
   586   masm->push(arg);
   587 }
   589 static void pass_arg2(MacroAssembler* masm, Register arg) {
   590   masm->push(arg);
   591 }
   593 static void pass_arg3(MacroAssembler* masm, Register arg) {
   594   masm->push(arg);
   595 }
   597 #ifndef PRODUCT
   598 extern "C" void findpc(intptr_t x);
   599 #endif
   601 void MacroAssembler::debug32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip, char* msg) {
   602   // In order to get locks to work, we need to fake a in_VM state
   603   JavaThread* thread = JavaThread::current();
   604   JavaThreadState saved_state = thread->thread_state();
   605   thread->set_thread_state(_thread_in_vm);
   606   if (ShowMessageBoxOnError) {
   607     JavaThread* thread = JavaThread::current();
   608     JavaThreadState saved_state = thread->thread_state();
   609     thread->set_thread_state(_thread_in_vm);
   610     if (CountBytecodes || TraceBytecodes || StopInterpreterAt) {
   611       ttyLocker ttyl;
   612       BytecodeCounter::print();
   613     }
   614     // To see where a verify_oop failed, get $ebx+40/X for this frame.
   615     // This is the value of eip which points to where verify_oop will return.
   616     if (os::message_box(msg, "Execution stopped, print registers?")) {
   617       print_state32(rdi, rsi, rbp, rsp, rbx, rdx, rcx, rax, eip);
   618       BREAKPOINT;
   619     }
   620   } else {
   621     ttyLocker ttyl;
   622     ::tty->print_cr("=============== DEBUG MESSAGE: %s ================\n", msg);
   623   }
   624   // Don't assert holding the ttyLock
   625     assert(false, err_msg("DEBUG MESSAGE: %s", msg));
   626   ThreadStateTransition::transition(thread, _thread_in_vm, saved_state);
   627 }
   629 void MacroAssembler::print_state32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip) {
   630   ttyLocker ttyl;
   631   FlagSetting fs(Debugging, true);
   632   tty->print_cr("eip = 0x%08x", eip);
   633 #ifndef PRODUCT
   634   if ((WizardMode || Verbose) && PrintMiscellaneous) {
   635     tty->cr();
   636     findpc(eip);
   637     tty->cr();
   638   }
   639 #endif
   640 #define PRINT_REG(rax) \
   641   { tty->print("%s = ", #rax); os::print_location(tty, rax); }
   642   PRINT_REG(rax);
   643   PRINT_REG(rbx);
   644   PRINT_REG(rcx);
   645   PRINT_REG(rdx);
   646   PRINT_REG(rdi);
   647   PRINT_REG(rsi);
   648   PRINT_REG(rbp);
   649   PRINT_REG(rsp);
   650 #undef PRINT_REG
   651   // Print some words near top of staack.
   652   int* dump_sp = (int*) rsp;
   653   for (int col1 = 0; col1 < 8; col1++) {
   654     tty->print("(rsp+0x%03x) 0x%08x: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (intptr_t)dump_sp);
   655     os::print_location(tty, *dump_sp++);
   656   }
   657   for (int row = 0; row < 16; row++) {
   658     tty->print("(rsp+0x%03x) 0x%08x: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (intptr_t)dump_sp);
   659     for (int col = 0; col < 8; col++) {
   660       tty->print(" 0x%08x", *dump_sp++);
   661     }
   662     tty->cr();
   663   }
   664   // Print some instructions around pc:
   665   Disassembler::decode((address)eip-64, (address)eip);
   666   tty->print_cr("--------");
   667   Disassembler::decode((address)eip, (address)eip+32);
   668 }
   670 void MacroAssembler::stop(const char* msg) {
   671   ExternalAddress message((address)msg);
   672   // push address of message
   673   pushptr(message.addr());
   674   { Label L; call(L, relocInfo::none); bind(L); }     // push eip
   675   pusha();                                            // push registers
   676   call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug32)));
   677   hlt();
   678 }
   680 void MacroAssembler::warn(const char* msg) {
   681   push_CPU_state();
   683   ExternalAddress message((address) msg);
   684   // push address of message
   685   pushptr(message.addr());
   687   call(RuntimeAddress(CAST_FROM_FN_PTR(address, warning)));
   688   addl(rsp, wordSize);       // discard argument
   689   pop_CPU_state();
   690 }
   692 void MacroAssembler::print_state() {
   693   { Label L; call(L, relocInfo::none); bind(L); }     // push eip
   694   pusha();                                            // push registers
   696   push_CPU_state();
   697   call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::print_state32)));
   698   pop_CPU_state();
   700   popa();
   701   addl(rsp, wordSize);
   702 }
   704 #else // _LP64
   706 // 64 bit versions
   708 Address MacroAssembler::as_Address(AddressLiteral adr) {
   709   // amd64 always does this as a pc-rel
   710   // we can be absolute or disp based on the instruction type
   711   // jmp/call are displacements others are absolute
   712   assert(!adr.is_lval(), "must be rval");
   713   assert(reachable(adr), "must be");
   714   return Address((int32_t)(intptr_t)(adr.target() - pc()), adr.target(), adr.reloc());
   716 }
   718 Address MacroAssembler::as_Address(ArrayAddress adr) {
   719   AddressLiteral base = adr.base();
   720   lea(rscratch1, base);
   721   Address index = adr.index();
   722   assert(index._disp == 0, "must not have disp"); // maybe it can?
   723   Address array(rscratch1, index._index, index._scale, index._disp);
   724   return array;
   725 }
   727 int MacroAssembler::biased_locking_enter(Register lock_reg,
   728                                          Register obj_reg,
   729                                          Register swap_reg,
   730                                          Register tmp_reg,
   731                                          bool swap_reg_contains_mark,
   732                                          Label& done,
   733                                          Label* slow_case,
   734                                          BiasedLockingCounters* counters) {
   735   assert(UseBiasedLocking, "why call this otherwise?");
   736   assert(swap_reg == rax, "swap_reg must be rax for cmpxchgq");
   737   assert(tmp_reg != noreg, "tmp_reg must be supplied");
   738   assert_different_registers(lock_reg, obj_reg, swap_reg, tmp_reg);
   739   assert(markOopDesc::age_shift == markOopDesc::lock_bits + markOopDesc::biased_lock_bits, "biased locking makes assumptions about bit layout");
   740   Address mark_addr      (obj_reg, oopDesc::mark_offset_in_bytes());
   741   Address saved_mark_addr(lock_reg, 0);
   743   if (PrintBiasedLockingStatistics && counters == NULL)
   744     counters = BiasedLocking::counters();
   746   // Biased locking
   747   // See whether the lock is currently biased toward our thread and
   748   // whether the epoch is still valid
   749   // Note that the runtime guarantees sufficient alignment of JavaThread
   750   // pointers to allow age to be placed into low bits
   751   // First check to see whether biasing is even enabled for this object
   752   Label cas_label;
   753   int null_check_offset = -1;
   754   if (!swap_reg_contains_mark) {
   755     null_check_offset = offset();
   756     movq(swap_reg, mark_addr);
   757   }
   758   movq(tmp_reg, swap_reg);
   759   andq(tmp_reg, markOopDesc::biased_lock_mask_in_place);
   760   cmpq(tmp_reg, markOopDesc::biased_lock_pattern);
   761   jcc(Assembler::notEqual, cas_label);
   762   // The bias pattern is present in the object's header. Need to check
   763   // whether the bias owner and the epoch are both still current.
   764   load_prototype_header(tmp_reg, obj_reg);
   765   orq(tmp_reg, r15_thread);
   766   xorq(tmp_reg, swap_reg);
   767   andq(tmp_reg, ~((int) markOopDesc::age_mask_in_place));
   768   if (counters != NULL) {
   769     cond_inc32(Assembler::zero,
   770                ExternalAddress((address) counters->anonymously_biased_lock_entry_count_addr()));
   771   }
   772   jcc(Assembler::equal, done);
   774   Label try_revoke_bias;
   775   Label try_rebias;
   777   // At this point we know that the header has the bias pattern and
   778   // that we are not the bias owner in the current epoch. We need to
   779   // figure out more details about the state of the header in order to
   780   // know what operations can be legally performed on the object's
   781   // header.
   783   // If the low three bits in the xor result aren't clear, that means
   784   // the prototype header is no longer biased and we have to revoke
   785   // the bias on this object.
   786   testq(tmp_reg, markOopDesc::biased_lock_mask_in_place);
   787   jcc(Assembler::notZero, try_revoke_bias);
   789   // Biasing is still enabled for this data type. See whether the
   790   // epoch of the current bias is still valid, meaning that the epoch
   791   // bits of the mark word are equal to the epoch bits of the
   792   // prototype header. (Note that the prototype header's epoch bits
   793   // only change at a safepoint.) If not, attempt to rebias the object
   794   // toward the current thread. Note that we must be absolutely sure
   795   // that the current epoch is invalid in order to do this because
   796   // otherwise the manipulations it performs on the mark word are
   797   // illegal.
   798   testq(tmp_reg, markOopDesc::epoch_mask_in_place);
   799   jcc(Assembler::notZero, try_rebias);
   801   // The epoch of the current bias is still valid but we know nothing
   802   // about the owner; it might be set or it might be clear. Try to
   803   // acquire the bias of the object using an atomic operation. If this
   804   // fails we will go in to the runtime to revoke the object's bias.
   805   // Note that we first construct the presumed unbiased header so we
   806   // don't accidentally blow away another thread's valid bias.
   807   andq(swap_reg,
   808        markOopDesc::biased_lock_mask_in_place | markOopDesc::age_mask_in_place | markOopDesc::epoch_mask_in_place);
   809   movq(tmp_reg, swap_reg);
   810   orq(tmp_reg, r15_thread);
   811   if (os::is_MP()) {
   812     lock();
   813   }
   814   cmpxchgq(tmp_reg, Address(obj_reg, 0));
   815   // If the biasing toward our thread failed, this means that
   816   // another thread succeeded in biasing it toward itself and we
   817   // need to revoke that bias. The revocation will occur in the
   818   // interpreter runtime in the slow case.
   819   if (counters != NULL) {
   820     cond_inc32(Assembler::zero,
   821                ExternalAddress((address) counters->anonymously_biased_lock_entry_count_addr()));
   822   }
   823   if (slow_case != NULL) {
   824     jcc(Assembler::notZero, *slow_case);
   825   }
   826   jmp(done);
   828   bind(try_rebias);
   829   // At this point we know the epoch has expired, meaning that the
   830   // current "bias owner", if any, is actually invalid. Under these
   831   // circumstances _only_, we are allowed to use the current header's
   832   // value as the comparison value when doing the cas to acquire the
   833   // bias in the current epoch. In other words, we allow transfer of
   834   // the bias from one thread to another directly in this situation.
   835   //
   836   // FIXME: due to a lack of registers we currently blow away the age
   837   // bits in this situation. Should attempt to preserve them.
   838   load_prototype_header(tmp_reg, obj_reg);
   839   orq(tmp_reg, r15_thread);
   840   if (os::is_MP()) {
   841     lock();
   842   }
   843   cmpxchgq(tmp_reg, Address(obj_reg, 0));
   844   // If the biasing toward our thread failed, then another thread
   845   // succeeded in biasing it toward itself and we need to revoke that
   846   // bias. The revocation will occur in the runtime in the slow case.
   847   if (counters != NULL) {
   848     cond_inc32(Assembler::zero,
   849                ExternalAddress((address) counters->rebiased_lock_entry_count_addr()));
   850   }
   851   if (slow_case != NULL) {
   852     jcc(Assembler::notZero, *slow_case);
   853   }
   854   jmp(done);
   856   bind(try_revoke_bias);
   857   // The prototype mark in the klass doesn't have the bias bit set any
   858   // more, indicating that objects of this data type are not supposed
   859   // to be biased any more. We are going to try to reset the mark of
   860   // this object to the prototype value and fall through to the
   861   // CAS-based locking scheme. Note that if our CAS fails, it means
   862   // that another thread raced us for the privilege of revoking the
   863   // bias of this particular object, so it's okay to continue in the
   864   // normal locking code.
   865   //
   866   // FIXME: due to a lack of registers we currently blow away the age
   867   // bits in this situation. Should attempt to preserve them.
   868   load_prototype_header(tmp_reg, obj_reg);
   869   if (os::is_MP()) {
   870     lock();
   871   }
   872   cmpxchgq(tmp_reg, Address(obj_reg, 0));
   873   // Fall through to the normal CAS-based lock, because no matter what
   874   // the result of the above CAS, some thread must have succeeded in
   875   // removing the bias bit from the object's header.
   876   if (counters != NULL) {
   877     cond_inc32(Assembler::zero,
   878                ExternalAddress((address) counters->revoked_lock_entry_count_addr()));
   879   }
   881   bind(cas_label);
   883   return null_check_offset;
   884 }
   886 void MacroAssembler::call_VM_leaf_base(address entry_point, int num_args) {
   887   Label L, E;
   889 #ifdef _WIN64
   890   // Windows always allocates space for it's register args
   891   assert(num_args <= 4, "only register arguments supported");
   892   subq(rsp,  frame::arg_reg_save_area_bytes);
   893 #endif
   895   // Align stack if necessary
   896   testl(rsp, 15);
   897   jcc(Assembler::zero, L);
   899   subq(rsp, 8);
   900   {
   901     call(RuntimeAddress(entry_point));
   902   }
   903   addq(rsp, 8);
   904   jmp(E);
   906   bind(L);
   907   {
   908     call(RuntimeAddress(entry_point));
   909   }
   911   bind(E);
   913 #ifdef _WIN64
   914   // restore stack pointer
   915   addq(rsp, frame::arg_reg_save_area_bytes);
   916 #endif
   918 }
   920 void MacroAssembler::cmp64(Register src1, AddressLiteral src2) {
   921   assert(!src2.is_lval(), "should use cmpptr");
   923   if (reachable(src2)) {
   924     cmpq(src1, as_Address(src2));
   925   } else {
   926     lea(rscratch1, src2);
   927     Assembler::cmpq(src1, Address(rscratch1, 0));
   928   }
   929 }
   931 int MacroAssembler::corrected_idivq(Register reg) {
   932   // Full implementation of Java ldiv and lrem; checks for special
   933   // case as described in JVM spec., p.243 & p.271.  The function
   934   // returns the (pc) offset of the idivl instruction - may be needed
   935   // for implicit exceptions.
   936   //
   937   //         normal case                           special case
   938   //
   939   // input : rax: dividend                         min_long
   940   //         reg: divisor   (may not be eax/edx)   -1
   941   //
   942   // output: rax: quotient  (= rax idiv reg)       min_long
   943   //         rdx: remainder (= rax irem reg)       0
   944   assert(reg != rax && reg != rdx, "reg cannot be rax or rdx register");
   945   static const int64_t min_long = 0x8000000000000000;
   946   Label normal_case, special_case;
   948   // check for special case
   949   cmp64(rax, ExternalAddress((address) &min_long));
   950   jcc(Assembler::notEqual, normal_case);
   951   xorl(rdx, rdx); // prepare rdx for possible special case (where
   952                   // remainder = 0)
   953   cmpq(reg, -1);
   954   jcc(Assembler::equal, special_case);
   956   // handle normal case
   957   bind(normal_case);
   958   cdqq();
   959   int idivq_offset = offset();
   960   idivq(reg);
   962   // normal and special case exit
   963   bind(special_case);
   965   return idivq_offset;
   966 }
   968 void MacroAssembler::decrementq(Register reg, int value) {
   969   if (value == min_jint) { subq(reg, value); return; }
   970   if (value <  0) { incrementq(reg, -value); return; }
   971   if (value == 0) {                        ; return; }
   972   if (value == 1 && UseIncDec) { decq(reg) ; return; }
   973   /* else */      { subq(reg, value)       ; return; }
   974 }
   976 void MacroAssembler::decrementq(Address dst, int value) {
   977   if (value == min_jint) { subq(dst, value); return; }
   978   if (value <  0) { incrementq(dst, -value); return; }
   979   if (value == 0) {                        ; return; }
   980   if (value == 1 && UseIncDec) { decq(dst) ; return; }
   981   /* else */      { subq(dst, value)       ; return; }
   982 }
   984 void MacroAssembler::incrementq(Register reg, int value) {
   985   if (value == min_jint) { addq(reg, value); return; }
   986   if (value <  0) { decrementq(reg, -value); return; }
   987   if (value == 0) {                        ; return; }
   988   if (value == 1 && UseIncDec) { incq(reg) ; return; }
   989   /* else */      { addq(reg, value)       ; return; }
   990 }
   992 void MacroAssembler::incrementq(Address dst, int value) {
   993   if (value == min_jint) { addq(dst, value); return; }
   994   if (value <  0) { decrementq(dst, -value); return; }
   995   if (value == 0) {                        ; return; }
   996   if (value == 1 && UseIncDec) { incq(dst) ; return; }
   997   /* else */      { addq(dst, value)       ; return; }
   998 }
  1000 // 32bit can do a case table jump in one instruction but we no longer allow the base
  1001 // to be installed in the Address class
  1002 void MacroAssembler::jump(ArrayAddress entry) {
  1003   lea(rscratch1, entry.base());
  1004   Address dispatch = entry.index();
  1005   assert(dispatch._base == noreg, "must be");
  1006   dispatch._base = rscratch1;
  1007   jmp(dispatch);
  1010 void MacroAssembler::lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo) {
  1011   ShouldNotReachHere(); // 64bit doesn't use two regs
  1012   cmpq(x_lo, y_lo);
  1015 void MacroAssembler::lea(Register dst, AddressLiteral src) {
  1016     mov_literal64(dst, (intptr_t)src.target(), src.rspec());
  1019 void MacroAssembler::lea(Address dst, AddressLiteral adr) {
  1020   mov_literal64(rscratch1, (intptr_t)adr.target(), adr.rspec());
  1021   movptr(dst, rscratch1);
  1024 void MacroAssembler::leave() {
  1025   // %%% is this really better? Why not on 32bit too?
  1026   emit_byte(0xC9); // LEAVE
  1029 void MacroAssembler::lneg(Register hi, Register lo) {
  1030   ShouldNotReachHere(); // 64bit doesn't use two regs
  1031   negq(lo);
  1034 void MacroAssembler::movoop(Register dst, jobject obj) {
  1035   mov_literal64(dst, (intptr_t)obj, oop_Relocation::spec_for_immediate());
  1038 void MacroAssembler::movoop(Address dst, jobject obj) {
  1039   mov_literal64(rscratch1, (intptr_t)obj, oop_Relocation::spec_for_immediate());
  1040   movq(dst, rscratch1);
  1043 void MacroAssembler::mov_metadata(Register dst, Metadata* obj) {
  1044   mov_literal64(dst, (intptr_t)obj, metadata_Relocation::spec_for_immediate());
  1047 void MacroAssembler::mov_metadata(Address dst, Metadata* obj) {
  1048   mov_literal64(rscratch1, (intptr_t)obj, metadata_Relocation::spec_for_immediate());
  1049   movq(dst, rscratch1);
  1052 void MacroAssembler::movptr(Register dst, AddressLiteral src) {
  1053   if (src.is_lval()) {
  1054     mov_literal64(dst, (intptr_t)src.target(), src.rspec());
  1055   } else {
  1056     if (reachable(src)) {
  1057       movq(dst, as_Address(src));
  1058     } else {
  1059       lea(rscratch1, src);
  1060       movq(dst, Address(rscratch1,0));
  1065 void MacroAssembler::movptr(ArrayAddress dst, Register src) {
  1066   movq(as_Address(dst), src);
  1069 void MacroAssembler::movptr(Register dst, ArrayAddress src) {
  1070   movq(dst, as_Address(src));
  1073 // src should NEVER be a real pointer. Use AddressLiteral for true pointers
  1074 void MacroAssembler::movptr(Address dst, intptr_t src) {
  1075   mov64(rscratch1, src);
  1076   movq(dst, rscratch1);
  1079 // These are mostly for initializing NULL
  1080 void MacroAssembler::movptr(Address dst, int32_t src) {
  1081   movslq(dst, src);
  1084 void MacroAssembler::movptr(Register dst, int32_t src) {
  1085   mov64(dst, (intptr_t)src);
  1088 void MacroAssembler::pushoop(jobject obj) {
  1089   movoop(rscratch1, obj);
  1090   push(rscratch1);
  1093 void MacroAssembler::pushklass(Metadata* obj) {
  1094   mov_metadata(rscratch1, obj);
  1095   push(rscratch1);
  1098 void MacroAssembler::pushptr(AddressLiteral src) {
  1099   lea(rscratch1, src);
  1100   if (src.is_lval()) {
  1101     push(rscratch1);
  1102   } else {
  1103     pushq(Address(rscratch1, 0));
  1107 void MacroAssembler::reset_last_Java_frame(bool clear_fp,
  1108                                            bool clear_pc) {
  1109   // we must set sp to zero to clear frame
  1110   movptr(Address(r15_thread, JavaThread::last_Java_sp_offset()), NULL_WORD);
  1111   // must clear fp, so that compiled frames are not confused; it is
  1112   // possible that we need it only for debugging
  1113   if (clear_fp) {
  1114     movptr(Address(r15_thread, JavaThread::last_Java_fp_offset()), NULL_WORD);
  1117   if (clear_pc) {
  1118     movptr(Address(r15_thread, JavaThread::last_Java_pc_offset()), NULL_WORD);
  1122 void MacroAssembler::set_last_Java_frame(Register last_java_sp,
  1123                                          Register last_java_fp,
  1124                                          address  last_java_pc) {
  1125   // determine last_java_sp register
  1126   if (!last_java_sp->is_valid()) {
  1127     last_java_sp = rsp;
  1130   // last_java_fp is optional
  1131   if (last_java_fp->is_valid()) {
  1132     movptr(Address(r15_thread, JavaThread::last_Java_fp_offset()),
  1133            last_java_fp);
  1136   // last_java_pc is optional
  1137   if (last_java_pc != NULL) {
  1138     Address java_pc(r15_thread,
  1139                     JavaThread::frame_anchor_offset() + JavaFrameAnchor::last_Java_pc_offset());
  1140     lea(rscratch1, InternalAddress(last_java_pc));
  1141     movptr(java_pc, rscratch1);
  1144   movptr(Address(r15_thread, JavaThread::last_Java_sp_offset()), last_java_sp);
  1147 static void pass_arg0(MacroAssembler* masm, Register arg) {
  1148   if (c_rarg0 != arg ) {
  1149     masm->mov(c_rarg0, arg);
  1153 static void pass_arg1(MacroAssembler* masm, Register arg) {
  1154   if (c_rarg1 != arg ) {
  1155     masm->mov(c_rarg1, arg);
  1159 static void pass_arg2(MacroAssembler* masm, Register arg) {
  1160   if (c_rarg2 != arg ) {
  1161     masm->mov(c_rarg2, arg);
  1165 static void pass_arg3(MacroAssembler* masm, Register arg) {
  1166   if (c_rarg3 != arg ) {
  1167     masm->mov(c_rarg3, arg);
  1171 void MacroAssembler::stop(const char* msg) {
  1172   address rip = pc();
  1173   pusha(); // get regs on stack
  1174   lea(c_rarg0, ExternalAddress((address) msg));
  1175   lea(c_rarg1, InternalAddress(rip));
  1176   movq(c_rarg2, rsp); // pass pointer to regs array
  1177   andq(rsp, -16); // align stack as required by ABI
  1178   call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug64)));
  1179   hlt();
  1182 void MacroAssembler::warn(const char* msg) {
  1183   push(rbp);
  1184   movq(rbp, rsp);
  1185   andq(rsp, -16);     // align stack as required by push_CPU_state and call
  1186   push_CPU_state();   // keeps alignment at 16 bytes
  1187   lea(c_rarg0, ExternalAddress((address) msg));
  1188   call_VM_leaf(CAST_FROM_FN_PTR(address, warning), c_rarg0);
  1189   pop_CPU_state();
  1190   mov(rsp, rbp);
  1191   pop(rbp);
  1194 void MacroAssembler::print_state() {
  1195   address rip = pc();
  1196   pusha();            // get regs on stack
  1197   push(rbp);
  1198   movq(rbp, rsp);
  1199   andq(rsp, -16);     // align stack as required by push_CPU_state and call
  1200   push_CPU_state();   // keeps alignment at 16 bytes
  1202   lea(c_rarg0, InternalAddress(rip));
  1203   lea(c_rarg1, Address(rbp, wordSize)); // pass pointer to regs array
  1204   call_VM_leaf(CAST_FROM_FN_PTR(address, MacroAssembler::print_state64), c_rarg0, c_rarg1);
  1206   pop_CPU_state();
  1207   mov(rsp, rbp);
  1208   pop(rbp);
  1209   popa();
  1212 #ifndef PRODUCT
  1213 extern "C" void findpc(intptr_t x);
  1214 #endif
  1216 void MacroAssembler::debug64(char* msg, int64_t pc, int64_t regs[]) {
  1217   // In order to get locks to work, we need to fake a in_VM state
  1218   if (ShowMessageBoxOnError) {
  1219     JavaThread* thread = JavaThread::current();
  1220     JavaThreadState saved_state = thread->thread_state();
  1221     thread->set_thread_state(_thread_in_vm);
  1222 #ifndef PRODUCT
  1223     if (CountBytecodes || TraceBytecodes || StopInterpreterAt) {
  1224       ttyLocker ttyl;
  1225       BytecodeCounter::print();
  1227 #endif
  1228     // To see where a verify_oop failed, get $ebx+40/X for this frame.
  1229     // XXX correct this offset for amd64
  1230     // This is the value of eip which points to where verify_oop will return.
  1231     if (os::message_box(msg, "Execution stopped, print registers?")) {
  1232       print_state64(pc, regs);
  1233       BREAKPOINT;
  1234       assert(false, "start up GDB");
  1236     ThreadStateTransition::transition(thread, _thread_in_vm, saved_state);
  1237   } else {
  1238     ttyLocker ttyl;
  1239     ::tty->print_cr("=============== DEBUG MESSAGE: %s ================\n",
  1240                     msg);
  1241     assert(false, err_msg("DEBUG MESSAGE: %s", msg));
  1245 void MacroAssembler::print_state64(int64_t pc, int64_t regs[]) {
  1246   ttyLocker ttyl;
  1247   FlagSetting fs(Debugging, true);
  1248   tty->print_cr("rip = 0x%016lx", pc);
  1249 #ifndef PRODUCT
  1250   tty->cr();
  1251   findpc(pc);
  1252   tty->cr();
  1253 #endif
  1254 #define PRINT_REG(rax, value) \
  1255   { tty->print("%s = ", #rax); os::print_location(tty, value); }
  1256   PRINT_REG(rax, regs[15]);
  1257   PRINT_REG(rbx, regs[12]);
  1258   PRINT_REG(rcx, regs[14]);
  1259   PRINT_REG(rdx, regs[13]);
  1260   PRINT_REG(rdi, regs[8]);
  1261   PRINT_REG(rsi, regs[9]);
  1262   PRINT_REG(rbp, regs[10]);
  1263   PRINT_REG(rsp, regs[11]);
  1264   PRINT_REG(r8 , regs[7]);
  1265   PRINT_REG(r9 , regs[6]);
  1266   PRINT_REG(r10, regs[5]);
  1267   PRINT_REG(r11, regs[4]);
  1268   PRINT_REG(r12, regs[3]);
  1269   PRINT_REG(r13, regs[2]);
  1270   PRINT_REG(r14, regs[1]);
  1271   PRINT_REG(r15, regs[0]);
  1272 #undef PRINT_REG
  1273   // Print some words near top of staack.
  1274   int64_t* rsp = (int64_t*) regs[11];
  1275   int64_t* dump_sp = rsp;
  1276   for (int col1 = 0; col1 < 8; col1++) {
  1277     tty->print("(rsp+0x%03x) 0x%016lx: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (int64_t)dump_sp);
  1278     os::print_location(tty, *dump_sp++);
  1280   for (int row = 0; row < 25; row++) {
  1281     tty->print("(rsp+0x%03x) 0x%016lx: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (int64_t)dump_sp);
  1282     for (int col = 0; col < 4; col++) {
  1283       tty->print(" 0x%016lx", *dump_sp++);
  1285     tty->cr();
  1287   // Print some instructions around pc:
  1288   Disassembler::decode((address)pc-64, (address)pc);
  1289   tty->print_cr("--------");
  1290   Disassembler::decode((address)pc, (address)pc+32);
  1293 #endif // _LP64
  1295 // Now versions that are common to 32/64 bit
  1297 void MacroAssembler::addptr(Register dst, int32_t imm32) {
  1298   LP64_ONLY(addq(dst, imm32)) NOT_LP64(addl(dst, imm32));
  1301 void MacroAssembler::addptr(Register dst, Register src) {
  1302   LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src));
  1305 void MacroAssembler::addptr(Address dst, Register src) {
  1306   LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src));
  1309 void MacroAssembler::addsd(XMMRegister dst, AddressLiteral src) {
  1310   if (reachable(src)) {
  1311     Assembler::addsd(dst, as_Address(src));
  1312   } else {
  1313     lea(rscratch1, src);
  1314     Assembler::addsd(dst, Address(rscratch1, 0));
  1318 void MacroAssembler::addss(XMMRegister dst, AddressLiteral src) {
  1319   if (reachable(src)) {
  1320     addss(dst, as_Address(src));
  1321   } else {
  1322     lea(rscratch1, src);
  1323     addss(dst, Address(rscratch1, 0));
  1327 void MacroAssembler::align(int modulus) {
  1328   if (offset() % modulus != 0) {
  1329     nop(modulus - (offset() % modulus));
  1333 void MacroAssembler::andpd(XMMRegister dst, AddressLiteral src) {
  1334   // Used in sign-masking with aligned address.
  1335   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
  1336   if (reachable(src)) {
  1337     Assembler::andpd(dst, as_Address(src));
  1338   } else {
  1339     lea(rscratch1, src);
  1340     Assembler::andpd(dst, Address(rscratch1, 0));
  1344 void MacroAssembler::andps(XMMRegister dst, AddressLiteral src) {
  1345   // Used in sign-masking with aligned address.
  1346   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
  1347   if (reachable(src)) {
  1348     Assembler::andps(dst, as_Address(src));
  1349   } else {
  1350     lea(rscratch1, src);
  1351     Assembler::andps(dst, Address(rscratch1, 0));
  1355 void MacroAssembler::andptr(Register dst, int32_t imm32) {
  1356   LP64_ONLY(andq(dst, imm32)) NOT_LP64(andl(dst, imm32));
  1359 void MacroAssembler::atomic_incl(AddressLiteral counter_addr) {
  1360   pushf();
  1361   if (os::is_MP())
  1362     lock();
  1363   incrementl(counter_addr);
  1364   popf();
  1367 // Writes to stack successive pages until offset reached to check for
  1368 // stack overflow + shadow pages.  This clobbers tmp.
  1369 void MacroAssembler::bang_stack_size(Register size, Register tmp) {
  1370   movptr(tmp, rsp);
  1371   // Bang stack for total size given plus shadow page size.
  1372   // Bang one page at a time because large size can bang beyond yellow and
  1373   // red zones.
  1374   Label loop;
  1375   bind(loop);
  1376   movl(Address(tmp, (-os::vm_page_size())), size );
  1377   subptr(tmp, os::vm_page_size());
  1378   subl(size, os::vm_page_size());
  1379   jcc(Assembler::greater, loop);
  1381   // Bang down shadow pages too.
  1382   // The -1 because we already subtracted 1 page.
  1383   for (int i = 0; i< StackShadowPages-1; i++) {
  1384     // this could be any sized move but this is can be a debugging crumb
  1385     // so the bigger the better.
  1386     movptr(Address(tmp, (-i*os::vm_page_size())), size );
  1390 void MacroAssembler::biased_locking_exit(Register obj_reg, Register temp_reg, Label& done) {
  1391   assert(UseBiasedLocking, "why call this otherwise?");
  1393   // Check for biased locking unlock case, which is a no-op
  1394   // Note: we do not have to check the thread ID for two reasons.
  1395   // First, the interpreter checks for IllegalMonitorStateException at
  1396   // a higher level. Second, if the bias was revoked while we held the
  1397   // lock, the object could not be rebiased toward another thread, so
  1398   // the bias bit would be clear.
  1399   movptr(temp_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes()));
  1400   andptr(temp_reg, markOopDesc::biased_lock_mask_in_place);
  1401   cmpptr(temp_reg, markOopDesc::biased_lock_pattern);
  1402   jcc(Assembler::equal, done);
  1405 void MacroAssembler::c2bool(Register x) {
  1406   // implements x == 0 ? 0 : 1
  1407   // note: must only look at least-significant byte of x
  1408   //       since C-style booleans are stored in one byte
  1409   //       only! (was bug)
  1410   andl(x, 0xFF);
  1411   setb(Assembler::notZero, x);
  1414 // Wouldn't need if AddressLiteral version had new name
  1415 void MacroAssembler::call(Label& L, relocInfo::relocType rtype) {
  1416   Assembler::call(L, rtype);
  1419 void MacroAssembler::call(Register entry) {
  1420   Assembler::call(entry);
  1423 void MacroAssembler::call(AddressLiteral entry) {
  1424   if (reachable(entry)) {
  1425     Assembler::call_literal(entry.target(), entry.rspec());
  1426   } else {
  1427     lea(rscratch1, entry);
  1428     Assembler::call(rscratch1);
  1432 void MacroAssembler::ic_call(address entry) {
  1433   RelocationHolder rh = virtual_call_Relocation::spec(pc());
  1434   movptr(rax, (intptr_t)Universe::non_oop_word());
  1435   call(AddressLiteral(entry, rh));
  1438 // Implementation of call_VM versions
  1440 void MacroAssembler::call_VM(Register oop_result,
  1441                              address entry_point,
  1442                              bool check_exceptions) {
  1443   Label C, E;
  1444   call(C, relocInfo::none);
  1445   jmp(E);
  1447   bind(C);
  1448   call_VM_helper(oop_result, entry_point, 0, check_exceptions);
  1449   ret(0);
  1451   bind(E);
  1454 void MacroAssembler::call_VM(Register oop_result,
  1455                              address entry_point,
  1456                              Register arg_1,
  1457                              bool check_exceptions) {
  1458   Label C, E;
  1459   call(C, relocInfo::none);
  1460   jmp(E);
  1462   bind(C);
  1463   pass_arg1(this, arg_1);
  1464   call_VM_helper(oop_result, entry_point, 1, check_exceptions);
  1465   ret(0);
  1467   bind(E);
  1470 void MacroAssembler::call_VM(Register oop_result,
  1471                              address entry_point,
  1472                              Register arg_1,
  1473                              Register arg_2,
  1474                              bool check_exceptions) {
  1475   Label C, E;
  1476   call(C, relocInfo::none);
  1477   jmp(E);
  1479   bind(C);
  1481   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
  1483   pass_arg2(this, arg_2);
  1484   pass_arg1(this, arg_1);
  1485   call_VM_helper(oop_result, entry_point, 2, check_exceptions);
  1486   ret(0);
  1488   bind(E);
  1491 void MacroAssembler::call_VM(Register oop_result,
  1492                              address entry_point,
  1493                              Register arg_1,
  1494                              Register arg_2,
  1495                              Register arg_3,
  1496                              bool check_exceptions) {
  1497   Label C, E;
  1498   call(C, relocInfo::none);
  1499   jmp(E);
  1501   bind(C);
  1503   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
  1504   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
  1505   pass_arg3(this, arg_3);
  1507   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
  1508   pass_arg2(this, arg_2);
  1510   pass_arg1(this, arg_1);
  1511   call_VM_helper(oop_result, entry_point, 3, check_exceptions);
  1512   ret(0);
  1514   bind(E);
  1517 void MacroAssembler::call_VM(Register oop_result,
  1518                              Register last_java_sp,
  1519                              address entry_point,
  1520                              int number_of_arguments,
  1521                              bool check_exceptions) {
  1522   Register thread = LP64_ONLY(r15_thread) NOT_LP64(noreg);
  1523   call_VM_base(oop_result, thread, last_java_sp, entry_point, number_of_arguments, check_exceptions);
  1526 void MacroAssembler::call_VM(Register oop_result,
  1527                              Register last_java_sp,
  1528                              address entry_point,
  1529                              Register arg_1,
  1530                              bool check_exceptions) {
  1531   pass_arg1(this, arg_1);
  1532   call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions);
  1535 void MacroAssembler::call_VM(Register oop_result,
  1536                              Register last_java_sp,
  1537                              address entry_point,
  1538                              Register arg_1,
  1539                              Register arg_2,
  1540                              bool check_exceptions) {
  1542   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
  1543   pass_arg2(this, arg_2);
  1544   pass_arg1(this, arg_1);
  1545   call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions);
  1548 void MacroAssembler::call_VM(Register oop_result,
  1549                              Register last_java_sp,
  1550                              address entry_point,
  1551                              Register arg_1,
  1552                              Register arg_2,
  1553                              Register arg_3,
  1554                              bool check_exceptions) {
  1555   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
  1556   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
  1557   pass_arg3(this, arg_3);
  1558   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
  1559   pass_arg2(this, arg_2);
  1560   pass_arg1(this, arg_1);
  1561   call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions);
  1564 void MacroAssembler::super_call_VM(Register oop_result,
  1565                                    Register last_java_sp,
  1566                                    address entry_point,
  1567                                    int number_of_arguments,
  1568                                    bool check_exceptions) {
  1569   Register thread = LP64_ONLY(r15_thread) NOT_LP64(noreg);
  1570   MacroAssembler::call_VM_base(oop_result, thread, last_java_sp, entry_point, number_of_arguments, check_exceptions);
  1573 void MacroAssembler::super_call_VM(Register oop_result,
  1574                                    Register last_java_sp,
  1575                                    address entry_point,
  1576                                    Register arg_1,
  1577                                    bool check_exceptions) {
  1578   pass_arg1(this, arg_1);
  1579   super_call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions);
  1582 void MacroAssembler::super_call_VM(Register oop_result,
  1583                                    Register last_java_sp,
  1584                                    address entry_point,
  1585                                    Register arg_1,
  1586                                    Register arg_2,
  1587                                    bool check_exceptions) {
  1589   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
  1590   pass_arg2(this, arg_2);
  1591   pass_arg1(this, arg_1);
  1592   super_call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions);
  1595 void MacroAssembler::super_call_VM(Register oop_result,
  1596                                    Register last_java_sp,
  1597                                    address entry_point,
  1598                                    Register arg_1,
  1599                                    Register arg_2,
  1600                                    Register arg_3,
  1601                                    bool check_exceptions) {
  1602   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
  1603   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
  1604   pass_arg3(this, arg_3);
  1605   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
  1606   pass_arg2(this, arg_2);
  1607   pass_arg1(this, arg_1);
  1608   super_call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions);
  1611 void MacroAssembler::call_VM_base(Register oop_result,
  1612                                   Register java_thread,
  1613                                   Register last_java_sp,
  1614                                   address  entry_point,
  1615                                   int      number_of_arguments,
  1616                                   bool     check_exceptions) {
  1617   // determine java_thread register
  1618   if (!java_thread->is_valid()) {
  1619 #ifdef _LP64
  1620     java_thread = r15_thread;
  1621 #else
  1622     java_thread = rdi;
  1623     get_thread(java_thread);
  1624 #endif // LP64
  1626   // determine last_java_sp register
  1627   if (!last_java_sp->is_valid()) {
  1628     last_java_sp = rsp;
  1630   // debugging support
  1631   assert(number_of_arguments >= 0   , "cannot have negative number of arguments");
  1632   LP64_ONLY(assert(java_thread == r15_thread, "unexpected register"));
  1633 #ifdef ASSERT
  1634   // TraceBytecodes does not use r12 but saves it over the call, so don't verify
  1635   // r12 is the heapbase.
  1636   LP64_ONLY(if ((UseCompressedOops || UseCompressedKlassPointers) && !TraceBytecodes) verify_heapbase("call_VM_base: heap base corrupted?");)
  1637 #endif // ASSERT
  1639   assert(java_thread != oop_result  , "cannot use the same register for java_thread & oop_result");
  1640   assert(java_thread != last_java_sp, "cannot use the same register for java_thread & last_java_sp");
  1642   // push java thread (becomes first argument of C function)
  1644   NOT_LP64(push(java_thread); number_of_arguments++);
  1645   LP64_ONLY(mov(c_rarg0, r15_thread));
  1647   // set last Java frame before call
  1648   assert(last_java_sp != rbp, "can't use ebp/rbp");
  1650   // Only interpreter should have to set fp
  1651   set_last_Java_frame(java_thread, last_java_sp, rbp, NULL);
  1653   // do the call, remove parameters
  1654   MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments);
  1656   // restore the thread (cannot use the pushed argument since arguments
  1657   // may be overwritten by C code generated by an optimizing compiler);
  1658   // however can use the register value directly if it is callee saved.
  1659   if (LP64_ONLY(true ||) java_thread == rdi || java_thread == rsi) {
  1660     // rdi & rsi (also r15) are callee saved -> nothing to do
  1661 #ifdef ASSERT
  1662     guarantee(java_thread != rax, "change this code");
  1663     push(rax);
  1664     { Label L;
  1665       get_thread(rax);
  1666       cmpptr(java_thread, rax);
  1667       jcc(Assembler::equal, L);
  1668       STOP("MacroAssembler::call_VM_base: rdi not callee saved?");
  1669       bind(L);
  1671     pop(rax);
  1672 #endif
  1673   } else {
  1674     get_thread(java_thread);
  1676   // reset last Java frame
  1677   // Only interpreter should have to clear fp
  1678   reset_last_Java_frame(java_thread, true, false);
  1680 #ifndef CC_INTERP
  1681    // C++ interp handles this in the interpreter
  1682   check_and_handle_popframe(java_thread);
  1683   check_and_handle_earlyret(java_thread);
  1684 #endif /* CC_INTERP */
  1686   if (check_exceptions) {
  1687     // check for pending exceptions (java_thread is set upon return)
  1688     cmpptr(Address(java_thread, Thread::pending_exception_offset()), (int32_t) NULL_WORD);
  1689 #ifndef _LP64
  1690     jump_cc(Assembler::notEqual,
  1691             RuntimeAddress(StubRoutines::forward_exception_entry()));
  1692 #else
  1693     // This used to conditionally jump to forward_exception however it is
  1694     // possible if we relocate that the branch will not reach. So we must jump
  1695     // around so we can always reach
  1697     Label ok;
  1698     jcc(Assembler::equal, ok);
  1699     jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
  1700     bind(ok);
  1701 #endif // LP64
  1704   // get oop result if there is one and reset the value in the thread
  1705   if (oop_result->is_valid()) {
  1706     get_vm_result(oop_result, java_thread);
  1710 void MacroAssembler::call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions) {
  1712   // Calculate the value for last_Java_sp
  1713   // somewhat subtle. call_VM does an intermediate call
  1714   // which places a return address on the stack just under the
  1715   // stack pointer as the user finsihed with it. This allows
  1716   // use to retrieve last_Java_pc from last_Java_sp[-1].
  1717   // On 32bit we then have to push additional args on the stack to accomplish
  1718   // the actual requested call. On 64bit call_VM only can use register args
  1719   // so the only extra space is the return address that call_VM created.
  1720   // This hopefully explains the calculations here.
  1722 #ifdef _LP64
  1723   // We've pushed one address, correct last_Java_sp
  1724   lea(rax, Address(rsp, wordSize));
  1725 #else
  1726   lea(rax, Address(rsp, (1 + number_of_arguments) * wordSize));
  1727 #endif // LP64
  1729   call_VM_base(oop_result, noreg, rax, entry_point, number_of_arguments, check_exceptions);
  1733 void MacroAssembler::call_VM_leaf(address entry_point, int number_of_arguments) {
  1734   call_VM_leaf_base(entry_point, number_of_arguments);
  1737 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0) {
  1738   pass_arg0(this, arg_0);
  1739   call_VM_leaf(entry_point, 1);
  1742 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1) {
  1744   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
  1745   pass_arg1(this, arg_1);
  1746   pass_arg0(this, arg_0);
  1747   call_VM_leaf(entry_point, 2);
  1750 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) {
  1751   LP64_ONLY(assert(arg_0 != c_rarg2, "smashed arg"));
  1752   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
  1753   pass_arg2(this, arg_2);
  1754   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
  1755   pass_arg1(this, arg_1);
  1756   pass_arg0(this, arg_0);
  1757   call_VM_leaf(entry_point, 3);
  1760 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0) {
  1761   pass_arg0(this, arg_0);
  1762   MacroAssembler::call_VM_leaf_base(entry_point, 1);
  1765 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1) {
  1767   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
  1768   pass_arg1(this, arg_1);
  1769   pass_arg0(this, arg_0);
  1770   MacroAssembler::call_VM_leaf_base(entry_point, 2);
  1773 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) {
  1774   LP64_ONLY(assert(arg_0 != c_rarg2, "smashed arg"));
  1775   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
  1776   pass_arg2(this, arg_2);
  1777   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
  1778   pass_arg1(this, arg_1);
  1779   pass_arg0(this, arg_0);
  1780   MacroAssembler::call_VM_leaf_base(entry_point, 3);
  1783 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2, Register arg_3) {
  1784   LP64_ONLY(assert(arg_0 != c_rarg3, "smashed arg"));
  1785   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
  1786   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
  1787   pass_arg3(this, arg_3);
  1788   LP64_ONLY(assert(arg_0 != c_rarg2, "smashed arg"));
  1789   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
  1790   pass_arg2(this, arg_2);
  1791   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
  1792   pass_arg1(this, arg_1);
  1793   pass_arg0(this, arg_0);
  1794   MacroAssembler::call_VM_leaf_base(entry_point, 4);
  1797 void MacroAssembler::get_vm_result(Register oop_result, Register java_thread) {
  1798   movptr(oop_result, Address(java_thread, JavaThread::vm_result_offset()));
  1799   movptr(Address(java_thread, JavaThread::vm_result_offset()), NULL_WORD);
  1800   verify_oop(oop_result, "broken oop in call_VM_base");
  1803 void MacroAssembler::get_vm_result_2(Register metadata_result, Register java_thread) {
  1804   movptr(metadata_result, Address(java_thread, JavaThread::vm_result_2_offset()));
  1805   movptr(Address(java_thread, JavaThread::vm_result_2_offset()), NULL_WORD);
  1808 void MacroAssembler::check_and_handle_earlyret(Register java_thread) {
  1811 void MacroAssembler::check_and_handle_popframe(Register java_thread) {
  1814 void MacroAssembler::cmp32(AddressLiteral src1, int32_t imm) {
  1815   if (reachable(src1)) {
  1816     cmpl(as_Address(src1), imm);
  1817   } else {
  1818     lea(rscratch1, src1);
  1819     cmpl(Address(rscratch1, 0), imm);
  1823 void MacroAssembler::cmp32(Register src1, AddressLiteral src2) {
  1824   assert(!src2.is_lval(), "use cmpptr");
  1825   if (reachable(src2)) {
  1826     cmpl(src1, as_Address(src2));
  1827   } else {
  1828     lea(rscratch1, src2);
  1829     cmpl(src1, Address(rscratch1, 0));
  1833 void MacroAssembler::cmp32(Register src1, int32_t imm) {
  1834   Assembler::cmpl(src1, imm);
  1837 void MacroAssembler::cmp32(Register src1, Address src2) {
  1838   Assembler::cmpl(src1, src2);
  1841 void MacroAssembler::cmpsd2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less) {
  1842   ucomisd(opr1, opr2);
  1844   Label L;
  1845   if (unordered_is_less) {
  1846     movl(dst, -1);
  1847     jcc(Assembler::parity, L);
  1848     jcc(Assembler::below , L);
  1849     movl(dst, 0);
  1850     jcc(Assembler::equal , L);
  1851     increment(dst);
  1852   } else { // unordered is greater
  1853     movl(dst, 1);
  1854     jcc(Assembler::parity, L);
  1855     jcc(Assembler::above , L);
  1856     movl(dst, 0);
  1857     jcc(Assembler::equal , L);
  1858     decrementl(dst);
  1860   bind(L);
  1863 void MacroAssembler::cmpss2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less) {
  1864   ucomiss(opr1, opr2);
  1866   Label L;
  1867   if (unordered_is_less) {
  1868     movl(dst, -1);
  1869     jcc(Assembler::parity, L);
  1870     jcc(Assembler::below , L);
  1871     movl(dst, 0);
  1872     jcc(Assembler::equal , L);
  1873     increment(dst);
  1874   } else { // unordered is greater
  1875     movl(dst, 1);
  1876     jcc(Assembler::parity, L);
  1877     jcc(Assembler::above , L);
  1878     movl(dst, 0);
  1879     jcc(Assembler::equal , L);
  1880     decrementl(dst);
  1882   bind(L);
  1886 void MacroAssembler::cmp8(AddressLiteral src1, int imm) {
  1887   if (reachable(src1)) {
  1888     cmpb(as_Address(src1), imm);
  1889   } else {
  1890     lea(rscratch1, src1);
  1891     cmpb(Address(rscratch1, 0), imm);
  1895 void MacroAssembler::cmpptr(Register src1, AddressLiteral src2) {
  1896 #ifdef _LP64
  1897   if (src2.is_lval()) {
  1898     movptr(rscratch1, src2);
  1899     Assembler::cmpq(src1, rscratch1);
  1900   } else if (reachable(src2)) {
  1901     cmpq(src1, as_Address(src2));
  1902   } else {
  1903     lea(rscratch1, src2);
  1904     Assembler::cmpq(src1, Address(rscratch1, 0));
  1906 #else
  1907   if (src2.is_lval()) {
  1908     cmp_literal32(src1, (int32_t) src2.target(), src2.rspec());
  1909   } else {
  1910     cmpl(src1, as_Address(src2));
  1912 #endif // _LP64
  1915 void MacroAssembler::cmpptr(Address src1, AddressLiteral src2) {
  1916   assert(src2.is_lval(), "not a mem-mem compare");
  1917 #ifdef _LP64
  1918   // moves src2's literal address
  1919   movptr(rscratch1, src2);
  1920   Assembler::cmpq(src1, rscratch1);
  1921 #else
  1922   cmp_literal32(src1, (int32_t) src2.target(), src2.rspec());
  1923 #endif // _LP64
  1926 void MacroAssembler::locked_cmpxchgptr(Register reg, AddressLiteral adr) {
  1927   if (reachable(adr)) {
  1928     if (os::is_MP())
  1929       lock();
  1930     cmpxchgptr(reg, as_Address(adr));
  1931   } else {
  1932     lea(rscratch1, adr);
  1933     if (os::is_MP())
  1934       lock();
  1935     cmpxchgptr(reg, Address(rscratch1, 0));
  1939 void MacroAssembler::cmpxchgptr(Register reg, Address adr) {
  1940   LP64_ONLY(cmpxchgq(reg, adr)) NOT_LP64(cmpxchgl(reg, adr));
  1943 void MacroAssembler::comisd(XMMRegister dst, AddressLiteral src) {
  1944   if (reachable(src)) {
  1945     Assembler::comisd(dst, as_Address(src));
  1946   } else {
  1947     lea(rscratch1, src);
  1948     Assembler::comisd(dst, Address(rscratch1, 0));
  1952 void MacroAssembler::comiss(XMMRegister dst, AddressLiteral src) {
  1953   if (reachable(src)) {
  1954     Assembler::comiss(dst, as_Address(src));
  1955   } else {
  1956     lea(rscratch1, src);
  1957     Assembler::comiss(dst, Address(rscratch1, 0));
  1962 void MacroAssembler::cond_inc32(Condition cond, AddressLiteral counter_addr) {
  1963   Condition negated_cond = negate_condition(cond);
  1964   Label L;
  1965   jcc(negated_cond, L);
  1966   atomic_incl(counter_addr);
  1967   bind(L);
  1970 int MacroAssembler::corrected_idivl(Register reg) {
  1971   // Full implementation of Java idiv and irem; checks for
  1972   // special case as described in JVM spec., p.243 & p.271.
  1973   // The function returns the (pc) offset of the idivl
  1974   // instruction - may be needed for implicit exceptions.
  1975   //
  1976   //         normal case                           special case
  1977   //
  1978   // input : rax,: dividend                         min_int
  1979   //         reg: divisor   (may not be rax,/rdx)   -1
  1980   //
  1981   // output: rax,: quotient  (= rax, idiv reg)       min_int
  1982   //         rdx: remainder (= rax, irem reg)       0
  1983   assert(reg != rax && reg != rdx, "reg cannot be rax, or rdx register");
  1984   const int min_int = 0x80000000;
  1985   Label normal_case, special_case;
  1987   // check for special case
  1988   cmpl(rax, min_int);
  1989   jcc(Assembler::notEqual, normal_case);
  1990   xorl(rdx, rdx); // prepare rdx for possible special case (where remainder = 0)
  1991   cmpl(reg, -1);
  1992   jcc(Assembler::equal, special_case);
  1994   // handle normal case
  1995   bind(normal_case);
  1996   cdql();
  1997   int idivl_offset = offset();
  1998   idivl(reg);
  2000   // normal and special case exit
  2001   bind(special_case);
  2003   return idivl_offset;
  2008 void MacroAssembler::decrementl(Register reg, int value) {
  2009   if (value == min_jint) {subl(reg, value) ; return; }
  2010   if (value <  0) { incrementl(reg, -value); return; }
  2011   if (value == 0) {                        ; return; }
  2012   if (value == 1 && UseIncDec) { decl(reg) ; return; }
  2013   /* else */      { subl(reg, value)       ; return; }
  2016 void MacroAssembler::decrementl(Address dst, int value) {
  2017   if (value == min_jint) {subl(dst, value) ; return; }
  2018   if (value <  0) { incrementl(dst, -value); return; }
  2019   if (value == 0) {                        ; return; }
  2020   if (value == 1 && UseIncDec) { decl(dst) ; return; }
  2021   /* else */      { subl(dst, value)       ; return; }
  2024 void MacroAssembler::division_with_shift (Register reg, int shift_value) {
  2025   assert (shift_value > 0, "illegal shift value");
  2026   Label _is_positive;
  2027   testl (reg, reg);
  2028   jcc (Assembler::positive, _is_positive);
  2029   int offset = (1 << shift_value) - 1 ;
  2031   if (offset == 1) {
  2032     incrementl(reg);
  2033   } else {
  2034     addl(reg, offset);
  2037   bind (_is_positive);
  2038   sarl(reg, shift_value);
  2041 void MacroAssembler::divsd(XMMRegister dst, AddressLiteral src) {
  2042   if (reachable(src)) {
  2043     Assembler::divsd(dst, as_Address(src));
  2044   } else {
  2045     lea(rscratch1, src);
  2046     Assembler::divsd(dst, Address(rscratch1, 0));
  2050 void MacroAssembler::divss(XMMRegister dst, AddressLiteral src) {
  2051   if (reachable(src)) {
  2052     Assembler::divss(dst, as_Address(src));
  2053   } else {
  2054     lea(rscratch1, src);
  2055     Assembler::divss(dst, Address(rscratch1, 0));
  2059 // !defined(COMPILER2) is because of stupid core builds
  2060 #if !defined(_LP64) || defined(COMPILER1) || !defined(COMPILER2)
  2061 void MacroAssembler::empty_FPU_stack() {
  2062   if (VM_Version::supports_mmx()) {
  2063     emms();
  2064   } else {
  2065     for (int i = 8; i-- > 0; ) ffree(i);
  2068 #endif // !LP64 || C1 || !C2
  2071 // Defines obj, preserves var_size_in_bytes
  2072 void MacroAssembler::eden_allocate(Register obj,
  2073                                    Register var_size_in_bytes,
  2074                                    int con_size_in_bytes,
  2075                                    Register t1,
  2076                                    Label& slow_case) {
  2077   assert(obj == rax, "obj must be in rax, for cmpxchg");
  2078   assert_different_registers(obj, var_size_in_bytes, t1);
  2079   if (CMSIncrementalMode || !Universe::heap()->supports_inline_contig_alloc()) {
  2080     jmp(slow_case);
  2081   } else {
  2082     Register end = t1;
  2083     Label retry;
  2084     bind(retry);
  2085     ExternalAddress heap_top((address) Universe::heap()->top_addr());
  2086     movptr(obj, heap_top);
  2087     if (var_size_in_bytes == noreg) {
  2088       lea(end, Address(obj, con_size_in_bytes));
  2089     } else {
  2090       lea(end, Address(obj, var_size_in_bytes, Address::times_1));
  2092     // if end < obj then we wrapped around => object too long => slow case
  2093     cmpptr(end, obj);
  2094     jcc(Assembler::below, slow_case);
  2095     cmpptr(end, ExternalAddress((address) Universe::heap()->end_addr()));
  2096     jcc(Assembler::above, slow_case);
  2097     // Compare obj with the top addr, and if still equal, store the new top addr in
  2098     // end at the address of the top addr pointer. Sets ZF if was equal, and clears
  2099     // it otherwise. Use lock prefix for atomicity on MPs.
  2100     locked_cmpxchgptr(end, heap_top);
  2101     jcc(Assembler::notEqual, retry);
  2105 void MacroAssembler::enter() {
  2106   push(rbp);
  2107   mov(rbp, rsp);
  2110 // A 5 byte nop that is safe for patching (see patch_verified_entry)
  2111 void MacroAssembler::fat_nop() {
  2112   if (UseAddressNop) {
  2113     addr_nop_5();
  2114   } else {
  2115     emit_byte(0x26); // es:
  2116     emit_byte(0x2e); // cs:
  2117     emit_byte(0x64); // fs:
  2118     emit_byte(0x65); // gs:
  2119     emit_byte(0x90);
  2123 void MacroAssembler::fcmp(Register tmp) {
  2124   fcmp(tmp, 1, true, true);
  2127 void MacroAssembler::fcmp(Register tmp, int index, bool pop_left, bool pop_right) {
  2128   assert(!pop_right || pop_left, "usage error");
  2129   if (VM_Version::supports_cmov()) {
  2130     assert(tmp == noreg, "unneeded temp");
  2131     if (pop_left) {
  2132       fucomip(index);
  2133     } else {
  2134       fucomi(index);
  2136     if (pop_right) {
  2137       fpop();
  2139   } else {
  2140     assert(tmp != noreg, "need temp");
  2141     if (pop_left) {
  2142       if (pop_right) {
  2143         fcompp();
  2144       } else {
  2145         fcomp(index);
  2147     } else {
  2148       fcom(index);
  2150     // convert FPU condition into eflags condition via rax,
  2151     save_rax(tmp);
  2152     fwait(); fnstsw_ax();
  2153     sahf();
  2154     restore_rax(tmp);
  2156   // condition codes set as follows:
  2157   //
  2158   // CF (corresponds to C0) if x < y
  2159   // PF (corresponds to C2) if unordered
  2160   // ZF (corresponds to C3) if x = y
  2163 void MacroAssembler::fcmp2int(Register dst, bool unordered_is_less) {
  2164   fcmp2int(dst, unordered_is_less, 1, true, true);
  2167 void MacroAssembler::fcmp2int(Register dst, bool unordered_is_less, int index, bool pop_left, bool pop_right) {
  2168   fcmp(VM_Version::supports_cmov() ? noreg : dst, index, pop_left, pop_right);
  2169   Label L;
  2170   if (unordered_is_less) {
  2171     movl(dst, -1);
  2172     jcc(Assembler::parity, L);
  2173     jcc(Assembler::below , L);
  2174     movl(dst, 0);
  2175     jcc(Assembler::equal , L);
  2176     increment(dst);
  2177   } else { // unordered is greater
  2178     movl(dst, 1);
  2179     jcc(Assembler::parity, L);
  2180     jcc(Assembler::above , L);
  2181     movl(dst, 0);
  2182     jcc(Assembler::equal , L);
  2183     decrementl(dst);
  2185   bind(L);
  2188 void MacroAssembler::fld_d(AddressLiteral src) {
  2189   fld_d(as_Address(src));
  2192 void MacroAssembler::fld_s(AddressLiteral src) {
  2193   fld_s(as_Address(src));
  2196 void MacroAssembler::fld_x(AddressLiteral src) {
  2197   Assembler::fld_x(as_Address(src));
  2200 void MacroAssembler::fldcw(AddressLiteral src) {
  2201   Assembler::fldcw(as_Address(src));
  2204 void MacroAssembler::pow_exp_core_encoding() {
  2205   // kills rax, rcx, rdx
  2206   subptr(rsp,sizeof(jdouble));
  2207   // computes 2^X. Stack: X ...
  2208   // f2xm1 computes 2^X-1 but only operates on -1<=X<=1. Get int(X) and
  2209   // keep it on the thread's stack to compute 2^int(X) later
  2210   // then compute 2^(X-int(X)) as (2^(X-int(X)-1+1)
  2211   // final result is obtained with: 2^X = 2^int(X) * 2^(X-int(X))
  2212   fld_s(0);                 // Stack: X X ...
  2213   frndint();                // Stack: int(X) X ...
  2214   fsuba(1);                 // Stack: int(X) X-int(X) ...
  2215   fistp_s(Address(rsp,0));  // move int(X) as integer to thread's stack. Stack: X-int(X) ...
  2216   f2xm1();                  // Stack: 2^(X-int(X))-1 ...
  2217   fld1();                   // Stack: 1 2^(X-int(X))-1 ...
  2218   faddp(1);                 // Stack: 2^(X-int(X))
  2219   // computes 2^(int(X)): add exponent bias (1023) to int(X), then
  2220   // shift int(X)+1023 to exponent position.
  2221   // Exponent is limited to 11 bits if int(X)+1023 does not fit in 11
  2222   // bits, set result to NaN. 0x000 and 0x7FF are reserved exponent
  2223   // values so detect them and set result to NaN.
  2224   movl(rax,Address(rsp,0));
  2225   movl(rcx, -2048); // 11 bit mask and valid NaN binary encoding
  2226   addl(rax, 1023);
  2227   movl(rdx,rax);
  2228   shll(rax,20);
  2229   // Check that 0 < int(X)+1023 < 2047. Otherwise set rax to NaN.
  2230   addl(rdx,1);
  2231   // Check that 1 < int(X)+1023+1 < 2048
  2232   // in 3 steps:
  2233   // 1- (int(X)+1023+1)&-2048 == 0 => 0 <= int(X)+1023+1 < 2048
  2234   // 2- (int(X)+1023+1)&-2048 != 0
  2235   // 3- (int(X)+1023+1)&-2048 != 1
  2236   // Do 2- first because addl just updated the flags.
  2237   cmov32(Assembler::equal,rax,rcx);
  2238   cmpl(rdx,1);
  2239   cmov32(Assembler::equal,rax,rcx);
  2240   testl(rdx,rcx);
  2241   cmov32(Assembler::notEqual,rax,rcx);
  2242   movl(Address(rsp,4),rax);
  2243   movl(Address(rsp,0),0);
  2244   fmul_d(Address(rsp,0));   // Stack: 2^X ...
  2245   addptr(rsp,sizeof(jdouble));
  2248 void MacroAssembler::increase_precision() {
  2249   subptr(rsp, BytesPerWord);
  2250   fnstcw(Address(rsp, 0));
  2251   movl(rax, Address(rsp, 0));
  2252   orl(rax, 0x300);
  2253   push(rax);
  2254   fldcw(Address(rsp, 0));
  2255   pop(rax);
  2258 void MacroAssembler::restore_precision() {
  2259   fldcw(Address(rsp, 0));
  2260   addptr(rsp, BytesPerWord);
  2263 void MacroAssembler::fast_pow() {
  2264   // computes X^Y = 2^(Y * log2(X))
  2265   // if fast computation is not possible, result is NaN. Requires
  2266   // fallback from user of this macro.
  2267   // increase precision for intermediate steps of the computation
  2268   increase_precision();
  2269   fyl2x();                 // Stack: (Y*log2(X)) ...
  2270   pow_exp_core_encoding(); // Stack: exp(X) ...
  2271   restore_precision();
  2274 void MacroAssembler::fast_exp() {
  2275   // computes exp(X) = 2^(X * log2(e))
  2276   // if fast computation is not possible, result is NaN. Requires
  2277   // fallback from user of this macro.
  2278   // increase precision for intermediate steps of the computation
  2279   increase_precision();
  2280   fldl2e();                // Stack: log2(e) X ...
  2281   fmulp(1);                // Stack: (X*log2(e)) ...
  2282   pow_exp_core_encoding(); // Stack: exp(X) ...
  2283   restore_precision();
  2286 void MacroAssembler::pow_or_exp(bool is_exp, int num_fpu_regs_in_use) {
  2287   // kills rax, rcx, rdx
  2288   // pow and exp needs 2 extra registers on the fpu stack.
  2289   Label slow_case, done;
  2290   Register tmp = noreg;
  2291   if (!VM_Version::supports_cmov()) {
  2292     // fcmp needs a temporary so preserve rdx,
  2293     tmp = rdx;
  2295   Register tmp2 = rax;
  2296   Register tmp3 = rcx;
  2298   if (is_exp) {
  2299     // Stack: X
  2300     fld_s(0);                   // duplicate argument for runtime call. Stack: X X
  2301     fast_exp();                 // Stack: exp(X) X
  2302     fcmp(tmp, 0, false, false); // Stack: exp(X) X
  2303     // exp(X) not equal to itself: exp(X) is NaN go to slow case.
  2304     jcc(Assembler::parity, slow_case);
  2305     // get rid of duplicate argument. Stack: exp(X)
  2306     if (num_fpu_regs_in_use > 0) {
  2307       fxch();
  2308       fpop();
  2309     } else {
  2310       ffree(1);
  2312     jmp(done);
  2313   } else {
  2314     // Stack: X Y
  2315     Label x_negative, y_odd;
  2317     fldz();                     // Stack: 0 X Y
  2318     fcmp(tmp, 1, true, false);  // Stack: X Y
  2319     jcc(Assembler::above, x_negative);
  2321     // X >= 0
  2323     fld_s(1);                   // duplicate arguments for runtime call. Stack: Y X Y
  2324     fld_s(1);                   // Stack: X Y X Y
  2325     fast_pow();                 // Stack: X^Y X Y
  2326     fcmp(tmp, 0, false, false); // Stack: X^Y X Y
  2327     // X^Y not equal to itself: X^Y is NaN go to slow case.
  2328     jcc(Assembler::parity, slow_case);
  2329     // get rid of duplicate arguments. Stack: X^Y
  2330     if (num_fpu_regs_in_use > 0) {
  2331       fxch(); fpop();
  2332       fxch(); fpop();
  2333     } else {
  2334       ffree(2);
  2335       ffree(1);
  2337     jmp(done);
  2339     // X <= 0
  2340     bind(x_negative);
  2342     fld_s(1);                   // Stack: Y X Y
  2343     frndint();                  // Stack: int(Y) X Y
  2344     fcmp(tmp, 2, false, false); // Stack: int(Y) X Y
  2345     jcc(Assembler::notEqual, slow_case);
  2347     subptr(rsp, 8);
  2349     // For X^Y, when X < 0, Y has to be an integer and the final
  2350     // result depends on whether it's odd or even. We just checked
  2351     // that int(Y) == Y.  We move int(Y) to gp registers as a 64 bit
  2352     // integer to test its parity. If int(Y) is huge and doesn't fit
  2353     // in the 64 bit integer range, the integer indefinite value will
  2354     // end up in the gp registers. Huge numbers are all even, the
  2355     // integer indefinite number is even so it's fine.
  2357 #ifdef ASSERT
  2358     // Let's check we don't end up with an integer indefinite number
  2359     // when not expected. First test for huge numbers: check whether
  2360     // int(Y)+1 == int(Y) which is true for very large numbers and
  2361     // those are all even. A 64 bit integer is guaranteed to not
  2362     // overflow for numbers where y+1 != y (when precision is set to
  2363     // double precision).
  2364     Label y_not_huge;
  2366     fld1();                     // Stack: 1 int(Y) X Y
  2367     fadd(1);                    // Stack: 1+int(Y) int(Y) X Y
  2369 #ifdef _LP64
  2370     // trip to memory to force the precision down from double extended
  2371     // precision
  2372     fstp_d(Address(rsp, 0));
  2373     fld_d(Address(rsp, 0));
  2374 #endif
  2376     fcmp(tmp, 1, true, false);  // Stack: int(Y) X Y
  2377 #endif
  2379     // move int(Y) as 64 bit integer to thread's stack
  2380     fistp_d(Address(rsp,0));    // Stack: X Y
  2382 #ifdef ASSERT
  2383     jcc(Assembler::notEqual, y_not_huge);
  2385     // Y is huge so we know it's even. It may not fit in a 64 bit
  2386     // integer and we don't want the debug code below to see the
  2387     // integer indefinite value so overwrite int(Y) on the thread's
  2388     // stack with 0.
  2389     movl(Address(rsp, 0), 0);
  2390     movl(Address(rsp, 4), 0);
  2392     bind(y_not_huge);
  2393 #endif
  2395     fld_s(1);                   // duplicate arguments for runtime call. Stack: Y X Y
  2396     fld_s(1);                   // Stack: X Y X Y
  2397     fabs();                     // Stack: abs(X) Y X Y
  2398     fast_pow();                 // Stack: abs(X)^Y X Y
  2399     fcmp(tmp, 0, false, false); // Stack: abs(X)^Y X Y
  2400     // abs(X)^Y not equal to itself: abs(X)^Y is NaN go to slow case.
  2402     pop(tmp2);
  2403     NOT_LP64(pop(tmp3));
  2404     jcc(Assembler::parity, slow_case);
  2406 #ifdef ASSERT
  2407     // Check that int(Y) is not integer indefinite value (int
  2408     // overflow). Shouldn't happen because for values that would
  2409     // overflow, 1+int(Y)==Y which was tested earlier.
  2410 #ifndef _LP64
  2412       Label integer;
  2413       testl(tmp2, tmp2);
  2414       jcc(Assembler::notZero, integer);
  2415       cmpl(tmp3, 0x80000000);
  2416       jcc(Assembler::notZero, integer);
  2417       STOP("integer indefinite value shouldn't be seen here");
  2418       bind(integer);
  2420 #else
  2422       Label integer;
  2423       mov(tmp3, tmp2); // preserve tmp2 for parity check below
  2424       shlq(tmp3, 1);
  2425       jcc(Assembler::carryClear, integer);
  2426       jcc(Assembler::notZero, integer);
  2427       STOP("integer indefinite value shouldn't be seen here");
  2428       bind(integer);
  2430 #endif
  2431 #endif
  2433     // get rid of duplicate arguments. Stack: X^Y
  2434     if (num_fpu_regs_in_use > 0) {
  2435       fxch(); fpop();
  2436       fxch(); fpop();
  2437     } else {
  2438       ffree(2);
  2439       ffree(1);
  2442     testl(tmp2, 1);
  2443     jcc(Assembler::zero, done); // X <= 0, Y even: X^Y = abs(X)^Y
  2444     // X <= 0, Y even: X^Y = -abs(X)^Y
  2446     fchs();                     // Stack: -abs(X)^Y Y
  2447     jmp(done);
  2450   // slow case: runtime call
  2451   bind(slow_case);
  2453   fpop();                       // pop incorrect result or int(Y)
  2455   fp_runtime_fallback(is_exp ? CAST_FROM_FN_PTR(address, SharedRuntime::dexp) : CAST_FROM_FN_PTR(address, SharedRuntime::dpow),
  2456                       is_exp ? 1 : 2, num_fpu_regs_in_use);
  2458   // Come here with result in F-TOS
  2459   bind(done);
  2462 void MacroAssembler::fpop() {
  2463   ffree();
  2464   fincstp();
  2467 void MacroAssembler::fremr(Register tmp) {
  2468   save_rax(tmp);
  2469   { Label L;
  2470     bind(L);
  2471     fprem();
  2472     fwait(); fnstsw_ax();
  2473 #ifdef _LP64
  2474     testl(rax, 0x400);
  2475     jcc(Assembler::notEqual, L);
  2476 #else
  2477     sahf();
  2478     jcc(Assembler::parity, L);
  2479 #endif // _LP64
  2481   restore_rax(tmp);
  2482   // Result is in ST0.
  2483   // Note: fxch & fpop to get rid of ST1
  2484   // (otherwise FPU stack could overflow eventually)
  2485   fxch(1);
  2486   fpop();
  2490 void MacroAssembler::incrementl(AddressLiteral dst) {
  2491   if (reachable(dst)) {
  2492     incrementl(as_Address(dst));
  2493   } else {
  2494     lea(rscratch1, dst);
  2495     incrementl(Address(rscratch1, 0));
  2499 void MacroAssembler::incrementl(ArrayAddress dst) {
  2500   incrementl(as_Address(dst));
  2503 void MacroAssembler::incrementl(Register reg, int value) {
  2504   if (value == min_jint) {addl(reg, value) ; return; }
  2505   if (value <  0) { decrementl(reg, -value); return; }
  2506   if (value == 0) {                        ; return; }
  2507   if (value == 1 && UseIncDec) { incl(reg) ; return; }
  2508   /* else */      { addl(reg, value)       ; return; }
  2511 void MacroAssembler::incrementl(Address dst, int value) {
  2512   if (value == min_jint) {addl(dst, value) ; return; }
  2513   if (value <  0) { decrementl(dst, -value); return; }
  2514   if (value == 0) {                        ; return; }
  2515   if (value == 1 && UseIncDec) { incl(dst) ; return; }
  2516   /* else */      { addl(dst, value)       ; return; }
  2519 void MacroAssembler::jump(AddressLiteral dst) {
  2520   if (reachable(dst)) {
  2521     jmp_literal(dst.target(), dst.rspec());
  2522   } else {
  2523     lea(rscratch1, dst);
  2524     jmp(rscratch1);
  2528 void MacroAssembler::jump_cc(Condition cc, AddressLiteral dst) {
  2529   if (reachable(dst)) {
  2530     InstructionMark im(this);
  2531     relocate(dst.reloc());
  2532     const int short_size = 2;
  2533     const int long_size = 6;
  2534     int offs = (intptr_t)dst.target() - ((intptr_t)pc());
  2535     if (dst.reloc() == relocInfo::none && is8bit(offs - short_size)) {
  2536       // 0111 tttn #8-bit disp
  2537       emit_byte(0x70 | cc);
  2538       emit_byte((offs - short_size) & 0xFF);
  2539     } else {
  2540       // 0000 1111 1000 tttn #32-bit disp
  2541       emit_byte(0x0F);
  2542       emit_byte(0x80 | cc);
  2543       emit_long(offs - long_size);
  2545   } else {
  2546 #ifdef ASSERT
  2547     warning("reversing conditional branch");
  2548 #endif /* ASSERT */
  2549     Label skip;
  2550     jccb(reverse[cc], skip);
  2551     lea(rscratch1, dst);
  2552     Assembler::jmp(rscratch1);
  2553     bind(skip);
  2557 void MacroAssembler::ldmxcsr(AddressLiteral src) {
  2558   if (reachable(src)) {
  2559     Assembler::ldmxcsr(as_Address(src));
  2560   } else {
  2561     lea(rscratch1, src);
  2562     Assembler::ldmxcsr(Address(rscratch1, 0));
  2566 int MacroAssembler::load_signed_byte(Register dst, Address src) {
  2567   int off;
  2568   if (LP64_ONLY(true ||) VM_Version::is_P6()) {
  2569     off = offset();
  2570     movsbl(dst, src); // movsxb
  2571   } else {
  2572     off = load_unsigned_byte(dst, src);
  2573     shll(dst, 24);
  2574     sarl(dst, 24);
  2576   return off;
  2579 // Note: load_signed_short used to be called load_signed_word.
  2580 // Although the 'w' in x86 opcodes refers to the term "word" in the assembler
  2581 // manual, which means 16 bits, that usage is found nowhere in HotSpot code.
  2582 // The term "word" in HotSpot means a 32- or 64-bit machine word.
  2583 int MacroAssembler::load_signed_short(Register dst, Address src) {
  2584   int off;
  2585   if (LP64_ONLY(true ||) VM_Version::is_P6()) {
  2586     // This is dubious to me since it seems safe to do a signed 16 => 64 bit
  2587     // version but this is what 64bit has always done. This seems to imply
  2588     // that users are only using 32bits worth.
  2589     off = offset();
  2590     movswl(dst, src); // movsxw
  2591   } else {
  2592     off = load_unsigned_short(dst, src);
  2593     shll(dst, 16);
  2594     sarl(dst, 16);
  2596   return off;
  2599 int MacroAssembler::load_unsigned_byte(Register dst, Address src) {
  2600   // According to Intel Doc. AP-526, "Zero-Extension of Short", p.16,
  2601   // and "3.9 Partial Register Penalties", p. 22).
  2602   int off;
  2603   if (LP64_ONLY(true || ) VM_Version::is_P6() || src.uses(dst)) {
  2604     off = offset();
  2605     movzbl(dst, src); // movzxb
  2606   } else {
  2607     xorl(dst, dst);
  2608     off = offset();
  2609     movb(dst, src);
  2611   return off;
  2614 // Note: load_unsigned_short used to be called load_unsigned_word.
  2615 int MacroAssembler::load_unsigned_short(Register dst, Address src) {
  2616   // According to Intel Doc. AP-526, "Zero-Extension of Short", p.16,
  2617   // and "3.9 Partial Register Penalties", p. 22).
  2618   int off;
  2619   if (LP64_ONLY(true ||) VM_Version::is_P6() || src.uses(dst)) {
  2620     off = offset();
  2621     movzwl(dst, src); // movzxw
  2622   } else {
  2623     xorl(dst, dst);
  2624     off = offset();
  2625     movw(dst, src);
  2627   return off;
  2630 void MacroAssembler::load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed, Register dst2) {
  2631   switch (size_in_bytes) {
  2632 #ifndef _LP64
  2633   case  8:
  2634     assert(dst2 != noreg, "second dest register required");
  2635     movl(dst,  src);
  2636     movl(dst2, src.plus_disp(BytesPerInt));
  2637     break;
  2638 #else
  2639   case  8:  movq(dst, src); break;
  2640 #endif
  2641   case  4:  movl(dst, src); break;
  2642   case  2:  is_signed ? load_signed_short(dst, src) : load_unsigned_short(dst, src); break;
  2643   case  1:  is_signed ? load_signed_byte( dst, src) : load_unsigned_byte( dst, src); break;
  2644   default:  ShouldNotReachHere();
  2648 void MacroAssembler::store_sized_value(Address dst, Register src, size_t size_in_bytes, Register src2) {
  2649   switch (size_in_bytes) {
  2650 #ifndef _LP64
  2651   case  8:
  2652     assert(src2 != noreg, "second source register required");
  2653     movl(dst,                        src);
  2654     movl(dst.plus_disp(BytesPerInt), src2);
  2655     break;
  2656 #else
  2657   case  8:  movq(dst, src); break;
  2658 #endif
  2659   case  4:  movl(dst, src); break;
  2660   case  2:  movw(dst, src); break;
  2661   case  1:  movb(dst, src); break;
  2662   default:  ShouldNotReachHere();
  2666 void MacroAssembler::mov32(AddressLiteral dst, Register src) {
  2667   if (reachable(dst)) {
  2668     movl(as_Address(dst), src);
  2669   } else {
  2670     lea(rscratch1, dst);
  2671     movl(Address(rscratch1, 0), src);
  2675 void MacroAssembler::mov32(Register dst, AddressLiteral src) {
  2676   if (reachable(src)) {
  2677     movl(dst, as_Address(src));
  2678   } else {
  2679     lea(rscratch1, src);
  2680     movl(dst, Address(rscratch1, 0));
  2684 // C++ bool manipulation
  2686 void MacroAssembler::movbool(Register dst, Address src) {
  2687   if(sizeof(bool) == 1)
  2688     movb(dst, src);
  2689   else if(sizeof(bool) == 2)
  2690     movw(dst, src);
  2691   else if(sizeof(bool) == 4)
  2692     movl(dst, src);
  2693   else
  2694     // unsupported
  2695     ShouldNotReachHere();
  2698 void MacroAssembler::movbool(Address dst, bool boolconst) {
  2699   if(sizeof(bool) == 1)
  2700     movb(dst, (int) boolconst);
  2701   else if(sizeof(bool) == 2)
  2702     movw(dst, (int) boolconst);
  2703   else if(sizeof(bool) == 4)
  2704     movl(dst, (int) boolconst);
  2705   else
  2706     // unsupported
  2707     ShouldNotReachHere();
  2710 void MacroAssembler::movbool(Address dst, Register src) {
  2711   if(sizeof(bool) == 1)
  2712     movb(dst, src);
  2713   else if(sizeof(bool) == 2)
  2714     movw(dst, src);
  2715   else if(sizeof(bool) == 4)
  2716     movl(dst, src);
  2717   else
  2718     // unsupported
  2719     ShouldNotReachHere();
  2722 void MacroAssembler::movbyte(ArrayAddress dst, int src) {
  2723   movb(as_Address(dst), src);
  2726 void MacroAssembler::movdl(XMMRegister dst, AddressLiteral src) {
  2727   if (reachable(src)) {
  2728     movdl(dst, as_Address(src));
  2729   } else {
  2730     lea(rscratch1, src);
  2731     movdl(dst, Address(rscratch1, 0));
  2735 void MacroAssembler::movq(XMMRegister dst, AddressLiteral src) {
  2736   if (reachable(src)) {
  2737     movq(dst, as_Address(src));
  2738   } else {
  2739     lea(rscratch1, src);
  2740     movq(dst, Address(rscratch1, 0));
  2744 void MacroAssembler::movdbl(XMMRegister dst, AddressLiteral src) {
  2745   if (reachable(src)) {
  2746     if (UseXmmLoadAndClearUpper) {
  2747       movsd (dst, as_Address(src));
  2748     } else {
  2749       movlpd(dst, as_Address(src));
  2751   } else {
  2752     lea(rscratch1, src);
  2753     if (UseXmmLoadAndClearUpper) {
  2754       movsd (dst, Address(rscratch1, 0));
  2755     } else {
  2756       movlpd(dst, Address(rscratch1, 0));
  2761 void MacroAssembler::movflt(XMMRegister dst, AddressLiteral src) {
  2762   if (reachable(src)) {
  2763     movss(dst, as_Address(src));
  2764   } else {
  2765     lea(rscratch1, src);
  2766     movss(dst, Address(rscratch1, 0));
  2770 void MacroAssembler::movptr(Register dst, Register src) {
  2771   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
  2774 void MacroAssembler::movptr(Register dst, Address src) {
  2775   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
  2778 // src should NEVER be a real pointer. Use AddressLiteral for true pointers
  2779 void MacroAssembler::movptr(Register dst, intptr_t src) {
  2780   LP64_ONLY(mov64(dst, src)) NOT_LP64(movl(dst, src));
  2783 void MacroAssembler::movptr(Address dst, Register src) {
  2784   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
  2787 void MacroAssembler::movdqu(XMMRegister dst, AddressLiteral src) {
  2788   if (reachable(src)) {
  2789     Assembler::movdqu(dst, as_Address(src));
  2790   } else {
  2791     lea(rscratch1, src);
  2792     Assembler::movdqu(dst, Address(rscratch1, 0));
  2796 void MacroAssembler::movsd(XMMRegister dst, AddressLiteral src) {
  2797   if (reachable(src)) {
  2798     Assembler::movsd(dst, as_Address(src));
  2799   } else {
  2800     lea(rscratch1, src);
  2801     Assembler::movsd(dst, Address(rscratch1, 0));
  2805 void MacroAssembler::movss(XMMRegister dst, AddressLiteral src) {
  2806   if (reachable(src)) {
  2807     Assembler::movss(dst, as_Address(src));
  2808   } else {
  2809     lea(rscratch1, src);
  2810     Assembler::movss(dst, Address(rscratch1, 0));
  2814 void MacroAssembler::mulsd(XMMRegister dst, AddressLiteral src) {
  2815   if (reachable(src)) {
  2816     Assembler::mulsd(dst, as_Address(src));
  2817   } else {
  2818     lea(rscratch1, src);
  2819     Assembler::mulsd(dst, Address(rscratch1, 0));
  2823 void MacroAssembler::mulss(XMMRegister dst, AddressLiteral src) {
  2824   if (reachable(src)) {
  2825     Assembler::mulss(dst, as_Address(src));
  2826   } else {
  2827     lea(rscratch1, src);
  2828     Assembler::mulss(dst, Address(rscratch1, 0));
  2832 void MacroAssembler::null_check(Register reg, int offset) {
  2833   if (needs_explicit_null_check(offset)) {
  2834     // provoke OS NULL exception if reg = NULL by
  2835     // accessing M[reg] w/o changing any (non-CC) registers
  2836     // NOTE: cmpl is plenty here to provoke a segv
  2837     cmpptr(rax, Address(reg, 0));
  2838     // Note: should probably use testl(rax, Address(reg, 0));
  2839     //       may be shorter code (however, this version of
  2840     //       testl needs to be implemented first)
  2841   } else {
  2842     // nothing to do, (later) access of M[reg + offset]
  2843     // will provoke OS NULL exception if reg = NULL
  2847 void MacroAssembler::os_breakpoint() {
  2848   // instead of directly emitting a breakpoint, call os:breakpoint for better debugability
  2849   // (e.g., MSVC can't call ps() otherwise)
  2850   call(RuntimeAddress(CAST_FROM_FN_PTR(address, os::breakpoint)));
  2853 void MacroAssembler::pop_CPU_state() {
  2854   pop_FPU_state();
  2855   pop_IU_state();
  2858 void MacroAssembler::pop_FPU_state() {
  2859   NOT_LP64(frstor(Address(rsp, 0));)
  2860   LP64_ONLY(fxrstor(Address(rsp, 0));)
  2861   addptr(rsp, FPUStateSizeInWords * wordSize);
  2864 void MacroAssembler::pop_IU_state() {
  2865   popa();
  2866   LP64_ONLY(addq(rsp, 8));
  2867   popf();
  2870 // Save Integer and Float state
  2871 // Warning: Stack must be 16 byte aligned (64bit)
  2872 void MacroAssembler::push_CPU_state() {
  2873   push_IU_state();
  2874   push_FPU_state();
  2877 void MacroAssembler::push_FPU_state() {
  2878   subptr(rsp, FPUStateSizeInWords * wordSize);
  2879 #ifndef _LP64
  2880   fnsave(Address(rsp, 0));
  2881   fwait();
  2882 #else
  2883   fxsave(Address(rsp, 0));
  2884 #endif // LP64
  2887 void MacroAssembler::push_IU_state() {
  2888   // Push flags first because pusha kills them
  2889   pushf();
  2890   // Make sure rsp stays 16-byte aligned
  2891   LP64_ONLY(subq(rsp, 8));
  2892   pusha();
  2895 void MacroAssembler::reset_last_Java_frame(Register java_thread, bool clear_fp, bool clear_pc) {
  2896   // determine java_thread register
  2897   if (!java_thread->is_valid()) {
  2898     java_thread = rdi;
  2899     get_thread(java_thread);
  2901   // we must set sp to zero to clear frame
  2902   movptr(Address(java_thread, JavaThread::last_Java_sp_offset()), NULL_WORD);
  2903   if (clear_fp) {
  2904     movptr(Address(java_thread, JavaThread::last_Java_fp_offset()), NULL_WORD);
  2907   if (clear_pc)
  2908     movptr(Address(java_thread, JavaThread::last_Java_pc_offset()), NULL_WORD);
  2912 void MacroAssembler::restore_rax(Register tmp) {
  2913   if (tmp == noreg) pop(rax);
  2914   else if (tmp != rax) mov(rax, tmp);
  2917 void MacroAssembler::round_to(Register reg, int modulus) {
  2918   addptr(reg, modulus - 1);
  2919   andptr(reg, -modulus);
  2922 void MacroAssembler::save_rax(Register tmp) {
  2923   if (tmp == noreg) push(rax);
  2924   else if (tmp != rax) mov(tmp, rax);
  2927 // Write serialization page so VM thread can do a pseudo remote membar.
  2928 // We use the current thread pointer to calculate a thread specific
  2929 // offset to write to within the page. This minimizes bus traffic
  2930 // due to cache line collision.
  2931 void MacroAssembler::serialize_memory(Register thread, Register tmp) {
  2932   movl(tmp, thread);
  2933   shrl(tmp, os::get_serialize_page_shift_count());
  2934   andl(tmp, (os::vm_page_size() - sizeof(int)));
  2936   Address index(noreg, tmp, Address::times_1);
  2937   ExternalAddress page(os::get_memory_serialize_page());
  2939   // Size of store must match masking code above
  2940   movl(as_Address(ArrayAddress(page, index)), tmp);
  2943 // Calls to C land
  2944 //
  2945 // When entering C land, the rbp, & rsp of the last Java frame have to be recorded
  2946 // in the (thread-local) JavaThread object. When leaving C land, the last Java fp
  2947 // has to be reset to 0. This is required to allow proper stack traversal.
  2948 void MacroAssembler::set_last_Java_frame(Register java_thread,
  2949                                          Register last_java_sp,
  2950                                          Register last_java_fp,
  2951                                          address  last_java_pc) {
  2952   // determine java_thread register
  2953   if (!java_thread->is_valid()) {
  2954     java_thread = rdi;
  2955     get_thread(java_thread);
  2957   // determine last_java_sp register
  2958   if (!last_java_sp->is_valid()) {
  2959     last_java_sp = rsp;
  2962   // last_java_fp is optional
  2964   if (last_java_fp->is_valid()) {
  2965     movptr(Address(java_thread, JavaThread::last_Java_fp_offset()), last_java_fp);
  2968   // last_java_pc is optional
  2970   if (last_java_pc != NULL) {
  2971     lea(Address(java_thread,
  2972                  JavaThread::frame_anchor_offset() + JavaFrameAnchor::last_Java_pc_offset()),
  2973         InternalAddress(last_java_pc));
  2976   movptr(Address(java_thread, JavaThread::last_Java_sp_offset()), last_java_sp);
  2979 void MacroAssembler::shlptr(Register dst, int imm8) {
  2980   LP64_ONLY(shlq(dst, imm8)) NOT_LP64(shll(dst, imm8));
  2983 void MacroAssembler::shrptr(Register dst, int imm8) {
  2984   LP64_ONLY(shrq(dst, imm8)) NOT_LP64(shrl(dst, imm8));
  2987 void MacroAssembler::sign_extend_byte(Register reg) {
  2988   if (LP64_ONLY(true ||) (VM_Version::is_P6() && reg->has_byte_register())) {
  2989     movsbl(reg, reg); // movsxb
  2990   } else {
  2991     shll(reg, 24);
  2992     sarl(reg, 24);
  2996 void MacroAssembler::sign_extend_short(Register reg) {
  2997   if (LP64_ONLY(true ||) VM_Version::is_P6()) {
  2998     movswl(reg, reg); // movsxw
  2999   } else {
  3000     shll(reg, 16);
  3001     sarl(reg, 16);
  3005 void MacroAssembler::testl(Register dst, AddressLiteral src) {
  3006   assert(reachable(src), "Address should be reachable");
  3007   testl(dst, as_Address(src));
  3010 void MacroAssembler::sqrtsd(XMMRegister dst, AddressLiteral src) {
  3011   if (reachable(src)) {
  3012     Assembler::sqrtsd(dst, as_Address(src));
  3013   } else {
  3014     lea(rscratch1, src);
  3015     Assembler::sqrtsd(dst, Address(rscratch1, 0));
  3019 void MacroAssembler::sqrtss(XMMRegister dst, AddressLiteral src) {
  3020   if (reachable(src)) {
  3021     Assembler::sqrtss(dst, as_Address(src));
  3022   } else {
  3023     lea(rscratch1, src);
  3024     Assembler::sqrtss(dst, Address(rscratch1, 0));
  3028 void MacroAssembler::subsd(XMMRegister dst, AddressLiteral src) {
  3029   if (reachable(src)) {
  3030     Assembler::subsd(dst, as_Address(src));
  3031   } else {
  3032     lea(rscratch1, src);
  3033     Assembler::subsd(dst, Address(rscratch1, 0));
  3037 void MacroAssembler::subss(XMMRegister dst, AddressLiteral src) {
  3038   if (reachable(src)) {
  3039     Assembler::subss(dst, as_Address(src));
  3040   } else {
  3041     lea(rscratch1, src);
  3042     Assembler::subss(dst, Address(rscratch1, 0));
  3046 void MacroAssembler::ucomisd(XMMRegister dst, AddressLiteral src) {
  3047   if (reachable(src)) {
  3048     Assembler::ucomisd(dst, as_Address(src));
  3049   } else {
  3050     lea(rscratch1, src);
  3051     Assembler::ucomisd(dst, Address(rscratch1, 0));
  3055 void MacroAssembler::ucomiss(XMMRegister dst, AddressLiteral src) {
  3056   if (reachable(src)) {
  3057     Assembler::ucomiss(dst, as_Address(src));
  3058   } else {
  3059     lea(rscratch1, src);
  3060     Assembler::ucomiss(dst, Address(rscratch1, 0));
  3064 void MacroAssembler::xorpd(XMMRegister dst, AddressLiteral src) {
  3065   // Used in sign-bit flipping with aligned address.
  3066   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
  3067   if (reachable(src)) {
  3068     Assembler::xorpd(dst, as_Address(src));
  3069   } else {
  3070     lea(rscratch1, src);
  3071     Assembler::xorpd(dst, Address(rscratch1, 0));
  3075 void MacroAssembler::xorps(XMMRegister dst, AddressLiteral src) {
  3076   // Used in sign-bit flipping with aligned address.
  3077   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
  3078   if (reachable(src)) {
  3079     Assembler::xorps(dst, as_Address(src));
  3080   } else {
  3081     lea(rscratch1, src);
  3082     Assembler::xorps(dst, Address(rscratch1, 0));
  3086 void MacroAssembler::pshufb(XMMRegister dst, AddressLiteral src) {
  3087   // Used in sign-bit flipping with aligned address.
  3088   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
  3089   if (reachable(src)) {
  3090     Assembler::pshufb(dst, as_Address(src));
  3091   } else {
  3092     lea(rscratch1, src);
  3093     Assembler::pshufb(dst, Address(rscratch1, 0));
  3097 // AVX 3-operands instructions
  3099 void MacroAssembler::vaddsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
  3100   if (reachable(src)) {
  3101     vaddsd(dst, nds, as_Address(src));
  3102   } else {
  3103     lea(rscratch1, src);
  3104     vaddsd(dst, nds, Address(rscratch1, 0));
  3108 void MacroAssembler::vaddss(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
  3109   if (reachable(src)) {
  3110     vaddss(dst, nds, as_Address(src));
  3111   } else {
  3112     lea(rscratch1, src);
  3113     vaddss(dst, nds, Address(rscratch1, 0));
  3117 void MacroAssembler::vandpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, bool vector256) {
  3118   if (reachable(src)) {
  3119     vandpd(dst, nds, as_Address(src), vector256);
  3120   } else {
  3121     lea(rscratch1, src);
  3122     vandpd(dst, nds, Address(rscratch1, 0), vector256);
  3126 void MacroAssembler::vandps(XMMRegister dst, XMMRegister nds, AddressLiteral src, bool vector256) {
  3127   if (reachable(src)) {
  3128     vandps(dst, nds, as_Address(src), vector256);
  3129   } else {
  3130     lea(rscratch1, src);
  3131     vandps(dst, nds, Address(rscratch1, 0), vector256);
  3135 void MacroAssembler::vdivsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
  3136   if (reachable(src)) {
  3137     vdivsd(dst, nds, as_Address(src));
  3138   } else {
  3139     lea(rscratch1, src);
  3140     vdivsd(dst, nds, Address(rscratch1, 0));
  3144 void MacroAssembler::vdivss(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
  3145   if (reachable(src)) {
  3146     vdivss(dst, nds, as_Address(src));
  3147   } else {
  3148     lea(rscratch1, src);
  3149     vdivss(dst, nds, Address(rscratch1, 0));
  3153 void MacroAssembler::vmulsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
  3154   if (reachable(src)) {
  3155     vmulsd(dst, nds, as_Address(src));
  3156   } else {
  3157     lea(rscratch1, src);
  3158     vmulsd(dst, nds, Address(rscratch1, 0));
  3162 void MacroAssembler::vmulss(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
  3163   if (reachable(src)) {
  3164     vmulss(dst, nds, as_Address(src));
  3165   } else {
  3166     lea(rscratch1, src);
  3167     vmulss(dst, nds, Address(rscratch1, 0));
  3171 void MacroAssembler::vsubsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
  3172   if (reachable(src)) {
  3173     vsubsd(dst, nds, as_Address(src));
  3174   } else {
  3175     lea(rscratch1, src);
  3176     vsubsd(dst, nds, Address(rscratch1, 0));
  3180 void MacroAssembler::vsubss(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
  3181   if (reachable(src)) {
  3182     vsubss(dst, nds, as_Address(src));
  3183   } else {
  3184     lea(rscratch1, src);
  3185     vsubss(dst, nds, Address(rscratch1, 0));
  3189 void MacroAssembler::vxorpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, bool vector256) {
  3190   if (reachable(src)) {
  3191     vxorpd(dst, nds, as_Address(src), vector256);
  3192   } else {
  3193     lea(rscratch1, src);
  3194     vxorpd(dst, nds, Address(rscratch1, 0), vector256);
  3198 void MacroAssembler::vxorps(XMMRegister dst, XMMRegister nds, AddressLiteral src, bool vector256) {
  3199   if (reachable(src)) {
  3200     vxorps(dst, nds, as_Address(src), vector256);
  3201   } else {
  3202     lea(rscratch1, src);
  3203     vxorps(dst, nds, Address(rscratch1, 0), vector256);
  3208 //////////////////////////////////////////////////////////////////////////////////
  3209 #ifndef SERIALGC
  3211 void MacroAssembler::g1_write_barrier_pre(Register obj,
  3212                                           Register pre_val,
  3213                                           Register thread,
  3214                                           Register tmp,
  3215                                           bool tosca_live,
  3216                                           bool expand_call) {
  3218   // If expand_call is true then we expand the call_VM_leaf macro
  3219   // directly to skip generating the check by
  3220   // InterpreterMacroAssembler::call_VM_leaf_base that checks _last_sp.
  3222 #ifdef _LP64
  3223   assert(thread == r15_thread, "must be");
  3224 #endif // _LP64
  3226   Label done;
  3227   Label runtime;
  3229   assert(pre_val != noreg, "check this code");
  3231   if (obj != noreg) {
  3232     assert_different_registers(obj, pre_val, tmp);
  3233     assert(pre_val != rax, "check this code");
  3236   Address in_progress(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
  3237                                        PtrQueue::byte_offset_of_active()));
  3238   Address index(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
  3239                                        PtrQueue::byte_offset_of_index()));
  3240   Address buffer(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
  3241                                        PtrQueue::byte_offset_of_buf()));
  3244   // Is marking active?
  3245   if (in_bytes(PtrQueue::byte_width_of_active()) == 4) {
  3246     cmpl(in_progress, 0);
  3247   } else {
  3248     assert(in_bytes(PtrQueue::byte_width_of_active()) == 1, "Assumption");
  3249     cmpb(in_progress, 0);
  3251   jcc(Assembler::equal, done);
  3253   // Do we need to load the previous value?
  3254   if (obj != noreg) {
  3255     load_heap_oop(pre_val, Address(obj, 0));
  3258   // Is the previous value null?
  3259   cmpptr(pre_val, (int32_t) NULL_WORD);
  3260   jcc(Assembler::equal, done);
  3262   // Can we store original value in the thread's buffer?
  3263   // Is index == 0?
  3264   // (The index field is typed as size_t.)
  3266   movptr(tmp, index);                   // tmp := *index_adr
  3267   cmpptr(tmp, 0);                       // tmp == 0?
  3268   jcc(Assembler::equal, runtime);       // If yes, goto runtime
  3270   subptr(tmp, wordSize);                // tmp := tmp - wordSize
  3271   movptr(index, tmp);                   // *index_adr := tmp
  3272   addptr(tmp, buffer);                  // tmp := tmp + *buffer_adr
  3274   // Record the previous value
  3275   movptr(Address(tmp, 0), pre_val);
  3276   jmp(done);
  3278   bind(runtime);
  3279   // save the live input values
  3280   if(tosca_live) push(rax);
  3282   if (obj != noreg && obj != rax)
  3283     push(obj);
  3285   if (pre_val != rax)
  3286     push(pre_val);
  3288   // Calling the runtime using the regular call_VM_leaf mechanism generates
  3289   // code (generated by InterpreterMacroAssember::call_VM_leaf_base)
  3290   // that checks that the *(ebp+frame::interpreter_frame_last_sp) == NULL.
  3291   //
  3292   // If we care generating the pre-barrier without a frame (e.g. in the
  3293   // intrinsified Reference.get() routine) then ebp might be pointing to
  3294   // the caller frame and so this check will most likely fail at runtime.
  3295   //
  3296   // Expanding the call directly bypasses the generation of the check.
  3297   // So when we do not have have a full interpreter frame on the stack
  3298   // expand_call should be passed true.
  3300   NOT_LP64( push(thread); )
  3302   if (expand_call) {
  3303     LP64_ONLY( assert(pre_val != c_rarg1, "smashed arg"); )
  3304     pass_arg1(this, thread);
  3305     pass_arg0(this, pre_val);
  3306     MacroAssembler::call_VM_leaf_base(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_pre), 2);
  3307   } else {
  3308     call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_pre), pre_val, thread);
  3311   NOT_LP64( pop(thread); )
  3313   // save the live input values
  3314   if (pre_val != rax)
  3315     pop(pre_val);
  3317   if (obj != noreg && obj != rax)
  3318     pop(obj);
  3320   if(tosca_live) pop(rax);
  3322   bind(done);
  3325 void MacroAssembler::g1_write_barrier_post(Register store_addr,
  3326                                            Register new_val,
  3327                                            Register thread,
  3328                                            Register tmp,
  3329                                            Register tmp2) {
  3330 #ifdef _LP64
  3331   assert(thread == r15_thread, "must be");
  3332 #endif // _LP64
  3334   Address queue_index(thread, in_bytes(JavaThread::dirty_card_queue_offset() +
  3335                                        PtrQueue::byte_offset_of_index()));
  3336   Address buffer(thread, in_bytes(JavaThread::dirty_card_queue_offset() +
  3337                                        PtrQueue::byte_offset_of_buf()));
  3339   BarrierSet* bs = Universe::heap()->barrier_set();
  3340   CardTableModRefBS* ct = (CardTableModRefBS*)bs;
  3341   Label done;
  3342   Label runtime;
  3344   // Does store cross heap regions?
  3346   movptr(tmp, store_addr);
  3347   xorptr(tmp, new_val);
  3348   shrptr(tmp, HeapRegion::LogOfHRGrainBytes);
  3349   jcc(Assembler::equal, done);
  3351   // crosses regions, storing NULL?
  3353   cmpptr(new_val, (int32_t) NULL_WORD);
  3354   jcc(Assembler::equal, done);
  3356   // storing region crossing non-NULL, is card already dirty?
  3358   ExternalAddress cardtable((address) ct->byte_map_base);
  3359   assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
  3360 #ifdef _LP64
  3361   const Register card_addr = tmp;
  3363   movq(card_addr, store_addr);
  3364   shrq(card_addr, CardTableModRefBS::card_shift);
  3366   lea(tmp2, cardtable);
  3368   // get the address of the card
  3369   addq(card_addr, tmp2);
  3370 #else
  3371   const Register card_index = tmp;
  3373   movl(card_index, store_addr);
  3374   shrl(card_index, CardTableModRefBS::card_shift);
  3376   Address index(noreg, card_index, Address::times_1);
  3377   const Register card_addr = tmp;
  3378   lea(card_addr, as_Address(ArrayAddress(cardtable, index)));
  3379 #endif
  3380   cmpb(Address(card_addr, 0), 0);
  3381   jcc(Assembler::equal, done);
  3383   // storing a region crossing, non-NULL oop, card is clean.
  3384   // dirty card and log.
  3386   movb(Address(card_addr, 0), 0);
  3388   cmpl(queue_index, 0);
  3389   jcc(Assembler::equal, runtime);
  3390   subl(queue_index, wordSize);
  3391   movptr(tmp2, buffer);
  3392 #ifdef _LP64
  3393   movslq(rscratch1, queue_index);
  3394   addq(tmp2, rscratch1);
  3395   movq(Address(tmp2, 0), card_addr);
  3396 #else
  3397   addl(tmp2, queue_index);
  3398   movl(Address(tmp2, 0), card_index);
  3399 #endif
  3400   jmp(done);
  3402   bind(runtime);
  3403   // save the live input values
  3404   push(store_addr);
  3405   push(new_val);
  3406 #ifdef _LP64
  3407   call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_post), card_addr, r15_thread);
  3408 #else
  3409   push(thread);
  3410   call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_post), card_addr, thread);
  3411   pop(thread);
  3412 #endif
  3413   pop(new_val);
  3414   pop(store_addr);
  3416   bind(done);
  3419 #endif // SERIALGC
  3420 //////////////////////////////////////////////////////////////////////////////////
  3423 void MacroAssembler::store_check(Register obj) {
  3424   // Does a store check for the oop in register obj. The content of
  3425   // register obj is destroyed afterwards.
  3426   store_check_part_1(obj);
  3427   store_check_part_2(obj);
  3430 void MacroAssembler::store_check(Register obj, Address dst) {
  3431   store_check(obj);
  3435 // split the store check operation so that other instructions can be scheduled inbetween
  3436 void MacroAssembler::store_check_part_1(Register obj) {
  3437   BarrierSet* bs = Universe::heap()->barrier_set();
  3438   assert(bs->kind() == BarrierSet::CardTableModRef, "Wrong barrier set kind");
  3439   shrptr(obj, CardTableModRefBS::card_shift);
  3442 void MacroAssembler::store_check_part_2(Register obj) {
  3443   BarrierSet* bs = Universe::heap()->barrier_set();
  3444   assert(bs->kind() == BarrierSet::CardTableModRef, "Wrong barrier set kind");
  3445   CardTableModRefBS* ct = (CardTableModRefBS*)bs;
  3446   assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
  3448   // The calculation for byte_map_base is as follows:
  3449   // byte_map_base = _byte_map - (uintptr_t(low_bound) >> card_shift);
  3450   // So this essentially converts an address to a displacement and
  3451   // it will never need to be relocated. On 64bit however the value may be too
  3452   // large for a 32bit displacement
  3454   intptr_t disp = (intptr_t) ct->byte_map_base;
  3455   if (is_simm32(disp)) {
  3456     Address cardtable(noreg, obj, Address::times_1, disp);
  3457     movb(cardtable, 0);
  3458   } else {
  3459     // By doing it as an ExternalAddress disp could be converted to a rip-relative
  3460     // displacement and done in a single instruction given favorable mapping and
  3461     // a smarter version of as_Address. Worst case it is two instructions which
  3462     // is no worse off then loading disp into a register and doing as a simple
  3463     // Address() as above.
  3464     // We can't do as ExternalAddress as the only style since if disp == 0 we'll
  3465     // assert since NULL isn't acceptable in a reloci (see 6644928). In any case
  3466     // in some cases we'll get a single instruction version.
  3468     ExternalAddress cardtable((address)disp);
  3469     Address index(noreg, obj, Address::times_1);
  3470     movb(as_Address(ArrayAddress(cardtable, index)), 0);
  3474 void MacroAssembler::subptr(Register dst, int32_t imm32) {
  3475   LP64_ONLY(subq(dst, imm32)) NOT_LP64(subl(dst, imm32));
  3478 // Force generation of a 4 byte immediate value even if it fits into 8bit
  3479 void MacroAssembler::subptr_imm32(Register dst, int32_t imm32) {
  3480   LP64_ONLY(subq_imm32(dst, imm32)) NOT_LP64(subl_imm32(dst, imm32));
  3483 void MacroAssembler::subptr(Register dst, Register src) {
  3484   LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src));
  3487 // C++ bool manipulation
  3488 void MacroAssembler::testbool(Register dst) {
  3489   if(sizeof(bool) == 1)
  3490     testb(dst, 0xff);
  3491   else if(sizeof(bool) == 2) {
  3492     // testw implementation needed for two byte bools
  3493     ShouldNotReachHere();
  3494   } else if(sizeof(bool) == 4)
  3495     testl(dst, dst);
  3496   else
  3497     // unsupported
  3498     ShouldNotReachHere();
  3501 void MacroAssembler::testptr(Register dst, Register src) {
  3502   LP64_ONLY(testq(dst, src)) NOT_LP64(testl(dst, src));
  3505 // Defines obj, preserves var_size_in_bytes, okay for t2 == var_size_in_bytes.
  3506 void MacroAssembler::tlab_allocate(Register obj,
  3507                                    Register var_size_in_bytes,
  3508                                    int con_size_in_bytes,
  3509                                    Register t1,
  3510                                    Register t2,
  3511                                    Label& slow_case) {
  3512   assert_different_registers(obj, t1, t2);
  3513   assert_different_registers(obj, var_size_in_bytes, t1);
  3514   Register end = t2;
  3515   Register thread = NOT_LP64(t1) LP64_ONLY(r15_thread);
  3517   verify_tlab();
  3519   NOT_LP64(get_thread(thread));
  3521   movptr(obj, Address(thread, JavaThread::tlab_top_offset()));
  3522   if (var_size_in_bytes == noreg) {
  3523     lea(end, Address(obj, con_size_in_bytes));
  3524   } else {
  3525     lea(end, Address(obj, var_size_in_bytes, Address::times_1));
  3527   cmpptr(end, Address(thread, JavaThread::tlab_end_offset()));
  3528   jcc(Assembler::above, slow_case);
  3530   // update the tlab top pointer
  3531   movptr(Address(thread, JavaThread::tlab_top_offset()), end);
  3533   // recover var_size_in_bytes if necessary
  3534   if (var_size_in_bytes == end) {
  3535     subptr(var_size_in_bytes, obj);
  3537   verify_tlab();
  3540 // Preserves rbx, and rdx.
  3541 Register MacroAssembler::tlab_refill(Label& retry,
  3542                                      Label& try_eden,
  3543                                      Label& slow_case) {
  3544   Register top = rax;
  3545   Register t1  = rcx;
  3546   Register t2  = rsi;
  3547   Register thread_reg = NOT_LP64(rdi) LP64_ONLY(r15_thread);
  3548   assert_different_registers(top, thread_reg, t1, t2, /* preserve: */ rbx, rdx);
  3549   Label do_refill, discard_tlab;
  3551   if (CMSIncrementalMode || !Universe::heap()->supports_inline_contig_alloc()) {
  3552     // No allocation in the shared eden.
  3553     jmp(slow_case);
  3556   NOT_LP64(get_thread(thread_reg));
  3558   movptr(top, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())));
  3559   movptr(t1,  Address(thread_reg, in_bytes(JavaThread::tlab_end_offset())));
  3561   // calculate amount of free space
  3562   subptr(t1, top);
  3563   shrptr(t1, LogHeapWordSize);
  3565   // Retain tlab and allocate object in shared space if
  3566   // the amount free in the tlab is too large to discard.
  3567   cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_refill_waste_limit_offset())));
  3568   jcc(Assembler::lessEqual, discard_tlab);
  3570   // Retain
  3571   // %%% yuck as movptr...
  3572   movptr(t2, (int32_t) ThreadLocalAllocBuffer::refill_waste_limit_increment());
  3573   addptr(Address(thread_reg, in_bytes(JavaThread::tlab_refill_waste_limit_offset())), t2);
  3574   if (TLABStats) {
  3575     // increment number of slow_allocations
  3576     addl(Address(thread_reg, in_bytes(JavaThread::tlab_slow_allocations_offset())), 1);
  3578   jmp(try_eden);
  3580   bind(discard_tlab);
  3581   if (TLABStats) {
  3582     // increment number of refills
  3583     addl(Address(thread_reg, in_bytes(JavaThread::tlab_number_of_refills_offset())), 1);
  3584     // accumulate wastage -- t1 is amount free in tlab
  3585     addl(Address(thread_reg, in_bytes(JavaThread::tlab_fast_refill_waste_offset())), t1);
  3588   // if tlab is currently allocated (top or end != null) then
  3589   // fill [top, end + alignment_reserve) with array object
  3590   testptr(top, top);
  3591   jcc(Assembler::zero, do_refill);
  3593   // set up the mark word
  3594   movptr(Address(top, oopDesc::mark_offset_in_bytes()), (intptr_t)markOopDesc::prototype()->copy_set_hash(0x2));
  3595   // set the length to the remaining space
  3596   subptr(t1, typeArrayOopDesc::header_size(T_INT));
  3597   addptr(t1, (int32_t)ThreadLocalAllocBuffer::alignment_reserve());
  3598   shlptr(t1, log2_intptr(HeapWordSize/sizeof(jint)));
  3599   movl(Address(top, arrayOopDesc::length_offset_in_bytes()), t1);
  3600   // set klass to intArrayKlass
  3601   // dubious reloc why not an oop reloc?
  3602   movptr(t1, ExternalAddress((address)Universe::intArrayKlassObj_addr()));
  3603   // store klass last.  concurrent gcs assumes klass length is valid if
  3604   // klass field is not null.
  3605   store_klass(top, t1);
  3607   movptr(t1, top);
  3608   subptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_start_offset())));
  3609   incr_allocated_bytes(thread_reg, t1, 0);
  3611   // refill the tlab with an eden allocation
  3612   bind(do_refill);
  3613   movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_size_offset())));
  3614   shlptr(t1, LogHeapWordSize);
  3615   // allocate new tlab, address returned in top
  3616   eden_allocate(top, t1, 0, t2, slow_case);
  3618   // Check that t1 was preserved in eden_allocate.
  3619 #ifdef ASSERT
  3620   if (UseTLAB) {
  3621     Label ok;
  3622     Register tsize = rsi;
  3623     assert_different_registers(tsize, thread_reg, t1);
  3624     push(tsize);
  3625     movptr(tsize, Address(thread_reg, in_bytes(JavaThread::tlab_size_offset())));
  3626     shlptr(tsize, LogHeapWordSize);
  3627     cmpptr(t1, tsize);
  3628     jcc(Assembler::equal, ok);
  3629     STOP("assert(t1 != tlab size)");
  3630     should_not_reach_here();
  3632     bind(ok);
  3633     pop(tsize);
  3635 #endif
  3636   movptr(Address(thread_reg, in_bytes(JavaThread::tlab_start_offset())), top);
  3637   movptr(Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())), top);
  3638   addptr(top, t1);
  3639   subptr(top, (int32_t)ThreadLocalAllocBuffer::alignment_reserve_in_bytes());
  3640   movptr(Address(thread_reg, in_bytes(JavaThread::tlab_end_offset())), top);
  3641   verify_tlab();
  3642   jmp(retry);
  3644   return thread_reg; // for use by caller
  3647 void MacroAssembler::incr_allocated_bytes(Register thread,
  3648                                           Register var_size_in_bytes,
  3649                                           int con_size_in_bytes,
  3650                                           Register t1) {
  3651   if (!thread->is_valid()) {
  3652 #ifdef _LP64
  3653     thread = r15_thread;
  3654 #else
  3655     assert(t1->is_valid(), "need temp reg");
  3656     thread = t1;
  3657     get_thread(thread);
  3658 #endif
  3661 #ifdef _LP64
  3662   if (var_size_in_bytes->is_valid()) {
  3663     addq(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())), var_size_in_bytes);
  3664   } else {
  3665     addq(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())), con_size_in_bytes);
  3667 #else
  3668   if (var_size_in_bytes->is_valid()) {
  3669     addl(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())), var_size_in_bytes);
  3670   } else {
  3671     addl(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())), con_size_in_bytes);
  3673   adcl(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())+4), 0);
  3674 #endif
  3677 void MacroAssembler::fp_runtime_fallback(address runtime_entry, int nb_args, int num_fpu_regs_in_use) {
  3678   pusha();
  3680   // if we are coming from c1, xmm registers may be live
  3681   int off = 0;
  3682   if (UseSSE == 1)  {
  3683     subptr(rsp, sizeof(jdouble)*8);
  3684     movflt(Address(rsp,off++*sizeof(jdouble)),xmm0);
  3685     movflt(Address(rsp,off++*sizeof(jdouble)),xmm1);
  3686     movflt(Address(rsp,off++*sizeof(jdouble)),xmm2);
  3687     movflt(Address(rsp,off++*sizeof(jdouble)),xmm3);
  3688     movflt(Address(rsp,off++*sizeof(jdouble)),xmm4);
  3689     movflt(Address(rsp,off++*sizeof(jdouble)),xmm5);
  3690     movflt(Address(rsp,off++*sizeof(jdouble)),xmm6);
  3691     movflt(Address(rsp,off++*sizeof(jdouble)),xmm7);
  3692   } else if (UseSSE >= 2)  {
  3693 #ifdef COMPILER2
  3694     if (MaxVectorSize > 16) {
  3695       assert(UseAVX > 0, "256bit vectors are supported only with AVX");
  3696       // Save upper half of YMM registes
  3697       subptr(rsp, 16 * LP64_ONLY(16) NOT_LP64(8));
  3698       vextractf128h(Address(rsp,  0),xmm0);
  3699       vextractf128h(Address(rsp, 16),xmm1);
  3700       vextractf128h(Address(rsp, 32),xmm2);
  3701       vextractf128h(Address(rsp, 48),xmm3);
  3702       vextractf128h(Address(rsp, 64),xmm4);
  3703       vextractf128h(Address(rsp, 80),xmm5);
  3704       vextractf128h(Address(rsp, 96),xmm6);
  3705       vextractf128h(Address(rsp,112),xmm7);
  3706 #ifdef _LP64
  3707       vextractf128h(Address(rsp,128),xmm8);
  3708       vextractf128h(Address(rsp,144),xmm9);
  3709       vextractf128h(Address(rsp,160),xmm10);
  3710       vextractf128h(Address(rsp,176),xmm11);
  3711       vextractf128h(Address(rsp,192),xmm12);
  3712       vextractf128h(Address(rsp,208),xmm13);
  3713       vextractf128h(Address(rsp,224),xmm14);
  3714       vextractf128h(Address(rsp,240),xmm15);
  3715 #endif
  3717 #endif
  3718     // Save whole 128bit (16 bytes) XMM regiters
  3719     subptr(rsp, 16 * LP64_ONLY(16) NOT_LP64(8));
  3720     movdqu(Address(rsp,off++*16),xmm0);
  3721     movdqu(Address(rsp,off++*16),xmm1);
  3722     movdqu(Address(rsp,off++*16),xmm2);
  3723     movdqu(Address(rsp,off++*16),xmm3);
  3724     movdqu(Address(rsp,off++*16),xmm4);
  3725     movdqu(Address(rsp,off++*16),xmm5);
  3726     movdqu(Address(rsp,off++*16),xmm6);
  3727     movdqu(Address(rsp,off++*16),xmm7);
  3728 #ifdef _LP64
  3729     movdqu(Address(rsp,off++*16),xmm8);
  3730     movdqu(Address(rsp,off++*16),xmm9);
  3731     movdqu(Address(rsp,off++*16),xmm10);
  3732     movdqu(Address(rsp,off++*16),xmm11);
  3733     movdqu(Address(rsp,off++*16),xmm12);
  3734     movdqu(Address(rsp,off++*16),xmm13);
  3735     movdqu(Address(rsp,off++*16),xmm14);
  3736     movdqu(Address(rsp,off++*16),xmm15);
  3737 #endif
  3740   // Preserve registers across runtime call
  3741   int incoming_argument_and_return_value_offset = -1;
  3742   if (num_fpu_regs_in_use > 1) {
  3743     // Must preserve all other FPU regs (could alternatively convert
  3744     // SharedRuntime::dsin, dcos etc. into assembly routines known not to trash
  3745     // FPU state, but can not trust C compiler)
  3746     NEEDS_CLEANUP;
  3747     // NOTE that in this case we also push the incoming argument(s) to
  3748     // the stack and restore it later; we also use this stack slot to
  3749     // hold the return value from dsin, dcos etc.
  3750     for (int i = 0; i < num_fpu_regs_in_use; i++) {
  3751       subptr(rsp, sizeof(jdouble));
  3752       fstp_d(Address(rsp, 0));
  3754     incoming_argument_and_return_value_offset = sizeof(jdouble)*(num_fpu_regs_in_use-1);
  3755     for (int i = nb_args-1; i >= 0; i--) {
  3756       fld_d(Address(rsp, incoming_argument_and_return_value_offset-i*sizeof(jdouble)));
  3760   subptr(rsp, nb_args*sizeof(jdouble));
  3761   for (int i = 0; i < nb_args; i++) {
  3762     fstp_d(Address(rsp, i*sizeof(jdouble)));
  3765 #ifdef _LP64
  3766   if (nb_args > 0) {
  3767     movdbl(xmm0, Address(rsp, 0));
  3769   if (nb_args > 1) {
  3770     movdbl(xmm1, Address(rsp, sizeof(jdouble)));
  3772   assert(nb_args <= 2, "unsupported number of args");
  3773 #endif // _LP64
  3775   // NOTE: we must not use call_VM_leaf here because that requires a
  3776   // complete interpreter frame in debug mode -- same bug as 4387334
  3777   // MacroAssembler::call_VM_leaf_base is perfectly safe and will
  3778   // do proper 64bit abi
  3780   NEEDS_CLEANUP;
  3781   // Need to add stack banging before this runtime call if it needs to
  3782   // be taken; however, there is no generic stack banging routine at
  3783   // the MacroAssembler level
  3785   MacroAssembler::call_VM_leaf_base(runtime_entry, 0);
  3787 #ifdef _LP64
  3788   movsd(Address(rsp, 0), xmm0);
  3789   fld_d(Address(rsp, 0));
  3790 #endif // _LP64
  3791   addptr(rsp, sizeof(jdouble) * nb_args);
  3792   if (num_fpu_regs_in_use > 1) {
  3793     // Must save return value to stack and then restore entire FPU
  3794     // stack except incoming arguments
  3795     fstp_d(Address(rsp, incoming_argument_and_return_value_offset));
  3796     for (int i = 0; i < num_fpu_regs_in_use - nb_args; i++) {
  3797       fld_d(Address(rsp, 0));
  3798       addptr(rsp, sizeof(jdouble));
  3800     fld_d(Address(rsp, (nb_args-1)*sizeof(jdouble)));
  3801     addptr(rsp, sizeof(jdouble) * nb_args);
  3804   off = 0;
  3805   if (UseSSE == 1)  {
  3806     movflt(xmm0, Address(rsp,off++*sizeof(jdouble)));
  3807     movflt(xmm1, Address(rsp,off++*sizeof(jdouble)));
  3808     movflt(xmm2, Address(rsp,off++*sizeof(jdouble)));
  3809     movflt(xmm3, Address(rsp,off++*sizeof(jdouble)));
  3810     movflt(xmm4, Address(rsp,off++*sizeof(jdouble)));
  3811     movflt(xmm5, Address(rsp,off++*sizeof(jdouble)));
  3812     movflt(xmm6, Address(rsp,off++*sizeof(jdouble)));
  3813     movflt(xmm7, Address(rsp,off++*sizeof(jdouble)));
  3814     addptr(rsp, sizeof(jdouble)*8);
  3815   } else if (UseSSE >= 2)  {
  3816     // Restore whole 128bit (16 bytes) XMM regiters
  3817     movdqu(xmm0, Address(rsp,off++*16));
  3818     movdqu(xmm1, Address(rsp,off++*16));
  3819     movdqu(xmm2, Address(rsp,off++*16));
  3820     movdqu(xmm3, Address(rsp,off++*16));
  3821     movdqu(xmm4, Address(rsp,off++*16));
  3822     movdqu(xmm5, Address(rsp,off++*16));
  3823     movdqu(xmm6, Address(rsp,off++*16));
  3824     movdqu(xmm7, Address(rsp,off++*16));
  3825 #ifdef _LP64
  3826     movdqu(xmm8, Address(rsp,off++*16));
  3827     movdqu(xmm9, Address(rsp,off++*16));
  3828     movdqu(xmm10, Address(rsp,off++*16));
  3829     movdqu(xmm11, Address(rsp,off++*16));
  3830     movdqu(xmm12, Address(rsp,off++*16));
  3831     movdqu(xmm13, Address(rsp,off++*16));
  3832     movdqu(xmm14, Address(rsp,off++*16));
  3833     movdqu(xmm15, Address(rsp,off++*16));
  3834 #endif
  3835     addptr(rsp, 16 * LP64_ONLY(16) NOT_LP64(8));
  3836 #ifdef COMPILER2
  3837     if (MaxVectorSize > 16) {
  3838       // Restore upper half of YMM registes.
  3839       vinsertf128h(xmm0, Address(rsp,  0));
  3840       vinsertf128h(xmm1, Address(rsp, 16));
  3841       vinsertf128h(xmm2, Address(rsp, 32));
  3842       vinsertf128h(xmm3, Address(rsp, 48));
  3843       vinsertf128h(xmm4, Address(rsp, 64));
  3844       vinsertf128h(xmm5, Address(rsp, 80));
  3845       vinsertf128h(xmm6, Address(rsp, 96));
  3846       vinsertf128h(xmm7, Address(rsp,112));
  3847 #ifdef _LP64
  3848       vinsertf128h(xmm8, Address(rsp,128));
  3849       vinsertf128h(xmm9, Address(rsp,144));
  3850       vinsertf128h(xmm10, Address(rsp,160));
  3851       vinsertf128h(xmm11, Address(rsp,176));
  3852       vinsertf128h(xmm12, Address(rsp,192));
  3853       vinsertf128h(xmm13, Address(rsp,208));
  3854       vinsertf128h(xmm14, Address(rsp,224));
  3855       vinsertf128h(xmm15, Address(rsp,240));
  3856 #endif
  3857       addptr(rsp, 16 * LP64_ONLY(16) NOT_LP64(8));
  3859 #endif
  3861   popa();
  3864 static const double     pi_4 =  0.7853981633974483;
  3866 void MacroAssembler::trigfunc(char trig, int num_fpu_regs_in_use) {
  3867   // A hand-coded argument reduction for values in fabs(pi/4, pi/2)
  3868   // was attempted in this code; unfortunately it appears that the
  3869   // switch to 80-bit precision and back causes this to be
  3870   // unprofitable compared with simply performing a runtime call if
  3871   // the argument is out of the (-pi/4, pi/4) range.
  3873   Register tmp = noreg;
  3874   if (!VM_Version::supports_cmov()) {
  3875     // fcmp needs a temporary so preserve rbx,
  3876     tmp = rbx;
  3877     push(tmp);
  3880   Label slow_case, done;
  3882   ExternalAddress pi4_adr = (address)&pi_4;
  3883   if (reachable(pi4_adr)) {
  3884     // x ?<= pi/4
  3885     fld_d(pi4_adr);
  3886     fld_s(1);                // Stack:  X  PI/4  X
  3887     fabs();                  // Stack: |X| PI/4  X
  3888     fcmp(tmp);
  3889     jcc(Assembler::above, slow_case);
  3891     // fastest case: -pi/4 <= x <= pi/4
  3892     switch(trig) {
  3893     case 's':
  3894       fsin();
  3895       break;
  3896     case 'c':
  3897       fcos();
  3898       break;
  3899     case 't':
  3900       ftan();
  3901       break;
  3902     default:
  3903       assert(false, "bad intrinsic");
  3904       break;
  3906     jmp(done);
  3909   // slow case: runtime call
  3910   bind(slow_case);
  3912   switch(trig) {
  3913   case 's':
  3915       fp_runtime_fallback(CAST_FROM_FN_PTR(address, SharedRuntime::dsin), 1, num_fpu_regs_in_use);
  3917     break;
  3918   case 'c':
  3920       fp_runtime_fallback(CAST_FROM_FN_PTR(address, SharedRuntime::dcos), 1, num_fpu_regs_in_use);
  3922     break;
  3923   case 't':
  3925       fp_runtime_fallback(CAST_FROM_FN_PTR(address, SharedRuntime::dtan), 1, num_fpu_regs_in_use);
  3927     break;
  3928   default:
  3929     assert(false, "bad intrinsic");
  3930     break;
  3933   // Come here with result in F-TOS
  3934   bind(done);
  3936   if (tmp != noreg) {
  3937     pop(tmp);
  3942 // Look up the method for a megamorphic invokeinterface call.
  3943 // The target method is determined by <intf_klass, itable_index>.
  3944 // The receiver klass is in recv_klass.
  3945 // On success, the result will be in method_result, and execution falls through.
  3946 // On failure, execution transfers to the given label.
  3947 void MacroAssembler::lookup_interface_method(Register recv_klass,
  3948                                              Register intf_klass,
  3949                                              RegisterOrConstant itable_index,
  3950                                              Register method_result,
  3951                                              Register scan_temp,
  3952                                              Label& L_no_such_interface) {
  3953   assert_different_registers(recv_klass, intf_klass, method_result, scan_temp);
  3954   assert(itable_index.is_constant() || itable_index.as_register() == method_result,
  3955          "caller must use same register for non-constant itable index as for method");
  3957   // Compute start of first itableOffsetEntry (which is at the end of the vtable)
  3958   int vtable_base = InstanceKlass::vtable_start_offset() * wordSize;
  3959   int itentry_off = itableMethodEntry::method_offset_in_bytes();
  3960   int scan_step   = itableOffsetEntry::size() * wordSize;
  3961   int vte_size    = vtableEntry::size() * wordSize;
  3962   Address::ScaleFactor times_vte_scale = Address::times_ptr;
  3963   assert(vte_size == wordSize, "else adjust times_vte_scale");
  3965   movl(scan_temp, Address(recv_klass, InstanceKlass::vtable_length_offset() * wordSize));
  3967   // %%% Could store the aligned, prescaled offset in the klassoop.
  3968   lea(scan_temp, Address(recv_klass, scan_temp, times_vte_scale, vtable_base));
  3969   if (HeapWordsPerLong > 1) {
  3970     // Round up to align_object_offset boundary
  3971     // see code for InstanceKlass::start_of_itable!
  3972     round_to(scan_temp, BytesPerLong);
  3975   // Adjust recv_klass by scaled itable_index, so we can free itable_index.
  3976   assert(itableMethodEntry::size() * wordSize == wordSize, "adjust the scaling in the code below");
  3977   lea(recv_klass, Address(recv_klass, itable_index, Address::times_ptr, itentry_off));
  3979   // for (scan = klass->itable(); scan->interface() != NULL; scan += scan_step) {
  3980   //   if (scan->interface() == intf) {
  3981   //     result = (klass + scan->offset() + itable_index);
  3982   //   }
  3983   // }
  3984   Label search, found_method;
  3986   for (int peel = 1; peel >= 0; peel--) {
  3987     movptr(method_result, Address(scan_temp, itableOffsetEntry::interface_offset_in_bytes()));
  3988     cmpptr(intf_klass, method_result);
  3990     if (peel) {
  3991       jccb(Assembler::equal, found_method);
  3992     } else {
  3993       jccb(Assembler::notEqual, search);
  3994       // (invert the test to fall through to found_method...)
  3997     if (!peel)  break;
  3999     bind(search);
  4001     // Check that the previous entry is non-null.  A null entry means that
  4002     // the receiver class doesn't implement the interface, and wasn't the
  4003     // same as when the caller was compiled.
  4004     testptr(method_result, method_result);
  4005     jcc(Assembler::zero, L_no_such_interface);
  4006     addptr(scan_temp, scan_step);
  4009   bind(found_method);
  4011   // Got a hit.
  4012   movl(scan_temp, Address(scan_temp, itableOffsetEntry::offset_offset_in_bytes()));
  4013   movptr(method_result, Address(recv_klass, scan_temp, Address::times_1));
  4017 // virtual method calling
  4018 void MacroAssembler::lookup_virtual_method(Register recv_klass,
  4019                                            RegisterOrConstant vtable_index,
  4020                                            Register method_result) {
  4021   const int base = InstanceKlass::vtable_start_offset() * wordSize;
  4022   assert(vtableEntry::size() * wordSize == wordSize, "else adjust the scaling in the code below");
  4023   Address vtable_entry_addr(recv_klass,
  4024                             vtable_index, Address::times_ptr,
  4025                             base + vtableEntry::method_offset_in_bytes());
  4026   movptr(method_result, vtable_entry_addr);
  4030 void MacroAssembler::check_klass_subtype(Register sub_klass,
  4031                            Register super_klass,
  4032                            Register temp_reg,
  4033                            Label& L_success) {
  4034   Label L_failure;
  4035   check_klass_subtype_fast_path(sub_klass, super_klass, temp_reg,        &L_success, &L_failure, NULL);
  4036   check_klass_subtype_slow_path(sub_klass, super_klass, temp_reg, noreg, &L_success, NULL);
  4037   bind(L_failure);
  4041 void MacroAssembler::check_klass_subtype_fast_path(Register sub_klass,
  4042                                                    Register super_klass,
  4043                                                    Register temp_reg,
  4044                                                    Label* L_success,
  4045                                                    Label* L_failure,
  4046                                                    Label* L_slow_path,
  4047                                         RegisterOrConstant super_check_offset) {
  4048   assert_different_registers(sub_klass, super_klass, temp_reg);
  4049   bool must_load_sco = (super_check_offset.constant_or_zero() == -1);
  4050   if (super_check_offset.is_register()) {
  4051     assert_different_registers(sub_klass, super_klass,
  4052                                super_check_offset.as_register());
  4053   } else if (must_load_sco) {
  4054     assert(temp_reg != noreg, "supply either a temp or a register offset");
  4057   Label L_fallthrough;
  4058   int label_nulls = 0;
  4059   if (L_success == NULL)   { L_success   = &L_fallthrough; label_nulls++; }
  4060   if (L_failure == NULL)   { L_failure   = &L_fallthrough; label_nulls++; }
  4061   if (L_slow_path == NULL) { L_slow_path = &L_fallthrough; label_nulls++; }
  4062   assert(label_nulls <= 1, "at most one NULL in the batch");
  4064   int sc_offset = in_bytes(Klass::secondary_super_cache_offset());
  4065   int sco_offset = in_bytes(Klass::super_check_offset_offset());
  4066   Address super_check_offset_addr(super_klass, sco_offset);
  4068   // Hacked jcc, which "knows" that L_fallthrough, at least, is in
  4069   // range of a jccb.  If this routine grows larger, reconsider at
  4070   // least some of these.
  4071 #define local_jcc(assembler_cond, label)                                \
  4072   if (&(label) == &L_fallthrough)  jccb(assembler_cond, label);         \
  4073   else                             jcc( assembler_cond, label) /*omit semi*/
  4075   // Hacked jmp, which may only be used just before L_fallthrough.
  4076 #define final_jmp(label)                                                \
  4077   if (&(label) == &L_fallthrough) { /*do nothing*/ }                    \
  4078   else                            jmp(label)                /*omit semi*/
  4080   // If the pointers are equal, we are done (e.g., String[] elements).
  4081   // This self-check enables sharing of secondary supertype arrays among
  4082   // non-primary types such as array-of-interface.  Otherwise, each such
  4083   // type would need its own customized SSA.
  4084   // We move this check to the front of the fast path because many
  4085   // type checks are in fact trivially successful in this manner,
  4086   // so we get a nicely predicted branch right at the start of the check.
  4087   cmpptr(sub_klass, super_klass);
  4088   local_jcc(Assembler::equal, *L_success);
  4090   // Check the supertype display:
  4091   if (must_load_sco) {
  4092     // Positive movl does right thing on LP64.
  4093     movl(temp_reg, super_check_offset_addr);
  4094     super_check_offset = RegisterOrConstant(temp_reg);
  4096   Address super_check_addr(sub_klass, super_check_offset, Address::times_1, 0);
  4097   cmpptr(super_klass, super_check_addr); // load displayed supertype
  4099   // This check has worked decisively for primary supers.
  4100   // Secondary supers are sought in the super_cache ('super_cache_addr').
  4101   // (Secondary supers are interfaces and very deeply nested subtypes.)
  4102   // This works in the same check above because of a tricky aliasing
  4103   // between the super_cache and the primary super display elements.
  4104   // (The 'super_check_addr' can address either, as the case requires.)
  4105   // Note that the cache is updated below if it does not help us find
  4106   // what we need immediately.
  4107   // So if it was a primary super, we can just fail immediately.
  4108   // Otherwise, it's the slow path for us (no success at this point).
  4110   if (super_check_offset.is_register()) {
  4111     local_jcc(Assembler::equal, *L_success);
  4112     cmpl(super_check_offset.as_register(), sc_offset);
  4113     if (L_failure == &L_fallthrough) {
  4114       local_jcc(Assembler::equal, *L_slow_path);
  4115     } else {
  4116       local_jcc(Assembler::notEqual, *L_failure);
  4117       final_jmp(*L_slow_path);
  4119   } else if (super_check_offset.as_constant() == sc_offset) {
  4120     // Need a slow path; fast failure is impossible.
  4121     if (L_slow_path == &L_fallthrough) {
  4122       local_jcc(Assembler::equal, *L_success);
  4123     } else {
  4124       local_jcc(Assembler::notEqual, *L_slow_path);
  4125       final_jmp(*L_success);
  4127   } else {
  4128     // No slow path; it's a fast decision.
  4129     if (L_failure == &L_fallthrough) {
  4130       local_jcc(Assembler::equal, *L_success);
  4131     } else {
  4132       local_jcc(Assembler::notEqual, *L_failure);
  4133       final_jmp(*L_success);
  4137   bind(L_fallthrough);
  4139 #undef local_jcc
  4140 #undef final_jmp
  4144 void MacroAssembler::check_klass_subtype_slow_path(Register sub_klass,
  4145                                                    Register super_klass,
  4146                                                    Register temp_reg,
  4147                                                    Register temp2_reg,
  4148                                                    Label* L_success,
  4149                                                    Label* L_failure,
  4150                                                    bool set_cond_codes) {
  4151   assert_different_registers(sub_klass, super_klass, temp_reg);
  4152   if (temp2_reg != noreg)
  4153     assert_different_registers(sub_klass, super_klass, temp_reg, temp2_reg);
  4154 #define IS_A_TEMP(reg) ((reg) == temp_reg || (reg) == temp2_reg)
  4156   Label L_fallthrough;
  4157   int label_nulls = 0;
  4158   if (L_success == NULL)   { L_success   = &L_fallthrough; label_nulls++; }
  4159   if (L_failure == NULL)   { L_failure   = &L_fallthrough; label_nulls++; }
  4160   assert(label_nulls <= 1, "at most one NULL in the batch");
  4162   // a couple of useful fields in sub_klass:
  4163   int ss_offset = in_bytes(Klass::secondary_supers_offset());
  4164   int sc_offset = in_bytes(Klass::secondary_super_cache_offset());
  4165   Address secondary_supers_addr(sub_klass, ss_offset);
  4166   Address super_cache_addr(     sub_klass, sc_offset);
  4168   // Do a linear scan of the secondary super-klass chain.
  4169   // This code is rarely used, so simplicity is a virtue here.
  4170   // The repne_scan instruction uses fixed registers, which we must spill.
  4171   // Don't worry too much about pre-existing connections with the input regs.
  4173   assert(sub_klass != rax, "killed reg"); // killed by mov(rax, super)
  4174   assert(sub_klass != rcx, "killed reg"); // killed by lea(rcx, &pst_counter)
  4176   // Get super_klass value into rax (even if it was in rdi or rcx).
  4177   bool pushed_rax = false, pushed_rcx = false, pushed_rdi = false;
  4178   if (super_klass != rax || UseCompressedOops) {
  4179     if (!IS_A_TEMP(rax)) { push(rax); pushed_rax = true; }
  4180     mov(rax, super_klass);
  4182   if (!IS_A_TEMP(rcx)) { push(rcx); pushed_rcx = true; }
  4183   if (!IS_A_TEMP(rdi)) { push(rdi); pushed_rdi = true; }
  4185 #ifndef PRODUCT
  4186   int* pst_counter = &SharedRuntime::_partial_subtype_ctr;
  4187   ExternalAddress pst_counter_addr((address) pst_counter);
  4188   NOT_LP64(  incrementl(pst_counter_addr) );
  4189   LP64_ONLY( lea(rcx, pst_counter_addr) );
  4190   LP64_ONLY( incrementl(Address(rcx, 0)) );
  4191 #endif //PRODUCT
  4193   // We will consult the secondary-super array.
  4194   movptr(rdi, secondary_supers_addr);
  4195   // Load the array length.  (Positive movl does right thing on LP64.)
  4196   movl(rcx, Address(rdi, Array<Klass*>::length_offset_in_bytes()));
  4197   // Skip to start of data.
  4198   addptr(rdi, Array<Klass*>::base_offset_in_bytes());
  4200   // Scan RCX words at [RDI] for an occurrence of RAX.
  4201   // Set NZ/Z based on last compare.
  4202   // Z flag value will not be set by 'repne' if RCX == 0 since 'repne' does
  4203   // not change flags (only scas instruction which is repeated sets flags).
  4204   // Set Z = 0 (not equal) before 'repne' to indicate that class was not found.
  4206     testptr(rax,rax); // Set Z = 0
  4207     repne_scan();
  4209   // Unspill the temp. registers:
  4210   if (pushed_rdi)  pop(rdi);
  4211   if (pushed_rcx)  pop(rcx);
  4212   if (pushed_rax)  pop(rax);
  4214   if (set_cond_codes) {
  4215     // Special hack for the AD files:  rdi is guaranteed non-zero.
  4216     assert(!pushed_rdi, "rdi must be left non-NULL");
  4217     // Also, the condition codes are properly set Z/NZ on succeed/failure.
  4220   if (L_failure == &L_fallthrough)
  4221         jccb(Assembler::notEqual, *L_failure);
  4222   else  jcc(Assembler::notEqual, *L_failure);
  4224   // Success.  Cache the super we found and proceed in triumph.
  4225   movptr(super_cache_addr, super_klass);
  4227   if (L_success != &L_fallthrough) {
  4228     jmp(*L_success);
  4231 #undef IS_A_TEMP
  4233   bind(L_fallthrough);
  4237 void MacroAssembler::cmov32(Condition cc, Register dst, Address src) {
  4238   if (VM_Version::supports_cmov()) {
  4239     cmovl(cc, dst, src);
  4240   } else {
  4241     Label L;
  4242     jccb(negate_condition(cc), L);
  4243     movl(dst, src);
  4244     bind(L);
  4248 void MacroAssembler::cmov32(Condition cc, Register dst, Register src) {
  4249   if (VM_Version::supports_cmov()) {
  4250     cmovl(cc, dst, src);
  4251   } else {
  4252     Label L;
  4253     jccb(negate_condition(cc), L);
  4254     movl(dst, src);
  4255     bind(L);
  4259 void MacroAssembler::verify_oop(Register reg, const char* s) {
  4260   if (!VerifyOops) return;
  4262   // Pass register number to verify_oop_subroutine
  4263   char* b = new char[strlen(s) + 50];
  4264   sprintf(b, "verify_oop: %s: %s", reg->name(), s);
  4265   BLOCK_COMMENT("verify_oop {");
  4266 #ifdef _LP64
  4267   push(rscratch1);                    // save r10, trashed by movptr()
  4268 #endif
  4269   push(rax);                          // save rax,
  4270   push(reg);                          // pass register argument
  4271   ExternalAddress buffer((address) b);
  4272   // avoid using pushptr, as it modifies scratch registers
  4273   // and our contract is not to modify anything
  4274   movptr(rax, buffer.addr());
  4275   push(rax);
  4276   // call indirectly to solve generation ordering problem
  4277   movptr(rax, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address()));
  4278   call(rax);
  4279   // Caller pops the arguments (oop, message) and restores rax, r10
  4280   BLOCK_COMMENT("} verify_oop");
  4284 RegisterOrConstant MacroAssembler::delayed_value_impl(intptr_t* delayed_value_addr,
  4285                                                       Register tmp,
  4286                                                       int offset) {
  4287   intptr_t value = *delayed_value_addr;
  4288   if (value != 0)
  4289     return RegisterOrConstant(value + offset);
  4291   // load indirectly to solve generation ordering problem
  4292   movptr(tmp, ExternalAddress((address) delayed_value_addr));
  4294 #ifdef ASSERT
  4295   { Label L;
  4296     testptr(tmp, tmp);
  4297     if (WizardMode) {
  4298       jcc(Assembler::notZero, L);
  4299       char* buf = new char[40];
  4300       sprintf(buf, "DelayedValue="INTPTR_FORMAT, delayed_value_addr[1]);
  4301       STOP(buf);
  4302     } else {
  4303       jccb(Assembler::notZero, L);
  4304       hlt();
  4306     bind(L);
  4308 #endif
  4310   if (offset != 0)
  4311     addptr(tmp, offset);
  4313   return RegisterOrConstant(tmp);
  4317 Address MacroAssembler::argument_address(RegisterOrConstant arg_slot,
  4318                                          int extra_slot_offset) {
  4319   // cf. TemplateTable::prepare_invoke(), if (load_receiver).
  4320   int stackElementSize = Interpreter::stackElementSize;
  4321   int offset = Interpreter::expr_offset_in_bytes(extra_slot_offset+0);
  4322 #ifdef ASSERT
  4323   int offset1 = Interpreter::expr_offset_in_bytes(extra_slot_offset+1);
  4324   assert(offset1 - offset == stackElementSize, "correct arithmetic");
  4325 #endif
  4326   Register             scale_reg    = noreg;
  4327   Address::ScaleFactor scale_factor = Address::no_scale;
  4328   if (arg_slot.is_constant()) {
  4329     offset += arg_slot.as_constant() * stackElementSize;
  4330   } else {
  4331     scale_reg    = arg_slot.as_register();
  4332     scale_factor = Address::times(stackElementSize);
  4334   offset += wordSize;           // return PC is on stack
  4335   return Address(rsp, scale_reg, scale_factor, offset);
  4339 void MacroAssembler::verify_oop_addr(Address addr, const char* s) {
  4340   if (!VerifyOops) return;
  4342   // Address adjust(addr.base(), addr.index(), addr.scale(), addr.disp() + BytesPerWord);
  4343   // Pass register number to verify_oop_subroutine
  4344   char* b = new char[strlen(s) + 50];
  4345   sprintf(b, "verify_oop_addr: %s", s);
  4347 #ifdef _LP64
  4348   push(rscratch1);                    // save r10, trashed by movptr()
  4349 #endif
  4350   push(rax);                          // save rax,
  4351   // addr may contain rsp so we will have to adjust it based on the push
  4352   // we just did (and on 64 bit we do two pushes)
  4353   // NOTE: 64bit seemed to have had a bug in that it did movq(addr, rax); which
  4354   // stores rax into addr which is backwards of what was intended.
  4355   if (addr.uses(rsp)) {
  4356     lea(rax, addr);
  4357     pushptr(Address(rax, LP64_ONLY(2 *) BytesPerWord));
  4358   } else {
  4359     pushptr(addr);
  4362   ExternalAddress buffer((address) b);
  4363   // pass msg argument
  4364   // avoid using pushptr, as it modifies scratch registers
  4365   // and our contract is not to modify anything
  4366   movptr(rax, buffer.addr());
  4367   push(rax);
  4369   // call indirectly to solve generation ordering problem
  4370   movptr(rax, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address()));
  4371   call(rax);
  4372   // Caller pops the arguments (addr, message) and restores rax, r10.
  4375 void MacroAssembler::verify_tlab() {
  4376 #ifdef ASSERT
  4377   if (UseTLAB && VerifyOops) {
  4378     Label next, ok;
  4379     Register t1 = rsi;
  4380     Register thread_reg = NOT_LP64(rbx) LP64_ONLY(r15_thread);
  4382     push(t1);
  4383     NOT_LP64(push(thread_reg));
  4384     NOT_LP64(get_thread(thread_reg));
  4386     movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())));
  4387     cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_start_offset())));
  4388     jcc(Assembler::aboveEqual, next);
  4389     STOP("assert(top >= start)");
  4390     should_not_reach_here();
  4392     bind(next);
  4393     movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_end_offset())));
  4394     cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())));
  4395     jcc(Assembler::aboveEqual, ok);
  4396     STOP("assert(top <= end)");
  4397     should_not_reach_here();
  4399     bind(ok);
  4400     NOT_LP64(pop(thread_reg));
  4401     pop(t1);
  4403 #endif
  4406 class ControlWord {
  4407  public:
  4408   int32_t _value;
  4410   int  rounding_control() const        { return  (_value >> 10) & 3      ; }
  4411   int  precision_control() const       { return  (_value >>  8) & 3      ; }
  4412   bool precision() const               { return ((_value >>  5) & 1) != 0; }
  4413   bool underflow() const               { return ((_value >>  4) & 1) != 0; }
  4414   bool overflow() const                { return ((_value >>  3) & 1) != 0; }
  4415   bool zero_divide() const             { return ((_value >>  2) & 1) != 0; }
  4416   bool denormalized() const            { return ((_value >>  1) & 1) != 0; }
  4417   bool invalid() const                 { return ((_value >>  0) & 1) != 0; }
  4419   void print() const {
  4420     // rounding control
  4421     const char* rc;
  4422     switch (rounding_control()) {
  4423       case 0: rc = "round near"; break;
  4424       case 1: rc = "round down"; break;
  4425       case 2: rc = "round up  "; break;
  4426       case 3: rc = "chop      "; break;
  4427     };
  4428     // precision control
  4429     const char* pc;
  4430     switch (precision_control()) {
  4431       case 0: pc = "24 bits "; break;
  4432       case 1: pc = "reserved"; break;
  4433       case 2: pc = "53 bits "; break;
  4434       case 3: pc = "64 bits "; break;
  4435     };
  4436     // flags
  4437     char f[9];
  4438     f[0] = ' ';
  4439     f[1] = ' ';
  4440     f[2] = (precision   ()) ? 'P' : 'p';
  4441     f[3] = (underflow   ()) ? 'U' : 'u';
  4442     f[4] = (overflow    ()) ? 'O' : 'o';
  4443     f[5] = (zero_divide ()) ? 'Z' : 'z';
  4444     f[6] = (denormalized()) ? 'D' : 'd';
  4445     f[7] = (invalid     ()) ? 'I' : 'i';
  4446     f[8] = '\x0';
  4447     // output
  4448     printf("%04x  masks = %s, %s, %s", _value & 0xFFFF, f, rc, pc);
  4451 };
  4453 class StatusWord {
  4454  public:
  4455   int32_t _value;
  4457   bool busy() const                    { return ((_value >> 15) & 1) != 0; }
  4458   bool C3() const                      { return ((_value >> 14) & 1) != 0; }
  4459   bool C2() const                      { return ((_value >> 10) & 1) != 0; }
  4460   bool C1() const                      { return ((_value >>  9) & 1) != 0; }
  4461   bool C0() const                      { return ((_value >>  8) & 1) != 0; }
  4462   int  top() const                     { return  (_value >> 11) & 7      ; }
  4463   bool error_status() const            { return ((_value >>  7) & 1) != 0; }
  4464   bool stack_fault() const             { return ((_value >>  6) & 1) != 0; }
  4465   bool precision() const               { return ((_value >>  5) & 1) != 0; }
  4466   bool underflow() const               { return ((_value >>  4) & 1) != 0; }
  4467   bool overflow() const                { return ((_value >>  3) & 1) != 0; }
  4468   bool zero_divide() const             { return ((_value >>  2) & 1) != 0; }
  4469   bool denormalized() const            { return ((_value >>  1) & 1) != 0; }
  4470   bool invalid() const                 { return ((_value >>  0) & 1) != 0; }
  4472   void print() const {
  4473     // condition codes
  4474     char c[5];
  4475     c[0] = (C3()) ? '3' : '-';
  4476     c[1] = (C2()) ? '2' : '-';
  4477     c[2] = (C1()) ? '1' : '-';
  4478     c[3] = (C0()) ? '0' : '-';
  4479     c[4] = '\x0';
  4480     // flags
  4481     char f[9];
  4482     f[0] = (error_status()) ? 'E' : '-';
  4483     f[1] = (stack_fault ()) ? 'S' : '-';
  4484     f[2] = (precision   ()) ? 'P' : '-';
  4485     f[3] = (underflow   ()) ? 'U' : '-';
  4486     f[4] = (overflow    ()) ? 'O' : '-';
  4487     f[5] = (zero_divide ()) ? 'Z' : '-';
  4488     f[6] = (denormalized()) ? 'D' : '-';
  4489     f[7] = (invalid     ()) ? 'I' : '-';
  4490     f[8] = '\x0';
  4491     // output
  4492     printf("%04x  flags = %s, cc =  %s, top = %d", _value & 0xFFFF, f, c, top());
  4495 };
  4497 class TagWord {
  4498  public:
  4499   int32_t _value;
  4501   int tag_at(int i) const              { return (_value >> (i*2)) & 3; }
  4503   void print() const {
  4504     printf("%04x", _value & 0xFFFF);
  4507 };
  4509 class FPU_Register {
  4510  public:
  4511   int32_t _m0;
  4512   int32_t _m1;
  4513   int16_t _ex;
  4515   bool is_indefinite() const           {
  4516     return _ex == -1 && _m1 == (int32_t)0xC0000000 && _m0 == 0;
  4519   void print() const {
  4520     char  sign = (_ex < 0) ? '-' : '+';
  4521     const char* kind = (_ex == 0x7FFF || _ex == (int16_t)-1) ? "NaN" : "   ";
  4522     printf("%c%04hx.%08x%08x  %s", sign, _ex, _m1, _m0, kind);
  4523   };
  4525 };
  4527 class FPU_State {
  4528  public:
  4529   enum {
  4530     register_size       = 10,
  4531     number_of_registers =  8,
  4532     register_mask       =  7
  4533   };
  4535   ControlWord  _control_word;
  4536   StatusWord   _status_word;
  4537   TagWord      _tag_word;
  4538   int32_t      _error_offset;
  4539   int32_t      _error_selector;
  4540   int32_t      _data_offset;
  4541   int32_t      _data_selector;
  4542   int8_t       _register[register_size * number_of_registers];
  4544   int tag_for_st(int i) const          { return _tag_word.tag_at((_status_word.top() + i) & register_mask); }
  4545   FPU_Register* st(int i) const        { return (FPU_Register*)&_register[register_size * i]; }
  4547   const char* tag_as_string(int tag) const {
  4548     switch (tag) {
  4549       case 0: return "valid";
  4550       case 1: return "zero";
  4551       case 2: return "special";
  4552       case 3: return "empty";
  4554     ShouldNotReachHere();
  4555     return NULL;
  4558   void print() const {
  4559     // print computation registers
  4560     { int t = _status_word.top();
  4561       for (int i = 0; i < number_of_registers; i++) {
  4562         int j = (i - t) & register_mask;
  4563         printf("%c r%d = ST%d = ", (j == 0 ? '*' : ' '), i, j);
  4564         st(j)->print();
  4565         printf(" %s\n", tag_as_string(_tag_word.tag_at(i)));
  4568     printf("\n");
  4569     // print control registers
  4570     printf("ctrl = "); _control_word.print(); printf("\n");
  4571     printf("stat = "); _status_word .print(); printf("\n");
  4572     printf("tags = "); _tag_word    .print(); printf("\n");
  4575 };
  4577 class Flag_Register {
  4578  public:
  4579   int32_t _value;
  4581   bool overflow() const                { return ((_value >> 11) & 1) != 0; }
  4582   bool direction() const               { return ((_value >> 10) & 1) != 0; }
  4583   bool sign() const                    { return ((_value >>  7) & 1) != 0; }
  4584   bool zero() const                    { return ((_value >>  6) & 1) != 0; }
  4585   bool auxiliary_carry() const         { return ((_value >>  4) & 1) != 0; }
  4586   bool parity() const                  { return ((_value >>  2) & 1) != 0; }
  4587   bool carry() const                   { return ((_value >>  0) & 1) != 0; }
  4589   void print() const {
  4590     // flags
  4591     char f[8];
  4592     f[0] = (overflow       ()) ? 'O' : '-';
  4593     f[1] = (direction      ()) ? 'D' : '-';
  4594     f[2] = (sign           ()) ? 'S' : '-';
  4595     f[3] = (zero           ()) ? 'Z' : '-';
  4596     f[4] = (auxiliary_carry()) ? 'A' : '-';
  4597     f[5] = (parity         ()) ? 'P' : '-';
  4598     f[6] = (carry          ()) ? 'C' : '-';
  4599     f[7] = '\x0';
  4600     // output
  4601     printf("%08x  flags = %s", _value, f);
  4604 };
  4606 class IU_Register {
  4607  public:
  4608   int32_t _value;
  4610   void print() const {
  4611     printf("%08x  %11d", _value, _value);
  4614 };
  4616 class IU_State {
  4617  public:
  4618   Flag_Register _eflags;
  4619   IU_Register   _rdi;
  4620   IU_Register   _rsi;
  4621   IU_Register   _rbp;
  4622   IU_Register   _rsp;
  4623   IU_Register   _rbx;
  4624   IU_Register   _rdx;
  4625   IU_Register   _rcx;
  4626   IU_Register   _rax;
  4628   void print() const {
  4629     // computation registers
  4630     printf("rax,  = "); _rax.print(); printf("\n");
  4631     printf("rbx,  = "); _rbx.print(); printf("\n");
  4632     printf("rcx  = "); _rcx.print(); printf("\n");
  4633     printf("rdx  = "); _rdx.print(); printf("\n");
  4634     printf("rdi  = "); _rdi.print(); printf("\n");
  4635     printf("rsi  = "); _rsi.print(); printf("\n");
  4636     printf("rbp,  = "); _rbp.print(); printf("\n");
  4637     printf("rsp  = "); _rsp.print(); printf("\n");
  4638     printf("\n");
  4639     // control registers
  4640     printf("flgs = "); _eflags.print(); printf("\n");
  4642 };
  4645 class CPU_State {
  4646  public:
  4647   FPU_State _fpu_state;
  4648   IU_State  _iu_state;
  4650   void print() const {
  4651     printf("--------------------------------------------------\n");
  4652     _iu_state .print();
  4653     printf("\n");
  4654     _fpu_state.print();
  4655     printf("--------------------------------------------------\n");
  4658 };
  4661 static void _print_CPU_state(CPU_State* state) {
  4662   state->print();
  4663 };
  4666 void MacroAssembler::print_CPU_state() {
  4667   push_CPU_state();
  4668   push(rsp);                // pass CPU state
  4669   call(RuntimeAddress(CAST_FROM_FN_PTR(address, _print_CPU_state)));
  4670   addptr(rsp, wordSize);       // discard argument
  4671   pop_CPU_state();
  4675 static bool _verify_FPU(int stack_depth, char* s, CPU_State* state) {
  4676   static int counter = 0;
  4677   FPU_State* fs = &state->_fpu_state;
  4678   counter++;
  4679   // For leaf calls, only verify that the top few elements remain empty.
  4680   // We only need 1 empty at the top for C2 code.
  4681   if( stack_depth < 0 ) {
  4682     if( fs->tag_for_st(7) != 3 ) {
  4683       printf("FPR7 not empty\n");
  4684       state->print();
  4685       assert(false, "error");
  4686       return false;
  4688     return true;                // All other stack states do not matter
  4691   assert((fs->_control_word._value & 0xffff) == StubRoutines::_fpu_cntrl_wrd_std,
  4692          "bad FPU control word");
  4694   // compute stack depth
  4695   int i = 0;
  4696   while (i < FPU_State::number_of_registers && fs->tag_for_st(i)  < 3) i++;
  4697   int d = i;
  4698   while (i < FPU_State::number_of_registers && fs->tag_for_st(i) == 3) i++;
  4699   // verify findings
  4700   if (i != FPU_State::number_of_registers) {
  4701     // stack not contiguous
  4702     printf("%s: stack not contiguous at ST%d\n", s, i);
  4703     state->print();
  4704     assert(false, "error");
  4705     return false;
  4707   // check if computed stack depth corresponds to expected stack depth
  4708   if (stack_depth < 0) {
  4709     // expected stack depth is -stack_depth or less
  4710     if (d > -stack_depth) {
  4711       // too many elements on the stack
  4712       printf("%s: <= %d stack elements expected but found %d\n", s, -stack_depth, d);
  4713       state->print();
  4714       assert(false, "error");
  4715       return false;
  4717   } else {
  4718     // expected stack depth is stack_depth
  4719     if (d != stack_depth) {
  4720       // wrong stack depth
  4721       printf("%s: %d stack elements expected but found %d\n", s, stack_depth, d);
  4722       state->print();
  4723       assert(false, "error");
  4724       return false;
  4727   // everything is cool
  4728   return true;
  4732 void MacroAssembler::verify_FPU(int stack_depth, const char* s) {
  4733   if (!VerifyFPU) return;
  4734   push_CPU_state();
  4735   push(rsp);                // pass CPU state
  4736   ExternalAddress msg((address) s);
  4737   // pass message string s
  4738   pushptr(msg.addr());
  4739   push(stack_depth);        // pass stack depth
  4740   call(RuntimeAddress(CAST_FROM_FN_PTR(address, _verify_FPU)));
  4741   addptr(rsp, 3 * wordSize);   // discard arguments
  4742   // check for error
  4743   { Label L;
  4744     testl(rax, rax);
  4745     jcc(Assembler::notZero, L);
  4746     int3();                  // break if error condition
  4747     bind(L);
  4749   pop_CPU_state();
  4752 void MacroAssembler::load_klass(Register dst, Register src) {
  4753 #ifdef _LP64
  4754   if (UseCompressedKlassPointers) {
  4755     movl(dst, Address(src, oopDesc::klass_offset_in_bytes()));
  4756     decode_klass_not_null(dst);
  4757   } else
  4758 #endif
  4759     movptr(dst, Address(src, oopDesc::klass_offset_in_bytes()));
  4762 void MacroAssembler::load_prototype_header(Register dst, Register src) {
  4763 #ifdef _LP64
  4764   if (UseCompressedKlassPointers) {
  4765     assert (Universe::heap() != NULL, "java heap should be initialized");
  4766     movl(dst, Address(src, oopDesc::klass_offset_in_bytes()));
  4767     if (Universe::narrow_klass_shift() != 0) {
  4768       assert(LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
  4769       assert(LogKlassAlignmentInBytes == Address::times_8, "klass not aligned on 64bits?");
  4770       movq(dst, Address(r12_heapbase, dst, Address::times_8, Klass::prototype_header_offset()));
  4771     } else {
  4772       movq(dst, Address(dst, Klass::prototype_header_offset()));
  4774   } else
  4775 #endif
  4777     movptr(dst, Address(src, oopDesc::klass_offset_in_bytes()));
  4778     movptr(dst, Address(dst, Klass::prototype_header_offset()));
  4782 void MacroAssembler::store_klass(Register dst, Register src) {
  4783 #ifdef _LP64
  4784   if (UseCompressedKlassPointers) {
  4785     encode_klass_not_null(src);
  4786     movl(Address(dst, oopDesc::klass_offset_in_bytes()), src);
  4787   } else
  4788 #endif
  4789     movptr(Address(dst, oopDesc::klass_offset_in_bytes()), src);
  4792 void MacroAssembler::load_heap_oop(Register dst, Address src) {
  4793 #ifdef _LP64
  4794   // FIXME: Must change all places where we try to load the klass.
  4795   if (UseCompressedOops) {
  4796     movl(dst, src);
  4797     decode_heap_oop(dst);
  4798   } else
  4799 #endif
  4800     movptr(dst, src);
  4803 // Doesn't do verfication, generates fixed size code
  4804 void MacroAssembler::load_heap_oop_not_null(Register dst, Address src) {
  4805 #ifdef _LP64
  4806   if (UseCompressedOops) {
  4807     movl(dst, src);
  4808     decode_heap_oop_not_null(dst);
  4809   } else
  4810 #endif
  4811     movptr(dst, src);
  4814 void MacroAssembler::store_heap_oop(Address dst, Register src) {
  4815 #ifdef _LP64
  4816   if (UseCompressedOops) {
  4817     assert(!dst.uses(src), "not enough registers");
  4818     encode_heap_oop(src);
  4819     movl(dst, src);
  4820   } else
  4821 #endif
  4822     movptr(dst, src);
  4825 void MacroAssembler::cmp_heap_oop(Register src1, Address src2, Register tmp) {
  4826   assert_different_registers(src1, tmp);
  4827 #ifdef _LP64
  4828   if (UseCompressedOops) {
  4829     bool did_push = false;
  4830     if (tmp == noreg) {
  4831       tmp = rax;
  4832       push(tmp);
  4833       did_push = true;
  4834       assert(!src2.uses(rsp), "can't push");
  4836     load_heap_oop(tmp, src2);
  4837     cmpptr(src1, tmp);
  4838     if (did_push)  pop(tmp);
  4839   } else
  4840 #endif
  4841     cmpptr(src1, src2);
  4844 // Used for storing NULLs.
  4845 void MacroAssembler::store_heap_oop_null(Address dst) {
  4846 #ifdef _LP64
  4847   if (UseCompressedOops) {
  4848     movl(dst, (int32_t)NULL_WORD);
  4849   } else {
  4850     movslq(dst, (int32_t)NULL_WORD);
  4852 #else
  4853   movl(dst, (int32_t)NULL_WORD);
  4854 #endif
  4857 #ifdef _LP64
  4858 void MacroAssembler::store_klass_gap(Register dst, Register src) {
  4859   if (UseCompressedKlassPointers) {
  4860     // Store to klass gap in destination
  4861     movl(Address(dst, oopDesc::klass_gap_offset_in_bytes()), src);
  4865 #ifdef ASSERT
  4866 void MacroAssembler::verify_heapbase(const char* msg) {
  4867   assert (UseCompressedOops || UseCompressedKlassPointers, "should be compressed");
  4868   assert (Universe::heap() != NULL, "java heap should be initialized");
  4869   if (CheckCompressedOops) {
  4870     Label ok;
  4871     push(rscratch1); // cmpptr trashes rscratch1
  4872     cmpptr(r12_heapbase, ExternalAddress((address)Universe::narrow_ptrs_base_addr()));
  4873     jcc(Assembler::equal, ok);
  4874     STOP(msg);
  4875     bind(ok);
  4876     pop(rscratch1);
  4879 #endif
  4881 // Algorithm must match oop.inline.hpp encode_heap_oop.
  4882 void MacroAssembler::encode_heap_oop(Register r) {
  4883 #ifdef ASSERT
  4884   verify_heapbase("MacroAssembler::encode_heap_oop: heap base corrupted?");
  4885 #endif
  4886   verify_oop(r, "broken oop in encode_heap_oop");
  4887   if (Universe::narrow_oop_base() == NULL) {
  4888     if (Universe::narrow_oop_shift() != 0) {
  4889       assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
  4890       shrq(r, LogMinObjAlignmentInBytes);
  4892     return;
  4894   testq(r, r);
  4895   cmovq(Assembler::equal, r, r12_heapbase);
  4896   subq(r, r12_heapbase);
  4897   shrq(r, LogMinObjAlignmentInBytes);
  4900 void MacroAssembler::encode_heap_oop_not_null(Register r) {
  4901 #ifdef ASSERT
  4902   verify_heapbase("MacroAssembler::encode_heap_oop_not_null: heap base corrupted?");
  4903   if (CheckCompressedOops) {
  4904     Label ok;
  4905     testq(r, r);
  4906     jcc(Assembler::notEqual, ok);
  4907     STOP("null oop passed to encode_heap_oop_not_null");
  4908     bind(ok);
  4910 #endif
  4911   verify_oop(r, "broken oop in encode_heap_oop_not_null");
  4912   if (Universe::narrow_oop_base() != NULL) {
  4913     subq(r, r12_heapbase);
  4915   if (Universe::narrow_oop_shift() != 0) {
  4916     assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
  4917     shrq(r, LogMinObjAlignmentInBytes);
  4921 void MacroAssembler::encode_heap_oop_not_null(Register dst, Register src) {
  4922 #ifdef ASSERT
  4923   verify_heapbase("MacroAssembler::encode_heap_oop_not_null2: heap base corrupted?");
  4924   if (CheckCompressedOops) {
  4925     Label ok;
  4926     testq(src, src);
  4927     jcc(Assembler::notEqual, ok);
  4928     STOP("null oop passed to encode_heap_oop_not_null2");
  4929     bind(ok);
  4931 #endif
  4932   verify_oop(src, "broken oop in encode_heap_oop_not_null2");
  4933   if (dst != src) {
  4934     movq(dst, src);
  4936   if (Universe::narrow_oop_base() != NULL) {
  4937     subq(dst, r12_heapbase);
  4939   if (Universe::narrow_oop_shift() != 0) {
  4940     assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
  4941     shrq(dst, LogMinObjAlignmentInBytes);
  4945 void  MacroAssembler::decode_heap_oop(Register r) {
  4946 #ifdef ASSERT
  4947   verify_heapbase("MacroAssembler::decode_heap_oop: heap base corrupted?");
  4948 #endif
  4949   if (Universe::narrow_oop_base() == NULL) {
  4950     if (Universe::narrow_oop_shift() != 0) {
  4951       assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
  4952       shlq(r, LogMinObjAlignmentInBytes);
  4954   } else {
  4955     Label done;
  4956     shlq(r, LogMinObjAlignmentInBytes);
  4957     jccb(Assembler::equal, done);
  4958     addq(r, r12_heapbase);
  4959     bind(done);
  4961   verify_oop(r, "broken oop in decode_heap_oop");
  4964 void  MacroAssembler::decode_heap_oop_not_null(Register r) {
  4965   // Note: it will change flags
  4966   assert (UseCompressedOops, "should only be used for compressed headers");
  4967   assert (Universe::heap() != NULL, "java heap should be initialized");
  4968   // Cannot assert, unverified entry point counts instructions (see .ad file)
  4969   // vtableStubs also counts instructions in pd_code_size_limit.
  4970   // Also do not verify_oop as this is called by verify_oop.
  4971   if (Universe::narrow_oop_shift() != 0) {
  4972     assert(LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
  4973     shlq(r, LogMinObjAlignmentInBytes);
  4974     if (Universe::narrow_oop_base() != NULL) {
  4975       addq(r, r12_heapbase);
  4977   } else {
  4978     assert (Universe::narrow_oop_base() == NULL, "sanity");
  4982 void  MacroAssembler::decode_heap_oop_not_null(Register dst, Register src) {
  4983   // Note: it will change flags
  4984   assert (UseCompressedOops, "should only be used for compressed headers");
  4985   assert (Universe::heap() != NULL, "java heap should be initialized");
  4986   // Cannot assert, unverified entry point counts instructions (see .ad file)
  4987   // vtableStubs also counts instructions in pd_code_size_limit.
  4988   // Also do not verify_oop as this is called by verify_oop.
  4989   if (Universe::narrow_oop_shift() != 0) {
  4990     assert(LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
  4991     if (LogMinObjAlignmentInBytes == Address::times_8) {
  4992       leaq(dst, Address(r12_heapbase, src, Address::times_8, 0));
  4993     } else {
  4994       if (dst != src) {
  4995         movq(dst, src);
  4997       shlq(dst, LogMinObjAlignmentInBytes);
  4998       if (Universe::narrow_oop_base() != NULL) {
  4999         addq(dst, r12_heapbase);
  5002   } else {
  5003     assert (Universe::narrow_oop_base() == NULL, "sanity");
  5004     if (dst != src) {
  5005       movq(dst, src);
  5010 void MacroAssembler::encode_klass_not_null(Register r) {
  5011   assert(Metaspace::is_initialized(), "metaspace should be initialized");
  5012 #ifdef ASSERT
  5013   verify_heapbase("MacroAssembler::encode_klass_not_null: heap base corrupted?");
  5014 #endif
  5015   if (Universe::narrow_klass_base() != NULL) {
  5016     subq(r, r12_heapbase);
  5018   if (Universe::narrow_klass_shift() != 0) {
  5019     assert (LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
  5020     shrq(r, LogKlassAlignmentInBytes);
  5024 void MacroAssembler::encode_klass_not_null(Register dst, Register src) {
  5025   assert(Metaspace::is_initialized(), "metaspace should be initialized");
  5026 #ifdef ASSERT
  5027   verify_heapbase("MacroAssembler::encode_klass_not_null2: heap base corrupted?");
  5028 #endif
  5029   if (dst != src) {
  5030     movq(dst, src);
  5032   if (Universe::narrow_klass_base() != NULL) {
  5033     subq(dst, r12_heapbase);
  5035   if (Universe::narrow_klass_shift() != 0) {
  5036     assert (LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
  5037     shrq(dst, LogKlassAlignmentInBytes);
  5041 void  MacroAssembler::decode_klass_not_null(Register r) {
  5042   assert(Metaspace::is_initialized(), "metaspace should be initialized");
  5043   // Note: it will change flags
  5044   assert (UseCompressedKlassPointers, "should only be used for compressed headers");
  5045   // Cannot assert, unverified entry point counts instructions (see .ad file)
  5046   // vtableStubs also counts instructions in pd_code_size_limit.
  5047   // Also do not verify_oop as this is called by verify_oop.
  5048   if (Universe::narrow_klass_shift() != 0) {
  5049     assert(LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
  5050     shlq(r, LogKlassAlignmentInBytes);
  5051     if (Universe::narrow_klass_base() != NULL) {
  5052       addq(r, r12_heapbase);
  5054   } else {
  5055     assert (Universe::narrow_klass_base() == NULL, "sanity");
  5059 void  MacroAssembler::decode_klass_not_null(Register dst, Register src) {
  5060   assert(Metaspace::is_initialized(), "metaspace should be initialized");
  5061   // Note: it will change flags
  5062   assert (UseCompressedKlassPointers, "should only be used for compressed headers");
  5063   // Cannot assert, unverified entry point counts instructions (see .ad file)
  5064   // vtableStubs also counts instructions in pd_code_size_limit.
  5065   // Also do not verify_oop as this is called by verify_oop.
  5066   if (Universe::narrow_klass_shift() != 0) {
  5067     assert(LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
  5068     assert(LogKlassAlignmentInBytes == Address::times_8, "klass not aligned on 64bits?");
  5069     leaq(dst, Address(r12_heapbase, src, Address::times_8, 0));
  5070   } else {
  5071     assert (Universe::narrow_klass_base() == NULL, "sanity");
  5072     if (dst != src) {
  5073       movq(dst, src);
  5078 void  MacroAssembler::set_narrow_oop(Register dst, jobject obj) {
  5079   assert (UseCompressedOops, "should only be used for compressed headers");
  5080   assert (Universe::heap() != NULL, "java heap should be initialized");
  5081   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
  5082   int oop_index = oop_recorder()->find_index(obj);
  5083   RelocationHolder rspec = oop_Relocation::spec(oop_index);
  5084   mov_narrow_oop(dst, oop_index, rspec);
  5087 void  MacroAssembler::set_narrow_oop(Address dst, jobject obj) {
  5088   assert (UseCompressedOops, "should only be used for compressed headers");
  5089   assert (Universe::heap() != NULL, "java heap should be initialized");
  5090   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
  5091   int oop_index = oop_recorder()->find_index(obj);
  5092   RelocationHolder rspec = oop_Relocation::spec(oop_index);
  5093   mov_narrow_oop(dst, oop_index, rspec);
  5096 void  MacroAssembler::set_narrow_klass(Register dst, Klass* k) {
  5097   assert (UseCompressedKlassPointers, "should only be used for compressed headers");
  5098   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
  5099   int klass_index = oop_recorder()->find_index(k);
  5100   RelocationHolder rspec = metadata_Relocation::spec(klass_index);
  5101   mov_narrow_oop(dst, oopDesc::encode_klass(k), rspec);
  5104 void  MacroAssembler::set_narrow_klass(Address dst, Klass* k) {
  5105   assert (UseCompressedKlassPointers, "should only be used for compressed headers");
  5106   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
  5107   int klass_index = oop_recorder()->find_index(k);
  5108   RelocationHolder rspec = metadata_Relocation::spec(klass_index);
  5109   mov_narrow_oop(dst, oopDesc::encode_klass(k), rspec);
  5112 void  MacroAssembler::cmp_narrow_oop(Register dst, jobject obj) {
  5113   assert (UseCompressedOops, "should only be used for compressed headers");
  5114   assert (Universe::heap() != NULL, "java heap should be initialized");
  5115   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
  5116   int oop_index = oop_recorder()->find_index(obj);
  5117   RelocationHolder rspec = oop_Relocation::spec(oop_index);
  5118   Assembler::cmp_narrow_oop(dst, oop_index, rspec);
  5121 void  MacroAssembler::cmp_narrow_oop(Address dst, jobject obj) {
  5122   assert (UseCompressedOops, "should only be used for compressed headers");
  5123   assert (Universe::heap() != NULL, "java heap should be initialized");
  5124   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
  5125   int oop_index = oop_recorder()->find_index(obj);
  5126   RelocationHolder rspec = oop_Relocation::spec(oop_index);
  5127   Assembler::cmp_narrow_oop(dst, oop_index, rspec);
  5130 void  MacroAssembler::cmp_narrow_klass(Register dst, Klass* k) {
  5131   assert (UseCompressedKlassPointers, "should only be used for compressed headers");
  5132   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
  5133   int klass_index = oop_recorder()->find_index(k);
  5134   RelocationHolder rspec = metadata_Relocation::spec(klass_index);
  5135   Assembler::cmp_narrow_oop(dst, oopDesc::encode_klass(k), rspec);
  5138 void  MacroAssembler::cmp_narrow_klass(Address dst, Klass* k) {
  5139   assert (UseCompressedKlassPointers, "should only be used for compressed headers");
  5140   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
  5141   int klass_index = oop_recorder()->find_index(k);
  5142   RelocationHolder rspec = metadata_Relocation::spec(klass_index);
  5143   Assembler::cmp_narrow_oop(dst, oopDesc::encode_klass(k), rspec);
  5146 void MacroAssembler::reinit_heapbase() {
  5147   if (UseCompressedOops || UseCompressedKlassPointers) {
  5148     movptr(r12_heapbase, ExternalAddress((address)Universe::narrow_ptrs_base_addr()));
  5151 #endif // _LP64
  5154 // C2 compiled method's prolog code.
  5155 void MacroAssembler::verified_entry(int framesize, bool stack_bang, bool fp_mode_24b) {
  5157   // WARNING: Initial instruction MUST be 5 bytes or longer so that
  5158   // NativeJump::patch_verified_entry will be able to patch out the entry
  5159   // code safely. The push to verify stack depth is ok at 5 bytes,
  5160   // the frame allocation can be either 3 or 6 bytes. So if we don't do
  5161   // stack bang then we must use the 6 byte frame allocation even if
  5162   // we have no frame. :-(
  5164   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
  5165   // Remove word for return addr
  5166   framesize -= wordSize;
  5168   // Calls to C2R adapters often do not accept exceptional returns.
  5169   // We require that their callers must bang for them.  But be careful, because
  5170   // some VM calls (such as call site linkage) can use several kilobytes of
  5171   // stack.  But the stack safety zone should account for that.
  5172   // See bugs 4446381, 4468289, 4497237.
  5173   if (stack_bang) {
  5174     generate_stack_overflow_check(framesize);
  5176     // We always push rbp, so that on return to interpreter rbp, will be
  5177     // restored correctly and we can correct the stack.
  5178     push(rbp);
  5179     // Remove word for ebp
  5180     framesize -= wordSize;
  5182     // Create frame
  5183     if (framesize) {
  5184       subptr(rsp, framesize);
  5186   } else {
  5187     // Create frame (force generation of a 4 byte immediate value)
  5188     subptr_imm32(rsp, framesize);
  5190     // Save RBP register now.
  5191     framesize -= wordSize;
  5192     movptr(Address(rsp, framesize), rbp);
  5195   if (VerifyStackAtCalls) { // Majik cookie to verify stack depth
  5196     framesize -= wordSize;
  5197     movptr(Address(rsp, framesize), (int32_t)0xbadb100d);
  5200 #ifndef _LP64
  5201   // If method sets FPU control word do it now
  5202   if (fp_mode_24b) {
  5203     fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_24()));
  5205   if (UseSSE >= 2 && VerifyFPU) {
  5206     verify_FPU(0, "FPU stack must be clean on entry");
  5208 #endif
  5210 #ifdef ASSERT
  5211   if (VerifyStackAtCalls) {
  5212     Label L;
  5213     push(rax);
  5214     mov(rax, rsp);
  5215     andptr(rax, StackAlignmentInBytes-1);
  5216     cmpptr(rax, StackAlignmentInBytes-wordSize);
  5217     pop(rax);
  5218     jcc(Assembler::equal, L);
  5219     STOP("Stack is not properly aligned!");
  5220     bind(L);
  5222 #endif
  5227 // IndexOf for constant substrings with size >= 8 chars
  5228 // which don't need to be loaded through stack.
  5229 void MacroAssembler::string_indexofC8(Register str1, Register str2,
  5230                                       Register cnt1, Register cnt2,
  5231                                       int int_cnt2,  Register result,
  5232                                       XMMRegister vec, Register tmp) {
  5233   ShortBranchVerifier sbv(this);
  5234   assert(UseSSE42Intrinsics, "SSE4.2 is required");
  5236   // This method uses pcmpestri inxtruction with bound registers
  5237   //   inputs:
  5238   //     xmm - substring
  5239   //     rax - substring length (elements count)
  5240   //     mem - scanned string
  5241   //     rdx - string length (elements count)
  5242   //     0xd - mode: 1100 (substring search) + 01 (unsigned shorts)
  5243   //   outputs:
  5244   //     rcx - matched index in string
  5245   assert(cnt1 == rdx && cnt2 == rax && tmp == rcx, "pcmpestri");
  5247   Label RELOAD_SUBSTR, SCAN_TO_SUBSTR, SCAN_SUBSTR,
  5248         RET_FOUND, RET_NOT_FOUND, EXIT, FOUND_SUBSTR,
  5249         MATCH_SUBSTR_HEAD, RELOAD_STR, FOUND_CANDIDATE;
  5251   // Note, inline_string_indexOf() generates checks:
  5252   // if (substr.count > string.count) return -1;
  5253   // if (substr.count == 0) return 0;
  5254   assert(int_cnt2 >= 8, "this code isused only for cnt2 >= 8 chars");
  5256   // Load substring.
  5257   movdqu(vec, Address(str2, 0));
  5258   movl(cnt2, int_cnt2);
  5259   movptr(result, str1); // string addr
  5261   if (int_cnt2 > 8) {
  5262     jmpb(SCAN_TO_SUBSTR);
  5264     // Reload substr for rescan, this code
  5265     // is executed only for large substrings (> 8 chars)
  5266     bind(RELOAD_SUBSTR);
  5267     movdqu(vec, Address(str2, 0));
  5268     negptr(cnt2); // Jumped here with negative cnt2, convert to positive
  5270     bind(RELOAD_STR);
  5271     // We came here after the beginning of the substring was
  5272     // matched but the rest of it was not so we need to search
  5273     // again. Start from the next element after the previous match.
  5275     // cnt2 is number of substring reminding elements and
  5276     // cnt1 is number of string reminding elements when cmp failed.
  5277     // Restored cnt1 = cnt1 - cnt2 + int_cnt2
  5278     subl(cnt1, cnt2);
  5279     addl(cnt1, int_cnt2);
  5280     movl(cnt2, int_cnt2); // Now restore cnt2
  5282     decrementl(cnt1);     // Shift to next element
  5283     cmpl(cnt1, cnt2);
  5284     jccb(Assembler::negative, RET_NOT_FOUND);  // Left less then substring
  5286     addptr(result, 2);
  5288   } // (int_cnt2 > 8)
  5290   // Scan string for start of substr in 16-byte vectors
  5291   bind(SCAN_TO_SUBSTR);
  5292   pcmpestri(vec, Address(result, 0), 0x0d);
  5293   jccb(Assembler::below, FOUND_CANDIDATE);   // CF == 1
  5294   subl(cnt1, 8);
  5295   jccb(Assembler::lessEqual, RET_NOT_FOUND); // Scanned full string
  5296   cmpl(cnt1, cnt2);
  5297   jccb(Assembler::negative, RET_NOT_FOUND);  // Left less then substring
  5298   addptr(result, 16);
  5299   jmpb(SCAN_TO_SUBSTR);
  5301   // Found a potential substr
  5302   bind(FOUND_CANDIDATE);
  5303   // Matched whole vector if first element matched (tmp(rcx) == 0).
  5304   if (int_cnt2 == 8) {
  5305     jccb(Assembler::overflow, RET_FOUND);    // OF == 1
  5306   } else { // int_cnt2 > 8
  5307     jccb(Assembler::overflow, FOUND_SUBSTR);
  5309   // After pcmpestri tmp(rcx) contains matched element index
  5310   // Compute start addr of substr
  5311   lea(result, Address(result, tmp, Address::times_2));
  5313   // Make sure string is still long enough
  5314   subl(cnt1, tmp);
  5315   cmpl(cnt1, cnt2);
  5316   if (int_cnt2 == 8) {
  5317     jccb(Assembler::greaterEqual, SCAN_TO_SUBSTR);
  5318   } else { // int_cnt2 > 8
  5319     jccb(Assembler::greaterEqual, MATCH_SUBSTR_HEAD);
  5321   // Left less then substring.
  5323   bind(RET_NOT_FOUND);
  5324   movl(result, -1);
  5325   jmpb(EXIT);
  5327   if (int_cnt2 > 8) {
  5328     // This code is optimized for the case when whole substring
  5329     // is matched if its head is matched.
  5330     bind(MATCH_SUBSTR_HEAD);
  5331     pcmpestri(vec, Address(result, 0), 0x0d);
  5332     // Reload only string if does not match
  5333     jccb(Assembler::noOverflow, RELOAD_STR); // OF == 0
  5335     Label CONT_SCAN_SUBSTR;
  5336     // Compare the rest of substring (> 8 chars).
  5337     bind(FOUND_SUBSTR);
  5338     // First 8 chars are already matched.
  5339     negptr(cnt2);
  5340     addptr(cnt2, 8);
  5342     bind(SCAN_SUBSTR);
  5343     subl(cnt1, 8);
  5344     cmpl(cnt2, -8); // Do not read beyond substring
  5345     jccb(Assembler::lessEqual, CONT_SCAN_SUBSTR);
  5346     // Back-up strings to avoid reading beyond substring:
  5347     // cnt1 = cnt1 - cnt2 + 8
  5348     addl(cnt1, cnt2); // cnt2 is negative
  5349     addl(cnt1, 8);
  5350     movl(cnt2, 8); negptr(cnt2);
  5351     bind(CONT_SCAN_SUBSTR);
  5352     if (int_cnt2 < (int)G) {
  5353       movdqu(vec, Address(str2, cnt2, Address::times_2, int_cnt2*2));
  5354       pcmpestri(vec, Address(result, cnt2, Address::times_2, int_cnt2*2), 0x0d);
  5355     } else {
  5356       // calculate index in register to avoid integer overflow (int_cnt2*2)
  5357       movl(tmp, int_cnt2);
  5358       addptr(tmp, cnt2);
  5359       movdqu(vec, Address(str2, tmp, Address::times_2, 0));
  5360       pcmpestri(vec, Address(result, tmp, Address::times_2, 0), 0x0d);
  5362     // Need to reload strings pointers if not matched whole vector
  5363     jcc(Assembler::noOverflow, RELOAD_SUBSTR); // OF == 0
  5364     addptr(cnt2, 8);
  5365     jcc(Assembler::negative, SCAN_SUBSTR);
  5366     // Fall through if found full substring
  5368   } // (int_cnt2 > 8)
  5370   bind(RET_FOUND);
  5371   // Found result if we matched full small substring.
  5372   // Compute substr offset
  5373   subptr(result, str1);
  5374   shrl(result, 1); // index
  5375   bind(EXIT);
  5377 } // string_indexofC8
  5379 // Small strings are loaded through stack if they cross page boundary.
  5380 void MacroAssembler::string_indexof(Register str1, Register str2,
  5381                                     Register cnt1, Register cnt2,
  5382                                     int int_cnt2,  Register result,
  5383                                     XMMRegister vec, Register tmp) {
  5384   ShortBranchVerifier sbv(this);
  5385   assert(UseSSE42Intrinsics, "SSE4.2 is required");
  5386   //
  5387   // int_cnt2 is length of small (< 8 chars) constant substring
  5388   // or (-1) for non constant substring in which case its length
  5389   // is in cnt2 register.
  5390   //
  5391   // Note, inline_string_indexOf() generates checks:
  5392   // if (substr.count > string.count) return -1;
  5393   // if (substr.count == 0) return 0;
  5394   //
  5395   assert(int_cnt2 == -1 || (0 < int_cnt2 && int_cnt2 < 8), "should be != 0");
  5397   // This method uses pcmpestri inxtruction with bound registers
  5398   //   inputs:
  5399   //     xmm - substring
  5400   //     rax - substring length (elements count)
  5401   //     mem - scanned string
  5402   //     rdx - string length (elements count)
  5403   //     0xd - mode: 1100 (substring search) + 01 (unsigned shorts)
  5404   //   outputs:
  5405   //     rcx - matched index in string
  5406   assert(cnt1 == rdx && cnt2 == rax && tmp == rcx, "pcmpestri");
  5408   Label RELOAD_SUBSTR, SCAN_TO_SUBSTR, SCAN_SUBSTR, ADJUST_STR,
  5409         RET_FOUND, RET_NOT_FOUND, CLEANUP, FOUND_SUBSTR,
  5410         FOUND_CANDIDATE;
  5412   { //========================================================
  5413     // We don't know where these strings are located
  5414     // and we can't read beyond them. Load them through stack.
  5415     Label BIG_STRINGS, CHECK_STR, COPY_SUBSTR, COPY_STR;
  5417     movptr(tmp, rsp); // save old SP
  5419     if (int_cnt2 > 0) {     // small (< 8 chars) constant substring
  5420       if (int_cnt2 == 1) {  // One char
  5421         load_unsigned_short(result, Address(str2, 0));
  5422         movdl(vec, result); // move 32 bits
  5423       } else if (int_cnt2 == 2) { // Two chars
  5424         movdl(vec, Address(str2, 0)); // move 32 bits
  5425       } else if (int_cnt2 == 4) { // Four chars
  5426         movq(vec, Address(str2, 0));  // move 64 bits
  5427       } else { // cnt2 = { 3, 5, 6, 7 }
  5428         // Array header size is 12 bytes in 32-bit VM
  5429         // + 6 bytes for 3 chars == 18 bytes,
  5430         // enough space to load vec and shift.
  5431         assert(HeapWordSize*TypeArrayKlass::header_size() >= 12,"sanity");
  5432         movdqu(vec, Address(str2, (int_cnt2*2)-16));
  5433         psrldq(vec, 16-(int_cnt2*2));
  5435     } else { // not constant substring
  5436       cmpl(cnt2, 8);
  5437       jccb(Assembler::aboveEqual, BIG_STRINGS); // Both strings are big enough
  5439       // We can read beyond string if srt+16 does not cross page boundary
  5440       // since heaps are aligned and mapped by pages.
  5441       assert(os::vm_page_size() < (int)G, "default page should be small");
  5442       movl(result, str2); // We need only low 32 bits
  5443       andl(result, (os::vm_page_size()-1));
  5444       cmpl(result, (os::vm_page_size()-16));
  5445       jccb(Assembler::belowEqual, CHECK_STR);
  5447       // Move small strings to stack to allow load 16 bytes into vec.
  5448       subptr(rsp, 16);
  5449       int stk_offset = wordSize-2;
  5450       push(cnt2);
  5452       bind(COPY_SUBSTR);
  5453       load_unsigned_short(result, Address(str2, cnt2, Address::times_2, -2));
  5454       movw(Address(rsp, cnt2, Address::times_2, stk_offset), result);
  5455       decrement(cnt2);
  5456       jccb(Assembler::notZero, COPY_SUBSTR);
  5458       pop(cnt2);
  5459       movptr(str2, rsp);  // New substring address
  5460     } // non constant
  5462     bind(CHECK_STR);
  5463     cmpl(cnt1, 8);
  5464     jccb(Assembler::aboveEqual, BIG_STRINGS);
  5466     // Check cross page boundary.
  5467     movl(result, str1); // We need only low 32 bits
  5468     andl(result, (os::vm_page_size()-1));
  5469     cmpl(result, (os::vm_page_size()-16));
  5470     jccb(Assembler::belowEqual, BIG_STRINGS);
  5472     subptr(rsp, 16);
  5473     int stk_offset = -2;
  5474     if (int_cnt2 < 0) { // not constant
  5475       push(cnt2);
  5476       stk_offset += wordSize;
  5478     movl(cnt2, cnt1);
  5480     bind(COPY_STR);
  5481     load_unsigned_short(result, Address(str1, cnt2, Address::times_2, -2));
  5482     movw(Address(rsp, cnt2, Address::times_2, stk_offset), result);
  5483     decrement(cnt2);
  5484     jccb(Assembler::notZero, COPY_STR);
  5486     if (int_cnt2 < 0) { // not constant
  5487       pop(cnt2);
  5489     movptr(str1, rsp);  // New string address
  5491     bind(BIG_STRINGS);
  5492     // Load substring.
  5493     if (int_cnt2 < 0) { // -1
  5494       movdqu(vec, Address(str2, 0));
  5495       push(cnt2);       // substr count
  5496       push(str2);       // substr addr
  5497       push(str1);       // string addr
  5498     } else {
  5499       // Small (< 8 chars) constant substrings are loaded already.
  5500       movl(cnt2, int_cnt2);
  5502     push(tmp);  // original SP
  5504   } // Finished loading
  5506   //========================================================
  5507   // Start search
  5508   //
  5510   movptr(result, str1); // string addr
  5512   if (int_cnt2  < 0) {  // Only for non constant substring
  5513     jmpb(SCAN_TO_SUBSTR);
  5515     // SP saved at sp+0
  5516     // String saved at sp+1*wordSize
  5517     // Substr saved at sp+2*wordSize
  5518     // Substr count saved at sp+3*wordSize
  5520     // Reload substr for rescan, this code
  5521     // is executed only for large substrings (> 8 chars)
  5522     bind(RELOAD_SUBSTR);
  5523     movptr(str2, Address(rsp, 2*wordSize));
  5524     movl(cnt2, Address(rsp, 3*wordSize));
  5525     movdqu(vec, Address(str2, 0));
  5526     // We came here after the beginning of the substring was
  5527     // matched but the rest of it was not so we need to search
  5528     // again. Start from the next element after the previous match.
  5529     subptr(str1, result); // Restore counter
  5530     shrl(str1, 1);
  5531     addl(cnt1, str1);
  5532     decrementl(cnt1);   // Shift to next element
  5533     cmpl(cnt1, cnt2);
  5534     jccb(Assembler::negative, RET_NOT_FOUND);  // Left less then substring
  5536     addptr(result, 2);
  5537   } // non constant
  5539   // Scan string for start of substr in 16-byte vectors
  5540   bind(SCAN_TO_SUBSTR);
  5541   assert(cnt1 == rdx && cnt2 == rax && tmp == rcx, "pcmpestri");
  5542   pcmpestri(vec, Address(result, 0), 0x0d);
  5543   jccb(Assembler::below, FOUND_CANDIDATE);   // CF == 1
  5544   subl(cnt1, 8);
  5545   jccb(Assembler::lessEqual, RET_NOT_FOUND); // Scanned full string
  5546   cmpl(cnt1, cnt2);
  5547   jccb(Assembler::negative, RET_NOT_FOUND);  // Left less then substring
  5548   addptr(result, 16);
  5550   bind(ADJUST_STR);
  5551   cmpl(cnt1, 8); // Do not read beyond string
  5552   jccb(Assembler::greaterEqual, SCAN_TO_SUBSTR);
  5553   // Back-up string to avoid reading beyond string.
  5554   lea(result, Address(result, cnt1, Address::times_2, -16));
  5555   movl(cnt1, 8);
  5556   jmpb(SCAN_TO_SUBSTR);
  5558   // Found a potential substr
  5559   bind(FOUND_CANDIDATE);
  5560   // After pcmpestri tmp(rcx) contains matched element index
  5562   // Make sure string is still long enough
  5563   subl(cnt1, tmp);
  5564   cmpl(cnt1, cnt2);
  5565   jccb(Assembler::greaterEqual, FOUND_SUBSTR);
  5566   // Left less then substring.
  5568   bind(RET_NOT_FOUND);
  5569   movl(result, -1);
  5570   jmpb(CLEANUP);
  5572   bind(FOUND_SUBSTR);
  5573   // Compute start addr of substr
  5574   lea(result, Address(result, tmp, Address::times_2));
  5576   if (int_cnt2 > 0) { // Constant substring
  5577     // Repeat search for small substring (< 8 chars)
  5578     // from new point without reloading substring.
  5579     // Have to check that we don't read beyond string.
  5580     cmpl(tmp, 8-int_cnt2);
  5581     jccb(Assembler::greater, ADJUST_STR);
  5582     // Fall through if matched whole substring.
  5583   } else { // non constant
  5584     assert(int_cnt2 == -1, "should be != 0");
  5586     addl(tmp, cnt2);
  5587     // Found result if we matched whole substring.
  5588     cmpl(tmp, 8);
  5589     jccb(Assembler::lessEqual, RET_FOUND);
  5591     // Repeat search for small substring (<= 8 chars)
  5592     // from new point 'str1' without reloading substring.
  5593     cmpl(cnt2, 8);
  5594     // Have to check that we don't read beyond string.
  5595     jccb(Assembler::lessEqual, ADJUST_STR);
  5597     Label CHECK_NEXT, CONT_SCAN_SUBSTR, RET_FOUND_LONG;
  5598     // Compare the rest of substring (> 8 chars).
  5599     movptr(str1, result);
  5601     cmpl(tmp, cnt2);
  5602     // First 8 chars are already matched.
  5603     jccb(Assembler::equal, CHECK_NEXT);
  5605     bind(SCAN_SUBSTR);
  5606     pcmpestri(vec, Address(str1, 0), 0x0d);
  5607     // Need to reload strings pointers if not matched whole vector
  5608     jcc(Assembler::noOverflow, RELOAD_SUBSTR); // OF == 0
  5610     bind(CHECK_NEXT);
  5611     subl(cnt2, 8);
  5612     jccb(Assembler::lessEqual, RET_FOUND_LONG); // Found full substring
  5613     addptr(str1, 16);
  5614     addptr(str2, 16);
  5615     subl(cnt1, 8);
  5616     cmpl(cnt2, 8); // Do not read beyond substring
  5617     jccb(Assembler::greaterEqual, CONT_SCAN_SUBSTR);
  5618     // Back-up strings to avoid reading beyond substring.
  5619     lea(str2, Address(str2, cnt2, Address::times_2, -16));
  5620     lea(str1, Address(str1, cnt2, Address::times_2, -16));
  5621     subl(cnt1, cnt2);
  5622     movl(cnt2, 8);
  5623     addl(cnt1, 8);
  5624     bind(CONT_SCAN_SUBSTR);
  5625     movdqu(vec, Address(str2, 0));
  5626     jmpb(SCAN_SUBSTR);
  5628     bind(RET_FOUND_LONG);
  5629     movptr(str1, Address(rsp, wordSize));
  5630   } // non constant
  5632   bind(RET_FOUND);
  5633   // Compute substr offset
  5634   subptr(result, str1);
  5635   shrl(result, 1); // index
  5637   bind(CLEANUP);
  5638   pop(rsp); // restore SP
  5640 } // string_indexof
  5642 // Compare strings.
  5643 void MacroAssembler::string_compare(Register str1, Register str2,
  5644                                     Register cnt1, Register cnt2, Register result,
  5645                                     XMMRegister vec1) {
  5646   ShortBranchVerifier sbv(this);
  5647   Label LENGTH_DIFF_LABEL, POP_LABEL, DONE_LABEL, WHILE_HEAD_LABEL;
  5649   // Compute the minimum of the string lengths and the
  5650   // difference of the string lengths (stack).
  5651   // Do the conditional move stuff
  5652   movl(result, cnt1);
  5653   subl(cnt1, cnt2);
  5654   push(cnt1);
  5655   cmov32(Assembler::lessEqual, cnt2, result);
  5657   // Is the minimum length zero?
  5658   testl(cnt2, cnt2);
  5659   jcc(Assembler::zero, LENGTH_DIFF_LABEL);
  5661   // Load first characters
  5662   load_unsigned_short(result, Address(str1, 0));
  5663   load_unsigned_short(cnt1, Address(str2, 0));
  5665   // Compare first characters
  5666   subl(result, cnt1);
  5667   jcc(Assembler::notZero,  POP_LABEL);
  5668   decrementl(cnt2);
  5669   jcc(Assembler::zero, LENGTH_DIFF_LABEL);
  5672     // Check after comparing first character to see if strings are equivalent
  5673     Label LSkip2;
  5674     // Check if the strings start at same location
  5675     cmpptr(str1, str2);
  5676     jccb(Assembler::notEqual, LSkip2);
  5678     // Check if the length difference is zero (from stack)
  5679     cmpl(Address(rsp, 0), 0x0);
  5680     jcc(Assembler::equal,  LENGTH_DIFF_LABEL);
  5682     // Strings might not be equivalent
  5683     bind(LSkip2);
  5686   Address::ScaleFactor scale = Address::times_2;
  5687   int stride = 8;
  5689   // Advance to next element
  5690   addptr(str1, 16/stride);
  5691   addptr(str2, 16/stride);
  5693   if (UseSSE42Intrinsics) {
  5694     Label COMPARE_WIDE_VECTORS, VECTOR_NOT_EQUAL, COMPARE_TAIL;
  5695     int pcmpmask = 0x19;
  5696     // Setup to compare 16-byte vectors
  5697     movl(result, cnt2);
  5698     andl(cnt2, ~(stride - 1));   // cnt2 holds the vector count
  5699     jccb(Assembler::zero, COMPARE_TAIL);
  5701     lea(str1, Address(str1, result, scale));
  5702     lea(str2, Address(str2, result, scale));
  5703     negptr(result);
  5705     // pcmpestri
  5706     //   inputs:
  5707     //     vec1- substring
  5708     //     rax - negative string length (elements count)
  5709     //     mem - scaned string
  5710     //     rdx - string length (elements count)
  5711     //     pcmpmask - cmp mode: 11000 (string compare with negated result)
  5712     //               + 00 (unsigned bytes) or  + 01 (unsigned shorts)
  5713     //   outputs:
  5714     //     rcx - first mismatched element index
  5715     assert(result == rax && cnt2 == rdx && cnt1 == rcx, "pcmpestri");
  5717     bind(COMPARE_WIDE_VECTORS);
  5718     movdqu(vec1, Address(str1, result, scale));
  5719     pcmpestri(vec1, Address(str2, result, scale), pcmpmask);
  5720     // After pcmpestri cnt1(rcx) contains mismatched element index
  5722     jccb(Assembler::below, VECTOR_NOT_EQUAL);  // CF==1
  5723     addptr(result, stride);
  5724     subptr(cnt2, stride);
  5725     jccb(Assembler::notZero, COMPARE_WIDE_VECTORS);
  5727     // compare wide vectors tail
  5728     testl(result, result);
  5729     jccb(Assembler::zero, LENGTH_DIFF_LABEL);
  5731     movl(cnt2, stride);
  5732     movl(result, stride);
  5733     negptr(result);
  5734     movdqu(vec1, Address(str1, result, scale));
  5735     pcmpestri(vec1, Address(str2, result, scale), pcmpmask);
  5736     jccb(Assembler::aboveEqual, LENGTH_DIFF_LABEL);
  5738     // Mismatched characters in the vectors
  5739     bind(VECTOR_NOT_EQUAL);
  5740     addptr(result, cnt1);
  5741     movptr(cnt2, result);
  5742     load_unsigned_short(result, Address(str1, cnt2, scale));
  5743     load_unsigned_short(cnt1, Address(str2, cnt2, scale));
  5744     subl(result, cnt1);
  5745     jmpb(POP_LABEL);
  5747     bind(COMPARE_TAIL); // limit is zero
  5748     movl(cnt2, result);
  5749     // Fallthru to tail compare
  5752   // Shift str2 and str1 to the end of the arrays, negate min
  5753   lea(str1, Address(str1, cnt2, scale, 0));
  5754   lea(str2, Address(str2, cnt2, scale, 0));
  5755   negptr(cnt2);
  5757   // Compare the rest of the elements
  5758   bind(WHILE_HEAD_LABEL);
  5759   load_unsigned_short(result, Address(str1, cnt2, scale, 0));
  5760   load_unsigned_short(cnt1, Address(str2, cnt2, scale, 0));
  5761   subl(result, cnt1);
  5762   jccb(Assembler::notZero, POP_LABEL);
  5763   increment(cnt2);
  5764   jccb(Assembler::notZero, WHILE_HEAD_LABEL);
  5766   // Strings are equal up to min length.  Return the length difference.
  5767   bind(LENGTH_DIFF_LABEL);
  5768   pop(result);
  5769   jmpb(DONE_LABEL);
  5771   // Discard the stored length difference
  5772   bind(POP_LABEL);
  5773   pop(cnt1);
  5775   // That's it
  5776   bind(DONE_LABEL);
  5779 // Compare char[] arrays aligned to 4 bytes or substrings.
  5780 void MacroAssembler::char_arrays_equals(bool is_array_equ, Register ary1, Register ary2,
  5781                                         Register limit, Register result, Register chr,
  5782                                         XMMRegister vec1, XMMRegister vec2) {
  5783   ShortBranchVerifier sbv(this);
  5784   Label TRUE_LABEL, FALSE_LABEL, DONE, COMPARE_VECTORS, COMPARE_CHAR;
  5786   int length_offset  = arrayOopDesc::length_offset_in_bytes();
  5787   int base_offset    = arrayOopDesc::base_offset_in_bytes(T_CHAR);
  5789   // Check the input args
  5790   cmpptr(ary1, ary2);
  5791   jcc(Assembler::equal, TRUE_LABEL);
  5793   if (is_array_equ) {
  5794     // Need additional checks for arrays_equals.
  5795     testptr(ary1, ary1);
  5796     jcc(Assembler::zero, FALSE_LABEL);
  5797     testptr(ary2, ary2);
  5798     jcc(Assembler::zero, FALSE_LABEL);
  5800     // Check the lengths
  5801     movl(limit, Address(ary1, length_offset));
  5802     cmpl(limit, Address(ary2, length_offset));
  5803     jcc(Assembler::notEqual, FALSE_LABEL);
  5806   // count == 0
  5807   testl(limit, limit);
  5808   jcc(Assembler::zero, TRUE_LABEL);
  5810   if (is_array_equ) {
  5811     // Load array address
  5812     lea(ary1, Address(ary1, base_offset));
  5813     lea(ary2, Address(ary2, base_offset));
  5816   shll(limit, 1);      // byte count != 0
  5817   movl(result, limit); // copy
  5819   if (UseSSE42Intrinsics) {
  5820     // With SSE4.2, use double quad vector compare
  5821     Label COMPARE_WIDE_VECTORS, COMPARE_TAIL;
  5823     // Compare 16-byte vectors
  5824     andl(result, 0x0000000e);  //   tail count (in bytes)
  5825     andl(limit, 0xfffffff0);   // vector count (in bytes)
  5826     jccb(Assembler::zero, COMPARE_TAIL);
  5828     lea(ary1, Address(ary1, limit, Address::times_1));
  5829     lea(ary2, Address(ary2, limit, Address::times_1));
  5830     negptr(limit);
  5832     bind(COMPARE_WIDE_VECTORS);
  5833     movdqu(vec1, Address(ary1, limit, Address::times_1));
  5834     movdqu(vec2, Address(ary2, limit, Address::times_1));
  5835     pxor(vec1, vec2);
  5837     ptest(vec1, vec1);
  5838     jccb(Assembler::notZero, FALSE_LABEL);
  5839     addptr(limit, 16);
  5840     jcc(Assembler::notZero, COMPARE_WIDE_VECTORS);
  5842     testl(result, result);
  5843     jccb(Assembler::zero, TRUE_LABEL);
  5845     movdqu(vec1, Address(ary1, result, Address::times_1, -16));
  5846     movdqu(vec2, Address(ary2, result, Address::times_1, -16));
  5847     pxor(vec1, vec2);
  5849     ptest(vec1, vec1);
  5850     jccb(Assembler::notZero, FALSE_LABEL);
  5851     jmpb(TRUE_LABEL);
  5853     bind(COMPARE_TAIL); // limit is zero
  5854     movl(limit, result);
  5855     // Fallthru to tail compare
  5858   // Compare 4-byte vectors
  5859   andl(limit, 0xfffffffc); // vector count (in bytes)
  5860   jccb(Assembler::zero, COMPARE_CHAR);
  5862   lea(ary1, Address(ary1, limit, Address::times_1));
  5863   lea(ary2, Address(ary2, limit, Address::times_1));
  5864   negptr(limit);
  5866   bind(COMPARE_VECTORS);
  5867   movl(chr, Address(ary1, limit, Address::times_1));
  5868   cmpl(chr, Address(ary2, limit, Address::times_1));
  5869   jccb(Assembler::notEqual, FALSE_LABEL);
  5870   addptr(limit, 4);
  5871   jcc(Assembler::notZero, COMPARE_VECTORS);
  5873   // Compare trailing char (final 2 bytes), if any
  5874   bind(COMPARE_CHAR);
  5875   testl(result, 0x2);   // tail  char
  5876   jccb(Assembler::zero, TRUE_LABEL);
  5877   load_unsigned_short(chr, Address(ary1, 0));
  5878   load_unsigned_short(limit, Address(ary2, 0));
  5879   cmpl(chr, limit);
  5880   jccb(Assembler::notEqual, FALSE_LABEL);
  5882   bind(TRUE_LABEL);
  5883   movl(result, 1);   // return true
  5884   jmpb(DONE);
  5886   bind(FALSE_LABEL);
  5887   xorl(result, result); // return false
  5889   // That's it
  5890   bind(DONE);
  5893 void MacroAssembler::generate_fill(BasicType t, bool aligned,
  5894                                    Register to, Register value, Register count,
  5895                                    Register rtmp, XMMRegister xtmp) {
  5896   ShortBranchVerifier sbv(this);
  5897   assert_different_registers(to, value, count, rtmp);
  5898   Label L_exit, L_skip_align1, L_skip_align2, L_fill_byte;
  5899   Label L_fill_2_bytes, L_fill_4_bytes;
  5901   int shift = -1;
  5902   switch (t) {
  5903     case T_BYTE:
  5904       shift = 2;
  5905       break;
  5906     case T_SHORT:
  5907       shift = 1;
  5908       break;
  5909     case T_INT:
  5910       shift = 0;
  5911       break;
  5912     default: ShouldNotReachHere();
  5915   if (t == T_BYTE) {
  5916     andl(value, 0xff);
  5917     movl(rtmp, value);
  5918     shll(rtmp, 8);
  5919     orl(value, rtmp);
  5921   if (t == T_SHORT) {
  5922     andl(value, 0xffff);
  5924   if (t == T_BYTE || t == T_SHORT) {
  5925     movl(rtmp, value);
  5926     shll(rtmp, 16);
  5927     orl(value, rtmp);
  5930   cmpl(count, 2<<shift); // Short arrays (< 8 bytes) fill by element
  5931   jcc(Assembler::below, L_fill_4_bytes); // use unsigned cmp
  5932   if (!UseUnalignedLoadStores && !aligned && (t == T_BYTE || t == T_SHORT)) {
  5933     // align source address at 4 bytes address boundary
  5934     if (t == T_BYTE) {
  5935       // One byte misalignment happens only for byte arrays
  5936       testptr(to, 1);
  5937       jccb(Assembler::zero, L_skip_align1);
  5938       movb(Address(to, 0), value);
  5939       increment(to);
  5940       decrement(count);
  5941       BIND(L_skip_align1);
  5943     // Two bytes misalignment happens only for byte and short (char) arrays
  5944     testptr(to, 2);
  5945     jccb(Assembler::zero, L_skip_align2);
  5946     movw(Address(to, 0), value);
  5947     addptr(to, 2);
  5948     subl(count, 1<<(shift-1));
  5949     BIND(L_skip_align2);
  5951   if (UseSSE < 2) {
  5952     Label L_fill_32_bytes_loop, L_check_fill_8_bytes, L_fill_8_bytes_loop, L_fill_8_bytes;
  5953     // Fill 32-byte chunks
  5954     subl(count, 8 << shift);
  5955     jcc(Assembler::less, L_check_fill_8_bytes);
  5956     align(16);
  5958     BIND(L_fill_32_bytes_loop);
  5960     for (int i = 0; i < 32; i += 4) {
  5961       movl(Address(to, i), value);
  5964     addptr(to, 32);
  5965     subl(count, 8 << shift);
  5966     jcc(Assembler::greaterEqual, L_fill_32_bytes_loop);
  5967     BIND(L_check_fill_8_bytes);
  5968     addl(count, 8 << shift);
  5969     jccb(Assembler::zero, L_exit);
  5970     jmpb(L_fill_8_bytes);
  5972     //
  5973     // length is too short, just fill qwords
  5974     //
  5975     BIND(L_fill_8_bytes_loop);
  5976     movl(Address(to, 0), value);
  5977     movl(Address(to, 4), value);
  5978     addptr(to, 8);
  5979     BIND(L_fill_8_bytes);
  5980     subl(count, 1 << (shift + 1));
  5981     jcc(Assembler::greaterEqual, L_fill_8_bytes_loop);
  5982     // fall through to fill 4 bytes
  5983   } else {
  5984     Label L_fill_32_bytes;
  5985     if (!UseUnalignedLoadStores) {
  5986       // align to 8 bytes, we know we are 4 byte aligned to start
  5987       testptr(to, 4);
  5988       jccb(Assembler::zero, L_fill_32_bytes);
  5989       movl(Address(to, 0), value);
  5990       addptr(to, 4);
  5991       subl(count, 1<<shift);
  5993     BIND(L_fill_32_bytes);
  5995       assert( UseSSE >= 2, "supported cpu only" );
  5996       Label L_fill_32_bytes_loop, L_check_fill_8_bytes, L_fill_8_bytes_loop, L_fill_8_bytes;
  5997       // Fill 32-byte chunks
  5998       movdl(xtmp, value);
  5999       pshufd(xtmp, xtmp, 0);
  6001       subl(count, 8 << shift);
  6002       jcc(Assembler::less, L_check_fill_8_bytes);
  6003       align(16);
  6005       BIND(L_fill_32_bytes_loop);
  6007       if (UseUnalignedLoadStores) {
  6008         movdqu(Address(to, 0), xtmp);
  6009         movdqu(Address(to, 16), xtmp);
  6010       } else {
  6011         movq(Address(to, 0), xtmp);
  6012         movq(Address(to, 8), xtmp);
  6013         movq(Address(to, 16), xtmp);
  6014         movq(Address(to, 24), xtmp);
  6017       addptr(to, 32);
  6018       subl(count, 8 << shift);
  6019       jcc(Assembler::greaterEqual, L_fill_32_bytes_loop);
  6020       BIND(L_check_fill_8_bytes);
  6021       addl(count, 8 << shift);
  6022       jccb(Assembler::zero, L_exit);
  6023       jmpb(L_fill_8_bytes);
  6025       //
  6026       // length is too short, just fill qwords
  6027       //
  6028       BIND(L_fill_8_bytes_loop);
  6029       movq(Address(to, 0), xtmp);
  6030       addptr(to, 8);
  6031       BIND(L_fill_8_bytes);
  6032       subl(count, 1 << (shift + 1));
  6033       jcc(Assembler::greaterEqual, L_fill_8_bytes_loop);
  6036   // fill trailing 4 bytes
  6037   BIND(L_fill_4_bytes);
  6038   testl(count, 1<<shift);
  6039   jccb(Assembler::zero, L_fill_2_bytes);
  6040   movl(Address(to, 0), value);
  6041   if (t == T_BYTE || t == T_SHORT) {
  6042     addptr(to, 4);
  6043     BIND(L_fill_2_bytes);
  6044     // fill trailing 2 bytes
  6045     testl(count, 1<<(shift-1));
  6046     jccb(Assembler::zero, L_fill_byte);
  6047     movw(Address(to, 0), value);
  6048     if (t == T_BYTE) {
  6049       addptr(to, 2);
  6050       BIND(L_fill_byte);
  6051       // fill trailing byte
  6052       testl(count, 1);
  6053       jccb(Assembler::zero, L_exit);
  6054       movb(Address(to, 0), value);
  6055     } else {
  6056       BIND(L_fill_byte);
  6058   } else {
  6059     BIND(L_fill_2_bytes);
  6061   BIND(L_exit);
  6063 #undef BIND
  6064 #undef BLOCK_COMMENT
  6067 Assembler::Condition MacroAssembler::negate_condition(Assembler::Condition cond) {
  6068   switch (cond) {
  6069     // Note some conditions are synonyms for others
  6070     case Assembler::zero:         return Assembler::notZero;
  6071     case Assembler::notZero:      return Assembler::zero;
  6072     case Assembler::less:         return Assembler::greaterEqual;
  6073     case Assembler::lessEqual:    return Assembler::greater;
  6074     case Assembler::greater:      return Assembler::lessEqual;
  6075     case Assembler::greaterEqual: return Assembler::less;
  6076     case Assembler::below:        return Assembler::aboveEqual;
  6077     case Assembler::belowEqual:   return Assembler::above;
  6078     case Assembler::above:        return Assembler::belowEqual;
  6079     case Assembler::aboveEqual:   return Assembler::below;
  6080     case Assembler::overflow:     return Assembler::noOverflow;
  6081     case Assembler::noOverflow:   return Assembler::overflow;
  6082     case Assembler::negative:     return Assembler::positive;
  6083     case Assembler::positive:     return Assembler::negative;
  6084     case Assembler::parity:       return Assembler::noParity;
  6085     case Assembler::noParity:     return Assembler::parity;
  6087   ShouldNotReachHere(); return Assembler::overflow;
  6090 SkipIfEqual::SkipIfEqual(
  6091     MacroAssembler* masm, const bool* flag_addr, bool value) {
  6092   _masm = masm;
  6093   _masm->cmp8(ExternalAddress((address)flag_addr), value);
  6094   _masm->jcc(Assembler::equal, _label);
  6097 SkipIfEqual::~SkipIfEqual() {
  6098   _masm->bind(_label);

mercurial