src/cpu/x86/vm/assembler_x86.cpp

Thu, 06 Dec 2012 09:57:41 -0800

author
twisti
date
Thu, 06 Dec 2012 09:57:41 -0800
changeset 4323
f0c2369fda5a
parent 4318
cd3d6a6b95d9
child 4360
c4bd2eccea46
permissions
-rw-r--r--

8003250: SPARC: move MacroAssembler into separate file
Reviewed-by: jrose, kvn

     1 /*
     2  * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "asm/assembler.hpp"
    27 #include "asm/assembler.inline.hpp"
    28 #include "gc_interface/collectedHeap.inline.hpp"
    29 #include "interpreter/interpreter.hpp"
    30 #include "memory/cardTableModRefBS.hpp"
    31 #include "memory/resourceArea.hpp"
    32 #include "prims/methodHandles.hpp"
    33 #include "runtime/biasedLocking.hpp"
    34 #include "runtime/interfaceSupport.hpp"
    35 #include "runtime/objectMonitor.hpp"
    36 #include "runtime/os.hpp"
    37 #include "runtime/sharedRuntime.hpp"
    38 #include "runtime/stubRoutines.hpp"
    39 #ifndef SERIALGC
    40 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
    41 #include "gc_implementation/g1/g1SATBCardTableModRefBS.hpp"
    42 #include "gc_implementation/g1/heapRegion.hpp"
    43 #endif
    45 #ifdef PRODUCT
    46 #define BLOCK_COMMENT(str) /* nothing */
    47 #define STOP(error) stop(error)
    48 #else
    49 #define BLOCK_COMMENT(str) block_comment(str)
    50 #define STOP(error) block_comment(error); stop(error)
    51 #endif
    53 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
    54 // Implementation of AddressLiteral
    56 AddressLiteral::AddressLiteral(address target, relocInfo::relocType rtype) {
    57   _is_lval = false;
    58   _target = target;
    59   switch (rtype) {
    60   case relocInfo::oop_type:
    61   case relocInfo::metadata_type:
    62     // Oops are a special case. Normally they would be their own section
    63     // but in cases like icBuffer they are literals in the code stream that
    64     // we don't have a section for. We use none so that we get a literal address
    65     // which is always patchable.
    66     break;
    67   case relocInfo::external_word_type:
    68     _rspec = external_word_Relocation::spec(target);
    69     break;
    70   case relocInfo::internal_word_type:
    71     _rspec = internal_word_Relocation::spec(target);
    72     break;
    73   case relocInfo::opt_virtual_call_type:
    74     _rspec = opt_virtual_call_Relocation::spec();
    75     break;
    76   case relocInfo::static_call_type:
    77     _rspec = static_call_Relocation::spec();
    78     break;
    79   case relocInfo::runtime_call_type:
    80     _rspec = runtime_call_Relocation::spec();
    81     break;
    82   case relocInfo::poll_type:
    83   case relocInfo::poll_return_type:
    84     _rspec = Relocation::spec_simple(rtype);
    85     break;
    86   case relocInfo::none:
    87     break;
    88   default:
    89     ShouldNotReachHere();
    90     break;
    91   }
    92 }
    94 // Implementation of Address
    96 #ifdef _LP64
    98 Address Address::make_array(ArrayAddress adr) {
    99   // Not implementable on 64bit machines
   100   // Should have been handled higher up the call chain.
   101   ShouldNotReachHere();
   102   return Address();
   103 }
   105 // exceedingly dangerous constructor
   106 Address::Address(int disp, address loc, relocInfo::relocType rtype) {
   107   _base  = noreg;
   108   _index = noreg;
   109   _scale = no_scale;
   110   _disp  = disp;
   111   switch (rtype) {
   112     case relocInfo::external_word_type:
   113       _rspec = external_word_Relocation::spec(loc);
   114       break;
   115     case relocInfo::internal_word_type:
   116       _rspec = internal_word_Relocation::spec(loc);
   117       break;
   118     case relocInfo::runtime_call_type:
   119       // HMM
   120       _rspec = runtime_call_Relocation::spec();
   121       break;
   122     case relocInfo::poll_type:
   123     case relocInfo::poll_return_type:
   124       _rspec = Relocation::spec_simple(rtype);
   125       break;
   126     case relocInfo::none:
   127       break;
   128     default:
   129       ShouldNotReachHere();
   130   }
   131 }
   132 #else // LP64
   134 Address Address::make_array(ArrayAddress adr) {
   135   AddressLiteral base = adr.base();
   136   Address index = adr.index();
   137   assert(index._disp == 0, "must not have disp"); // maybe it can?
   138   Address array(index._base, index._index, index._scale, (intptr_t) base.target());
   139   array._rspec = base._rspec;
   140   return array;
   141 }
   143 // exceedingly dangerous constructor
   144 Address::Address(address loc, RelocationHolder spec) {
   145   _base  = noreg;
   146   _index = noreg;
   147   _scale = no_scale;
   148   _disp  = (intptr_t) loc;
   149   _rspec = spec;
   150 }
   152 #endif // _LP64
   156 // Convert the raw encoding form into the form expected by the constructor for
   157 // Address.  An index of 4 (rsp) corresponds to having no index, so convert
   158 // that to noreg for the Address constructor.
   159 Address Address::make_raw(int base, int index, int scale, int disp, relocInfo::relocType disp_reloc) {
   160   RelocationHolder rspec;
   161   if (disp_reloc != relocInfo::none) {
   162     rspec = Relocation::spec_simple(disp_reloc);
   163   }
   164   bool valid_index = index != rsp->encoding();
   165   if (valid_index) {
   166     Address madr(as_Register(base), as_Register(index), (Address::ScaleFactor)scale, in_ByteSize(disp));
   167     madr._rspec = rspec;
   168     return madr;
   169   } else {
   170     Address madr(as_Register(base), noreg, Address::no_scale, in_ByteSize(disp));
   171     madr._rspec = rspec;
   172     return madr;
   173   }
   174 }
   176 // Implementation of Assembler
   178 int AbstractAssembler::code_fill_byte() {
   179   return (u_char)'\xF4'; // hlt
   180 }
   182 // make this go away someday
   183 void Assembler::emit_data(jint data, relocInfo::relocType rtype, int format) {
   184   if (rtype == relocInfo::none)
   185         emit_long(data);
   186   else  emit_data(data, Relocation::spec_simple(rtype), format);
   187 }
   189 void Assembler::emit_data(jint data, RelocationHolder const& rspec, int format) {
   190   assert(imm_operand == 0, "default format must be immediate in this file");
   191   assert(inst_mark() != NULL, "must be inside InstructionMark");
   192   if (rspec.type() !=  relocInfo::none) {
   193     #ifdef ASSERT
   194       check_relocation(rspec, format);
   195     #endif
   196     // Do not use AbstractAssembler::relocate, which is not intended for
   197     // embedded words.  Instead, relocate to the enclosing instruction.
   199     // hack. call32 is too wide for mask so use disp32
   200     if (format == call32_operand)
   201       code_section()->relocate(inst_mark(), rspec, disp32_operand);
   202     else
   203       code_section()->relocate(inst_mark(), rspec, format);
   204   }
   205   emit_long(data);
   206 }
   208 static int encode(Register r) {
   209   int enc = r->encoding();
   210   if (enc >= 8) {
   211     enc -= 8;
   212   }
   213   return enc;
   214 }
   216 static int encode(XMMRegister r) {
   217   int enc = r->encoding();
   218   if (enc >= 8) {
   219     enc -= 8;
   220   }
   221   return enc;
   222 }
   224 void Assembler::emit_arith_b(int op1, int op2, Register dst, int imm8) {
   225   assert(dst->has_byte_register(), "must have byte register");
   226   assert(isByte(op1) && isByte(op2), "wrong opcode");
   227   assert(isByte(imm8), "not a byte");
   228   assert((op1 & 0x01) == 0, "should be 8bit operation");
   229   emit_byte(op1);
   230   emit_byte(op2 | encode(dst));
   231   emit_byte(imm8);
   232 }
   235 void Assembler::emit_arith(int op1, int op2, Register dst, int32_t imm32) {
   236   assert(isByte(op1) && isByte(op2), "wrong opcode");
   237   assert((op1 & 0x01) == 1, "should be 32bit operation");
   238   assert((op1 & 0x02) == 0, "sign-extension bit should not be set");
   239   if (is8bit(imm32)) {
   240     emit_byte(op1 | 0x02); // set sign bit
   241     emit_byte(op2 | encode(dst));
   242     emit_byte(imm32 & 0xFF);
   243   } else {
   244     emit_byte(op1);
   245     emit_byte(op2 | encode(dst));
   246     emit_long(imm32);
   247   }
   248 }
   250 // Force generation of a 4 byte immediate value even if it fits into 8bit
   251 void Assembler::emit_arith_imm32(int op1, int op2, Register dst, int32_t imm32) {
   252   assert(isByte(op1) && isByte(op2), "wrong opcode");
   253   assert((op1 & 0x01) == 1, "should be 32bit operation");
   254   assert((op1 & 0x02) == 0, "sign-extension bit should not be set");
   255   emit_byte(op1);
   256   emit_byte(op2 | encode(dst));
   257   emit_long(imm32);
   258 }
   260 // immediate-to-memory forms
   261 void Assembler::emit_arith_operand(int op1, Register rm, Address adr, int32_t imm32) {
   262   assert((op1 & 0x01) == 1, "should be 32bit operation");
   263   assert((op1 & 0x02) == 0, "sign-extension bit should not be set");
   264   if (is8bit(imm32)) {
   265     emit_byte(op1 | 0x02); // set sign bit
   266     emit_operand(rm, adr, 1);
   267     emit_byte(imm32 & 0xFF);
   268   } else {
   269     emit_byte(op1);
   270     emit_operand(rm, adr, 4);
   271     emit_long(imm32);
   272   }
   273 }
   276 void Assembler::emit_arith(int op1, int op2, Register dst, Register src) {
   277   assert(isByte(op1) && isByte(op2), "wrong opcode");
   278   emit_byte(op1);
   279   emit_byte(op2 | encode(dst) << 3 | encode(src));
   280 }
   283 void Assembler::emit_operand(Register reg, Register base, Register index,
   284                              Address::ScaleFactor scale, int disp,
   285                              RelocationHolder const& rspec,
   286                              int rip_relative_correction) {
   287   relocInfo::relocType rtype = (relocInfo::relocType) rspec.type();
   289   // Encode the registers as needed in the fields they are used in
   291   int regenc = encode(reg) << 3;
   292   int indexenc = index->is_valid() ? encode(index) << 3 : 0;
   293   int baseenc = base->is_valid() ? encode(base) : 0;
   295   if (base->is_valid()) {
   296     if (index->is_valid()) {
   297       assert(scale != Address::no_scale, "inconsistent address");
   298       // [base + index*scale + disp]
   299       if (disp == 0 && rtype == relocInfo::none  &&
   300           base != rbp LP64_ONLY(&& base != r13)) {
   301         // [base + index*scale]
   302         // [00 reg 100][ss index base]
   303         assert(index != rsp, "illegal addressing mode");
   304         emit_byte(0x04 | regenc);
   305         emit_byte(scale << 6 | indexenc | baseenc);
   306       } else if (is8bit(disp) && rtype == relocInfo::none) {
   307         // [base + index*scale + imm8]
   308         // [01 reg 100][ss index base] imm8
   309         assert(index != rsp, "illegal addressing mode");
   310         emit_byte(0x44 | regenc);
   311         emit_byte(scale << 6 | indexenc | baseenc);
   312         emit_byte(disp & 0xFF);
   313       } else {
   314         // [base + index*scale + disp32]
   315         // [10 reg 100][ss index base] disp32
   316         assert(index != rsp, "illegal addressing mode");
   317         emit_byte(0x84 | regenc);
   318         emit_byte(scale << 6 | indexenc | baseenc);
   319         emit_data(disp, rspec, disp32_operand);
   320       }
   321     } else if (base == rsp LP64_ONLY(|| base == r12)) {
   322       // [rsp + disp]
   323       if (disp == 0 && rtype == relocInfo::none) {
   324         // [rsp]
   325         // [00 reg 100][00 100 100]
   326         emit_byte(0x04 | regenc);
   327         emit_byte(0x24);
   328       } else if (is8bit(disp) && rtype == relocInfo::none) {
   329         // [rsp + imm8]
   330         // [01 reg 100][00 100 100] disp8
   331         emit_byte(0x44 | regenc);
   332         emit_byte(0x24);
   333         emit_byte(disp & 0xFF);
   334       } else {
   335         // [rsp + imm32]
   336         // [10 reg 100][00 100 100] disp32
   337         emit_byte(0x84 | regenc);
   338         emit_byte(0x24);
   339         emit_data(disp, rspec, disp32_operand);
   340       }
   341     } else {
   342       // [base + disp]
   343       assert(base != rsp LP64_ONLY(&& base != r12), "illegal addressing mode");
   344       if (disp == 0 && rtype == relocInfo::none &&
   345           base != rbp LP64_ONLY(&& base != r13)) {
   346         // [base]
   347         // [00 reg base]
   348         emit_byte(0x00 | regenc | baseenc);
   349       } else if (is8bit(disp) && rtype == relocInfo::none) {
   350         // [base + disp8]
   351         // [01 reg base] disp8
   352         emit_byte(0x40 | regenc | baseenc);
   353         emit_byte(disp & 0xFF);
   354       } else {
   355         // [base + disp32]
   356         // [10 reg base] disp32
   357         emit_byte(0x80 | regenc | baseenc);
   358         emit_data(disp, rspec, disp32_operand);
   359       }
   360     }
   361   } else {
   362     if (index->is_valid()) {
   363       assert(scale != Address::no_scale, "inconsistent address");
   364       // [index*scale + disp]
   365       // [00 reg 100][ss index 101] disp32
   366       assert(index != rsp, "illegal addressing mode");
   367       emit_byte(0x04 | regenc);
   368       emit_byte(scale << 6 | indexenc | 0x05);
   369       emit_data(disp, rspec, disp32_operand);
   370     } else if (rtype != relocInfo::none ) {
   371       // [disp] (64bit) RIP-RELATIVE (32bit) abs
   372       // [00 000 101] disp32
   374       emit_byte(0x05 | regenc);
   375       // Note that the RIP-rel. correction applies to the generated
   376       // disp field, but _not_ to the target address in the rspec.
   378       // disp was created by converting the target address minus the pc
   379       // at the start of the instruction. That needs more correction here.
   380       // intptr_t disp = target - next_ip;
   381       assert(inst_mark() != NULL, "must be inside InstructionMark");
   382       address next_ip = pc() + sizeof(int32_t) + rip_relative_correction;
   383       int64_t adjusted = disp;
   384       // Do rip-rel adjustment for 64bit
   385       LP64_ONLY(adjusted -=  (next_ip - inst_mark()));
   386       assert(is_simm32(adjusted),
   387              "must be 32bit offset (RIP relative address)");
   388       emit_data((int32_t) adjusted, rspec, disp32_operand);
   390     } else {
   391       // 32bit never did this, did everything as the rip-rel/disp code above
   392       // [disp] ABSOLUTE
   393       // [00 reg 100][00 100 101] disp32
   394       emit_byte(0x04 | regenc);
   395       emit_byte(0x25);
   396       emit_data(disp, rspec, disp32_operand);
   397     }
   398   }
   399 }
   401 void Assembler::emit_operand(XMMRegister reg, Register base, Register index,
   402                              Address::ScaleFactor scale, int disp,
   403                              RelocationHolder const& rspec) {
   404   emit_operand((Register)reg, base, index, scale, disp, rspec);
   405 }
   407 // Secret local extension to Assembler::WhichOperand:
   408 #define end_pc_operand (_WhichOperand_limit)
   410 address Assembler::locate_operand(address inst, WhichOperand which) {
   411   // Decode the given instruction, and return the address of
   412   // an embedded 32-bit operand word.
   414   // If "which" is disp32_operand, selects the displacement portion
   415   // of an effective address specifier.
   416   // If "which" is imm64_operand, selects the trailing immediate constant.
   417   // If "which" is call32_operand, selects the displacement of a call or jump.
   418   // Caller is responsible for ensuring that there is such an operand,
   419   // and that it is 32/64 bits wide.
   421   // If "which" is end_pc_operand, find the end of the instruction.
   423   address ip = inst;
   424   bool is_64bit = false;
   426   debug_only(bool has_disp32 = false);
   427   int tail_size = 0; // other random bytes (#32, #16, etc.) at end of insn
   429   again_after_prefix:
   430   switch (0xFF & *ip++) {
   432   // These convenience macros generate groups of "case" labels for the switch.
   433 #define REP4(x) (x)+0: case (x)+1: case (x)+2: case (x)+3
   434 #define REP8(x) (x)+0: case (x)+1: case (x)+2: case (x)+3: \
   435              case (x)+4: case (x)+5: case (x)+6: case (x)+7
   436 #define REP16(x) REP8((x)+0): \
   437               case REP8((x)+8)
   439   case CS_segment:
   440   case SS_segment:
   441   case DS_segment:
   442   case ES_segment:
   443   case FS_segment:
   444   case GS_segment:
   445     // Seems dubious
   446     LP64_ONLY(assert(false, "shouldn't have that prefix"));
   447     assert(ip == inst+1, "only one prefix allowed");
   448     goto again_after_prefix;
   450   case 0x67:
   451   case REX:
   452   case REX_B:
   453   case REX_X:
   454   case REX_XB:
   455   case REX_R:
   456   case REX_RB:
   457   case REX_RX:
   458   case REX_RXB:
   459     NOT_LP64(assert(false, "64bit prefixes"));
   460     goto again_after_prefix;
   462   case REX_W:
   463   case REX_WB:
   464   case REX_WX:
   465   case REX_WXB:
   466   case REX_WR:
   467   case REX_WRB:
   468   case REX_WRX:
   469   case REX_WRXB:
   470     NOT_LP64(assert(false, "64bit prefixes"));
   471     is_64bit = true;
   472     goto again_after_prefix;
   474   case 0xFF: // pushq a; decl a; incl a; call a; jmp a
   475   case 0x88: // movb a, r
   476   case 0x89: // movl a, r
   477   case 0x8A: // movb r, a
   478   case 0x8B: // movl r, a
   479   case 0x8F: // popl a
   480     debug_only(has_disp32 = true);
   481     break;
   483   case 0x68: // pushq #32
   484     if (which == end_pc_operand) {
   485       return ip + 4;
   486     }
   487     assert(which == imm_operand && !is_64bit, "pushl has no disp32 or 64bit immediate");
   488     return ip;                  // not produced by emit_operand
   490   case 0x66: // movw ... (size prefix)
   491     again_after_size_prefix2:
   492     switch (0xFF & *ip++) {
   493     case REX:
   494     case REX_B:
   495     case REX_X:
   496     case REX_XB:
   497     case REX_R:
   498     case REX_RB:
   499     case REX_RX:
   500     case REX_RXB:
   501     case REX_W:
   502     case REX_WB:
   503     case REX_WX:
   504     case REX_WXB:
   505     case REX_WR:
   506     case REX_WRB:
   507     case REX_WRX:
   508     case REX_WRXB:
   509       NOT_LP64(assert(false, "64bit prefix found"));
   510       goto again_after_size_prefix2;
   511     case 0x8B: // movw r, a
   512     case 0x89: // movw a, r
   513       debug_only(has_disp32 = true);
   514       break;
   515     case 0xC7: // movw a, #16
   516       debug_only(has_disp32 = true);
   517       tail_size = 2;  // the imm16
   518       break;
   519     case 0x0F: // several SSE/SSE2 variants
   520       ip--;    // reparse the 0x0F
   521       goto again_after_prefix;
   522     default:
   523       ShouldNotReachHere();
   524     }
   525     break;
   527   case REP8(0xB8): // movl/q r, #32/#64(oop?)
   528     if (which == end_pc_operand)  return ip + (is_64bit ? 8 : 4);
   529     // these asserts are somewhat nonsensical
   530 #ifndef _LP64
   531     assert(which == imm_operand || which == disp32_operand,
   532            err_msg("which %d is_64_bit %d ip " INTPTR_FORMAT, which, is_64bit, ip));
   533 #else
   534     assert((which == call32_operand || which == imm_operand) && is_64bit ||
   535            which == narrow_oop_operand && !is_64bit,
   536            err_msg("which %d is_64_bit %d ip " INTPTR_FORMAT, which, is_64bit, ip));
   537 #endif // _LP64
   538     return ip;
   540   case 0x69: // imul r, a, #32
   541   case 0xC7: // movl a, #32(oop?)
   542     tail_size = 4;
   543     debug_only(has_disp32 = true); // has both kinds of operands!
   544     break;
   546   case 0x0F: // movx..., etc.
   547     switch (0xFF & *ip++) {
   548     case 0x3A: // pcmpestri
   549       tail_size = 1;
   550     case 0x38: // ptest, pmovzxbw
   551       ip++; // skip opcode
   552       debug_only(has_disp32 = true); // has both kinds of operands!
   553       break;
   555     case 0x70: // pshufd r, r/a, #8
   556       debug_only(has_disp32 = true); // has both kinds of operands!
   557     case 0x73: // psrldq r, #8
   558       tail_size = 1;
   559       break;
   561     case 0x12: // movlps
   562     case 0x28: // movaps
   563     case 0x2E: // ucomiss
   564     case 0x2F: // comiss
   565     case 0x54: // andps
   566     case 0x55: // andnps
   567     case 0x56: // orps
   568     case 0x57: // xorps
   569     case 0x6E: // movd
   570     case 0x7E: // movd
   571     case 0xAE: // ldmxcsr, stmxcsr, fxrstor, fxsave, clflush
   572       debug_only(has_disp32 = true);
   573       break;
   575     case 0xAD: // shrd r, a, %cl
   576     case 0xAF: // imul r, a
   577     case 0xBE: // movsbl r, a (movsxb)
   578     case 0xBF: // movswl r, a (movsxw)
   579     case 0xB6: // movzbl r, a (movzxb)
   580     case 0xB7: // movzwl r, a (movzxw)
   581     case REP16(0x40): // cmovl cc, r, a
   582     case 0xB0: // cmpxchgb
   583     case 0xB1: // cmpxchg
   584     case 0xC1: // xaddl
   585     case 0xC7: // cmpxchg8
   586     case REP16(0x90): // setcc a
   587       debug_only(has_disp32 = true);
   588       // fall out of the switch to decode the address
   589       break;
   591     case 0xC4: // pinsrw r, a, #8
   592       debug_only(has_disp32 = true);
   593     case 0xC5: // pextrw r, r, #8
   594       tail_size = 1;  // the imm8
   595       break;
   597     case 0xAC: // shrd r, a, #8
   598       debug_only(has_disp32 = true);
   599       tail_size = 1;  // the imm8
   600       break;
   602     case REP16(0x80): // jcc rdisp32
   603       if (which == end_pc_operand)  return ip + 4;
   604       assert(which == call32_operand, "jcc has no disp32 or imm");
   605       return ip;
   606     default:
   607       ShouldNotReachHere();
   608     }
   609     break;
   611   case 0x81: // addl a, #32; addl r, #32
   612     // also: orl, adcl, sbbl, andl, subl, xorl, cmpl
   613     // on 32bit in the case of cmpl, the imm might be an oop
   614     tail_size = 4;
   615     debug_only(has_disp32 = true); // has both kinds of operands!
   616     break;
   618   case 0x83: // addl a, #8; addl r, #8
   619     // also: orl, adcl, sbbl, andl, subl, xorl, cmpl
   620     debug_only(has_disp32 = true); // has both kinds of operands!
   621     tail_size = 1;
   622     break;
   624   case 0x9B:
   625     switch (0xFF & *ip++) {
   626     case 0xD9: // fnstcw a
   627       debug_only(has_disp32 = true);
   628       break;
   629     default:
   630       ShouldNotReachHere();
   631     }
   632     break;
   634   case REP4(0x00): // addb a, r; addl a, r; addb r, a; addl r, a
   635   case REP4(0x10): // adc...
   636   case REP4(0x20): // and...
   637   case REP4(0x30): // xor...
   638   case REP4(0x08): // or...
   639   case REP4(0x18): // sbb...
   640   case REP4(0x28): // sub...
   641   case 0xF7: // mull a
   642   case 0x8D: // lea r, a
   643   case 0x87: // xchg r, a
   644   case REP4(0x38): // cmp...
   645   case 0x85: // test r, a
   646     debug_only(has_disp32 = true); // has both kinds of operands!
   647     break;
   649   case 0xC1: // sal a, #8; sar a, #8; shl a, #8; shr a, #8
   650   case 0xC6: // movb a, #8
   651   case 0x80: // cmpb a, #8
   652   case 0x6B: // imul r, a, #8
   653     debug_only(has_disp32 = true); // has both kinds of operands!
   654     tail_size = 1; // the imm8
   655     break;
   657   case 0xC4: // VEX_3bytes
   658   case 0xC5: // VEX_2bytes
   659     assert((UseAVX > 0), "shouldn't have VEX prefix");
   660     assert(ip == inst+1, "no prefixes allowed");
   661     // C4 and C5 are also used as opcodes for PINSRW and PEXTRW instructions
   662     // but they have prefix 0x0F and processed when 0x0F processed above.
   663     //
   664     // In 32-bit mode the VEX first byte C4 and C5 alias onto LDS and LES
   665     // instructions (these instructions are not supported in 64-bit mode).
   666     // To distinguish them bits [7:6] are set in the VEX second byte since
   667     // ModRM byte can not be of the form 11xxxxxx in 32-bit mode. To set
   668     // those VEX bits REX and vvvv bits are inverted.
   669     //
   670     // Fortunately C2 doesn't generate these instructions so we don't need
   671     // to check for them in product version.
   673     // Check second byte
   674     NOT_LP64(assert((0xC0 & *ip) == 0xC0, "shouldn't have LDS and LES instructions"));
   676     // First byte
   677     if ((0xFF & *inst) == VEX_3bytes) {
   678       ip++; // third byte
   679       is_64bit = ((VEX_W & *ip) == VEX_W);
   680     }
   681     ip++; // opcode
   682     // To find the end of instruction (which == end_pc_operand).
   683     switch (0xFF & *ip) {
   684     case 0x61: // pcmpestri r, r/a, #8
   685     case 0x70: // pshufd r, r/a, #8
   686     case 0x73: // psrldq r, #8
   687       tail_size = 1;  // the imm8
   688       break;
   689     default:
   690       break;
   691     }
   692     ip++; // skip opcode
   693     debug_only(has_disp32 = true); // has both kinds of operands!
   694     break;
   696   case 0xD1: // sal a, 1; sar a, 1; shl a, 1; shr a, 1
   697   case 0xD3: // sal a, %cl; sar a, %cl; shl a, %cl; shr a, %cl
   698   case 0xD9: // fld_s a; fst_s a; fstp_s a; fldcw a
   699   case 0xDD: // fld_d a; fst_d a; fstp_d a
   700   case 0xDB: // fild_s a; fistp_s a; fld_x a; fstp_x a
   701   case 0xDF: // fild_d a; fistp_d a
   702   case 0xD8: // fadd_s a; fsubr_s a; fmul_s a; fdivr_s a; fcomp_s a
   703   case 0xDC: // fadd_d a; fsubr_d a; fmul_d a; fdivr_d a; fcomp_d a
   704   case 0xDE: // faddp_d a; fsubrp_d a; fmulp_d a; fdivrp_d a; fcompp_d a
   705     debug_only(has_disp32 = true);
   706     break;
   708   case 0xE8: // call rdisp32
   709   case 0xE9: // jmp  rdisp32
   710     if (which == end_pc_operand)  return ip + 4;
   711     assert(which == call32_operand, "call has no disp32 or imm");
   712     return ip;
   714   case 0xF0:                    // Lock
   715     assert(os::is_MP(), "only on MP");
   716     goto again_after_prefix;
   718   case 0xF3:                    // For SSE
   719   case 0xF2:                    // For SSE2
   720     switch (0xFF & *ip++) {
   721     case REX:
   722     case REX_B:
   723     case REX_X:
   724     case REX_XB:
   725     case REX_R:
   726     case REX_RB:
   727     case REX_RX:
   728     case REX_RXB:
   729     case REX_W:
   730     case REX_WB:
   731     case REX_WX:
   732     case REX_WXB:
   733     case REX_WR:
   734     case REX_WRB:
   735     case REX_WRX:
   736     case REX_WRXB:
   737       NOT_LP64(assert(false, "found 64bit prefix"));
   738       ip++;
   739     default:
   740       ip++;
   741     }
   742     debug_only(has_disp32 = true); // has both kinds of operands!
   743     break;
   745   default:
   746     ShouldNotReachHere();
   748 #undef REP8
   749 #undef REP16
   750   }
   752   assert(which != call32_operand, "instruction is not a call, jmp, or jcc");
   753 #ifdef _LP64
   754   assert(which != imm_operand, "instruction is not a movq reg, imm64");
   755 #else
   756   // assert(which != imm_operand || has_imm32, "instruction has no imm32 field");
   757   assert(which != imm_operand || has_disp32, "instruction has no imm32 field");
   758 #endif // LP64
   759   assert(which != disp32_operand || has_disp32, "instruction has no disp32 field");
   761   // parse the output of emit_operand
   762   int op2 = 0xFF & *ip++;
   763   int base = op2 & 0x07;
   764   int op3 = -1;
   765   const int b100 = 4;
   766   const int b101 = 5;
   767   if (base == b100 && (op2 >> 6) != 3) {
   768     op3 = 0xFF & *ip++;
   769     base = op3 & 0x07;   // refetch the base
   770   }
   771   // now ip points at the disp (if any)
   773   switch (op2 >> 6) {
   774   case 0:
   775     // [00 reg  100][ss index base]
   776     // [00 reg  100][00   100  esp]
   777     // [00 reg base]
   778     // [00 reg  100][ss index  101][disp32]
   779     // [00 reg  101]               [disp32]
   781     if (base == b101) {
   782       if (which == disp32_operand)
   783         return ip;              // caller wants the disp32
   784       ip += 4;                  // skip the disp32
   785     }
   786     break;
   788   case 1:
   789     // [01 reg  100][ss index base][disp8]
   790     // [01 reg  100][00   100  esp][disp8]
   791     // [01 reg base]               [disp8]
   792     ip += 1;                    // skip the disp8
   793     break;
   795   case 2:
   796     // [10 reg  100][ss index base][disp32]
   797     // [10 reg  100][00   100  esp][disp32]
   798     // [10 reg base]               [disp32]
   799     if (which == disp32_operand)
   800       return ip;                // caller wants the disp32
   801     ip += 4;                    // skip the disp32
   802     break;
   804   case 3:
   805     // [11 reg base]  (not a memory addressing mode)
   806     break;
   807   }
   809   if (which == end_pc_operand) {
   810     return ip + tail_size;
   811   }
   813 #ifdef _LP64
   814   assert(which == narrow_oop_operand && !is_64bit, "instruction is not a movl adr, imm32");
   815 #else
   816   assert(which == imm_operand, "instruction has only an imm field");
   817 #endif // LP64
   818   return ip;
   819 }
   821 address Assembler::locate_next_instruction(address inst) {
   822   // Secretly share code with locate_operand:
   823   return locate_operand(inst, end_pc_operand);
   824 }
   827 #ifdef ASSERT
   828 void Assembler::check_relocation(RelocationHolder const& rspec, int format) {
   829   address inst = inst_mark();
   830   assert(inst != NULL && inst < pc(), "must point to beginning of instruction");
   831   address opnd;
   833   Relocation* r = rspec.reloc();
   834   if (r->type() == relocInfo::none) {
   835     return;
   836   } else if (r->is_call() || format == call32_operand) {
   837     // assert(format == imm32_operand, "cannot specify a nonzero format");
   838     opnd = locate_operand(inst, call32_operand);
   839   } else if (r->is_data()) {
   840     assert(format == imm_operand || format == disp32_operand
   841            LP64_ONLY(|| format == narrow_oop_operand), "format ok");
   842     opnd = locate_operand(inst, (WhichOperand)format);
   843   } else {
   844     assert(format == imm_operand, "cannot specify a format");
   845     return;
   846   }
   847   assert(opnd == pc(), "must put operand where relocs can find it");
   848 }
   849 #endif // ASSERT
   851 void Assembler::emit_operand32(Register reg, Address adr) {
   852   assert(reg->encoding() < 8, "no extended registers");
   853   assert(!adr.base_needs_rex() && !adr.index_needs_rex(), "no extended registers");
   854   emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp,
   855                adr._rspec);
   856 }
   858 void Assembler::emit_operand(Register reg, Address adr,
   859                              int rip_relative_correction) {
   860   emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp,
   861                adr._rspec,
   862                rip_relative_correction);
   863 }
   865 void Assembler::emit_operand(XMMRegister reg, Address adr) {
   866   emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp,
   867                adr._rspec);
   868 }
   870 // MMX operations
   871 void Assembler::emit_operand(MMXRegister reg, Address adr) {
   872   assert(!adr.base_needs_rex() && !adr.index_needs_rex(), "no extended registers");
   873   emit_operand((Register)reg, adr._base, adr._index, adr._scale, adr._disp, adr._rspec);
   874 }
   876 // work around gcc (3.2.1-7a) bug
   877 void Assembler::emit_operand(Address adr, MMXRegister reg) {
   878   assert(!adr.base_needs_rex() && !adr.index_needs_rex(), "no extended registers");
   879   emit_operand((Register)reg, adr._base, adr._index, adr._scale, adr._disp, adr._rspec);
   880 }
   883 void Assembler::emit_farith(int b1, int b2, int i) {
   884   assert(isByte(b1) && isByte(b2), "wrong opcode");
   885   assert(0 <= i &&  i < 8, "illegal stack offset");
   886   emit_byte(b1);
   887   emit_byte(b2 + i);
   888 }
   891 // Now the Assembler instructions (identical for 32/64 bits)
   893 void Assembler::adcl(Address dst, int32_t imm32) {
   894   InstructionMark im(this);
   895   prefix(dst);
   896   emit_arith_operand(0x81, rdx, dst, imm32);
   897 }
   899 void Assembler::adcl(Address dst, Register src) {
   900   InstructionMark im(this);
   901   prefix(dst, src);
   902   emit_byte(0x11);
   903   emit_operand(src, dst);
   904 }
   906 void Assembler::adcl(Register dst, int32_t imm32) {
   907   prefix(dst);
   908   emit_arith(0x81, 0xD0, dst, imm32);
   909 }
   911 void Assembler::adcl(Register dst, Address src) {
   912   InstructionMark im(this);
   913   prefix(src, dst);
   914   emit_byte(0x13);
   915   emit_operand(dst, src);
   916 }
   918 void Assembler::adcl(Register dst, Register src) {
   919   (void) prefix_and_encode(dst->encoding(), src->encoding());
   920   emit_arith(0x13, 0xC0, dst, src);
   921 }
   923 void Assembler::addl(Address dst, int32_t imm32) {
   924   InstructionMark im(this);
   925   prefix(dst);
   926   emit_arith_operand(0x81, rax, dst, imm32);
   927 }
   929 void Assembler::addl(Address dst, Register src) {
   930   InstructionMark im(this);
   931   prefix(dst, src);
   932   emit_byte(0x01);
   933   emit_operand(src, dst);
   934 }
   936 void Assembler::addl(Register dst, int32_t imm32) {
   937   prefix(dst);
   938   emit_arith(0x81, 0xC0, dst, imm32);
   939 }
   941 void Assembler::addl(Register dst, Address src) {
   942   InstructionMark im(this);
   943   prefix(src, dst);
   944   emit_byte(0x03);
   945   emit_operand(dst, src);
   946 }
   948 void Assembler::addl(Register dst, Register src) {
   949   (void) prefix_and_encode(dst->encoding(), src->encoding());
   950   emit_arith(0x03, 0xC0, dst, src);
   951 }
   953 void Assembler::addr_nop_4() {
   954   assert(UseAddressNop, "no CPU support");
   955   // 4 bytes: NOP DWORD PTR [EAX+0]
   956   emit_byte(0x0F);
   957   emit_byte(0x1F);
   958   emit_byte(0x40); // emit_rm(cbuf, 0x1, EAX_enc, EAX_enc);
   959   emit_byte(0);    // 8-bits offset (1 byte)
   960 }
   962 void Assembler::addr_nop_5() {
   963   assert(UseAddressNop, "no CPU support");
   964   // 5 bytes: NOP DWORD PTR [EAX+EAX*0+0] 8-bits offset
   965   emit_byte(0x0F);
   966   emit_byte(0x1F);
   967   emit_byte(0x44); // emit_rm(cbuf, 0x1, EAX_enc, 0x4);
   968   emit_byte(0x00); // emit_rm(cbuf, 0x0, EAX_enc, EAX_enc);
   969   emit_byte(0);    // 8-bits offset (1 byte)
   970 }
   972 void Assembler::addr_nop_7() {
   973   assert(UseAddressNop, "no CPU support");
   974   // 7 bytes: NOP DWORD PTR [EAX+0] 32-bits offset
   975   emit_byte(0x0F);
   976   emit_byte(0x1F);
   977   emit_byte(0x80); // emit_rm(cbuf, 0x2, EAX_enc, EAX_enc);
   978   emit_long(0);    // 32-bits offset (4 bytes)
   979 }
   981 void Assembler::addr_nop_8() {
   982   assert(UseAddressNop, "no CPU support");
   983   // 8 bytes: NOP DWORD PTR [EAX+EAX*0+0] 32-bits offset
   984   emit_byte(0x0F);
   985   emit_byte(0x1F);
   986   emit_byte(0x84); // emit_rm(cbuf, 0x2, EAX_enc, 0x4);
   987   emit_byte(0x00); // emit_rm(cbuf, 0x0, EAX_enc, EAX_enc);
   988   emit_long(0);    // 32-bits offset (4 bytes)
   989 }
   991 void Assembler::addsd(XMMRegister dst, XMMRegister src) {
   992   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
   993   emit_simd_arith(0x58, dst, src, VEX_SIMD_F2);
   994 }
   996 void Assembler::addsd(XMMRegister dst, Address src) {
   997   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
   998   emit_simd_arith(0x58, dst, src, VEX_SIMD_F2);
   999 }
  1001 void Assembler::addss(XMMRegister dst, XMMRegister src) {
  1002   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1003   emit_simd_arith(0x58, dst, src, VEX_SIMD_F3);
  1006 void Assembler::addss(XMMRegister dst, Address src) {
  1007   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1008   emit_simd_arith(0x58, dst, src, VEX_SIMD_F3);
  1011 void Assembler::aesdec(XMMRegister dst, Address src) {
  1012   assert(VM_Version::supports_aes(), "");
  1013   InstructionMark im(this);
  1014   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
  1015   emit_byte(0xde);
  1016   emit_operand(dst, src);
  1019 void Assembler::aesdec(XMMRegister dst, XMMRegister src) {
  1020   assert(VM_Version::supports_aes(), "");
  1021   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
  1022   emit_byte(0xde);
  1023   emit_byte(0xC0 | encode);
  1026 void Assembler::aesdeclast(XMMRegister dst, Address src) {
  1027   assert(VM_Version::supports_aes(), "");
  1028   InstructionMark im(this);
  1029   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
  1030   emit_byte(0xdf);
  1031   emit_operand(dst, src);
  1034 void Assembler::aesdeclast(XMMRegister dst, XMMRegister src) {
  1035   assert(VM_Version::supports_aes(), "");
  1036   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
  1037   emit_byte(0xdf);
  1038   emit_byte(0xC0 | encode);
  1041 void Assembler::aesenc(XMMRegister dst, Address src) {
  1042   assert(VM_Version::supports_aes(), "");
  1043   InstructionMark im(this);
  1044   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
  1045   emit_byte(0xdc);
  1046   emit_operand(dst, src);
  1049 void Assembler::aesenc(XMMRegister dst, XMMRegister src) {
  1050   assert(VM_Version::supports_aes(), "");
  1051   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
  1052   emit_byte(0xdc);
  1053   emit_byte(0xC0 | encode);
  1056 void Assembler::aesenclast(XMMRegister dst, Address src) {
  1057   assert(VM_Version::supports_aes(), "");
  1058   InstructionMark im(this);
  1059   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
  1060   emit_byte(0xdd);
  1061   emit_operand(dst, src);
  1064 void Assembler::aesenclast(XMMRegister dst, XMMRegister src) {
  1065   assert(VM_Version::supports_aes(), "");
  1066   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
  1067   emit_byte(0xdd);
  1068   emit_byte(0xC0 | encode);
  1072 void Assembler::andl(Address dst, int32_t imm32) {
  1073   InstructionMark im(this);
  1074   prefix(dst);
  1075   emit_byte(0x81);
  1076   emit_operand(rsp, dst, 4);
  1077   emit_long(imm32);
  1080 void Assembler::andl(Register dst, int32_t imm32) {
  1081   prefix(dst);
  1082   emit_arith(0x81, 0xE0, dst, imm32);
  1085 void Assembler::andl(Register dst, Address src) {
  1086   InstructionMark im(this);
  1087   prefix(src, dst);
  1088   emit_byte(0x23);
  1089   emit_operand(dst, src);
  1092 void Assembler::andl(Register dst, Register src) {
  1093   (void) prefix_and_encode(dst->encoding(), src->encoding());
  1094   emit_arith(0x23, 0xC0, dst, src);
  1097 void Assembler::bsfl(Register dst, Register src) {
  1098   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1099   emit_byte(0x0F);
  1100   emit_byte(0xBC);
  1101   emit_byte(0xC0 | encode);
  1104 void Assembler::bsrl(Register dst, Register src) {
  1105   assert(!VM_Version::supports_lzcnt(), "encoding is treated as LZCNT");
  1106   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1107   emit_byte(0x0F);
  1108   emit_byte(0xBD);
  1109   emit_byte(0xC0 | encode);
  1112 void Assembler::bswapl(Register reg) { // bswap
  1113   int encode = prefix_and_encode(reg->encoding());
  1114   emit_byte(0x0F);
  1115   emit_byte(0xC8 | encode);
  1118 void Assembler::call(Label& L, relocInfo::relocType rtype) {
  1119   // suspect disp32 is always good
  1120   int operand = LP64_ONLY(disp32_operand) NOT_LP64(imm_operand);
  1122   if (L.is_bound()) {
  1123     const int long_size = 5;
  1124     int offs = (int)( target(L) - pc() );
  1125     assert(offs <= 0, "assembler error");
  1126     InstructionMark im(this);
  1127     // 1110 1000 #32-bit disp
  1128     emit_byte(0xE8);
  1129     emit_data(offs - long_size, rtype, operand);
  1130   } else {
  1131     InstructionMark im(this);
  1132     // 1110 1000 #32-bit disp
  1133     L.add_patch_at(code(), locator());
  1135     emit_byte(0xE8);
  1136     emit_data(int(0), rtype, operand);
  1140 void Assembler::call(Register dst) {
  1141   int encode = prefix_and_encode(dst->encoding());
  1142   emit_byte(0xFF);
  1143   emit_byte(0xD0 | encode);
  1147 void Assembler::call(Address adr) {
  1148   InstructionMark im(this);
  1149   prefix(adr);
  1150   emit_byte(0xFF);
  1151   emit_operand(rdx, adr);
  1154 void Assembler::call_literal(address entry, RelocationHolder const& rspec) {
  1155   assert(entry != NULL, "call most probably wrong");
  1156   InstructionMark im(this);
  1157   emit_byte(0xE8);
  1158   intptr_t disp = entry - (pc() + sizeof(int32_t));
  1159   assert(is_simm32(disp), "must be 32bit offset (call2)");
  1160   // Technically, should use call32_operand, but this format is
  1161   // implied by the fact that we're emitting a call instruction.
  1163   int operand = LP64_ONLY(disp32_operand) NOT_LP64(call32_operand);
  1164   emit_data((int) disp, rspec, operand);
  1167 void Assembler::cdql() {
  1168   emit_byte(0x99);
  1171 void Assembler::cld() {
  1172   emit_byte(0xfc);
  1175 void Assembler::cmovl(Condition cc, Register dst, Register src) {
  1176   NOT_LP64(guarantee(VM_Version::supports_cmov(), "illegal instruction"));
  1177   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1178   emit_byte(0x0F);
  1179   emit_byte(0x40 | cc);
  1180   emit_byte(0xC0 | encode);
  1184 void Assembler::cmovl(Condition cc, Register dst, Address src) {
  1185   NOT_LP64(guarantee(VM_Version::supports_cmov(), "illegal instruction"));
  1186   prefix(src, dst);
  1187   emit_byte(0x0F);
  1188   emit_byte(0x40 | cc);
  1189   emit_operand(dst, src);
  1192 void Assembler::cmpb(Address dst, int imm8) {
  1193   InstructionMark im(this);
  1194   prefix(dst);
  1195   emit_byte(0x80);
  1196   emit_operand(rdi, dst, 1);
  1197   emit_byte(imm8);
  1200 void Assembler::cmpl(Address dst, int32_t imm32) {
  1201   InstructionMark im(this);
  1202   prefix(dst);
  1203   emit_byte(0x81);
  1204   emit_operand(rdi, dst, 4);
  1205   emit_long(imm32);
  1208 void Assembler::cmpl(Register dst, int32_t imm32) {
  1209   prefix(dst);
  1210   emit_arith(0x81, 0xF8, dst, imm32);
  1213 void Assembler::cmpl(Register dst, Register src) {
  1214   (void) prefix_and_encode(dst->encoding(), src->encoding());
  1215   emit_arith(0x3B, 0xC0, dst, src);
  1219 void Assembler::cmpl(Register dst, Address  src) {
  1220   InstructionMark im(this);
  1221   prefix(src, dst);
  1222   emit_byte(0x3B);
  1223   emit_operand(dst, src);
  1226 void Assembler::cmpw(Address dst, int imm16) {
  1227   InstructionMark im(this);
  1228   assert(!dst.base_needs_rex() && !dst.index_needs_rex(), "no extended registers");
  1229   emit_byte(0x66);
  1230   emit_byte(0x81);
  1231   emit_operand(rdi, dst, 2);
  1232   emit_word(imm16);
  1235 // The 32-bit cmpxchg compares the value at adr with the contents of rax,
  1236 // and stores reg into adr if so; otherwise, the value at adr is loaded into rax,.
  1237 // The ZF is set if the compared values were equal, and cleared otherwise.
  1238 void Assembler::cmpxchgl(Register reg, Address adr) { // cmpxchg
  1239   InstructionMark im(this);
  1240   prefix(adr, reg);
  1241   emit_byte(0x0F);
  1242   emit_byte(0xB1);
  1243   emit_operand(reg, adr);
  1246 void Assembler::comisd(XMMRegister dst, Address src) {
  1247   // NOTE: dbx seems to decode this as comiss even though the
  1248   // 0x66 is there. Strangly ucomisd comes out correct
  1249   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1250   emit_simd_arith_nonds(0x2F, dst, src, VEX_SIMD_66);
  1253 void Assembler::comisd(XMMRegister dst, XMMRegister src) {
  1254   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1255   emit_simd_arith_nonds(0x2F, dst, src, VEX_SIMD_66);
  1258 void Assembler::comiss(XMMRegister dst, Address src) {
  1259   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1260   emit_simd_arith_nonds(0x2F, dst, src, VEX_SIMD_NONE);
  1263 void Assembler::comiss(XMMRegister dst, XMMRegister src) {
  1264   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1265   emit_simd_arith_nonds(0x2F, dst, src, VEX_SIMD_NONE);
  1268 void Assembler::cpuid() {
  1269   emit_byte(0x0F);
  1270   emit_byte(0xA2);
  1273 void Assembler::cvtdq2pd(XMMRegister dst, XMMRegister src) {
  1274   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1275   emit_simd_arith_nonds(0xE6, dst, src, VEX_SIMD_F3);
  1278 void Assembler::cvtdq2ps(XMMRegister dst, XMMRegister src) {
  1279   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1280   emit_simd_arith_nonds(0x5B, dst, src, VEX_SIMD_NONE);
  1283 void Assembler::cvtsd2ss(XMMRegister dst, XMMRegister src) {
  1284   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1285   emit_simd_arith(0x5A, dst, src, VEX_SIMD_F2);
  1288 void Assembler::cvtsd2ss(XMMRegister dst, Address src) {
  1289   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1290   emit_simd_arith(0x5A, dst, src, VEX_SIMD_F2);
  1293 void Assembler::cvtsi2sdl(XMMRegister dst, Register src) {
  1294   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1295   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F2);
  1296   emit_byte(0x2A);
  1297   emit_byte(0xC0 | encode);
  1300 void Assembler::cvtsi2sdl(XMMRegister dst, Address src) {
  1301   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1302   emit_simd_arith(0x2A, dst, src, VEX_SIMD_F2);
  1305 void Assembler::cvtsi2ssl(XMMRegister dst, Register src) {
  1306   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1307   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3);
  1308   emit_byte(0x2A);
  1309   emit_byte(0xC0 | encode);
  1312 void Assembler::cvtsi2ssl(XMMRegister dst, Address src) {
  1313   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1314   emit_simd_arith(0x2A, dst, src, VEX_SIMD_F3);
  1317 void Assembler::cvtss2sd(XMMRegister dst, XMMRegister src) {
  1318   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1319   emit_simd_arith(0x5A, dst, src, VEX_SIMD_F3);
  1322 void Assembler::cvtss2sd(XMMRegister dst, Address src) {
  1323   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1324   emit_simd_arith(0x5A, dst, src, VEX_SIMD_F3);
  1328 void Assembler::cvttsd2sil(Register dst, XMMRegister src) {
  1329   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1330   int encode = simd_prefix_and_encode(dst, src, VEX_SIMD_F2);
  1331   emit_byte(0x2C);
  1332   emit_byte(0xC0 | encode);
  1335 void Assembler::cvttss2sil(Register dst, XMMRegister src) {
  1336   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1337   int encode = simd_prefix_and_encode(dst, src, VEX_SIMD_F3);
  1338   emit_byte(0x2C);
  1339   emit_byte(0xC0 | encode);
  1342 void Assembler::decl(Address dst) {
  1343   // Don't use it directly. Use MacroAssembler::decrement() instead.
  1344   InstructionMark im(this);
  1345   prefix(dst);
  1346   emit_byte(0xFF);
  1347   emit_operand(rcx, dst);
  1350 void Assembler::divsd(XMMRegister dst, Address src) {
  1351   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1352   emit_simd_arith(0x5E, dst, src, VEX_SIMD_F2);
  1355 void Assembler::divsd(XMMRegister dst, XMMRegister src) {
  1356   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1357   emit_simd_arith(0x5E, dst, src, VEX_SIMD_F2);
  1360 void Assembler::divss(XMMRegister dst, Address src) {
  1361   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1362   emit_simd_arith(0x5E, dst, src, VEX_SIMD_F3);
  1365 void Assembler::divss(XMMRegister dst, XMMRegister src) {
  1366   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1367   emit_simd_arith(0x5E, dst, src, VEX_SIMD_F3);
  1370 void Assembler::emms() {
  1371   NOT_LP64(assert(VM_Version::supports_mmx(), ""));
  1372   emit_byte(0x0F);
  1373   emit_byte(0x77);
  1376 void Assembler::hlt() {
  1377   emit_byte(0xF4);
  1380 void Assembler::idivl(Register src) {
  1381   int encode = prefix_and_encode(src->encoding());
  1382   emit_byte(0xF7);
  1383   emit_byte(0xF8 | encode);
  1386 void Assembler::divl(Register src) { // Unsigned
  1387   int encode = prefix_and_encode(src->encoding());
  1388   emit_byte(0xF7);
  1389   emit_byte(0xF0 | encode);
  1392 void Assembler::imull(Register dst, Register src) {
  1393   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1394   emit_byte(0x0F);
  1395   emit_byte(0xAF);
  1396   emit_byte(0xC0 | encode);
  1400 void Assembler::imull(Register dst, Register src, int value) {
  1401   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1402   if (is8bit(value)) {
  1403     emit_byte(0x6B);
  1404     emit_byte(0xC0 | encode);
  1405     emit_byte(value & 0xFF);
  1406   } else {
  1407     emit_byte(0x69);
  1408     emit_byte(0xC0 | encode);
  1409     emit_long(value);
  1413 void Assembler::incl(Address dst) {
  1414   // Don't use it directly. Use MacroAssembler::increment() instead.
  1415   InstructionMark im(this);
  1416   prefix(dst);
  1417   emit_byte(0xFF);
  1418   emit_operand(rax, dst);
  1421 void Assembler::jcc(Condition cc, Label& L, bool maybe_short) {
  1422   InstructionMark im(this);
  1423   assert((0 <= cc) && (cc < 16), "illegal cc");
  1424   if (L.is_bound()) {
  1425     address dst = target(L);
  1426     assert(dst != NULL, "jcc most probably wrong");
  1428     const int short_size = 2;
  1429     const int long_size = 6;
  1430     intptr_t offs = (intptr_t)dst - (intptr_t)pc();
  1431     if (maybe_short && is8bit(offs - short_size)) {
  1432       // 0111 tttn #8-bit disp
  1433       emit_byte(0x70 | cc);
  1434       emit_byte((offs - short_size) & 0xFF);
  1435     } else {
  1436       // 0000 1111 1000 tttn #32-bit disp
  1437       assert(is_simm32(offs - long_size),
  1438              "must be 32bit offset (call4)");
  1439       emit_byte(0x0F);
  1440       emit_byte(0x80 | cc);
  1441       emit_long(offs - long_size);
  1443   } else {
  1444     // Note: could eliminate cond. jumps to this jump if condition
  1445     //       is the same however, seems to be rather unlikely case.
  1446     // Note: use jccb() if label to be bound is very close to get
  1447     //       an 8-bit displacement
  1448     L.add_patch_at(code(), locator());
  1449     emit_byte(0x0F);
  1450     emit_byte(0x80 | cc);
  1451     emit_long(0);
  1455 void Assembler::jccb(Condition cc, Label& L) {
  1456   if (L.is_bound()) {
  1457     const int short_size = 2;
  1458     address entry = target(L);
  1459 #ifdef ASSERT
  1460     intptr_t dist = (intptr_t)entry - ((intptr_t)pc() + short_size);
  1461     intptr_t delta = short_branch_delta();
  1462     if (delta != 0) {
  1463       dist += (dist < 0 ? (-delta) :delta);
  1465     assert(is8bit(dist), "Dispacement too large for a short jmp");
  1466 #endif
  1467     intptr_t offs = (intptr_t)entry - (intptr_t)pc();
  1468     // 0111 tttn #8-bit disp
  1469     emit_byte(0x70 | cc);
  1470     emit_byte((offs - short_size) & 0xFF);
  1471   } else {
  1472     InstructionMark im(this);
  1473     L.add_patch_at(code(), locator());
  1474     emit_byte(0x70 | cc);
  1475     emit_byte(0);
  1479 void Assembler::jmp(Address adr) {
  1480   InstructionMark im(this);
  1481   prefix(adr);
  1482   emit_byte(0xFF);
  1483   emit_operand(rsp, adr);
  1486 void Assembler::jmp(Label& L, bool maybe_short) {
  1487   if (L.is_bound()) {
  1488     address entry = target(L);
  1489     assert(entry != NULL, "jmp most probably wrong");
  1490     InstructionMark im(this);
  1491     const int short_size = 2;
  1492     const int long_size = 5;
  1493     intptr_t offs = entry - pc();
  1494     if (maybe_short && is8bit(offs - short_size)) {
  1495       emit_byte(0xEB);
  1496       emit_byte((offs - short_size) & 0xFF);
  1497     } else {
  1498       emit_byte(0xE9);
  1499       emit_long(offs - long_size);
  1501   } else {
  1502     // By default, forward jumps are always 32-bit displacements, since
  1503     // we can't yet know where the label will be bound.  If you're sure that
  1504     // the forward jump will not run beyond 256 bytes, use jmpb to
  1505     // force an 8-bit displacement.
  1506     InstructionMark im(this);
  1507     L.add_patch_at(code(), locator());
  1508     emit_byte(0xE9);
  1509     emit_long(0);
  1513 void Assembler::jmp(Register entry) {
  1514   int encode = prefix_and_encode(entry->encoding());
  1515   emit_byte(0xFF);
  1516   emit_byte(0xE0 | encode);
  1519 void Assembler::jmp_literal(address dest, RelocationHolder const& rspec) {
  1520   InstructionMark im(this);
  1521   emit_byte(0xE9);
  1522   assert(dest != NULL, "must have a target");
  1523   intptr_t disp = dest - (pc() + sizeof(int32_t));
  1524   assert(is_simm32(disp), "must be 32bit offset (jmp)");
  1525   emit_data(disp, rspec.reloc(), call32_operand);
  1528 void Assembler::jmpb(Label& L) {
  1529   if (L.is_bound()) {
  1530     const int short_size = 2;
  1531     address entry = target(L);
  1532     assert(entry != NULL, "jmp most probably wrong");
  1533 #ifdef ASSERT
  1534     intptr_t dist = (intptr_t)entry - ((intptr_t)pc() + short_size);
  1535     intptr_t delta = short_branch_delta();
  1536     if (delta != 0) {
  1537       dist += (dist < 0 ? (-delta) :delta);
  1539     assert(is8bit(dist), "Dispacement too large for a short jmp");
  1540 #endif
  1541     intptr_t offs = entry - pc();
  1542     emit_byte(0xEB);
  1543     emit_byte((offs - short_size) & 0xFF);
  1544   } else {
  1545     InstructionMark im(this);
  1546     L.add_patch_at(code(), locator());
  1547     emit_byte(0xEB);
  1548     emit_byte(0);
  1552 void Assembler::ldmxcsr( Address src) {
  1553   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1554   InstructionMark im(this);
  1555   prefix(src);
  1556   emit_byte(0x0F);
  1557   emit_byte(0xAE);
  1558   emit_operand(as_Register(2), src);
  1561 void Assembler::leal(Register dst, Address src) {
  1562   InstructionMark im(this);
  1563 #ifdef _LP64
  1564   emit_byte(0x67); // addr32
  1565   prefix(src, dst);
  1566 #endif // LP64
  1567   emit_byte(0x8D);
  1568   emit_operand(dst, src);
  1571 void Assembler::lfence() {
  1572   emit_byte(0x0F);
  1573   emit_byte(0xAE);
  1574   emit_byte(0xE8);
  1577 void Assembler::lock() {
  1578   emit_byte(0xF0);
  1581 void Assembler::lzcntl(Register dst, Register src) {
  1582   assert(VM_Version::supports_lzcnt(), "encoding is treated as BSR");
  1583   emit_byte(0xF3);
  1584   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1585   emit_byte(0x0F);
  1586   emit_byte(0xBD);
  1587   emit_byte(0xC0 | encode);
  1590 // Emit mfence instruction
  1591 void Assembler::mfence() {
  1592   NOT_LP64(assert(VM_Version::supports_sse2(), "unsupported");)
  1593   emit_byte( 0x0F );
  1594   emit_byte( 0xAE );
  1595   emit_byte( 0xF0 );
  1598 void Assembler::mov(Register dst, Register src) {
  1599   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
  1602 void Assembler::movapd(XMMRegister dst, XMMRegister src) {
  1603   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1604   emit_simd_arith_nonds(0x28, dst, src, VEX_SIMD_66);
  1607 void Assembler::movaps(XMMRegister dst, XMMRegister src) {
  1608   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1609   emit_simd_arith_nonds(0x28, dst, src, VEX_SIMD_NONE);
  1612 void Assembler::movlhps(XMMRegister dst, XMMRegister src) {
  1613   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1614   int encode = simd_prefix_and_encode(dst, src, src, VEX_SIMD_NONE);
  1615   emit_byte(0x16);
  1616   emit_byte(0xC0 | encode);
  1619 void Assembler::movb(Register dst, Address src) {
  1620   NOT_LP64(assert(dst->has_byte_register(), "must have byte register"));
  1621   InstructionMark im(this);
  1622   prefix(src, dst, true);
  1623   emit_byte(0x8A);
  1624   emit_operand(dst, src);
  1628 void Assembler::movb(Address dst, int imm8) {
  1629   InstructionMark im(this);
  1630    prefix(dst);
  1631   emit_byte(0xC6);
  1632   emit_operand(rax, dst, 1);
  1633   emit_byte(imm8);
  1637 void Assembler::movb(Address dst, Register src) {
  1638   assert(src->has_byte_register(), "must have byte register");
  1639   InstructionMark im(this);
  1640   prefix(dst, src, true);
  1641   emit_byte(0x88);
  1642   emit_operand(src, dst);
  1645 void Assembler::movdl(XMMRegister dst, Register src) {
  1646   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1647   int encode = simd_prefix_and_encode(dst, src, VEX_SIMD_66);
  1648   emit_byte(0x6E);
  1649   emit_byte(0xC0 | encode);
  1652 void Assembler::movdl(Register dst, XMMRegister src) {
  1653   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1654   // swap src/dst to get correct prefix
  1655   int encode = simd_prefix_and_encode(src, dst, VEX_SIMD_66);
  1656   emit_byte(0x7E);
  1657   emit_byte(0xC0 | encode);
  1660 void Assembler::movdl(XMMRegister dst, Address src) {
  1661   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1662   InstructionMark im(this);
  1663   simd_prefix(dst, src, VEX_SIMD_66);
  1664   emit_byte(0x6E);
  1665   emit_operand(dst, src);
  1668 void Assembler::movdl(Address dst, XMMRegister src) {
  1669   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1670   InstructionMark im(this);
  1671   simd_prefix(dst, src, VEX_SIMD_66);
  1672   emit_byte(0x7E);
  1673   emit_operand(src, dst);
  1676 void Assembler::movdqa(XMMRegister dst, XMMRegister src) {
  1677   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1678   emit_simd_arith_nonds(0x6F, dst, src, VEX_SIMD_66);
  1681 void Assembler::movdqu(XMMRegister dst, Address src) {
  1682   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1683   emit_simd_arith_nonds(0x6F, dst, src, VEX_SIMD_F3);
  1686 void Assembler::movdqu(XMMRegister dst, XMMRegister src) {
  1687   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1688   emit_simd_arith_nonds(0x6F, dst, src, VEX_SIMD_F3);
  1691 void Assembler::movdqu(Address dst, XMMRegister src) {
  1692   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1693   InstructionMark im(this);
  1694   simd_prefix(dst, src, VEX_SIMD_F3);
  1695   emit_byte(0x7F);
  1696   emit_operand(src, dst);
  1699 // Move Unaligned 256bit Vector
  1700 void Assembler::vmovdqu(XMMRegister dst, XMMRegister src) {
  1701   assert(UseAVX, "");
  1702   bool vector256 = true;
  1703   int encode = vex_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_F3, vector256);
  1704   emit_byte(0x6F);
  1705   emit_byte(0xC0 | encode);
  1708 void Assembler::vmovdqu(XMMRegister dst, Address src) {
  1709   assert(UseAVX, "");
  1710   InstructionMark im(this);
  1711   bool vector256 = true;
  1712   vex_prefix(dst, xnoreg, src, VEX_SIMD_F3, vector256);
  1713   emit_byte(0x6F);
  1714   emit_operand(dst, src);
  1717 void Assembler::vmovdqu(Address dst, XMMRegister src) {
  1718   assert(UseAVX, "");
  1719   InstructionMark im(this);
  1720   bool vector256 = true;
  1721   // swap src<->dst for encoding
  1722   assert(src != xnoreg, "sanity");
  1723   vex_prefix(src, xnoreg, dst, VEX_SIMD_F3, vector256);
  1724   emit_byte(0x7F);
  1725   emit_operand(src, dst);
  1728 // Uses zero extension on 64bit
  1730 void Assembler::movl(Register dst, int32_t imm32) {
  1731   int encode = prefix_and_encode(dst->encoding());
  1732   emit_byte(0xB8 | encode);
  1733   emit_long(imm32);
  1736 void Assembler::movl(Register dst, Register src) {
  1737   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1738   emit_byte(0x8B);
  1739   emit_byte(0xC0 | encode);
  1742 void Assembler::movl(Register dst, Address src) {
  1743   InstructionMark im(this);
  1744   prefix(src, dst);
  1745   emit_byte(0x8B);
  1746   emit_operand(dst, src);
  1749 void Assembler::movl(Address dst, int32_t imm32) {
  1750   InstructionMark im(this);
  1751   prefix(dst);
  1752   emit_byte(0xC7);
  1753   emit_operand(rax, dst, 4);
  1754   emit_long(imm32);
  1757 void Assembler::movl(Address dst, Register src) {
  1758   InstructionMark im(this);
  1759   prefix(dst, src);
  1760   emit_byte(0x89);
  1761   emit_operand(src, dst);
  1764 // New cpus require to use movsd and movss to avoid partial register stall
  1765 // when loading from memory. But for old Opteron use movlpd instead of movsd.
  1766 // The selection is done in MacroAssembler::movdbl() and movflt().
  1767 void Assembler::movlpd(XMMRegister dst, Address src) {
  1768   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1769   emit_simd_arith(0x12, dst, src, VEX_SIMD_66);
  1772 void Assembler::movq( MMXRegister dst, Address src ) {
  1773   assert( VM_Version::supports_mmx(), "" );
  1774   emit_byte(0x0F);
  1775   emit_byte(0x6F);
  1776   emit_operand(dst, src);
  1779 void Assembler::movq( Address dst, MMXRegister src ) {
  1780   assert( VM_Version::supports_mmx(), "" );
  1781   emit_byte(0x0F);
  1782   emit_byte(0x7F);
  1783   // workaround gcc (3.2.1-7a) bug
  1784   // In that version of gcc with only an emit_operand(MMX, Address)
  1785   // gcc will tail jump and try and reverse the parameters completely
  1786   // obliterating dst in the process. By having a version available
  1787   // that doesn't need to swap the args at the tail jump the bug is
  1788   // avoided.
  1789   emit_operand(dst, src);
  1792 void Assembler::movq(XMMRegister dst, Address src) {
  1793   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1794   InstructionMark im(this);
  1795   simd_prefix(dst, src, VEX_SIMD_F3);
  1796   emit_byte(0x7E);
  1797   emit_operand(dst, src);
  1800 void Assembler::movq(Address dst, XMMRegister src) {
  1801   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1802   InstructionMark im(this);
  1803   simd_prefix(dst, src, VEX_SIMD_66);
  1804   emit_byte(0xD6);
  1805   emit_operand(src, dst);
  1808 void Assembler::movsbl(Register dst, Address src) { // movsxb
  1809   InstructionMark im(this);
  1810   prefix(src, dst);
  1811   emit_byte(0x0F);
  1812   emit_byte(0xBE);
  1813   emit_operand(dst, src);
  1816 void Assembler::movsbl(Register dst, Register src) { // movsxb
  1817   NOT_LP64(assert(src->has_byte_register(), "must have byte register"));
  1818   int encode = prefix_and_encode(dst->encoding(), src->encoding(), true);
  1819   emit_byte(0x0F);
  1820   emit_byte(0xBE);
  1821   emit_byte(0xC0 | encode);
  1824 void Assembler::movsd(XMMRegister dst, XMMRegister src) {
  1825   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1826   emit_simd_arith(0x10, dst, src, VEX_SIMD_F2);
  1829 void Assembler::movsd(XMMRegister dst, Address src) {
  1830   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1831   emit_simd_arith_nonds(0x10, dst, src, VEX_SIMD_F2);
  1834 void Assembler::movsd(Address dst, XMMRegister src) {
  1835   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1836   InstructionMark im(this);
  1837   simd_prefix(dst, src, VEX_SIMD_F2);
  1838   emit_byte(0x11);
  1839   emit_operand(src, dst);
  1842 void Assembler::movss(XMMRegister dst, XMMRegister src) {
  1843   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1844   emit_simd_arith(0x10, dst, src, VEX_SIMD_F3);
  1847 void Assembler::movss(XMMRegister dst, Address src) {
  1848   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1849   emit_simd_arith_nonds(0x10, dst, src, VEX_SIMD_F3);
  1852 void Assembler::movss(Address dst, XMMRegister src) {
  1853   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1854   InstructionMark im(this);
  1855   simd_prefix(dst, src, VEX_SIMD_F3);
  1856   emit_byte(0x11);
  1857   emit_operand(src, dst);
  1860 void Assembler::movswl(Register dst, Address src) { // movsxw
  1861   InstructionMark im(this);
  1862   prefix(src, dst);
  1863   emit_byte(0x0F);
  1864   emit_byte(0xBF);
  1865   emit_operand(dst, src);
  1868 void Assembler::movswl(Register dst, Register src) { // movsxw
  1869   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1870   emit_byte(0x0F);
  1871   emit_byte(0xBF);
  1872   emit_byte(0xC0 | encode);
  1875 void Assembler::movw(Address dst, int imm16) {
  1876   InstructionMark im(this);
  1878   emit_byte(0x66); // switch to 16-bit mode
  1879   prefix(dst);
  1880   emit_byte(0xC7);
  1881   emit_operand(rax, dst, 2);
  1882   emit_word(imm16);
  1885 void Assembler::movw(Register dst, Address src) {
  1886   InstructionMark im(this);
  1887   emit_byte(0x66);
  1888   prefix(src, dst);
  1889   emit_byte(0x8B);
  1890   emit_operand(dst, src);
  1893 void Assembler::movw(Address dst, Register src) {
  1894   InstructionMark im(this);
  1895   emit_byte(0x66);
  1896   prefix(dst, src);
  1897   emit_byte(0x89);
  1898   emit_operand(src, dst);
  1901 void Assembler::movzbl(Register dst, Address src) { // movzxb
  1902   InstructionMark im(this);
  1903   prefix(src, dst);
  1904   emit_byte(0x0F);
  1905   emit_byte(0xB6);
  1906   emit_operand(dst, src);
  1909 void Assembler::movzbl(Register dst, Register src) { // movzxb
  1910   NOT_LP64(assert(src->has_byte_register(), "must have byte register"));
  1911   int encode = prefix_and_encode(dst->encoding(), src->encoding(), true);
  1912   emit_byte(0x0F);
  1913   emit_byte(0xB6);
  1914   emit_byte(0xC0 | encode);
  1917 void Assembler::movzwl(Register dst, Address src) { // movzxw
  1918   InstructionMark im(this);
  1919   prefix(src, dst);
  1920   emit_byte(0x0F);
  1921   emit_byte(0xB7);
  1922   emit_operand(dst, src);
  1925 void Assembler::movzwl(Register dst, Register src) { // movzxw
  1926   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1927   emit_byte(0x0F);
  1928   emit_byte(0xB7);
  1929   emit_byte(0xC0 | encode);
  1932 void Assembler::mull(Address src) {
  1933   InstructionMark im(this);
  1934   prefix(src);
  1935   emit_byte(0xF7);
  1936   emit_operand(rsp, src);
  1939 void Assembler::mull(Register src) {
  1940   int encode = prefix_and_encode(src->encoding());
  1941   emit_byte(0xF7);
  1942   emit_byte(0xE0 | encode);
  1945 void Assembler::mulsd(XMMRegister dst, Address src) {
  1946   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1947   emit_simd_arith(0x59, dst, src, VEX_SIMD_F2);
  1950 void Assembler::mulsd(XMMRegister dst, XMMRegister src) {
  1951   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1952   emit_simd_arith(0x59, dst, src, VEX_SIMD_F2);
  1955 void Assembler::mulss(XMMRegister dst, Address src) {
  1956   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1957   emit_simd_arith(0x59, dst, src, VEX_SIMD_F3);
  1960 void Assembler::mulss(XMMRegister dst, XMMRegister src) {
  1961   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1962   emit_simd_arith(0x59, dst, src, VEX_SIMD_F3);
  1965 void Assembler::negl(Register dst) {
  1966   int encode = prefix_and_encode(dst->encoding());
  1967   emit_byte(0xF7);
  1968   emit_byte(0xD8 | encode);
  1971 void Assembler::nop(int i) {
  1972 #ifdef ASSERT
  1973   assert(i > 0, " ");
  1974   // The fancy nops aren't currently recognized by debuggers making it a
  1975   // pain to disassemble code while debugging. If asserts are on clearly
  1976   // speed is not an issue so simply use the single byte traditional nop
  1977   // to do alignment.
  1979   for (; i > 0 ; i--) emit_byte(0x90);
  1980   return;
  1982 #endif // ASSERT
  1984   if (UseAddressNop && VM_Version::is_intel()) {
  1985     //
  1986     // Using multi-bytes nops "0x0F 0x1F [address]" for Intel
  1987     //  1: 0x90
  1988     //  2: 0x66 0x90
  1989     //  3: 0x66 0x66 0x90 (don't use "0x0F 0x1F 0x00" - need patching safe padding)
  1990     //  4: 0x0F 0x1F 0x40 0x00
  1991     //  5: 0x0F 0x1F 0x44 0x00 0x00
  1992     //  6: 0x66 0x0F 0x1F 0x44 0x00 0x00
  1993     //  7: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
  1994     //  8: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
  1995     //  9: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
  1996     // 10: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
  1997     // 11: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
  1999     // The rest coding is Intel specific - don't use consecutive address nops
  2001     // 12: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
  2002     // 13: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
  2003     // 14: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
  2004     // 15: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
  2006     while(i >= 15) {
  2007       // For Intel don't generate consecutive addess nops (mix with regular nops)
  2008       i -= 15;
  2009       emit_byte(0x66);   // size prefix
  2010       emit_byte(0x66);   // size prefix
  2011       emit_byte(0x66);   // size prefix
  2012       addr_nop_8();
  2013       emit_byte(0x66);   // size prefix
  2014       emit_byte(0x66);   // size prefix
  2015       emit_byte(0x66);   // size prefix
  2016       emit_byte(0x90);   // nop
  2018     switch (i) {
  2019       case 14:
  2020         emit_byte(0x66); // size prefix
  2021       case 13:
  2022         emit_byte(0x66); // size prefix
  2023       case 12:
  2024         addr_nop_8();
  2025         emit_byte(0x66); // size prefix
  2026         emit_byte(0x66); // size prefix
  2027         emit_byte(0x66); // size prefix
  2028         emit_byte(0x90); // nop
  2029         break;
  2030       case 11:
  2031         emit_byte(0x66); // size prefix
  2032       case 10:
  2033         emit_byte(0x66); // size prefix
  2034       case 9:
  2035         emit_byte(0x66); // size prefix
  2036       case 8:
  2037         addr_nop_8();
  2038         break;
  2039       case 7:
  2040         addr_nop_7();
  2041         break;
  2042       case 6:
  2043         emit_byte(0x66); // size prefix
  2044       case 5:
  2045         addr_nop_5();
  2046         break;
  2047       case 4:
  2048         addr_nop_4();
  2049         break;
  2050       case 3:
  2051         // Don't use "0x0F 0x1F 0x00" - need patching safe padding
  2052         emit_byte(0x66); // size prefix
  2053       case 2:
  2054         emit_byte(0x66); // size prefix
  2055       case 1:
  2056         emit_byte(0x90); // nop
  2057         break;
  2058       default:
  2059         assert(i == 0, " ");
  2061     return;
  2063   if (UseAddressNop && VM_Version::is_amd()) {
  2064     //
  2065     // Using multi-bytes nops "0x0F 0x1F [address]" for AMD.
  2066     //  1: 0x90
  2067     //  2: 0x66 0x90
  2068     //  3: 0x66 0x66 0x90 (don't use "0x0F 0x1F 0x00" - need patching safe padding)
  2069     //  4: 0x0F 0x1F 0x40 0x00
  2070     //  5: 0x0F 0x1F 0x44 0x00 0x00
  2071     //  6: 0x66 0x0F 0x1F 0x44 0x00 0x00
  2072     //  7: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
  2073     //  8: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
  2074     //  9: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
  2075     // 10: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
  2076     // 11: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
  2078     // The rest coding is AMD specific - use consecutive address nops
  2080     // 12: 0x66 0x0F 0x1F 0x44 0x00 0x00 0x66 0x0F 0x1F 0x44 0x00 0x00
  2081     // 13: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00 0x66 0x0F 0x1F 0x44 0x00 0x00
  2082     // 14: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
  2083     // 15: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
  2084     // 16: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
  2085     //     Size prefixes (0x66) are added for larger sizes
  2087     while(i >= 22) {
  2088       i -= 11;
  2089       emit_byte(0x66); // size prefix
  2090       emit_byte(0x66); // size prefix
  2091       emit_byte(0x66); // size prefix
  2092       addr_nop_8();
  2094     // Generate first nop for size between 21-12
  2095     switch (i) {
  2096       case 21:
  2097         i -= 1;
  2098         emit_byte(0x66); // size prefix
  2099       case 20:
  2100       case 19:
  2101         i -= 1;
  2102         emit_byte(0x66); // size prefix
  2103       case 18:
  2104       case 17:
  2105         i -= 1;
  2106         emit_byte(0x66); // size prefix
  2107       case 16:
  2108       case 15:
  2109         i -= 8;
  2110         addr_nop_8();
  2111         break;
  2112       case 14:
  2113       case 13:
  2114         i -= 7;
  2115         addr_nop_7();
  2116         break;
  2117       case 12:
  2118         i -= 6;
  2119         emit_byte(0x66); // size prefix
  2120         addr_nop_5();
  2121         break;
  2122       default:
  2123         assert(i < 12, " ");
  2126     // Generate second nop for size between 11-1
  2127     switch (i) {
  2128       case 11:
  2129         emit_byte(0x66); // size prefix
  2130       case 10:
  2131         emit_byte(0x66); // size prefix
  2132       case 9:
  2133         emit_byte(0x66); // size prefix
  2134       case 8:
  2135         addr_nop_8();
  2136         break;
  2137       case 7:
  2138         addr_nop_7();
  2139         break;
  2140       case 6:
  2141         emit_byte(0x66); // size prefix
  2142       case 5:
  2143         addr_nop_5();
  2144         break;
  2145       case 4:
  2146         addr_nop_4();
  2147         break;
  2148       case 3:
  2149         // Don't use "0x0F 0x1F 0x00" - need patching safe padding
  2150         emit_byte(0x66); // size prefix
  2151       case 2:
  2152         emit_byte(0x66); // size prefix
  2153       case 1:
  2154         emit_byte(0x90); // nop
  2155         break;
  2156       default:
  2157         assert(i == 0, " ");
  2159     return;
  2162   // Using nops with size prefixes "0x66 0x90".
  2163   // From AMD Optimization Guide:
  2164   //  1: 0x90
  2165   //  2: 0x66 0x90
  2166   //  3: 0x66 0x66 0x90
  2167   //  4: 0x66 0x66 0x66 0x90
  2168   //  5: 0x66 0x66 0x90 0x66 0x90
  2169   //  6: 0x66 0x66 0x90 0x66 0x66 0x90
  2170   //  7: 0x66 0x66 0x66 0x90 0x66 0x66 0x90
  2171   //  8: 0x66 0x66 0x66 0x90 0x66 0x66 0x66 0x90
  2172   //  9: 0x66 0x66 0x90 0x66 0x66 0x90 0x66 0x66 0x90
  2173   // 10: 0x66 0x66 0x66 0x90 0x66 0x66 0x90 0x66 0x66 0x90
  2174   //
  2175   while(i > 12) {
  2176     i -= 4;
  2177     emit_byte(0x66); // size prefix
  2178     emit_byte(0x66);
  2179     emit_byte(0x66);
  2180     emit_byte(0x90); // nop
  2182   // 1 - 12 nops
  2183   if(i > 8) {
  2184     if(i > 9) {
  2185       i -= 1;
  2186       emit_byte(0x66);
  2188     i -= 3;
  2189     emit_byte(0x66);
  2190     emit_byte(0x66);
  2191     emit_byte(0x90);
  2193   // 1 - 8 nops
  2194   if(i > 4) {
  2195     if(i > 6) {
  2196       i -= 1;
  2197       emit_byte(0x66);
  2199     i -= 3;
  2200     emit_byte(0x66);
  2201     emit_byte(0x66);
  2202     emit_byte(0x90);
  2204   switch (i) {
  2205     case 4:
  2206       emit_byte(0x66);
  2207     case 3:
  2208       emit_byte(0x66);
  2209     case 2:
  2210       emit_byte(0x66);
  2211     case 1:
  2212       emit_byte(0x90);
  2213       break;
  2214     default:
  2215       assert(i == 0, " ");
  2219 void Assembler::notl(Register dst) {
  2220   int encode = prefix_and_encode(dst->encoding());
  2221   emit_byte(0xF7);
  2222   emit_byte(0xD0 | encode );
  2225 void Assembler::orl(Address dst, int32_t imm32) {
  2226   InstructionMark im(this);
  2227   prefix(dst);
  2228   emit_arith_operand(0x81, rcx, dst, imm32);
  2231 void Assembler::orl(Register dst, int32_t imm32) {
  2232   prefix(dst);
  2233   emit_arith(0x81, 0xC8, dst, imm32);
  2236 void Assembler::orl(Register dst, Address src) {
  2237   InstructionMark im(this);
  2238   prefix(src, dst);
  2239   emit_byte(0x0B);
  2240   emit_operand(dst, src);
  2243 void Assembler::orl(Register dst, Register src) {
  2244   (void) prefix_and_encode(dst->encoding(), src->encoding());
  2245   emit_arith(0x0B, 0xC0, dst, src);
  2248 void Assembler::packuswb(XMMRegister dst, Address src) {
  2249   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2250   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
  2251   emit_simd_arith(0x67, dst, src, VEX_SIMD_66);
  2254 void Assembler::packuswb(XMMRegister dst, XMMRegister src) {
  2255   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2256   emit_simd_arith(0x67, dst, src, VEX_SIMD_66);
  2259 void Assembler::pcmpestri(XMMRegister dst, Address src, int imm8) {
  2260   assert(VM_Version::supports_sse4_2(), "");
  2261   InstructionMark im(this);
  2262   simd_prefix(dst, src, VEX_SIMD_66, VEX_OPCODE_0F_3A);
  2263   emit_byte(0x61);
  2264   emit_operand(dst, src);
  2265   emit_byte(imm8);
  2268 void Assembler::pcmpestri(XMMRegister dst, XMMRegister src, int imm8) {
  2269   assert(VM_Version::supports_sse4_2(), "");
  2270   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_3A);
  2271   emit_byte(0x61);
  2272   emit_byte(0xC0 | encode);
  2273   emit_byte(imm8);
  2276 void Assembler::pmovzxbw(XMMRegister dst, Address src) {
  2277   assert(VM_Version::supports_sse4_1(), "");
  2278   InstructionMark im(this);
  2279   simd_prefix(dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
  2280   emit_byte(0x30);
  2281   emit_operand(dst, src);
  2284 void Assembler::pmovzxbw(XMMRegister dst, XMMRegister src) {
  2285   assert(VM_Version::supports_sse4_1(), "");
  2286   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
  2287   emit_byte(0x30);
  2288   emit_byte(0xC0 | encode);
  2291 // generic
  2292 void Assembler::pop(Register dst) {
  2293   int encode = prefix_and_encode(dst->encoding());
  2294   emit_byte(0x58 | encode);
  2297 void Assembler::popcntl(Register dst, Address src) {
  2298   assert(VM_Version::supports_popcnt(), "must support");
  2299   InstructionMark im(this);
  2300   emit_byte(0xF3);
  2301   prefix(src, dst);
  2302   emit_byte(0x0F);
  2303   emit_byte(0xB8);
  2304   emit_operand(dst, src);
  2307 void Assembler::popcntl(Register dst, Register src) {
  2308   assert(VM_Version::supports_popcnt(), "must support");
  2309   emit_byte(0xF3);
  2310   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  2311   emit_byte(0x0F);
  2312   emit_byte(0xB8);
  2313   emit_byte(0xC0 | encode);
  2316 void Assembler::popf() {
  2317   emit_byte(0x9D);
  2320 #ifndef _LP64 // no 32bit push/pop on amd64
  2321 void Assembler::popl(Address dst) {
  2322   // NOTE: this will adjust stack by 8byte on 64bits
  2323   InstructionMark im(this);
  2324   prefix(dst);
  2325   emit_byte(0x8F);
  2326   emit_operand(rax, dst);
  2328 #endif
  2330 void Assembler::prefetch_prefix(Address src) {
  2331   prefix(src);
  2332   emit_byte(0x0F);
  2335 void Assembler::prefetchnta(Address src) {
  2336   NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
  2337   InstructionMark im(this);
  2338   prefetch_prefix(src);
  2339   emit_byte(0x18);
  2340   emit_operand(rax, src); // 0, src
  2343 void Assembler::prefetchr(Address src) {
  2344   assert(VM_Version::supports_3dnow_prefetch(), "must support");
  2345   InstructionMark im(this);
  2346   prefetch_prefix(src);
  2347   emit_byte(0x0D);
  2348   emit_operand(rax, src); // 0, src
  2351 void Assembler::prefetcht0(Address src) {
  2352   NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
  2353   InstructionMark im(this);
  2354   prefetch_prefix(src);
  2355   emit_byte(0x18);
  2356   emit_operand(rcx, src); // 1, src
  2359 void Assembler::prefetcht1(Address src) {
  2360   NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
  2361   InstructionMark im(this);
  2362   prefetch_prefix(src);
  2363   emit_byte(0x18);
  2364   emit_operand(rdx, src); // 2, src
  2367 void Assembler::prefetcht2(Address src) {
  2368   NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
  2369   InstructionMark im(this);
  2370   prefetch_prefix(src);
  2371   emit_byte(0x18);
  2372   emit_operand(rbx, src); // 3, src
  2375 void Assembler::prefetchw(Address src) {
  2376   assert(VM_Version::supports_3dnow_prefetch(), "must support");
  2377   InstructionMark im(this);
  2378   prefetch_prefix(src);
  2379   emit_byte(0x0D);
  2380   emit_operand(rcx, src); // 1, src
  2383 void Assembler::prefix(Prefix p) {
  2384   a_byte(p);
  2387 void Assembler::pshufb(XMMRegister dst, XMMRegister src) {
  2388   assert(VM_Version::supports_ssse3(), "");
  2389   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
  2390   emit_byte(0x00);
  2391   emit_byte(0xC0 | encode);
  2394 void Assembler::pshufb(XMMRegister dst, Address src) {
  2395   assert(VM_Version::supports_ssse3(), "");
  2396   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
  2397   InstructionMark im(this);
  2398   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
  2399   emit_byte(0x00);
  2400   emit_operand(dst, src);
  2403 void Assembler::pshufd(XMMRegister dst, XMMRegister src, int mode) {
  2404   assert(isByte(mode), "invalid value");
  2405   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2406   emit_simd_arith_nonds(0x70, dst, src, VEX_SIMD_66);
  2407   emit_byte(mode & 0xFF);
  2411 void Assembler::pshufd(XMMRegister dst, Address src, int mode) {
  2412   assert(isByte(mode), "invalid value");
  2413   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2414   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
  2415   InstructionMark im(this);
  2416   simd_prefix(dst, src, VEX_SIMD_66);
  2417   emit_byte(0x70);
  2418   emit_operand(dst, src);
  2419   emit_byte(mode & 0xFF);
  2422 void Assembler::pshuflw(XMMRegister dst, XMMRegister src, int mode) {
  2423   assert(isByte(mode), "invalid value");
  2424   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2425   emit_simd_arith_nonds(0x70, dst, src, VEX_SIMD_F2);
  2426   emit_byte(mode & 0xFF);
  2429 void Assembler::pshuflw(XMMRegister dst, Address src, int mode) {
  2430   assert(isByte(mode), "invalid value");
  2431   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2432   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
  2433   InstructionMark im(this);
  2434   simd_prefix(dst, src, VEX_SIMD_F2);
  2435   emit_byte(0x70);
  2436   emit_operand(dst, src);
  2437   emit_byte(mode & 0xFF);
  2440 void Assembler::psrldq(XMMRegister dst, int shift) {
  2441   // Shift 128 bit value in xmm register by number of bytes.
  2442   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2443   int encode = simd_prefix_and_encode(xmm3, dst, dst, VEX_SIMD_66);
  2444   emit_byte(0x73);
  2445   emit_byte(0xC0 | encode);
  2446   emit_byte(shift);
  2449 void Assembler::ptest(XMMRegister dst, Address src) {
  2450   assert(VM_Version::supports_sse4_1(), "");
  2451   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
  2452   InstructionMark im(this);
  2453   simd_prefix(dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
  2454   emit_byte(0x17);
  2455   emit_operand(dst, src);
  2458 void Assembler::ptest(XMMRegister dst, XMMRegister src) {
  2459   assert(VM_Version::supports_sse4_1(), "");
  2460   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
  2461   emit_byte(0x17);
  2462   emit_byte(0xC0 | encode);
  2465 void Assembler::punpcklbw(XMMRegister dst, Address src) {
  2466   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2467   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
  2468   emit_simd_arith(0x60, dst, src, VEX_SIMD_66);
  2471 void Assembler::punpcklbw(XMMRegister dst, XMMRegister src) {
  2472   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2473   emit_simd_arith(0x60, dst, src, VEX_SIMD_66);
  2476 void Assembler::punpckldq(XMMRegister dst, Address src) {
  2477   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2478   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
  2479   emit_simd_arith(0x62, dst, src, VEX_SIMD_66);
  2482 void Assembler::punpckldq(XMMRegister dst, XMMRegister src) {
  2483   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2484   emit_simd_arith(0x62, dst, src, VEX_SIMD_66);
  2487 void Assembler::punpcklqdq(XMMRegister dst, XMMRegister src) {
  2488   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2489   emit_simd_arith(0x6C, dst, src, VEX_SIMD_66);
  2492 void Assembler::push(int32_t imm32) {
  2493   // in 64bits we push 64bits onto the stack but only
  2494   // take a 32bit immediate
  2495   emit_byte(0x68);
  2496   emit_long(imm32);
  2499 void Assembler::push(Register src) {
  2500   int encode = prefix_and_encode(src->encoding());
  2502   emit_byte(0x50 | encode);
  2505 void Assembler::pushf() {
  2506   emit_byte(0x9C);
  2509 #ifndef _LP64 // no 32bit push/pop on amd64
  2510 void Assembler::pushl(Address src) {
  2511   // Note this will push 64bit on 64bit
  2512   InstructionMark im(this);
  2513   prefix(src);
  2514   emit_byte(0xFF);
  2515   emit_operand(rsi, src);
  2517 #endif
  2519 void Assembler::rcll(Register dst, int imm8) {
  2520   assert(isShiftCount(imm8), "illegal shift count");
  2521   int encode = prefix_and_encode(dst->encoding());
  2522   if (imm8 == 1) {
  2523     emit_byte(0xD1);
  2524     emit_byte(0xD0 | encode);
  2525   } else {
  2526     emit_byte(0xC1);
  2527     emit_byte(0xD0 | encode);
  2528     emit_byte(imm8);
  2532 // copies data from [esi] to [edi] using rcx pointer sized words
  2533 // generic
  2534 void Assembler::rep_mov() {
  2535   emit_byte(0xF3);
  2536   // MOVSQ
  2537   LP64_ONLY(prefix(REX_W));
  2538   emit_byte(0xA5);
  2541 // sets rcx pointer sized words with rax, value at [edi]
  2542 // generic
  2543 void Assembler::rep_set() { // rep_set
  2544   emit_byte(0xF3);
  2545   // STOSQ
  2546   LP64_ONLY(prefix(REX_W));
  2547   emit_byte(0xAB);
  2550 // scans rcx pointer sized words at [edi] for occurance of rax,
  2551 // generic
  2552 void Assembler::repne_scan() { // repne_scan
  2553   emit_byte(0xF2);
  2554   // SCASQ
  2555   LP64_ONLY(prefix(REX_W));
  2556   emit_byte(0xAF);
  2559 #ifdef _LP64
  2560 // scans rcx 4 byte words at [edi] for occurance of rax,
  2561 // generic
  2562 void Assembler::repne_scanl() { // repne_scan
  2563   emit_byte(0xF2);
  2564   // SCASL
  2565   emit_byte(0xAF);
  2567 #endif
  2569 void Assembler::ret(int imm16) {
  2570   if (imm16 == 0) {
  2571     emit_byte(0xC3);
  2572   } else {
  2573     emit_byte(0xC2);
  2574     emit_word(imm16);
  2578 void Assembler::sahf() {
  2579 #ifdef _LP64
  2580   // Not supported in 64bit mode
  2581   ShouldNotReachHere();
  2582 #endif
  2583   emit_byte(0x9E);
  2586 void Assembler::sarl(Register dst, int imm8) {
  2587   int encode = prefix_and_encode(dst->encoding());
  2588   assert(isShiftCount(imm8), "illegal shift count");
  2589   if (imm8 == 1) {
  2590     emit_byte(0xD1);
  2591     emit_byte(0xF8 | encode);
  2592   } else {
  2593     emit_byte(0xC1);
  2594     emit_byte(0xF8 | encode);
  2595     emit_byte(imm8);
  2599 void Assembler::sarl(Register dst) {
  2600   int encode = prefix_and_encode(dst->encoding());
  2601   emit_byte(0xD3);
  2602   emit_byte(0xF8 | encode);
  2605 void Assembler::sbbl(Address dst, int32_t imm32) {
  2606   InstructionMark im(this);
  2607   prefix(dst);
  2608   emit_arith_operand(0x81, rbx, dst, imm32);
  2611 void Assembler::sbbl(Register dst, int32_t imm32) {
  2612   prefix(dst);
  2613   emit_arith(0x81, 0xD8, dst, imm32);
  2617 void Assembler::sbbl(Register dst, Address src) {
  2618   InstructionMark im(this);
  2619   prefix(src, dst);
  2620   emit_byte(0x1B);
  2621   emit_operand(dst, src);
  2624 void Assembler::sbbl(Register dst, Register src) {
  2625   (void) prefix_and_encode(dst->encoding(), src->encoding());
  2626   emit_arith(0x1B, 0xC0, dst, src);
  2629 void Assembler::setb(Condition cc, Register dst) {
  2630   assert(0 <= cc && cc < 16, "illegal cc");
  2631   int encode = prefix_and_encode(dst->encoding(), true);
  2632   emit_byte(0x0F);
  2633   emit_byte(0x90 | cc);
  2634   emit_byte(0xC0 | encode);
  2637 void Assembler::shll(Register dst, int imm8) {
  2638   assert(isShiftCount(imm8), "illegal shift count");
  2639   int encode = prefix_and_encode(dst->encoding());
  2640   if (imm8 == 1 ) {
  2641     emit_byte(0xD1);
  2642     emit_byte(0xE0 | encode);
  2643   } else {
  2644     emit_byte(0xC1);
  2645     emit_byte(0xE0 | encode);
  2646     emit_byte(imm8);
  2650 void Assembler::shll(Register dst) {
  2651   int encode = prefix_and_encode(dst->encoding());
  2652   emit_byte(0xD3);
  2653   emit_byte(0xE0 | encode);
  2656 void Assembler::shrl(Register dst, int imm8) {
  2657   assert(isShiftCount(imm8), "illegal shift count");
  2658   int encode = prefix_and_encode(dst->encoding());
  2659   emit_byte(0xC1);
  2660   emit_byte(0xE8 | encode);
  2661   emit_byte(imm8);
  2664 void Assembler::shrl(Register dst) {
  2665   int encode = prefix_and_encode(dst->encoding());
  2666   emit_byte(0xD3);
  2667   emit_byte(0xE8 | encode);
  2670 // copies a single word from [esi] to [edi]
  2671 void Assembler::smovl() {
  2672   emit_byte(0xA5);
  2675 void Assembler::sqrtsd(XMMRegister dst, XMMRegister src) {
  2676   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2677   emit_simd_arith(0x51, dst, src, VEX_SIMD_F2);
  2680 void Assembler::sqrtsd(XMMRegister dst, Address src) {
  2681   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2682   emit_simd_arith(0x51, dst, src, VEX_SIMD_F2);
  2685 void Assembler::sqrtss(XMMRegister dst, XMMRegister src) {
  2686   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  2687   emit_simd_arith(0x51, dst, src, VEX_SIMD_F3);
  2690 void Assembler::std() {
  2691   emit_byte(0xfd);
  2694 void Assembler::sqrtss(XMMRegister dst, Address src) {
  2695   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  2696   emit_simd_arith(0x51, dst, src, VEX_SIMD_F3);
  2699 void Assembler::stmxcsr( Address dst) {
  2700   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  2701   InstructionMark im(this);
  2702   prefix(dst);
  2703   emit_byte(0x0F);
  2704   emit_byte(0xAE);
  2705   emit_operand(as_Register(3), dst);
  2708 void Assembler::subl(Address dst, int32_t imm32) {
  2709   InstructionMark im(this);
  2710   prefix(dst);
  2711   emit_arith_operand(0x81, rbp, dst, imm32);
  2714 void Assembler::subl(Address dst, Register src) {
  2715   InstructionMark im(this);
  2716   prefix(dst, src);
  2717   emit_byte(0x29);
  2718   emit_operand(src, dst);
  2721 void Assembler::subl(Register dst, int32_t imm32) {
  2722   prefix(dst);
  2723   emit_arith(0x81, 0xE8, dst, imm32);
  2726 // Force generation of a 4 byte immediate value even if it fits into 8bit
  2727 void Assembler::subl_imm32(Register dst, int32_t imm32) {
  2728   prefix(dst);
  2729   emit_arith_imm32(0x81, 0xE8, dst, imm32);
  2732 void Assembler::subl(Register dst, Address src) {
  2733   InstructionMark im(this);
  2734   prefix(src, dst);
  2735   emit_byte(0x2B);
  2736   emit_operand(dst, src);
  2739 void Assembler::subl(Register dst, Register src) {
  2740   (void) prefix_and_encode(dst->encoding(), src->encoding());
  2741   emit_arith(0x2B, 0xC0, dst, src);
  2744 void Assembler::subsd(XMMRegister dst, XMMRegister src) {
  2745   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2746   emit_simd_arith(0x5C, dst, src, VEX_SIMD_F2);
  2749 void Assembler::subsd(XMMRegister dst, Address src) {
  2750   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2751   emit_simd_arith(0x5C, dst, src, VEX_SIMD_F2);
  2754 void Assembler::subss(XMMRegister dst, XMMRegister src) {
  2755   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  2756   emit_simd_arith(0x5C, dst, src, VEX_SIMD_F3);
  2759 void Assembler::subss(XMMRegister dst, Address src) {
  2760   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  2761   emit_simd_arith(0x5C, dst, src, VEX_SIMD_F3);
  2764 void Assembler::testb(Register dst, int imm8) {
  2765   NOT_LP64(assert(dst->has_byte_register(), "must have byte register"));
  2766   (void) prefix_and_encode(dst->encoding(), true);
  2767   emit_arith_b(0xF6, 0xC0, dst, imm8);
  2770 void Assembler::testl(Register dst, int32_t imm32) {
  2771   // not using emit_arith because test
  2772   // doesn't support sign-extension of
  2773   // 8bit operands
  2774   int encode = dst->encoding();
  2775   if (encode == 0) {
  2776     emit_byte(0xA9);
  2777   } else {
  2778     encode = prefix_and_encode(encode);
  2779     emit_byte(0xF7);
  2780     emit_byte(0xC0 | encode);
  2782   emit_long(imm32);
  2785 void Assembler::testl(Register dst, Register src) {
  2786   (void) prefix_and_encode(dst->encoding(), src->encoding());
  2787   emit_arith(0x85, 0xC0, dst, src);
  2790 void Assembler::testl(Register dst, Address  src) {
  2791   InstructionMark im(this);
  2792   prefix(src, dst);
  2793   emit_byte(0x85);
  2794   emit_operand(dst, src);
  2797 void Assembler::ucomisd(XMMRegister dst, Address src) {
  2798   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2799   emit_simd_arith_nonds(0x2E, dst, src, VEX_SIMD_66);
  2802 void Assembler::ucomisd(XMMRegister dst, XMMRegister src) {
  2803   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2804   emit_simd_arith_nonds(0x2E, dst, src, VEX_SIMD_66);
  2807 void Assembler::ucomiss(XMMRegister dst, Address src) {
  2808   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  2809   emit_simd_arith_nonds(0x2E, dst, src, VEX_SIMD_NONE);
  2812 void Assembler::ucomiss(XMMRegister dst, XMMRegister src) {
  2813   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  2814   emit_simd_arith_nonds(0x2E, dst, src, VEX_SIMD_NONE);
  2818 void Assembler::xaddl(Address dst, Register src) {
  2819   InstructionMark im(this);
  2820   prefix(dst, src);
  2821   emit_byte(0x0F);
  2822   emit_byte(0xC1);
  2823   emit_operand(src, dst);
  2826 void Assembler::xchgl(Register dst, Address src) { // xchg
  2827   InstructionMark im(this);
  2828   prefix(src, dst);
  2829   emit_byte(0x87);
  2830   emit_operand(dst, src);
  2833 void Assembler::xchgl(Register dst, Register src) {
  2834   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  2835   emit_byte(0x87);
  2836   emit_byte(0xc0 | encode);
  2839 void Assembler::xgetbv() {
  2840   emit_byte(0x0F);
  2841   emit_byte(0x01);
  2842   emit_byte(0xD0);
  2845 void Assembler::xorl(Register dst, int32_t imm32) {
  2846   prefix(dst);
  2847   emit_arith(0x81, 0xF0, dst, imm32);
  2850 void Assembler::xorl(Register dst, Address src) {
  2851   InstructionMark im(this);
  2852   prefix(src, dst);
  2853   emit_byte(0x33);
  2854   emit_operand(dst, src);
  2857 void Assembler::xorl(Register dst, Register src) {
  2858   (void) prefix_and_encode(dst->encoding(), src->encoding());
  2859   emit_arith(0x33, 0xC0, dst, src);
  2863 // AVX 3-operands scalar float-point arithmetic instructions
  2865 void Assembler::vaddsd(XMMRegister dst, XMMRegister nds, Address src) {
  2866   assert(VM_Version::supports_avx(), "");
  2867   emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_F2, /* vector256 */ false);
  2870 void Assembler::vaddsd(XMMRegister dst, XMMRegister nds, XMMRegister src) {
  2871   assert(VM_Version::supports_avx(), "");
  2872   emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_F2, /* vector256 */ false);
  2875 void Assembler::vaddss(XMMRegister dst, XMMRegister nds, Address src) {
  2876   assert(VM_Version::supports_avx(), "");
  2877   emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_F3, /* vector256 */ false);
  2880 void Assembler::vaddss(XMMRegister dst, XMMRegister nds, XMMRegister src) {
  2881   assert(VM_Version::supports_avx(), "");
  2882   emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_F3, /* vector256 */ false);
  2885 void Assembler::vdivsd(XMMRegister dst, XMMRegister nds, Address src) {
  2886   assert(VM_Version::supports_avx(), "");
  2887   emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_F2, /* vector256 */ false);
  2890 void Assembler::vdivsd(XMMRegister dst, XMMRegister nds, XMMRegister src) {
  2891   assert(VM_Version::supports_avx(), "");
  2892   emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_F2, /* vector256 */ false);
  2895 void Assembler::vdivss(XMMRegister dst, XMMRegister nds, Address src) {
  2896   assert(VM_Version::supports_avx(), "");
  2897   emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_F3, /* vector256 */ false);
  2900 void Assembler::vdivss(XMMRegister dst, XMMRegister nds, XMMRegister src) {
  2901   assert(VM_Version::supports_avx(), "");
  2902   emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_F3, /* vector256 */ false);
  2905 void Assembler::vmulsd(XMMRegister dst, XMMRegister nds, Address src) {
  2906   assert(VM_Version::supports_avx(), "");
  2907   emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_F2, /* vector256 */ false);
  2910 void Assembler::vmulsd(XMMRegister dst, XMMRegister nds, XMMRegister src) {
  2911   assert(VM_Version::supports_avx(), "");
  2912   emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_F2, /* vector256 */ false);
  2915 void Assembler::vmulss(XMMRegister dst, XMMRegister nds, Address src) {
  2916   assert(VM_Version::supports_avx(), "");
  2917   emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_F3, /* vector256 */ false);
  2920 void Assembler::vmulss(XMMRegister dst, XMMRegister nds, XMMRegister src) {
  2921   assert(VM_Version::supports_avx(), "");
  2922   emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_F3, /* vector256 */ false);
  2925 void Assembler::vsubsd(XMMRegister dst, XMMRegister nds, Address src) {
  2926   assert(VM_Version::supports_avx(), "");
  2927   emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_F2, /* vector256 */ false);
  2930 void Assembler::vsubsd(XMMRegister dst, XMMRegister nds, XMMRegister src) {
  2931   assert(VM_Version::supports_avx(), "");
  2932   emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_F2, /* vector256 */ false);
  2935 void Assembler::vsubss(XMMRegister dst, XMMRegister nds, Address src) {
  2936   assert(VM_Version::supports_avx(), "");
  2937   emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_F3, /* vector256 */ false);
  2940 void Assembler::vsubss(XMMRegister dst, XMMRegister nds, XMMRegister src) {
  2941   assert(VM_Version::supports_avx(), "");
  2942   emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_F3, /* vector256 */ false);
  2945 //====================VECTOR ARITHMETIC=====================================
  2947 // Float-point vector arithmetic
  2949 void Assembler::addpd(XMMRegister dst, XMMRegister src) {
  2950   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2951   emit_simd_arith(0x58, dst, src, VEX_SIMD_66);
  2954 void Assembler::addps(XMMRegister dst, XMMRegister src) {
  2955   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2956   emit_simd_arith(0x58, dst, src, VEX_SIMD_NONE);
  2959 void Assembler::vaddpd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  2960   assert(VM_Version::supports_avx(), "");
  2961   emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_66, vector256);
  2964 void Assembler::vaddps(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  2965   assert(VM_Version::supports_avx(), "");
  2966   emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_NONE, vector256);
  2969 void Assembler::vaddpd(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  2970   assert(VM_Version::supports_avx(), "");
  2971   emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_66, vector256);
  2974 void Assembler::vaddps(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  2975   assert(VM_Version::supports_avx(), "");
  2976   emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_NONE, vector256);
  2979 void Assembler::subpd(XMMRegister dst, XMMRegister src) {
  2980   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2981   emit_simd_arith(0x5C, dst, src, VEX_SIMD_66);
  2984 void Assembler::subps(XMMRegister dst, XMMRegister src) {
  2985   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2986   emit_simd_arith(0x5C, dst, src, VEX_SIMD_NONE);
  2989 void Assembler::vsubpd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  2990   assert(VM_Version::supports_avx(), "");
  2991   emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_66, vector256);
  2994 void Assembler::vsubps(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  2995   assert(VM_Version::supports_avx(), "");
  2996   emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_NONE, vector256);
  2999 void Assembler::vsubpd(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  3000   assert(VM_Version::supports_avx(), "");
  3001   emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_66, vector256);
  3004 void Assembler::vsubps(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  3005   assert(VM_Version::supports_avx(), "");
  3006   emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_NONE, vector256);
  3009 void Assembler::mulpd(XMMRegister dst, XMMRegister src) {
  3010   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3011   emit_simd_arith(0x59, dst, src, VEX_SIMD_66);
  3014 void Assembler::mulps(XMMRegister dst, XMMRegister src) {
  3015   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3016   emit_simd_arith(0x59, dst, src, VEX_SIMD_NONE);
  3019 void Assembler::vmulpd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  3020   assert(VM_Version::supports_avx(), "");
  3021   emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_66, vector256);
  3024 void Assembler::vmulps(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  3025   assert(VM_Version::supports_avx(), "");
  3026   emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_NONE, vector256);
  3029 void Assembler::vmulpd(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  3030   assert(VM_Version::supports_avx(), "");
  3031   emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_66, vector256);
  3034 void Assembler::vmulps(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  3035   assert(VM_Version::supports_avx(), "");
  3036   emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_NONE, vector256);
  3039 void Assembler::divpd(XMMRegister dst, XMMRegister src) {
  3040   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3041   emit_simd_arith(0x5E, dst, src, VEX_SIMD_66);
  3044 void Assembler::divps(XMMRegister dst, XMMRegister src) {
  3045   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3046   emit_simd_arith(0x5E, dst, src, VEX_SIMD_NONE);
  3049 void Assembler::vdivpd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  3050   assert(VM_Version::supports_avx(), "");
  3051   emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_66, vector256);
  3054 void Assembler::vdivps(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  3055   assert(VM_Version::supports_avx(), "");
  3056   emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_NONE, vector256);
  3059 void Assembler::vdivpd(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  3060   assert(VM_Version::supports_avx(), "");
  3061   emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_66, vector256);
  3064 void Assembler::vdivps(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  3065   assert(VM_Version::supports_avx(), "");
  3066   emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_NONE, vector256);
  3069 void Assembler::andpd(XMMRegister dst, XMMRegister src) {
  3070   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3071   emit_simd_arith(0x54, dst, src, VEX_SIMD_66);
  3074 void Assembler::andps(XMMRegister dst, XMMRegister src) {
  3075   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  3076   emit_simd_arith(0x54, dst, src, VEX_SIMD_NONE);
  3079 void Assembler::andps(XMMRegister dst, Address src) {
  3080   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  3081   emit_simd_arith(0x54, dst, src, VEX_SIMD_NONE);
  3084 void Assembler::andpd(XMMRegister dst, Address src) {
  3085   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3086   emit_simd_arith(0x54, dst, src, VEX_SIMD_66);
  3089 void Assembler::vandpd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  3090   assert(VM_Version::supports_avx(), "");
  3091   emit_vex_arith(0x54, dst, nds, src, VEX_SIMD_66, vector256);
  3094 void Assembler::vandps(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  3095   assert(VM_Version::supports_avx(), "");
  3096   emit_vex_arith(0x54, dst, nds, src, VEX_SIMD_NONE, vector256);
  3099 void Assembler::vandpd(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  3100   assert(VM_Version::supports_avx(), "");
  3101   emit_vex_arith(0x54, dst, nds, src, VEX_SIMD_66, vector256);
  3104 void Assembler::vandps(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  3105   assert(VM_Version::supports_avx(), "");
  3106   emit_vex_arith(0x54, dst, nds, src, VEX_SIMD_NONE, vector256);
  3109 void Assembler::xorpd(XMMRegister dst, XMMRegister src) {
  3110   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3111   emit_simd_arith(0x57, dst, src, VEX_SIMD_66);
  3114 void Assembler::xorps(XMMRegister dst, XMMRegister src) {
  3115   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  3116   emit_simd_arith(0x57, dst, src, VEX_SIMD_NONE);
  3119 void Assembler::xorpd(XMMRegister dst, Address src) {
  3120   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3121   emit_simd_arith(0x57, dst, src, VEX_SIMD_66);
  3124 void Assembler::xorps(XMMRegister dst, Address src) {
  3125   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  3126   emit_simd_arith(0x57, dst, src, VEX_SIMD_NONE);
  3129 void Assembler::vxorpd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  3130   assert(VM_Version::supports_avx(), "");
  3131   emit_vex_arith(0x57, dst, nds, src, VEX_SIMD_66, vector256);
  3134 void Assembler::vxorps(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  3135   assert(VM_Version::supports_avx(), "");
  3136   emit_vex_arith(0x57, dst, nds, src, VEX_SIMD_NONE, vector256);
  3139 void Assembler::vxorpd(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  3140   assert(VM_Version::supports_avx(), "");
  3141   emit_vex_arith(0x57, dst, nds, src, VEX_SIMD_66, vector256);
  3144 void Assembler::vxorps(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  3145   assert(VM_Version::supports_avx(), "");
  3146   emit_vex_arith(0x57, dst, nds, src, VEX_SIMD_NONE, vector256);
  3150 // Integer vector arithmetic
  3151 void Assembler::paddb(XMMRegister dst, XMMRegister src) {
  3152   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3153   emit_simd_arith(0xFC, dst, src, VEX_SIMD_66);
  3156 void Assembler::paddw(XMMRegister dst, XMMRegister src) {
  3157   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3158   emit_simd_arith(0xFD, dst, src, VEX_SIMD_66);
  3161 void Assembler::paddd(XMMRegister dst, XMMRegister src) {
  3162   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3163   emit_simd_arith(0xFE, dst, src, VEX_SIMD_66);
  3166 void Assembler::paddq(XMMRegister dst, XMMRegister src) {
  3167   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3168   emit_simd_arith(0xD4, dst, src, VEX_SIMD_66);
  3171 void Assembler::vpaddb(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  3172   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3173   emit_vex_arith(0xFC, dst, nds, src, VEX_SIMD_66, vector256);
  3176 void Assembler::vpaddw(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  3177   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3178   emit_vex_arith(0xFD, dst, nds, src, VEX_SIMD_66, vector256);
  3181 void Assembler::vpaddd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  3182   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3183   emit_vex_arith(0xFE, dst, nds, src, VEX_SIMD_66, vector256);
  3186 void Assembler::vpaddq(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  3187   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3188   emit_vex_arith(0xD4, dst, nds, src, VEX_SIMD_66, vector256);
  3191 void Assembler::vpaddb(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  3192   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3193   emit_vex_arith(0xFC, dst, nds, src, VEX_SIMD_66, vector256);
  3196 void Assembler::vpaddw(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  3197   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3198   emit_vex_arith(0xFD, dst, nds, src, VEX_SIMD_66, vector256);
  3201 void Assembler::vpaddd(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  3202   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3203   emit_vex_arith(0xFE, dst, nds, src, VEX_SIMD_66, vector256);
  3206 void Assembler::vpaddq(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  3207   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3208   emit_vex_arith(0xD4, dst, nds, src, VEX_SIMD_66, vector256);
  3211 void Assembler::psubb(XMMRegister dst, XMMRegister src) {
  3212   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3213   emit_simd_arith(0xF8, dst, src, VEX_SIMD_66);
  3216 void Assembler::psubw(XMMRegister dst, XMMRegister src) {
  3217   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3218   emit_simd_arith(0xF9, dst, src, VEX_SIMD_66);
  3221 void Assembler::psubd(XMMRegister dst, XMMRegister src) {
  3222   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3223   emit_simd_arith(0xFA, dst, src, VEX_SIMD_66);
  3226 void Assembler::psubq(XMMRegister dst, XMMRegister src) {
  3227   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3228   emit_simd_arith(0xFB, dst, src, VEX_SIMD_66);
  3231 void Assembler::vpsubb(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  3232   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3233   emit_vex_arith(0xF8, dst, nds, src, VEX_SIMD_66, vector256);
  3236 void Assembler::vpsubw(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  3237   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3238   emit_vex_arith(0xF9, dst, nds, src, VEX_SIMD_66, vector256);
  3241 void Assembler::vpsubd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  3242   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3243   emit_vex_arith(0xFA, dst, nds, src, VEX_SIMD_66, vector256);
  3246 void Assembler::vpsubq(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  3247   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3248   emit_vex_arith(0xFB, dst, nds, src, VEX_SIMD_66, vector256);
  3251 void Assembler::vpsubb(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  3252   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3253   emit_vex_arith(0xF8, dst, nds, src, VEX_SIMD_66, vector256);
  3256 void Assembler::vpsubw(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  3257   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3258   emit_vex_arith(0xF9, dst, nds, src, VEX_SIMD_66, vector256);
  3261 void Assembler::vpsubd(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  3262   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3263   emit_vex_arith(0xFA, dst, nds, src, VEX_SIMD_66, vector256);
  3266 void Assembler::vpsubq(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  3267   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3268   emit_vex_arith(0xFB, dst, nds, src, VEX_SIMD_66, vector256);
  3271 void Assembler::pmullw(XMMRegister dst, XMMRegister src) {
  3272   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3273   emit_simd_arith(0xD5, dst, src, VEX_SIMD_66);
  3276 void Assembler::pmulld(XMMRegister dst, XMMRegister src) {
  3277   assert(VM_Version::supports_sse4_1(), "");
  3278   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
  3279   emit_byte(0x40);
  3280   emit_byte(0xC0 | encode);
  3283 void Assembler::vpmullw(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  3284   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3285   emit_vex_arith(0xD5, dst, nds, src, VEX_SIMD_66, vector256);
  3288 void Assembler::vpmulld(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  3289   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3290   int encode = vex_prefix_and_encode(dst, nds, src, VEX_SIMD_66, vector256, VEX_OPCODE_0F_38);
  3291   emit_byte(0x40);
  3292   emit_byte(0xC0 | encode);
  3295 void Assembler::vpmullw(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  3296   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3297   emit_vex_arith(0xD5, dst, nds, src, VEX_SIMD_66, vector256);
  3300 void Assembler::vpmulld(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  3301   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3302   InstructionMark im(this);
  3303   int dst_enc = dst->encoding();
  3304   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
  3305   vex_prefix(src, nds_enc, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_38, false, vector256);
  3306   emit_byte(0x40);
  3307   emit_operand(dst, src);
  3310 // Shift packed integers left by specified number of bits.
  3311 void Assembler::psllw(XMMRegister dst, int shift) {
  3312   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3313   // XMM6 is for /6 encoding: 66 0F 71 /6 ib
  3314   int encode = simd_prefix_and_encode(xmm6, dst, dst, VEX_SIMD_66);
  3315   emit_byte(0x71);
  3316   emit_byte(0xC0 | encode);
  3317   emit_byte(shift & 0xFF);
  3320 void Assembler::pslld(XMMRegister dst, int shift) {
  3321   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3322   // XMM6 is for /6 encoding: 66 0F 72 /6 ib
  3323   int encode = simd_prefix_and_encode(xmm6, dst, dst, VEX_SIMD_66);
  3324   emit_byte(0x72);
  3325   emit_byte(0xC0 | encode);
  3326   emit_byte(shift & 0xFF);
  3329 void Assembler::psllq(XMMRegister dst, int shift) {
  3330   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3331   // XMM6 is for /6 encoding: 66 0F 73 /6 ib
  3332   int encode = simd_prefix_and_encode(xmm6, dst, dst, VEX_SIMD_66);
  3333   emit_byte(0x73);
  3334   emit_byte(0xC0 | encode);
  3335   emit_byte(shift & 0xFF);
  3338 void Assembler::psllw(XMMRegister dst, XMMRegister shift) {
  3339   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3340   emit_simd_arith(0xF1, dst, shift, VEX_SIMD_66);
  3343 void Assembler::pslld(XMMRegister dst, XMMRegister shift) {
  3344   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3345   emit_simd_arith(0xF2, dst, shift, VEX_SIMD_66);
  3348 void Assembler::psllq(XMMRegister dst, XMMRegister shift) {
  3349   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3350   emit_simd_arith(0xF3, dst, shift, VEX_SIMD_66);
  3353 void Assembler::vpsllw(XMMRegister dst, XMMRegister src, int shift, bool vector256) {
  3354   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3355   // XMM6 is for /6 encoding: 66 0F 71 /6 ib
  3356   emit_vex_arith(0x71, xmm6, dst, src, VEX_SIMD_66, vector256);
  3357   emit_byte(shift & 0xFF);
  3360 void Assembler::vpslld(XMMRegister dst, XMMRegister src, int shift, bool vector256) {
  3361   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3362   // XMM6 is for /6 encoding: 66 0F 72 /6 ib
  3363   emit_vex_arith(0x72, xmm6, dst, src, VEX_SIMD_66, vector256);
  3364   emit_byte(shift & 0xFF);
  3367 void Assembler::vpsllq(XMMRegister dst, XMMRegister src, int shift, bool vector256) {
  3368   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3369   // XMM6 is for /6 encoding: 66 0F 73 /6 ib
  3370   emit_vex_arith(0x73, xmm6, dst, src, VEX_SIMD_66, vector256);
  3371   emit_byte(shift & 0xFF);
  3374 void Assembler::vpsllw(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256) {
  3375   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3376   emit_vex_arith(0xF1, dst, src, shift, VEX_SIMD_66, vector256);
  3379 void Assembler::vpslld(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256) {
  3380   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3381   emit_vex_arith(0xF2, dst, src, shift, VEX_SIMD_66, vector256);
  3384 void Assembler::vpsllq(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256) {
  3385   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3386   emit_vex_arith(0xF3, dst, src, shift, VEX_SIMD_66, vector256);
  3389 // Shift packed integers logically right by specified number of bits.
  3390 void Assembler::psrlw(XMMRegister dst, int shift) {
  3391   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3392   // XMM2 is for /2 encoding: 66 0F 71 /2 ib
  3393   int encode = simd_prefix_and_encode(xmm2, dst, dst, VEX_SIMD_66);
  3394   emit_byte(0x71);
  3395   emit_byte(0xC0 | encode);
  3396   emit_byte(shift & 0xFF);
  3399 void Assembler::psrld(XMMRegister dst, int shift) {
  3400   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3401   // XMM2 is for /2 encoding: 66 0F 72 /2 ib
  3402   int encode = simd_prefix_and_encode(xmm2, dst, dst, VEX_SIMD_66);
  3403   emit_byte(0x72);
  3404   emit_byte(0xC0 | encode);
  3405   emit_byte(shift & 0xFF);
  3408 void Assembler::psrlq(XMMRegister dst, int shift) {
  3409   // Do not confuse it with psrldq SSE2 instruction which
  3410   // shifts 128 bit value in xmm register by number of bytes.
  3411   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3412   // XMM2 is for /2 encoding: 66 0F 73 /2 ib
  3413   int encode = simd_prefix_and_encode(xmm2, dst, dst, VEX_SIMD_66);
  3414   emit_byte(0x73);
  3415   emit_byte(0xC0 | encode);
  3416   emit_byte(shift & 0xFF);
  3419 void Assembler::psrlw(XMMRegister dst, XMMRegister shift) {
  3420   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3421   emit_simd_arith(0xD1, dst, shift, VEX_SIMD_66);
  3424 void Assembler::psrld(XMMRegister dst, XMMRegister shift) {
  3425   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3426   emit_simd_arith(0xD2, dst, shift, VEX_SIMD_66);
  3429 void Assembler::psrlq(XMMRegister dst, XMMRegister shift) {
  3430   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3431   emit_simd_arith(0xD3, dst, shift, VEX_SIMD_66);
  3434 void Assembler::vpsrlw(XMMRegister dst, XMMRegister src, int shift, bool vector256) {
  3435   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3436   // XMM2 is for /2 encoding: 66 0F 73 /2 ib
  3437   emit_vex_arith(0x71, xmm2, dst, src, VEX_SIMD_66, vector256);
  3438   emit_byte(shift & 0xFF);
  3441 void Assembler::vpsrld(XMMRegister dst, XMMRegister src, int shift, bool vector256) {
  3442   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3443   // XMM2 is for /2 encoding: 66 0F 73 /2 ib
  3444   emit_vex_arith(0x72, xmm2, dst, src, VEX_SIMD_66, vector256);
  3445   emit_byte(shift & 0xFF);
  3448 void Assembler::vpsrlq(XMMRegister dst, XMMRegister src, int shift, bool vector256) {
  3449   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3450   // XMM2 is for /2 encoding: 66 0F 73 /2 ib
  3451   emit_vex_arith(0x73, xmm2, dst, src, VEX_SIMD_66, vector256);
  3452   emit_byte(shift & 0xFF);
  3455 void Assembler::vpsrlw(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256) {
  3456   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3457   emit_vex_arith(0xD1, dst, src, shift, VEX_SIMD_66, vector256);
  3460 void Assembler::vpsrld(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256) {
  3461   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3462   emit_vex_arith(0xD2, dst, src, shift, VEX_SIMD_66, vector256);
  3465 void Assembler::vpsrlq(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256) {
  3466   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3467   emit_vex_arith(0xD3, dst, src, shift, VEX_SIMD_66, vector256);
  3470 // Shift packed integers arithmetically right by specified number of bits.
  3471 void Assembler::psraw(XMMRegister dst, int shift) {
  3472   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3473   // XMM4 is for /4 encoding: 66 0F 71 /4 ib
  3474   int encode = simd_prefix_and_encode(xmm4, dst, dst, VEX_SIMD_66);
  3475   emit_byte(0x71);
  3476   emit_byte(0xC0 | encode);
  3477   emit_byte(shift & 0xFF);
  3480 void Assembler::psrad(XMMRegister dst, int shift) {
  3481   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3482   // XMM4 is for /4 encoding: 66 0F 72 /4 ib
  3483   int encode = simd_prefix_and_encode(xmm4, dst, dst, VEX_SIMD_66);
  3484   emit_byte(0x72);
  3485   emit_byte(0xC0 | encode);
  3486   emit_byte(shift & 0xFF);
  3489 void Assembler::psraw(XMMRegister dst, XMMRegister shift) {
  3490   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3491   emit_simd_arith(0xE1, dst, shift, VEX_SIMD_66);
  3494 void Assembler::psrad(XMMRegister dst, XMMRegister shift) {
  3495   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3496   emit_simd_arith(0xE2, dst, shift, VEX_SIMD_66);
  3499 void Assembler::vpsraw(XMMRegister dst, XMMRegister src, int shift, bool vector256) {
  3500   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3501   // XMM4 is for /4 encoding: 66 0F 71 /4 ib
  3502   emit_vex_arith(0x71, xmm4, dst, src, VEX_SIMD_66, vector256);
  3503   emit_byte(shift & 0xFF);
  3506 void Assembler::vpsrad(XMMRegister dst, XMMRegister src, int shift, bool vector256) {
  3507   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3508   // XMM4 is for /4 encoding: 66 0F 71 /4 ib
  3509   emit_vex_arith(0x72, xmm4, dst, src, VEX_SIMD_66, vector256);
  3510   emit_byte(shift & 0xFF);
  3513 void Assembler::vpsraw(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256) {
  3514   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3515   emit_vex_arith(0xE1, dst, src, shift, VEX_SIMD_66, vector256);
  3518 void Assembler::vpsrad(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256) {
  3519   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3520   emit_vex_arith(0xE2, dst, src, shift, VEX_SIMD_66, vector256);
  3524 // AND packed integers
  3525 void Assembler::pand(XMMRegister dst, XMMRegister src) {
  3526   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3527   emit_simd_arith(0xDB, dst, src, VEX_SIMD_66);
  3530 void Assembler::vpand(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  3531   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3532   emit_vex_arith(0xDB, dst, nds, src, VEX_SIMD_66, vector256);
  3535 void Assembler::vpand(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  3536   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3537   emit_vex_arith(0xDB, dst, nds, src, VEX_SIMD_66, vector256);
  3540 void Assembler::por(XMMRegister dst, XMMRegister src) {
  3541   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3542   emit_simd_arith(0xEB, dst, src, VEX_SIMD_66);
  3545 void Assembler::vpor(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  3546   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3547   emit_vex_arith(0xEB, dst, nds, src, VEX_SIMD_66, vector256);
  3550 void Assembler::vpor(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  3551   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3552   emit_vex_arith(0xEB, dst, nds, src, VEX_SIMD_66, vector256);
  3555 void Assembler::pxor(XMMRegister dst, XMMRegister src) {
  3556   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3557   emit_simd_arith(0xEF, dst, src, VEX_SIMD_66);
  3560 void Assembler::vpxor(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  3561   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3562   emit_vex_arith(0xEF, dst, nds, src, VEX_SIMD_66, vector256);
  3565 void Assembler::vpxor(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  3566   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3567   emit_vex_arith(0xEF, dst, nds, src, VEX_SIMD_66, vector256);
  3571 void Assembler::vinsertf128h(XMMRegister dst, XMMRegister nds, XMMRegister src) {
  3572   assert(VM_Version::supports_avx(), "");
  3573   bool vector256 = true;
  3574   int encode = vex_prefix_and_encode(dst, nds, src, VEX_SIMD_66, vector256, VEX_OPCODE_0F_3A);
  3575   emit_byte(0x18);
  3576   emit_byte(0xC0 | encode);
  3577   // 0x00 - insert into lower 128 bits
  3578   // 0x01 - insert into upper 128 bits
  3579   emit_byte(0x01);
  3582 void Assembler::vinsertf128h(XMMRegister dst, Address src) {
  3583   assert(VM_Version::supports_avx(), "");
  3584   InstructionMark im(this);
  3585   bool vector256 = true;
  3586   assert(dst != xnoreg, "sanity");
  3587   int dst_enc = dst->encoding();
  3588   // swap src<->dst for encoding
  3589   vex_prefix(src, dst_enc, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_3A, false, vector256);
  3590   emit_byte(0x18);
  3591   emit_operand(dst, src);
  3592   // 0x01 - insert into upper 128 bits
  3593   emit_byte(0x01);
  3596 void Assembler::vextractf128h(Address dst, XMMRegister src) {
  3597   assert(VM_Version::supports_avx(), "");
  3598   InstructionMark im(this);
  3599   bool vector256 = true;
  3600   assert(src != xnoreg, "sanity");
  3601   int src_enc = src->encoding();
  3602   vex_prefix(dst, 0, src_enc, VEX_SIMD_66, VEX_OPCODE_0F_3A, false, vector256);
  3603   emit_byte(0x19);
  3604   emit_operand(src, dst);
  3605   // 0x01 - extract from upper 128 bits
  3606   emit_byte(0x01);
  3609 void Assembler::vinserti128h(XMMRegister dst, XMMRegister nds, XMMRegister src) {
  3610   assert(VM_Version::supports_avx2(), "");
  3611   bool vector256 = true;
  3612   int encode = vex_prefix_and_encode(dst, nds, src, VEX_SIMD_66, vector256, VEX_OPCODE_0F_3A);
  3613   emit_byte(0x38);
  3614   emit_byte(0xC0 | encode);
  3615   // 0x00 - insert into lower 128 bits
  3616   // 0x01 - insert into upper 128 bits
  3617   emit_byte(0x01);
  3620 void Assembler::vinserti128h(XMMRegister dst, Address src) {
  3621   assert(VM_Version::supports_avx2(), "");
  3622   InstructionMark im(this);
  3623   bool vector256 = true;
  3624   assert(dst != xnoreg, "sanity");
  3625   int dst_enc = dst->encoding();
  3626   // swap src<->dst for encoding
  3627   vex_prefix(src, dst_enc, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_3A, false, vector256);
  3628   emit_byte(0x38);
  3629   emit_operand(dst, src);
  3630   // 0x01 - insert into upper 128 bits
  3631   emit_byte(0x01);
  3634 void Assembler::vextracti128h(Address dst, XMMRegister src) {
  3635   assert(VM_Version::supports_avx2(), "");
  3636   InstructionMark im(this);
  3637   bool vector256 = true;
  3638   assert(src != xnoreg, "sanity");
  3639   int src_enc = src->encoding();
  3640   vex_prefix(dst, 0, src_enc, VEX_SIMD_66, VEX_OPCODE_0F_3A, false, vector256);
  3641   emit_byte(0x39);
  3642   emit_operand(src, dst);
  3643   // 0x01 - extract from upper 128 bits
  3644   emit_byte(0x01);
  3647 void Assembler::vzeroupper() {
  3648   assert(VM_Version::supports_avx(), "");
  3649   (void)vex_prefix_and_encode(xmm0, xmm0, xmm0, VEX_SIMD_NONE);
  3650   emit_byte(0x77);
  3654 #ifndef _LP64
  3655 // 32bit only pieces of the assembler
  3657 void Assembler::cmp_literal32(Register src1, int32_t imm32, RelocationHolder const& rspec) {
  3658   // NO PREFIX AS NEVER 64BIT
  3659   InstructionMark im(this);
  3660   emit_byte(0x81);
  3661   emit_byte(0xF8 | src1->encoding());
  3662   emit_data(imm32, rspec, 0);
  3665 void Assembler::cmp_literal32(Address src1, int32_t imm32, RelocationHolder const& rspec) {
  3666   // NO PREFIX AS NEVER 64BIT (not even 32bit versions of 64bit regs
  3667   InstructionMark im(this);
  3668   emit_byte(0x81);
  3669   emit_operand(rdi, src1);
  3670   emit_data(imm32, rspec, 0);
  3673 // The 64-bit (32bit platform) cmpxchg compares the value at adr with the contents of rdx:rax,
  3674 // and stores rcx:rbx into adr if so; otherwise, the value at adr is loaded
  3675 // into rdx:rax.  The ZF is set if the compared values were equal, and cleared otherwise.
  3676 void Assembler::cmpxchg8(Address adr) {
  3677   InstructionMark im(this);
  3678   emit_byte(0x0F);
  3679   emit_byte(0xc7);
  3680   emit_operand(rcx, adr);
  3683 void Assembler::decl(Register dst) {
  3684   // Don't use it directly. Use MacroAssembler::decrementl() instead.
  3685  emit_byte(0x48 | dst->encoding());
  3688 #endif // _LP64
  3690 // 64bit typically doesn't use the x87 but needs to for the trig funcs
  3692 void Assembler::fabs() {
  3693   emit_byte(0xD9);
  3694   emit_byte(0xE1);
  3697 void Assembler::fadd(int i) {
  3698   emit_farith(0xD8, 0xC0, i);
  3701 void Assembler::fadd_d(Address src) {
  3702   InstructionMark im(this);
  3703   emit_byte(0xDC);
  3704   emit_operand32(rax, src);
  3707 void Assembler::fadd_s(Address src) {
  3708   InstructionMark im(this);
  3709   emit_byte(0xD8);
  3710   emit_operand32(rax, src);
  3713 void Assembler::fadda(int i) {
  3714   emit_farith(0xDC, 0xC0, i);
  3717 void Assembler::faddp(int i) {
  3718   emit_farith(0xDE, 0xC0, i);
  3721 void Assembler::fchs() {
  3722   emit_byte(0xD9);
  3723   emit_byte(0xE0);
  3726 void Assembler::fcom(int i) {
  3727   emit_farith(0xD8, 0xD0, i);
  3730 void Assembler::fcomp(int i) {
  3731   emit_farith(0xD8, 0xD8, i);
  3734 void Assembler::fcomp_d(Address src) {
  3735   InstructionMark im(this);
  3736   emit_byte(0xDC);
  3737   emit_operand32(rbx, src);
  3740 void Assembler::fcomp_s(Address src) {
  3741   InstructionMark im(this);
  3742   emit_byte(0xD8);
  3743   emit_operand32(rbx, src);
  3746 void Assembler::fcompp() {
  3747   emit_byte(0xDE);
  3748   emit_byte(0xD9);
  3751 void Assembler::fcos() {
  3752   emit_byte(0xD9);
  3753   emit_byte(0xFF);
  3756 void Assembler::fdecstp() {
  3757   emit_byte(0xD9);
  3758   emit_byte(0xF6);
  3761 void Assembler::fdiv(int i) {
  3762   emit_farith(0xD8, 0xF0, i);
  3765 void Assembler::fdiv_d(Address src) {
  3766   InstructionMark im(this);
  3767   emit_byte(0xDC);
  3768   emit_operand32(rsi, src);
  3771 void Assembler::fdiv_s(Address src) {
  3772   InstructionMark im(this);
  3773   emit_byte(0xD8);
  3774   emit_operand32(rsi, src);
  3777 void Assembler::fdiva(int i) {
  3778   emit_farith(0xDC, 0xF8, i);
  3781 // Note: The Intel manual (Pentium Processor User's Manual, Vol.3, 1994)
  3782 //       is erroneous for some of the floating-point instructions below.
  3784 void Assembler::fdivp(int i) {
  3785   emit_farith(0xDE, 0xF8, i);                    // ST(0) <- ST(0) / ST(1) and pop (Intel manual wrong)
  3788 void Assembler::fdivr(int i) {
  3789   emit_farith(0xD8, 0xF8, i);
  3792 void Assembler::fdivr_d(Address src) {
  3793   InstructionMark im(this);
  3794   emit_byte(0xDC);
  3795   emit_operand32(rdi, src);
  3798 void Assembler::fdivr_s(Address src) {
  3799   InstructionMark im(this);
  3800   emit_byte(0xD8);
  3801   emit_operand32(rdi, src);
  3804 void Assembler::fdivra(int i) {
  3805   emit_farith(0xDC, 0xF0, i);
  3808 void Assembler::fdivrp(int i) {
  3809   emit_farith(0xDE, 0xF0, i);                    // ST(0) <- ST(1) / ST(0) and pop (Intel manual wrong)
  3812 void Assembler::ffree(int i) {
  3813   emit_farith(0xDD, 0xC0, i);
  3816 void Assembler::fild_d(Address adr) {
  3817   InstructionMark im(this);
  3818   emit_byte(0xDF);
  3819   emit_operand32(rbp, adr);
  3822 void Assembler::fild_s(Address adr) {
  3823   InstructionMark im(this);
  3824   emit_byte(0xDB);
  3825   emit_operand32(rax, adr);
  3828 void Assembler::fincstp() {
  3829   emit_byte(0xD9);
  3830   emit_byte(0xF7);
  3833 void Assembler::finit() {
  3834   emit_byte(0x9B);
  3835   emit_byte(0xDB);
  3836   emit_byte(0xE3);
  3839 void Assembler::fist_s(Address adr) {
  3840   InstructionMark im(this);
  3841   emit_byte(0xDB);
  3842   emit_operand32(rdx, adr);
  3845 void Assembler::fistp_d(Address adr) {
  3846   InstructionMark im(this);
  3847   emit_byte(0xDF);
  3848   emit_operand32(rdi, adr);
  3851 void Assembler::fistp_s(Address adr) {
  3852   InstructionMark im(this);
  3853   emit_byte(0xDB);
  3854   emit_operand32(rbx, adr);
  3857 void Assembler::fld1() {
  3858   emit_byte(0xD9);
  3859   emit_byte(0xE8);
  3862 void Assembler::fld_d(Address adr) {
  3863   InstructionMark im(this);
  3864   emit_byte(0xDD);
  3865   emit_operand32(rax, adr);
  3868 void Assembler::fld_s(Address adr) {
  3869   InstructionMark im(this);
  3870   emit_byte(0xD9);
  3871   emit_operand32(rax, adr);
  3875 void Assembler::fld_s(int index) {
  3876   emit_farith(0xD9, 0xC0, index);
  3879 void Assembler::fld_x(Address adr) {
  3880   InstructionMark im(this);
  3881   emit_byte(0xDB);
  3882   emit_operand32(rbp, adr);
  3885 void Assembler::fldcw(Address src) {
  3886   InstructionMark im(this);
  3887   emit_byte(0xd9);
  3888   emit_operand32(rbp, src);
  3891 void Assembler::fldenv(Address src) {
  3892   InstructionMark im(this);
  3893   emit_byte(0xD9);
  3894   emit_operand32(rsp, src);
  3897 void Assembler::fldlg2() {
  3898   emit_byte(0xD9);
  3899   emit_byte(0xEC);
  3902 void Assembler::fldln2() {
  3903   emit_byte(0xD9);
  3904   emit_byte(0xED);
  3907 void Assembler::fldz() {
  3908   emit_byte(0xD9);
  3909   emit_byte(0xEE);
  3912 void Assembler::flog() {
  3913   fldln2();
  3914   fxch();
  3915   fyl2x();
  3918 void Assembler::flog10() {
  3919   fldlg2();
  3920   fxch();
  3921   fyl2x();
  3924 void Assembler::fmul(int i) {
  3925   emit_farith(0xD8, 0xC8, i);
  3928 void Assembler::fmul_d(Address src) {
  3929   InstructionMark im(this);
  3930   emit_byte(0xDC);
  3931   emit_operand32(rcx, src);
  3934 void Assembler::fmul_s(Address src) {
  3935   InstructionMark im(this);
  3936   emit_byte(0xD8);
  3937   emit_operand32(rcx, src);
  3940 void Assembler::fmula(int i) {
  3941   emit_farith(0xDC, 0xC8, i);
  3944 void Assembler::fmulp(int i) {
  3945   emit_farith(0xDE, 0xC8, i);
  3948 void Assembler::fnsave(Address dst) {
  3949   InstructionMark im(this);
  3950   emit_byte(0xDD);
  3951   emit_operand32(rsi, dst);
  3954 void Assembler::fnstcw(Address src) {
  3955   InstructionMark im(this);
  3956   emit_byte(0x9B);
  3957   emit_byte(0xD9);
  3958   emit_operand32(rdi, src);
  3961 void Assembler::fnstsw_ax() {
  3962   emit_byte(0xdF);
  3963   emit_byte(0xE0);
  3966 void Assembler::fprem() {
  3967   emit_byte(0xD9);
  3968   emit_byte(0xF8);
  3971 void Assembler::fprem1() {
  3972   emit_byte(0xD9);
  3973   emit_byte(0xF5);
  3976 void Assembler::frstor(Address src) {
  3977   InstructionMark im(this);
  3978   emit_byte(0xDD);
  3979   emit_operand32(rsp, src);
  3982 void Assembler::fsin() {
  3983   emit_byte(0xD9);
  3984   emit_byte(0xFE);
  3987 void Assembler::fsqrt() {
  3988   emit_byte(0xD9);
  3989   emit_byte(0xFA);
  3992 void Assembler::fst_d(Address adr) {
  3993   InstructionMark im(this);
  3994   emit_byte(0xDD);
  3995   emit_operand32(rdx, adr);
  3998 void Assembler::fst_s(Address adr) {
  3999   InstructionMark im(this);
  4000   emit_byte(0xD9);
  4001   emit_operand32(rdx, adr);
  4004 void Assembler::fstp_d(Address adr) {
  4005   InstructionMark im(this);
  4006   emit_byte(0xDD);
  4007   emit_operand32(rbx, adr);
  4010 void Assembler::fstp_d(int index) {
  4011   emit_farith(0xDD, 0xD8, index);
  4014 void Assembler::fstp_s(Address adr) {
  4015   InstructionMark im(this);
  4016   emit_byte(0xD9);
  4017   emit_operand32(rbx, adr);
  4020 void Assembler::fstp_x(Address adr) {
  4021   InstructionMark im(this);
  4022   emit_byte(0xDB);
  4023   emit_operand32(rdi, adr);
  4026 void Assembler::fsub(int i) {
  4027   emit_farith(0xD8, 0xE0, i);
  4030 void Assembler::fsub_d(Address src) {
  4031   InstructionMark im(this);
  4032   emit_byte(0xDC);
  4033   emit_operand32(rsp, src);
  4036 void Assembler::fsub_s(Address src) {
  4037   InstructionMark im(this);
  4038   emit_byte(0xD8);
  4039   emit_operand32(rsp, src);
  4042 void Assembler::fsuba(int i) {
  4043   emit_farith(0xDC, 0xE8, i);
  4046 void Assembler::fsubp(int i) {
  4047   emit_farith(0xDE, 0xE8, i);                    // ST(0) <- ST(0) - ST(1) and pop (Intel manual wrong)
  4050 void Assembler::fsubr(int i) {
  4051   emit_farith(0xD8, 0xE8, i);
  4054 void Assembler::fsubr_d(Address src) {
  4055   InstructionMark im(this);
  4056   emit_byte(0xDC);
  4057   emit_operand32(rbp, src);
  4060 void Assembler::fsubr_s(Address src) {
  4061   InstructionMark im(this);
  4062   emit_byte(0xD8);
  4063   emit_operand32(rbp, src);
  4066 void Assembler::fsubra(int i) {
  4067   emit_farith(0xDC, 0xE0, i);
  4070 void Assembler::fsubrp(int i) {
  4071   emit_farith(0xDE, 0xE0, i);                    // ST(0) <- ST(1) - ST(0) and pop (Intel manual wrong)
  4074 void Assembler::ftan() {
  4075   emit_byte(0xD9);
  4076   emit_byte(0xF2);
  4077   emit_byte(0xDD);
  4078   emit_byte(0xD8);
  4081 void Assembler::ftst() {
  4082   emit_byte(0xD9);
  4083   emit_byte(0xE4);
  4086 void Assembler::fucomi(int i) {
  4087   // make sure the instruction is supported (introduced for P6, together with cmov)
  4088   guarantee(VM_Version::supports_cmov(), "illegal instruction");
  4089   emit_farith(0xDB, 0xE8, i);
  4092 void Assembler::fucomip(int i) {
  4093   // make sure the instruction is supported (introduced for P6, together with cmov)
  4094   guarantee(VM_Version::supports_cmov(), "illegal instruction");
  4095   emit_farith(0xDF, 0xE8, i);
  4098 void Assembler::fwait() {
  4099   emit_byte(0x9B);
  4102 void Assembler::fxch(int i) {
  4103   emit_farith(0xD9, 0xC8, i);
  4106 void Assembler::fyl2x() {
  4107   emit_byte(0xD9);
  4108   emit_byte(0xF1);
  4111 void Assembler::frndint() {
  4112   emit_byte(0xD9);
  4113   emit_byte(0xFC);
  4116 void Assembler::f2xm1() {
  4117   emit_byte(0xD9);
  4118   emit_byte(0xF0);
  4121 void Assembler::fldl2e() {
  4122   emit_byte(0xD9);
  4123   emit_byte(0xEA);
  4126 // SSE SIMD prefix byte values corresponding to VexSimdPrefix encoding.
  4127 static int simd_pre[4] = { 0, 0x66, 0xF3, 0xF2 };
  4128 // SSE opcode second byte values (first is 0x0F) corresponding to VexOpcode encoding.
  4129 static int simd_opc[4] = { 0,    0, 0x38, 0x3A };
  4131 // Generate SSE legacy REX prefix and SIMD opcode based on VEX encoding.
  4132 void Assembler::rex_prefix(Address adr, XMMRegister xreg, VexSimdPrefix pre, VexOpcode opc, bool rex_w) {
  4133   if (pre > 0) {
  4134     emit_byte(simd_pre[pre]);
  4136   if (rex_w) {
  4137     prefixq(adr, xreg);
  4138   } else {
  4139     prefix(adr, xreg);
  4141   if (opc > 0) {
  4142     emit_byte(0x0F);
  4143     int opc2 = simd_opc[opc];
  4144     if (opc2 > 0) {
  4145       emit_byte(opc2);
  4150 int Assembler::rex_prefix_and_encode(int dst_enc, int src_enc, VexSimdPrefix pre, VexOpcode opc, bool rex_w) {
  4151   if (pre > 0) {
  4152     emit_byte(simd_pre[pre]);
  4154   int encode = (rex_w) ? prefixq_and_encode(dst_enc, src_enc) :
  4155                           prefix_and_encode(dst_enc, src_enc);
  4156   if (opc > 0) {
  4157     emit_byte(0x0F);
  4158     int opc2 = simd_opc[opc];
  4159     if (opc2 > 0) {
  4160       emit_byte(opc2);
  4163   return encode;
  4167 void Assembler::vex_prefix(bool vex_r, bool vex_b, bool vex_x, bool vex_w, int nds_enc, VexSimdPrefix pre, VexOpcode opc, bool vector256) {
  4168   if (vex_b || vex_x || vex_w || (opc == VEX_OPCODE_0F_38) || (opc == VEX_OPCODE_0F_3A)) {
  4169     prefix(VEX_3bytes);
  4171     int byte1 = (vex_r ? VEX_R : 0) | (vex_x ? VEX_X : 0) | (vex_b ? VEX_B : 0);
  4172     byte1 = (~byte1) & 0xE0;
  4173     byte1 |= opc;
  4174     a_byte(byte1);
  4176     int byte2 = ((~nds_enc) & 0xf) << 3;
  4177     byte2 |= (vex_w ? VEX_W : 0) | (vector256 ? 4 : 0) | pre;
  4178     emit_byte(byte2);
  4179   } else {
  4180     prefix(VEX_2bytes);
  4182     int byte1 = vex_r ? VEX_R : 0;
  4183     byte1 = (~byte1) & 0x80;
  4184     byte1 |= ((~nds_enc) & 0xf) << 3;
  4185     byte1 |= (vector256 ? 4 : 0) | pre;
  4186     emit_byte(byte1);
  4190 void Assembler::vex_prefix(Address adr, int nds_enc, int xreg_enc, VexSimdPrefix pre, VexOpcode opc, bool vex_w, bool vector256){
  4191   bool vex_r = (xreg_enc >= 8);
  4192   bool vex_b = adr.base_needs_rex();
  4193   bool vex_x = adr.index_needs_rex();
  4194   vex_prefix(vex_r, vex_b, vex_x, vex_w, nds_enc, pre, opc, vector256);
  4197 int Assembler::vex_prefix_and_encode(int dst_enc, int nds_enc, int src_enc, VexSimdPrefix pre, VexOpcode opc, bool vex_w, bool vector256) {
  4198   bool vex_r = (dst_enc >= 8);
  4199   bool vex_b = (src_enc >= 8);
  4200   bool vex_x = false;
  4201   vex_prefix(vex_r, vex_b, vex_x, vex_w, nds_enc, pre, opc, vector256);
  4202   return (((dst_enc & 7) << 3) | (src_enc & 7));
  4206 void Assembler::simd_prefix(XMMRegister xreg, XMMRegister nds, Address adr, VexSimdPrefix pre, VexOpcode opc, bool rex_w, bool vector256) {
  4207   if (UseAVX > 0) {
  4208     int xreg_enc = xreg->encoding();
  4209     int  nds_enc = nds->is_valid() ? nds->encoding() : 0;
  4210     vex_prefix(adr, nds_enc, xreg_enc, pre, opc, rex_w, vector256);
  4211   } else {
  4212     assert((nds == xreg) || (nds == xnoreg), "wrong sse encoding");
  4213     rex_prefix(adr, xreg, pre, opc, rex_w);
  4217 int Assembler::simd_prefix_and_encode(XMMRegister dst, XMMRegister nds, XMMRegister src, VexSimdPrefix pre, VexOpcode opc, bool rex_w, bool vector256) {
  4218   int dst_enc = dst->encoding();
  4219   int src_enc = src->encoding();
  4220   if (UseAVX > 0) {
  4221     int nds_enc = nds->is_valid() ? nds->encoding() : 0;
  4222     return vex_prefix_and_encode(dst_enc, nds_enc, src_enc, pre, opc, rex_w, vector256);
  4223   } else {
  4224     assert((nds == dst) || (nds == src) || (nds == xnoreg), "wrong sse encoding");
  4225     return rex_prefix_and_encode(dst_enc, src_enc, pre, opc, rex_w);
  4229 void Assembler::emit_simd_arith(int opcode, XMMRegister dst, Address src, VexSimdPrefix pre) {
  4230   InstructionMark im(this);
  4231   simd_prefix(dst, dst, src, pre);
  4232   emit_byte(opcode);
  4233   emit_operand(dst, src);
  4236 void Assembler::emit_simd_arith(int opcode, XMMRegister dst, XMMRegister src, VexSimdPrefix pre) {
  4237   int encode = simd_prefix_and_encode(dst, dst, src, pre);
  4238   emit_byte(opcode);
  4239   emit_byte(0xC0 | encode);
  4242 // Versions with no second source register (non-destructive source).
  4243 void Assembler::emit_simd_arith_nonds(int opcode, XMMRegister dst, Address src, VexSimdPrefix pre) {
  4244   InstructionMark im(this);
  4245   simd_prefix(dst, xnoreg, src, pre);
  4246   emit_byte(opcode);
  4247   emit_operand(dst, src);
  4250 void Assembler::emit_simd_arith_nonds(int opcode, XMMRegister dst, XMMRegister src, VexSimdPrefix pre) {
  4251   int encode = simd_prefix_and_encode(dst, xnoreg, src, pre);
  4252   emit_byte(opcode);
  4253   emit_byte(0xC0 | encode);
  4256 // 3-operands AVX instructions
  4257 void Assembler::emit_vex_arith(int opcode, XMMRegister dst, XMMRegister nds,
  4258                                Address src, VexSimdPrefix pre, bool vector256) {
  4259   InstructionMark im(this);
  4260   vex_prefix(dst, nds, src, pre, vector256);
  4261   emit_byte(opcode);
  4262   emit_operand(dst, src);
  4265 void Assembler::emit_vex_arith(int opcode, XMMRegister dst, XMMRegister nds,
  4266                                XMMRegister src, VexSimdPrefix pre, bool vector256) {
  4267   int encode = vex_prefix_and_encode(dst, nds, src, pre, vector256);
  4268   emit_byte(opcode);
  4269   emit_byte(0xC0 | encode);
  4272 #ifndef _LP64
  4274 void Assembler::incl(Register dst) {
  4275   // Don't use it directly. Use MacroAssembler::incrementl() instead.
  4276   emit_byte(0x40 | dst->encoding());
  4279 void Assembler::lea(Register dst, Address src) {
  4280   leal(dst, src);
  4283 void Assembler::mov_literal32(Address dst, int32_t imm32,  RelocationHolder const& rspec) {
  4284   InstructionMark im(this);
  4285   emit_byte(0xC7);
  4286   emit_operand(rax, dst);
  4287   emit_data((int)imm32, rspec, 0);
  4290 void Assembler::mov_literal32(Register dst, int32_t imm32, RelocationHolder const& rspec) {
  4291   InstructionMark im(this);
  4292   int encode = prefix_and_encode(dst->encoding());
  4293   emit_byte(0xB8 | encode);
  4294   emit_data((int)imm32, rspec, 0);
  4297 void Assembler::popa() { // 32bit
  4298   emit_byte(0x61);
  4301 void Assembler::push_literal32(int32_t imm32, RelocationHolder const& rspec) {
  4302   InstructionMark im(this);
  4303   emit_byte(0x68);
  4304   emit_data(imm32, rspec, 0);
  4307 void Assembler::pusha() { // 32bit
  4308   emit_byte(0x60);
  4311 void Assembler::set_byte_if_not_zero(Register dst) {
  4312   emit_byte(0x0F);
  4313   emit_byte(0x95);
  4314   emit_byte(0xE0 | dst->encoding());
  4317 void Assembler::shldl(Register dst, Register src) {
  4318   emit_byte(0x0F);
  4319   emit_byte(0xA5);
  4320   emit_byte(0xC0 | src->encoding() << 3 | dst->encoding());
  4323 void Assembler::shrdl(Register dst, Register src) {
  4324   emit_byte(0x0F);
  4325   emit_byte(0xAD);
  4326   emit_byte(0xC0 | src->encoding() << 3 | dst->encoding());
  4329 #else // LP64
  4331 void Assembler::set_byte_if_not_zero(Register dst) {
  4332   int enc = prefix_and_encode(dst->encoding(), true);
  4333   emit_byte(0x0F);
  4334   emit_byte(0x95);
  4335   emit_byte(0xE0 | enc);
  4338 // 64bit only pieces of the assembler
  4339 // This should only be used by 64bit instructions that can use rip-relative
  4340 // it cannot be used by instructions that want an immediate value.
  4342 bool Assembler::reachable(AddressLiteral adr) {
  4343   int64_t disp;
  4344   // None will force a 64bit literal to the code stream. Likely a placeholder
  4345   // for something that will be patched later and we need to certain it will
  4346   // always be reachable.
  4347   if (adr.reloc() == relocInfo::none) {
  4348     return false;
  4350   if (adr.reloc() == relocInfo::internal_word_type) {
  4351     // This should be rip relative and easily reachable.
  4352     return true;
  4354   if (adr.reloc() == relocInfo::virtual_call_type ||
  4355       adr.reloc() == relocInfo::opt_virtual_call_type ||
  4356       adr.reloc() == relocInfo::static_call_type ||
  4357       adr.reloc() == relocInfo::static_stub_type ) {
  4358     // This should be rip relative within the code cache and easily
  4359     // reachable until we get huge code caches. (At which point
  4360     // ic code is going to have issues).
  4361     return true;
  4363   if (adr.reloc() != relocInfo::external_word_type &&
  4364       adr.reloc() != relocInfo::poll_return_type &&  // these are really external_word but need special
  4365       adr.reloc() != relocInfo::poll_type &&         // relocs to identify them
  4366       adr.reloc() != relocInfo::runtime_call_type ) {
  4367     return false;
  4370   // Stress the correction code
  4371   if (ForceUnreachable) {
  4372     // Must be runtimecall reloc, see if it is in the codecache
  4373     // Flipping stuff in the codecache to be unreachable causes issues
  4374     // with things like inline caches where the additional instructions
  4375     // are not handled.
  4376     if (CodeCache::find_blob(adr._target) == NULL) {
  4377       return false;
  4380   // For external_word_type/runtime_call_type if it is reachable from where we
  4381   // are now (possibly a temp buffer) and where we might end up
  4382   // anywhere in the codeCache then we are always reachable.
  4383   // This would have to change if we ever save/restore shared code
  4384   // to be more pessimistic.
  4385   disp = (int64_t)adr._target - ((int64_t)CodeCache::low_bound() + sizeof(int));
  4386   if (!is_simm32(disp)) return false;
  4387   disp = (int64_t)adr._target - ((int64_t)CodeCache::high_bound() + sizeof(int));
  4388   if (!is_simm32(disp)) return false;
  4390   disp = (int64_t)adr._target - ((int64_t)pc() + sizeof(int));
  4392   // Because rip relative is a disp + address_of_next_instruction and we
  4393   // don't know the value of address_of_next_instruction we apply a fudge factor
  4394   // to make sure we will be ok no matter the size of the instruction we get placed into.
  4395   // We don't have to fudge the checks above here because they are already worst case.
  4397   // 12 == override/rex byte, opcode byte, rm byte, sib byte, a 4-byte disp , 4-byte literal
  4398   // + 4 because better safe than sorry.
  4399   const int fudge = 12 + 4;
  4400   if (disp < 0) {
  4401     disp -= fudge;
  4402   } else {
  4403     disp += fudge;
  4405   return is_simm32(disp);
  4408 // Check if the polling page is not reachable from the code cache using rip-relative
  4409 // addressing.
  4410 bool Assembler::is_polling_page_far() {
  4411   intptr_t addr = (intptr_t)os::get_polling_page();
  4412   return ForceUnreachable ||
  4413          !is_simm32(addr - (intptr_t)CodeCache::low_bound()) ||
  4414          !is_simm32(addr - (intptr_t)CodeCache::high_bound());
  4417 void Assembler::emit_data64(jlong data,
  4418                             relocInfo::relocType rtype,
  4419                             int format) {
  4420   if (rtype == relocInfo::none) {
  4421     emit_int64(data);
  4422   } else {
  4423     emit_data64(data, Relocation::spec_simple(rtype), format);
  4427 void Assembler::emit_data64(jlong data,
  4428                             RelocationHolder const& rspec,
  4429                             int format) {
  4430   assert(imm_operand == 0, "default format must be immediate in this file");
  4431   assert(imm_operand == format, "must be immediate");
  4432   assert(inst_mark() != NULL, "must be inside InstructionMark");
  4433   // Do not use AbstractAssembler::relocate, which is not intended for
  4434   // embedded words.  Instead, relocate to the enclosing instruction.
  4435   code_section()->relocate(inst_mark(), rspec, format);
  4436 #ifdef ASSERT
  4437   check_relocation(rspec, format);
  4438 #endif
  4439   emit_int64(data);
  4442 int Assembler::prefix_and_encode(int reg_enc, bool byteinst) {
  4443   if (reg_enc >= 8) {
  4444     prefix(REX_B);
  4445     reg_enc -= 8;
  4446   } else if (byteinst && reg_enc >= 4) {
  4447     prefix(REX);
  4449   return reg_enc;
  4452 int Assembler::prefixq_and_encode(int reg_enc) {
  4453   if (reg_enc < 8) {
  4454     prefix(REX_W);
  4455   } else {
  4456     prefix(REX_WB);
  4457     reg_enc -= 8;
  4459   return reg_enc;
  4462 int Assembler::prefix_and_encode(int dst_enc, int src_enc, bool byteinst) {
  4463   if (dst_enc < 8) {
  4464     if (src_enc >= 8) {
  4465       prefix(REX_B);
  4466       src_enc -= 8;
  4467     } else if (byteinst && src_enc >= 4) {
  4468       prefix(REX);
  4470   } else {
  4471     if (src_enc < 8) {
  4472       prefix(REX_R);
  4473     } else {
  4474       prefix(REX_RB);
  4475       src_enc -= 8;
  4477     dst_enc -= 8;
  4479   return dst_enc << 3 | src_enc;
  4482 int Assembler::prefixq_and_encode(int dst_enc, int src_enc) {
  4483   if (dst_enc < 8) {
  4484     if (src_enc < 8) {
  4485       prefix(REX_W);
  4486     } else {
  4487       prefix(REX_WB);
  4488       src_enc -= 8;
  4490   } else {
  4491     if (src_enc < 8) {
  4492       prefix(REX_WR);
  4493     } else {
  4494       prefix(REX_WRB);
  4495       src_enc -= 8;
  4497     dst_enc -= 8;
  4499   return dst_enc << 3 | src_enc;
  4502 void Assembler::prefix(Register reg) {
  4503   if (reg->encoding() >= 8) {
  4504     prefix(REX_B);
  4508 void Assembler::prefix(Address adr) {
  4509   if (adr.base_needs_rex()) {
  4510     if (adr.index_needs_rex()) {
  4511       prefix(REX_XB);
  4512     } else {
  4513       prefix(REX_B);
  4515   } else {
  4516     if (adr.index_needs_rex()) {
  4517       prefix(REX_X);
  4522 void Assembler::prefixq(Address adr) {
  4523   if (adr.base_needs_rex()) {
  4524     if (adr.index_needs_rex()) {
  4525       prefix(REX_WXB);
  4526     } else {
  4527       prefix(REX_WB);
  4529   } else {
  4530     if (adr.index_needs_rex()) {
  4531       prefix(REX_WX);
  4532     } else {
  4533       prefix(REX_W);
  4539 void Assembler::prefix(Address adr, Register reg, bool byteinst) {
  4540   if (reg->encoding() < 8) {
  4541     if (adr.base_needs_rex()) {
  4542       if (adr.index_needs_rex()) {
  4543         prefix(REX_XB);
  4544       } else {
  4545         prefix(REX_B);
  4547     } else {
  4548       if (adr.index_needs_rex()) {
  4549         prefix(REX_X);
  4550       } else if (byteinst && reg->encoding() >= 4 ) {
  4551         prefix(REX);
  4554   } else {
  4555     if (adr.base_needs_rex()) {
  4556       if (adr.index_needs_rex()) {
  4557         prefix(REX_RXB);
  4558       } else {
  4559         prefix(REX_RB);
  4561     } else {
  4562       if (adr.index_needs_rex()) {
  4563         prefix(REX_RX);
  4564       } else {
  4565         prefix(REX_R);
  4571 void Assembler::prefixq(Address adr, Register src) {
  4572   if (src->encoding() < 8) {
  4573     if (adr.base_needs_rex()) {
  4574       if (adr.index_needs_rex()) {
  4575         prefix(REX_WXB);
  4576       } else {
  4577         prefix(REX_WB);
  4579     } else {
  4580       if (adr.index_needs_rex()) {
  4581         prefix(REX_WX);
  4582       } else {
  4583         prefix(REX_W);
  4586   } else {
  4587     if (adr.base_needs_rex()) {
  4588       if (adr.index_needs_rex()) {
  4589         prefix(REX_WRXB);
  4590       } else {
  4591         prefix(REX_WRB);
  4593     } else {
  4594       if (adr.index_needs_rex()) {
  4595         prefix(REX_WRX);
  4596       } else {
  4597         prefix(REX_WR);
  4603 void Assembler::prefix(Address adr, XMMRegister reg) {
  4604   if (reg->encoding() < 8) {
  4605     if (adr.base_needs_rex()) {
  4606       if (adr.index_needs_rex()) {
  4607         prefix(REX_XB);
  4608       } else {
  4609         prefix(REX_B);
  4611     } else {
  4612       if (adr.index_needs_rex()) {
  4613         prefix(REX_X);
  4616   } else {
  4617     if (adr.base_needs_rex()) {
  4618       if (adr.index_needs_rex()) {
  4619         prefix(REX_RXB);
  4620       } else {
  4621         prefix(REX_RB);
  4623     } else {
  4624       if (adr.index_needs_rex()) {
  4625         prefix(REX_RX);
  4626       } else {
  4627         prefix(REX_R);
  4633 void Assembler::prefixq(Address adr, XMMRegister src) {
  4634   if (src->encoding() < 8) {
  4635     if (adr.base_needs_rex()) {
  4636       if (adr.index_needs_rex()) {
  4637         prefix(REX_WXB);
  4638       } else {
  4639         prefix(REX_WB);
  4641     } else {
  4642       if (adr.index_needs_rex()) {
  4643         prefix(REX_WX);
  4644       } else {
  4645         prefix(REX_W);
  4648   } else {
  4649     if (adr.base_needs_rex()) {
  4650       if (adr.index_needs_rex()) {
  4651         prefix(REX_WRXB);
  4652       } else {
  4653         prefix(REX_WRB);
  4655     } else {
  4656       if (adr.index_needs_rex()) {
  4657         prefix(REX_WRX);
  4658       } else {
  4659         prefix(REX_WR);
  4665 void Assembler::adcq(Register dst, int32_t imm32) {
  4666   (void) prefixq_and_encode(dst->encoding());
  4667   emit_arith(0x81, 0xD0, dst, imm32);
  4670 void Assembler::adcq(Register dst, Address src) {
  4671   InstructionMark im(this);
  4672   prefixq(src, dst);
  4673   emit_byte(0x13);
  4674   emit_operand(dst, src);
  4677 void Assembler::adcq(Register dst, Register src) {
  4678   (int) prefixq_and_encode(dst->encoding(), src->encoding());
  4679   emit_arith(0x13, 0xC0, dst, src);
  4682 void Assembler::addq(Address dst, int32_t imm32) {
  4683   InstructionMark im(this);
  4684   prefixq(dst);
  4685   emit_arith_operand(0x81, rax, dst,imm32);
  4688 void Assembler::addq(Address dst, Register src) {
  4689   InstructionMark im(this);
  4690   prefixq(dst, src);
  4691   emit_byte(0x01);
  4692   emit_operand(src, dst);
  4695 void Assembler::addq(Register dst, int32_t imm32) {
  4696   (void) prefixq_and_encode(dst->encoding());
  4697   emit_arith(0x81, 0xC0, dst, imm32);
  4700 void Assembler::addq(Register dst, Address src) {
  4701   InstructionMark im(this);
  4702   prefixq(src, dst);
  4703   emit_byte(0x03);
  4704   emit_operand(dst, src);
  4707 void Assembler::addq(Register dst, Register src) {
  4708   (void) prefixq_and_encode(dst->encoding(), src->encoding());
  4709   emit_arith(0x03, 0xC0, dst, src);
  4712 void Assembler::andq(Address dst, int32_t imm32) {
  4713   InstructionMark im(this);
  4714   prefixq(dst);
  4715   emit_byte(0x81);
  4716   emit_operand(rsp, dst, 4);
  4717   emit_long(imm32);
  4720 void Assembler::andq(Register dst, int32_t imm32) {
  4721   (void) prefixq_and_encode(dst->encoding());
  4722   emit_arith(0x81, 0xE0, dst, imm32);
  4725 void Assembler::andq(Register dst, Address src) {
  4726   InstructionMark im(this);
  4727   prefixq(src, dst);
  4728   emit_byte(0x23);
  4729   emit_operand(dst, src);
  4732 void Assembler::andq(Register dst, Register src) {
  4733   (int) prefixq_and_encode(dst->encoding(), src->encoding());
  4734   emit_arith(0x23, 0xC0, dst, src);
  4737 void Assembler::bsfq(Register dst, Register src) {
  4738   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  4739   emit_byte(0x0F);
  4740   emit_byte(0xBC);
  4741   emit_byte(0xC0 | encode);
  4744 void Assembler::bsrq(Register dst, Register src) {
  4745   assert(!VM_Version::supports_lzcnt(), "encoding is treated as LZCNT");
  4746   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  4747   emit_byte(0x0F);
  4748   emit_byte(0xBD);
  4749   emit_byte(0xC0 | encode);
  4752 void Assembler::bswapq(Register reg) {
  4753   int encode = prefixq_and_encode(reg->encoding());
  4754   emit_byte(0x0F);
  4755   emit_byte(0xC8 | encode);
  4758 void Assembler::cdqq() {
  4759   prefix(REX_W);
  4760   emit_byte(0x99);
  4763 void Assembler::clflush(Address adr) {
  4764   prefix(adr);
  4765   emit_byte(0x0F);
  4766   emit_byte(0xAE);
  4767   emit_operand(rdi, adr);
  4770 void Assembler::cmovq(Condition cc, Register dst, Register src) {
  4771   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  4772   emit_byte(0x0F);
  4773   emit_byte(0x40 | cc);
  4774   emit_byte(0xC0 | encode);
  4777 void Assembler::cmovq(Condition cc, Register dst, Address src) {
  4778   InstructionMark im(this);
  4779   prefixq(src, dst);
  4780   emit_byte(0x0F);
  4781   emit_byte(0x40 | cc);
  4782   emit_operand(dst, src);
  4785 void Assembler::cmpq(Address dst, int32_t imm32) {
  4786   InstructionMark im(this);
  4787   prefixq(dst);
  4788   emit_byte(0x81);
  4789   emit_operand(rdi, dst, 4);
  4790   emit_long(imm32);
  4793 void Assembler::cmpq(Register dst, int32_t imm32) {
  4794   (void) prefixq_and_encode(dst->encoding());
  4795   emit_arith(0x81, 0xF8, dst, imm32);
  4798 void Assembler::cmpq(Address dst, Register src) {
  4799   InstructionMark im(this);
  4800   prefixq(dst, src);
  4801   emit_byte(0x3B);
  4802   emit_operand(src, dst);
  4805 void Assembler::cmpq(Register dst, Register src) {
  4806   (void) prefixq_and_encode(dst->encoding(), src->encoding());
  4807   emit_arith(0x3B, 0xC0, dst, src);
  4810 void Assembler::cmpq(Register dst, Address  src) {
  4811   InstructionMark im(this);
  4812   prefixq(src, dst);
  4813   emit_byte(0x3B);
  4814   emit_operand(dst, src);
  4817 void Assembler::cmpxchgq(Register reg, Address adr) {
  4818   InstructionMark im(this);
  4819   prefixq(adr, reg);
  4820   emit_byte(0x0F);
  4821   emit_byte(0xB1);
  4822   emit_operand(reg, adr);
  4825 void Assembler::cvtsi2sdq(XMMRegister dst, Register src) {
  4826   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  4827   int encode = simd_prefix_and_encode_q(dst, dst, src, VEX_SIMD_F2);
  4828   emit_byte(0x2A);
  4829   emit_byte(0xC0 | encode);
  4832 void Assembler::cvtsi2sdq(XMMRegister dst, Address src) {
  4833   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  4834   InstructionMark im(this);
  4835   simd_prefix_q(dst, dst, src, VEX_SIMD_F2);
  4836   emit_byte(0x2A);
  4837   emit_operand(dst, src);
  4840 void Assembler::cvtsi2ssq(XMMRegister dst, Register src) {
  4841   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  4842   int encode = simd_prefix_and_encode_q(dst, dst, src, VEX_SIMD_F3);
  4843   emit_byte(0x2A);
  4844   emit_byte(0xC0 | encode);
  4847 void Assembler::cvtsi2ssq(XMMRegister dst, Address src) {
  4848   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  4849   InstructionMark im(this);
  4850   simd_prefix_q(dst, dst, src, VEX_SIMD_F3);
  4851   emit_byte(0x2A);
  4852   emit_operand(dst, src);
  4855 void Assembler::cvttsd2siq(Register dst, XMMRegister src) {
  4856   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  4857   int encode = simd_prefix_and_encode_q(dst, src, VEX_SIMD_F2);
  4858   emit_byte(0x2C);
  4859   emit_byte(0xC0 | encode);
  4862 void Assembler::cvttss2siq(Register dst, XMMRegister src) {
  4863   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  4864   int encode = simd_prefix_and_encode_q(dst, src, VEX_SIMD_F3);
  4865   emit_byte(0x2C);
  4866   emit_byte(0xC0 | encode);
  4869 void Assembler::decl(Register dst) {
  4870   // Don't use it directly. Use MacroAssembler::decrementl() instead.
  4871   // Use two-byte form (one-byte form is a REX prefix in 64-bit mode)
  4872   int encode = prefix_and_encode(dst->encoding());
  4873   emit_byte(0xFF);
  4874   emit_byte(0xC8 | encode);
  4877 void Assembler::decq(Register dst) {
  4878   // Don't use it directly. Use MacroAssembler::decrementq() instead.
  4879   // Use two-byte form (one-byte from is a REX prefix in 64-bit mode)
  4880   int encode = prefixq_and_encode(dst->encoding());
  4881   emit_byte(0xFF);
  4882   emit_byte(0xC8 | encode);
  4885 void Assembler::decq(Address dst) {
  4886   // Don't use it directly. Use MacroAssembler::decrementq() instead.
  4887   InstructionMark im(this);
  4888   prefixq(dst);
  4889   emit_byte(0xFF);
  4890   emit_operand(rcx, dst);
  4893 void Assembler::fxrstor(Address src) {
  4894   prefixq(src);
  4895   emit_byte(0x0F);
  4896   emit_byte(0xAE);
  4897   emit_operand(as_Register(1), src);
  4900 void Assembler::fxsave(Address dst) {
  4901   prefixq(dst);
  4902   emit_byte(0x0F);
  4903   emit_byte(0xAE);
  4904   emit_operand(as_Register(0), dst);
  4907 void Assembler::idivq(Register src) {
  4908   int encode = prefixq_and_encode(src->encoding());
  4909   emit_byte(0xF7);
  4910   emit_byte(0xF8 | encode);
  4913 void Assembler::imulq(Register dst, Register src) {
  4914   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  4915   emit_byte(0x0F);
  4916   emit_byte(0xAF);
  4917   emit_byte(0xC0 | encode);
  4920 void Assembler::imulq(Register dst, Register src, int value) {
  4921   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  4922   if (is8bit(value)) {
  4923     emit_byte(0x6B);
  4924     emit_byte(0xC0 | encode);
  4925     emit_byte(value & 0xFF);
  4926   } else {
  4927     emit_byte(0x69);
  4928     emit_byte(0xC0 | encode);
  4929     emit_long(value);
  4933 void Assembler::incl(Register dst) {
  4934   // Don't use it directly. Use MacroAssembler::incrementl() instead.
  4935   // Use two-byte form (one-byte from is a REX prefix in 64-bit mode)
  4936   int encode = prefix_and_encode(dst->encoding());
  4937   emit_byte(0xFF);
  4938   emit_byte(0xC0 | encode);
  4941 void Assembler::incq(Register dst) {
  4942   // Don't use it directly. Use MacroAssembler::incrementq() instead.
  4943   // Use two-byte form (one-byte from is a REX prefix in 64-bit mode)
  4944   int encode = prefixq_and_encode(dst->encoding());
  4945   emit_byte(0xFF);
  4946   emit_byte(0xC0 | encode);
  4949 void Assembler::incq(Address dst) {
  4950   // Don't use it directly. Use MacroAssembler::incrementq() instead.
  4951   InstructionMark im(this);
  4952   prefixq(dst);
  4953   emit_byte(0xFF);
  4954   emit_operand(rax, dst);
  4957 void Assembler::lea(Register dst, Address src) {
  4958   leaq(dst, src);
  4961 void Assembler::leaq(Register dst, Address src) {
  4962   InstructionMark im(this);
  4963   prefixq(src, dst);
  4964   emit_byte(0x8D);
  4965   emit_operand(dst, src);
  4968 void Assembler::mov64(Register dst, int64_t imm64) {
  4969   InstructionMark im(this);
  4970   int encode = prefixq_and_encode(dst->encoding());
  4971   emit_byte(0xB8 | encode);
  4972   emit_int64(imm64);
  4975 void Assembler::mov_literal64(Register dst, intptr_t imm64, RelocationHolder const& rspec) {
  4976   InstructionMark im(this);
  4977   int encode = prefixq_and_encode(dst->encoding());
  4978   emit_byte(0xB8 | encode);
  4979   emit_data64(imm64, rspec);
  4982 void Assembler::mov_narrow_oop(Register dst, int32_t imm32, RelocationHolder const& rspec) {
  4983   InstructionMark im(this);
  4984   int encode = prefix_and_encode(dst->encoding());
  4985   emit_byte(0xB8 | encode);
  4986   emit_data((int)imm32, rspec, narrow_oop_operand);
  4989 void Assembler::mov_narrow_oop(Address dst, int32_t imm32,  RelocationHolder const& rspec) {
  4990   InstructionMark im(this);
  4991   prefix(dst);
  4992   emit_byte(0xC7);
  4993   emit_operand(rax, dst, 4);
  4994   emit_data((int)imm32, rspec, narrow_oop_operand);
  4997 void Assembler::cmp_narrow_oop(Register src1, int32_t imm32, RelocationHolder const& rspec) {
  4998   InstructionMark im(this);
  4999   int encode = prefix_and_encode(src1->encoding());
  5000   emit_byte(0x81);
  5001   emit_byte(0xF8 | encode);
  5002   emit_data((int)imm32, rspec, narrow_oop_operand);
  5005 void Assembler::cmp_narrow_oop(Address src1, int32_t imm32, RelocationHolder const& rspec) {
  5006   InstructionMark im(this);
  5007   prefix(src1);
  5008   emit_byte(0x81);
  5009   emit_operand(rax, src1, 4);
  5010   emit_data((int)imm32, rspec, narrow_oop_operand);
  5013 void Assembler::lzcntq(Register dst, Register src) {
  5014   assert(VM_Version::supports_lzcnt(), "encoding is treated as BSR");
  5015   emit_byte(0xF3);
  5016   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  5017   emit_byte(0x0F);
  5018   emit_byte(0xBD);
  5019   emit_byte(0xC0 | encode);
  5022 void Assembler::movdq(XMMRegister dst, Register src) {
  5023   // table D-1 says MMX/SSE2
  5024   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  5025   int encode = simd_prefix_and_encode_q(dst, src, VEX_SIMD_66);
  5026   emit_byte(0x6E);
  5027   emit_byte(0xC0 | encode);
  5030 void Assembler::movdq(Register dst, XMMRegister src) {
  5031   // table D-1 says MMX/SSE2
  5032   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  5033   // swap src/dst to get correct prefix
  5034   int encode = simd_prefix_and_encode_q(src, dst, VEX_SIMD_66);
  5035   emit_byte(0x7E);
  5036   emit_byte(0xC0 | encode);
  5039 void Assembler::movq(Register dst, Register src) {
  5040   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  5041   emit_byte(0x8B);
  5042   emit_byte(0xC0 | encode);
  5045 void Assembler::movq(Register dst, Address src) {
  5046   InstructionMark im(this);
  5047   prefixq(src, dst);
  5048   emit_byte(0x8B);
  5049   emit_operand(dst, src);
  5052 void Assembler::movq(Address dst, Register src) {
  5053   InstructionMark im(this);
  5054   prefixq(dst, src);
  5055   emit_byte(0x89);
  5056   emit_operand(src, dst);
  5059 void Assembler::movsbq(Register dst, Address src) {
  5060   InstructionMark im(this);
  5061   prefixq(src, dst);
  5062   emit_byte(0x0F);
  5063   emit_byte(0xBE);
  5064   emit_operand(dst, src);
  5067 void Assembler::movsbq(Register dst, Register src) {
  5068   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  5069   emit_byte(0x0F);
  5070   emit_byte(0xBE);
  5071   emit_byte(0xC0 | encode);
  5074 void Assembler::movslq(Register dst, int32_t imm32) {
  5075   // dbx shows movslq(rcx, 3) as movq     $0x0000000049000000,(%rbx)
  5076   // and movslq(r8, 3); as movl     $0x0000000048000000,(%rbx)
  5077   // as a result we shouldn't use until tested at runtime...
  5078   ShouldNotReachHere();
  5079   InstructionMark im(this);
  5080   int encode = prefixq_and_encode(dst->encoding());
  5081   emit_byte(0xC7 | encode);
  5082   emit_long(imm32);
  5085 void Assembler::movslq(Address dst, int32_t imm32) {
  5086   assert(is_simm32(imm32), "lost bits");
  5087   InstructionMark im(this);
  5088   prefixq(dst);
  5089   emit_byte(0xC7);
  5090   emit_operand(rax, dst, 4);
  5091   emit_long(imm32);
  5094 void Assembler::movslq(Register dst, Address src) {
  5095   InstructionMark im(this);
  5096   prefixq(src, dst);
  5097   emit_byte(0x63);
  5098   emit_operand(dst, src);
  5101 void Assembler::movslq(Register dst, Register src) {
  5102   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  5103   emit_byte(0x63);
  5104   emit_byte(0xC0 | encode);
  5107 void Assembler::movswq(Register dst, Address src) {
  5108   InstructionMark im(this);
  5109   prefixq(src, dst);
  5110   emit_byte(0x0F);
  5111   emit_byte(0xBF);
  5112   emit_operand(dst, src);
  5115 void Assembler::movswq(Register dst, Register src) {
  5116   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  5117   emit_byte(0x0F);
  5118   emit_byte(0xBF);
  5119   emit_byte(0xC0 | encode);
  5122 void Assembler::movzbq(Register dst, Address src) {
  5123   InstructionMark im(this);
  5124   prefixq(src, dst);
  5125   emit_byte(0x0F);
  5126   emit_byte(0xB6);
  5127   emit_operand(dst, src);
  5130 void Assembler::movzbq(Register dst, Register src) {
  5131   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  5132   emit_byte(0x0F);
  5133   emit_byte(0xB6);
  5134   emit_byte(0xC0 | encode);
  5137 void Assembler::movzwq(Register dst, Address src) {
  5138   InstructionMark im(this);
  5139   prefixq(src, dst);
  5140   emit_byte(0x0F);
  5141   emit_byte(0xB7);
  5142   emit_operand(dst, src);
  5145 void Assembler::movzwq(Register dst, Register src) {
  5146   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  5147   emit_byte(0x0F);
  5148   emit_byte(0xB7);
  5149   emit_byte(0xC0 | encode);
  5152 void Assembler::negq(Register dst) {
  5153   int encode = prefixq_and_encode(dst->encoding());
  5154   emit_byte(0xF7);
  5155   emit_byte(0xD8 | encode);
  5158 void Assembler::notq(Register dst) {
  5159   int encode = prefixq_and_encode(dst->encoding());
  5160   emit_byte(0xF7);
  5161   emit_byte(0xD0 | encode);
  5164 void Assembler::orq(Address dst, int32_t imm32) {
  5165   InstructionMark im(this);
  5166   prefixq(dst);
  5167   emit_byte(0x81);
  5168   emit_operand(rcx, dst, 4);
  5169   emit_long(imm32);
  5172 void Assembler::orq(Register dst, int32_t imm32) {
  5173   (void) prefixq_and_encode(dst->encoding());
  5174   emit_arith(0x81, 0xC8, dst, imm32);
  5177 void Assembler::orq(Register dst, Address src) {
  5178   InstructionMark im(this);
  5179   prefixq(src, dst);
  5180   emit_byte(0x0B);
  5181   emit_operand(dst, src);
  5184 void Assembler::orq(Register dst, Register src) {
  5185   (void) prefixq_and_encode(dst->encoding(), src->encoding());
  5186   emit_arith(0x0B, 0xC0, dst, src);
  5189 void Assembler::popa() { // 64bit
  5190   movq(r15, Address(rsp, 0));
  5191   movq(r14, Address(rsp, wordSize));
  5192   movq(r13, Address(rsp, 2 * wordSize));
  5193   movq(r12, Address(rsp, 3 * wordSize));
  5194   movq(r11, Address(rsp, 4 * wordSize));
  5195   movq(r10, Address(rsp, 5 * wordSize));
  5196   movq(r9,  Address(rsp, 6 * wordSize));
  5197   movq(r8,  Address(rsp, 7 * wordSize));
  5198   movq(rdi, Address(rsp, 8 * wordSize));
  5199   movq(rsi, Address(rsp, 9 * wordSize));
  5200   movq(rbp, Address(rsp, 10 * wordSize));
  5201   // skip rsp
  5202   movq(rbx, Address(rsp, 12 * wordSize));
  5203   movq(rdx, Address(rsp, 13 * wordSize));
  5204   movq(rcx, Address(rsp, 14 * wordSize));
  5205   movq(rax, Address(rsp, 15 * wordSize));
  5207   addq(rsp, 16 * wordSize);
  5210 void Assembler::popcntq(Register dst, Address src) {
  5211   assert(VM_Version::supports_popcnt(), "must support");
  5212   InstructionMark im(this);
  5213   emit_byte(0xF3);
  5214   prefixq(src, dst);
  5215   emit_byte(0x0F);
  5216   emit_byte(0xB8);
  5217   emit_operand(dst, src);
  5220 void Assembler::popcntq(Register dst, Register src) {
  5221   assert(VM_Version::supports_popcnt(), "must support");
  5222   emit_byte(0xF3);
  5223   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  5224   emit_byte(0x0F);
  5225   emit_byte(0xB8);
  5226   emit_byte(0xC0 | encode);
  5229 void Assembler::popq(Address dst) {
  5230   InstructionMark im(this);
  5231   prefixq(dst);
  5232   emit_byte(0x8F);
  5233   emit_operand(rax, dst);
  5236 void Assembler::pusha() { // 64bit
  5237   // we have to store original rsp.  ABI says that 128 bytes
  5238   // below rsp are local scratch.
  5239   movq(Address(rsp, -5 * wordSize), rsp);
  5241   subq(rsp, 16 * wordSize);
  5243   movq(Address(rsp, 15 * wordSize), rax);
  5244   movq(Address(rsp, 14 * wordSize), rcx);
  5245   movq(Address(rsp, 13 * wordSize), rdx);
  5246   movq(Address(rsp, 12 * wordSize), rbx);
  5247   // skip rsp
  5248   movq(Address(rsp, 10 * wordSize), rbp);
  5249   movq(Address(rsp, 9 * wordSize), rsi);
  5250   movq(Address(rsp, 8 * wordSize), rdi);
  5251   movq(Address(rsp, 7 * wordSize), r8);
  5252   movq(Address(rsp, 6 * wordSize), r9);
  5253   movq(Address(rsp, 5 * wordSize), r10);
  5254   movq(Address(rsp, 4 * wordSize), r11);
  5255   movq(Address(rsp, 3 * wordSize), r12);
  5256   movq(Address(rsp, 2 * wordSize), r13);
  5257   movq(Address(rsp, wordSize), r14);
  5258   movq(Address(rsp, 0), r15);
  5261 void Assembler::pushq(Address src) {
  5262   InstructionMark im(this);
  5263   prefixq(src);
  5264   emit_byte(0xFF);
  5265   emit_operand(rsi, src);
  5268 void Assembler::rclq(Register dst, int imm8) {
  5269   assert(isShiftCount(imm8 >> 1), "illegal shift count");
  5270   int encode = prefixq_and_encode(dst->encoding());
  5271   if (imm8 == 1) {
  5272     emit_byte(0xD1);
  5273     emit_byte(0xD0 | encode);
  5274   } else {
  5275     emit_byte(0xC1);
  5276     emit_byte(0xD0 | encode);
  5277     emit_byte(imm8);
  5280 void Assembler::sarq(Register dst, int imm8) {
  5281   assert(isShiftCount(imm8 >> 1), "illegal shift count");
  5282   int encode = prefixq_and_encode(dst->encoding());
  5283   if (imm8 == 1) {
  5284     emit_byte(0xD1);
  5285     emit_byte(0xF8 | encode);
  5286   } else {
  5287     emit_byte(0xC1);
  5288     emit_byte(0xF8 | encode);
  5289     emit_byte(imm8);
  5293 void Assembler::sarq(Register dst) {
  5294   int encode = prefixq_and_encode(dst->encoding());
  5295   emit_byte(0xD3);
  5296   emit_byte(0xF8 | encode);
  5299 void Assembler::sbbq(Address dst, int32_t imm32) {
  5300   InstructionMark im(this);
  5301   prefixq(dst);
  5302   emit_arith_operand(0x81, rbx, dst, imm32);
  5305 void Assembler::sbbq(Register dst, int32_t imm32) {
  5306   (void) prefixq_and_encode(dst->encoding());
  5307   emit_arith(0x81, 0xD8, dst, imm32);
  5310 void Assembler::sbbq(Register dst, Address src) {
  5311   InstructionMark im(this);
  5312   prefixq(src, dst);
  5313   emit_byte(0x1B);
  5314   emit_operand(dst, src);
  5317 void Assembler::sbbq(Register dst, Register src) {
  5318   (void) prefixq_and_encode(dst->encoding(), src->encoding());
  5319   emit_arith(0x1B, 0xC0, dst, src);
  5322 void Assembler::shlq(Register dst, int imm8) {
  5323   assert(isShiftCount(imm8 >> 1), "illegal shift count");
  5324   int encode = prefixq_and_encode(dst->encoding());
  5325   if (imm8 == 1) {
  5326     emit_byte(0xD1);
  5327     emit_byte(0xE0 | encode);
  5328   } else {
  5329     emit_byte(0xC1);
  5330     emit_byte(0xE0 | encode);
  5331     emit_byte(imm8);
  5335 void Assembler::shlq(Register dst) {
  5336   int encode = prefixq_and_encode(dst->encoding());
  5337   emit_byte(0xD3);
  5338   emit_byte(0xE0 | encode);
  5341 void Assembler::shrq(Register dst, int imm8) {
  5342   assert(isShiftCount(imm8 >> 1), "illegal shift count");
  5343   int encode = prefixq_and_encode(dst->encoding());
  5344   emit_byte(0xC1);
  5345   emit_byte(0xE8 | encode);
  5346   emit_byte(imm8);
  5349 void Assembler::shrq(Register dst) {
  5350   int encode = prefixq_and_encode(dst->encoding());
  5351   emit_byte(0xD3);
  5352   emit_byte(0xE8 | encode);
  5355 void Assembler::subq(Address dst, int32_t imm32) {
  5356   InstructionMark im(this);
  5357   prefixq(dst);
  5358   emit_arith_operand(0x81, rbp, dst, imm32);
  5361 void Assembler::subq(Address dst, Register src) {
  5362   InstructionMark im(this);
  5363   prefixq(dst, src);
  5364   emit_byte(0x29);
  5365   emit_operand(src, dst);
  5368 void Assembler::subq(Register dst, int32_t imm32) {
  5369   (void) prefixq_and_encode(dst->encoding());
  5370   emit_arith(0x81, 0xE8, dst, imm32);
  5373 // Force generation of a 4 byte immediate value even if it fits into 8bit
  5374 void Assembler::subq_imm32(Register dst, int32_t imm32) {
  5375   (void) prefixq_and_encode(dst->encoding());
  5376   emit_arith_imm32(0x81, 0xE8, dst, imm32);
  5379 void Assembler::subq(Register dst, Address src) {
  5380   InstructionMark im(this);
  5381   prefixq(src, dst);
  5382   emit_byte(0x2B);
  5383   emit_operand(dst, src);
  5386 void Assembler::subq(Register dst, Register src) {
  5387   (void) prefixq_and_encode(dst->encoding(), src->encoding());
  5388   emit_arith(0x2B, 0xC0, dst, src);
  5391 void Assembler::testq(Register dst, int32_t imm32) {
  5392   // not using emit_arith because test
  5393   // doesn't support sign-extension of
  5394   // 8bit operands
  5395   int encode = dst->encoding();
  5396   if (encode == 0) {
  5397     prefix(REX_W);
  5398     emit_byte(0xA9);
  5399   } else {
  5400     encode = prefixq_and_encode(encode);
  5401     emit_byte(0xF7);
  5402     emit_byte(0xC0 | encode);
  5404   emit_long(imm32);
  5407 void Assembler::testq(Register dst, Register src) {
  5408   (void) prefixq_and_encode(dst->encoding(), src->encoding());
  5409   emit_arith(0x85, 0xC0, dst, src);
  5412 void Assembler::xaddq(Address dst, Register src) {
  5413   InstructionMark im(this);
  5414   prefixq(dst, src);
  5415   emit_byte(0x0F);
  5416   emit_byte(0xC1);
  5417   emit_operand(src, dst);
  5420 void Assembler::xchgq(Register dst, Address src) {
  5421   InstructionMark im(this);
  5422   prefixq(src, dst);
  5423   emit_byte(0x87);
  5424   emit_operand(dst, src);
  5427 void Assembler::xchgq(Register dst, Register src) {
  5428   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  5429   emit_byte(0x87);
  5430   emit_byte(0xc0 | encode);
  5433 void Assembler::xorq(Register dst, Register src) {
  5434   (void) prefixq_and_encode(dst->encoding(), src->encoding());
  5435   emit_arith(0x33, 0xC0, dst, src);
  5438 void Assembler::xorq(Register dst, Address src) {
  5439   InstructionMark im(this);
  5440   prefixq(src, dst);
  5441   emit_byte(0x33);
  5442   emit_operand(dst, src);
  5445 #endif // !LP64

mercurial