src/share/vm/runtime/synchronizer.cpp

Sun, 25 Sep 2011 16:03:29 -0700

author
never
date
Sun, 25 Sep 2011 16:03:29 -0700
changeset 3156
f08d439fab8c
parent 2708
1d1603768966
child 3202
436b4a3231bf
permissions
-rw-r--r--

7089790: integrate bsd-port changes
Reviewed-by: kvn, twisti, jrose
Contributed-by: Kurt Miller <kurt@intricatesoftware.com>, Greg Lewis <glewis@eyesbeyond.com>, Jung-uk Kim <jkim@freebsd.org>, Christos Zoulas <christos@zoulas.com>, Landon Fuller <landonf@plausible.coop>, The FreeBSD Foundation <board@freebsdfoundation.org>, Michael Franz <mvfranz@gmail.com>, Roger Hoover <rhoover@apple.com>, Alexander Strange <astrange@apple.com>

     1 /*
     2  * Copyright (c) 1998, 2011, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "classfile/vmSymbols.hpp"
    27 #include "memory/resourceArea.hpp"
    28 #include "oops/markOop.hpp"
    29 #include "oops/oop.inline.hpp"
    30 #include "runtime/biasedLocking.hpp"
    31 #include "runtime/handles.inline.hpp"
    32 #include "runtime/interfaceSupport.hpp"
    33 #include "runtime/mutexLocker.hpp"
    34 #include "runtime/objectMonitor.hpp"
    35 #include "runtime/objectMonitor.inline.hpp"
    36 #include "runtime/osThread.hpp"
    37 #include "runtime/stubRoutines.hpp"
    38 #include "runtime/synchronizer.hpp"
    39 #include "utilities/dtrace.hpp"
    40 #include "utilities/events.hpp"
    41 #include "utilities/preserveException.hpp"
    42 #ifdef TARGET_OS_FAMILY_linux
    43 # include "os_linux.inline.hpp"
    44 # include "thread_linux.inline.hpp"
    45 #endif
    46 #ifdef TARGET_OS_FAMILY_solaris
    47 # include "os_solaris.inline.hpp"
    48 # include "thread_solaris.inline.hpp"
    49 #endif
    50 #ifdef TARGET_OS_FAMILY_windows
    51 # include "os_windows.inline.hpp"
    52 # include "thread_windows.inline.hpp"
    53 #endif
    54 #ifdef TARGET_OS_FAMILY_bsd
    55 # include "os_bsd.inline.hpp"
    56 # include "thread_bsd.inline.hpp"
    57 #endif
    59 #if defined(__GNUC__) && !defined(IA64)
    60   // Need to inhibit inlining for older versions of GCC to avoid build-time failures
    61   #define ATTR __attribute__((noinline))
    62 #else
    63   #define ATTR
    64 #endif
    66 // The "core" versions of monitor enter and exit reside in this file.
    67 // The interpreter and compilers contain specialized transliterated
    68 // variants of the enter-exit fast-path operations.  See i486.ad fast_lock(),
    69 // for instance.  If you make changes here, make sure to modify the
    70 // interpreter, and both C1 and C2 fast-path inline locking code emission.
    71 //
    72 //
    73 // -----------------------------------------------------------------------------
    75 #ifdef DTRACE_ENABLED
    77 // Only bother with this argument setup if dtrace is available
    78 // TODO-FIXME: probes should not fire when caller is _blocked.  assert() accordingly.
    80 HS_DTRACE_PROBE_DECL5(hotspot, monitor__wait,
    81   jlong, uintptr_t, char*, int, long);
    82 HS_DTRACE_PROBE_DECL4(hotspot, monitor__waited,
    83   jlong, uintptr_t, char*, int);
    85 #define DTRACE_MONITOR_PROBE_COMMON(klassOop, thread)                      \
    86   char* bytes = NULL;                                                      \
    87   int len = 0;                                                             \
    88   jlong jtid = SharedRuntime::get_java_tid(thread);                        \
    89   Symbol* klassname = ((oop)(klassOop))->klass()->klass_part()->name();  \
    90   if (klassname != NULL) {                                                 \
    91     bytes = (char*)klassname->bytes();                                     \
    92     len = klassname->utf8_length();                                        \
    93   }
    95 #define DTRACE_MONITOR_WAIT_PROBE(monitor, klassOop, thread, millis)       \
    96   {                                                                        \
    97     if (DTraceMonitorProbes) {                                            \
    98       DTRACE_MONITOR_PROBE_COMMON(klassOop, thread);                       \
    99       HS_DTRACE_PROBE5(hotspot, monitor__wait, jtid,                       \
   100                        (monitor), bytes, len, (millis));                   \
   101     }                                                                      \
   102   }
   104 #define DTRACE_MONITOR_PROBE(probe, monitor, klassOop, thread)             \
   105   {                                                                        \
   106     if (DTraceMonitorProbes) {                                            \
   107       DTRACE_MONITOR_PROBE_COMMON(klassOop, thread);                       \
   108       HS_DTRACE_PROBE4(hotspot, monitor__##probe, jtid,                    \
   109                        (uintptr_t)(monitor), bytes, len);                  \
   110     }                                                                      \
   111   }
   113 #else //  ndef DTRACE_ENABLED
   115 #define DTRACE_MONITOR_WAIT_PROBE(klassOop, thread, millis, mon)    {;}
   116 #define DTRACE_MONITOR_PROBE(probe, klassOop, thread, mon)          {;}
   118 #endif // ndef DTRACE_ENABLED
   120 // This exists only as a workaround of dtrace bug 6254741
   121 int dtrace_waited_probe(ObjectMonitor* monitor, Handle obj, Thread* thr) {
   122   DTRACE_MONITOR_PROBE(waited, monitor, obj(), thr);
   123   return 0;
   124 }
   126 #define NINFLATIONLOCKS 256
   127 static volatile intptr_t InflationLocks [NINFLATIONLOCKS] ;
   129 ObjectMonitor * ObjectSynchronizer::gBlockList = NULL ;
   130 ObjectMonitor * volatile ObjectSynchronizer::gFreeList  = NULL ;
   131 ObjectMonitor * volatile ObjectSynchronizer::gOmInUseList  = NULL ;
   132 int ObjectSynchronizer::gOmInUseCount = 0;
   133 static volatile intptr_t ListLock = 0 ;      // protects global monitor free-list cache
   134 static volatile int MonitorFreeCount  = 0 ;      // # on gFreeList
   135 static volatile int MonitorPopulation = 0 ;      // # Extant -- in circulation
   136 #define CHAINMARKER ((oop)-1)
   138 // -----------------------------------------------------------------------------
   139 //  Fast Monitor Enter/Exit
   140 // This the fast monitor enter. The interpreter and compiler use
   141 // some assembly copies of this code. Make sure update those code
   142 // if the following function is changed. The implementation is
   143 // extremely sensitive to race condition. Be careful.
   145 void ObjectSynchronizer::fast_enter(Handle obj, BasicLock* lock, bool attempt_rebias, TRAPS) {
   146  if (UseBiasedLocking) {
   147     if (!SafepointSynchronize::is_at_safepoint()) {
   148       BiasedLocking::Condition cond = BiasedLocking::revoke_and_rebias(obj, attempt_rebias, THREAD);
   149       if (cond == BiasedLocking::BIAS_REVOKED_AND_REBIASED) {
   150         return;
   151       }
   152     } else {
   153       assert(!attempt_rebias, "can not rebias toward VM thread");
   154       BiasedLocking::revoke_at_safepoint(obj);
   155     }
   156     assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
   157  }
   159  slow_enter (obj, lock, THREAD) ;
   160 }
   162 void ObjectSynchronizer::fast_exit(oop object, BasicLock* lock, TRAPS) {
   163   assert(!object->mark()->has_bias_pattern(), "should not see bias pattern here");
   164   // if displaced header is null, the previous enter is recursive enter, no-op
   165   markOop dhw = lock->displaced_header();
   166   markOop mark ;
   167   if (dhw == NULL) {
   168      // Recursive stack-lock.
   169      // Diagnostics -- Could be: stack-locked, inflating, inflated.
   170      mark = object->mark() ;
   171      assert (!mark->is_neutral(), "invariant") ;
   172      if (mark->has_locker() && mark != markOopDesc::INFLATING()) {
   173         assert(THREAD->is_lock_owned((address)mark->locker()), "invariant") ;
   174      }
   175      if (mark->has_monitor()) {
   176         ObjectMonitor * m = mark->monitor() ;
   177         assert(((oop)(m->object()))->mark() == mark, "invariant") ;
   178         assert(m->is_entered(THREAD), "invariant") ;
   179      }
   180      return ;
   181   }
   183   mark = object->mark() ;
   185   // If the object is stack-locked by the current thread, try to
   186   // swing the displaced header from the box back to the mark.
   187   if (mark == (markOop) lock) {
   188      assert (dhw->is_neutral(), "invariant") ;
   189      if ((markOop) Atomic::cmpxchg_ptr (dhw, object->mark_addr(), mark) == mark) {
   190         TEVENT (fast_exit: release stacklock) ;
   191         return;
   192      }
   193   }
   195   ObjectSynchronizer::inflate(THREAD, object)->exit (THREAD) ;
   196 }
   198 // -----------------------------------------------------------------------------
   199 // Interpreter/Compiler Slow Case
   200 // This routine is used to handle interpreter/compiler slow case
   201 // We don't need to use fast path here, because it must have been
   202 // failed in the interpreter/compiler code.
   203 void ObjectSynchronizer::slow_enter(Handle obj, BasicLock* lock, TRAPS) {
   204   markOop mark = obj->mark();
   205   assert(!mark->has_bias_pattern(), "should not see bias pattern here");
   207   if (mark->is_neutral()) {
   208     // Anticipate successful CAS -- the ST of the displaced mark must
   209     // be visible <= the ST performed by the CAS.
   210     lock->set_displaced_header(mark);
   211     if (mark == (markOop) Atomic::cmpxchg_ptr(lock, obj()->mark_addr(), mark)) {
   212       TEVENT (slow_enter: release stacklock) ;
   213       return ;
   214     }
   215     // Fall through to inflate() ...
   216   } else
   217   if (mark->has_locker() && THREAD->is_lock_owned((address)mark->locker())) {
   218     assert(lock != mark->locker(), "must not re-lock the same lock");
   219     assert(lock != (BasicLock*)obj->mark(), "don't relock with same BasicLock");
   220     lock->set_displaced_header(NULL);
   221     return;
   222   }
   224 #if 0
   225   // The following optimization isn't particularly useful.
   226   if (mark->has_monitor() && mark->monitor()->is_entered(THREAD)) {
   227     lock->set_displaced_header (NULL) ;
   228     return ;
   229   }
   230 #endif
   232   // The object header will never be displaced to this lock,
   233   // so it does not matter what the value is, except that it
   234   // must be non-zero to avoid looking like a re-entrant lock,
   235   // and must not look locked either.
   236   lock->set_displaced_header(markOopDesc::unused_mark());
   237   ObjectSynchronizer::inflate(THREAD, obj())->enter(THREAD);
   238 }
   240 // This routine is used to handle interpreter/compiler slow case
   241 // We don't need to use fast path here, because it must have
   242 // failed in the interpreter/compiler code. Simply use the heavy
   243 // weight monitor should be ok, unless someone find otherwise.
   244 void ObjectSynchronizer::slow_exit(oop object, BasicLock* lock, TRAPS) {
   245   fast_exit (object, lock, THREAD) ;
   246 }
   248 // -----------------------------------------------------------------------------
   249 // Class Loader  support to workaround deadlocks on the class loader lock objects
   250 // Also used by GC
   251 // complete_exit()/reenter() are used to wait on a nested lock
   252 // i.e. to give up an outer lock completely and then re-enter
   253 // Used when holding nested locks - lock acquisition order: lock1 then lock2
   254 //  1) complete_exit lock1 - saving recursion count
   255 //  2) wait on lock2
   256 //  3) when notified on lock2, unlock lock2
   257 //  4) reenter lock1 with original recursion count
   258 //  5) lock lock2
   259 // NOTE: must use heavy weight monitor to handle complete_exit/reenter()
   260 intptr_t ObjectSynchronizer::complete_exit(Handle obj, TRAPS) {
   261   TEVENT (complete_exit) ;
   262   if (UseBiasedLocking) {
   263     BiasedLocking::revoke_and_rebias(obj, false, THREAD);
   264     assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
   265   }
   267   ObjectMonitor* monitor = ObjectSynchronizer::inflate(THREAD, obj());
   269   return monitor->complete_exit(THREAD);
   270 }
   272 // NOTE: must use heavy weight monitor to handle complete_exit/reenter()
   273 void ObjectSynchronizer::reenter(Handle obj, intptr_t recursion, TRAPS) {
   274   TEVENT (reenter) ;
   275   if (UseBiasedLocking) {
   276     BiasedLocking::revoke_and_rebias(obj, false, THREAD);
   277     assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
   278   }
   280   ObjectMonitor* monitor = ObjectSynchronizer::inflate(THREAD, obj());
   282   monitor->reenter(recursion, THREAD);
   283 }
   284 // -----------------------------------------------------------------------------
   285 // JNI locks on java objects
   286 // NOTE: must use heavy weight monitor to handle jni monitor enter
   287 void ObjectSynchronizer::jni_enter(Handle obj, TRAPS) { // possible entry from jni enter
   288   // the current locking is from JNI instead of Java code
   289   TEVENT (jni_enter) ;
   290   if (UseBiasedLocking) {
   291     BiasedLocking::revoke_and_rebias(obj, false, THREAD);
   292     assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
   293   }
   294   THREAD->set_current_pending_monitor_is_from_java(false);
   295   ObjectSynchronizer::inflate(THREAD, obj())->enter(THREAD);
   296   THREAD->set_current_pending_monitor_is_from_java(true);
   297 }
   299 // NOTE: must use heavy weight monitor to handle jni monitor enter
   300 bool ObjectSynchronizer::jni_try_enter(Handle obj, Thread* THREAD) {
   301   if (UseBiasedLocking) {
   302     BiasedLocking::revoke_and_rebias(obj, false, THREAD);
   303     assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
   304   }
   306   ObjectMonitor* monitor = ObjectSynchronizer::inflate_helper(obj());
   307   return monitor->try_enter(THREAD);
   308 }
   311 // NOTE: must use heavy weight monitor to handle jni monitor exit
   312 void ObjectSynchronizer::jni_exit(oop obj, Thread* THREAD) {
   313   TEVENT (jni_exit) ;
   314   if (UseBiasedLocking) {
   315     BiasedLocking::revoke_and_rebias(obj, false, THREAD);
   316   }
   317   assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
   319   ObjectMonitor* monitor = ObjectSynchronizer::inflate(THREAD, obj);
   320   // If this thread has locked the object, exit the monitor.  Note:  can't use
   321   // monitor->check(CHECK); must exit even if an exception is pending.
   322   if (monitor->check(THREAD)) {
   323      monitor->exit(THREAD);
   324   }
   325 }
   327 // -----------------------------------------------------------------------------
   328 // Internal VM locks on java objects
   329 // standard constructor, allows locking failures
   330 ObjectLocker::ObjectLocker(Handle obj, Thread* thread, bool doLock) {
   331   _dolock = doLock;
   332   _thread = thread;
   333   debug_only(if (StrictSafepointChecks) _thread->check_for_valid_safepoint_state(false);)
   334   _obj = obj;
   336   if (_dolock) {
   337     TEVENT (ObjectLocker) ;
   339     ObjectSynchronizer::fast_enter(_obj, &_lock, false, _thread);
   340   }
   341 }
   343 ObjectLocker::~ObjectLocker() {
   344   if (_dolock) {
   345     ObjectSynchronizer::fast_exit(_obj(), &_lock, _thread);
   346   }
   347 }
   350 // -----------------------------------------------------------------------------
   351 //  Wait/Notify/NotifyAll
   352 // NOTE: must use heavy weight monitor to handle wait()
   353 void ObjectSynchronizer::wait(Handle obj, jlong millis, TRAPS) {
   354   if (UseBiasedLocking) {
   355     BiasedLocking::revoke_and_rebias(obj, false, THREAD);
   356     assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
   357   }
   358   if (millis < 0) {
   359     TEVENT (wait - throw IAX) ;
   360     THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(), "timeout value is negative");
   361   }
   362   ObjectMonitor* monitor = ObjectSynchronizer::inflate(THREAD, obj());
   363   DTRACE_MONITOR_WAIT_PROBE(monitor, obj(), THREAD, millis);
   364   monitor->wait(millis, true, THREAD);
   366   /* This dummy call is in place to get around dtrace bug 6254741.  Once
   367      that's fixed we can uncomment the following line and remove the call */
   368   // DTRACE_MONITOR_PROBE(waited, monitor, obj(), THREAD);
   369   dtrace_waited_probe(monitor, obj, THREAD);
   370 }
   372 void ObjectSynchronizer::waitUninterruptibly (Handle obj, jlong millis, TRAPS) {
   373   if (UseBiasedLocking) {
   374     BiasedLocking::revoke_and_rebias(obj, false, THREAD);
   375     assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
   376   }
   377   if (millis < 0) {
   378     TEVENT (wait - throw IAX) ;
   379     THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(), "timeout value is negative");
   380   }
   381   ObjectSynchronizer::inflate(THREAD, obj()) -> wait(millis, false, THREAD) ;
   382 }
   384 void ObjectSynchronizer::notify(Handle obj, TRAPS) {
   385  if (UseBiasedLocking) {
   386     BiasedLocking::revoke_and_rebias(obj, false, THREAD);
   387     assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
   388   }
   390   markOop mark = obj->mark();
   391   if (mark->has_locker() && THREAD->is_lock_owned((address)mark->locker())) {
   392     return;
   393   }
   394   ObjectSynchronizer::inflate(THREAD, obj())->notify(THREAD);
   395 }
   397 // NOTE: see comment of notify()
   398 void ObjectSynchronizer::notifyall(Handle obj, TRAPS) {
   399   if (UseBiasedLocking) {
   400     BiasedLocking::revoke_and_rebias(obj, false, THREAD);
   401     assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
   402   }
   404   markOop mark = obj->mark();
   405   if (mark->has_locker() && THREAD->is_lock_owned((address)mark->locker())) {
   406     return;
   407   }
   408   ObjectSynchronizer::inflate(THREAD, obj())->notifyAll(THREAD);
   409 }
   411 // -----------------------------------------------------------------------------
   412 // Hash Code handling
   413 //
   414 // Performance concern:
   415 // OrderAccess::storestore() calls release() which STs 0 into the global volatile
   416 // OrderAccess::Dummy variable.  This store is unnecessary for correctness.
   417 // Many threads STing into a common location causes considerable cache migration
   418 // or "sloshing" on large SMP system.  As such, I avoid using OrderAccess::storestore()
   419 // until it's repaired.  In some cases OrderAccess::fence() -- which incurs local
   420 // latency on the executing processor -- is a better choice as it scales on SMP
   421 // systems.  See http://blogs.sun.com/dave/entry/biased_locking_in_hotspot for a
   422 // discussion of coherency costs.  Note that all our current reference platforms
   423 // provide strong ST-ST order, so the issue is moot on IA32, x64, and SPARC.
   424 //
   425 // As a general policy we use "volatile" to control compiler-based reordering
   426 // and explicit fences (barriers) to control for architectural reordering performed
   427 // by the CPU(s) or platform.
   429 static int  MBFence (int x) { OrderAccess::fence(); return x; }
   431 struct SharedGlobals {
   432     // These are highly shared mostly-read variables.
   433     // To avoid false-sharing they need to be the sole occupants of a $ line.
   434     double padPrefix [8];
   435     volatile int stwRandom ;
   436     volatile int stwCycle ;
   438     // Hot RW variables -- Sequester to avoid false-sharing
   439     double padSuffix [16];
   440     volatile int hcSequence ;
   441     double padFinal [8] ;
   442 } ;
   444 static SharedGlobals GVars ;
   445 static int MonitorScavengeThreshold = 1000000 ;
   446 static volatile int ForceMonitorScavenge = 0 ; // Scavenge required and pending
   448 static markOop ReadStableMark (oop obj) {
   449   markOop mark = obj->mark() ;
   450   if (!mark->is_being_inflated()) {
   451     return mark ;       // normal fast-path return
   452   }
   454   int its = 0 ;
   455   for (;;) {
   456     markOop mark = obj->mark() ;
   457     if (!mark->is_being_inflated()) {
   458       return mark ;    // normal fast-path return
   459     }
   461     // The object is being inflated by some other thread.
   462     // The caller of ReadStableMark() must wait for inflation to complete.
   463     // Avoid live-lock
   464     // TODO: consider calling SafepointSynchronize::do_call_back() while
   465     // spinning to see if there's a safepoint pending.  If so, immediately
   466     // yielding or blocking would be appropriate.  Avoid spinning while
   467     // there is a safepoint pending.
   468     // TODO: add inflation contention performance counters.
   469     // TODO: restrict the aggregate number of spinners.
   471     ++its ;
   472     if (its > 10000 || !os::is_MP()) {
   473        if (its & 1) {
   474          os::NakedYield() ;
   475          TEVENT (Inflate: INFLATING - yield) ;
   476        } else {
   477          // Note that the following code attenuates the livelock problem but is not
   478          // a complete remedy.  A more complete solution would require that the inflating
   479          // thread hold the associated inflation lock.  The following code simply restricts
   480          // the number of spinners to at most one.  We'll have N-2 threads blocked
   481          // on the inflationlock, 1 thread holding the inflation lock and using
   482          // a yield/park strategy, and 1 thread in the midst of inflation.
   483          // A more refined approach would be to change the encoding of INFLATING
   484          // to allow encapsulation of a native thread pointer.  Threads waiting for
   485          // inflation to complete would use CAS to push themselves onto a singly linked
   486          // list rooted at the markword.  Once enqueued, they'd loop, checking a per-thread flag
   487          // and calling park().  When inflation was complete the thread that accomplished inflation
   488          // would detach the list and set the markword to inflated with a single CAS and
   489          // then for each thread on the list, set the flag and unpark() the thread.
   490          // This is conceptually similar to muxAcquire-muxRelease, except that muxRelease
   491          // wakes at most one thread whereas we need to wake the entire list.
   492          int ix = (intptr_t(obj) >> 5) & (NINFLATIONLOCKS-1) ;
   493          int YieldThenBlock = 0 ;
   494          assert (ix >= 0 && ix < NINFLATIONLOCKS, "invariant") ;
   495          assert ((NINFLATIONLOCKS & (NINFLATIONLOCKS-1)) == 0, "invariant") ;
   496          Thread::muxAcquire (InflationLocks + ix, "InflationLock") ;
   497          while (obj->mark() == markOopDesc::INFLATING()) {
   498            // Beware: NakedYield() is advisory and has almost no effect on some platforms
   499            // so we periodically call Self->_ParkEvent->park(1).
   500            // We use a mixed spin/yield/block mechanism.
   501            if ((YieldThenBlock++) >= 16) {
   502               Thread::current()->_ParkEvent->park(1) ;
   503            } else {
   504               os::NakedYield() ;
   505            }
   506          }
   507          Thread::muxRelease (InflationLocks + ix ) ;
   508          TEVENT (Inflate: INFLATING - yield/park) ;
   509        }
   510     } else {
   511        SpinPause() ;       // SMP-polite spinning
   512     }
   513   }
   514 }
   516 // hashCode() generation :
   517 //
   518 // Possibilities:
   519 // * MD5Digest of {obj,stwRandom}
   520 // * CRC32 of {obj,stwRandom} or any linear-feedback shift register function.
   521 // * A DES- or AES-style SBox[] mechanism
   522 // * One of the Phi-based schemes, such as:
   523 //   2654435761 = 2^32 * Phi (golden ratio)
   524 //   HashCodeValue = ((uintptr_t(obj) >> 3) * 2654435761) ^ GVars.stwRandom ;
   525 // * A variation of Marsaglia's shift-xor RNG scheme.
   526 // * (obj ^ stwRandom) is appealing, but can result
   527 //   in undesirable regularity in the hashCode values of adjacent objects
   528 //   (objects allocated back-to-back, in particular).  This could potentially
   529 //   result in hashtable collisions and reduced hashtable efficiency.
   530 //   There are simple ways to "diffuse" the middle address bits over the
   531 //   generated hashCode values:
   532 //
   534 static inline intptr_t get_next_hash(Thread * Self, oop obj) {
   535   intptr_t value = 0 ;
   536   if (hashCode == 0) {
   537      // This form uses an unguarded global Park-Miller RNG,
   538      // so it's possible for two threads to race and generate the same RNG.
   539      // On MP system we'll have lots of RW access to a global, so the
   540      // mechanism induces lots of coherency traffic.
   541      value = os::random() ;
   542   } else
   543   if (hashCode == 1) {
   544      // This variation has the property of being stable (idempotent)
   545      // between STW operations.  This can be useful in some of the 1-0
   546      // synchronization schemes.
   547      intptr_t addrBits = intptr_t(obj) >> 3 ;
   548      value = addrBits ^ (addrBits >> 5) ^ GVars.stwRandom ;
   549   } else
   550   if (hashCode == 2) {
   551      value = 1 ;            // for sensitivity testing
   552   } else
   553   if (hashCode == 3) {
   554      value = ++GVars.hcSequence ;
   555   } else
   556   if (hashCode == 4) {
   557      value = intptr_t(obj) ;
   558   } else {
   559      // Marsaglia's xor-shift scheme with thread-specific state
   560      // This is probably the best overall implementation -- we'll
   561      // likely make this the default in future releases.
   562      unsigned t = Self->_hashStateX ;
   563      t ^= (t << 11) ;
   564      Self->_hashStateX = Self->_hashStateY ;
   565      Self->_hashStateY = Self->_hashStateZ ;
   566      Self->_hashStateZ = Self->_hashStateW ;
   567      unsigned v = Self->_hashStateW ;
   568      v = (v ^ (v >> 19)) ^ (t ^ (t >> 8)) ;
   569      Self->_hashStateW = v ;
   570      value = v ;
   571   }
   573   value &= markOopDesc::hash_mask;
   574   if (value == 0) value = 0xBAD ;
   575   assert (value != markOopDesc::no_hash, "invariant") ;
   576   TEVENT (hashCode: GENERATE) ;
   577   return value;
   578 }
   579 //
   580 intptr_t ObjectSynchronizer::FastHashCode (Thread * Self, oop obj) {
   581   if (UseBiasedLocking) {
   582     // NOTE: many places throughout the JVM do not expect a safepoint
   583     // to be taken here, in particular most operations on perm gen
   584     // objects. However, we only ever bias Java instances and all of
   585     // the call sites of identity_hash that might revoke biases have
   586     // been checked to make sure they can handle a safepoint. The
   587     // added check of the bias pattern is to avoid useless calls to
   588     // thread-local storage.
   589     if (obj->mark()->has_bias_pattern()) {
   590       // Box and unbox the raw reference just in case we cause a STW safepoint.
   591       Handle hobj (Self, obj) ;
   592       // Relaxing assertion for bug 6320749.
   593       assert (Universe::verify_in_progress() ||
   594               !SafepointSynchronize::is_at_safepoint(),
   595              "biases should not be seen by VM thread here");
   596       BiasedLocking::revoke_and_rebias(hobj, false, JavaThread::current());
   597       obj = hobj() ;
   598       assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
   599     }
   600   }
   602   // hashCode() is a heap mutator ...
   603   // Relaxing assertion for bug 6320749.
   604   assert (Universe::verify_in_progress() ||
   605           !SafepointSynchronize::is_at_safepoint(), "invariant") ;
   606   assert (Universe::verify_in_progress() ||
   607           Self->is_Java_thread() , "invariant") ;
   608   assert (Universe::verify_in_progress() ||
   609          ((JavaThread *)Self)->thread_state() != _thread_blocked, "invariant") ;
   611   ObjectMonitor* monitor = NULL;
   612   markOop temp, test;
   613   intptr_t hash;
   614   markOop mark = ReadStableMark (obj);
   616   // object should remain ineligible for biased locking
   617   assert (!mark->has_bias_pattern(), "invariant") ;
   619   if (mark->is_neutral()) {
   620     hash = mark->hash();              // this is a normal header
   621     if (hash) {                       // if it has hash, just return it
   622       return hash;
   623     }
   624     hash = get_next_hash(Self, obj);  // allocate a new hash code
   625     temp = mark->copy_set_hash(hash); // merge the hash code into header
   626     // use (machine word version) atomic operation to install the hash
   627     test = (markOop) Atomic::cmpxchg_ptr(temp, obj->mark_addr(), mark);
   628     if (test == mark) {
   629       return hash;
   630     }
   631     // If atomic operation failed, we must inflate the header
   632     // into heavy weight monitor. We could add more code here
   633     // for fast path, but it does not worth the complexity.
   634   } else if (mark->has_monitor()) {
   635     monitor = mark->monitor();
   636     temp = monitor->header();
   637     assert (temp->is_neutral(), "invariant") ;
   638     hash = temp->hash();
   639     if (hash) {
   640       return hash;
   641     }
   642     // Skip to the following code to reduce code size
   643   } else if (Self->is_lock_owned((address)mark->locker())) {
   644     temp = mark->displaced_mark_helper(); // this is a lightweight monitor owned
   645     assert (temp->is_neutral(), "invariant") ;
   646     hash = temp->hash();              // by current thread, check if the displaced
   647     if (hash) {                       // header contains hash code
   648       return hash;
   649     }
   650     // WARNING:
   651     //   The displaced header is strictly immutable.
   652     // It can NOT be changed in ANY cases. So we have
   653     // to inflate the header into heavyweight monitor
   654     // even the current thread owns the lock. The reason
   655     // is the BasicLock (stack slot) will be asynchronously
   656     // read by other threads during the inflate() function.
   657     // Any change to stack may not propagate to other threads
   658     // correctly.
   659   }
   661   // Inflate the monitor to set hash code
   662   monitor = ObjectSynchronizer::inflate(Self, obj);
   663   // Load displaced header and check it has hash code
   664   mark = monitor->header();
   665   assert (mark->is_neutral(), "invariant") ;
   666   hash = mark->hash();
   667   if (hash == 0) {
   668     hash = get_next_hash(Self, obj);
   669     temp = mark->copy_set_hash(hash); // merge hash code into header
   670     assert (temp->is_neutral(), "invariant") ;
   671     test = (markOop) Atomic::cmpxchg_ptr(temp, monitor, mark);
   672     if (test != mark) {
   673       // The only update to the header in the monitor (outside GC)
   674       // is install the hash code. If someone add new usage of
   675       // displaced header, please update this code
   676       hash = test->hash();
   677       assert (test->is_neutral(), "invariant") ;
   678       assert (hash != 0, "Trivial unexpected object/monitor header usage.");
   679     }
   680   }
   681   // We finally get the hash
   682   return hash;
   683 }
   685 // Deprecated -- use FastHashCode() instead.
   687 intptr_t ObjectSynchronizer::identity_hash_value_for(Handle obj) {
   688   return FastHashCode (Thread::current(), obj()) ;
   689 }
   692 bool ObjectSynchronizer::current_thread_holds_lock(JavaThread* thread,
   693                                                    Handle h_obj) {
   694   if (UseBiasedLocking) {
   695     BiasedLocking::revoke_and_rebias(h_obj, false, thread);
   696     assert(!h_obj->mark()->has_bias_pattern(), "biases should be revoked by now");
   697   }
   699   assert(thread == JavaThread::current(), "Can only be called on current thread");
   700   oop obj = h_obj();
   702   markOop mark = ReadStableMark (obj) ;
   704   // Uncontended case, header points to stack
   705   if (mark->has_locker()) {
   706     return thread->is_lock_owned((address)mark->locker());
   707   }
   708   // Contended case, header points to ObjectMonitor (tagged pointer)
   709   if (mark->has_monitor()) {
   710     ObjectMonitor* monitor = mark->monitor();
   711     return monitor->is_entered(thread) != 0 ;
   712   }
   713   // Unlocked case, header in place
   714   assert(mark->is_neutral(), "sanity check");
   715   return false;
   716 }
   718 // Be aware of this method could revoke bias of the lock object.
   719 // This method querys the ownership of the lock handle specified by 'h_obj'.
   720 // If the current thread owns the lock, it returns owner_self. If no
   721 // thread owns the lock, it returns owner_none. Otherwise, it will return
   722 // ower_other.
   723 ObjectSynchronizer::LockOwnership ObjectSynchronizer::query_lock_ownership
   724 (JavaThread *self, Handle h_obj) {
   725   // The caller must beware this method can revoke bias, and
   726   // revocation can result in a safepoint.
   727   assert (!SafepointSynchronize::is_at_safepoint(), "invariant") ;
   728   assert (self->thread_state() != _thread_blocked , "invariant") ;
   730   // Possible mark states: neutral, biased, stack-locked, inflated
   732   if (UseBiasedLocking && h_obj()->mark()->has_bias_pattern()) {
   733     // CASE: biased
   734     BiasedLocking::revoke_and_rebias(h_obj, false, self);
   735     assert(!h_obj->mark()->has_bias_pattern(),
   736            "biases should be revoked by now");
   737   }
   739   assert(self == JavaThread::current(), "Can only be called on current thread");
   740   oop obj = h_obj();
   741   markOop mark = ReadStableMark (obj) ;
   743   // CASE: stack-locked.  Mark points to a BasicLock on the owner's stack.
   744   if (mark->has_locker()) {
   745     return self->is_lock_owned((address)mark->locker()) ?
   746       owner_self : owner_other;
   747   }
   749   // CASE: inflated. Mark (tagged pointer) points to an objectMonitor.
   750   // The Object:ObjectMonitor relationship is stable as long as we're
   751   // not at a safepoint.
   752   if (mark->has_monitor()) {
   753     void * owner = mark->monitor()->_owner ;
   754     if (owner == NULL) return owner_none ;
   755     return (owner == self ||
   756             self->is_lock_owned((address)owner)) ? owner_self : owner_other;
   757   }
   759   // CASE: neutral
   760   assert(mark->is_neutral(), "sanity check");
   761   return owner_none ;           // it's unlocked
   762 }
   764 // FIXME: jvmti should call this
   765 JavaThread* ObjectSynchronizer::get_lock_owner(Handle h_obj, bool doLock) {
   766   if (UseBiasedLocking) {
   767     if (SafepointSynchronize::is_at_safepoint()) {
   768       BiasedLocking::revoke_at_safepoint(h_obj);
   769     } else {
   770       BiasedLocking::revoke_and_rebias(h_obj, false, JavaThread::current());
   771     }
   772     assert(!h_obj->mark()->has_bias_pattern(), "biases should be revoked by now");
   773   }
   775   oop obj = h_obj();
   776   address owner = NULL;
   778   markOop mark = ReadStableMark (obj) ;
   780   // Uncontended case, header points to stack
   781   if (mark->has_locker()) {
   782     owner = (address) mark->locker();
   783   }
   785   // Contended case, header points to ObjectMonitor (tagged pointer)
   786   if (mark->has_monitor()) {
   787     ObjectMonitor* monitor = mark->monitor();
   788     assert(monitor != NULL, "monitor should be non-null");
   789     owner = (address) monitor->owner();
   790   }
   792   if (owner != NULL) {
   793     return Threads::owning_thread_from_monitor_owner(owner, doLock);
   794   }
   796   // Unlocked case, header in place
   797   // Cannot have assertion since this object may have been
   798   // locked by another thread when reaching here.
   799   // assert(mark->is_neutral(), "sanity check");
   801   return NULL;
   802 }
   803 // Visitors ...
   805 void ObjectSynchronizer::monitors_iterate(MonitorClosure* closure) {
   806   ObjectMonitor* block = gBlockList;
   807   ObjectMonitor* mid;
   808   while (block) {
   809     assert(block->object() == CHAINMARKER, "must be a block header");
   810     for (int i = _BLOCKSIZE - 1; i > 0; i--) {
   811       mid = block + i;
   812       oop object = (oop) mid->object();
   813       if (object != NULL) {
   814         closure->do_monitor(mid);
   815       }
   816     }
   817     block = (ObjectMonitor*) block->FreeNext;
   818   }
   819 }
   821 // Get the next block in the block list.
   822 static inline ObjectMonitor* next(ObjectMonitor* block) {
   823   assert(block->object() == CHAINMARKER, "must be a block header");
   824   block = block->FreeNext ;
   825   assert(block == NULL || block->object() == CHAINMARKER, "must be a block header");
   826   return block;
   827 }
   830 void ObjectSynchronizer::oops_do(OopClosure* f) {
   831   assert(SafepointSynchronize::is_at_safepoint(), "must be at safepoint");
   832   for (ObjectMonitor* block = gBlockList; block != NULL; block = next(block)) {
   833     assert(block->object() == CHAINMARKER, "must be a block header");
   834     for (int i = 1; i < _BLOCKSIZE; i++) {
   835       ObjectMonitor* mid = &block[i];
   836       if (mid->object() != NULL) {
   837         f->do_oop((oop*)mid->object_addr());
   838       }
   839     }
   840   }
   841 }
   844 // -----------------------------------------------------------------------------
   845 // ObjectMonitor Lifecycle
   846 // -----------------------
   847 // Inflation unlinks monitors from the global gFreeList and
   848 // associates them with objects.  Deflation -- which occurs at
   849 // STW-time -- disassociates idle monitors from objects.  Such
   850 // scavenged monitors are returned to the gFreeList.
   851 //
   852 // The global list is protected by ListLock.  All the critical sections
   853 // are short and operate in constant-time.
   854 //
   855 // ObjectMonitors reside in type-stable memory (TSM) and are immortal.
   856 //
   857 // Lifecycle:
   858 // --   unassigned and on the global free list
   859 // --   unassigned and on a thread's private omFreeList
   860 // --   assigned to an object.  The object is inflated and the mark refers
   861 //      to the objectmonitor.
   862 //
   865 // Constraining monitor pool growth via MonitorBound ...
   866 //
   867 // The monitor pool is grow-only.  We scavenge at STW safepoint-time, but the
   868 // the rate of scavenging is driven primarily by GC.  As such,  we can find
   869 // an inordinate number of monitors in circulation.
   870 // To avoid that scenario we can artificially induce a STW safepoint
   871 // if the pool appears to be growing past some reasonable bound.
   872 // Generally we favor time in space-time tradeoffs, but as there's no
   873 // natural back-pressure on the # of extant monitors we need to impose some
   874 // type of limit.  Beware that if MonitorBound is set to too low a value
   875 // we could just loop. In addition, if MonitorBound is set to a low value
   876 // we'll incur more safepoints, which are harmful to performance.
   877 // See also: GuaranteedSafepointInterval
   878 //
   879 // The current implementation uses asynchronous VM operations.
   880 //
   882 static void InduceScavenge (Thread * Self, const char * Whence) {
   883   // Induce STW safepoint to trim monitors
   884   // Ultimately, this results in a call to deflate_idle_monitors() in the near future.
   885   // More precisely, trigger an asynchronous STW safepoint as the number
   886   // of active monitors passes the specified threshold.
   887   // TODO: assert thread state is reasonable
   889   if (ForceMonitorScavenge == 0 && Atomic::xchg (1, &ForceMonitorScavenge) == 0) {
   890     if (ObjectMonitor::Knob_Verbose) {
   891       ::printf ("Monitor scavenge - Induced STW @%s (%d)\n", Whence, ForceMonitorScavenge) ;
   892       ::fflush(stdout) ;
   893     }
   894     // Induce a 'null' safepoint to scavenge monitors
   895     // Must VM_Operation instance be heap allocated as the op will be enqueue and posted
   896     // to the VMthread and have a lifespan longer than that of this activation record.
   897     // The VMThread will delete the op when completed.
   898     VMThread::execute (new VM_ForceAsyncSafepoint()) ;
   900     if (ObjectMonitor::Knob_Verbose) {
   901       ::printf ("Monitor scavenge - STW posted @%s (%d)\n", Whence, ForceMonitorScavenge) ;
   902       ::fflush(stdout) ;
   903     }
   904   }
   905 }
   906 /* Too slow for general assert or debug
   907 void ObjectSynchronizer::verifyInUse (Thread *Self) {
   908    ObjectMonitor* mid;
   909    int inusetally = 0;
   910    for (mid = Self->omInUseList; mid != NULL; mid = mid->FreeNext) {
   911      inusetally ++;
   912    }
   913    assert(inusetally == Self->omInUseCount, "inuse count off");
   915    int freetally = 0;
   916    for (mid = Self->omFreeList; mid != NULL; mid = mid->FreeNext) {
   917      freetally ++;
   918    }
   919    assert(freetally == Self->omFreeCount, "free count off");
   920 }
   921 */
   922 ObjectMonitor * ATTR ObjectSynchronizer::omAlloc (Thread * Self) {
   923     // A large MAXPRIVATE value reduces both list lock contention
   924     // and list coherency traffic, but also tends to increase the
   925     // number of objectMonitors in circulation as well as the STW
   926     // scavenge costs.  As usual, we lean toward time in space-time
   927     // tradeoffs.
   928     const int MAXPRIVATE = 1024 ;
   929     for (;;) {
   930         ObjectMonitor * m ;
   932         // 1: try to allocate from the thread's local omFreeList.
   933         // Threads will attempt to allocate first from their local list, then
   934         // from the global list, and only after those attempts fail will the thread
   935         // attempt to instantiate new monitors.   Thread-local free lists take
   936         // heat off the ListLock and improve allocation latency, as well as reducing
   937         // coherency traffic on the shared global list.
   938         m = Self->omFreeList ;
   939         if (m != NULL) {
   940            Self->omFreeList = m->FreeNext ;
   941            Self->omFreeCount -- ;
   942            // CONSIDER: set m->FreeNext = BAD -- diagnostic hygiene
   943            guarantee (m->object() == NULL, "invariant") ;
   944            if (MonitorInUseLists) {
   945              m->FreeNext = Self->omInUseList;
   946              Self->omInUseList = m;
   947              Self->omInUseCount ++;
   948              // verifyInUse(Self);
   949            } else {
   950              m->FreeNext = NULL;
   951            }
   952            return m ;
   953         }
   955         // 2: try to allocate from the global gFreeList
   956         // CONSIDER: use muxTry() instead of muxAcquire().
   957         // If the muxTry() fails then drop immediately into case 3.
   958         // If we're using thread-local free lists then try
   959         // to reprovision the caller's free list.
   960         if (gFreeList != NULL) {
   961             // Reprovision the thread's omFreeList.
   962             // Use bulk transfers to reduce the allocation rate and heat
   963             // on various locks.
   964             Thread::muxAcquire (&ListLock, "omAlloc") ;
   965             for (int i = Self->omFreeProvision; --i >= 0 && gFreeList != NULL; ) {
   966                 MonitorFreeCount --;
   967                 ObjectMonitor * take = gFreeList ;
   968                 gFreeList = take->FreeNext ;
   969                 guarantee (take->object() == NULL, "invariant") ;
   970                 guarantee (!take->is_busy(), "invariant") ;
   971                 take->Recycle() ;
   972                 omRelease (Self, take, false) ;
   973             }
   974             Thread::muxRelease (&ListLock) ;
   975             Self->omFreeProvision += 1 + (Self->omFreeProvision/2) ;
   976             if (Self->omFreeProvision > MAXPRIVATE ) Self->omFreeProvision = MAXPRIVATE ;
   977             TEVENT (omFirst - reprovision) ;
   979             const int mx = MonitorBound ;
   980             if (mx > 0 && (MonitorPopulation-MonitorFreeCount) > mx) {
   981               // We can't safely induce a STW safepoint from omAlloc() as our thread
   982               // state may not be appropriate for such activities and callers may hold
   983               // naked oops, so instead we defer the action.
   984               InduceScavenge (Self, "omAlloc") ;
   985             }
   986             continue;
   987         }
   989         // 3: allocate a block of new ObjectMonitors
   990         // Both the local and global free lists are empty -- resort to malloc().
   991         // In the current implementation objectMonitors are TSM - immortal.
   992         assert (_BLOCKSIZE > 1, "invariant") ;
   993         ObjectMonitor * temp = new ObjectMonitor[_BLOCKSIZE];
   995         // NOTE: (almost) no way to recover if allocation failed.
   996         // We might be able to induce a STW safepoint and scavenge enough
   997         // objectMonitors to permit progress.
   998         if (temp == NULL) {
   999             vm_exit_out_of_memory (sizeof (ObjectMonitor[_BLOCKSIZE]), "Allocate ObjectMonitors") ;
  1002         // Format the block.
  1003         // initialize the linked list, each monitor points to its next
  1004         // forming the single linked free list, the very first monitor
  1005         // will points to next block, which forms the block list.
  1006         // The trick of using the 1st element in the block as gBlockList
  1007         // linkage should be reconsidered.  A better implementation would
  1008         // look like: class Block { Block * next; int N; ObjectMonitor Body [N] ; }
  1010         for (int i = 1; i < _BLOCKSIZE ; i++) {
  1011            temp[i].FreeNext = &temp[i+1];
  1014         // terminate the last monitor as the end of list
  1015         temp[_BLOCKSIZE - 1].FreeNext = NULL ;
  1017         // Element [0] is reserved for global list linkage
  1018         temp[0].set_object(CHAINMARKER);
  1020         // Consider carving out this thread's current request from the
  1021         // block in hand.  This avoids some lock traffic and redundant
  1022         // list activity.
  1024         // Acquire the ListLock to manipulate BlockList and FreeList.
  1025         // An Oyama-Taura-Yonezawa scheme might be more efficient.
  1026         Thread::muxAcquire (&ListLock, "omAlloc [2]") ;
  1027         MonitorPopulation += _BLOCKSIZE-1;
  1028         MonitorFreeCount += _BLOCKSIZE-1;
  1030         // Add the new block to the list of extant blocks (gBlockList).
  1031         // The very first objectMonitor in a block is reserved and dedicated.
  1032         // It serves as blocklist "next" linkage.
  1033         temp[0].FreeNext = gBlockList;
  1034         gBlockList = temp;
  1036         // Add the new string of objectMonitors to the global free list
  1037         temp[_BLOCKSIZE - 1].FreeNext = gFreeList ;
  1038         gFreeList = temp + 1;
  1039         Thread::muxRelease (&ListLock) ;
  1040         TEVENT (Allocate block of monitors) ;
  1044 // Place "m" on the caller's private per-thread omFreeList.
  1045 // In practice there's no need to clamp or limit the number of
  1046 // monitors on a thread's omFreeList as the only time we'll call
  1047 // omRelease is to return a monitor to the free list after a CAS
  1048 // attempt failed.  This doesn't allow unbounded #s of monitors to
  1049 // accumulate on a thread's free list.
  1050 //
  1052 void ObjectSynchronizer::omRelease (Thread * Self, ObjectMonitor * m, bool fromPerThreadAlloc) {
  1053     guarantee (m->object() == NULL, "invariant") ;
  1055     // Remove from omInUseList
  1056     if (MonitorInUseLists && fromPerThreadAlloc) {
  1057       ObjectMonitor* curmidinuse = NULL;
  1058       for (ObjectMonitor* mid = Self->omInUseList; mid != NULL; ) {
  1059        if (m == mid) {
  1060          // extract from per-thread in-use-list
  1061          if (mid == Self->omInUseList) {
  1062            Self->omInUseList = mid->FreeNext;
  1063          } else if (curmidinuse != NULL) {
  1064            curmidinuse->FreeNext = mid->FreeNext; // maintain the current thread inuselist
  1066          Self->omInUseCount --;
  1067          // verifyInUse(Self);
  1068          break;
  1069        } else {
  1070          curmidinuse = mid;
  1071          mid = mid->FreeNext;
  1076   // FreeNext is used for both onInUseList and omFreeList, so clear old before setting new
  1077   m->FreeNext = Self->omFreeList ;
  1078   Self->omFreeList = m ;
  1079   Self->omFreeCount ++ ;
  1082 // Return the monitors of a moribund thread's local free list to
  1083 // the global free list.  Typically a thread calls omFlush() when
  1084 // it's dying.  We could also consider having the VM thread steal
  1085 // monitors from threads that have not run java code over a few
  1086 // consecutive STW safepoints.  Relatedly, we might decay
  1087 // omFreeProvision at STW safepoints.
  1088 //
  1089 // Also return the monitors of a moribund thread"s omInUseList to
  1090 // a global gOmInUseList under the global list lock so these
  1091 // will continue to be scanned.
  1092 //
  1093 // We currently call omFlush() from the Thread:: dtor _after the thread
  1094 // has been excised from the thread list and is no longer a mutator.
  1095 // That means that omFlush() can run concurrently with a safepoint and
  1096 // the scavenge operator.  Calling omFlush() from JavaThread::exit() might
  1097 // be a better choice as we could safely reason that that the JVM is
  1098 // not at a safepoint at the time of the call, and thus there could
  1099 // be not inopportune interleavings between omFlush() and the scavenge
  1100 // operator.
  1102 void ObjectSynchronizer::omFlush (Thread * Self) {
  1103     ObjectMonitor * List = Self->omFreeList ;  // Null-terminated SLL
  1104     Self->omFreeList = NULL ;
  1105     ObjectMonitor * Tail = NULL ;
  1106     int Tally = 0;
  1107     if (List != NULL) {
  1108       ObjectMonitor * s ;
  1109       for (s = List ; s != NULL ; s = s->FreeNext) {
  1110           Tally ++ ;
  1111           Tail = s ;
  1112           guarantee (s->object() == NULL, "invariant") ;
  1113           guarantee (!s->is_busy(), "invariant") ;
  1114           s->set_owner (NULL) ;   // redundant but good hygiene
  1115           TEVENT (omFlush - Move one) ;
  1117       guarantee (Tail != NULL && List != NULL, "invariant") ;
  1120     ObjectMonitor * InUseList = Self->omInUseList;
  1121     ObjectMonitor * InUseTail = NULL ;
  1122     int InUseTally = 0;
  1123     if (InUseList != NULL) {
  1124       Self->omInUseList = NULL;
  1125       ObjectMonitor *curom;
  1126       for (curom = InUseList; curom != NULL; curom = curom->FreeNext) {
  1127         InUseTail = curom;
  1128         InUseTally++;
  1130 // TODO debug
  1131       assert(Self->omInUseCount == InUseTally, "inuse count off");
  1132       Self->omInUseCount = 0;
  1133       guarantee (InUseTail != NULL && InUseList != NULL, "invariant");
  1136     Thread::muxAcquire (&ListLock, "omFlush") ;
  1137     if (Tail != NULL) {
  1138       Tail->FreeNext = gFreeList ;
  1139       gFreeList = List ;
  1140       MonitorFreeCount += Tally;
  1143     if (InUseTail != NULL) {
  1144       InUseTail->FreeNext = gOmInUseList;
  1145       gOmInUseList = InUseList;
  1146       gOmInUseCount += InUseTally;
  1149     Thread::muxRelease (&ListLock) ;
  1150     TEVENT (omFlush) ;
  1153 // Fast path code shared by multiple functions
  1154 ObjectMonitor* ObjectSynchronizer::inflate_helper(oop obj) {
  1155   markOop mark = obj->mark();
  1156   if (mark->has_monitor()) {
  1157     assert(ObjectSynchronizer::verify_objmon_isinpool(mark->monitor()), "monitor is invalid");
  1158     assert(mark->monitor()->header()->is_neutral(), "monitor must record a good object header");
  1159     return mark->monitor();
  1161   return ObjectSynchronizer::inflate(Thread::current(), obj);
  1165 // Note that we could encounter some performance loss through false-sharing as
  1166 // multiple locks occupy the same $ line.  Padding might be appropriate.
  1169 ObjectMonitor * ATTR ObjectSynchronizer::inflate (Thread * Self, oop object) {
  1170   // Inflate mutates the heap ...
  1171   // Relaxing assertion for bug 6320749.
  1172   assert (Universe::verify_in_progress() ||
  1173           !SafepointSynchronize::is_at_safepoint(), "invariant") ;
  1175   for (;;) {
  1176       const markOop mark = object->mark() ;
  1177       assert (!mark->has_bias_pattern(), "invariant") ;
  1179       // The mark can be in one of the following states:
  1180       // *  Inflated     - just return
  1181       // *  Stack-locked - coerce it to inflated
  1182       // *  INFLATING    - busy wait for conversion to complete
  1183       // *  Neutral      - aggressively inflate the object.
  1184       // *  BIASED       - Illegal.  We should never see this
  1186       // CASE: inflated
  1187       if (mark->has_monitor()) {
  1188           ObjectMonitor * inf = mark->monitor() ;
  1189           assert (inf->header()->is_neutral(), "invariant");
  1190           assert (inf->object() == object, "invariant") ;
  1191           assert (ObjectSynchronizer::verify_objmon_isinpool(inf), "monitor is invalid");
  1192           return inf ;
  1195       // CASE: inflation in progress - inflating over a stack-lock.
  1196       // Some other thread is converting from stack-locked to inflated.
  1197       // Only that thread can complete inflation -- other threads must wait.
  1198       // The INFLATING value is transient.
  1199       // Currently, we spin/yield/park and poll the markword, waiting for inflation to finish.
  1200       // We could always eliminate polling by parking the thread on some auxiliary list.
  1201       if (mark == markOopDesc::INFLATING()) {
  1202          TEVENT (Inflate: spin while INFLATING) ;
  1203          ReadStableMark(object) ;
  1204          continue ;
  1207       // CASE: stack-locked
  1208       // Could be stack-locked either by this thread or by some other thread.
  1209       //
  1210       // Note that we allocate the objectmonitor speculatively, _before_ attempting
  1211       // to install INFLATING into the mark word.  We originally installed INFLATING,
  1212       // allocated the objectmonitor, and then finally STed the address of the
  1213       // objectmonitor into the mark.  This was correct, but artificially lengthened
  1214       // the interval in which INFLATED appeared in the mark, thus increasing
  1215       // the odds of inflation contention.
  1216       //
  1217       // We now use per-thread private objectmonitor free lists.
  1218       // These list are reprovisioned from the global free list outside the
  1219       // critical INFLATING...ST interval.  A thread can transfer
  1220       // multiple objectmonitors en-mass from the global free list to its local free list.
  1221       // This reduces coherency traffic and lock contention on the global free list.
  1222       // Using such local free lists, it doesn't matter if the omAlloc() call appears
  1223       // before or after the CAS(INFLATING) operation.
  1224       // See the comments in omAlloc().
  1226       if (mark->has_locker()) {
  1227           ObjectMonitor * m = omAlloc (Self) ;
  1228           // Optimistically prepare the objectmonitor - anticipate successful CAS
  1229           // We do this before the CAS in order to minimize the length of time
  1230           // in which INFLATING appears in the mark.
  1231           m->Recycle();
  1232           m->_Responsible  = NULL ;
  1233           m->OwnerIsThread = 0 ;
  1234           m->_recursions   = 0 ;
  1235           m->_SpinDuration = ObjectMonitor::Knob_SpinLimit ;   // Consider: maintain by type/class
  1237           markOop cmp = (markOop) Atomic::cmpxchg_ptr (markOopDesc::INFLATING(), object->mark_addr(), mark) ;
  1238           if (cmp != mark) {
  1239              omRelease (Self, m, true) ;
  1240              continue ;       // Interference -- just retry
  1243           // We've successfully installed INFLATING (0) into the mark-word.
  1244           // This is the only case where 0 will appear in a mark-work.
  1245           // Only the singular thread that successfully swings the mark-word
  1246           // to 0 can perform (or more precisely, complete) inflation.
  1247           //
  1248           // Why do we CAS a 0 into the mark-word instead of just CASing the
  1249           // mark-word from the stack-locked value directly to the new inflated state?
  1250           // Consider what happens when a thread unlocks a stack-locked object.
  1251           // It attempts to use CAS to swing the displaced header value from the
  1252           // on-stack basiclock back into the object header.  Recall also that the
  1253           // header value (hashcode, etc) can reside in (a) the object header, or
  1254           // (b) a displaced header associated with the stack-lock, or (c) a displaced
  1255           // header in an objectMonitor.  The inflate() routine must copy the header
  1256           // value from the basiclock on the owner's stack to the objectMonitor, all
  1257           // the while preserving the hashCode stability invariants.  If the owner
  1258           // decides to release the lock while the value is 0, the unlock will fail
  1259           // and control will eventually pass from slow_exit() to inflate.  The owner
  1260           // will then spin, waiting for the 0 value to disappear.   Put another way,
  1261           // the 0 causes the owner to stall if the owner happens to try to
  1262           // drop the lock (restoring the header from the basiclock to the object)
  1263           // while inflation is in-progress.  This protocol avoids races that might
  1264           // would otherwise permit hashCode values to change or "flicker" for an object.
  1265           // Critically, while object->mark is 0 mark->displaced_mark_helper() is stable.
  1266           // 0 serves as a "BUSY" inflate-in-progress indicator.
  1269           // fetch the displaced mark from the owner's stack.
  1270           // The owner can't die or unwind past the lock while our INFLATING
  1271           // object is in the mark.  Furthermore the owner can't complete
  1272           // an unlock on the object, either.
  1273           markOop dmw = mark->displaced_mark_helper() ;
  1274           assert (dmw->is_neutral(), "invariant") ;
  1276           // Setup monitor fields to proper values -- prepare the monitor
  1277           m->set_header(dmw) ;
  1279           // Optimization: if the mark->locker stack address is associated
  1280           // with this thread we could simply set m->_owner = Self and
  1281           // m->OwnerIsThread = 1. Note that a thread can inflate an object
  1282           // that it has stack-locked -- as might happen in wait() -- directly
  1283           // with CAS.  That is, we can avoid the xchg-NULL .... ST idiom.
  1284           m->set_owner(mark->locker());
  1285           m->set_object(object);
  1286           // TODO-FIXME: assert BasicLock->dhw != 0.
  1288           // Must preserve store ordering. The monitor state must
  1289           // be stable at the time of publishing the monitor address.
  1290           guarantee (object->mark() == markOopDesc::INFLATING(), "invariant") ;
  1291           object->release_set_mark(markOopDesc::encode(m));
  1293           // Hopefully the performance counters are allocated on distinct cache lines
  1294           // to avoid false sharing on MP systems ...
  1295           if (ObjectMonitor::_sync_Inflations != NULL) ObjectMonitor::_sync_Inflations->inc() ;
  1296           TEVENT(Inflate: overwrite stacklock) ;
  1297           if (TraceMonitorInflation) {
  1298             if (object->is_instance()) {
  1299               ResourceMark rm;
  1300               tty->print_cr("Inflating object " INTPTR_FORMAT " , mark " INTPTR_FORMAT " , type %s",
  1301                 (intptr_t) object, (intptr_t) object->mark(),
  1302                 Klass::cast(object->klass())->external_name());
  1305           return m ;
  1308       // CASE: neutral
  1309       // TODO-FIXME: for entry we currently inflate and then try to CAS _owner.
  1310       // If we know we're inflating for entry it's better to inflate by swinging a
  1311       // pre-locked objectMonitor pointer into the object header.   A successful
  1312       // CAS inflates the object *and* confers ownership to the inflating thread.
  1313       // In the current implementation we use a 2-step mechanism where we CAS()
  1314       // to inflate and then CAS() again to try to swing _owner from NULL to Self.
  1315       // An inflateTry() method that we could call from fast_enter() and slow_enter()
  1316       // would be useful.
  1318       assert (mark->is_neutral(), "invariant");
  1319       ObjectMonitor * m = omAlloc (Self) ;
  1320       // prepare m for installation - set monitor to initial state
  1321       m->Recycle();
  1322       m->set_header(mark);
  1323       m->set_owner(NULL);
  1324       m->set_object(object);
  1325       m->OwnerIsThread = 1 ;
  1326       m->_recursions   = 0 ;
  1327       m->_Responsible  = NULL ;
  1328       m->_SpinDuration = ObjectMonitor::Knob_SpinLimit ;       // consider: keep metastats by type/class
  1330       if (Atomic::cmpxchg_ptr (markOopDesc::encode(m), object->mark_addr(), mark) != mark) {
  1331           m->set_object (NULL) ;
  1332           m->set_owner  (NULL) ;
  1333           m->OwnerIsThread = 0 ;
  1334           m->Recycle() ;
  1335           omRelease (Self, m, true) ;
  1336           m = NULL ;
  1337           continue ;
  1338           // interference - the markword changed - just retry.
  1339           // The state-transitions are one-way, so there's no chance of
  1340           // live-lock -- "Inflated" is an absorbing state.
  1343       // Hopefully the performance counters are allocated on distinct
  1344       // cache lines to avoid false sharing on MP systems ...
  1345       if (ObjectMonitor::_sync_Inflations != NULL) ObjectMonitor::_sync_Inflations->inc() ;
  1346       TEVENT(Inflate: overwrite neutral) ;
  1347       if (TraceMonitorInflation) {
  1348         if (object->is_instance()) {
  1349           ResourceMark rm;
  1350           tty->print_cr("Inflating object " INTPTR_FORMAT " , mark " INTPTR_FORMAT " , type %s",
  1351             (intptr_t) object, (intptr_t) object->mark(),
  1352             Klass::cast(object->klass())->external_name());
  1355       return m ;
  1359 // Note that we could encounter some performance loss through false-sharing as
  1360 // multiple locks occupy the same $ line.  Padding might be appropriate.
  1363 // Deflate_idle_monitors() is called at all safepoints, immediately
  1364 // after all mutators are stopped, but before any objects have moved.
  1365 // It traverses the list of known monitors, deflating where possible.
  1366 // The scavenged monitor are returned to the monitor free list.
  1367 //
  1368 // Beware that we scavenge at *every* stop-the-world point.
  1369 // Having a large number of monitors in-circulation negatively
  1370 // impacts the performance of some applications (e.g., PointBase).
  1371 // Broadly, we want to minimize the # of monitors in circulation.
  1372 //
  1373 // We have added a flag, MonitorInUseLists, which creates a list
  1374 // of active monitors for each thread. deflate_idle_monitors()
  1375 // only scans the per-thread inuse lists. omAlloc() puts all
  1376 // assigned monitors on the per-thread list. deflate_idle_monitors()
  1377 // returns the non-busy monitors to the global free list.
  1378 // When a thread dies, omFlush() adds the list of active monitors for
  1379 // that thread to a global gOmInUseList acquiring the
  1380 // global list lock. deflate_idle_monitors() acquires the global
  1381 // list lock to scan for non-busy monitors to the global free list.
  1382 // An alternative could have used a single global inuse list. The
  1383 // downside would have been the additional cost of acquiring the global list lock
  1384 // for every omAlloc().
  1385 //
  1386 // Perversely, the heap size -- and thus the STW safepoint rate --
  1387 // typically drives the scavenge rate.  Large heaps can mean infrequent GC,
  1388 // which in turn can mean large(r) numbers of objectmonitors in circulation.
  1389 // This is an unfortunate aspect of this design.
  1390 //
  1392 enum ManifestConstants {
  1393     ClearResponsibleAtSTW   = 0,
  1394     MaximumRecheckInterval  = 1000
  1395 } ;
  1397 // Deflate a single monitor if not in use
  1398 // Return true if deflated, false if in use
  1399 bool ObjectSynchronizer::deflate_monitor(ObjectMonitor* mid, oop obj,
  1400                                          ObjectMonitor** FreeHeadp, ObjectMonitor** FreeTailp) {
  1401   bool deflated;
  1402   // Normal case ... The monitor is associated with obj.
  1403   guarantee (obj->mark() == markOopDesc::encode(mid), "invariant") ;
  1404   guarantee (mid == obj->mark()->monitor(), "invariant");
  1405   guarantee (mid->header()->is_neutral(), "invariant");
  1407   if (mid->is_busy()) {
  1408      if (ClearResponsibleAtSTW) mid->_Responsible = NULL ;
  1409      deflated = false;
  1410   } else {
  1411      // Deflate the monitor if it is no longer being used
  1412      // It's idle - scavenge and return to the global free list
  1413      // plain old deflation ...
  1414      TEVENT (deflate_idle_monitors - scavenge1) ;
  1415      if (TraceMonitorInflation) {
  1416        if (obj->is_instance()) {
  1417          ResourceMark rm;
  1418            tty->print_cr("Deflating object " INTPTR_FORMAT " , mark " INTPTR_FORMAT " , type %s",
  1419                 (intptr_t) obj, (intptr_t) obj->mark(), Klass::cast(obj->klass())->external_name());
  1423      // Restore the header back to obj
  1424      obj->release_set_mark(mid->header());
  1425      mid->clear();
  1427      assert (mid->object() == NULL, "invariant") ;
  1429      // Move the object to the working free list defined by FreeHead,FreeTail.
  1430      if (*FreeHeadp == NULL) *FreeHeadp = mid;
  1431      if (*FreeTailp != NULL) {
  1432        ObjectMonitor * prevtail = *FreeTailp;
  1433        assert(prevtail->FreeNext == NULL, "cleaned up deflated?"); // TODO KK
  1434        prevtail->FreeNext = mid;
  1436      *FreeTailp = mid;
  1437      deflated = true;
  1439   return deflated;
  1442 // Caller acquires ListLock
  1443 int ObjectSynchronizer::walk_monitor_list(ObjectMonitor** listheadp,
  1444                                           ObjectMonitor** FreeHeadp, ObjectMonitor** FreeTailp) {
  1445   ObjectMonitor* mid;
  1446   ObjectMonitor* next;
  1447   ObjectMonitor* curmidinuse = NULL;
  1448   int deflatedcount = 0;
  1450   for (mid = *listheadp; mid != NULL; ) {
  1451      oop obj = (oop) mid->object();
  1452      bool deflated = false;
  1453      if (obj != NULL) {
  1454        deflated = deflate_monitor(mid, obj, FreeHeadp, FreeTailp);
  1456      if (deflated) {
  1457        // extract from per-thread in-use-list
  1458        if (mid == *listheadp) {
  1459          *listheadp = mid->FreeNext;
  1460        } else if (curmidinuse != NULL) {
  1461          curmidinuse->FreeNext = mid->FreeNext; // maintain the current thread inuselist
  1463        next = mid->FreeNext;
  1464        mid->FreeNext = NULL;  // This mid is current tail in the FreeHead list
  1465        mid = next;
  1466        deflatedcount++;
  1467      } else {
  1468        curmidinuse = mid;
  1469        mid = mid->FreeNext;
  1472   return deflatedcount;
  1475 void ObjectSynchronizer::deflate_idle_monitors() {
  1476   assert(SafepointSynchronize::is_at_safepoint(), "must be at safepoint");
  1477   int nInuse = 0 ;              // currently associated with objects
  1478   int nInCirculation = 0 ;      // extant
  1479   int nScavenged = 0 ;          // reclaimed
  1480   bool deflated = false;
  1482   ObjectMonitor * FreeHead = NULL ;  // Local SLL of scavenged monitors
  1483   ObjectMonitor * FreeTail = NULL ;
  1485   TEVENT (deflate_idle_monitors) ;
  1486   // Prevent omFlush from changing mids in Thread dtor's during deflation
  1487   // And in case the vm thread is acquiring a lock during a safepoint
  1488   // See e.g. 6320749
  1489   Thread::muxAcquire (&ListLock, "scavenge - return") ;
  1491   if (MonitorInUseLists) {
  1492     int inUse = 0;
  1493     for (JavaThread* cur = Threads::first(); cur != NULL; cur = cur->next()) {
  1494       nInCirculation+= cur->omInUseCount;
  1495       int deflatedcount = walk_monitor_list(cur->omInUseList_addr(), &FreeHead, &FreeTail);
  1496       cur->omInUseCount-= deflatedcount;
  1497       // verifyInUse(cur);
  1498       nScavenged += deflatedcount;
  1499       nInuse += cur->omInUseCount;
  1502    // For moribund threads, scan gOmInUseList
  1503    if (gOmInUseList) {
  1504      nInCirculation += gOmInUseCount;
  1505      int deflatedcount = walk_monitor_list((ObjectMonitor **)&gOmInUseList, &FreeHead, &FreeTail);
  1506      gOmInUseCount-= deflatedcount;
  1507      nScavenged += deflatedcount;
  1508      nInuse += gOmInUseCount;
  1511   } else for (ObjectMonitor* block = gBlockList; block != NULL; block = next(block)) {
  1512   // Iterate over all extant monitors - Scavenge all idle monitors.
  1513     assert(block->object() == CHAINMARKER, "must be a block header");
  1514     nInCirculation += _BLOCKSIZE ;
  1515     for (int i = 1 ; i < _BLOCKSIZE; i++) {
  1516       ObjectMonitor* mid = &block[i];
  1517       oop obj = (oop) mid->object();
  1519       if (obj == NULL) {
  1520         // The monitor is not associated with an object.
  1521         // The monitor should either be a thread-specific private
  1522         // free list or the global free list.
  1523         // obj == NULL IMPLIES mid->is_busy() == 0
  1524         guarantee (!mid->is_busy(), "invariant") ;
  1525         continue ;
  1527       deflated = deflate_monitor(mid, obj, &FreeHead, &FreeTail);
  1529       if (deflated) {
  1530         mid->FreeNext = NULL ;
  1531         nScavenged ++ ;
  1532       } else {
  1533         nInuse ++;
  1538   MonitorFreeCount += nScavenged;
  1540   // Consider: audit gFreeList to ensure that MonitorFreeCount and list agree.
  1542   if (ObjectMonitor::Knob_Verbose) {
  1543     ::printf ("Deflate: InCirc=%d InUse=%d Scavenged=%d ForceMonitorScavenge=%d : pop=%d free=%d\n",
  1544         nInCirculation, nInuse, nScavenged, ForceMonitorScavenge,
  1545         MonitorPopulation, MonitorFreeCount) ;
  1546     ::fflush(stdout) ;
  1549   ForceMonitorScavenge = 0;    // Reset
  1551   // Move the scavenged monitors back to the global free list.
  1552   if (FreeHead != NULL) {
  1553      guarantee (FreeTail != NULL && nScavenged > 0, "invariant") ;
  1554      assert (FreeTail->FreeNext == NULL, "invariant") ;
  1555      // constant-time list splice - prepend scavenged segment to gFreeList
  1556      FreeTail->FreeNext = gFreeList ;
  1557      gFreeList = FreeHead ;
  1559   Thread::muxRelease (&ListLock) ;
  1561   if (ObjectMonitor::_sync_Deflations != NULL) ObjectMonitor::_sync_Deflations->inc(nScavenged) ;
  1562   if (ObjectMonitor::_sync_MonExtant  != NULL) ObjectMonitor::_sync_MonExtant ->set_value(nInCirculation);
  1564   // TODO: Add objectMonitor leak detection.
  1565   // Audit/inventory the objectMonitors -- make sure they're all accounted for.
  1566   GVars.stwRandom = os::random() ;
  1567   GVars.stwCycle ++ ;
  1570 // Monitor cleanup on JavaThread::exit
  1572 // Iterate through monitor cache and attempt to release thread's monitors
  1573 // Gives up on a particular monitor if an exception occurs, but continues
  1574 // the overall iteration, swallowing the exception.
  1575 class ReleaseJavaMonitorsClosure: public MonitorClosure {
  1576 private:
  1577   TRAPS;
  1579 public:
  1580   ReleaseJavaMonitorsClosure(Thread* thread) : THREAD(thread) {}
  1581   void do_monitor(ObjectMonitor* mid) {
  1582     if (mid->owner() == THREAD) {
  1583       (void)mid->complete_exit(CHECK);
  1586 };
  1588 // Release all inflated monitors owned by THREAD.  Lightweight monitors are
  1589 // ignored.  This is meant to be called during JNI thread detach which assumes
  1590 // all remaining monitors are heavyweight.  All exceptions are swallowed.
  1591 // Scanning the extant monitor list can be time consuming.
  1592 // A simple optimization is to add a per-thread flag that indicates a thread
  1593 // called jni_monitorenter() during its lifetime.
  1594 //
  1595 // Instead of No_Savepoint_Verifier it might be cheaper to
  1596 // use an idiom of the form:
  1597 //   auto int tmp = SafepointSynchronize::_safepoint_counter ;
  1598 //   <code that must not run at safepoint>
  1599 //   guarantee (((tmp ^ _safepoint_counter) | (tmp & 1)) == 0) ;
  1600 // Since the tests are extremely cheap we could leave them enabled
  1601 // for normal product builds.
  1603 void ObjectSynchronizer::release_monitors_owned_by_thread(TRAPS) {
  1604   assert(THREAD == JavaThread::current(), "must be current Java thread");
  1605   No_Safepoint_Verifier nsv ;
  1606   ReleaseJavaMonitorsClosure rjmc(THREAD);
  1607   Thread::muxAcquire(&ListLock, "release_monitors_owned_by_thread");
  1608   ObjectSynchronizer::monitors_iterate(&rjmc);
  1609   Thread::muxRelease(&ListLock);
  1610   THREAD->clear_pending_exception();
  1613 //------------------------------------------------------------------------------
  1614 // Non-product code
  1616 #ifndef PRODUCT
  1618 void ObjectSynchronizer::trace_locking(Handle locking_obj, bool is_compiled,
  1619                                        bool is_method, bool is_locking) {
  1620   // Don't know what to do here
  1623 // Verify all monitors in the monitor cache, the verification is weak.
  1624 void ObjectSynchronizer::verify() {
  1625   ObjectMonitor* block = gBlockList;
  1626   ObjectMonitor* mid;
  1627   while (block) {
  1628     assert(block->object() == CHAINMARKER, "must be a block header");
  1629     for (int i = 1; i < _BLOCKSIZE; i++) {
  1630       mid = block + i;
  1631       oop object = (oop) mid->object();
  1632       if (object != NULL) {
  1633         mid->verify();
  1636     block = (ObjectMonitor*) block->FreeNext;
  1640 // Check if monitor belongs to the monitor cache
  1641 // The list is grow-only so it's *relatively* safe to traverse
  1642 // the list of extant blocks without taking a lock.
  1644 int ObjectSynchronizer::verify_objmon_isinpool(ObjectMonitor *monitor) {
  1645   ObjectMonitor* block = gBlockList;
  1647   while (block) {
  1648     assert(block->object() == CHAINMARKER, "must be a block header");
  1649     if (monitor > &block[0] && monitor < &block[_BLOCKSIZE]) {
  1650       address mon = (address) monitor;
  1651       address blk = (address) block;
  1652       size_t diff = mon - blk;
  1653       assert((diff % sizeof(ObjectMonitor)) == 0, "check");
  1654       return 1;
  1656     block = (ObjectMonitor*) block->FreeNext;
  1658   return 0;
  1661 #endif

mercurial