src/share/vm/runtime/safepoint.cpp

Sun, 25 Sep 2011 16:03:29 -0700

author
never
date
Sun, 25 Sep 2011 16:03:29 -0700
changeset 3156
f08d439fab8c
parent 2964
2a241e764894
child 3494
1a2723f7ad8e
permissions
-rw-r--r--

7089790: integrate bsd-port changes
Reviewed-by: kvn, twisti, jrose
Contributed-by: Kurt Miller <kurt@intricatesoftware.com>, Greg Lewis <glewis@eyesbeyond.com>, Jung-uk Kim <jkim@freebsd.org>, Christos Zoulas <christos@zoulas.com>, Landon Fuller <landonf@plausible.coop>, The FreeBSD Foundation <board@freebsdfoundation.org>, Michael Franz <mvfranz@gmail.com>, Roger Hoover <rhoover@apple.com>, Alexander Strange <astrange@apple.com>

     1 /*
     2  * Copyright (c) 1997, 2011, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "classfile/systemDictionary.hpp"
    27 #include "code/codeCache.hpp"
    28 #include "code/icBuffer.hpp"
    29 #include "code/nmethod.hpp"
    30 #include "code/pcDesc.hpp"
    31 #include "code/scopeDesc.hpp"
    32 #include "gc_interface/collectedHeap.hpp"
    33 #include "interpreter/interpreter.hpp"
    34 #include "memory/resourceArea.hpp"
    35 #include "memory/universe.inline.hpp"
    36 #include "oops/oop.inline.hpp"
    37 #include "oops/symbol.hpp"
    38 #include "runtime/compilationPolicy.hpp"
    39 #include "runtime/deoptimization.hpp"
    40 #include "runtime/frame.inline.hpp"
    41 #include "runtime/interfaceSupport.hpp"
    42 #include "runtime/mutexLocker.hpp"
    43 #include "runtime/osThread.hpp"
    44 #include "runtime/safepoint.hpp"
    45 #include "runtime/signature.hpp"
    46 #include "runtime/stubCodeGenerator.hpp"
    47 #include "runtime/stubRoutines.hpp"
    48 #include "runtime/sweeper.hpp"
    49 #include "runtime/synchronizer.hpp"
    50 #include "services/runtimeService.hpp"
    51 #include "utilities/events.hpp"
    52 #ifdef TARGET_ARCH_x86
    53 # include "nativeInst_x86.hpp"
    54 # include "vmreg_x86.inline.hpp"
    55 #endif
    56 #ifdef TARGET_ARCH_sparc
    57 # include "nativeInst_sparc.hpp"
    58 # include "vmreg_sparc.inline.hpp"
    59 #endif
    60 #ifdef TARGET_ARCH_zero
    61 # include "nativeInst_zero.hpp"
    62 # include "vmreg_zero.inline.hpp"
    63 #endif
    64 #ifdef TARGET_ARCH_arm
    65 # include "nativeInst_arm.hpp"
    66 # include "vmreg_arm.inline.hpp"
    67 #endif
    68 #ifdef TARGET_ARCH_ppc
    69 # include "nativeInst_ppc.hpp"
    70 # include "vmreg_ppc.inline.hpp"
    71 #endif
    72 #ifdef TARGET_OS_FAMILY_linux
    73 # include "thread_linux.inline.hpp"
    74 #endif
    75 #ifdef TARGET_OS_FAMILY_solaris
    76 # include "thread_solaris.inline.hpp"
    77 #endif
    78 #ifdef TARGET_OS_FAMILY_windows
    79 # include "thread_windows.inline.hpp"
    80 #endif
    81 #ifdef TARGET_OS_FAMILY_bsd
    82 # include "thread_bsd.inline.hpp"
    83 #endif
    84 #ifndef SERIALGC
    85 #include "gc_implementation/concurrentMarkSweep/concurrentMarkSweepThread.hpp"
    86 #include "gc_implementation/shared/concurrentGCThread.hpp"
    87 #endif
    88 #ifdef COMPILER1
    89 #include "c1/c1_globals.hpp"
    90 #endif
    92 // --------------------------------------------------------------------------------------------------
    93 // Implementation of Safepoint begin/end
    95 SafepointSynchronize::SynchronizeState volatile SafepointSynchronize::_state = SafepointSynchronize::_not_synchronized;
    96 volatile int  SafepointSynchronize::_waiting_to_block = 0;
    97 volatile int SafepointSynchronize::_safepoint_counter = 0;
    98 long  SafepointSynchronize::_end_of_last_safepoint = 0;
    99 static volatile int PageArmed = 0 ;        // safepoint polling page is RO|RW vs PROT_NONE
   100 static volatile int TryingToBlock = 0 ;    // proximate value -- for advisory use only
   101 static bool timeout_error_printed = false;
   103 // Roll all threads forward to a safepoint and suspend them all
   104 void SafepointSynchronize::begin() {
   106   Thread* myThread = Thread::current();
   107   assert(myThread->is_VM_thread(), "Only VM thread may execute a safepoint");
   109   if (PrintSafepointStatistics || PrintSafepointStatisticsTimeout > 0) {
   110     _safepoint_begin_time = os::javaTimeNanos();
   111     _ts_of_current_safepoint = tty->time_stamp().seconds();
   112   }
   114 #ifndef SERIALGC
   115   if (UseConcMarkSweepGC) {
   116     // In the future we should investigate whether CMS can use the
   117     // more-general mechanism below.  DLD (01/05).
   118     ConcurrentMarkSweepThread::synchronize(false);
   119   } else if (UseG1GC) {
   120     ConcurrentGCThread::safepoint_synchronize();
   121   }
   122 #endif // SERIALGC
   124   // By getting the Threads_lock, we assure that no threads are about to start or
   125   // exit. It is released again in SafepointSynchronize::end().
   126   Threads_lock->lock();
   128   assert( _state == _not_synchronized, "trying to safepoint synchronize with wrong state");
   130   int nof_threads = Threads::number_of_threads();
   132   if (TraceSafepoint) {
   133     tty->print_cr("Safepoint synchronization initiated. (%d)", nof_threads);
   134   }
   136   RuntimeService::record_safepoint_begin();
   138   {
   139   MutexLocker mu(Safepoint_lock);
   141   // Set number of threads to wait for, before we initiate the callbacks
   142   _waiting_to_block = nof_threads;
   143   TryingToBlock     = 0 ;
   144   int still_running = nof_threads;
   146   // Save the starting time, so that it can be compared to see if this has taken
   147   // too long to complete.
   148   jlong safepoint_limit_time;
   149   timeout_error_printed = false;
   151   // PrintSafepointStatisticsTimeout can be specified separately. When
   152   // specified, PrintSafepointStatistics will be set to true in
   153   // deferred_initialize_stat method. The initialization has to be done
   154   // early enough to avoid any races. See bug 6880029 for details.
   155   if (PrintSafepointStatistics || PrintSafepointStatisticsTimeout > 0) {
   156     deferred_initialize_stat();
   157   }
   159   // Begin the process of bringing the system to a safepoint.
   160   // Java threads can be in several different states and are
   161   // stopped by different mechanisms:
   162   //
   163   //  1. Running interpreted
   164   //     The interpeter dispatch table is changed to force it to
   165   //     check for a safepoint condition between bytecodes.
   166   //  2. Running in native code
   167   //     When returning from the native code, a Java thread must check
   168   //     the safepoint _state to see if we must block.  If the
   169   //     VM thread sees a Java thread in native, it does
   170   //     not wait for this thread to block.  The order of the memory
   171   //     writes and reads of both the safepoint state and the Java
   172   //     threads state is critical.  In order to guarantee that the
   173   //     memory writes are serialized with respect to each other,
   174   //     the VM thread issues a memory barrier instruction
   175   //     (on MP systems).  In order to avoid the overhead of issuing
   176   //     a memory barrier for each Java thread making native calls, each Java
   177   //     thread performs a write to a single memory page after changing
   178   //     the thread state.  The VM thread performs a sequence of
   179   //     mprotect OS calls which forces all previous writes from all
   180   //     Java threads to be serialized.  This is done in the
   181   //     os::serialize_thread_states() call.  This has proven to be
   182   //     much more efficient than executing a membar instruction
   183   //     on every call to native code.
   184   //  3. Running compiled Code
   185   //     Compiled code reads a global (Safepoint Polling) page that
   186   //     is set to fault if we are trying to get to a safepoint.
   187   //  4. Blocked
   188   //     A thread which is blocked will not be allowed to return from the
   189   //     block condition until the safepoint operation is complete.
   190   //  5. In VM or Transitioning between states
   191   //     If a Java thread is currently running in the VM or transitioning
   192   //     between states, the safepointing code will wait for the thread to
   193   //     block itself when it attempts transitions to a new state.
   194   //
   195   _state            = _synchronizing;
   196   OrderAccess::fence();
   198   // Flush all thread states to memory
   199   if (!UseMembar) {
   200     os::serialize_thread_states();
   201   }
   203   // Make interpreter safepoint aware
   204   Interpreter::notice_safepoints();
   206   if (UseCompilerSafepoints && DeferPollingPageLoopCount < 0) {
   207     // Make polling safepoint aware
   208     guarantee (PageArmed == 0, "invariant") ;
   209     PageArmed = 1 ;
   210     os::make_polling_page_unreadable();
   211   }
   213   // Consider using active_processor_count() ... but that call is expensive.
   214   int ncpus = os::processor_count() ;
   216 #ifdef ASSERT
   217   for (JavaThread *cur = Threads::first(); cur != NULL; cur = cur->next()) {
   218     assert(cur->safepoint_state()->is_running(), "Illegal initial state");
   219   }
   220 #endif // ASSERT
   222   if (SafepointTimeout)
   223     safepoint_limit_time = os::javaTimeNanos() + (jlong)SafepointTimeoutDelay * MICROUNITS;
   225   // Iterate through all threads until it have been determined how to stop them all at a safepoint
   226   unsigned int iterations = 0;
   227   int steps = 0 ;
   228   while(still_running > 0) {
   229     for (JavaThread *cur = Threads::first(); cur != NULL; cur = cur->next()) {
   230       assert(!cur->is_ConcurrentGC_thread(), "A concurrent GC thread is unexpectly being suspended");
   231       ThreadSafepointState *cur_state = cur->safepoint_state();
   232       if (cur_state->is_running()) {
   233         cur_state->examine_state_of_thread();
   234         if (!cur_state->is_running()) {
   235            still_running--;
   236            // consider adjusting steps downward:
   237            //   steps = 0
   238            //   steps -= NNN
   239            //   steps >>= 1
   240            //   steps = MIN(steps, 2000-100)
   241            //   if (iterations != 0) steps -= NNN
   242         }
   243         if (TraceSafepoint && Verbose) cur_state->print();
   244       }
   245     }
   247     if (PrintSafepointStatistics && iterations == 0) {
   248       begin_statistics(nof_threads, still_running);
   249     }
   251     if (still_running > 0) {
   252       // Check for if it takes to long
   253       if (SafepointTimeout && safepoint_limit_time < os::javaTimeNanos()) {
   254         print_safepoint_timeout(_spinning_timeout);
   255       }
   257       // Spin to avoid context switching.
   258       // There's a tension between allowing the mutators to run (and rendezvous)
   259       // vs spinning.  As the VM thread spins, wasting cycles, it consumes CPU that
   260       // a mutator might otherwise use profitably to reach a safepoint.  Excessive
   261       // spinning by the VM thread on a saturated system can increase rendezvous latency.
   262       // Blocking or yielding incur their own penalties in the form of context switching
   263       // and the resultant loss of $ residency.
   264       //
   265       // Further complicating matters is that yield() does not work as naively expected
   266       // on many platforms -- yield() does not guarantee that any other ready threads
   267       // will run.   As such we revert yield_all() after some number of iterations.
   268       // Yield_all() is implemented as a short unconditional sleep on some platforms.
   269       // Typical operating systems round a "short" sleep period up to 10 msecs, so sleeping
   270       // can actually increase the time it takes the VM thread to detect that a system-wide
   271       // stop-the-world safepoint has been reached.  In a pathological scenario such as that
   272       // described in CR6415670 the VMthread may sleep just before the mutator(s) become safe.
   273       // In that case the mutators will be stalled waiting for the safepoint to complete and the
   274       // the VMthread will be sleeping, waiting for the mutators to rendezvous.  The VMthread
   275       // will eventually wake up and detect that all mutators are safe, at which point
   276       // we'll again make progress.
   277       //
   278       // Beware too that that the VMThread typically runs at elevated priority.
   279       // Its default priority is higher than the default mutator priority.
   280       // Obviously, this complicates spinning.
   281       //
   282       // Note too that on Windows XP SwitchThreadTo() has quite different behavior than Sleep(0).
   283       // Sleep(0) will _not yield to lower priority threads, while SwitchThreadTo() will.
   284       //
   285       // See the comments in synchronizer.cpp for additional remarks on spinning.
   286       //
   287       // In the future we might:
   288       // 1. Modify the safepoint scheme to avoid potentally unbounded spinning.
   289       //    This is tricky as the path used by a thread exiting the JVM (say on
   290       //    on JNI call-out) simply stores into its state field.  The burden
   291       //    is placed on the VM thread, which must poll (spin).
   292       // 2. Find something useful to do while spinning.  If the safepoint is GC-related
   293       //    we might aggressively scan the stacks of threads that are already safe.
   294       // 3. Use Solaris schedctl to examine the state of the still-running mutators.
   295       //    If all the mutators are ONPROC there's no reason to sleep or yield.
   296       // 4. YieldTo() any still-running mutators that are ready but OFFPROC.
   297       // 5. Check system saturation.  If the system is not fully saturated then
   298       //    simply spin and avoid sleep/yield.
   299       // 6. As still-running mutators rendezvous they could unpark the sleeping
   300       //    VMthread.  This works well for still-running mutators that become
   301       //    safe.  The VMthread must still poll for mutators that call-out.
   302       // 7. Drive the policy on time-since-begin instead of iterations.
   303       // 8. Consider making the spin duration a function of the # of CPUs:
   304       //    Spin = (((ncpus-1) * M) + K) + F(still_running)
   305       //    Alternately, instead of counting iterations of the outer loop
   306       //    we could count the # of threads visited in the inner loop, above.
   307       // 9. On windows consider using the return value from SwitchThreadTo()
   308       //    to drive subsequent spin/SwitchThreadTo()/Sleep(N) decisions.
   310       if (UseCompilerSafepoints && int(iterations) == DeferPollingPageLoopCount) {
   311          guarantee (PageArmed == 0, "invariant") ;
   312          PageArmed = 1 ;
   313          os::make_polling_page_unreadable();
   314       }
   316       // Instead of (ncpus > 1) consider either (still_running < (ncpus + EPSILON)) or
   317       // ((still_running + _waiting_to_block - TryingToBlock)) < ncpus)
   318       ++steps ;
   319       if (ncpus > 1 && steps < SafepointSpinBeforeYield) {
   320         SpinPause() ;     // MP-Polite spin
   321       } else
   322       if (steps < DeferThrSuspendLoopCount) {
   323         os::NakedYield() ;
   324       } else {
   325         os::yield_all(steps) ;
   326         // Alternately, the VM thread could transiently depress its scheduling priority or
   327         // transiently increase the priority of the tardy mutator(s).
   328       }
   330       iterations ++ ;
   331     }
   332     assert(iterations < (uint)max_jint, "We have been iterating in the safepoint loop too long");
   333   }
   334   assert(still_running == 0, "sanity check");
   336   if (PrintSafepointStatistics) {
   337     update_statistics_on_spin_end();
   338   }
   340   // wait until all threads are stopped
   341   while (_waiting_to_block > 0) {
   342     if (TraceSafepoint) tty->print_cr("Waiting for %d thread(s) to block", _waiting_to_block);
   343     if (!SafepointTimeout || timeout_error_printed) {
   344       Safepoint_lock->wait(true);  // true, means with no safepoint checks
   345     } else {
   346       // Compute remaining time
   347       jlong remaining_time = safepoint_limit_time - os::javaTimeNanos();
   349       // If there is no remaining time, then there is an error
   350       if (remaining_time < 0 || Safepoint_lock->wait(true, remaining_time / MICROUNITS)) {
   351         print_safepoint_timeout(_blocking_timeout);
   352       }
   353     }
   354   }
   355   assert(_waiting_to_block == 0, "sanity check");
   357 #ifndef PRODUCT
   358   if (SafepointTimeout) {
   359     jlong current_time = os::javaTimeNanos();
   360     if (safepoint_limit_time < current_time) {
   361       tty->print_cr("# SafepointSynchronize: Finished after "
   362                     INT64_FORMAT_W(6) " ms",
   363                     ((current_time - safepoint_limit_time) / MICROUNITS +
   364                      SafepointTimeoutDelay));
   365     }
   366   }
   367 #endif
   369   assert((_safepoint_counter & 0x1) == 0, "must be even");
   370   assert(Threads_lock->owned_by_self(), "must hold Threads_lock");
   371   _safepoint_counter ++;
   373   // Record state
   374   _state = _synchronized;
   376   OrderAccess::fence();
   378   if (TraceSafepoint) {
   379     VM_Operation *op = VMThread::vm_operation();
   380     tty->print_cr("Entering safepoint region: %s", (op != NULL) ? op->name() : "no vm operation");
   381   }
   383   RuntimeService::record_safepoint_synchronized();
   384   if (PrintSafepointStatistics) {
   385     update_statistics_on_sync_end(os::javaTimeNanos());
   386   }
   388   // Call stuff that needs to be run when a safepoint is just about to be completed
   389   do_cleanup_tasks();
   391   if (PrintSafepointStatistics) {
   392     // Record how much time spend on the above cleanup tasks
   393     update_statistics_on_cleanup_end(os::javaTimeNanos());
   394   }
   395   }
   396 }
   398 // Wake up all threads, so they are ready to resume execution after the safepoint
   399 // operation has been carried out
   400 void SafepointSynchronize::end() {
   402   assert(Threads_lock->owned_by_self(), "must hold Threads_lock");
   403   assert((_safepoint_counter & 0x1) == 1, "must be odd");
   404   _safepoint_counter ++;
   405   // memory fence isn't required here since an odd _safepoint_counter
   406   // value can do no harm and a fence is issued below anyway.
   408   DEBUG_ONLY(Thread* myThread = Thread::current();)
   409   assert(myThread->is_VM_thread(), "Only VM thread can execute a safepoint");
   411   if (PrintSafepointStatistics) {
   412     end_statistics(os::javaTimeNanos());
   413   }
   415 #ifdef ASSERT
   416   // A pending_exception cannot be installed during a safepoint.  The threads
   417   // may install an async exception after they come back from a safepoint into
   418   // pending_exception after they unblock.  But that should happen later.
   419   for(JavaThread *cur = Threads::first(); cur; cur = cur->next()) {
   420     assert (!(cur->has_pending_exception() &&
   421               cur->safepoint_state()->is_at_poll_safepoint()),
   422             "safepoint installed a pending exception");
   423   }
   424 #endif // ASSERT
   426   if (PageArmed) {
   427     // Make polling safepoint aware
   428     os::make_polling_page_readable();
   429     PageArmed = 0 ;
   430   }
   432   // Remove safepoint check from interpreter
   433   Interpreter::ignore_safepoints();
   435   {
   436     MutexLocker mu(Safepoint_lock);
   438     assert(_state == _synchronized, "must be synchronized before ending safepoint synchronization");
   440     // Set to not synchronized, so the threads will not go into the signal_thread_blocked method
   441     // when they get restarted.
   442     _state = _not_synchronized;
   443     OrderAccess::fence();
   445     if (TraceSafepoint) {
   446        tty->print_cr("Leaving safepoint region");
   447     }
   449     // Start suspended threads
   450     for(JavaThread *current = Threads::first(); current; current = current->next()) {
   451       // A problem occurring on Solaris is when attempting to restart threads
   452       // the first #cpus - 1 go well, but then the VMThread is preempted when we get
   453       // to the next one (since it has been running the longest).  We then have
   454       // to wait for a cpu to become available before we can continue restarting
   455       // threads.
   456       // FIXME: This causes the performance of the VM to degrade when active and with
   457       // large numbers of threads.  Apparently this is due to the synchronous nature
   458       // of suspending threads.
   459       //
   460       // TODO-FIXME: the comments above are vestigial and no longer apply.
   461       // Furthermore, using solaris' schedctl in this particular context confers no benefit
   462       if (VMThreadHintNoPreempt) {
   463         os::hint_no_preempt();
   464       }
   465       ThreadSafepointState* cur_state = current->safepoint_state();
   466       assert(cur_state->type() != ThreadSafepointState::_running, "Thread not suspended at safepoint");
   467       cur_state->restart();
   468       assert(cur_state->is_running(), "safepoint state has not been reset");
   469     }
   471     RuntimeService::record_safepoint_end();
   473     // Release threads lock, so threads can be created/destroyed again. It will also starts all threads
   474     // blocked in signal_thread_blocked
   475     Threads_lock->unlock();
   477   }
   478 #ifndef SERIALGC
   479   // If there are any concurrent GC threads resume them.
   480   if (UseConcMarkSweepGC) {
   481     ConcurrentMarkSweepThread::desynchronize(false);
   482   } else if (UseG1GC) {
   483     ConcurrentGCThread::safepoint_desynchronize();
   484   }
   485 #endif // SERIALGC
   486   // record this time so VMThread can keep track how much time has elasped
   487   // since last safepoint.
   488   _end_of_last_safepoint = os::javaTimeMillis();
   489 }
   491 bool SafepointSynchronize::is_cleanup_needed() {
   492   // Need a safepoint if some inline cache buffers is non-empty
   493   if (!InlineCacheBuffer::is_empty()) return true;
   494   return false;
   495 }
   499 // Various cleaning tasks that should be done periodically at safepoints
   500 void SafepointSynchronize::do_cleanup_tasks() {
   501   {
   502     TraceTime t1("deflating idle monitors", TraceSafepointCleanupTime);
   503     ObjectSynchronizer::deflate_idle_monitors();
   504   }
   506   {
   507     TraceTime t2("updating inline caches", TraceSafepointCleanupTime);
   508     InlineCacheBuffer::update_inline_caches();
   509   }
   510   {
   511     TraceTime t3("compilation policy safepoint handler", TraceSafepointCleanupTime);
   512     CompilationPolicy::policy()->do_safepoint_work();
   513   }
   515   TraceTime t4("sweeping nmethods", TraceSafepointCleanupTime);
   516   NMethodSweeper::scan_stacks();
   518   // rotate log files?
   519   if (UseGCLogFileRotation) {
   520     gclog_or_tty->rotate_log();
   521   }
   522 }
   525 bool SafepointSynchronize::safepoint_safe(JavaThread *thread, JavaThreadState state) {
   526   switch(state) {
   527   case _thread_in_native:
   528     // native threads are safe if they have no java stack or have walkable stack
   529     return !thread->has_last_Java_frame() || thread->frame_anchor()->walkable();
   531    // blocked threads should have already have walkable stack
   532   case _thread_blocked:
   533     assert(!thread->has_last_Java_frame() || thread->frame_anchor()->walkable(), "blocked and not walkable");
   534     return true;
   536   default:
   537     return false;
   538   }
   539 }
   542 // -------------------------------------------------------------------------------------------------------
   543 // Implementation of Safepoint callback point
   545 void SafepointSynchronize::block(JavaThread *thread) {
   546   assert(thread != NULL, "thread must be set");
   547   assert(thread->is_Java_thread(), "not a Java thread");
   549   // Threads shouldn't block if they are in the middle of printing, but...
   550   ttyLocker::break_tty_lock_for_safepoint(os::current_thread_id());
   552   // Only bail from the block() call if the thread is gone from the
   553   // thread list; starting to exit should still block.
   554   if (thread->is_terminated()) {
   555      // block current thread if we come here from native code when VM is gone
   556      thread->block_if_vm_exited();
   558      // otherwise do nothing
   559      return;
   560   }
   562   JavaThreadState state = thread->thread_state();
   563   thread->frame_anchor()->make_walkable(thread);
   565   // Check that we have a valid thread_state at this point
   566   switch(state) {
   567     case _thread_in_vm_trans:
   568     case _thread_in_Java:        // From compiled code
   570       // We are highly likely to block on the Safepoint_lock. In order to avoid blocking in this case,
   571       // we pretend we are still in the VM.
   572       thread->set_thread_state(_thread_in_vm);
   574       if (is_synchronizing()) {
   575          Atomic::inc (&TryingToBlock) ;
   576       }
   578       // We will always be holding the Safepoint_lock when we are examine the state
   579       // of a thread. Hence, the instructions between the Safepoint_lock->lock() and
   580       // Safepoint_lock->unlock() are happening atomic with regards to the safepoint code
   581       Safepoint_lock->lock_without_safepoint_check();
   582       if (is_synchronizing()) {
   583         // Decrement the number of threads to wait for and signal vm thread
   584         assert(_waiting_to_block > 0, "sanity check");
   585         _waiting_to_block--;
   586         thread->safepoint_state()->set_has_called_back(true);
   588         // Consider (_waiting_to_block < 2) to pipeline the wakeup of the VM thread
   589         if (_waiting_to_block == 0) {
   590           Safepoint_lock->notify_all();
   591         }
   592       }
   594       // We transition the thread to state _thread_blocked here, but
   595       // we can't do our usual check for external suspension and then
   596       // self-suspend after the lock_without_safepoint_check() call
   597       // below because we are often called during transitions while
   598       // we hold different locks. That would leave us suspended while
   599       // holding a resource which results in deadlocks.
   600       thread->set_thread_state(_thread_blocked);
   601       Safepoint_lock->unlock();
   603       // We now try to acquire the threads lock. Since this lock is hold by the VM thread during
   604       // the entire safepoint, the threads will all line up here during the safepoint.
   605       Threads_lock->lock_without_safepoint_check();
   606       // restore original state. This is important if the thread comes from compiled code, so it
   607       // will continue to execute with the _thread_in_Java state.
   608       thread->set_thread_state(state);
   609       Threads_lock->unlock();
   610       break;
   612     case _thread_in_native_trans:
   613     case _thread_blocked_trans:
   614     case _thread_new_trans:
   615       if (thread->safepoint_state()->type() == ThreadSafepointState::_call_back) {
   616         thread->print_thread_state();
   617         fatal("Deadlock in safepoint code.  "
   618               "Should have called back to the VM before blocking.");
   619       }
   621       // We transition the thread to state _thread_blocked here, but
   622       // we can't do our usual check for external suspension and then
   623       // self-suspend after the lock_without_safepoint_check() call
   624       // below because we are often called during transitions while
   625       // we hold different locks. That would leave us suspended while
   626       // holding a resource which results in deadlocks.
   627       thread->set_thread_state(_thread_blocked);
   629       // It is not safe to suspend a thread if we discover it is in _thread_in_native_trans. Hence,
   630       // the safepoint code might still be waiting for it to block. We need to change the state here,
   631       // so it can see that it is at a safepoint.
   633       // Block until the safepoint operation is completed.
   634       Threads_lock->lock_without_safepoint_check();
   636       // Restore state
   637       thread->set_thread_state(state);
   639       Threads_lock->unlock();
   640       break;
   642     default:
   643      fatal(err_msg("Illegal threadstate encountered: %d", state));
   644   }
   646   // Check for pending. async. exceptions or suspends - except if the
   647   // thread was blocked inside the VM. has_special_runtime_exit_condition()
   648   // is called last since it grabs a lock and we only want to do that when
   649   // we must.
   650   //
   651   // Note: we never deliver an async exception at a polling point as the
   652   // compiler may not have an exception handler for it. The polling
   653   // code will notice the async and deoptimize and the exception will
   654   // be delivered. (Polling at a return point is ok though). Sure is
   655   // a lot of bother for a deprecated feature...
   656   //
   657   // We don't deliver an async exception if the thread state is
   658   // _thread_in_native_trans so JNI functions won't be called with
   659   // a surprising pending exception. If the thread state is going back to java,
   660   // async exception is checked in check_special_condition_for_native_trans().
   662   if (state != _thread_blocked_trans &&
   663       state != _thread_in_vm_trans &&
   664       thread->has_special_runtime_exit_condition()) {
   665     thread->handle_special_runtime_exit_condition(
   666       !thread->is_at_poll_safepoint() && (state != _thread_in_native_trans));
   667   }
   668 }
   670 // ------------------------------------------------------------------------------------------------------
   671 // Exception handlers
   673 #ifndef PRODUCT
   674 #ifdef _LP64
   675 #define PTR_PAD ""
   676 #else
   677 #define PTR_PAD "        "
   678 #endif
   680 static void print_ptrs(intptr_t oldptr, intptr_t newptr, bool wasoop) {
   681   bool is_oop = newptr ? ((oop)newptr)->is_oop() : false;
   682   tty->print_cr(PTR_FORMAT PTR_PAD " %s %c " PTR_FORMAT PTR_PAD " %s %s",
   683                 oldptr, wasoop?"oop":"   ", oldptr == newptr ? ' ' : '!',
   684                 newptr, is_oop?"oop":"   ", (wasoop && !is_oop) ? "STALE" : ((wasoop==false&&is_oop==false&&oldptr !=newptr)?"STOMP":"     "));
   685 }
   687 static void print_longs(jlong oldptr, jlong newptr, bool wasoop) {
   688   bool is_oop = newptr ? ((oop)(intptr_t)newptr)->is_oop() : false;
   689   tty->print_cr(PTR64_FORMAT " %s %c " PTR64_FORMAT " %s %s",
   690                 oldptr, wasoop?"oop":"   ", oldptr == newptr ? ' ' : '!',
   691                 newptr, is_oop?"oop":"   ", (wasoop && !is_oop) ? "STALE" : ((wasoop==false&&is_oop==false&&oldptr !=newptr)?"STOMP":"     "));
   692 }
   694 #ifdef SPARC
   695 static void print_me(intptr_t *new_sp, intptr_t *old_sp, bool *was_oops) {
   696 #ifdef _LP64
   697   tty->print_cr("--------+------address-----+------before-----------+-------after----------+");
   698   const int incr = 1;           // Increment to skip a long, in units of intptr_t
   699 #else
   700   tty->print_cr("--------+--address-+------before-----------+-------after----------+");
   701   const int incr = 2;           // Increment to skip a long, in units of intptr_t
   702 #endif
   703   tty->print_cr("---SP---|");
   704   for( int i=0; i<16; i++ ) {
   705     tty->print("blob %c%d |"PTR_FORMAT" ","LO"[i>>3],i&7,new_sp); print_ptrs(*old_sp++,*new_sp++,*was_oops++); }
   706   tty->print_cr("--------|");
   707   for( int i1=0; i1<frame::memory_parameter_word_sp_offset-16; i1++ ) {
   708     tty->print("argv pad|"PTR_FORMAT" ",new_sp); print_ptrs(*old_sp++,*new_sp++,*was_oops++); }
   709   tty->print("     pad|"PTR_FORMAT" ",new_sp); print_ptrs(*old_sp++,*new_sp++,*was_oops++);
   710   tty->print_cr("--------|");
   711   tty->print(" G1     |"PTR_FORMAT" ",new_sp); print_longs(*(jlong*)old_sp,*(jlong*)new_sp,was_oops[incr-1]); old_sp += incr; new_sp += incr; was_oops += incr;
   712   tty->print(" G3     |"PTR_FORMAT" ",new_sp); print_longs(*(jlong*)old_sp,*(jlong*)new_sp,was_oops[incr-1]); old_sp += incr; new_sp += incr; was_oops += incr;
   713   tty->print(" G4     |"PTR_FORMAT" ",new_sp); print_longs(*(jlong*)old_sp,*(jlong*)new_sp,was_oops[incr-1]); old_sp += incr; new_sp += incr; was_oops += incr;
   714   tty->print(" G5     |"PTR_FORMAT" ",new_sp); print_longs(*(jlong*)old_sp,*(jlong*)new_sp,was_oops[incr-1]); old_sp += incr; new_sp += incr; was_oops += incr;
   715   tty->print_cr(" FSR    |"PTR_FORMAT" "PTR64_FORMAT"       "PTR64_FORMAT,new_sp,*(jlong*)old_sp,*(jlong*)new_sp);
   716   old_sp += incr; new_sp += incr; was_oops += incr;
   717   // Skip the floats
   718   tty->print_cr("--Float-|"PTR_FORMAT,new_sp);
   719   tty->print_cr("---FP---|");
   720   old_sp += incr*32;  new_sp += incr*32;  was_oops += incr*32;
   721   for( int i2=0; i2<16; i2++ ) {
   722     tty->print("call %c%d |"PTR_FORMAT" ","LI"[i2>>3],i2&7,new_sp); print_ptrs(*old_sp++,*new_sp++,*was_oops++); }
   723   tty->print_cr("");
   724 }
   725 #endif  // SPARC
   726 #endif  // PRODUCT
   729 void SafepointSynchronize::handle_polling_page_exception(JavaThread *thread) {
   730   assert(thread->is_Java_thread(), "polling reference encountered by VM thread");
   731   assert(thread->thread_state() == _thread_in_Java, "should come from Java code");
   732   assert(SafepointSynchronize::is_synchronizing(), "polling encountered outside safepoint synchronization");
   734   // Uncomment this to get some serious before/after printing of the
   735   // Sparc safepoint-blob frame structure.
   736   /*
   737   intptr_t* sp = thread->last_Java_sp();
   738   intptr_t stack_copy[150];
   739   for( int i=0; i<150; i++ ) stack_copy[i] = sp[i];
   740   bool was_oops[150];
   741   for( int i=0; i<150; i++ )
   742     was_oops[i] = stack_copy[i] ? ((oop)stack_copy[i])->is_oop() : false;
   743   */
   745   if (ShowSafepointMsgs) {
   746     tty->print("handle_polling_page_exception: ");
   747   }
   749   if (PrintSafepointStatistics) {
   750     inc_page_trap_count();
   751   }
   753   ThreadSafepointState* state = thread->safepoint_state();
   755   state->handle_polling_page_exception();
   756   // print_me(sp,stack_copy,was_oops);
   757 }
   760 void SafepointSynchronize::print_safepoint_timeout(SafepointTimeoutReason reason) {
   761   if (!timeout_error_printed) {
   762     timeout_error_printed = true;
   763     // Print out the thread infor which didn't reach the safepoint for debugging
   764     // purposes (useful when there are lots of threads in the debugger).
   765     tty->print_cr("");
   766     tty->print_cr("# SafepointSynchronize::begin: Timeout detected:");
   767     if (reason ==  _spinning_timeout) {
   768       tty->print_cr("# SafepointSynchronize::begin: Timed out while spinning to reach a safepoint.");
   769     } else if (reason == _blocking_timeout) {
   770       tty->print_cr("# SafepointSynchronize::begin: Timed out while waiting for threads to stop.");
   771     }
   773     tty->print_cr("# SafepointSynchronize::begin: Threads which did not reach the safepoint:");
   774     ThreadSafepointState *cur_state;
   775     ResourceMark rm;
   776     for(JavaThread *cur_thread = Threads::first(); cur_thread;
   777         cur_thread = cur_thread->next()) {
   778       cur_state = cur_thread->safepoint_state();
   780       if (cur_thread->thread_state() != _thread_blocked &&
   781           ((reason == _spinning_timeout && cur_state->is_running()) ||
   782            (reason == _blocking_timeout && !cur_state->has_called_back()))) {
   783         tty->print("# ");
   784         cur_thread->print();
   785         tty->print_cr("");
   786       }
   787     }
   788     tty->print_cr("# SafepointSynchronize::begin: (End of list)");
   789   }
   791   // To debug the long safepoint, specify both DieOnSafepointTimeout &
   792   // ShowMessageBoxOnError.
   793   if (DieOnSafepointTimeout) {
   794     char msg[1024];
   795     VM_Operation *op = VMThread::vm_operation();
   796     sprintf(msg, "Safepoint sync time longer than " INTX_FORMAT "ms detected when executing %s.",
   797             SafepointTimeoutDelay,
   798             op != NULL ? op->name() : "no vm operation");
   799     fatal(msg);
   800   }
   801 }
   804 // -------------------------------------------------------------------------------------------------------
   805 // Implementation of ThreadSafepointState
   807 ThreadSafepointState::ThreadSafepointState(JavaThread *thread) {
   808   _thread = thread;
   809   _type   = _running;
   810   _has_called_back = false;
   811   _at_poll_safepoint = false;
   812 }
   814 void ThreadSafepointState::create(JavaThread *thread) {
   815   ThreadSafepointState *state = new ThreadSafepointState(thread);
   816   thread->set_safepoint_state(state);
   817 }
   819 void ThreadSafepointState::destroy(JavaThread *thread) {
   820   if (thread->safepoint_state()) {
   821     delete(thread->safepoint_state());
   822     thread->set_safepoint_state(NULL);
   823   }
   824 }
   826 void ThreadSafepointState::examine_state_of_thread() {
   827   assert(is_running(), "better be running or just have hit safepoint poll");
   829   JavaThreadState state = _thread->thread_state();
   831   // Save the state at the start of safepoint processing.
   832   _orig_thread_state = state;
   834   // Check for a thread that is suspended. Note that thread resume tries
   835   // to grab the Threads_lock which we own here, so a thread cannot be
   836   // resumed during safepoint synchronization.
   838   // We check to see if this thread is suspended without locking to
   839   // avoid deadlocking with a third thread that is waiting for this
   840   // thread to be suspended. The third thread can notice the safepoint
   841   // that we're trying to start at the beginning of its SR_lock->wait()
   842   // call. If that happens, then the third thread will block on the
   843   // safepoint while still holding the underlying SR_lock. We won't be
   844   // able to get the SR_lock and we'll deadlock.
   845   //
   846   // We don't need to grab the SR_lock here for two reasons:
   847   // 1) The suspend flags are both volatile and are set with an
   848   //    Atomic::cmpxchg() call so we should see the suspended
   849   //    state right away.
   850   // 2) We're being called from the safepoint polling loop; if
   851   //    we don't see the suspended state on this iteration, then
   852   //    we'll come around again.
   853   //
   854   bool is_suspended = _thread->is_ext_suspended();
   855   if (is_suspended) {
   856     roll_forward(_at_safepoint);
   857     return;
   858   }
   860   // Some JavaThread states have an initial safepoint state of
   861   // running, but are actually at a safepoint. We will happily
   862   // agree and update the safepoint state here.
   863   if (SafepointSynchronize::safepoint_safe(_thread, state)) {
   864       roll_forward(_at_safepoint);
   865       return;
   866   }
   868   if (state == _thread_in_vm) {
   869     roll_forward(_call_back);
   870     return;
   871   }
   873   // All other thread states will continue to run until they
   874   // transition and self-block in state _blocked
   875   // Safepoint polling in compiled code causes the Java threads to do the same.
   876   // Note: new threads may require a malloc so they must be allowed to finish
   878   assert(is_running(), "examine_state_of_thread on non-running thread");
   879   return;
   880 }
   882 // Returns true is thread could not be rolled forward at present position.
   883 void ThreadSafepointState::roll_forward(suspend_type type) {
   884   _type = type;
   886   switch(_type) {
   887     case _at_safepoint:
   888       SafepointSynchronize::signal_thread_at_safepoint();
   889       break;
   891     case _call_back:
   892       set_has_called_back(false);
   893       break;
   895     case _running:
   896     default:
   897       ShouldNotReachHere();
   898   }
   899 }
   901 void ThreadSafepointState::restart() {
   902   switch(type()) {
   903     case _at_safepoint:
   904     case _call_back:
   905       break;
   907     case _running:
   908     default:
   909        tty->print_cr("restart thread "INTPTR_FORMAT" with state %d",
   910                       _thread, _type);
   911        _thread->print();
   912       ShouldNotReachHere();
   913   }
   914   _type = _running;
   915   set_has_called_back(false);
   916 }
   919 void ThreadSafepointState::print_on(outputStream *st) const {
   920   const char *s;
   922   switch(_type) {
   923     case _running                : s = "_running";              break;
   924     case _at_safepoint           : s = "_at_safepoint";         break;
   925     case _call_back              : s = "_call_back";            break;
   926     default:
   927       ShouldNotReachHere();
   928   }
   930   st->print_cr("Thread: " INTPTR_FORMAT
   931               "  [0x%2x] State: %s _has_called_back %d _at_poll_safepoint %d",
   932                _thread, _thread->osthread()->thread_id(), s, _has_called_back,
   933                _at_poll_safepoint);
   935   _thread->print_thread_state_on(st);
   936 }
   939 // ---------------------------------------------------------------------------------------------------------------------
   941 // Block the thread at the safepoint poll or poll return.
   942 void ThreadSafepointState::handle_polling_page_exception() {
   944   // Check state.  block() will set thread state to thread_in_vm which will
   945   // cause the safepoint state _type to become _call_back.
   946   assert(type() == ThreadSafepointState::_running,
   947          "polling page exception on thread not running state");
   949   // Step 1: Find the nmethod from the return address
   950   if (ShowSafepointMsgs && Verbose) {
   951     tty->print_cr("Polling page exception at " INTPTR_FORMAT, thread()->saved_exception_pc());
   952   }
   953   address real_return_addr = thread()->saved_exception_pc();
   955   CodeBlob *cb = CodeCache::find_blob(real_return_addr);
   956   assert(cb != NULL && cb->is_nmethod(), "return address should be in nmethod");
   957   nmethod* nm = (nmethod*)cb;
   959   // Find frame of caller
   960   frame stub_fr = thread()->last_frame();
   961   CodeBlob* stub_cb = stub_fr.cb();
   962   assert(stub_cb->is_safepoint_stub(), "must be a safepoint stub");
   963   RegisterMap map(thread(), true);
   964   frame caller_fr = stub_fr.sender(&map);
   966   // Should only be poll_return or poll
   967   assert( nm->is_at_poll_or_poll_return(real_return_addr), "should not be at call" );
   969   // This is a poll immediately before a return. The exception handling code
   970   // has already had the effect of causing the return to occur, so the execution
   971   // will continue immediately after the call. In addition, the oopmap at the
   972   // return point does not mark the return value as an oop (if it is), so
   973   // it needs a handle here to be updated.
   974   if( nm->is_at_poll_return(real_return_addr) ) {
   975     // See if return type is an oop.
   976     bool return_oop = nm->method()->is_returning_oop();
   977     Handle return_value;
   978     if (return_oop) {
   979       // The oop result has been saved on the stack together with all
   980       // the other registers. In order to preserve it over GCs we need
   981       // to keep it in a handle.
   982       oop result = caller_fr.saved_oop_result(&map);
   983       assert(result == NULL || result->is_oop(), "must be oop");
   984       return_value = Handle(thread(), result);
   985       assert(Universe::heap()->is_in_or_null(result), "must be heap pointer");
   986     }
   988     // Block the thread
   989     SafepointSynchronize::block(thread());
   991     // restore oop result, if any
   992     if (return_oop) {
   993       caller_fr.set_saved_oop_result(&map, return_value());
   994     }
   995   }
   997   // This is a safepoint poll. Verify the return address and block.
   998   else {
   999     set_at_poll_safepoint(true);
  1001     // verify the blob built the "return address" correctly
  1002     assert(real_return_addr == caller_fr.pc(), "must match");
  1004     // Block the thread
  1005     SafepointSynchronize::block(thread());
  1006     set_at_poll_safepoint(false);
  1008     // If we have a pending async exception deoptimize the frame
  1009     // as otherwise we may never deliver it.
  1010     if (thread()->has_async_condition()) {
  1011       ThreadInVMfromJavaNoAsyncException __tiv(thread());
  1012       Deoptimization::deoptimize_frame(thread(), caller_fr.id());
  1015     // If an exception has been installed we must check for a pending deoptimization
  1016     // Deoptimize frame if exception has been thrown.
  1018     if (thread()->has_pending_exception() ) {
  1019       RegisterMap map(thread(), true);
  1020       frame caller_fr = stub_fr.sender(&map);
  1021       if (caller_fr.is_deoptimized_frame()) {
  1022         // The exception patch will destroy registers that are still
  1023         // live and will be needed during deoptimization. Defer the
  1024         // Async exception should have defered the exception until the
  1025         // next safepoint which will be detected when we get into
  1026         // the interpreter so if we have an exception now things
  1027         // are messed up.
  1029         fatal("Exception installed and deoptimization is pending");
  1036 //
  1037 //                     Statistics & Instrumentations
  1038 //
  1039 SafepointSynchronize::SafepointStats*  SafepointSynchronize::_safepoint_stats = NULL;
  1040 jlong  SafepointSynchronize::_safepoint_begin_time = 0;
  1041 int    SafepointSynchronize::_cur_stat_index = 0;
  1042 julong SafepointSynchronize::_safepoint_reasons[VM_Operation::VMOp_Terminating];
  1043 julong SafepointSynchronize::_coalesced_vmop_count = 0;
  1044 jlong  SafepointSynchronize::_max_sync_time = 0;
  1045 jlong  SafepointSynchronize::_max_vmop_time = 0;
  1046 float  SafepointSynchronize::_ts_of_current_safepoint = 0.0f;
  1048 static jlong  cleanup_end_time = 0;
  1049 static bool   need_to_track_page_armed_status = false;
  1050 static bool   init_done = false;
  1052 // Helper method to print the header.
  1053 static void print_header() {
  1054   tty->print("         vmop                    "
  1055              "[threads: total initially_running wait_to_block]    ");
  1056   tty->print("[time: spin block sync cleanup vmop] ");
  1058   // no page armed status printed out if it is always armed.
  1059   if (need_to_track_page_armed_status) {
  1060     tty->print("page_armed ");
  1063   tty->print_cr("page_trap_count");
  1066 void SafepointSynchronize::deferred_initialize_stat() {
  1067   if (init_done) return;
  1069   if (PrintSafepointStatisticsCount <= 0) {
  1070     fatal("Wrong PrintSafepointStatisticsCount");
  1073   // If PrintSafepointStatisticsTimeout is specified, the statistics data will
  1074   // be printed right away, in which case, _safepoint_stats will regress to
  1075   // a single element array. Otherwise, it is a circular ring buffer with default
  1076   // size of PrintSafepointStatisticsCount.
  1077   int stats_array_size;
  1078   if (PrintSafepointStatisticsTimeout > 0) {
  1079     stats_array_size = 1;
  1080     PrintSafepointStatistics = true;
  1081   } else {
  1082     stats_array_size = PrintSafepointStatisticsCount;
  1084   _safepoint_stats = (SafepointStats*)os::malloc(stats_array_size
  1085                                                  * sizeof(SafepointStats));
  1086   guarantee(_safepoint_stats != NULL,
  1087             "not enough memory for safepoint instrumentation data");
  1089   if (UseCompilerSafepoints && DeferPollingPageLoopCount >= 0) {
  1090     need_to_track_page_armed_status = true;
  1092   init_done = true;
  1095 void SafepointSynchronize::begin_statistics(int nof_threads, int nof_running) {
  1096   assert(init_done, "safepoint statistics array hasn't been initialized");
  1097   SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
  1099   spstat->_time_stamp = _ts_of_current_safepoint;
  1101   VM_Operation *op = VMThread::vm_operation();
  1102   spstat->_vmop_type = (op != NULL ? op->type() : -1);
  1103   if (op != NULL) {
  1104     _safepoint_reasons[spstat->_vmop_type]++;
  1107   spstat->_nof_total_threads = nof_threads;
  1108   spstat->_nof_initial_running_threads = nof_running;
  1109   spstat->_nof_threads_hit_page_trap = 0;
  1111   // Records the start time of spinning. The real time spent on spinning
  1112   // will be adjusted when spin is done. Same trick is applied for time
  1113   // spent on waiting for threads to block.
  1114   if (nof_running != 0) {
  1115     spstat->_time_to_spin = os::javaTimeNanos();
  1116   }  else {
  1117     spstat->_time_to_spin = 0;
  1121 void SafepointSynchronize::update_statistics_on_spin_end() {
  1122   SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
  1124   jlong cur_time = os::javaTimeNanos();
  1126   spstat->_nof_threads_wait_to_block = _waiting_to_block;
  1127   if (spstat->_nof_initial_running_threads != 0) {
  1128     spstat->_time_to_spin = cur_time - spstat->_time_to_spin;
  1131   if (need_to_track_page_armed_status) {
  1132     spstat->_page_armed = (PageArmed == 1);
  1135   // Records the start time of waiting for to block. Updated when block is done.
  1136   if (_waiting_to_block != 0) {
  1137     spstat->_time_to_wait_to_block = cur_time;
  1138   } else {
  1139     spstat->_time_to_wait_to_block = 0;
  1143 void SafepointSynchronize::update_statistics_on_sync_end(jlong end_time) {
  1144   SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
  1146   if (spstat->_nof_threads_wait_to_block != 0) {
  1147     spstat->_time_to_wait_to_block = end_time -
  1148       spstat->_time_to_wait_to_block;
  1151   // Records the end time of sync which will be used to calculate the total
  1152   // vm operation time. Again, the real time spending in syncing will be deducted
  1153   // from the start of the sync time later when end_statistics is called.
  1154   spstat->_time_to_sync = end_time - _safepoint_begin_time;
  1155   if (spstat->_time_to_sync > _max_sync_time) {
  1156     _max_sync_time = spstat->_time_to_sync;
  1159   spstat->_time_to_do_cleanups = end_time;
  1162 void SafepointSynchronize::update_statistics_on_cleanup_end(jlong end_time) {
  1163   SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
  1165   // Record how long spent in cleanup tasks.
  1166   spstat->_time_to_do_cleanups = end_time - spstat->_time_to_do_cleanups;
  1168   cleanup_end_time = end_time;
  1171 void SafepointSynchronize::end_statistics(jlong vmop_end_time) {
  1172   SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
  1174   // Update the vm operation time.
  1175   spstat->_time_to_exec_vmop = vmop_end_time -  cleanup_end_time;
  1176   if (spstat->_time_to_exec_vmop > _max_vmop_time) {
  1177     _max_vmop_time = spstat->_time_to_exec_vmop;
  1179   // Only the sync time longer than the specified
  1180   // PrintSafepointStatisticsTimeout will be printed out right away.
  1181   // By default, it is -1 meaning all samples will be put into the list.
  1182   if ( PrintSafepointStatisticsTimeout > 0) {
  1183     if (spstat->_time_to_sync > PrintSafepointStatisticsTimeout * MICROUNITS) {
  1184       print_statistics();
  1186   } else {
  1187     // The safepoint statistics will be printed out when the _safepoin_stats
  1188     // array fills up.
  1189     if (_cur_stat_index == PrintSafepointStatisticsCount - 1) {
  1190       print_statistics();
  1191       _cur_stat_index = 0;
  1192     } else {
  1193       _cur_stat_index++;
  1198 void SafepointSynchronize::print_statistics() {
  1199   SafepointStats* sstats = _safepoint_stats;
  1201   for (int index = 0; index <= _cur_stat_index; index++) {
  1202     if (index % 30 == 0) {
  1203       print_header();
  1205     sstats = &_safepoint_stats[index];
  1206     tty->print("%.3f: ", sstats->_time_stamp);
  1207     tty->print("%-26s       ["
  1208                INT32_FORMAT_W(8)INT32_FORMAT_W(11)INT32_FORMAT_W(15)
  1209                "    ]    ",
  1210                sstats->_vmop_type == -1 ? "no vm operation" :
  1211                VM_Operation::name(sstats->_vmop_type),
  1212                sstats->_nof_total_threads,
  1213                sstats->_nof_initial_running_threads,
  1214                sstats->_nof_threads_wait_to_block);
  1215     // "/ MICROUNITS " is to convert the unit from nanos to millis.
  1216     tty->print("  ["
  1217                INT64_FORMAT_W(6)INT64_FORMAT_W(6)
  1218                INT64_FORMAT_W(6)INT64_FORMAT_W(6)
  1219                INT64_FORMAT_W(6)"    ]  ",
  1220                sstats->_time_to_spin / MICROUNITS,
  1221                sstats->_time_to_wait_to_block / MICROUNITS,
  1222                sstats->_time_to_sync / MICROUNITS,
  1223                sstats->_time_to_do_cleanups / MICROUNITS,
  1224                sstats->_time_to_exec_vmop / MICROUNITS);
  1226     if (need_to_track_page_armed_status) {
  1227       tty->print(INT32_FORMAT"         ", sstats->_page_armed);
  1229     tty->print_cr(INT32_FORMAT"   ", sstats->_nof_threads_hit_page_trap);
  1233 // This method will be called when VM exits. It will first call
  1234 // print_statistics to print out the rest of the sampling.  Then
  1235 // it tries to summarize the sampling.
  1236 void SafepointSynchronize::print_stat_on_exit() {
  1237   if (_safepoint_stats == NULL) return;
  1239   SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
  1241   // During VM exit, end_statistics may not get called and in that
  1242   // case, if the sync time is less than PrintSafepointStatisticsTimeout,
  1243   // don't print it out.
  1244   // Approximate the vm op time.
  1245   _safepoint_stats[_cur_stat_index]._time_to_exec_vmop =
  1246     os::javaTimeNanos() - cleanup_end_time;
  1248   if ( PrintSafepointStatisticsTimeout < 0 ||
  1249        spstat->_time_to_sync > PrintSafepointStatisticsTimeout * MICROUNITS) {
  1250     print_statistics();
  1252   tty->print_cr("");
  1254   // Print out polling page sampling status.
  1255   if (!need_to_track_page_armed_status) {
  1256     if (UseCompilerSafepoints) {
  1257       tty->print_cr("Polling page always armed");
  1259   } else {
  1260     tty->print_cr("Defer polling page loop count = %d\n",
  1261                  DeferPollingPageLoopCount);
  1264   for (int index = 0; index < VM_Operation::VMOp_Terminating; index++) {
  1265     if (_safepoint_reasons[index] != 0) {
  1266       tty->print_cr("%-26s"UINT64_FORMAT_W(10), VM_Operation::name(index),
  1267                     _safepoint_reasons[index]);
  1271   tty->print_cr(UINT64_FORMAT_W(5)" VM operations coalesced during safepoint",
  1272                 _coalesced_vmop_count);
  1273   tty->print_cr("Maximum sync time  "INT64_FORMAT_W(5)" ms",
  1274                 _max_sync_time / MICROUNITS);
  1275   tty->print_cr("Maximum vm operation time (except for Exit VM operation)  "
  1276                 INT64_FORMAT_W(5)" ms",
  1277                 _max_vmop_time / MICROUNITS);
  1280 // ------------------------------------------------------------------------------------------------
  1281 // Non-product code
  1283 #ifndef PRODUCT
  1285 void SafepointSynchronize::print_state() {
  1286   if (_state == _not_synchronized) {
  1287     tty->print_cr("not synchronized");
  1288   } else if (_state == _synchronizing || _state == _synchronized) {
  1289     tty->print_cr("State: %s", (_state == _synchronizing) ? "synchronizing" :
  1290                   "synchronized");
  1292     for(JavaThread *cur = Threads::first(); cur; cur = cur->next()) {
  1293        cur->safepoint_state()->print();
  1298 void SafepointSynchronize::safepoint_msg(const char* format, ...) {
  1299   if (ShowSafepointMsgs) {
  1300     va_list ap;
  1301     va_start(ap, format);
  1302     tty->vprint_cr(format, ap);
  1303     va_end(ap);
  1307 #endif // !PRODUCT

mercurial