src/share/vm/runtime/os.cpp

Sun, 25 Sep 2011 16:03:29 -0700

author
never
date
Sun, 25 Sep 2011 16:03:29 -0700
changeset 3156
f08d439fab8c
parent 3063
9f12ede5571a
child 3202
436b4a3231bf
permissions
-rw-r--r--

7089790: integrate bsd-port changes
Reviewed-by: kvn, twisti, jrose
Contributed-by: Kurt Miller <kurt@intricatesoftware.com>, Greg Lewis <glewis@eyesbeyond.com>, Jung-uk Kim <jkim@freebsd.org>, Christos Zoulas <christos@zoulas.com>, Landon Fuller <landonf@plausible.coop>, The FreeBSD Foundation <board@freebsdfoundation.org>, Michael Franz <mvfranz@gmail.com>, Roger Hoover <rhoover@apple.com>, Alexander Strange <astrange@apple.com>

     1 /*
     2  * Copyright (c) 1997, 2011, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "classfile/classLoader.hpp"
    27 #include "classfile/javaClasses.hpp"
    28 #include "classfile/systemDictionary.hpp"
    29 #include "classfile/vmSymbols.hpp"
    30 #include "code/icBuffer.hpp"
    31 #include "code/vtableStubs.hpp"
    32 #include "gc_implementation/shared/vmGCOperations.hpp"
    33 #include "interpreter/interpreter.hpp"
    34 #include "memory/allocation.inline.hpp"
    35 #include "oops/oop.inline.hpp"
    36 #include "prims/jvm.h"
    37 #include "prims/jvm_misc.hpp"
    38 #include "prims/privilegedStack.hpp"
    39 #include "runtime/arguments.hpp"
    40 #include "runtime/frame.inline.hpp"
    41 #include "runtime/interfaceSupport.hpp"
    42 #include "runtime/java.hpp"
    43 #include "runtime/javaCalls.hpp"
    44 #include "runtime/mutexLocker.hpp"
    45 #include "runtime/os.hpp"
    46 #include "runtime/stubRoutines.hpp"
    47 #include "services/attachListener.hpp"
    48 #include "services/threadService.hpp"
    49 #include "utilities/defaultStream.hpp"
    50 #include "utilities/events.hpp"
    51 #ifdef TARGET_OS_FAMILY_linux
    52 # include "os_linux.inline.hpp"
    53 # include "thread_linux.inline.hpp"
    54 #endif
    55 #ifdef TARGET_OS_FAMILY_solaris
    56 # include "os_solaris.inline.hpp"
    57 # include "thread_solaris.inline.hpp"
    58 #endif
    59 #ifdef TARGET_OS_FAMILY_windows
    60 # include "os_windows.inline.hpp"
    61 # include "thread_windows.inline.hpp"
    62 #endif
    63 #ifdef TARGET_OS_FAMILY_bsd
    64 # include "os_bsd.inline.hpp"
    65 # include "thread_bsd.inline.hpp"
    66 #endif
    68 # include <signal.h>
    70 OSThread*         os::_starting_thread    = NULL;
    71 address           os::_polling_page       = NULL;
    72 volatile int32_t* os::_mem_serialize_page = NULL;
    73 uintptr_t         os::_serialize_page_mask = 0;
    74 long              os::_rand_seed          = 1;
    75 int               os::_processor_count    = 0;
    76 size_t            os::_page_sizes[os::page_sizes_max];
    78 #ifndef PRODUCT
    79 julong os::num_mallocs = 0;         // # of calls to malloc/realloc
    80 julong os::alloc_bytes = 0;         // # of bytes allocated
    81 julong os::num_frees = 0;           // # of calls to free
    82 julong os::free_bytes = 0;          // # of bytes freed
    83 #endif
    85 // Fill in buffer with current local time as an ISO-8601 string.
    86 // E.g., yyyy-mm-ddThh:mm:ss-zzzz.
    87 // Returns buffer, or NULL if it failed.
    88 // This would mostly be a call to
    89 //     strftime(...., "%Y-%m-%d" "T" "%H:%M:%S" "%z", ....)
    90 // except that on Windows the %z behaves badly, so we do it ourselves.
    91 // Also, people wanted milliseconds on there,
    92 // and strftime doesn't do milliseconds.
    93 char* os::iso8601_time(char* buffer, size_t buffer_length) {
    94   // Output will be of the form "YYYY-MM-DDThh:mm:ss.mmm+zzzz\0"
    95   //                                      1         2
    96   //                             12345678901234567890123456789
    97   static const char* iso8601_format =
    98     "%04d-%02d-%02dT%02d:%02d:%02d.%03d%c%02d%02d";
    99   static const size_t needed_buffer = 29;
   101   // Sanity check the arguments
   102   if (buffer == NULL) {
   103     assert(false, "NULL buffer");
   104     return NULL;
   105   }
   106   if (buffer_length < needed_buffer) {
   107     assert(false, "buffer_length too small");
   108     return NULL;
   109   }
   110   // Get the current time
   111   jlong milliseconds_since_19700101 = javaTimeMillis();
   112   const int milliseconds_per_microsecond = 1000;
   113   const time_t seconds_since_19700101 =
   114     milliseconds_since_19700101 / milliseconds_per_microsecond;
   115   const int milliseconds_after_second =
   116     milliseconds_since_19700101 % milliseconds_per_microsecond;
   117   // Convert the time value to a tm and timezone variable
   118   struct tm time_struct;
   119   if (localtime_pd(&seconds_since_19700101, &time_struct) == NULL) {
   120     assert(false, "Failed localtime_pd");
   121     return NULL;
   122   }
   123 #if defined(_ALLBSD_SOURCE)
   124   const time_t zone = (time_t) time_struct.tm_gmtoff;
   125 #else
   126   const time_t zone = timezone;
   127 #endif
   129   // If daylight savings time is in effect,
   130   // we are 1 hour East of our time zone
   131   const time_t seconds_per_minute = 60;
   132   const time_t minutes_per_hour = 60;
   133   const time_t seconds_per_hour = seconds_per_minute * minutes_per_hour;
   134   time_t UTC_to_local = zone;
   135   if (time_struct.tm_isdst > 0) {
   136     UTC_to_local = UTC_to_local - seconds_per_hour;
   137   }
   138   // Compute the time zone offset.
   139   //    localtime_pd() sets timezone to the difference (in seconds)
   140   //    between UTC and and local time.
   141   //    ISO 8601 says we need the difference between local time and UTC,
   142   //    we change the sign of the localtime_pd() result.
   143   const time_t local_to_UTC = -(UTC_to_local);
   144   // Then we have to figure out if if we are ahead (+) or behind (-) UTC.
   145   char sign_local_to_UTC = '+';
   146   time_t abs_local_to_UTC = local_to_UTC;
   147   if (local_to_UTC < 0) {
   148     sign_local_to_UTC = '-';
   149     abs_local_to_UTC = -(abs_local_to_UTC);
   150   }
   151   // Convert time zone offset seconds to hours and minutes.
   152   const time_t zone_hours = (abs_local_to_UTC / seconds_per_hour);
   153   const time_t zone_min =
   154     ((abs_local_to_UTC % seconds_per_hour) / seconds_per_minute);
   156   // Print an ISO 8601 date and time stamp into the buffer
   157   const int year = 1900 + time_struct.tm_year;
   158   const int month = 1 + time_struct.tm_mon;
   159   const int printed = jio_snprintf(buffer, buffer_length, iso8601_format,
   160                                    year,
   161                                    month,
   162                                    time_struct.tm_mday,
   163                                    time_struct.tm_hour,
   164                                    time_struct.tm_min,
   165                                    time_struct.tm_sec,
   166                                    milliseconds_after_second,
   167                                    sign_local_to_UTC,
   168                                    zone_hours,
   169                                    zone_min);
   170   if (printed == 0) {
   171     assert(false, "Failed jio_printf");
   172     return NULL;
   173   }
   174   return buffer;
   175 }
   177 OSReturn os::set_priority(Thread* thread, ThreadPriority p) {
   178 #ifdef ASSERT
   179   if (!(!thread->is_Java_thread() ||
   180          Thread::current() == thread  ||
   181          Threads_lock->owned_by_self()
   182          || thread->is_Compiler_thread()
   183         )) {
   184     assert(false, "possibility of dangling Thread pointer");
   185   }
   186 #endif
   188   if (p >= MinPriority && p <= MaxPriority) {
   189     int priority = java_to_os_priority[p];
   190     return set_native_priority(thread, priority);
   191   } else {
   192     assert(false, "Should not happen");
   193     return OS_ERR;
   194   }
   195 }
   198 OSReturn os::get_priority(const Thread* const thread, ThreadPriority& priority) {
   199   int p;
   200   int os_prio;
   201   OSReturn ret = get_native_priority(thread, &os_prio);
   202   if (ret != OS_OK) return ret;
   204   for (p = MaxPriority; p > MinPriority && java_to_os_priority[p] > os_prio; p--) ;
   205   priority = (ThreadPriority)p;
   206   return OS_OK;
   207 }
   210 // --------------------- sun.misc.Signal (optional) ---------------------
   213 // SIGBREAK is sent by the keyboard to query the VM state
   214 #ifndef SIGBREAK
   215 #define SIGBREAK SIGQUIT
   216 #endif
   218 // sigexitnum_pd is a platform-specific special signal used for terminating the Signal thread.
   221 static void signal_thread_entry(JavaThread* thread, TRAPS) {
   222   os::set_priority(thread, NearMaxPriority);
   223   while (true) {
   224     int sig;
   225     {
   226       // FIXME : Currently we have not decieded what should be the status
   227       //         for this java thread blocked here. Once we decide about
   228       //         that we should fix this.
   229       sig = os::signal_wait();
   230     }
   231     if (sig == os::sigexitnum_pd()) {
   232        // Terminate the signal thread
   233        return;
   234     }
   236     switch (sig) {
   237       case SIGBREAK: {
   238         // Check if the signal is a trigger to start the Attach Listener - in that
   239         // case don't print stack traces.
   240         if (!DisableAttachMechanism && AttachListener::is_init_trigger()) {
   241           continue;
   242         }
   243         // Print stack traces
   244         // Any SIGBREAK operations added here should make sure to flush
   245         // the output stream (e.g. tty->flush()) after output.  See 4803766.
   246         // Each module also prints an extra carriage return after its output.
   247         VM_PrintThreads op;
   248         VMThread::execute(&op);
   249         VM_PrintJNI jni_op;
   250         VMThread::execute(&jni_op);
   251         VM_FindDeadlocks op1(tty);
   252         VMThread::execute(&op1);
   253         Universe::print_heap_at_SIGBREAK();
   254         if (PrintClassHistogram) {
   255           VM_GC_HeapInspection op1(gclog_or_tty, true /* force full GC before heap inspection */,
   256                                    true /* need_prologue */);
   257           VMThread::execute(&op1);
   258         }
   259         if (JvmtiExport::should_post_data_dump()) {
   260           JvmtiExport::post_data_dump();
   261         }
   262         break;
   263       }
   264       default: {
   265         // Dispatch the signal to java
   266         HandleMark hm(THREAD);
   267         klassOop k = SystemDictionary::resolve_or_null(vmSymbols::sun_misc_Signal(), THREAD);
   268         KlassHandle klass (THREAD, k);
   269         if (klass.not_null()) {
   270           JavaValue result(T_VOID);
   271           JavaCallArguments args;
   272           args.push_int(sig);
   273           JavaCalls::call_static(
   274             &result,
   275             klass,
   276             vmSymbols::dispatch_name(),
   277             vmSymbols::int_void_signature(),
   278             &args,
   279             THREAD
   280           );
   281         }
   282         if (HAS_PENDING_EXCEPTION) {
   283           // tty is initialized early so we don't expect it to be null, but
   284           // if it is we can't risk doing an initialization that might
   285           // trigger additional out-of-memory conditions
   286           if (tty != NULL) {
   287             char klass_name[256];
   288             char tmp_sig_name[16];
   289             const char* sig_name = "UNKNOWN";
   290             instanceKlass::cast(PENDING_EXCEPTION->klass())->
   291               name()->as_klass_external_name(klass_name, 256);
   292             if (os::exception_name(sig, tmp_sig_name, 16) != NULL)
   293               sig_name = tmp_sig_name;
   294             warning("Exception %s occurred dispatching signal %s to handler"
   295                     "- the VM may need to be forcibly terminated",
   296                     klass_name, sig_name );
   297           }
   298           CLEAR_PENDING_EXCEPTION;
   299         }
   300       }
   301     }
   302   }
   303 }
   306 void os::signal_init() {
   307   if (!ReduceSignalUsage) {
   308     // Setup JavaThread for processing signals
   309     EXCEPTION_MARK;
   310     klassOop k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK);
   311     instanceKlassHandle klass (THREAD, k);
   312     instanceHandle thread_oop = klass->allocate_instance_handle(CHECK);
   314     const char thread_name[] = "Signal Dispatcher";
   315     Handle string = java_lang_String::create_from_str(thread_name, CHECK);
   317     // Initialize thread_oop to put it into the system threadGroup
   318     Handle thread_group (THREAD, Universe::system_thread_group());
   319     JavaValue result(T_VOID);
   320     JavaCalls::call_special(&result, thread_oop,
   321                            klass,
   322                            vmSymbols::object_initializer_name(),
   323                            vmSymbols::threadgroup_string_void_signature(),
   324                            thread_group,
   325                            string,
   326                            CHECK);
   328     KlassHandle group(THREAD, SystemDictionary::ThreadGroup_klass());
   329     JavaCalls::call_special(&result,
   330                             thread_group,
   331                             group,
   332                             vmSymbols::add_method_name(),
   333                             vmSymbols::thread_void_signature(),
   334                             thread_oop,         // ARG 1
   335                             CHECK);
   337     os::signal_init_pd();
   339     { MutexLocker mu(Threads_lock);
   340       JavaThread* signal_thread = new JavaThread(&signal_thread_entry);
   342       // At this point it may be possible that no osthread was created for the
   343       // JavaThread due to lack of memory. We would have to throw an exception
   344       // in that case. However, since this must work and we do not allow
   345       // exceptions anyway, check and abort if this fails.
   346       if (signal_thread == NULL || signal_thread->osthread() == NULL) {
   347         vm_exit_during_initialization("java.lang.OutOfMemoryError",
   348                                       "unable to create new native thread");
   349       }
   351       java_lang_Thread::set_thread(thread_oop(), signal_thread);
   352       java_lang_Thread::set_priority(thread_oop(), NearMaxPriority);
   353       java_lang_Thread::set_daemon(thread_oop());
   355       signal_thread->set_threadObj(thread_oop());
   356       Threads::add(signal_thread);
   357       Thread::start(signal_thread);
   358     }
   359     // Handle ^BREAK
   360     os::signal(SIGBREAK, os::user_handler());
   361   }
   362 }
   365 void os::terminate_signal_thread() {
   366   if (!ReduceSignalUsage)
   367     signal_notify(sigexitnum_pd());
   368 }
   371 // --------------------- loading libraries ---------------------
   373 typedef jint (JNICALL *JNI_OnLoad_t)(JavaVM *, void *);
   374 extern struct JavaVM_ main_vm;
   376 static void* _native_java_library = NULL;
   378 void* os::native_java_library() {
   379   if (_native_java_library == NULL) {
   380     char buffer[JVM_MAXPATHLEN];
   381     char ebuf[1024];
   383     // Try to load verify dll first. In 1.3 java dll depends on it and is not
   384     // always able to find it when the loading executable is outside the JDK.
   385     // In order to keep working with 1.2 we ignore any loading errors.
   386     dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(), "verify");
   387     dll_load(buffer, ebuf, sizeof(ebuf));
   389     // Load java dll
   390     dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(), "java");
   391     _native_java_library = dll_load(buffer, ebuf, sizeof(ebuf));
   392     if (_native_java_library == NULL) {
   393       vm_exit_during_initialization("Unable to load native library", ebuf);
   394     }
   396 #if defined(__OpenBSD__)
   397     // Work-around OpenBSD's lack of $ORIGIN support by pre-loading libnet.so
   398     // ignore errors
   399     dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(), "net");
   400     dll_load(buffer, ebuf, sizeof(ebuf));
   401 #endif
   402   }
   403   static jboolean onLoaded = JNI_FALSE;
   404   if (onLoaded) {
   405     // We may have to wait to fire OnLoad until TLS is initialized.
   406     if (ThreadLocalStorage::is_initialized()) {
   407       // The JNI_OnLoad handling is normally done by method load in
   408       // java.lang.ClassLoader$NativeLibrary, but the VM loads the base library
   409       // explicitly so we have to check for JNI_OnLoad as well
   410       const char *onLoadSymbols[] = JNI_ONLOAD_SYMBOLS;
   411       JNI_OnLoad_t JNI_OnLoad = CAST_TO_FN_PTR(
   412           JNI_OnLoad_t, dll_lookup(_native_java_library, onLoadSymbols[0]));
   413       if (JNI_OnLoad != NULL) {
   414         JavaThread* thread = JavaThread::current();
   415         ThreadToNativeFromVM ttn(thread);
   416         HandleMark hm(thread);
   417         jint ver = (*JNI_OnLoad)(&main_vm, NULL);
   418         onLoaded = JNI_TRUE;
   419         if (!Threads::is_supported_jni_version_including_1_1(ver)) {
   420           vm_exit_during_initialization("Unsupported JNI version");
   421         }
   422       }
   423     }
   424   }
   425   return _native_java_library;
   426 }
   428 // --------------------- heap allocation utilities ---------------------
   430 char *os::strdup(const char *str) {
   431   size_t size = strlen(str);
   432   char *dup_str = (char *)malloc(size + 1);
   433   if (dup_str == NULL) return NULL;
   434   strcpy(dup_str, str);
   435   return dup_str;
   436 }
   440 #ifdef ASSERT
   441 #define space_before             (MallocCushion + sizeof(double))
   442 #define space_after              MallocCushion
   443 #define size_addr_from_base(p)   (size_t*)(p + space_before - sizeof(size_t))
   444 #define size_addr_from_obj(p)    ((size_t*)p - 1)
   445 // MallocCushion: size of extra cushion allocated around objects with +UseMallocOnly
   446 // NB: cannot be debug variable, because these aren't set from the command line until
   447 // *after* the first few allocs already happened
   448 #define MallocCushion            16
   449 #else
   450 #define space_before             0
   451 #define space_after              0
   452 #define size_addr_from_base(p)   should not use w/o ASSERT
   453 #define size_addr_from_obj(p)    should not use w/o ASSERT
   454 #define MallocCushion            0
   455 #endif
   456 #define paranoid                 0  /* only set to 1 if you suspect checking code has bug */
   458 #ifdef ASSERT
   459 inline size_t get_size(void* obj) {
   460   size_t size = *size_addr_from_obj(obj);
   461   if (size < 0) {
   462     fatal(err_msg("free: size field of object #" PTR_FORMAT " was overwritten ("
   463                   SIZE_FORMAT ")", obj, size));
   464   }
   465   return size;
   466 }
   468 u_char* find_cushion_backwards(u_char* start) {
   469   u_char* p = start;
   470   while (p[ 0] != badResourceValue || p[-1] != badResourceValue ||
   471          p[-2] != badResourceValue || p[-3] != badResourceValue) p--;
   472   // ok, we have four consecutive marker bytes; find start
   473   u_char* q = p - 4;
   474   while (*q == badResourceValue) q--;
   475   return q + 1;
   476 }
   478 u_char* find_cushion_forwards(u_char* start) {
   479   u_char* p = start;
   480   while (p[0] != badResourceValue || p[1] != badResourceValue ||
   481          p[2] != badResourceValue || p[3] != badResourceValue) p++;
   482   // ok, we have four consecutive marker bytes; find end of cushion
   483   u_char* q = p + 4;
   484   while (*q == badResourceValue) q++;
   485   return q - MallocCushion;
   486 }
   488 void print_neighbor_blocks(void* ptr) {
   489   // find block allocated before ptr (not entirely crash-proof)
   490   if (MallocCushion < 4) {
   491     tty->print_cr("### cannot find previous block (MallocCushion < 4)");
   492     return;
   493   }
   494   u_char* start_of_this_block = (u_char*)ptr - space_before;
   495   u_char* end_of_prev_block_data = start_of_this_block - space_after -1;
   496   // look for cushion in front of prev. block
   497   u_char* start_of_prev_block = find_cushion_backwards(end_of_prev_block_data);
   498   ptrdiff_t size = *size_addr_from_base(start_of_prev_block);
   499   u_char* obj = start_of_prev_block + space_before;
   500   if (size <= 0 ) {
   501     // start is bad; mayhave been confused by OS data inbetween objects
   502     // search one more backwards
   503     start_of_prev_block = find_cushion_backwards(start_of_prev_block);
   504     size = *size_addr_from_base(start_of_prev_block);
   505     obj = start_of_prev_block + space_before;
   506   }
   508   if (start_of_prev_block + space_before + size + space_after == start_of_this_block) {
   509     tty->print_cr("### previous object: " PTR_FORMAT " (" SSIZE_FORMAT " bytes)", obj, size);
   510   } else {
   511     tty->print_cr("### previous object (not sure if correct): " PTR_FORMAT " (" SSIZE_FORMAT " bytes)", obj, size);
   512   }
   514   // now find successor block
   515   u_char* start_of_next_block = (u_char*)ptr + *size_addr_from_obj(ptr) + space_after;
   516   start_of_next_block = find_cushion_forwards(start_of_next_block);
   517   u_char* next_obj = start_of_next_block + space_before;
   518   ptrdiff_t next_size = *size_addr_from_base(start_of_next_block);
   519   if (start_of_next_block[0] == badResourceValue &&
   520       start_of_next_block[1] == badResourceValue &&
   521       start_of_next_block[2] == badResourceValue &&
   522       start_of_next_block[3] == badResourceValue) {
   523     tty->print_cr("### next object: " PTR_FORMAT " (" SSIZE_FORMAT " bytes)", next_obj, next_size);
   524   } else {
   525     tty->print_cr("### next object (not sure if correct): " PTR_FORMAT " (" SSIZE_FORMAT " bytes)", next_obj, next_size);
   526   }
   527 }
   530 void report_heap_error(void* memblock, void* bad, const char* where) {
   531   tty->print_cr("## nof_mallocs = " UINT64_FORMAT ", nof_frees = " UINT64_FORMAT, os::num_mallocs, os::num_frees);
   532   tty->print_cr("## memory stomp: byte at " PTR_FORMAT " %s object " PTR_FORMAT, bad, where, memblock);
   533   print_neighbor_blocks(memblock);
   534   fatal("memory stomping error");
   535 }
   537 void verify_block(void* memblock) {
   538   size_t size = get_size(memblock);
   539   if (MallocCushion) {
   540     u_char* ptr = (u_char*)memblock - space_before;
   541     for (int i = 0; i < MallocCushion; i++) {
   542       if (ptr[i] != badResourceValue) {
   543         report_heap_error(memblock, ptr+i, "in front of");
   544       }
   545     }
   546     u_char* end = (u_char*)memblock + size + space_after;
   547     for (int j = -MallocCushion; j < 0; j++) {
   548       if (end[j] != badResourceValue) {
   549         report_heap_error(memblock, end+j, "after");
   550       }
   551     }
   552   }
   553 }
   554 #endif
   556 void* os::malloc(size_t size) {
   557   NOT_PRODUCT(inc_stat_counter(&num_mallocs, 1));
   558   NOT_PRODUCT(inc_stat_counter(&alloc_bytes, size));
   560   if (size == 0) {
   561     // return a valid pointer if size is zero
   562     // if NULL is returned the calling functions assume out of memory.
   563     size = 1;
   564   }
   566   NOT_PRODUCT(if (MallocVerifyInterval > 0) check_heap());
   567   u_char* ptr = (u_char*)::malloc(size + space_before + space_after);
   568 #ifdef ASSERT
   569   if (ptr == NULL) return NULL;
   570   if (MallocCushion) {
   571     for (u_char* p = ptr; p < ptr + MallocCushion; p++) *p = (u_char)badResourceValue;
   572     u_char* end = ptr + space_before + size;
   573     for (u_char* pq = ptr+MallocCushion; pq < end; pq++) *pq = (u_char)uninitBlockPad;
   574     for (u_char* q = end; q < end + MallocCushion; q++) *q = (u_char)badResourceValue;
   575   }
   576   // put size just before data
   577   *size_addr_from_base(ptr) = size;
   578 #endif
   579   u_char* memblock = ptr + space_before;
   580   if ((intptr_t)memblock == (intptr_t)MallocCatchPtr) {
   581     tty->print_cr("os::malloc caught, " SIZE_FORMAT " bytes --> " PTR_FORMAT, size, memblock);
   582     breakpoint();
   583   }
   584   debug_only(if (paranoid) verify_block(memblock));
   585   if (PrintMalloc && tty != NULL) tty->print_cr("os::malloc " SIZE_FORMAT " bytes --> " PTR_FORMAT, size, memblock);
   586   return memblock;
   587 }
   590 void* os::realloc(void *memblock, size_t size) {
   591 #ifndef ASSERT
   592   NOT_PRODUCT(inc_stat_counter(&num_mallocs, 1));
   593   NOT_PRODUCT(inc_stat_counter(&alloc_bytes, size));
   594   return ::realloc(memblock, size);
   595 #else
   596   if (memblock == NULL) {
   597     return malloc(size);
   598   }
   599   if ((intptr_t)memblock == (intptr_t)MallocCatchPtr) {
   600     tty->print_cr("os::realloc caught " PTR_FORMAT, memblock);
   601     breakpoint();
   602   }
   603   verify_block(memblock);
   604   NOT_PRODUCT(if (MallocVerifyInterval > 0) check_heap());
   605   if (size == 0) return NULL;
   606   // always move the block
   607   void* ptr = malloc(size);
   608   if (PrintMalloc) tty->print_cr("os::remalloc " SIZE_FORMAT " bytes, " PTR_FORMAT " --> " PTR_FORMAT, size, memblock, ptr);
   609   // Copy to new memory if malloc didn't fail
   610   if ( ptr != NULL ) {
   611     memcpy(ptr, memblock, MIN2(size, get_size(memblock)));
   612     if (paranoid) verify_block(ptr);
   613     if ((intptr_t)ptr == (intptr_t)MallocCatchPtr) {
   614       tty->print_cr("os::realloc caught, " SIZE_FORMAT " bytes --> " PTR_FORMAT, size, ptr);
   615       breakpoint();
   616     }
   617     free(memblock);
   618   }
   619   return ptr;
   620 #endif
   621 }
   624 void  os::free(void *memblock) {
   625   NOT_PRODUCT(inc_stat_counter(&num_frees, 1));
   626 #ifdef ASSERT
   627   if (memblock == NULL) return;
   628   if ((intptr_t)memblock == (intptr_t)MallocCatchPtr) {
   629     if (tty != NULL) tty->print_cr("os::free caught " PTR_FORMAT, memblock);
   630     breakpoint();
   631   }
   632   verify_block(memblock);
   633   NOT_PRODUCT(if (MallocVerifyInterval > 0) check_heap());
   634   // Added by detlefs.
   635   if (MallocCushion) {
   636     u_char* ptr = (u_char*)memblock - space_before;
   637     for (u_char* p = ptr; p < ptr + MallocCushion; p++) {
   638       guarantee(*p == badResourceValue,
   639                 "Thing freed should be malloc result.");
   640       *p = (u_char)freeBlockPad;
   641     }
   642     size_t size = get_size(memblock);
   643     inc_stat_counter(&free_bytes, size);
   644     u_char* end = ptr + space_before + size;
   645     for (u_char* q = end; q < end + MallocCushion; q++) {
   646       guarantee(*q == badResourceValue,
   647                 "Thing freed should be malloc result.");
   648       *q = (u_char)freeBlockPad;
   649     }
   650     if (PrintMalloc && tty != NULL)
   651       fprintf(stderr, "os::free " SIZE_FORMAT " bytes --> " PTR_FORMAT "\n", size, (uintptr_t)memblock);
   652   } else if (PrintMalloc && tty != NULL) {
   653     // tty->print_cr("os::free %p", memblock);
   654     fprintf(stderr, "os::free " PTR_FORMAT "\n", (uintptr_t)memblock);
   655   }
   656 #endif
   657   ::free((char*)memblock - space_before);
   658 }
   660 void os::init_random(long initval) {
   661   _rand_seed = initval;
   662 }
   665 long os::random() {
   666   /* standard, well-known linear congruential random generator with
   667    * next_rand = (16807*seed) mod (2**31-1)
   668    * see
   669    * (1) "Random Number Generators: Good Ones Are Hard to Find",
   670    *      S.K. Park and K.W. Miller, Communications of the ACM 31:10 (Oct 1988),
   671    * (2) "Two Fast Implementations of the 'Minimal Standard' Random
   672    *     Number Generator", David G. Carta, Comm. ACM 33, 1 (Jan 1990), pp. 87-88.
   673   */
   674   const long a = 16807;
   675   const unsigned long m = 2147483647;
   676   const long q = m / a;        assert(q == 127773, "weird math");
   677   const long r = m % a;        assert(r == 2836, "weird math");
   679   // compute az=2^31p+q
   680   unsigned long lo = a * (long)(_rand_seed & 0xFFFF);
   681   unsigned long hi = a * (long)((unsigned long)_rand_seed >> 16);
   682   lo += (hi & 0x7FFF) << 16;
   684   // if q overflowed, ignore the overflow and increment q
   685   if (lo > m) {
   686     lo &= m;
   687     ++lo;
   688   }
   689   lo += hi >> 15;
   691   // if (p+q) overflowed, ignore the overflow and increment (p+q)
   692   if (lo > m) {
   693     lo &= m;
   694     ++lo;
   695   }
   696   return (_rand_seed = lo);
   697 }
   699 // The INITIALIZED state is distinguished from the SUSPENDED state because the
   700 // conditions in which a thread is first started are different from those in which
   701 // a suspension is resumed.  These differences make it hard for us to apply the
   702 // tougher checks when starting threads that we want to do when resuming them.
   703 // However, when start_thread is called as a result of Thread.start, on a Java
   704 // thread, the operation is synchronized on the Java Thread object.  So there
   705 // cannot be a race to start the thread and hence for the thread to exit while
   706 // we are working on it.  Non-Java threads that start Java threads either have
   707 // to do so in a context in which races are impossible, or should do appropriate
   708 // locking.
   710 void os::start_thread(Thread* thread) {
   711   // guard suspend/resume
   712   MutexLockerEx ml(thread->SR_lock(), Mutex::_no_safepoint_check_flag);
   713   OSThread* osthread = thread->osthread();
   714   osthread->set_state(RUNNABLE);
   715   pd_start_thread(thread);
   716 }
   718 //---------------------------------------------------------------------------
   719 // Helper functions for fatal error handler
   721 void os::print_hex_dump(outputStream* st, address start, address end, int unitsize) {
   722   assert(unitsize == 1 || unitsize == 2 || unitsize == 4 || unitsize == 8, "just checking");
   724   int cols = 0;
   725   int cols_per_line = 0;
   726   switch (unitsize) {
   727     case 1: cols_per_line = 16; break;
   728     case 2: cols_per_line = 8;  break;
   729     case 4: cols_per_line = 4;  break;
   730     case 8: cols_per_line = 2;  break;
   731     default: return;
   732   }
   734   address p = start;
   735   st->print(PTR_FORMAT ":   ", start);
   736   while (p < end) {
   737     switch (unitsize) {
   738       case 1: st->print("%02x", *(u1*)p); break;
   739       case 2: st->print("%04x", *(u2*)p); break;
   740       case 4: st->print("%08x", *(u4*)p); break;
   741       case 8: st->print("%016" FORMAT64_MODIFIER "x", *(u8*)p); break;
   742     }
   743     p += unitsize;
   744     cols++;
   745     if (cols >= cols_per_line && p < end) {
   746        cols = 0;
   747        st->cr();
   748        st->print(PTR_FORMAT ":   ", p);
   749     } else {
   750        st->print(" ");
   751     }
   752   }
   753   st->cr();
   754 }
   756 void os::print_environment_variables(outputStream* st, const char** env_list,
   757                                      char* buffer, int len) {
   758   if (env_list) {
   759     st->print_cr("Environment Variables:");
   761     for (int i = 0; env_list[i] != NULL; i++) {
   762       if (getenv(env_list[i], buffer, len)) {
   763         st->print(env_list[i]);
   764         st->print("=");
   765         st->print_cr(buffer);
   766       }
   767     }
   768   }
   769 }
   771 void os::print_cpu_info(outputStream* st) {
   772   // cpu
   773   st->print("CPU:");
   774   st->print("total %d", os::processor_count());
   775   // It's not safe to query number of active processors after crash
   776   // st->print("(active %d)", os::active_processor_count());
   777   st->print(" %s", VM_Version::cpu_features());
   778   st->cr();
   779   pd_print_cpu_info(st);
   780 }
   782 void os::print_date_and_time(outputStream *st) {
   783   time_t tloc;
   784   (void)time(&tloc);
   785   st->print("time: %s", ctime(&tloc));  // ctime adds newline.
   787   double t = os::elapsedTime();
   788   // NOTE: It tends to crash after a SEGV if we want to printf("%f",...) in
   789   //       Linux. Must be a bug in glibc ? Workaround is to round "t" to int
   790   //       before printf. We lost some precision, but who cares?
   791   st->print_cr("elapsed time: %d seconds", (int)t);
   792 }
   794 // moved from debug.cpp (used to be find()) but still called from there
   795 // The verbose parameter is only set by the debug code in one case
   796 void os::print_location(outputStream* st, intptr_t x, bool verbose) {
   797   address addr = (address)x;
   798   CodeBlob* b = CodeCache::find_blob_unsafe(addr);
   799   if (b != NULL) {
   800     if (b->is_buffer_blob()) {
   801       // the interpreter is generated into a buffer blob
   802       InterpreterCodelet* i = Interpreter::codelet_containing(addr);
   803       if (i != NULL) {
   804         st->print_cr(INTPTR_FORMAT " is an Interpreter codelet", addr);
   805         i->print_on(st);
   806         return;
   807       }
   808       if (Interpreter::contains(addr)) {
   809         st->print_cr(INTPTR_FORMAT " is pointing into interpreter code"
   810                      " (not bytecode specific)", addr);
   811         return;
   812       }
   813       //
   814       if (AdapterHandlerLibrary::contains(b)) {
   815         st->print_cr(INTPTR_FORMAT " is an AdapterHandler", addr);
   816         AdapterHandlerLibrary::print_handler_on(st, b);
   817       }
   818       // the stubroutines are generated into a buffer blob
   819       StubCodeDesc* d = StubCodeDesc::desc_for(addr);
   820       if (d != NULL) {
   821         d->print_on(st);
   822         if (verbose) st->cr();
   823         return;
   824       }
   825       if (StubRoutines::contains(addr)) {
   826         st->print_cr(INTPTR_FORMAT " is pointing to an (unnamed) "
   827                      "stub routine", addr);
   828         return;
   829       }
   830       // the InlineCacheBuffer is using stubs generated into a buffer blob
   831       if (InlineCacheBuffer::contains(addr)) {
   832         st->print_cr(INTPTR_FORMAT " is pointing into InlineCacheBuffer", addr);
   833         return;
   834       }
   835       VtableStub* v = VtableStubs::stub_containing(addr);
   836       if (v != NULL) {
   837         v->print_on(st);
   838         return;
   839       }
   840     }
   841     if (verbose && b->is_nmethod()) {
   842       ResourceMark rm;
   843       st->print("%#p: Compiled ", addr);
   844       ((nmethod*)b)->method()->print_value_on(st);
   845       st->print("  = (CodeBlob*)" INTPTR_FORMAT, b);
   846       st->cr();
   847       return;
   848     }
   849     st->print(INTPTR_FORMAT " ", b);
   850     if ( b->is_nmethod()) {
   851       if (b->is_zombie()) {
   852         st->print_cr("is zombie nmethod");
   853       } else if (b->is_not_entrant()) {
   854         st->print_cr("is non-entrant nmethod");
   855       }
   856     }
   857     b->print_on(st);
   858     return;
   859   }
   861   if (Universe::heap()->is_in(addr)) {
   862     HeapWord* p = Universe::heap()->block_start(addr);
   863     bool print = false;
   864     // If we couldn't find it it just may mean that heap wasn't parseable
   865     // See if we were just given an oop directly
   866     if (p != NULL && Universe::heap()->block_is_obj(p)) {
   867       print = true;
   868     } else if (p == NULL && ((oopDesc*)addr)->is_oop()) {
   869       p = (HeapWord*) addr;
   870       print = true;
   871     }
   872     if (print) {
   873       st->print_cr(INTPTR_FORMAT " is an oop", addr);
   874       oop(p)->print_on(st);
   875       if (p != (HeapWord*)x && oop(p)->is_constMethod() &&
   876           constMethodOop(p)->contains(addr)) {
   877         Thread *thread = Thread::current();
   878         HandleMark hm(thread);
   879         methodHandle mh (thread, constMethodOop(p)->method());
   880         if (!mh->is_native()) {
   881           st->print_cr("bci_from(%p) = %d; print_codes():",
   882                         addr, mh->bci_from(address(x)));
   883           mh->print_codes_on(st);
   884         }
   885       }
   886       return;
   887     }
   888   } else {
   889     if (Universe::heap()->is_in_reserved(addr)) {
   890       st->print_cr(INTPTR_FORMAT " is an unallocated location "
   891                    "in the heap", addr);
   892       return;
   893     }
   894   }
   895   if (JNIHandles::is_global_handle((jobject) addr)) {
   896     st->print_cr(INTPTR_FORMAT " is a global jni handle", addr);
   897     return;
   898   }
   899   if (JNIHandles::is_weak_global_handle((jobject) addr)) {
   900     st->print_cr(INTPTR_FORMAT " is a weak global jni handle", addr);
   901     return;
   902   }
   903 #ifndef PRODUCT
   904   // we don't keep the block list in product mode
   905   if (JNIHandleBlock::any_contains((jobject) addr)) {
   906     st->print_cr(INTPTR_FORMAT " is a local jni handle", addr);
   907     return;
   908   }
   909 #endif
   911   for(JavaThread *thread = Threads::first(); thread; thread = thread->next()) {
   912     // Check for privilege stack
   913     if (thread->privileged_stack_top() != NULL &&
   914         thread->privileged_stack_top()->contains(addr)) {
   915       st->print_cr(INTPTR_FORMAT " is pointing into the privilege stack "
   916                    "for thread: " INTPTR_FORMAT, addr, thread);
   917       if (verbose) thread->print_on(st);
   918       return;
   919     }
   920     // If the addr is a java thread print information about that.
   921     if (addr == (address)thread) {
   922       if (verbose) {
   923         thread->print_on(st);
   924       } else {
   925         st->print_cr(INTPTR_FORMAT " is a thread", addr);
   926       }
   927       return;
   928     }
   929     // If the addr is in the stack region for this thread then report that
   930     // and print thread info
   931     if (thread->stack_base() >= addr &&
   932         addr > (thread->stack_base() - thread->stack_size())) {
   933       st->print_cr(INTPTR_FORMAT " is pointing into the stack for thread: "
   934                    INTPTR_FORMAT, addr, thread);
   935       if (verbose) thread->print_on(st);
   936       return;
   937     }
   939   }
   940   // Try an OS specific find
   941   if (os::find(addr, st)) {
   942     return;
   943   }
   945   st->print_cr(INTPTR_FORMAT " is an unknown value", addr);
   946 }
   948 // Looks like all platforms except IA64 can use the same function to check
   949 // if C stack is walkable beyond current frame. The check for fp() is not
   950 // necessary on Sparc, but it's harmless.
   951 bool os::is_first_C_frame(frame* fr) {
   952 #ifdef IA64
   953   // In order to walk native frames on Itanium, we need to access the unwind
   954   // table, which is inside ELF. We don't want to parse ELF after fatal error,
   955   // so return true for IA64. If we need to support C stack walking on IA64,
   956   // this function needs to be moved to CPU specific files, as fp() on IA64
   957   // is register stack, which grows towards higher memory address.
   958   return true;
   959 #endif
   961   // Load up sp, fp, sender sp and sender fp, check for reasonable values.
   962   // Check usp first, because if that's bad the other accessors may fault
   963   // on some architectures.  Ditto ufp second, etc.
   964   uintptr_t fp_align_mask = (uintptr_t)(sizeof(address)-1);
   965   // sp on amd can be 32 bit aligned.
   966   uintptr_t sp_align_mask = (uintptr_t)(sizeof(int)-1);
   968   uintptr_t usp    = (uintptr_t)fr->sp();
   969   if ((usp & sp_align_mask) != 0) return true;
   971   uintptr_t ufp    = (uintptr_t)fr->fp();
   972   if ((ufp & fp_align_mask) != 0) return true;
   974   uintptr_t old_sp = (uintptr_t)fr->sender_sp();
   975   if ((old_sp & sp_align_mask) != 0) return true;
   976   if (old_sp == 0 || old_sp == (uintptr_t)-1) return true;
   978   uintptr_t old_fp = (uintptr_t)fr->link();
   979   if ((old_fp & fp_align_mask) != 0) return true;
   980   if (old_fp == 0 || old_fp == (uintptr_t)-1 || old_fp == ufp) return true;
   982   // stack grows downwards; if old_fp is below current fp or if the stack
   983   // frame is too large, either the stack is corrupted or fp is not saved
   984   // on stack (i.e. on x86, ebp may be used as general register). The stack
   985   // is not walkable beyond current frame.
   986   if (old_fp < ufp) return true;
   987   if (old_fp - ufp > 64 * K) return true;
   989   return false;
   990 }
   992 #ifdef ASSERT
   993 extern "C" void test_random() {
   994   const double m = 2147483647;
   995   double mean = 0.0, variance = 0.0, t;
   996   long reps = 10000;
   997   unsigned long seed = 1;
   999   tty->print_cr("seed %ld for %ld repeats...", seed, reps);
  1000   os::init_random(seed);
  1001   long num;
  1002   for (int k = 0; k < reps; k++) {
  1003     num = os::random();
  1004     double u = (double)num / m;
  1005     assert(u >= 0.0 && u <= 1.0, "bad random number!");
  1007     // calculate mean and variance of the random sequence
  1008     mean += u;
  1009     variance += (u*u);
  1011   mean /= reps;
  1012   variance /= (reps - 1);
  1014   assert(num == 1043618065, "bad seed");
  1015   tty->print_cr("mean of the 1st 10000 numbers: %f", mean);
  1016   tty->print_cr("variance of the 1st 10000 numbers: %f", variance);
  1017   const double eps = 0.0001;
  1018   t = fabsd(mean - 0.5018);
  1019   assert(t < eps, "bad mean");
  1020   t = (variance - 0.3355) < 0.0 ? -(variance - 0.3355) : variance - 0.3355;
  1021   assert(t < eps, "bad variance");
  1023 #endif
  1026 // Set up the boot classpath.
  1028 char* os::format_boot_path(const char* format_string,
  1029                            const char* home,
  1030                            int home_len,
  1031                            char fileSep,
  1032                            char pathSep) {
  1033     assert((fileSep == '/' && pathSep == ':') ||
  1034            (fileSep == '\\' && pathSep == ';'), "unexpected seperator chars");
  1036     // Scan the format string to determine the length of the actual
  1037     // boot classpath, and handle platform dependencies as well.
  1038     int formatted_path_len = 0;
  1039     const char* p;
  1040     for (p = format_string; *p != 0; ++p) {
  1041         if (*p == '%') formatted_path_len += home_len - 1;
  1042         ++formatted_path_len;
  1045     char* formatted_path = NEW_C_HEAP_ARRAY(char, formatted_path_len + 1);
  1046     if (formatted_path == NULL) {
  1047         return NULL;
  1050     // Create boot classpath from format, substituting separator chars and
  1051     // java home directory.
  1052     char* q = formatted_path;
  1053     for (p = format_string; *p != 0; ++p) {
  1054         switch (*p) {
  1055         case '%':
  1056             strcpy(q, home);
  1057             q += home_len;
  1058             break;
  1059         case '/':
  1060             *q++ = fileSep;
  1061             break;
  1062         case ':':
  1063             *q++ = pathSep;
  1064             break;
  1065         default:
  1066             *q++ = *p;
  1069     *q = '\0';
  1071     assert((q - formatted_path) == formatted_path_len, "formatted_path size botched");
  1072     return formatted_path;
  1076 bool os::set_boot_path(char fileSep, char pathSep) {
  1077     const char* home = Arguments::get_java_home();
  1078     int home_len = (int)strlen(home);
  1080     static const char* meta_index_dir_format = "%/lib/";
  1081     static const char* meta_index_format = "%/lib/meta-index";
  1082     char* meta_index = format_boot_path(meta_index_format, home, home_len, fileSep, pathSep);
  1083     if (meta_index == NULL) return false;
  1084     char* meta_index_dir = format_boot_path(meta_index_dir_format, home, home_len, fileSep, pathSep);
  1085     if (meta_index_dir == NULL) return false;
  1086     Arguments::set_meta_index_path(meta_index, meta_index_dir);
  1088     // Any modification to the JAR-file list, for the boot classpath must be
  1089     // aligned with install/install/make/common/Pack.gmk. Note: boot class
  1090     // path class JARs, are stripped for StackMapTable to reduce download size.
  1091     static const char classpath_format[] =
  1092         "%/lib/resources.jar:"
  1093         "%/lib/rt.jar:"
  1094         "%/lib/sunrsasign.jar:"
  1095         "%/lib/jsse.jar:"
  1096         "%/lib/jce.jar:"
  1097         "%/lib/charsets.jar:"
  1098         "%/classes";
  1099     char* sysclasspath = format_boot_path(classpath_format, home, home_len, fileSep, pathSep);
  1100     if (sysclasspath == NULL) return false;
  1101     Arguments::set_sysclasspath(sysclasspath);
  1103     return true;
  1106 /*
  1107  * Splits a path, based on its separator, the number of
  1108  * elements is returned back in n.
  1109  * It is the callers responsibility to:
  1110  *   a> check the value of n, and n may be 0.
  1111  *   b> ignore any empty path elements
  1112  *   c> free up the data.
  1113  */
  1114 char** os::split_path(const char* path, int* n) {
  1115   *n = 0;
  1116   if (path == NULL || strlen(path) == 0) {
  1117     return NULL;
  1119   const char psepchar = *os::path_separator();
  1120   char* inpath = (char*)NEW_C_HEAP_ARRAY(char, strlen(path) + 1);
  1121   if (inpath == NULL) {
  1122     return NULL;
  1124   strncpy(inpath, path, strlen(path));
  1125   int count = 1;
  1126   char* p = strchr(inpath, psepchar);
  1127   // Get a count of elements to allocate memory
  1128   while (p != NULL) {
  1129     count++;
  1130     p++;
  1131     p = strchr(p, psepchar);
  1133   char** opath = (char**) NEW_C_HEAP_ARRAY(char*, count);
  1134   if (opath == NULL) {
  1135     return NULL;
  1138   // do the actual splitting
  1139   p = inpath;
  1140   for (int i = 0 ; i < count ; i++) {
  1141     size_t len = strcspn(p, os::path_separator());
  1142     if (len > JVM_MAXPATHLEN) {
  1143       return NULL;
  1145     // allocate the string and add terminator storage
  1146     char* s  = (char*)NEW_C_HEAP_ARRAY(char, len + 1);
  1147     if (s == NULL) {
  1148       return NULL;
  1150     strncpy(s, p, len);
  1151     s[len] = '\0';
  1152     opath[i] = s;
  1153     p += len + 1;
  1155   FREE_C_HEAP_ARRAY(char, inpath);
  1156   *n = count;
  1157   return opath;
  1160 void os::set_memory_serialize_page(address page) {
  1161   int count = log2_intptr(sizeof(class JavaThread)) - log2_intptr(64);
  1162   _mem_serialize_page = (volatile int32_t *)page;
  1163   // We initialize the serialization page shift count here
  1164   // We assume a cache line size of 64 bytes
  1165   assert(SerializePageShiftCount == count,
  1166          "thread size changed, fix SerializePageShiftCount constant");
  1167   set_serialize_page_mask((uintptr_t)(vm_page_size() - sizeof(int32_t)));
  1170 static volatile intptr_t SerializePageLock = 0;
  1172 // This method is called from signal handler when SIGSEGV occurs while the current
  1173 // thread tries to store to the "read-only" memory serialize page during state
  1174 // transition.
  1175 void os::block_on_serialize_page_trap() {
  1176   if (TraceSafepoint) {
  1177     tty->print_cr("Block until the serialize page permission restored");
  1179   // When VMThread is holding the SerializePageLock during modifying the
  1180   // access permission of the memory serialize page, the following call
  1181   // will block until the permission of that page is restored to rw.
  1182   // Generally, it is unsafe to manipulate locks in signal handlers, but in
  1183   // this case, it's OK as the signal is synchronous and we know precisely when
  1184   // it can occur.
  1185   Thread::muxAcquire(&SerializePageLock, "set_memory_serialize_page");
  1186   Thread::muxRelease(&SerializePageLock);
  1189 // Serialize all thread state variables
  1190 void os::serialize_thread_states() {
  1191   // On some platforms such as Solaris & Linux, the time duration of the page
  1192   // permission restoration is observed to be much longer than expected  due to
  1193   // scheduler starvation problem etc. To avoid the long synchronization
  1194   // time and expensive page trap spinning, 'SerializePageLock' is used to block
  1195   // the mutator thread if such case is encountered. See bug 6546278 for details.
  1196   Thread::muxAcquire(&SerializePageLock, "serialize_thread_states");
  1197   os::protect_memory((char *)os::get_memory_serialize_page(),
  1198                      os::vm_page_size(), MEM_PROT_READ);
  1199   os::protect_memory((char *)os::get_memory_serialize_page(),
  1200                      os::vm_page_size(), MEM_PROT_RW);
  1201   Thread::muxRelease(&SerializePageLock);
  1204 // Returns true if the current stack pointer is above the stack shadow
  1205 // pages, false otherwise.
  1207 bool os::stack_shadow_pages_available(Thread *thread, methodHandle method) {
  1208   assert(StackRedPages > 0 && StackYellowPages > 0,"Sanity check");
  1209   address sp = current_stack_pointer();
  1210   // Check if we have StackShadowPages above the yellow zone.  This parameter
  1211   // is dependent on the depth of the maximum VM call stack possible from
  1212   // the handler for stack overflow.  'instanceof' in the stack overflow
  1213   // handler or a println uses at least 8k stack of VM and native code
  1214   // respectively.
  1215   const int framesize_in_bytes =
  1216     Interpreter::size_top_interpreter_activation(method()) * wordSize;
  1217   int reserved_area = ((StackShadowPages + StackRedPages + StackYellowPages)
  1218                       * vm_page_size()) + framesize_in_bytes;
  1219   // The very lower end of the stack
  1220   address stack_limit = thread->stack_base() - thread->stack_size();
  1221   return (sp > (stack_limit + reserved_area));
  1224 size_t os::page_size_for_region(size_t region_min_size, size_t region_max_size,
  1225                                 uint min_pages)
  1227   assert(min_pages > 0, "sanity");
  1228   if (UseLargePages) {
  1229     const size_t max_page_size = region_max_size / min_pages;
  1231     for (unsigned int i = 0; _page_sizes[i] != 0; ++i) {
  1232       const size_t sz = _page_sizes[i];
  1233       const size_t mask = sz - 1;
  1234       if ((region_min_size & mask) == 0 && (region_max_size & mask) == 0) {
  1235         // The largest page size with no fragmentation.
  1236         return sz;
  1239       if (sz <= max_page_size) {
  1240         // The largest page size that satisfies the min_pages requirement.
  1241         return sz;
  1246   return vm_page_size();
  1249 #ifndef PRODUCT
  1250 void os::trace_page_sizes(const char* str, const size_t* page_sizes, int count)
  1252   if (TracePageSizes) {
  1253     tty->print("%s: ", str);
  1254     for (int i = 0; i < count; ++i) {
  1255       tty->print(" " SIZE_FORMAT, page_sizes[i]);
  1257     tty->cr();
  1261 void os::trace_page_sizes(const char* str, const size_t region_min_size,
  1262                           const size_t region_max_size, const size_t page_size,
  1263                           const char* base, const size_t size)
  1265   if (TracePageSizes) {
  1266     tty->print_cr("%s:  min=" SIZE_FORMAT " max=" SIZE_FORMAT
  1267                   " pg_sz=" SIZE_FORMAT " base=" PTR_FORMAT
  1268                   " size=" SIZE_FORMAT,
  1269                   str, region_min_size, region_max_size,
  1270                   page_size, base, size);
  1273 #endif  // #ifndef PRODUCT
  1275 // This is the working definition of a server class machine:
  1276 // >= 2 physical CPU's and >=2GB of memory, with some fuzz
  1277 // because the graphics memory (?) sometimes masks physical memory.
  1278 // If you want to change the definition of a server class machine
  1279 // on some OS or platform, e.g., >=4GB on Windohs platforms,
  1280 // then you'll have to parameterize this method based on that state,
  1281 // as was done for logical processors here, or replicate and
  1282 // specialize this method for each platform.  (Or fix os to have
  1283 // some inheritance structure and use subclassing.  Sigh.)
  1284 // If you want some platform to always or never behave as a server
  1285 // class machine, change the setting of AlwaysActAsServerClassMachine
  1286 // and NeverActAsServerClassMachine in globals*.hpp.
  1287 bool os::is_server_class_machine() {
  1288   // First check for the early returns
  1289   if (NeverActAsServerClassMachine) {
  1290     return false;
  1292   if (AlwaysActAsServerClassMachine) {
  1293     return true;
  1295   // Then actually look at the machine
  1296   bool         result            = false;
  1297   const unsigned int    server_processors = 2;
  1298   const julong server_memory     = 2UL * G;
  1299   // We seem not to get our full complement of memory.
  1300   //     We allow some part (1/8?) of the memory to be "missing",
  1301   //     based on the sizes of DIMMs, and maybe graphics cards.
  1302   const julong missing_memory   = 256UL * M;
  1304   /* Is this a server class machine? */
  1305   if ((os::active_processor_count() >= (int)server_processors) &&
  1306       (os::physical_memory() >= (server_memory - missing_memory))) {
  1307     const unsigned int logical_processors =
  1308       VM_Version::logical_processors_per_package();
  1309     if (logical_processors > 1) {
  1310       const unsigned int physical_packages =
  1311         os::active_processor_count() / logical_processors;
  1312       if (physical_packages > server_processors) {
  1313         result = true;
  1315     } else {
  1316       result = true;
  1319   return result;
  1322 // Read file line by line, if line is longer than bsize,
  1323 // skip rest of line.
  1324 int os::get_line_chars(int fd, char* buf, const size_t bsize){
  1325   size_t sz, i = 0;
  1327   // read until EOF, EOL or buf is full
  1328   while ((sz = (int) read(fd, &buf[i], 1)) == 1 && i < (bsize-2) && buf[i] != '\n') {
  1329      ++i;
  1332   if (buf[i] == '\n') {
  1333     // EOL reached so ignore EOL character and return
  1335     buf[i] = 0;
  1336     return (int) i;
  1339   buf[i+1] = 0;
  1341   if (sz != 1) {
  1342     // EOF reached. if we read chars before EOF return them and
  1343     // return EOF on next call otherwise return EOF
  1345     return (i == 0) ? -1 : (int) i;
  1348   // line is longer than size of buf, skip to EOL
  1349   char ch;
  1350   while (read(fd, &ch, 1) == 1 && ch != '\n') {
  1351     // Do nothing
  1354   // return initial part of line that fits in buf.
  1355   // If we reached EOF, it will be returned on next call.
  1357   return (int) i;

mercurial