src/share/vm/prims/jvmtiTagMap.cpp

Wed, 08 Oct 2008 08:10:51 -0700

author
ksrini
date
Wed, 08 Oct 2008 08:10:51 -0700
changeset 823
f008d3631bd1
parent 791
1ee8caae33af
child 952
e9be0e04635a
permissions
-rw-r--r--

6755845: JVM_FindClassFromBoot triggers assertions
Summary: Fixes assertions caused by one jvm_entry calling another, solved by refactoring code and modified gamma test.
Reviewed-by: dholmes, xlu

     1 /*
     2  * Copyright 2003-2008 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 # include "incls/_precompiled.incl"
    26 # include "incls/_jvmtiTagMap.cpp.incl"
    28 // JvmtiTagHashmapEntry
    29 //
    30 // Each entry encapsulates a JNI weak reference to the tagged object
    31 // and the tag value. In addition an entry includes a next pointer which
    32 // is used to chain entries together.
    34 class JvmtiTagHashmapEntry : public CHeapObj {
    35  private:
    36   friend class JvmtiTagMap;
    38   jweak _object;                        // JNI weak ref to tagged object
    39   jlong _tag;                           // the tag
    40   JvmtiTagHashmapEntry* _next;          // next on the list
    42   inline void init(jweak object, jlong tag) {
    43     _object = object;
    44     _tag = tag;
    45     _next = NULL;
    46   }
    48   // constructor
    49   JvmtiTagHashmapEntry(jweak object, jlong tag)         { init(object, tag); }
    51  public:
    53   // accessor methods
    54   inline jweak object() const                           { return _object; }
    55   inline jlong tag() const                              { return _tag; }
    57   inline void set_tag(jlong tag) {
    58     assert(tag != 0, "can't be zero");
    59     _tag = tag;
    60   }
    62   inline JvmtiTagHashmapEntry* next() const             { return _next; }
    63   inline void set_next(JvmtiTagHashmapEntry* next)      { _next = next; }
    64 };
    67 // JvmtiTagHashmap
    68 //
    69 // A hashmap is essentially a table of pointers to entries. Entries
    70 // are hashed to a location, or position in the table, and then
    71 // chained from that location. The "key" for hashing is address of
    72 // the object, or oop. The "value" is the JNI weak reference to the
    73 // object and the tag value. Keys are not stored with the entry.
    74 // Instead the weak reference is resolved to obtain the key.
    75 //
    76 // A hashmap maintains a count of the number entries in the hashmap
    77 // and resizes if the number of entries exceeds a given threshold.
    78 // The threshold is specified as a percentage of the size - for
    79 // example a threshold of 0.75 will trigger the hashmap to resize
    80 // if the number of entries is >75% of table size.
    81 //
    82 // A hashmap provides functions for adding, removing, and finding
    83 // entries. It also provides a function to iterate over all entries
    84 // in the hashmap.
    86 class JvmtiTagHashmap : public CHeapObj {
    87  private:
    88   friend class JvmtiTagMap;
    90   enum {
    91     small_trace_threshold  = 10000,                  // threshold for tracing
    92     medium_trace_threshold = 100000,
    93     large_trace_threshold  = 1000000,
    94     initial_trace_threshold = small_trace_threshold
    95   };
    97   static int _sizes[];                  // array of possible hashmap sizes
    98   int _size;                            // actual size of the table
    99   int _size_index;                      // index into size table
   101   int _entry_count;                     // number of entries in the hashmap
   103   float _load_factor;                   // load factor as a % of the size
   104   int _resize_threshold;                // computed threshold to trigger resizing.
   105   bool _resizing_enabled;               // indicates if hashmap can resize
   107   int _trace_threshold;                 // threshold for trace messages
   109   JvmtiTagHashmapEntry** _table;        // the table of entries.
   111   // private accessors
   112   int resize_threshold() const                  { return _resize_threshold; }
   113   int trace_threshold() const                   { return _trace_threshold; }
   115   // initialize the hashmap
   116   void init(int size_index=0, float load_factor=4.0f) {
   117     int initial_size =  _sizes[size_index];
   118     _size_index = size_index;
   119     _size = initial_size;
   120     _entry_count = 0;
   121     if (TraceJVMTIObjectTagging) {
   122       _trace_threshold = initial_trace_threshold;
   123     } else {
   124       _trace_threshold = -1;
   125     }
   126     _load_factor = load_factor;
   127     _resize_threshold = (int)(_load_factor * _size);
   128     _resizing_enabled = true;
   129     size_t s = initial_size * sizeof(JvmtiTagHashmapEntry*);
   130     _table = (JvmtiTagHashmapEntry**)os::malloc(s);
   131     if (_table == NULL) {
   132       vm_exit_out_of_memory(s, "unable to allocate initial hashtable for jvmti object tags");
   133     }
   134     for (int i=0; i<initial_size; i++) {
   135       _table[i] = NULL;
   136     }
   137   }
   139   // hash a given key (oop) with the specified size
   140   static unsigned int hash(oop key, int size) {
   141     // shift right to get better distribution (as these bits will be zero
   142     // with aligned addresses)
   143     unsigned int addr = (unsigned int)((intptr_t)key);
   144 #ifdef _LP64
   145     return (addr >> 3) % size;
   146 #else
   147     return (addr >> 2) % size;
   148 #endif
   149   }
   151   // hash a given key (oop)
   152   unsigned int hash(oop key) {
   153     return hash(key, _size);
   154   }
   156   // resize the hashmap - allocates a large table and re-hashes
   157   // all entries into the new table.
   158   void resize() {
   159     int new_size_index = _size_index+1;
   160     int new_size = _sizes[new_size_index];
   161     if (new_size < 0) {
   162       // hashmap already at maximum capacity
   163       return;
   164     }
   166     // allocate new table
   167     size_t s = new_size * sizeof(JvmtiTagHashmapEntry*);
   168     JvmtiTagHashmapEntry** new_table = (JvmtiTagHashmapEntry**)os::malloc(s);
   169     if (new_table == NULL) {
   170       warning("unable to allocate larger hashtable for jvmti object tags");
   171       set_resizing_enabled(false);
   172       return;
   173     }
   175     // initialize new table
   176     int i;
   177     for (i=0; i<new_size; i++) {
   178       new_table[i] = NULL;
   179     }
   181     // rehash all entries into the new table
   182     for (i=0; i<_size; i++) {
   183       JvmtiTagHashmapEntry* entry = _table[i];
   184       while (entry != NULL) {
   185         JvmtiTagHashmapEntry* next = entry->next();
   186         oop key = JNIHandles::resolve(entry->object());
   187         assert(key != NULL, "jni weak reference cleared!!");
   188         unsigned int h = hash(key, new_size);
   189         JvmtiTagHashmapEntry* anchor = new_table[h];
   190         if (anchor == NULL) {
   191           new_table[h] = entry;
   192           entry->set_next(NULL);
   193         } else {
   194           entry->set_next(anchor);
   195           new_table[h] = entry;
   196         }
   197         entry = next;
   198       }
   199     }
   201     // free old table and update settings.
   202     os::free((void*)_table);
   203     _table = new_table;
   204     _size_index = new_size_index;
   205     _size = new_size;
   207     // compute new resize threshold
   208     _resize_threshold = (int)(_load_factor * _size);
   209   }
   212   // internal remove function - remove an entry at a given position in the
   213   // table.
   214   inline void remove(JvmtiTagHashmapEntry* prev, int pos, JvmtiTagHashmapEntry* entry) {
   215     assert(pos >= 0 && pos < _size, "out of range");
   216     if (prev == NULL) {
   217       _table[pos] = entry->next();
   218     } else {
   219       prev->set_next(entry->next());
   220     }
   221     assert(_entry_count > 0, "checking");
   222     _entry_count--;
   223   }
   225   // resizing switch
   226   bool is_resizing_enabled() const          { return _resizing_enabled; }
   227   void set_resizing_enabled(bool enable)    { _resizing_enabled = enable; }
   229   // debugging
   230   void print_memory_usage();
   231   void compute_next_trace_threshold();
   233  public:
   235   // create a JvmtiTagHashmap of a preferred size and optionally a load factor.
   236   // The preferred size is rounded down to an actual size.
   237   JvmtiTagHashmap(int size, float load_factor=0.0f) {
   238     int i=0;
   239     while (_sizes[i] < size) {
   240       if (_sizes[i] < 0) {
   241         assert(i > 0, "sanity check");
   242         i--;
   243         break;
   244       }
   245       i++;
   246     }
   248     // if a load factor is specified then use it, otherwise use default
   249     if (load_factor > 0.01f) {
   250       init(i, load_factor);
   251     } else {
   252       init(i);
   253     }
   254   }
   256   // create a JvmtiTagHashmap with default settings
   257   JvmtiTagHashmap() {
   258     init();
   259   }
   261   // release table when JvmtiTagHashmap destroyed
   262   ~JvmtiTagHashmap() {
   263     if (_table != NULL) {
   264       os::free((void*)_table);
   265       _table = NULL;
   266     }
   267   }
   269   // accessors
   270   int size() const                              { return _size; }
   271   JvmtiTagHashmapEntry** table() const          { return _table; }
   272   int entry_count() const                       { return _entry_count; }
   274   // find an entry in the hashmap, returns NULL if not found.
   275   inline JvmtiTagHashmapEntry* find(oop key) {
   276     unsigned int h = hash(key);
   277     JvmtiTagHashmapEntry* entry = _table[h];
   278     while (entry != NULL) {
   279       oop orig_key = JNIHandles::resolve(entry->object());
   280       assert(orig_key != NULL, "jni weak reference cleared!!");
   281       if (key == orig_key) {
   282         break;
   283       }
   284       entry = entry->next();
   285     }
   286     return entry;
   287   }
   290   // add a new entry to hashmap
   291   inline void add(oop key, JvmtiTagHashmapEntry* entry) {
   292     assert(key != NULL, "checking");
   293     assert(find(key) == NULL, "duplicate detected");
   294     unsigned int h = hash(key);
   295     JvmtiTagHashmapEntry* anchor = _table[h];
   296     if (anchor == NULL) {
   297       _table[h] = entry;
   298       entry->set_next(NULL);
   299     } else {
   300       entry->set_next(anchor);
   301       _table[h] = entry;
   302     }
   304     _entry_count++;
   305     if (trace_threshold() > 0 && entry_count() >= trace_threshold()) {
   306       assert(TraceJVMTIObjectTagging, "should only get here when tracing");
   307       print_memory_usage();
   308       compute_next_trace_threshold();
   309     }
   311     // if the number of entries exceed the threshold then resize
   312     if (entry_count() > resize_threshold() && is_resizing_enabled()) {
   313       resize();
   314     }
   315   }
   317   // remove an entry with the given key.
   318   inline JvmtiTagHashmapEntry* remove(oop key) {
   319     unsigned int h = hash(key);
   320     JvmtiTagHashmapEntry* entry = _table[h];
   321     JvmtiTagHashmapEntry* prev = NULL;
   322     while (entry != NULL) {
   323       oop orig_key = JNIHandles::resolve(entry->object());
   324       assert(orig_key != NULL, "jni weak reference cleared!!");
   325       if (key == orig_key) {
   326         break;
   327       }
   328       prev = entry;
   329       entry = entry->next();
   330     }
   331     if (entry != NULL) {
   332       remove(prev, h, entry);
   333     }
   334     return entry;
   335   }
   337   // iterate over all entries in the hashmap
   338   void entry_iterate(JvmtiTagHashmapEntryClosure* closure);
   339 };
   341 // possible hashmap sizes - odd primes that roughly double in size.
   342 // To avoid excessive resizing the odd primes from 4801-76831 and
   343 // 76831-307261 have been removed. The list must be terminated by -1.
   344 int JvmtiTagHashmap::_sizes[] =  { 4801, 76831, 307261, 614563, 1228891,
   345     2457733, 4915219, 9830479, 19660831, 39321619, 78643219, -1 };
   348 // A supporting class for iterating over all entries in Hashmap
   349 class JvmtiTagHashmapEntryClosure {
   350  public:
   351   virtual void do_entry(JvmtiTagHashmapEntry* entry) = 0;
   352 };
   355 // iterate over all entries in the hashmap
   356 void JvmtiTagHashmap::entry_iterate(JvmtiTagHashmapEntryClosure* closure) {
   357   for (int i=0; i<_size; i++) {
   358     JvmtiTagHashmapEntry* entry = _table[i];
   359     JvmtiTagHashmapEntry* prev = NULL;
   360     while (entry != NULL) {
   361       // obtain the next entry before invoking do_entry - this is
   362       // necessary because do_entry may remove the entry from the
   363       // hashmap.
   364       JvmtiTagHashmapEntry* next = entry->next();
   365       closure->do_entry(entry);
   366       entry = next;
   367      }
   368   }
   369 }
   371 // debugging
   372 void JvmtiTagHashmap::print_memory_usage() {
   373   intptr_t p = (intptr_t)this;
   374   tty->print("[JvmtiTagHashmap @ " INTPTR_FORMAT, p);
   376   // table + entries in KB
   377   int hashmap_usage = (size()*sizeof(JvmtiTagHashmapEntry*) +
   378     entry_count()*sizeof(JvmtiTagHashmapEntry))/K;
   380   int weak_globals_usage = (int)(JNIHandles::weak_global_handle_memory_usage()/K);
   381   tty->print_cr(", %d entries (%d KB) <JNI weak globals: %d KB>]",
   382     entry_count(), hashmap_usage, weak_globals_usage);
   383 }
   385 // compute threshold for the next trace message
   386 void JvmtiTagHashmap::compute_next_trace_threshold() {
   387   if (trace_threshold() < medium_trace_threshold) {
   388     _trace_threshold += small_trace_threshold;
   389   } else {
   390     if (trace_threshold() < large_trace_threshold) {
   391       _trace_threshold += medium_trace_threshold;
   392     } else {
   393       _trace_threshold += large_trace_threshold;
   394     }
   395   }
   396 }
   398 // memory region for young generation
   399 MemRegion JvmtiTagMap::_young_gen;
   401 // get the memory region used for the young generation
   402 void JvmtiTagMap::get_young_generation() {
   403   CollectedHeap* ch = Universe::heap();
   404   switch (ch->kind()) {
   405     case (CollectedHeap::GenCollectedHeap): {
   406       _young_gen = ((GenCollectedHeap*)ch)->get_gen(0)->reserved();
   407       break;
   408     }
   409 #ifndef SERIALGC
   410     case (CollectedHeap::ParallelScavengeHeap): {
   411       _young_gen = ((ParallelScavengeHeap*)ch)->young_gen()->reserved();
   412       break;
   413     }
   414     case (CollectedHeap::G1CollectedHeap): {
   415       // Until a more satisfactory solution is implemented, all
   416       // oops in the tag map will require rehash at each gc.
   417       // This is a correct, if extremely inefficient solution.
   418       // See RFE 6621729 for related commentary.
   419       _young_gen = ch->reserved_region();
   420       break;
   421     }
   422 #endif  // !SERIALGC
   423     default:
   424       ShouldNotReachHere();
   425   }
   426 }
   428 // returns true if oop is in the young generation
   429 inline bool JvmtiTagMap::is_in_young(oop o) {
   430   assert(_young_gen.start() != NULL, "checking");
   431   void* p = (void*)o;
   432   bool in_young = _young_gen.contains(p);
   433   return in_young;
   434 }
   436 // returns the appropriate hashmap for a given object
   437 inline JvmtiTagHashmap* JvmtiTagMap::hashmap_for(oop o) {
   438   if (is_in_young(o)) {
   439     return _hashmap[0];
   440   } else {
   441     return _hashmap[1];
   442   }
   443 }
   446 // create a JvmtiTagMap
   447 JvmtiTagMap::JvmtiTagMap(JvmtiEnv* env) :
   448   _env(env),
   449   _lock(Mutex::nonleaf+2, "JvmtiTagMap._lock", false),
   450   _free_entries(NULL),
   451   _free_entries_count(0)
   452 {
   453   assert(JvmtiThreadState_lock->is_locked(), "sanity check");
   454   assert(((JvmtiEnvBase *)env)->tag_map() == NULL, "tag map already exists for environment");
   456   // create the hashmaps
   457   for (int i=0; i<n_hashmaps; i++) {
   458     _hashmap[i] = new JvmtiTagHashmap();
   459   }
   461   // get the memory region used by the young generation
   462   get_young_generation();
   464   // finally add us to the environment
   465   ((JvmtiEnvBase *)env)->set_tag_map(this);
   466 }
   469 // destroy a JvmtiTagMap
   470 JvmtiTagMap::~JvmtiTagMap() {
   472   // no lock acquired as we assume the enclosing environment is
   473   // also being destroryed.
   474   ((JvmtiEnvBase *)_env)->set_tag_map(NULL);
   476   // iterate over the hashmaps and destroy each of the entries
   477   for (int i=0; i<n_hashmaps; i++) {
   478     JvmtiTagHashmap* hashmap = _hashmap[i];
   479     JvmtiTagHashmapEntry** table = hashmap->table();
   480     for (int j=0; j<hashmap->size(); j++) {
   481       JvmtiTagHashmapEntry *entry = table[j];
   482       while (entry != NULL) {
   483         JvmtiTagHashmapEntry* next = entry->next();
   484         jweak ref = entry->object();
   485         JNIHandles::destroy_weak_global(ref);
   486         delete entry;
   487         entry = next;
   488       }
   489     }
   491     // finally destroy the hashmap
   492     delete hashmap;
   493   }
   495   // remove any entries on the free list
   496   JvmtiTagHashmapEntry* entry = _free_entries;
   497   while (entry != NULL) {
   498     JvmtiTagHashmapEntry* next = entry->next();
   499     delete entry;
   500     entry = next;
   501   }
   502 }
   504 // create a hashmap entry
   505 // - if there's an entry on the (per-environment) free list then this
   506 // is returned. Otherwise an new entry is allocated.
   507 JvmtiTagHashmapEntry* JvmtiTagMap::create_entry(jweak ref, jlong tag) {
   508   assert(Thread::current()->is_VM_thread() || is_locked(), "checking");
   509   JvmtiTagHashmapEntry* entry;
   510   if (_free_entries == NULL) {
   511     entry = new JvmtiTagHashmapEntry(ref, tag);
   512   } else {
   513     assert(_free_entries_count > 0, "mismatched _free_entries_count");
   514     _free_entries_count--;
   515     entry = _free_entries;
   516     _free_entries = entry->next();
   517     entry->init(ref, tag);
   518   }
   519   return entry;
   520 }
   522 // destroy an entry by returning it to the free list
   523 void JvmtiTagMap::destroy_entry(JvmtiTagHashmapEntry* entry) {
   524   assert(SafepointSynchronize::is_at_safepoint() || is_locked(), "checking");
   525   // limit the size of the free list
   526   if (_free_entries_count >= max_free_entries) {
   527     delete entry;
   528   } else {
   529     entry->set_next(_free_entries);
   530     _free_entries = entry;
   531     _free_entries_count++;
   532   }
   533 }
   535 // returns the tag map for the given environments. If the tag map
   536 // doesn't exist then it is created.
   537 JvmtiTagMap* JvmtiTagMap::tag_map_for(JvmtiEnv* env) {
   538   JvmtiTagMap* tag_map = ((JvmtiEnvBase *)env)->tag_map();
   539   if (tag_map == NULL) {
   540     MutexLocker mu(JvmtiThreadState_lock);
   541     tag_map = ((JvmtiEnvBase *)env)->tag_map();
   542     if (tag_map == NULL) {
   543       tag_map = new JvmtiTagMap(env);
   544     }
   545   } else {
   546     CHECK_UNHANDLED_OOPS_ONLY(Thread::current()->clear_unhandled_oops());
   547   }
   548   return tag_map;
   549 }
   551 // iterate over all entries in the tag map.
   552 void JvmtiTagMap::entry_iterate(JvmtiTagHashmapEntryClosure* closure) {
   553   for (int i=0; i<n_hashmaps; i++) {
   554     JvmtiTagHashmap* hashmap = _hashmap[i];
   555     hashmap->entry_iterate(closure);
   556   }
   557 }
   559 // returns true if the hashmaps are empty
   560 bool JvmtiTagMap::is_empty() {
   561   assert(SafepointSynchronize::is_at_safepoint() || is_locked(), "checking");
   562   assert(n_hashmaps == 2, "not implemented");
   563   return ((_hashmap[0]->entry_count() == 0) && (_hashmap[1]->entry_count() == 0));
   564 }
   567 // Return the tag value for an object, or 0 if the object is
   568 // not tagged
   569 //
   570 static inline jlong tag_for(JvmtiTagMap* tag_map, oop o) {
   571   JvmtiTagHashmapEntry* entry = tag_map->hashmap_for(o)->find(o);
   572   if (entry == NULL) {
   573     return 0;
   574   } else {
   575     return entry->tag();
   576   }
   577 }
   579 // If the object is a java.lang.Class then return the klassOop,
   580 // otherwise return the original object
   581 static inline oop klassOop_if_java_lang_Class(oop o) {
   582   if (o->klass() == SystemDictionary::class_klass()) {
   583     if (!java_lang_Class::is_primitive(o)) {
   584       o = (oop)java_lang_Class::as_klassOop(o);
   585       assert(o != NULL, "class for non-primitive mirror must exist");
   586     }
   587   }
   588   return o;
   589 }
   591 // A CallbackWrapper is a support class for querying and tagging an object
   592 // around a callback to a profiler. The constructor does pre-callback
   593 // work to get the tag value, klass tag value, ... and the destructor
   594 // does the post-callback work of tagging or untagging the object.
   595 //
   596 // {
   597 //   CallbackWrapper wrapper(tag_map, o);
   598 //
   599 //   (*callback)(wrapper.klass_tag(), wrapper.obj_size(), wrapper.obj_tag_p(), ...)
   600 //
   601 // } // wrapper goes out of scope here which results in the destructor
   602 //      checking to see if the object has been tagged, untagged, or the
   603 //      tag value has changed.
   604 //
   605 class CallbackWrapper : public StackObj {
   606  private:
   607   JvmtiTagMap* _tag_map;
   608   JvmtiTagHashmap* _hashmap;
   609   JvmtiTagHashmapEntry* _entry;
   610   oop _o;
   611   jlong _obj_size;
   612   jlong _obj_tag;
   613   klassOop _klass;         // the object's class
   614   jlong _klass_tag;
   616  protected:
   617   JvmtiTagMap* tag_map() const      { return _tag_map; }
   619   // invoked post-callback to tag, untag, or update the tag of an object
   620   void inline post_callback_tag_update(oop o, JvmtiTagHashmap* hashmap,
   621                                        JvmtiTagHashmapEntry* entry, jlong obj_tag);
   622  public:
   623   CallbackWrapper(JvmtiTagMap* tag_map, oop o) {
   624     assert(Thread::current()->is_VM_thread() || tag_map->is_locked(),
   625            "MT unsafe or must be VM thread");
   627     // for Classes the klassOop is tagged
   628     _o = klassOop_if_java_lang_Class(o);
   630     // object size
   631     _obj_size = _o->size() * wordSize;
   633     // record the context
   634     _tag_map = tag_map;
   635     _hashmap = tag_map->hashmap_for(_o);
   636     _entry = _hashmap->find(_o);
   638     // get object tag
   639     _obj_tag = (_entry == NULL) ? 0 : _entry->tag();
   641     // get the class and the class's tag value
   642     if (_o == o) {
   643       _klass = _o->klass();
   644     } else {
   645       // if the object represents a runtime class then use the
   646       // tag for java.lang.Class
   647       _klass = SystemDictionary::class_klass();
   648     }
   649     _klass_tag = tag_for(tag_map, _klass);
   650   }
   652   ~CallbackWrapper() {
   653     post_callback_tag_update(_o, _hashmap, _entry, _obj_tag);
   654   }
   656   inline jlong* obj_tag_p()                     { return &_obj_tag; }
   657   inline jlong obj_size() const                 { return _obj_size; }
   658   inline jlong obj_tag() const                  { return _obj_tag; }
   659   inline klassOop klass() const                 { return _klass; }
   660   inline jlong klass_tag() const                { return _klass_tag; }
   661 };
   665 // callback post-callback to tag, untag, or update the tag of an object
   666 void inline CallbackWrapper::post_callback_tag_update(oop o,
   667                                                       JvmtiTagHashmap* hashmap,
   668                                                       JvmtiTagHashmapEntry* entry,
   669                                                       jlong obj_tag) {
   670   if (entry == NULL) {
   671     if (obj_tag != 0) {
   672       // callback has tagged the object
   673       assert(Thread::current()->is_VM_thread(), "must be VMThread");
   674       HandleMark hm;
   675       Handle h(o);
   676       jweak ref = JNIHandles::make_weak_global(h);
   677       entry = tag_map()->create_entry(ref, obj_tag);
   678       hashmap->add(o, entry);
   679     }
   680   } else {
   681     // object was previously tagged - the callback may have untagged
   682     // the object or changed the tag value
   683     if (obj_tag == 0) {
   684       jweak ref = entry->object();
   686       JvmtiTagHashmapEntry* entry_removed = hashmap->remove(o);
   687       assert(entry_removed == entry, "checking");
   688       tag_map()->destroy_entry(entry);
   690       JNIHandles::destroy_weak_global(ref);
   691     } else {
   692       if (obj_tag != entry->tag()) {
   693          entry->set_tag(obj_tag);
   694       }
   695     }
   696   }
   697 }
   699 // An extended CallbackWrapper used when reporting an object reference
   700 // to the agent.
   701 //
   702 // {
   703 //   TwoOopCallbackWrapper wrapper(tag_map, referrer, o);
   704 //
   705 //   (*callback)(wrapper.klass_tag(),
   706 //               wrapper.obj_size(),
   707 //               wrapper.obj_tag_p()
   708 //               wrapper.referrer_tag_p(), ...)
   709 //
   710 // } // wrapper goes out of scope here which results in the destructor
   711 //      checking to see if the referrer object has been tagged, untagged,
   712 //      or the tag value has changed.
   713 //
   714 class TwoOopCallbackWrapper : public CallbackWrapper {
   715  private:
   716   bool _is_reference_to_self;
   717   JvmtiTagHashmap* _referrer_hashmap;
   718   JvmtiTagHashmapEntry* _referrer_entry;
   719   oop _referrer;
   720   jlong _referrer_obj_tag;
   721   jlong _referrer_klass_tag;
   722   jlong* _referrer_tag_p;
   724   bool is_reference_to_self() const             { return _is_reference_to_self; }
   726  public:
   727   TwoOopCallbackWrapper(JvmtiTagMap* tag_map, oop referrer, oop o) :
   728     CallbackWrapper(tag_map, o)
   729   {
   730     // self reference needs to be handled in a special way
   731     _is_reference_to_self = (referrer == o);
   733     if (_is_reference_to_self) {
   734       _referrer_klass_tag = klass_tag();
   735       _referrer_tag_p = obj_tag_p();
   736     } else {
   737       // for Classes the klassOop is tagged
   738       _referrer = klassOop_if_java_lang_Class(referrer);
   739       // record the context
   740       _referrer_hashmap = tag_map->hashmap_for(_referrer);
   741       _referrer_entry = _referrer_hashmap->find(_referrer);
   743       // get object tag
   744       _referrer_obj_tag = (_referrer_entry == NULL) ? 0 : _referrer_entry->tag();
   745       _referrer_tag_p = &_referrer_obj_tag;
   747       // get referrer class tag.
   748       klassOop k = (_referrer == referrer) ?  // Check if referrer is a class...
   749           _referrer->klass()                  // No, just get its class
   750          : SystemDictionary::class_klass();   // Yes, its class is Class
   751       _referrer_klass_tag = tag_for(tag_map, k);
   752     }
   753   }
   755   ~TwoOopCallbackWrapper() {
   756     if (!is_reference_to_self()){
   757       post_callback_tag_update(_referrer,
   758                                _referrer_hashmap,
   759                                _referrer_entry,
   760                                _referrer_obj_tag);
   761     }
   762   }
   764   // address of referrer tag
   765   // (for a self reference this will return the same thing as obj_tag_p())
   766   inline jlong* referrer_tag_p()        { return _referrer_tag_p; }
   768   // referrer's class tag
   769   inline jlong referrer_klass_tag()     { return _referrer_klass_tag; }
   770 };
   772 // tag an object
   773 //
   774 // This function is performance critical. If many threads attempt to tag objects
   775 // around the same time then it's possible that the Mutex associated with the
   776 // tag map will be a hot lock. Eliminating this lock will not eliminate the issue
   777 // because creating a JNI weak reference requires acquiring a global lock also.
   778 void JvmtiTagMap::set_tag(jobject object, jlong tag) {
   779   MutexLocker ml(lock());
   781   // resolve the object
   782   oop o = JNIHandles::resolve_non_null(object);
   784   // for Classes we tag the klassOop
   785   o = klassOop_if_java_lang_Class(o);
   787   // see if the object is already tagged
   788   JvmtiTagHashmap* hashmap = hashmap_for(o);
   789   JvmtiTagHashmapEntry* entry = hashmap->find(o);
   791   // if the object is not already tagged then we tag it
   792   if (entry == NULL) {
   793     if (tag != 0) {
   794       HandleMark hm;
   795       Handle h(o);
   796       jweak ref = JNIHandles::make_weak_global(h);
   798       // the object may have moved because make_weak_global may
   799       // have blocked - thus it is necessary resolve the handle
   800       // and re-hash the object.
   801       o = h();
   802       entry = create_entry(ref, tag);
   803       hashmap_for(o)->add(o, entry);
   804     } else {
   805       // no-op
   806     }
   807   } else {
   808     // if the object is already tagged then we either update
   809     // the tag (if a new tag value has been provided)
   810     // or remove the object if the new tag value is 0.
   811     // Removing the object requires that we also delete the JNI
   812     // weak ref to the object.
   813     if (tag == 0) {
   814       jweak ref = entry->object();
   815       hashmap->remove(o);
   816       destroy_entry(entry);
   817       JNIHandles::destroy_weak_global(ref);
   818     } else {
   819       entry->set_tag(tag);
   820     }
   821   }
   822 }
   824 // get the tag for an object
   825 jlong JvmtiTagMap::get_tag(jobject object) {
   826   MutexLocker ml(lock());
   828   // resolve the object
   829   oop o = JNIHandles::resolve_non_null(object);
   831   // for Classes get the tag from the klassOop
   832   return tag_for(this, klassOop_if_java_lang_Class(o));
   833 }
   836 // Helper class used to describe the static or instance fields of a class.
   837 // For each field it holds the field index (as defined by the JVMTI specification),
   838 // the field type, and the offset.
   840 class ClassFieldDescriptor: public CHeapObj {
   841  private:
   842   int _field_index;
   843   int _field_offset;
   844   char _field_type;
   845  public:
   846   ClassFieldDescriptor(int index, char type, int offset) :
   847     _field_index(index), _field_type(type), _field_offset(offset) {
   848   }
   849   int field_index()  const  { return _field_index; }
   850   char field_type()  const  { return _field_type; }
   851   int field_offset() const  { return _field_offset; }
   852 };
   854 class ClassFieldMap: public CHeapObj {
   855  private:
   856   enum {
   857     initial_field_count = 5
   858   };
   860   // list of field descriptors
   861   GrowableArray<ClassFieldDescriptor*>* _fields;
   863   // constructor
   864   ClassFieldMap();
   866   // add a field
   867   void add(int index, char type, int offset);
   869   // returns the field count for the given class
   870   static int compute_field_count(instanceKlassHandle ikh);
   872  public:
   873   ~ClassFieldMap();
   875   // access
   876   int field_count()                     { return _fields->length(); }
   877   ClassFieldDescriptor* field_at(int i) { return _fields->at(i); }
   879   // functions to create maps of static or instance fields
   880   static ClassFieldMap* create_map_of_static_fields(klassOop k);
   881   static ClassFieldMap* create_map_of_instance_fields(oop obj);
   882 };
   884 ClassFieldMap::ClassFieldMap() {
   885   _fields = new (ResourceObj::C_HEAP) GrowableArray<ClassFieldDescriptor*>(initial_field_count, true);
   886 }
   888 ClassFieldMap::~ClassFieldMap() {
   889   for (int i=0; i<_fields->length(); i++) {
   890     delete _fields->at(i);
   891   }
   892   delete _fields;
   893 }
   895 void ClassFieldMap::add(int index, char type, int offset) {
   896   ClassFieldDescriptor* field = new ClassFieldDescriptor(index, type, offset);
   897   _fields->append(field);
   898 }
   900 // Returns a heap allocated ClassFieldMap to describe the static fields
   901 // of the given class.
   902 //
   903 ClassFieldMap* ClassFieldMap::create_map_of_static_fields(klassOop k) {
   904   HandleMark hm;
   905   instanceKlassHandle ikh = instanceKlassHandle(Thread::current(), k);
   907   // create the field map
   908   ClassFieldMap* field_map = new ClassFieldMap();
   910   FilteredFieldStream f(ikh, false, false);
   911   int max_field_index = f.field_count()-1;
   913   int index = 0;
   914   for (FilteredFieldStream fld(ikh, true, true); !fld.eos(); fld.next(), index++) {
   915     // ignore instance fields
   916     if (!fld.access_flags().is_static()) {
   917       continue;
   918     }
   919     field_map->add(max_field_index - index, fld.signature()->byte_at(0), fld.offset());
   920   }
   921   return field_map;
   922 }
   924 // Returns a heap allocated ClassFieldMap to describe the instance fields
   925 // of the given class. All instance fields are included (this means public
   926 // and private fields declared in superclasses and superinterfaces too).
   927 //
   928 ClassFieldMap* ClassFieldMap::create_map_of_instance_fields(oop obj) {
   929   HandleMark hm;
   930   instanceKlassHandle ikh = instanceKlassHandle(Thread::current(), obj->klass());
   932   // create the field map
   933   ClassFieldMap* field_map = new ClassFieldMap();
   935   FilteredFieldStream f(ikh, false, false);
   937   int max_field_index = f.field_count()-1;
   939   int index = 0;
   940   for (FilteredFieldStream fld(ikh, false, false); !fld.eos(); fld.next(), index++) {
   941     // ignore static fields
   942     if (fld.access_flags().is_static()) {
   943       continue;
   944     }
   945     field_map->add(max_field_index - index, fld.signature()->byte_at(0), fld.offset());
   946   }
   948   return field_map;
   949 }
   951 // Helper class used to cache a ClassFileMap for the instance fields of
   952 // a cache. A JvmtiCachedClassFieldMap can be cached by an instanceKlass during
   953 // heap iteration and avoid creating a field map for each object in the heap
   954 // (only need to create the map when the first instance of a class is encountered).
   955 //
   956 class JvmtiCachedClassFieldMap : public CHeapObj {
   957  private:
   958    enum {
   959      initial_class_count = 200
   960    };
   961   ClassFieldMap* _field_map;
   963   ClassFieldMap* field_map() const          { return _field_map; }
   965   JvmtiCachedClassFieldMap(ClassFieldMap* field_map);
   966   ~JvmtiCachedClassFieldMap();
   968   static GrowableArray<instanceKlass*>* _class_list;
   969   static void add_to_class_list(instanceKlass* ik);
   971  public:
   972   // returns the field map for a given object (returning map cached
   973   // by instanceKlass if possible
   974   static ClassFieldMap* get_map_of_instance_fields(oop obj);
   976   // removes the field map from all instanceKlasses - should be
   977   // called before VM operation completes
   978   static void clear_cache();
   980   // returns the number of ClassFieldMap cached by instanceKlasses
   981   static int cached_field_map_count();
   982 };
   984 GrowableArray<instanceKlass*>* JvmtiCachedClassFieldMap::_class_list;
   986 JvmtiCachedClassFieldMap::JvmtiCachedClassFieldMap(ClassFieldMap* field_map) {
   987   _field_map = field_map;
   988 }
   990 JvmtiCachedClassFieldMap::~JvmtiCachedClassFieldMap() {
   991   if (_field_map != NULL) {
   992     delete _field_map;
   993   }
   994 }
   996 // Marker class to ensure that the class file map cache is only used in a defined
   997 // scope.
   998 class ClassFieldMapCacheMark : public StackObj {
   999  private:
  1000    static bool _is_active;
  1001  public:
  1002    ClassFieldMapCacheMark() {
  1003      assert(Thread::current()->is_VM_thread(), "must be VMThread");
  1004      assert(JvmtiCachedClassFieldMap::cached_field_map_count() == 0, "cache not empty");
  1005      assert(!_is_active, "ClassFieldMapCacheMark cannot be nested");
  1006      _is_active = true;
  1008    ~ClassFieldMapCacheMark() {
  1009      JvmtiCachedClassFieldMap::clear_cache();
  1010      _is_active = false;
  1012    static bool is_active() { return _is_active; }
  1013 };
  1015 bool ClassFieldMapCacheMark::_is_active;
  1018 // record that the given instanceKlass is caching a field map
  1019 void JvmtiCachedClassFieldMap::add_to_class_list(instanceKlass* ik) {
  1020   if (_class_list == NULL) {
  1021     _class_list = new (ResourceObj::C_HEAP) GrowableArray<instanceKlass*>(initial_class_count, true);
  1023   _class_list->push(ik);
  1026 // returns the instance field map for the given object
  1027 // (returns field map cached by the instanceKlass if possible)
  1028 ClassFieldMap* JvmtiCachedClassFieldMap::get_map_of_instance_fields(oop obj) {
  1029   assert(Thread::current()->is_VM_thread(), "must be VMThread");
  1030   assert(ClassFieldMapCacheMark::is_active(), "ClassFieldMapCacheMark not active");
  1032   klassOop k = obj->klass();
  1033   instanceKlass* ik = instanceKlass::cast(k);
  1035   // return cached map if possible
  1036   JvmtiCachedClassFieldMap* cached_map = ik->jvmti_cached_class_field_map();
  1037   if (cached_map != NULL) {
  1038     assert(cached_map->field_map() != NULL, "missing field list");
  1039     return cached_map->field_map();
  1040   } else {
  1041     ClassFieldMap* field_map = ClassFieldMap::create_map_of_instance_fields(obj);
  1042     cached_map = new JvmtiCachedClassFieldMap(field_map);
  1043     ik->set_jvmti_cached_class_field_map(cached_map);
  1044     add_to_class_list(ik);
  1045     return field_map;
  1049 // remove the fields maps cached from all instanceKlasses
  1050 void JvmtiCachedClassFieldMap::clear_cache() {
  1051   assert(Thread::current()->is_VM_thread(), "must be VMThread");
  1052   if (_class_list != NULL) {
  1053     for (int i = 0; i < _class_list->length(); i++) {
  1054       instanceKlass* ik = _class_list->at(i);
  1055       JvmtiCachedClassFieldMap* cached_map = ik->jvmti_cached_class_field_map();
  1056       assert(cached_map != NULL, "should not be NULL");
  1057       ik->set_jvmti_cached_class_field_map(NULL);
  1058       delete cached_map;  // deletes the encapsulated field map
  1060     delete _class_list;
  1061     _class_list = NULL;
  1065 // returns the number of ClassFieldMap cached by instanceKlasses
  1066 int JvmtiCachedClassFieldMap::cached_field_map_count() {
  1067   return (_class_list == NULL) ? 0 : _class_list->length();
  1070 // helper function to indicate if an object is filtered by its tag or class tag
  1071 static inline bool is_filtered_by_heap_filter(jlong obj_tag,
  1072                                               jlong klass_tag,
  1073                                               int heap_filter) {
  1074   // apply the heap filter
  1075   if (obj_tag != 0) {
  1076     // filter out tagged objects
  1077     if (heap_filter & JVMTI_HEAP_FILTER_TAGGED) return true;
  1078   } else {
  1079     // filter out untagged objects
  1080     if (heap_filter & JVMTI_HEAP_FILTER_UNTAGGED) return true;
  1082   if (klass_tag != 0) {
  1083     // filter out objects with tagged classes
  1084     if (heap_filter & JVMTI_HEAP_FILTER_CLASS_TAGGED) return true;
  1085   } else {
  1086     // filter out objects with untagged classes.
  1087     if (heap_filter & JVMTI_HEAP_FILTER_CLASS_UNTAGGED) return true;
  1089   return false;
  1092 // helper function to indicate if an object is filtered by a klass filter
  1093 static inline bool is_filtered_by_klass_filter(oop obj, KlassHandle klass_filter) {
  1094   if (!klass_filter.is_null()) {
  1095     if (obj->klass() != klass_filter()) {
  1096       return true;
  1099   return false;
  1102 // helper function to tell if a field is a primitive field or not
  1103 static inline bool is_primitive_field_type(char type) {
  1104   return (type != 'L' && type != '[');
  1107 // helper function to copy the value from location addr to jvalue.
  1108 static inline void copy_to_jvalue(jvalue *v, address addr, jvmtiPrimitiveType value_type) {
  1109   switch (value_type) {
  1110     case JVMTI_PRIMITIVE_TYPE_BOOLEAN : { v->z = *(jboolean*)addr; break; }
  1111     case JVMTI_PRIMITIVE_TYPE_BYTE    : { v->b = *(jbyte*)addr;    break; }
  1112     case JVMTI_PRIMITIVE_TYPE_CHAR    : { v->c = *(jchar*)addr;    break; }
  1113     case JVMTI_PRIMITIVE_TYPE_SHORT   : { v->s = *(jshort*)addr;   break; }
  1114     case JVMTI_PRIMITIVE_TYPE_INT     : { v->i = *(jint*)addr;     break; }
  1115     case JVMTI_PRIMITIVE_TYPE_LONG    : { v->j = *(jlong*)addr;    break; }
  1116     case JVMTI_PRIMITIVE_TYPE_FLOAT   : { v->f = *(jfloat*)addr;   break; }
  1117     case JVMTI_PRIMITIVE_TYPE_DOUBLE  : { v->d = *(jdouble*)addr;  break; }
  1118     default: ShouldNotReachHere();
  1122 // helper function to invoke string primitive value callback
  1123 // returns visit control flags
  1124 static jint invoke_string_value_callback(jvmtiStringPrimitiveValueCallback cb,
  1125                                          CallbackWrapper* wrapper,
  1126                                          oop str,
  1127                                          void* user_data)
  1129   assert(str->klass() == SystemDictionary::string_klass(), "not a string");
  1131   // get the string value and length
  1132   // (string value may be offset from the base)
  1133   int s_len = java_lang_String::length(str);
  1134   typeArrayOop s_value = java_lang_String::value(str);
  1135   int s_offset = java_lang_String::offset(str);
  1136   jchar* value;
  1137   if (s_len > 0) {
  1138     value = s_value->char_at_addr(s_offset);
  1139   } else {
  1140     value = (jchar*) s_value->base(T_CHAR);
  1143   // invoke the callback
  1144   return (*cb)(wrapper->klass_tag(),
  1145                wrapper->obj_size(),
  1146                wrapper->obj_tag_p(),
  1147                value,
  1148                (jint)s_len,
  1149                user_data);
  1152 // helper function to invoke string primitive value callback
  1153 // returns visit control flags
  1154 static jint invoke_array_primitive_value_callback(jvmtiArrayPrimitiveValueCallback cb,
  1155                                                   CallbackWrapper* wrapper,
  1156                                                   oop obj,
  1157                                                   void* user_data)
  1159   assert(obj->is_typeArray(), "not a primitive array");
  1161   // get base address of first element
  1162   typeArrayOop array = typeArrayOop(obj);
  1163   BasicType type = typeArrayKlass::cast(array->klass())->element_type();
  1164   void* elements = array->base(type);
  1166   // jvmtiPrimitiveType is defined so this mapping is always correct
  1167   jvmtiPrimitiveType elem_type = (jvmtiPrimitiveType)type2char(type);
  1169   return (*cb)(wrapper->klass_tag(),
  1170                wrapper->obj_size(),
  1171                wrapper->obj_tag_p(),
  1172                (jint)array->length(),
  1173                elem_type,
  1174                elements,
  1175                user_data);
  1178 // helper function to invoke the primitive field callback for all static fields
  1179 // of a given class
  1180 static jint invoke_primitive_field_callback_for_static_fields
  1181   (CallbackWrapper* wrapper,
  1182    oop obj,
  1183    jvmtiPrimitiveFieldCallback cb,
  1184    void* user_data)
  1186   // for static fields only the index will be set
  1187   static jvmtiHeapReferenceInfo reference_info = { 0 };
  1189   assert(obj->klass() == SystemDictionary::class_klass(), "not a class");
  1190   if (java_lang_Class::is_primitive(obj)) {
  1191     return 0;
  1193   klassOop k = java_lang_Class::as_klassOop(obj);
  1194   Klass* klass = k->klass_part();
  1196   // ignore classes for object and type arrays
  1197   if (!klass->oop_is_instance()) {
  1198     return 0;
  1201   // ignore classes which aren't linked yet
  1202   instanceKlass* ik = instanceKlass::cast(k);
  1203   if (!ik->is_linked()) {
  1204     return 0;
  1207   // get the field map
  1208   ClassFieldMap* field_map = ClassFieldMap::create_map_of_static_fields(k);
  1210   // invoke the callback for each static primitive field
  1211   for (int i=0; i<field_map->field_count(); i++) {
  1212     ClassFieldDescriptor* field = field_map->field_at(i);
  1214     // ignore non-primitive fields
  1215     char type = field->field_type();
  1216     if (!is_primitive_field_type(type)) {
  1217       continue;
  1219     // one-to-one mapping
  1220     jvmtiPrimitiveType value_type = (jvmtiPrimitiveType)type;
  1222     // get offset and field value
  1223     int offset = field->field_offset();
  1224     address addr = (address)k + offset;
  1225     jvalue value;
  1226     copy_to_jvalue(&value, addr, value_type);
  1228     // field index
  1229     reference_info.field.index = field->field_index();
  1231     // invoke the callback
  1232     jint res = (*cb)(JVMTI_HEAP_REFERENCE_STATIC_FIELD,
  1233                      &reference_info,
  1234                      wrapper->klass_tag(),
  1235                      wrapper->obj_tag_p(),
  1236                      value,
  1237                      value_type,
  1238                      user_data);
  1239     if (res & JVMTI_VISIT_ABORT) {
  1240       delete field_map;
  1241       return res;
  1245   delete field_map;
  1246   return 0;
  1249 // helper function to invoke the primitive field callback for all instance fields
  1250 // of a given object
  1251 static jint invoke_primitive_field_callback_for_instance_fields(
  1252   CallbackWrapper* wrapper,
  1253   oop obj,
  1254   jvmtiPrimitiveFieldCallback cb,
  1255   void* user_data)
  1257   // for instance fields only the index will be set
  1258   static jvmtiHeapReferenceInfo reference_info = { 0 };
  1260   // get the map of the instance fields
  1261   ClassFieldMap* fields = JvmtiCachedClassFieldMap::get_map_of_instance_fields(obj);
  1263   // invoke the callback for each instance primitive field
  1264   for (int i=0; i<fields->field_count(); i++) {
  1265     ClassFieldDescriptor* field = fields->field_at(i);
  1267     // ignore non-primitive fields
  1268     char type = field->field_type();
  1269     if (!is_primitive_field_type(type)) {
  1270       continue;
  1272     // one-to-one mapping
  1273     jvmtiPrimitiveType value_type = (jvmtiPrimitiveType)type;
  1275     // get offset and field value
  1276     int offset = field->field_offset();
  1277     address addr = (address)obj + offset;
  1278     jvalue value;
  1279     copy_to_jvalue(&value, addr, value_type);
  1281     // field index
  1282     reference_info.field.index = field->field_index();
  1284     // invoke the callback
  1285     jint res = (*cb)(JVMTI_HEAP_REFERENCE_FIELD,
  1286                      &reference_info,
  1287                      wrapper->klass_tag(),
  1288                      wrapper->obj_tag_p(),
  1289                      value,
  1290                      value_type,
  1291                      user_data);
  1292     if (res & JVMTI_VISIT_ABORT) {
  1293       return res;
  1296   return 0;
  1300 // VM operation to iterate over all objects in the heap (both reachable
  1301 // and unreachable)
  1302 class VM_HeapIterateOperation: public VM_Operation {
  1303  private:
  1304   ObjectClosure* _blk;
  1305  public:
  1306   VM_HeapIterateOperation(ObjectClosure* blk) { _blk = blk; }
  1308   VMOp_Type type() const { return VMOp_HeapIterateOperation; }
  1309   void doit() {
  1310     // allows class files maps to be cached during iteration
  1311     ClassFieldMapCacheMark cm;
  1313     // make sure that heap is parsable (fills TLABs with filler objects)
  1314     Universe::heap()->ensure_parsability(false);  // no need to retire TLABs
  1316     // Verify heap before iteration - if the heap gets corrupted then
  1317     // JVMTI's IterateOverHeap will crash.
  1318     if (VerifyBeforeIteration) {
  1319       Universe::verify();
  1322     // do the iteration
  1323     Universe::heap()->object_iterate(_blk);
  1325     // when sharing is enabled we must iterate over the shared spaces
  1326     if (UseSharedSpaces) {
  1327       GenCollectedHeap* gch = GenCollectedHeap::heap();
  1328       CompactingPermGenGen* gen = (CompactingPermGenGen*)gch->perm_gen();
  1329       gen->ro_space()->object_iterate(_blk);
  1330       gen->rw_space()->object_iterate(_blk);
  1334 };
  1337 // An ObjectClosure used to support the deprecated IterateOverHeap and
  1338 // IterateOverInstancesOfClass functions
  1339 class IterateOverHeapObjectClosure: public ObjectClosure {
  1340  private:
  1341   JvmtiTagMap* _tag_map;
  1342   KlassHandle _klass;
  1343   jvmtiHeapObjectFilter _object_filter;
  1344   jvmtiHeapObjectCallback _heap_object_callback;
  1345   const void* _user_data;
  1347   // accessors
  1348   JvmtiTagMap* tag_map() const                    { return _tag_map; }
  1349   jvmtiHeapObjectFilter object_filter() const     { return _object_filter; }
  1350   jvmtiHeapObjectCallback object_callback() const { return _heap_object_callback; }
  1351   KlassHandle klass() const                       { return _klass; }
  1352   const void* user_data() const                   { return _user_data; }
  1354   // indicates if iteration has been aborted
  1355   bool _iteration_aborted;
  1356   bool is_iteration_aborted() const               { return _iteration_aborted; }
  1357   void set_iteration_aborted(bool aborted)        { _iteration_aborted = aborted; }
  1359  public:
  1360   IterateOverHeapObjectClosure(JvmtiTagMap* tag_map,
  1361                                KlassHandle klass,
  1362                                jvmtiHeapObjectFilter object_filter,
  1363                                jvmtiHeapObjectCallback heap_object_callback,
  1364                                const void* user_data) :
  1365     _tag_map(tag_map),
  1366     _klass(klass),
  1367     _object_filter(object_filter),
  1368     _heap_object_callback(heap_object_callback),
  1369     _user_data(user_data),
  1370     _iteration_aborted(false)
  1374   void do_object(oop o);
  1375 };
  1377 // invoked for each object in the heap
  1378 void IterateOverHeapObjectClosure::do_object(oop o) {
  1379   // check if iteration has been halted
  1380   if (is_iteration_aborted()) return;
  1382   // ignore any objects that aren't visible to profiler
  1383   if (!ServiceUtil::visible_oop(o)) return;
  1385   // instanceof check when filtering by klass
  1386   if (!klass().is_null() && !o->is_a(klass()())) {
  1387     return;
  1389   // prepare for the calllback
  1390   CallbackWrapper wrapper(tag_map(), o);
  1392   // if the object is tagged and we're only interested in untagged objects
  1393   // then don't invoke the callback. Similiarly, if the object is untagged
  1394   // and we're only interested in tagged objects we skip the callback.
  1395   if (wrapper.obj_tag() != 0) {
  1396     if (object_filter() == JVMTI_HEAP_OBJECT_UNTAGGED) return;
  1397   } else {
  1398     if (object_filter() == JVMTI_HEAP_OBJECT_TAGGED) return;
  1401   // invoke the agent's callback
  1402   jvmtiIterationControl control = (*object_callback())(wrapper.klass_tag(),
  1403                                                        wrapper.obj_size(),
  1404                                                        wrapper.obj_tag_p(),
  1405                                                        (void*)user_data());
  1406   if (control == JVMTI_ITERATION_ABORT) {
  1407     set_iteration_aborted(true);
  1411 // An ObjectClosure used to support the IterateThroughHeap function
  1412 class IterateThroughHeapObjectClosure: public ObjectClosure {
  1413  private:
  1414   JvmtiTagMap* _tag_map;
  1415   KlassHandle _klass;
  1416   int _heap_filter;
  1417   const jvmtiHeapCallbacks* _callbacks;
  1418   const void* _user_data;
  1420   // accessor functions
  1421   JvmtiTagMap* tag_map() const                     { return _tag_map; }
  1422   int heap_filter() const                          { return _heap_filter; }
  1423   const jvmtiHeapCallbacks* callbacks() const      { return _callbacks; }
  1424   KlassHandle klass() const                        { return _klass; }
  1425   const void* user_data() const                    { return _user_data; }
  1427   // indicates if the iteration has been aborted
  1428   bool _iteration_aborted;
  1429   bool is_iteration_aborted() const                { return _iteration_aborted; }
  1431   // used to check the visit control flags. If the abort flag is set
  1432   // then we set the iteration aborted flag so that the iteration completes
  1433   // without processing any further objects
  1434   bool check_flags_for_abort(jint flags) {
  1435     bool is_abort = (flags & JVMTI_VISIT_ABORT) != 0;
  1436     if (is_abort) {
  1437       _iteration_aborted = true;
  1439     return is_abort;
  1442  public:
  1443   IterateThroughHeapObjectClosure(JvmtiTagMap* tag_map,
  1444                                   KlassHandle klass,
  1445                                   int heap_filter,
  1446                                   const jvmtiHeapCallbacks* heap_callbacks,
  1447                                   const void* user_data) :
  1448     _tag_map(tag_map),
  1449     _klass(klass),
  1450     _heap_filter(heap_filter),
  1451     _callbacks(heap_callbacks),
  1452     _user_data(user_data),
  1453     _iteration_aborted(false)
  1457   void do_object(oop o);
  1458 };
  1460 // invoked for each object in the heap
  1461 void IterateThroughHeapObjectClosure::do_object(oop obj) {
  1462   // check if iteration has been halted
  1463   if (is_iteration_aborted()) return;
  1465   // ignore any objects that aren't visible to profiler
  1466   if (!ServiceUtil::visible_oop(obj)) return;
  1468   // apply class filter
  1469   if (is_filtered_by_klass_filter(obj, klass())) return;
  1471   // prepare for callback
  1472   CallbackWrapper wrapper(tag_map(), obj);
  1474   // check if filtered by the heap filter
  1475   if (is_filtered_by_heap_filter(wrapper.obj_tag(), wrapper.klass_tag(), heap_filter())) {
  1476     return;
  1479   // for arrays we need the length, otherwise -1
  1480   bool is_array = obj->is_array();
  1481   int len = is_array ? arrayOop(obj)->length() : -1;
  1483   // invoke the object callback (if callback is provided)
  1484   if (callbacks()->heap_iteration_callback != NULL) {
  1485     jvmtiHeapIterationCallback cb = callbacks()->heap_iteration_callback;
  1486     jint res = (*cb)(wrapper.klass_tag(),
  1487                      wrapper.obj_size(),
  1488                      wrapper.obj_tag_p(),
  1489                      (jint)len,
  1490                      (void*)user_data());
  1491     if (check_flags_for_abort(res)) return;
  1494   // for objects and classes we report primitive fields if callback provided
  1495   if (callbacks()->primitive_field_callback != NULL && obj->is_instance()) {
  1496     jint res;
  1497     jvmtiPrimitiveFieldCallback cb = callbacks()->primitive_field_callback;
  1498     if (obj->klass() == SystemDictionary::class_klass()) {
  1499       res = invoke_primitive_field_callback_for_static_fields(&wrapper,
  1500                                                                     obj,
  1501                                                                     cb,
  1502                                                                     (void*)user_data());
  1503     } else {
  1504       res = invoke_primitive_field_callback_for_instance_fields(&wrapper,
  1505                                                                       obj,
  1506                                                                       cb,
  1507                                                                       (void*)user_data());
  1509     if (check_flags_for_abort(res)) return;
  1512   // string callback
  1513   if (!is_array &&
  1514       callbacks()->string_primitive_value_callback != NULL &&
  1515       obj->klass() == SystemDictionary::string_klass()) {
  1516     jint res = invoke_string_value_callback(
  1517                 callbacks()->string_primitive_value_callback,
  1518                 &wrapper,
  1519                 obj,
  1520                 (void*)user_data() );
  1521     if (check_flags_for_abort(res)) return;
  1524   // array callback
  1525   if (is_array &&
  1526       callbacks()->array_primitive_value_callback != NULL &&
  1527       obj->is_typeArray()) {
  1528     jint res = invoke_array_primitive_value_callback(
  1529                callbacks()->array_primitive_value_callback,
  1530                &wrapper,
  1531                obj,
  1532                (void*)user_data() );
  1533     if (check_flags_for_abort(res)) return;
  1535 };
  1538 // Deprecated function to iterate over all objects in the heap
  1539 void JvmtiTagMap::iterate_over_heap(jvmtiHeapObjectFilter object_filter,
  1540                                     KlassHandle klass,
  1541                                     jvmtiHeapObjectCallback heap_object_callback,
  1542                                     const void* user_data)
  1544   MutexLocker ml(Heap_lock);
  1545   IterateOverHeapObjectClosure blk(this,
  1546                                    klass,
  1547                                    object_filter,
  1548                                    heap_object_callback,
  1549                                    user_data);
  1550   VM_HeapIterateOperation op(&blk);
  1551   VMThread::execute(&op);
  1555 // Iterates over all objects in the heap
  1556 void JvmtiTagMap::iterate_through_heap(jint heap_filter,
  1557                                        KlassHandle klass,
  1558                                        const jvmtiHeapCallbacks* callbacks,
  1559                                        const void* user_data)
  1561   MutexLocker ml(Heap_lock);
  1562   IterateThroughHeapObjectClosure blk(this,
  1563                                       klass,
  1564                                       heap_filter,
  1565                                       callbacks,
  1566                                       user_data);
  1567   VM_HeapIterateOperation op(&blk);
  1568   VMThread::execute(&op);
  1571 // support class for get_objects_with_tags
  1573 class TagObjectCollector : public JvmtiTagHashmapEntryClosure {
  1574  private:
  1575   JvmtiEnv* _env;
  1576   jlong* _tags;
  1577   jint _tag_count;
  1579   GrowableArray<jobject>* _object_results;  // collected objects (JNI weak refs)
  1580   GrowableArray<uint64_t>* _tag_results;    // collected tags
  1582  public:
  1583   TagObjectCollector(JvmtiEnv* env, const jlong* tags, jint tag_count) {
  1584     _env = env;
  1585     _tags = (jlong*)tags;
  1586     _tag_count = tag_count;
  1587     _object_results = new (ResourceObj::C_HEAP) GrowableArray<jobject>(1,true);
  1588     _tag_results = new (ResourceObj::C_HEAP) GrowableArray<uint64_t>(1,true);
  1591   ~TagObjectCollector() {
  1592     delete _object_results;
  1593     delete _tag_results;
  1596   // for each tagged object check if the tag value matches
  1597   // - if it matches then we create a JNI local reference to the object
  1598   // and record the reference and tag value.
  1599   //
  1600   void do_entry(JvmtiTagHashmapEntry* entry) {
  1601     for (int i=0; i<_tag_count; i++) {
  1602       if (_tags[i] == entry->tag()) {
  1603         oop o = JNIHandles::resolve(entry->object());
  1604         assert(o != NULL && o != JNIHandles::deleted_handle(), "sanity check");
  1606         // the mirror is tagged
  1607         if (o->is_klass()) {
  1608           klassOop k = (klassOop)o;
  1609           o = Klass::cast(k)->java_mirror();
  1612         jobject ref = JNIHandles::make_local(JavaThread::current(), o);
  1613         _object_results->append(ref);
  1614         _tag_results->append((uint64_t)entry->tag());
  1619   // return the results from the collection
  1620   //
  1621   jvmtiError result(jint* count_ptr, jobject** object_result_ptr, jlong** tag_result_ptr) {
  1622     jvmtiError error;
  1623     int count = _object_results->length();
  1624     assert(count >= 0, "sanity check");
  1626     // if object_result_ptr is not NULL then allocate the result and copy
  1627     // in the object references.
  1628     if (object_result_ptr != NULL) {
  1629       error = _env->Allocate(count * sizeof(jobject), (unsigned char**)object_result_ptr);
  1630       if (error != JVMTI_ERROR_NONE) {
  1631         return error;
  1633       for (int i=0; i<count; i++) {
  1634         (*object_result_ptr)[i] = _object_results->at(i);
  1638     // if tag_result_ptr is not NULL then allocate the result and copy
  1639     // in the tag values.
  1640     if (tag_result_ptr != NULL) {
  1641       error = _env->Allocate(count * sizeof(jlong), (unsigned char**)tag_result_ptr);
  1642       if (error != JVMTI_ERROR_NONE) {
  1643         if (object_result_ptr != NULL) {
  1644           _env->Deallocate((unsigned char*)object_result_ptr);
  1646         return error;
  1648       for (int i=0; i<count; i++) {
  1649         (*tag_result_ptr)[i] = (jlong)_tag_results->at(i);
  1653     *count_ptr = count;
  1654     return JVMTI_ERROR_NONE;
  1656 };
  1658 // return the list of objects with the specified tags
  1659 jvmtiError JvmtiTagMap::get_objects_with_tags(const jlong* tags,
  1660   jint count, jint* count_ptr, jobject** object_result_ptr, jlong** tag_result_ptr) {
  1662   TagObjectCollector collector(env(), tags, count);
  1664     // iterate over all tagged objects
  1665     MutexLocker ml(lock());
  1666     entry_iterate(&collector);
  1668   return collector.result(count_ptr, object_result_ptr, tag_result_ptr);
  1672 // ObjectMarker is used to support the marking objects when walking the
  1673 // heap.
  1674 //
  1675 // This implementation uses the existing mark bits in an object for
  1676 // marking. Objects that are marked must later have their headers restored.
  1677 // As most objects are unlocked and don't have their identity hash computed
  1678 // we don't have to save their headers. Instead we save the headers that
  1679 // are "interesting". Later when the headers are restored this implementation
  1680 // restores all headers to their initial value and then restores the few
  1681 // objects that had interesting headers.
  1682 //
  1683 // Future work: This implementation currently uses growable arrays to save
  1684 // the oop and header of interesting objects. As an optimization we could
  1685 // use the same technique as the GC and make use of the unused area
  1686 // between top() and end().
  1687 //
  1689 // An ObjectClosure used to restore the mark bits of an object
  1690 class RestoreMarksClosure : public ObjectClosure {
  1691  public:
  1692   void do_object(oop o) {
  1693     if (o != NULL) {
  1694       markOop mark = o->mark();
  1695       if (mark->is_marked()) {
  1696         o->init_mark();
  1700 };
  1702 // ObjectMarker provides the mark and visited functions
  1703 class ObjectMarker : AllStatic {
  1704  private:
  1705   // saved headers
  1706   static GrowableArray<oop>* _saved_oop_stack;
  1707   static GrowableArray<markOop>* _saved_mark_stack;
  1709  public:
  1710   static void init();                       // initialize
  1711   static void done();                       // clean-up
  1713   static inline void mark(oop o);           // mark an object
  1714   static inline bool visited(oop o);        // check if object has been visited
  1715 };
  1717 GrowableArray<oop>* ObjectMarker::_saved_oop_stack = NULL;
  1718 GrowableArray<markOop>* ObjectMarker::_saved_mark_stack = NULL;
  1720 // initialize ObjectMarker - prepares for object marking
  1721 void ObjectMarker::init() {
  1722   assert(Thread::current()->is_VM_thread(), "must be VMThread");
  1724   // prepare heap for iteration
  1725   Universe::heap()->ensure_parsability(false);  // no need to retire TLABs
  1727   // create stacks for interesting headers
  1728   _saved_mark_stack = new (ResourceObj::C_HEAP) GrowableArray<markOop>(4000, true);
  1729   _saved_oop_stack = new (ResourceObj::C_HEAP) GrowableArray<oop>(4000, true);
  1731   if (UseBiasedLocking) {
  1732     BiasedLocking::preserve_marks();
  1736 // Object marking is done so restore object headers
  1737 void ObjectMarker::done() {
  1738   // iterate over all objects and restore the mark bits to
  1739   // their initial value
  1740   RestoreMarksClosure blk;
  1741   Universe::heap()->object_iterate(&blk);
  1743   // When sharing is enabled we need to restore the headers of the objects
  1744   // in the readwrite space too.
  1745   if (UseSharedSpaces) {
  1746     GenCollectedHeap* gch = GenCollectedHeap::heap();
  1747     CompactingPermGenGen* gen = (CompactingPermGenGen*)gch->perm_gen();
  1748     gen->rw_space()->object_iterate(&blk);
  1751   // now restore the interesting headers
  1752   for (int i = 0; i < _saved_oop_stack->length(); i++) {
  1753     oop o = _saved_oop_stack->at(i);
  1754     markOop mark = _saved_mark_stack->at(i);
  1755     o->set_mark(mark);
  1758   if (UseBiasedLocking) {
  1759     BiasedLocking::restore_marks();
  1762   // free the stacks
  1763   delete _saved_oop_stack;
  1764   delete _saved_mark_stack;
  1767 // mark an object
  1768 inline void ObjectMarker::mark(oop o) {
  1769   assert(Universe::heap()->is_in(o), "sanity check");
  1770   assert(!o->mark()->is_marked(), "should only mark an object once");
  1772   // object's mark word
  1773   markOop mark = o->mark();
  1775   if (mark->must_be_preserved(o)) {
  1776     _saved_mark_stack->push(mark);
  1777     _saved_oop_stack->push(o);
  1780   // mark the object
  1781   o->set_mark(markOopDesc::prototype()->set_marked());
  1784 // return true if object is marked
  1785 inline bool ObjectMarker::visited(oop o) {
  1786   return o->mark()->is_marked();
  1789 // Stack allocated class to help ensure that ObjectMarker is used
  1790 // correctly. Constructor initializes ObjectMarker, destructor calls
  1791 // ObjectMarker's done() function to restore object headers.
  1792 class ObjectMarkerController : public StackObj {
  1793  public:
  1794   ObjectMarkerController() {
  1795     ObjectMarker::init();
  1797   ~ObjectMarkerController() {
  1798     ObjectMarker::done();
  1800 };
  1803 // helper to map a jvmtiHeapReferenceKind to an old style jvmtiHeapRootKind
  1804 // (not performance critical as only used for roots)
  1805 static jvmtiHeapRootKind toJvmtiHeapRootKind(jvmtiHeapReferenceKind kind) {
  1806   switch (kind) {
  1807     case JVMTI_HEAP_REFERENCE_JNI_GLOBAL:   return JVMTI_HEAP_ROOT_JNI_GLOBAL;
  1808     case JVMTI_HEAP_REFERENCE_SYSTEM_CLASS: return JVMTI_HEAP_ROOT_SYSTEM_CLASS;
  1809     case JVMTI_HEAP_REFERENCE_MONITOR:      return JVMTI_HEAP_ROOT_MONITOR;
  1810     case JVMTI_HEAP_REFERENCE_STACK_LOCAL:  return JVMTI_HEAP_ROOT_STACK_LOCAL;
  1811     case JVMTI_HEAP_REFERENCE_JNI_LOCAL:    return JVMTI_HEAP_ROOT_JNI_LOCAL;
  1812     case JVMTI_HEAP_REFERENCE_THREAD:       return JVMTI_HEAP_ROOT_THREAD;
  1813     case JVMTI_HEAP_REFERENCE_OTHER:        return JVMTI_HEAP_ROOT_OTHER;
  1814     default: ShouldNotReachHere();          return JVMTI_HEAP_ROOT_OTHER;
  1818 // Base class for all heap walk contexts. The base class maintains a flag
  1819 // to indicate if the context is valid or not.
  1820 class HeapWalkContext VALUE_OBJ_CLASS_SPEC {
  1821  private:
  1822   bool _valid;
  1823  public:
  1824   HeapWalkContext(bool valid)                   { _valid = valid; }
  1825   void invalidate()                             { _valid = false; }
  1826   bool is_valid() const                         { return _valid; }
  1827 };
  1829 // A basic heap walk context for the deprecated heap walking functions.
  1830 // The context for a basic heap walk are the callbacks and fields used by
  1831 // the referrer caching scheme.
  1832 class BasicHeapWalkContext: public HeapWalkContext {
  1833  private:
  1834   jvmtiHeapRootCallback _heap_root_callback;
  1835   jvmtiStackReferenceCallback _stack_ref_callback;
  1836   jvmtiObjectReferenceCallback _object_ref_callback;
  1838   // used for caching
  1839   oop _last_referrer;
  1840   jlong _last_referrer_tag;
  1842  public:
  1843   BasicHeapWalkContext() : HeapWalkContext(false) { }
  1845   BasicHeapWalkContext(jvmtiHeapRootCallback heap_root_callback,
  1846                        jvmtiStackReferenceCallback stack_ref_callback,
  1847                        jvmtiObjectReferenceCallback object_ref_callback) :
  1848     HeapWalkContext(true),
  1849     _heap_root_callback(heap_root_callback),
  1850     _stack_ref_callback(stack_ref_callback),
  1851     _object_ref_callback(object_ref_callback),
  1852     _last_referrer(NULL),
  1853     _last_referrer_tag(0) {
  1856   // accessors
  1857   jvmtiHeapRootCallback heap_root_callback() const         { return _heap_root_callback; }
  1858   jvmtiStackReferenceCallback stack_ref_callback() const   { return _stack_ref_callback; }
  1859   jvmtiObjectReferenceCallback object_ref_callback() const { return _object_ref_callback;  }
  1861   oop last_referrer() const               { return _last_referrer; }
  1862   void set_last_referrer(oop referrer)    { _last_referrer = referrer; }
  1863   jlong last_referrer_tag() const         { return _last_referrer_tag; }
  1864   void set_last_referrer_tag(jlong value) { _last_referrer_tag = value; }
  1865 };
  1867 // The advanced heap walk context for the FollowReferences functions.
  1868 // The context is the callbacks, and the fields used for filtering.
  1869 class AdvancedHeapWalkContext: public HeapWalkContext {
  1870  private:
  1871   jint _heap_filter;
  1872   KlassHandle _klass_filter;
  1873   const jvmtiHeapCallbacks* _heap_callbacks;
  1875  public:
  1876   AdvancedHeapWalkContext() : HeapWalkContext(false) { }
  1878   AdvancedHeapWalkContext(jint heap_filter,
  1879                            KlassHandle klass_filter,
  1880                            const jvmtiHeapCallbacks* heap_callbacks) :
  1881     HeapWalkContext(true),
  1882     _heap_filter(heap_filter),
  1883     _klass_filter(klass_filter),
  1884     _heap_callbacks(heap_callbacks) {
  1887   // accessors
  1888   jint heap_filter() const         { return _heap_filter; }
  1889   KlassHandle klass_filter() const { return _klass_filter; }
  1891   const jvmtiHeapReferenceCallback heap_reference_callback() const {
  1892     return _heap_callbacks->heap_reference_callback;
  1893   };
  1894   const jvmtiPrimitiveFieldCallback primitive_field_callback() const {
  1895     return _heap_callbacks->primitive_field_callback;
  1897   const jvmtiArrayPrimitiveValueCallback array_primitive_value_callback() const {
  1898     return _heap_callbacks->array_primitive_value_callback;
  1900   const jvmtiStringPrimitiveValueCallback string_primitive_value_callback() const {
  1901     return _heap_callbacks->string_primitive_value_callback;
  1903 };
  1905 // The CallbackInvoker is a class with static functions that the heap walk can call
  1906 // into to invoke callbacks. It works in one of two modes. The "basic" mode is
  1907 // used for the deprecated IterateOverReachableObjects functions. The "advanced"
  1908 // mode is for the newer FollowReferences function which supports a lot of
  1909 // additional callbacks.
  1910 class CallbackInvoker : AllStatic {
  1911  private:
  1912   // heap walk styles
  1913   enum { basic, advanced };
  1914   static int _heap_walk_type;
  1915   static bool is_basic_heap_walk()           { return _heap_walk_type == basic; }
  1916   static bool is_advanced_heap_walk()        { return _heap_walk_type == advanced; }
  1918   // context for basic style heap walk
  1919   static BasicHeapWalkContext _basic_context;
  1920   static BasicHeapWalkContext* basic_context() {
  1921     assert(_basic_context.is_valid(), "invalid");
  1922     return &_basic_context;
  1925   // context for advanced style heap walk
  1926   static AdvancedHeapWalkContext _advanced_context;
  1927   static AdvancedHeapWalkContext* advanced_context() {
  1928     assert(_advanced_context.is_valid(), "invalid");
  1929     return &_advanced_context;
  1932   // context needed for all heap walks
  1933   static JvmtiTagMap* _tag_map;
  1934   static const void* _user_data;
  1935   static GrowableArray<oop>* _visit_stack;
  1937   // accessors
  1938   static JvmtiTagMap* tag_map()                        { return _tag_map; }
  1939   static const void* user_data()                       { return _user_data; }
  1940   static GrowableArray<oop>* visit_stack()             { return _visit_stack; }
  1942   // if the object hasn't been visited then push it onto the visit stack
  1943   // so that it will be visited later
  1944   static inline bool check_for_visit(oop obj) {
  1945     if (!ObjectMarker::visited(obj)) visit_stack()->push(obj);
  1946     return true;
  1949   // invoke basic style callbacks
  1950   static inline bool invoke_basic_heap_root_callback
  1951     (jvmtiHeapRootKind root_kind, oop obj);
  1952   static inline bool invoke_basic_stack_ref_callback
  1953     (jvmtiHeapRootKind root_kind, jlong thread_tag, jint depth, jmethodID method,
  1954      int slot, oop obj);
  1955   static inline bool invoke_basic_object_reference_callback
  1956     (jvmtiObjectReferenceKind ref_kind, oop referrer, oop referree, jint index);
  1958   // invoke advanced style callbacks
  1959   static inline bool invoke_advanced_heap_root_callback
  1960     (jvmtiHeapReferenceKind ref_kind, oop obj);
  1961   static inline bool invoke_advanced_stack_ref_callback
  1962     (jvmtiHeapReferenceKind ref_kind, jlong thread_tag, jlong tid, int depth,
  1963      jmethodID method, jlocation bci, jint slot, oop obj);
  1964   static inline bool invoke_advanced_object_reference_callback
  1965     (jvmtiHeapReferenceKind ref_kind, oop referrer, oop referree, jint index);
  1967   // used to report the value of primitive fields
  1968   static inline bool report_primitive_field
  1969     (jvmtiHeapReferenceKind ref_kind, oop obj, jint index, address addr, char type);
  1971  public:
  1972   // initialize for basic mode
  1973   static void initialize_for_basic_heap_walk(JvmtiTagMap* tag_map,
  1974                                              GrowableArray<oop>* visit_stack,
  1975                                              const void* user_data,
  1976                                              BasicHeapWalkContext context);
  1978   // initialize for advanced mode
  1979   static void initialize_for_advanced_heap_walk(JvmtiTagMap* tag_map,
  1980                                                 GrowableArray<oop>* visit_stack,
  1981                                                 const void* user_data,
  1982                                                 AdvancedHeapWalkContext context);
  1984    // functions to report roots
  1985   static inline bool report_simple_root(jvmtiHeapReferenceKind kind, oop o);
  1986   static inline bool report_jni_local_root(jlong thread_tag, jlong tid, jint depth,
  1987     jmethodID m, oop o);
  1988   static inline bool report_stack_ref_root(jlong thread_tag, jlong tid, jint depth,
  1989     jmethodID method, jlocation bci, jint slot, oop o);
  1991   // functions to report references
  1992   static inline bool report_array_element_reference(oop referrer, oop referree, jint index);
  1993   static inline bool report_class_reference(oop referrer, oop referree);
  1994   static inline bool report_class_loader_reference(oop referrer, oop referree);
  1995   static inline bool report_signers_reference(oop referrer, oop referree);
  1996   static inline bool report_protection_domain_reference(oop referrer, oop referree);
  1997   static inline bool report_superclass_reference(oop referrer, oop referree);
  1998   static inline bool report_interface_reference(oop referrer, oop referree);
  1999   static inline bool report_static_field_reference(oop referrer, oop referree, jint slot);
  2000   static inline bool report_field_reference(oop referrer, oop referree, jint slot);
  2001   static inline bool report_constant_pool_reference(oop referrer, oop referree, jint index);
  2002   static inline bool report_primitive_array_values(oop array);
  2003   static inline bool report_string_value(oop str);
  2004   static inline bool report_primitive_instance_field(oop o, jint index, address value, char type);
  2005   static inline bool report_primitive_static_field(oop o, jint index, address value, char type);
  2006 };
  2008 // statics
  2009 int CallbackInvoker::_heap_walk_type;
  2010 BasicHeapWalkContext CallbackInvoker::_basic_context;
  2011 AdvancedHeapWalkContext CallbackInvoker::_advanced_context;
  2012 JvmtiTagMap* CallbackInvoker::_tag_map;
  2013 const void* CallbackInvoker::_user_data;
  2014 GrowableArray<oop>* CallbackInvoker::_visit_stack;
  2016 // initialize for basic heap walk (IterateOverReachableObjects et al)
  2017 void CallbackInvoker::initialize_for_basic_heap_walk(JvmtiTagMap* tag_map,
  2018                                                      GrowableArray<oop>* visit_stack,
  2019                                                      const void* user_data,
  2020                                                      BasicHeapWalkContext context) {
  2021   _tag_map = tag_map;
  2022   _visit_stack = visit_stack;
  2023   _user_data = user_data;
  2024   _basic_context = context;
  2025   _advanced_context.invalidate();       // will trigger assertion if used
  2026   _heap_walk_type = basic;
  2029 // initialize for advanced heap walk (FollowReferences)
  2030 void CallbackInvoker::initialize_for_advanced_heap_walk(JvmtiTagMap* tag_map,
  2031                                                         GrowableArray<oop>* visit_stack,
  2032                                                         const void* user_data,
  2033                                                         AdvancedHeapWalkContext context) {
  2034   _tag_map = tag_map;
  2035   _visit_stack = visit_stack;
  2036   _user_data = user_data;
  2037   _advanced_context = context;
  2038   _basic_context.invalidate();      // will trigger assertion if used
  2039   _heap_walk_type = advanced;
  2043 // invoke basic style heap root callback
  2044 inline bool CallbackInvoker::invoke_basic_heap_root_callback(jvmtiHeapRootKind root_kind, oop obj) {
  2045   assert(ServiceUtil::visible_oop(obj), "checking");
  2047   // if we heap roots should be reported
  2048   jvmtiHeapRootCallback cb = basic_context()->heap_root_callback();
  2049   if (cb == NULL) {
  2050     return check_for_visit(obj);
  2053   CallbackWrapper wrapper(tag_map(), obj);
  2054   jvmtiIterationControl control = (*cb)(root_kind,
  2055                                         wrapper.klass_tag(),
  2056                                         wrapper.obj_size(),
  2057                                         wrapper.obj_tag_p(),
  2058                                         (void*)user_data());
  2059   // push root to visit stack when following references
  2060   if (control == JVMTI_ITERATION_CONTINUE &&
  2061       basic_context()->object_ref_callback() != NULL) {
  2062     visit_stack()->push(obj);
  2064   return control != JVMTI_ITERATION_ABORT;
  2067 // invoke basic style stack ref callback
  2068 inline bool CallbackInvoker::invoke_basic_stack_ref_callback(jvmtiHeapRootKind root_kind,
  2069                                                              jlong thread_tag,
  2070                                                              jint depth,
  2071                                                              jmethodID method,
  2072                                                              jint slot,
  2073                                                              oop obj) {
  2074   assert(ServiceUtil::visible_oop(obj), "checking");
  2076   // if we stack refs should be reported
  2077   jvmtiStackReferenceCallback cb = basic_context()->stack_ref_callback();
  2078   if (cb == NULL) {
  2079     return check_for_visit(obj);
  2082   CallbackWrapper wrapper(tag_map(), obj);
  2083   jvmtiIterationControl control = (*cb)(root_kind,
  2084                                         wrapper.klass_tag(),
  2085                                         wrapper.obj_size(),
  2086                                         wrapper.obj_tag_p(),
  2087                                         thread_tag,
  2088                                         depth,
  2089                                         method,
  2090                                         slot,
  2091                                         (void*)user_data());
  2092   // push root to visit stack when following references
  2093   if (control == JVMTI_ITERATION_CONTINUE &&
  2094       basic_context()->object_ref_callback() != NULL) {
  2095     visit_stack()->push(obj);
  2097   return control != JVMTI_ITERATION_ABORT;
  2100 // invoke basic style object reference callback
  2101 inline bool CallbackInvoker::invoke_basic_object_reference_callback(jvmtiObjectReferenceKind ref_kind,
  2102                                                                     oop referrer,
  2103                                                                     oop referree,
  2104                                                                     jint index) {
  2106   assert(ServiceUtil::visible_oop(referrer), "checking");
  2107   assert(ServiceUtil::visible_oop(referree), "checking");
  2109   BasicHeapWalkContext* context = basic_context();
  2111   // callback requires the referrer's tag. If it's the same referrer
  2112   // as the last call then we use the cached value.
  2113   jlong referrer_tag;
  2114   if (referrer == context->last_referrer()) {
  2115     referrer_tag = context->last_referrer_tag();
  2116   } else {
  2117     referrer_tag = tag_for(tag_map(), klassOop_if_java_lang_Class(referrer));
  2120   // do the callback
  2121   CallbackWrapper wrapper(tag_map(), referree);
  2122   jvmtiObjectReferenceCallback cb = context->object_ref_callback();
  2123   jvmtiIterationControl control = (*cb)(ref_kind,
  2124                                         wrapper.klass_tag(),
  2125                                         wrapper.obj_size(),
  2126                                         wrapper.obj_tag_p(),
  2127                                         referrer_tag,
  2128                                         index,
  2129                                         (void*)user_data());
  2131   // record referrer and referrer tag. For self-references record the
  2132   // tag value from the callback as this might differ from referrer_tag.
  2133   context->set_last_referrer(referrer);
  2134   if (referrer == referree) {
  2135     context->set_last_referrer_tag(*wrapper.obj_tag_p());
  2136   } else {
  2137     context->set_last_referrer_tag(referrer_tag);
  2140   if (control == JVMTI_ITERATION_CONTINUE) {
  2141     return check_for_visit(referree);
  2142   } else {
  2143     return control != JVMTI_ITERATION_ABORT;
  2147 // invoke advanced style heap root callback
  2148 inline bool CallbackInvoker::invoke_advanced_heap_root_callback(jvmtiHeapReferenceKind ref_kind,
  2149                                                                 oop obj) {
  2150   assert(ServiceUtil::visible_oop(obj), "checking");
  2152   AdvancedHeapWalkContext* context = advanced_context();
  2154   // check that callback is provided
  2155   jvmtiHeapReferenceCallback cb = context->heap_reference_callback();
  2156   if (cb == NULL) {
  2157     return check_for_visit(obj);
  2160   // apply class filter
  2161   if (is_filtered_by_klass_filter(obj, context->klass_filter())) {
  2162     return check_for_visit(obj);
  2165   // setup the callback wrapper
  2166   CallbackWrapper wrapper(tag_map(), obj);
  2168   // apply tag filter
  2169   if (is_filtered_by_heap_filter(wrapper.obj_tag(),
  2170                                  wrapper.klass_tag(),
  2171                                  context->heap_filter())) {
  2172     return check_for_visit(obj);
  2175   // for arrays we need the length, otherwise -1
  2176   jint len = (jint)(obj->is_array() ? arrayOop(obj)->length() : -1);
  2178   // invoke the callback
  2179   jint res  = (*cb)(ref_kind,
  2180                     NULL, // referrer info
  2181                     wrapper.klass_tag(),
  2182                     0,    // referrer_class_tag is 0 for heap root
  2183                     wrapper.obj_size(),
  2184                     wrapper.obj_tag_p(),
  2185                     NULL, // referrer_tag_p
  2186                     len,
  2187                     (void*)user_data());
  2188   if (res & JVMTI_VISIT_ABORT) {
  2189     return false;// referrer class tag
  2191   if (res & JVMTI_VISIT_OBJECTS) {
  2192     check_for_visit(obj);
  2194   return true;
  2197 // report a reference from a thread stack to an object
  2198 inline bool CallbackInvoker::invoke_advanced_stack_ref_callback(jvmtiHeapReferenceKind ref_kind,
  2199                                                                 jlong thread_tag,
  2200                                                                 jlong tid,
  2201                                                                 int depth,
  2202                                                                 jmethodID method,
  2203                                                                 jlocation bci,
  2204                                                                 jint slot,
  2205                                                                 oop obj) {
  2206   assert(ServiceUtil::visible_oop(obj), "checking");
  2208   AdvancedHeapWalkContext* context = advanced_context();
  2210   // check that callback is provider
  2211   jvmtiHeapReferenceCallback cb = context->heap_reference_callback();
  2212   if (cb == NULL) {
  2213     return check_for_visit(obj);
  2216   // apply class filter
  2217   if (is_filtered_by_klass_filter(obj, context->klass_filter())) {
  2218     return check_for_visit(obj);
  2221   // setup the callback wrapper
  2222   CallbackWrapper wrapper(tag_map(), obj);
  2224   // apply tag filter
  2225   if (is_filtered_by_heap_filter(wrapper.obj_tag(),
  2226                                  wrapper.klass_tag(),
  2227                                  context->heap_filter())) {
  2228     return check_for_visit(obj);
  2231   // setup the referrer info
  2232   jvmtiHeapReferenceInfo reference_info;
  2233   reference_info.stack_local.thread_tag = thread_tag;
  2234   reference_info.stack_local.thread_id = tid;
  2235   reference_info.stack_local.depth = depth;
  2236   reference_info.stack_local.method = method;
  2237   reference_info.stack_local.location = bci;
  2238   reference_info.stack_local.slot = slot;
  2240   // for arrays we need the length, otherwise -1
  2241   jint len = (jint)(obj->is_array() ? arrayOop(obj)->length() : -1);
  2243   // call into the agent
  2244   int res = (*cb)(ref_kind,
  2245                   &reference_info,
  2246                   wrapper.klass_tag(),
  2247                   0,    // referrer_class_tag is 0 for heap root (stack)
  2248                   wrapper.obj_size(),
  2249                   wrapper.obj_tag_p(),
  2250                   NULL, // referrer_tag is 0 for root
  2251                   len,
  2252                   (void*)user_data());
  2254   if (res & JVMTI_VISIT_ABORT) {
  2255     return false;
  2257   if (res & JVMTI_VISIT_OBJECTS) {
  2258     check_for_visit(obj);
  2260   return true;
  2263 // This mask is used to pass reference_info to a jvmtiHeapReferenceCallback
  2264 // only for ref_kinds defined by the JVM TI spec. Otherwise, NULL is passed.
  2265 #define REF_INFO_MASK  ((1 << JVMTI_HEAP_REFERENCE_FIELD)         \
  2266                       | (1 << JVMTI_HEAP_REFERENCE_STATIC_FIELD)  \
  2267                       | (1 << JVMTI_HEAP_REFERENCE_ARRAY_ELEMENT) \
  2268                       | (1 << JVMTI_HEAP_REFERENCE_CONSTANT_POOL) \
  2269                       | (1 << JVMTI_HEAP_REFERENCE_STACK_LOCAL)   \
  2270                       | (1 << JVMTI_HEAP_REFERENCE_JNI_LOCAL))
  2272 // invoke the object reference callback to report a reference
  2273 inline bool CallbackInvoker::invoke_advanced_object_reference_callback(jvmtiHeapReferenceKind ref_kind,
  2274                                                                        oop referrer,
  2275                                                                        oop obj,
  2276                                                                        jint index)
  2278   // field index is only valid field in reference_info
  2279   static jvmtiHeapReferenceInfo reference_info = { 0 };
  2281   assert(ServiceUtil::visible_oop(referrer), "checking");
  2282   assert(ServiceUtil::visible_oop(obj), "checking");
  2284   AdvancedHeapWalkContext* context = advanced_context();
  2286   // check that callback is provider
  2287   jvmtiHeapReferenceCallback cb = context->heap_reference_callback();
  2288   if (cb == NULL) {
  2289     return check_for_visit(obj);
  2292   // apply class filter
  2293   if (is_filtered_by_klass_filter(obj, context->klass_filter())) {
  2294     return check_for_visit(obj);
  2297   // setup the callback wrapper
  2298   TwoOopCallbackWrapper wrapper(tag_map(), referrer, obj);
  2300   // apply tag filter
  2301   if (is_filtered_by_heap_filter(wrapper.obj_tag(),
  2302                                  wrapper.klass_tag(),
  2303                                  context->heap_filter())) {
  2304     return check_for_visit(obj);
  2307   // field index is only valid field in reference_info
  2308   reference_info.field.index = index;
  2310   // for arrays we need the length, otherwise -1
  2311   jint len = (jint)(obj->is_array() ? arrayOop(obj)->length() : -1);
  2313   // invoke the callback
  2314   int res = (*cb)(ref_kind,
  2315                   (REF_INFO_MASK & (1 << ref_kind)) ? &reference_info : NULL,
  2316                   wrapper.klass_tag(),
  2317                   wrapper.referrer_klass_tag(),
  2318                   wrapper.obj_size(),
  2319                   wrapper.obj_tag_p(),
  2320                   wrapper.referrer_tag_p(),
  2321                   len,
  2322                   (void*)user_data());
  2324   if (res & JVMTI_VISIT_ABORT) {
  2325     return false;
  2327   if (res & JVMTI_VISIT_OBJECTS) {
  2328     check_for_visit(obj);
  2330   return true;
  2333 // report a "simple root"
  2334 inline bool CallbackInvoker::report_simple_root(jvmtiHeapReferenceKind kind, oop obj) {
  2335   assert(kind != JVMTI_HEAP_REFERENCE_STACK_LOCAL &&
  2336          kind != JVMTI_HEAP_REFERENCE_JNI_LOCAL, "not a simple root");
  2337   assert(ServiceUtil::visible_oop(obj), "checking");
  2339   if (is_basic_heap_walk()) {
  2340     // map to old style root kind
  2341     jvmtiHeapRootKind root_kind = toJvmtiHeapRootKind(kind);
  2342     return invoke_basic_heap_root_callback(root_kind, obj);
  2343   } else {
  2344     assert(is_advanced_heap_walk(), "wrong heap walk type");
  2345     return invoke_advanced_heap_root_callback(kind, obj);
  2350 // invoke the primitive array values
  2351 inline bool CallbackInvoker::report_primitive_array_values(oop obj) {
  2352   assert(obj->is_typeArray(), "not a primitive array");
  2354   AdvancedHeapWalkContext* context = advanced_context();
  2355   assert(context->array_primitive_value_callback() != NULL, "no callback");
  2357   // apply class filter
  2358   if (is_filtered_by_klass_filter(obj, context->klass_filter())) {
  2359     return true;
  2362   CallbackWrapper wrapper(tag_map(), obj);
  2364   // apply tag filter
  2365   if (is_filtered_by_heap_filter(wrapper.obj_tag(),
  2366                                  wrapper.klass_tag(),
  2367                                  context->heap_filter())) {
  2368     return true;
  2371   // invoke the callback
  2372   int res = invoke_array_primitive_value_callback(context->array_primitive_value_callback(),
  2373                                                   &wrapper,
  2374                                                   obj,
  2375                                                   (void*)user_data());
  2376   return (!(res & JVMTI_VISIT_ABORT));
  2379 // invoke the string value callback
  2380 inline bool CallbackInvoker::report_string_value(oop str) {
  2381   assert(str->klass() == SystemDictionary::string_klass(), "not a string");
  2383   AdvancedHeapWalkContext* context = advanced_context();
  2384   assert(context->string_primitive_value_callback() != NULL, "no callback");
  2386   // apply class filter
  2387   if (is_filtered_by_klass_filter(str, context->klass_filter())) {
  2388     return true;
  2391   CallbackWrapper wrapper(tag_map(), str);
  2393   // apply tag filter
  2394   if (is_filtered_by_heap_filter(wrapper.obj_tag(),
  2395                                  wrapper.klass_tag(),
  2396                                  context->heap_filter())) {
  2397     return true;
  2400   // invoke the callback
  2401   int res = invoke_string_value_callback(context->string_primitive_value_callback(),
  2402                                          &wrapper,
  2403                                          str,
  2404                                          (void*)user_data());
  2405   return (!(res & JVMTI_VISIT_ABORT));
  2408 // invoke the primitive field callback
  2409 inline bool CallbackInvoker::report_primitive_field(jvmtiHeapReferenceKind ref_kind,
  2410                                                     oop obj,
  2411                                                     jint index,
  2412                                                     address addr,
  2413                                                     char type)
  2415   // for primitive fields only the index will be set
  2416   static jvmtiHeapReferenceInfo reference_info = { 0 };
  2418   AdvancedHeapWalkContext* context = advanced_context();
  2419   assert(context->primitive_field_callback() != NULL, "no callback");
  2421   // apply class filter
  2422   if (is_filtered_by_klass_filter(obj, context->klass_filter())) {
  2423     return true;
  2426   CallbackWrapper wrapper(tag_map(), obj);
  2428   // apply tag filter
  2429   if (is_filtered_by_heap_filter(wrapper.obj_tag(),
  2430                                  wrapper.klass_tag(),
  2431                                  context->heap_filter())) {
  2432     return true;
  2435   // the field index in the referrer
  2436   reference_info.field.index = index;
  2438   // map the type
  2439   jvmtiPrimitiveType value_type = (jvmtiPrimitiveType)type;
  2441   // setup the jvalue
  2442   jvalue value;
  2443   copy_to_jvalue(&value, addr, value_type);
  2445   jvmtiPrimitiveFieldCallback cb = context->primitive_field_callback();
  2446   int res = (*cb)(ref_kind,
  2447                   &reference_info,
  2448                   wrapper.klass_tag(),
  2449                   wrapper.obj_tag_p(),
  2450                   value,
  2451                   value_type,
  2452                   (void*)user_data());
  2453   return (!(res & JVMTI_VISIT_ABORT));
  2457 // instance field
  2458 inline bool CallbackInvoker::report_primitive_instance_field(oop obj,
  2459                                                              jint index,
  2460                                                              address value,
  2461                                                              char type) {
  2462   return report_primitive_field(JVMTI_HEAP_REFERENCE_FIELD,
  2463                                 obj,
  2464                                 index,
  2465                                 value,
  2466                                 type);
  2469 // static field
  2470 inline bool CallbackInvoker::report_primitive_static_field(oop obj,
  2471                                                            jint index,
  2472                                                            address value,
  2473                                                            char type) {
  2474   return report_primitive_field(JVMTI_HEAP_REFERENCE_STATIC_FIELD,
  2475                                 obj,
  2476                                 index,
  2477                                 value,
  2478                                 type);
  2481 // report a JNI local (root object) to the profiler
  2482 inline bool CallbackInvoker::report_jni_local_root(jlong thread_tag, jlong tid, jint depth, jmethodID m, oop obj) {
  2483   if (is_basic_heap_walk()) {
  2484     return invoke_basic_stack_ref_callback(JVMTI_HEAP_ROOT_JNI_LOCAL,
  2485                                            thread_tag,
  2486                                            depth,
  2487                                            m,
  2488                                            -1,
  2489                                            obj);
  2490   } else {
  2491     return invoke_advanced_stack_ref_callback(JVMTI_HEAP_REFERENCE_JNI_LOCAL,
  2492                                               thread_tag, tid,
  2493                                               depth,
  2494                                               m,
  2495                                               (jlocation)-1,
  2496                                               -1,
  2497                                               obj);
  2502 // report a local (stack reference, root object)
  2503 inline bool CallbackInvoker::report_stack_ref_root(jlong thread_tag,
  2504                                                    jlong tid,
  2505                                                    jint depth,
  2506                                                    jmethodID method,
  2507                                                    jlocation bci,
  2508                                                    jint slot,
  2509                                                    oop obj) {
  2510   if (is_basic_heap_walk()) {
  2511     return invoke_basic_stack_ref_callback(JVMTI_HEAP_ROOT_STACK_LOCAL,
  2512                                            thread_tag,
  2513                                            depth,
  2514                                            method,
  2515                                            slot,
  2516                                            obj);
  2517   } else {
  2518     return invoke_advanced_stack_ref_callback(JVMTI_HEAP_REFERENCE_STACK_LOCAL,
  2519                                               thread_tag,
  2520                                               tid,
  2521                                               depth,
  2522                                               method,
  2523                                               bci,
  2524                                               slot,
  2525                                               obj);
  2529 // report an object referencing a class.
  2530 inline bool CallbackInvoker::report_class_reference(oop referrer, oop referree) {
  2531   if (is_basic_heap_walk()) {
  2532     return invoke_basic_object_reference_callback(JVMTI_REFERENCE_CLASS, referrer, referree, -1);
  2533   } else {
  2534     return invoke_advanced_object_reference_callback(JVMTI_HEAP_REFERENCE_CLASS, referrer, referree, -1);
  2538 // report a class referencing its class loader.
  2539 inline bool CallbackInvoker::report_class_loader_reference(oop referrer, oop referree) {
  2540   if (is_basic_heap_walk()) {
  2541     return invoke_basic_object_reference_callback(JVMTI_REFERENCE_CLASS_LOADER, referrer, referree, -1);
  2542   } else {
  2543     return invoke_advanced_object_reference_callback(JVMTI_HEAP_REFERENCE_CLASS_LOADER, referrer, referree, -1);
  2547 // report a class referencing its signers.
  2548 inline bool CallbackInvoker::report_signers_reference(oop referrer, oop referree) {
  2549   if (is_basic_heap_walk()) {
  2550     return invoke_basic_object_reference_callback(JVMTI_REFERENCE_SIGNERS, referrer, referree, -1);
  2551   } else {
  2552     return invoke_advanced_object_reference_callback(JVMTI_HEAP_REFERENCE_SIGNERS, referrer, referree, -1);
  2556 // report a class referencing its protection domain..
  2557 inline bool CallbackInvoker::report_protection_domain_reference(oop referrer, oop referree) {
  2558   if (is_basic_heap_walk()) {
  2559     return invoke_basic_object_reference_callback(JVMTI_REFERENCE_PROTECTION_DOMAIN, referrer, referree, -1);
  2560   } else {
  2561     return invoke_advanced_object_reference_callback(JVMTI_HEAP_REFERENCE_PROTECTION_DOMAIN, referrer, referree, -1);
  2565 // report a class referencing its superclass.
  2566 inline bool CallbackInvoker::report_superclass_reference(oop referrer, oop referree) {
  2567   if (is_basic_heap_walk()) {
  2568     // Send this to be consistent with past implementation
  2569     return invoke_basic_object_reference_callback(JVMTI_REFERENCE_CLASS, referrer, referree, -1);
  2570   } else {
  2571     return invoke_advanced_object_reference_callback(JVMTI_HEAP_REFERENCE_SUPERCLASS, referrer, referree, -1);
  2575 // report a class referencing one of its interfaces.
  2576 inline bool CallbackInvoker::report_interface_reference(oop referrer, oop referree) {
  2577   if (is_basic_heap_walk()) {
  2578     return invoke_basic_object_reference_callback(JVMTI_REFERENCE_INTERFACE, referrer, referree, -1);
  2579   } else {
  2580     return invoke_advanced_object_reference_callback(JVMTI_HEAP_REFERENCE_INTERFACE, referrer, referree, -1);
  2584 // report a class referencing one of its static fields.
  2585 inline bool CallbackInvoker::report_static_field_reference(oop referrer, oop referree, jint slot) {
  2586   if (is_basic_heap_walk()) {
  2587     return invoke_basic_object_reference_callback(JVMTI_REFERENCE_STATIC_FIELD, referrer, referree, slot);
  2588   } else {
  2589     return invoke_advanced_object_reference_callback(JVMTI_HEAP_REFERENCE_STATIC_FIELD, referrer, referree, slot);
  2593 // report an array referencing an element object
  2594 inline bool CallbackInvoker::report_array_element_reference(oop referrer, oop referree, jint index) {
  2595   if (is_basic_heap_walk()) {
  2596     return invoke_basic_object_reference_callback(JVMTI_REFERENCE_ARRAY_ELEMENT, referrer, referree, index);
  2597   } else {
  2598     return invoke_advanced_object_reference_callback(JVMTI_HEAP_REFERENCE_ARRAY_ELEMENT, referrer, referree, index);
  2602 // report an object referencing an instance field object
  2603 inline bool CallbackInvoker::report_field_reference(oop referrer, oop referree, jint slot) {
  2604   if (is_basic_heap_walk()) {
  2605     return invoke_basic_object_reference_callback(JVMTI_REFERENCE_FIELD, referrer, referree, slot);
  2606   } else {
  2607     return invoke_advanced_object_reference_callback(JVMTI_HEAP_REFERENCE_FIELD, referrer, referree, slot);
  2611 // report an array referencing an element object
  2612 inline bool CallbackInvoker::report_constant_pool_reference(oop referrer, oop referree, jint index) {
  2613   if (is_basic_heap_walk()) {
  2614     return invoke_basic_object_reference_callback(JVMTI_REFERENCE_CONSTANT_POOL, referrer, referree, index);
  2615   } else {
  2616     return invoke_advanced_object_reference_callback(JVMTI_HEAP_REFERENCE_CONSTANT_POOL, referrer, referree, index);
  2620 // A supporting closure used to process simple roots
  2621 class SimpleRootsClosure : public OopClosure {
  2622  private:
  2623   jvmtiHeapReferenceKind _kind;
  2624   bool _continue;
  2626   jvmtiHeapReferenceKind root_kind()    { return _kind; }
  2628  public:
  2629   void set_kind(jvmtiHeapReferenceKind kind) {
  2630     _kind = kind;
  2631     _continue = true;
  2634   inline bool stopped() {
  2635     return !_continue;
  2638   void do_oop(oop* obj_p) {
  2639     // iteration has terminated
  2640     if (stopped()) {
  2641       return;
  2644     // ignore null or deleted handles
  2645     oop o = *obj_p;
  2646     if (o == NULL || o == JNIHandles::deleted_handle()) {
  2647       return;
  2650     jvmtiHeapReferenceKind kind = root_kind();
  2652     // many roots are Klasses so we use the java mirror
  2653     if (o->is_klass()) {
  2654       klassOop k = (klassOop)o;
  2655       o = Klass::cast(k)->java_mirror();
  2656     } else {
  2658       // SystemDictionary::always_strong_oops_do reports the application
  2659       // class loader as a root. We want this root to be reported as
  2660       // a root kind of "OTHER" rather than "SYSTEM_CLASS".
  2661       if (o->is_instance() && root_kind() == JVMTI_HEAP_REFERENCE_SYSTEM_CLASS) {
  2662         kind = JVMTI_HEAP_REFERENCE_OTHER;
  2666     // some objects are ignored - in the case of simple
  2667     // roots it's mostly symbolOops that we are skipping
  2668     // here.
  2669     if (!ServiceUtil::visible_oop(o)) {
  2670       return;
  2673     // invoke the callback
  2674     _continue = CallbackInvoker::report_simple_root(kind, o);
  2677   virtual void do_oop(narrowOop* obj_p) { ShouldNotReachHere(); }
  2678 };
  2680 // A supporting closure used to process JNI locals
  2681 class JNILocalRootsClosure : public OopClosure {
  2682  private:
  2683   jlong _thread_tag;
  2684   jlong _tid;
  2685   jint _depth;
  2686   jmethodID _method;
  2687   bool _continue;
  2688  public:
  2689   void set_context(jlong thread_tag, jlong tid, jint depth, jmethodID method) {
  2690     _thread_tag = thread_tag;
  2691     _tid = tid;
  2692     _depth = depth;
  2693     _method = method;
  2694     _continue = true;
  2697   inline bool stopped() {
  2698     return !_continue;
  2701   void do_oop(oop* obj_p) {
  2702     // iteration has terminated
  2703     if (stopped()) {
  2704       return;
  2707     // ignore null or deleted handles
  2708     oop o = *obj_p;
  2709     if (o == NULL || o == JNIHandles::deleted_handle()) {
  2710       return;
  2713     if (!ServiceUtil::visible_oop(o)) {
  2714       return;
  2717     // invoke the callback
  2718     _continue = CallbackInvoker::report_jni_local_root(_thread_tag, _tid, _depth, _method, o);
  2720   virtual void do_oop(narrowOop* obj_p) { ShouldNotReachHere(); }
  2721 };
  2724 // A VM operation to iterate over objects that are reachable from
  2725 // a set of roots or an initial object.
  2726 //
  2727 // For VM_HeapWalkOperation the set of roots used is :-
  2728 //
  2729 // - All JNI global references
  2730 // - All inflated monitors
  2731 // - All classes loaded by the boot class loader (or all classes
  2732 //     in the event that class unloading is disabled)
  2733 // - All java threads
  2734 // - For each java thread then all locals and JNI local references
  2735 //      on the thread's execution stack
  2736 // - All visible/explainable objects from Universes::oops_do
  2737 //
  2738 class VM_HeapWalkOperation: public VM_Operation {
  2739  private:
  2740   enum {
  2741     initial_visit_stack_size = 4000
  2742   };
  2744   bool _is_advanced_heap_walk;                      // indicates FollowReferences
  2745   JvmtiTagMap* _tag_map;
  2746   Handle _initial_object;
  2747   GrowableArray<oop>* _visit_stack;                 // the visit stack
  2749   bool _collecting_heap_roots;                      // are we collecting roots
  2750   bool _following_object_refs;                      // are we following object references
  2752   bool _reporting_primitive_fields;                 // optional reporting
  2753   bool _reporting_primitive_array_values;
  2754   bool _reporting_string_values;
  2756   GrowableArray<oop>* create_visit_stack() {
  2757     return new (ResourceObj::C_HEAP) GrowableArray<oop>(initial_visit_stack_size, true);
  2760   // accessors
  2761   bool is_advanced_heap_walk() const               { return _is_advanced_heap_walk; }
  2762   JvmtiTagMap* tag_map() const                     { return _tag_map; }
  2763   Handle initial_object() const                    { return _initial_object; }
  2765   bool is_following_references() const             { return _following_object_refs; }
  2767   bool is_reporting_primitive_fields()  const      { return _reporting_primitive_fields; }
  2768   bool is_reporting_primitive_array_values() const { return _reporting_primitive_array_values; }
  2769   bool is_reporting_string_values() const          { return _reporting_string_values; }
  2771   GrowableArray<oop>* visit_stack() const          { return _visit_stack; }
  2773   // iterate over the various object types
  2774   inline bool iterate_over_array(oop o);
  2775   inline bool iterate_over_type_array(oop o);
  2776   inline bool iterate_over_class(klassOop o);
  2777   inline bool iterate_over_object(oop o);
  2779   // root collection
  2780   inline bool collect_simple_roots();
  2781   inline bool collect_stack_roots();
  2782   inline bool collect_stack_roots(JavaThread* java_thread, JNILocalRootsClosure* blk);
  2784   // visit an object
  2785   inline bool visit(oop o);
  2787  public:
  2788   VM_HeapWalkOperation(JvmtiTagMap* tag_map,
  2789                        Handle initial_object,
  2790                        BasicHeapWalkContext callbacks,
  2791                        const void* user_data);
  2793   VM_HeapWalkOperation(JvmtiTagMap* tag_map,
  2794                        Handle initial_object,
  2795                        AdvancedHeapWalkContext callbacks,
  2796                        const void* user_data);
  2798   ~VM_HeapWalkOperation();
  2800   VMOp_Type type() const { return VMOp_HeapWalkOperation; }
  2801   void doit();
  2802 };
  2805 VM_HeapWalkOperation::VM_HeapWalkOperation(JvmtiTagMap* tag_map,
  2806                                            Handle initial_object,
  2807                                            BasicHeapWalkContext callbacks,
  2808                                            const void* user_data) {
  2809   _is_advanced_heap_walk = false;
  2810   _tag_map = tag_map;
  2811   _initial_object = initial_object;
  2812   _following_object_refs = (callbacks.object_ref_callback() != NULL);
  2813   _reporting_primitive_fields = false;
  2814   _reporting_primitive_array_values = false;
  2815   _reporting_string_values = false;
  2816   _visit_stack = create_visit_stack();
  2819   CallbackInvoker::initialize_for_basic_heap_walk(tag_map, _visit_stack, user_data, callbacks);
  2822 VM_HeapWalkOperation::VM_HeapWalkOperation(JvmtiTagMap* tag_map,
  2823                                            Handle initial_object,
  2824                                            AdvancedHeapWalkContext callbacks,
  2825                                            const void* user_data) {
  2826   _is_advanced_heap_walk = true;
  2827   _tag_map = tag_map;
  2828   _initial_object = initial_object;
  2829   _following_object_refs = true;
  2830   _reporting_primitive_fields = (callbacks.primitive_field_callback() != NULL);;
  2831   _reporting_primitive_array_values = (callbacks.array_primitive_value_callback() != NULL);;
  2832   _reporting_string_values = (callbacks.string_primitive_value_callback() != NULL);;
  2833   _visit_stack = create_visit_stack();
  2835   CallbackInvoker::initialize_for_advanced_heap_walk(tag_map, _visit_stack, user_data, callbacks);
  2838 VM_HeapWalkOperation::~VM_HeapWalkOperation() {
  2839   if (_following_object_refs) {
  2840     assert(_visit_stack != NULL, "checking");
  2841     delete _visit_stack;
  2842     _visit_stack = NULL;
  2846 // an array references its class and has a reference to
  2847 // each element in the array
  2848 inline bool VM_HeapWalkOperation::iterate_over_array(oop o) {
  2849   objArrayOop array = objArrayOop(o);
  2850   if (array->klass() == Universe::systemObjArrayKlassObj()) {
  2851     // filtered out
  2852     return true;
  2855   // array reference to its class
  2856   oop mirror = objArrayKlass::cast(array->klass())->java_mirror();
  2857   if (!CallbackInvoker::report_class_reference(o, mirror)) {
  2858     return false;
  2861   // iterate over the array and report each reference to a
  2862   // non-null element
  2863   for (int index=0; index<array->length(); index++) {
  2864     oop elem = array->obj_at(index);
  2865     if (elem == NULL) {
  2866       continue;
  2869     // report the array reference o[index] = elem
  2870     if (!CallbackInvoker::report_array_element_reference(o, elem, index)) {
  2871       return false;
  2874   return true;
  2877 // a type array references its class
  2878 inline bool VM_HeapWalkOperation::iterate_over_type_array(oop o) {
  2879   klassOop k = o->klass();
  2880   oop mirror = Klass::cast(k)->java_mirror();
  2881   if (!CallbackInvoker::report_class_reference(o, mirror)) {
  2882     return false;
  2885   // report the array contents if required
  2886   if (is_reporting_primitive_array_values()) {
  2887     if (!CallbackInvoker::report_primitive_array_values(o)) {
  2888       return false;
  2891   return true;
  2894 // verify that a static oop field is in range
  2895 static inline bool verify_static_oop(instanceKlass* ik,
  2896                                      klassOop k, int offset) {
  2897   address obj_p = (address)k + offset;
  2898   address start = (address)ik->start_of_static_fields();
  2899   address end = start + (ik->static_oop_field_size() * heapOopSize);
  2900   assert(end >= start, "sanity check");
  2902   if (obj_p >= start && obj_p < end) {
  2903     return true;
  2904   } else {
  2905     return false;
  2909 // a class references its super class, interfaces, class loader, ...
  2910 // and finally its static fields
  2911 inline bool VM_HeapWalkOperation::iterate_over_class(klassOop k) {
  2912   int i;
  2913   Klass* klass = klassOop(k)->klass_part();
  2915   if (klass->oop_is_instance()) {
  2916     instanceKlass* ik = instanceKlass::cast(k);
  2918     // ignore the class if it's has been initialized yet
  2919     if (!ik->is_linked()) {
  2920       return true;
  2923     // get the java mirror
  2924     oop mirror = klass->java_mirror();
  2926     // super (only if something more interesting than java.lang.Object)
  2927     klassOop java_super = ik->java_super();
  2928     if (java_super != NULL && java_super != SystemDictionary::object_klass()) {
  2929       oop super = Klass::cast(java_super)->java_mirror();
  2930       if (!CallbackInvoker::report_superclass_reference(mirror, super)) {
  2931         return false;
  2935     // class loader
  2936     oop cl = ik->class_loader();
  2937     if (cl != NULL) {
  2938       if (!CallbackInvoker::report_class_loader_reference(mirror, cl)) {
  2939         return false;
  2943     // protection domain
  2944     oop pd = ik->protection_domain();
  2945     if (pd != NULL) {
  2946       if (!CallbackInvoker::report_protection_domain_reference(mirror, pd)) {
  2947         return false;
  2951     // signers
  2952     oop signers = ik->signers();
  2953     if (signers != NULL) {
  2954       if (!CallbackInvoker::report_signers_reference(mirror, signers)) {
  2955         return false;
  2959     // references from the constant pool
  2961       const constantPoolOop pool = ik->constants();
  2962       for (int i = 1; i < pool->length(); i++) {
  2963         constantTag tag = pool->tag_at(i).value();
  2964         if (tag.is_string() || tag.is_klass()) {
  2965           oop entry;
  2966           if (tag.is_string()) {
  2967             entry = pool->resolved_string_at(i);
  2968             assert(java_lang_String::is_instance(entry), "must be string");
  2969           } else {
  2970             entry = Klass::cast(pool->resolved_klass_at(i))->java_mirror();
  2972           if (!CallbackInvoker::report_constant_pool_reference(mirror, entry, (jint)i)) {
  2973             return false;
  2979     // interfaces
  2980     // (These will already have been reported as references from the constant pool
  2981     //  but are specified by IterateOverReachableObjects and must be reported).
  2982     objArrayOop interfaces = ik->local_interfaces();
  2983     for (i = 0; i < interfaces->length(); i++) {
  2984       oop interf = Klass::cast((klassOop)interfaces->obj_at(i))->java_mirror();
  2985       if (interf == NULL) {
  2986         continue;
  2988       if (!CallbackInvoker::report_interface_reference(mirror, interf)) {
  2989         return false;
  2993     // iterate over the static fields
  2995     ClassFieldMap* field_map = ClassFieldMap::create_map_of_static_fields(k);
  2996     for (i=0; i<field_map->field_count(); i++) {
  2997       ClassFieldDescriptor* field = field_map->field_at(i);
  2998       char type = field->field_type();
  2999       if (!is_primitive_field_type(type)) {
  3000         oop fld_o = k->obj_field(field->field_offset());
  3001         assert(verify_static_oop(ik, k, field->field_offset()), "sanity check");
  3002         if (fld_o != NULL) {
  3003           int slot = field->field_index();
  3004           if (!CallbackInvoker::report_static_field_reference(mirror, fld_o, slot)) {
  3005             delete field_map;
  3006             return false;
  3009       } else {
  3010          if (is_reporting_primitive_fields()) {
  3011            address addr = (address)k + field->field_offset();
  3012            int slot = field->field_index();
  3013            if (!CallbackInvoker::report_primitive_static_field(mirror, slot, addr, type)) {
  3014              delete field_map;
  3015              return false;
  3020     delete field_map;
  3022     return true;
  3025   return true;
  3028 // an object references a class and its instance fields
  3029 // (static fields are ignored here as we report these as
  3030 // references from the class).
  3031 inline bool VM_HeapWalkOperation::iterate_over_object(oop o) {
  3032   // reference to the class
  3033   if (!CallbackInvoker::report_class_reference(o, Klass::cast(o->klass())->java_mirror())) {
  3034     return false;
  3037   // iterate over instance fields
  3038   ClassFieldMap* field_map = JvmtiCachedClassFieldMap::get_map_of_instance_fields(o);
  3039   for (int i=0; i<field_map->field_count(); i++) {
  3040     ClassFieldDescriptor* field = field_map->field_at(i);
  3041     char type = field->field_type();
  3042     if (!is_primitive_field_type(type)) {
  3043       oop fld_o = o->obj_field(field->field_offset());
  3044       if (fld_o != NULL) {
  3045         // reflection code may have a reference to a klassOop.
  3046         // - see sun.reflect.UnsafeStaticFieldAccessorImpl and sun.misc.Unsafe
  3047         if (fld_o->is_klass()) {
  3048           klassOop k = (klassOop)fld_o;
  3049           fld_o = Klass::cast(k)->java_mirror();
  3051         int slot = field->field_index();
  3052         if (!CallbackInvoker::report_field_reference(o, fld_o, slot)) {
  3053           return false;
  3056     } else {
  3057       if (is_reporting_primitive_fields()) {
  3058         // primitive instance field
  3059         address addr = (address)o + field->field_offset();
  3060         int slot = field->field_index();
  3061         if (!CallbackInvoker::report_primitive_instance_field(o, slot, addr, type)) {
  3062           return false;
  3068   // if the object is a java.lang.String
  3069   if (is_reporting_string_values() &&
  3070       o->klass() == SystemDictionary::string_klass()) {
  3071     if (!CallbackInvoker::report_string_value(o)) {
  3072       return false;
  3075   return true;
  3079 // collects all simple (non-stack) roots.
  3080 // if there's a heap root callback provided then the callback is
  3081 // invoked for each simple root.
  3082 // if an object reference callback is provided then all simple
  3083 // roots are pushed onto the marking stack so that they can be
  3084 // processed later
  3085 //
  3086 inline bool VM_HeapWalkOperation::collect_simple_roots() {
  3087   SimpleRootsClosure blk;
  3089   // JNI globals
  3090   blk.set_kind(JVMTI_HEAP_REFERENCE_JNI_GLOBAL);
  3091   JNIHandles::oops_do(&blk);
  3092   if (blk.stopped()) {
  3093     return false;
  3096   // Preloaded classes and loader from the system dictionary
  3097   blk.set_kind(JVMTI_HEAP_REFERENCE_SYSTEM_CLASS);
  3098   SystemDictionary::always_strong_oops_do(&blk);
  3099   if (blk.stopped()) {
  3100     return false;
  3103   // Inflated monitors
  3104   blk.set_kind(JVMTI_HEAP_REFERENCE_MONITOR);
  3105   ObjectSynchronizer::oops_do(&blk);
  3106   if (blk.stopped()) {
  3107     return false;
  3110   // Threads
  3111   for (JavaThread* thread = Threads::first(); thread != NULL ; thread = thread->next()) {
  3112     oop threadObj = thread->threadObj();
  3113     if (threadObj != NULL && !thread->is_exiting() && !thread->is_hidden_from_external_view()) {
  3114       bool cont = CallbackInvoker::report_simple_root(JVMTI_HEAP_REFERENCE_THREAD, threadObj);
  3115       if (!cont) {
  3116         return false;
  3121   // Other kinds of roots maintained by HotSpot
  3122   // Many of these won't be visible but others (such as instances of important
  3123   // exceptions) will be visible.
  3124   blk.set_kind(JVMTI_HEAP_REFERENCE_OTHER);
  3125   Universe::oops_do(&blk);
  3126   return true;
  3129 // Walk the stack of a given thread and find all references (locals
  3130 // and JNI calls) and report these as stack references
  3131 inline bool VM_HeapWalkOperation::collect_stack_roots(JavaThread* java_thread,
  3132                                                       JNILocalRootsClosure* blk)
  3134   oop threadObj = java_thread->threadObj();
  3135   assert(threadObj != NULL, "sanity check");
  3137   // only need to get the thread's tag once per thread
  3138   jlong thread_tag = tag_for(_tag_map, threadObj);
  3140   // also need the thread id
  3141   jlong tid = java_lang_Thread::thread_id(threadObj);
  3144   if (java_thread->has_last_Java_frame()) {
  3146     // vframes are resource allocated
  3147     Thread* current_thread = Thread::current();
  3148     ResourceMark rm(current_thread);
  3149     HandleMark hm(current_thread);
  3151     RegisterMap reg_map(java_thread);
  3152     frame f = java_thread->last_frame();
  3153     vframe* vf = vframe::new_vframe(&f, &reg_map, java_thread);
  3155     bool is_top_frame = true;
  3156     int depth = 0;
  3157     frame* last_entry_frame = NULL;
  3159     while (vf != NULL) {
  3160       if (vf->is_java_frame()) {
  3162         // java frame (interpreted, compiled, ...)
  3163         javaVFrame *jvf = javaVFrame::cast(vf);
  3165         // the jmethodID
  3166         jmethodID method = jvf->method()->jmethod_id();
  3168         if (!(jvf->method()->is_native())) {
  3169           jlocation bci = (jlocation)jvf->bci();
  3170           StackValueCollection* locals = jvf->locals();
  3171           for (int slot=0; slot<locals->size(); slot++) {
  3172             if (locals->at(slot)->type() == T_OBJECT) {
  3173               oop o = locals->obj_at(slot)();
  3174               if (o == NULL) {
  3175                 continue;
  3178               // stack reference
  3179               if (!CallbackInvoker::report_stack_ref_root(thread_tag, tid, depth, method,
  3180                                                    bci, slot, o)) {
  3181                 return false;
  3185         } else {
  3186           blk->set_context(thread_tag, tid, depth, method);
  3187           if (is_top_frame) {
  3188             // JNI locals for the top frame.
  3189             java_thread->active_handles()->oops_do(blk);
  3190           } else {
  3191             if (last_entry_frame != NULL) {
  3192               // JNI locals for the entry frame
  3193               assert(last_entry_frame->is_entry_frame(), "checking");
  3194               last_entry_frame->entry_frame_call_wrapper()->handles()->oops_do(blk);
  3198         last_entry_frame = NULL;
  3199         depth++;
  3200       } else {
  3201         // externalVFrame - for an entry frame then we report the JNI locals
  3202         // when we find the corresponding javaVFrame
  3203         frame* fr = vf->frame_pointer();
  3204         assert(fr != NULL, "sanity check");
  3205         if (fr->is_entry_frame()) {
  3206           last_entry_frame = fr;
  3210       vf = vf->sender();
  3211       is_top_frame = false;
  3213   } else {
  3214     // no last java frame but there may be JNI locals
  3215     blk->set_context(thread_tag, tid, 0, (jmethodID)NULL);
  3216     java_thread->active_handles()->oops_do(blk);
  3218   return true;
  3222 // collects all stack roots - for each thread it walks the execution
  3223 // stack to find all references and local JNI refs.
  3224 inline bool VM_HeapWalkOperation::collect_stack_roots() {
  3225   JNILocalRootsClosure blk;
  3226   for (JavaThread* thread = Threads::first(); thread != NULL ; thread = thread->next()) {
  3227     oop threadObj = thread->threadObj();
  3228     if (threadObj != NULL && !thread->is_exiting() && !thread->is_hidden_from_external_view()) {
  3229       if (!collect_stack_roots(thread, &blk)) {
  3230         return false;
  3234   return true;
  3237 // visit an object
  3238 // first mark the object as visited
  3239 // second get all the outbound references from this object (in other words, all
  3240 // the objects referenced by this object).
  3241 //
  3242 bool VM_HeapWalkOperation::visit(oop o) {
  3243   // mark object as visited
  3244   assert(!ObjectMarker::visited(o), "can't visit same object more than once");
  3245   ObjectMarker::mark(o);
  3247   // instance
  3248   if (o->is_instance()) {
  3249     if (o->klass() == SystemDictionary::class_klass()) {
  3250       o = klassOop_if_java_lang_Class(o);
  3251       if (o->is_klass()) {
  3252         // a java.lang.Class
  3253         return iterate_over_class(klassOop(o));
  3255     } else {
  3256       return iterate_over_object(o);
  3260   // object array
  3261   if (o->is_objArray()) {
  3262     return iterate_over_array(o);
  3265   // type array
  3266   if (o->is_typeArray()) {
  3267     return iterate_over_type_array(o);
  3270   return true;
  3273 void VM_HeapWalkOperation::doit() {
  3274   ResourceMark rm;
  3275   ObjectMarkerController marker;
  3276   ClassFieldMapCacheMark cm;
  3278   assert(visit_stack()->is_empty(), "visit stack must be empty");
  3280   // the heap walk starts with an initial object or the heap roots
  3281   if (initial_object().is_null()) {
  3282     if (!collect_simple_roots()) return;
  3283     if (!collect_stack_roots()) return;
  3284   } else {
  3285     visit_stack()->push(initial_object()());
  3288   // object references required
  3289   if (is_following_references()) {
  3291     // visit each object until all reachable objects have been
  3292     // visited or the callback asked to terminate the iteration.
  3293     while (!visit_stack()->is_empty()) {
  3294       oop o = visit_stack()->pop();
  3295       if (!ObjectMarker::visited(o)) {
  3296         if (!visit(o)) {
  3297           break;
  3304 // iterate over all objects that are reachable from a set of roots
  3305 void JvmtiTagMap::iterate_over_reachable_objects(jvmtiHeapRootCallback heap_root_callback,
  3306                                                  jvmtiStackReferenceCallback stack_ref_callback,
  3307                                                  jvmtiObjectReferenceCallback object_ref_callback,
  3308                                                  const void* user_data) {
  3309   MutexLocker ml(Heap_lock);
  3310   BasicHeapWalkContext context(heap_root_callback, stack_ref_callback, object_ref_callback);
  3311   VM_HeapWalkOperation op(this, Handle(), context, user_data);
  3312   VMThread::execute(&op);
  3315 // iterate over all objects that are reachable from a given object
  3316 void JvmtiTagMap::iterate_over_objects_reachable_from_object(jobject object,
  3317                                                              jvmtiObjectReferenceCallback object_ref_callback,
  3318                                                              const void* user_data) {
  3319   oop obj = JNIHandles::resolve(object);
  3320   Handle initial_object(Thread::current(), obj);
  3322   MutexLocker ml(Heap_lock);
  3323   BasicHeapWalkContext context(NULL, NULL, object_ref_callback);
  3324   VM_HeapWalkOperation op(this, initial_object, context, user_data);
  3325   VMThread::execute(&op);
  3328 // follow references from an initial object or the GC roots
  3329 void JvmtiTagMap::follow_references(jint heap_filter,
  3330                                     KlassHandle klass,
  3331                                     jobject object,
  3332                                     const jvmtiHeapCallbacks* callbacks,
  3333                                     const void* user_data)
  3335   oop obj = JNIHandles::resolve(object);
  3336   Handle initial_object(Thread::current(), obj);
  3338   MutexLocker ml(Heap_lock);
  3339   AdvancedHeapWalkContext context(heap_filter, klass, callbacks);
  3340   VM_HeapWalkOperation op(this, initial_object, context, user_data);
  3341   VMThread::execute(&op);
  3345 // called post-GC
  3346 // - for each JVMTI environment with an object tag map, call its rehash
  3347 // function to re-sync with the new object locations.
  3348 void JvmtiTagMap::gc_epilogue(bool full) {
  3349   assert(SafepointSynchronize::is_at_safepoint(), "must be executed at a safepoint");
  3350   if (JvmtiEnv::environments_might_exist()) {
  3351     // re-obtain the memory region for the young generation (might
  3352     // changed due to adaptive resizing policy)
  3353     get_young_generation();
  3355     JvmtiEnvIterator it;
  3356     for (JvmtiEnvBase* env = it.first(); env != NULL; env = it.next(env)) {
  3357       JvmtiTagMap* tag_map = env->tag_map();
  3358       if (tag_map != NULL && !tag_map->is_empty()) {
  3359         TraceTime t(full ? "JVMTI Full Rehash " : "JVMTI Rehash ", TraceJVMTIObjectTagging);
  3360         if (full) {
  3361           tag_map->rehash(0, n_hashmaps);
  3362         } else {
  3363           tag_map->rehash(0, 0);        // tag map for young gen only
  3370 // CMS has completed referencing processing so we may have JNI weak refs
  3371 // to objects in the CMS generation that have been GC'ed.
  3372 void JvmtiTagMap::cms_ref_processing_epilogue() {
  3373   assert(SafepointSynchronize::is_at_safepoint(), "must be executed at a safepoint");
  3374   assert(UseConcMarkSweepGC, "should only be used with CMS");
  3375   if (JvmtiEnv::environments_might_exist()) {
  3376     JvmtiEnvIterator it;
  3377     for (JvmtiEnvBase* env = it.first(); env != NULL; env = it.next(env)) {
  3378       JvmtiTagMap* tag_map = ((JvmtiEnvBase *)env)->tag_map();
  3379       if (tag_map != NULL && !tag_map->is_empty()) {
  3380         TraceTime t("JVMTI Rehash (CMS) ", TraceJVMTIObjectTagging);
  3381         tag_map->rehash(1, n_hashmaps);    // assume CMS not used in young gen
  3388 // For each entry in the hashmaps 'start' to 'end' :
  3389 //
  3390 // 1. resolve the JNI weak reference
  3391 //
  3392 // 2. If it resolves to NULL it means the object has been freed so the entry
  3393 //    is removed, the weak reference destroyed, and the object free event is
  3394 //    posted (if enabled).
  3395 //
  3396 // 3. If the weak reference resolves to an object then we re-hash the object
  3397 //    to see if it has moved or has been promoted (from the young to the old
  3398 //    generation for example).
  3399 //
  3400 void JvmtiTagMap::rehash(int start, int end) {
  3402   // does this environment have the OBJECT_FREE event enabled
  3403   bool post_object_free = env()->is_enabled(JVMTI_EVENT_OBJECT_FREE);
  3405   // counters used for trace message
  3406   int freed = 0;
  3407   int moved = 0;
  3408   int promoted = 0;
  3410   // we assume there are two hashmaps - one for the young generation
  3411   // and the other for all other spaces.
  3412   assert(n_hashmaps == 2, "not implemented");
  3413   JvmtiTagHashmap* young_hashmap = _hashmap[0];
  3414   JvmtiTagHashmap* other_hashmap = _hashmap[1];
  3416   // reenable sizing (if disabled)
  3417   young_hashmap->set_resizing_enabled(true);
  3418   other_hashmap->set_resizing_enabled(true);
  3420   // when re-hashing the hashmap corresponding to the young generation we
  3421   // collect the entries corresponding to objects that have been promoted.
  3422   JvmtiTagHashmapEntry* promoted_entries = NULL;
  3424   if (end >= n_hashmaps) {
  3425     end = n_hashmaps - 1;
  3428   for (int i=start; i <= end; i++) {
  3429     JvmtiTagHashmap* hashmap = _hashmap[i];
  3431     // if the hashmap is empty then we can skip it
  3432     if (hashmap->_entry_count == 0) {
  3433       continue;
  3436     // now iterate through each entry in the table
  3438     JvmtiTagHashmapEntry** table = hashmap->table();
  3439     int size = hashmap->size();
  3441     for (int pos=0; pos<size; pos++) {
  3442       JvmtiTagHashmapEntry* entry = table[pos];
  3443       JvmtiTagHashmapEntry* prev = NULL;
  3445       while (entry != NULL) {
  3446         JvmtiTagHashmapEntry* next = entry->next();
  3448         jweak ref = entry->object();
  3449         oop oop = JNIHandles::resolve(ref);
  3451         // has object been GC'ed
  3452         if (oop == NULL) {
  3453           // grab the tag
  3454           jlong tag = entry->tag();
  3455           guarantee(tag != 0, "checking");
  3457           // remove GC'ed entry from hashmap and return the
  3458           // entry to the free list
  3459           hashmap->remove(prev, pos, entry);
  3460           destroy_entry(entry);
  3462           // destroy the weak ref
  3463           JNIHandles::destroy_weak_global(ref);
  3465           // post the event to the profiler
  3466           if (post_object_free) {
  3467             JvmtiExport::post_object_free(env(), tag);
  3470           freed++;
  3471           entry = next;
  3472           continue;
  3475         // if this is the young hashmap then the object is either promoted
  3476         // or moved.
  3477         // if this is the other hashmap then the object is moved.
  3479         bool same_gen;
  3480         if (i == 0) {
  3481           assert(hashmap == young_hashmap, "checking");
  3482           same_gen = is_in_young(oop);
  3483         } else {
  3484           same_gen = true;
  3488         if (same_gen) {
  3489           // if the object has moved then re-hash it and move its
  3490           // entry to its new location.
  3491           unsigned int new_pos = JvmtiTagHashmap::hash(oop, size);
  3492           if (new_pos != (unsigned int)pos) {
  3493             if (prev == NULL) {
  3494               table[pos] = next;
  3495             } else {
  3496               prev->set_next(next);
  3498             entry->set_next(table[new_pos]);
  3499             table[new_pos] = entry;
  3500             moved++;
  3501           } else {
  3502             // object didn't move
  3503             prev = entry;
  3505         } else {
  3506           // object has been promoted so remove the entry from the
  3507           // young hashmap
  3508           assert(hashmap == young_hashmap, "checking");
  3509           hashmap->remove(prev, pos, entry);
  3511           // move the entry to the promoted list
  3512           entry->set_next(promoted_entries);
  3513           promoted_entries = entry;
  3516         entry = next;
  3522   // add the entries, corresponding to the promoted objects, to the
  3523   // other hashmap.
  3524   JvmtiTagHashmapEntry* entry = promoted_entries;
  3525   while (entry != NULL) {
  3526     oop o = JNIHandles::resolve(entry->object());
  3527     assert(hashmap_for(o) == other_hashmap, "checking");
  3528     JvmtiTagHashmapEntry* next = entry->next();
  3529     other_hashmap->add(o, entry);
  3530     entry = next;
  3531     promoted++;
  3534   // stats
  3535   if (TraceJVMTIObjectTagging) {
  3536     int total_moves = promoted + moved;
  3538     int post_total = 0;
  3539     for (int i=0; i<n_hashmaps; i++) {
  3540       post_total += _hashmap[i]->_entry_count;
  3542     int pre_total = post_total + freed;
  3544     tty->print("(%d->%d, %d freed, %d promoted, %d total moves)",
  3545         pre_total, post_total, freed, promoted, total_moves);

mercurial