src/share/vm/opto/parse3.cpp

Thu, 13 Jun 2013 22:02:40 -0700

author
ccheung
date
Thu, 13 Jun 2013 22:02:40 -0700
changeset 5259
ef57c43512d6
parent 5110
6f3fd5150b67
child 5437
fcf521c3fbc6
permissions
-rw-r--r--

8014431: cleanup warnings indicated by the -Wunused-value compiler option on linux
Reviewed-by: dholmes, coleenp
Contributed-by: jeremymanson@google.com, calvin.cheung@oracle.com

     1 /*
     2  * Copyright (c) 1998, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "compiler/compileLog.hpp"
    27 #include "interpreter/linkResolver.hpp"
    28 #include "memory/universe.inline.hpp"
    29 #include "oops/objArrayKlass.hpp"
    30 #include "opto/addnode.hpp"
    31 #include "opto/memnode.hpp"
    32 #include "opto/parse.hpp"
    33 #include "opto/rootnode.hpp"
    34 #include "opto/runtime.hpp"
    35 #include "opto/subnode.hpp"
    36 #include "runtime/deoptimization.hpp"
    37 #include "runtime/handles.inline.hpp"
    39 //=============================================================================
    40 // Helper methods for _get* and _put* bytecodes
    41 //=============================================================================
    42 bool Parse::static_field_ok_in_clinit(ciField *field, ciMethod *method) {
    43   // Could be the field_holder's <clinit> method, or <clinit> for a subklass.
    44   // Better to check now than to Deoptimize as soon as we execute
    45   assert( field->is_static(), "Only check if field is static");
    46   // is_being_initialized() is too generous.  It allows access to statics
    47   // by threads that are not running the <clinit> before the <clinit> finishes.
    48   // return field->holder()->is_being_initialized();
    50   // The following restriction is correct but conservative.
    51   // It is also desirable to allow compilation of methods called from <clinit>
    52   // but this generated code will need to be made safe for execution by
    53   // other threads, or the transition from interpreted to compiled code would
    54   // need to be guarded.
    55   ciInstanceKlass *field_holder = field->holder();
    57   bool access_OK = false;
    58   if (method->holder()->is_subclass_of(field_holder)) {
    59     if (method->is_static()) {
    60       if (method->name() == ciSymbol::class_initializer_name()) {
    61         // OK to access static fields inside initializer
    62         access_OK = true;
    63       }
    64     } else {
    65       if (method->name() == ciSymbol::object_initializer_name()) {
    66         // It's also OK to access static fields inside a constructor,
    67         // because any thread calling the constructor must first have
    68         // synchronized on the class by executing a '_new' bytecode.
    69         access_OK = true;
    70       }
    71     }
    72   }
    74   return access_OK;
    76 }
    79 void Parse::do_field_access(bool is_get, bool is_field) {
    80   bool will_link;
    81   ciField* field = iter().get_field(will_link);
    82   assert(will_link, "getfield: typeflow responsibility");
    84   ciInstanceKlass* field_holder = field->holder();
    86   if (is_field == field->is_static()) {
    87     // Interpreter will throw java_lang_IncompatibleClassChangeError
    88     // Check this before allowing <clinit> methods to access static fields
    89     uncommon_trap(Deoptimization::Reason_unhandled,
    90                   Deoptimization::Action_none);
    91     return;
    92   }
    94   if (!is_field && !field_holder->is_initialized()) {
    95     if (!static_field_ok_in_clinit(field, method())) {
    96       uncommon_trap(Deoptimization::Reason_uninitialized,
    97                     Deoptimization::Action_reinterpret,
    98                     NULL, "!static_field_ok_in_clinit");
    99       return;
   100     }
   101   }
   103   // Deoptimize on putfield writes to call site target field.
   104   if (!is_get && field->is_call_site_target()) {
   105     uncommon_trap(Deoptimization::Reason_unhandled,
   106                   Deoptimization::Action_reinterpret,
   107                   NULL, "put to call site target field");
   108     return;
   109   }
   111   assert(field->will_link(method()->holder(), bc()), "getfield: typeflow responsibility");
   113   // Note:  We do not check for an unloaded field type here any more.
   115   // Generate code for the object pointer.
   116   Node* obj;
   117   if (is_field) {
   118     int obj_depth = is_get ? 0 : field->type()->size();
   119     obj = null_check(peek(obj_depth));
   120     // Compile-time detect of null-exception?
   121     if (stopped())  return;
   123 #ifdef ASSERT
   124     const TypeInstPtr *tjp = TypeInstPtr::make(TypePtr::NotNull, iter().get_declared_field_holder());
   125     assert(_gvn.type(obj)->higher_equal(tjp), "cast_up is no longer needed");
   126 #endif
   128     if (is_get) {
   129       (void) pop();  // pop receiver before getting
   130       do_get_xxx(obj, field, is_field);
   131     } else {
   132       do_put_xxx(obj, field, is_field);
   133       (void) pop();  // pop receiver after putting
   134     }
   135   } else {
   136     const TypeInstPtr* tip = TypeInstPtr::make(field_holder->java_mirror());
   137     obj = _gvn.makecon(tip);
   138     if (is_get) {
   139       do_get_xxx(obj, field, is_field);
   140     } else {
   141       do_put_xxx(obj, field, is_field);
   142     }
   143   }
   144 }
   147 void Parse::do_get_xxx(Node* obj, ciField* field, bool is_field) {
   148   // Does this field have a constant value?  If so, just push the value.
   149   if (field->is_constant()) {
   150     // final field
   151     if (field->is_static()) {
   152       // final static field
   153       if (C->eliminate_boxing()) {
   154         // The pointers in the autobox arrays are always non-null.
   155         ciSymbol* klass_name = field->holder()->name();
   156         if (field->name() == ciSymbol::cache_field_name() &&
   157             field->holder()->uses_default_loader() &&
   158             (klass_name == ciSymbol::java_lang_Character_CharacterCache() ||
   159              klass_name == ciSymbol::java_lang_Byte_ByteCache() ||
   160              klass_name == ciSymbol::java_lang_Short_ShortCache() ||
   161              klass_name == ciSymbol::java_lang_Integer_IntegerCache() ||
   162              klass_name == ciSymbol::java_lang_Long_LongCache())) {
   163           bool require_const = true;
   164           bool autobox_cache = true;
   165           if (push_constant(field->constant_value(), require_const, autobox_cache)) {
   166             return;
   167           }
   168         }
   169       }
   170       if (push_constant(field->constant_value()))
   171         return;
   172     }
   173     else {
   174       // final non-static field
   175       // Treat final non-static fields of trusted classes (classes in
   176       // java.lang.invoke and sun.invoke packages and subpackages) as
   177       // compile time constants.
   178       if (obj->is_Con()) {
   179         const TypeOopPtr* oop_ptr = obj->bottom_type()->isa_oopptr();
   180         ciObject* constant_oop = oop_ptr->const_oop();
   181         ciConstant constant = field->constant_value_of(constant_oop);
   182         if (push_constant(constant, true))
   183           return;
   184       }
   185     }
   186   }
   188   ciType* field_klass = field->type();
   189   bool is_vol = field->is_volatile();
   191   // Compute address and memory type.
   192   int offset = field->offset_in_bytes();
   193   const TypePtr* adr_type = C->alias_type(field)->adr_type();
   194   Node *adr = basic_plus_adr(obj, obj, offset);
   195   BasicType bt = field->layout_type();
   197   // Build the resultant type of the load
   198   const Type *type;
   200   bool must_assert_null = false;
   202   if( bt == T_OBJECT ) {
   203     if (!field->type()->is_loaded()) {
   204       type = TypeInstPtr::BOTTOM;
   205       must_assert_null = true;
   206     } else if (field->is_constant() && field->is_static()) {
   207       // This can happen if the constant oop is non-perm.
   208       ciObject* con = field->constant_value().as_object();
   209       // Do not "join" in the previous type; it doesn't add value,
   210       // and may yield a vacuous result if the field is of interface type.
   211       type = TypeOopPtr::make_from_constant(con)->isa_oopptr();
   212       assert(type != NULL, "field singleton type must be consistent");
   213     } else {
   214       type = TypeOopPtr::make_from_klass(field_klass->as_klass());
   215     }
   216   } else {
   217     type = Type::get_const_basic_type(bt);
   218   }
   219   // Build the load.
   220   Node* ld = make_load(NULL, adr, type, bt, adr_type, is_vol);
   222   // Adjust Java stack
   223   if (type2size[bt] == 1)
   224     push(ld);
   225   else
   226     push_pair(ld);
   228   if (must_assert_null) {
   229     // Do not take a trap here.  It's possible that the program
   230     // will never load the field's class, and will happily see
   231     // null values in this field forever.  Don't stumble into a
   232     // trap for such a program, or we might get a long series
   233     // of useless recompilations.  (Or, we might load a class
   234     // which should not be loaded.)  If we ever see a non-null
   235     // value, we will then trap and recompile.  (The trap will
   236     // not need to mention the class index, since the class will
   237     // already have been loaded if we ever see a non-null value.)
   238     // uncommon_trap(iter().get_field_signature_index());
   239 #ifndef PRODUCT
   240     if (PrintOpto && (Verbose || WizardMode)) {
   241       method()->print_name(); tty->print_cr(" asserting nullness of field at bci: %d", bci());
   242     }
   243 #endif
   244     if (C->log() != NULL) {
   245       C->log()->elem("assert_null reason='field' klass='%d'",
   246                      C->log()->identify(field->type()));
   247     }
   248     // If there is going to be a trap, put it at the next bytecode:
   249     set_bci(iter().next_bci());
   250     null_assert(peek());
   251     set_bci(iter().cur_bci()); // put it back
   252   }
   254   // If reference is volatile, prevent following memory ops from
   255   // floating up past the volatile read.  Also prevents commoning
   256   // another volatile read.
   257   if (field->is_volatile()) {
   258     // Memory barrier includes bogus read of value to force load BEFORE membar
   259     insert_mem_bar(Op_MemBarAcquire, ld);
   260   }
   261 }
   263 void Parse::do_put_xxx(Node* obj, ciField* field, bool is_field) {
   264   bool is_vol = field->is_volatile();
   265   // If reference is volatile, prevent following memory ops from
   266   // floating down past the volatile write.  Also prevents commoning
   267   // another volatile read.
   268   if (is_vol)  insert_mem_bar(Op_MemBarRelease);
   270   // Compute address and memory type.
   271   int offset = field->offset_in_bytes();
   272   const TypePtr* adr_type = C->alias_type(field)->adr_type();
   273   Node* adr = basic_plus_adr(obj, obj, offset);
   274   BasicType bt = field->layout_type();
   275   // Value to be stored
   276   Node* val = type2size[bt] == 1 ? pop() : pop_pair();
   277   // Round doubles before storing
   278   if (bt == T_DOUBLE)  val = dstore_rounding(val);
   280   // Store the value.
   281   Node* store;
   282   if (bt == T_OBJECT) {
   283     const TypeOopPtr* field_type;
   284     if (!field->type()->is_loaded()) {
   285       field_type = TypeInstPtr::BOTTOM;
   286     } else {
   287       field_type = TypeOopPtr::make_from_klass(field->type()->as_klass());
   288     }
   289     store = store_oop_to_object( control(), obj, adr, adr_type, val, field_type, bt);
   290   } else {
   291     store = store_to_memory( control(), adr, val, bt, adr_type, is_vol );
   292   }
   294   // If reference is volatile, prevent following volatiles ops from
   295   // floating up before the volatile write.
   296   if (is_vol) {
   297     // First place the specific membar for THIS volatile index. This first
   298     // membar is dependent on the store, keeping any other membars generated
   299     // below from floating up past the store.
   300     int adr_idx = C->get_alias_index(adr_type);
   301     insert_mem_bar_volatile(Op_MemBarVolatile, adr_idx, store);
   303     // Now place a membar for AliasIdxBot for the unknown yet-to-be-parsed
   304     // volatile alias indices. Skip this if the membar is redundant.
   305     if (adr_idx != Compile::AliasIdxBot) {
   306       insert_mem_bar_volatile(Op_MemBarVolatile, Compile::AliasIdxBot, store);
   307     }
   309     // Finally, place alias-index-specific membars for each volatile index
   310     // that isn't the adr_idx membar. Typically there's only 1 or 2.
   311     for( int i = Compile::AliasIdxRaw; i < C->num_alias_types(); i++ ) {
   312       if (i != adr_idx && C->alias_type(i)->is_volatile()) {
   313         insert_mem_bar_volatile(Op_MemBarVolatile, i, store);
   314       }
   315     }
   316   }
   318   // If the field is final, the rules of Java say we are in <init> or <clinit>.
   319   // Note the presence of writes to final non-static fields, so that we
   320   // can insert a memory barrier later on to keep the writes from floating
   321   // out of the constructor.
   322   if (is_field && field->is_final()) {
   323     set_wrote_final(true);
   324     // Preserve allocation ptr to create precedent edge to it in membar
   325     // generated on exit from constructor.
   326     if (C->eliminate_boxing() &&
   327         adr_type->isa_oopptr() && adr_type->is_oopptr()->is_ptr_to_boxed_value() &&
   328         AllocateNode::Ideal_allocation(obj, &_gvn) != NULL) {
   329       set_alloc_with_final(obj);
   330     }
   331   }
   332 }
   335 bool Parse::push_constant(ciConstant constant, bool require_constant, bool is_autobox_cache) {
   336   switch (constant.basic_type()) {
   337   case T_BOOLEAN:  push( intcon(constant.as_boolean()) ); break;
   338   case T_INT:      push( intcon(constant.as_int())     ); break;
   339   case T_CHAR:     push( intcon(constant.as_char())    ); break;
   340   case T_BYTE:     push( intcon(constant.as_byte())    ); break;
   341   case T_SHORT:    push( intcon(constant.as_short())   ); break;
   342   case T_FLOAT:    push( makecon(TypeF::make(constant.as_float())) );  break;
   343   case T_DOUBLE:   push_pair( makecon(TypeD::make(constant.as_double())) );  break;
   344   case T_LONG:     push_pair( longcon(constant.as_long()) ); break;
   345   case T_ARRAY:
   346   case T_OBJECT: {
   347     // cases:
   348     //   can_be_constant    = (oop not scavengable || ScavengeRootsInCode != 0)
   349     //   should_be_constant = (oop not scavengable || ScavengeRootsInCode >= 2)
   350     // An oop is not scavengable if it is in the perm gen.
   351     ciObject* oop_constant = constant.as_object();
   352     if (oop_constant->is_null_object()) {
   353       push( zerocon(T_OBJECT) );
   354       break;
   355     } else if (require_constant || oop_constant->should_be_constant()) {
   356       push( makecon(TypeOopPtr::make_from_constant(oop_constant, require_constant, is_autobox_cache)) );
   357       break;
   358     } else {
   359       // we cannot inline the oop, but we can use it later to narrow a type
   360       return false;
   361     }
   362   }
   363   case T_ILLEGAL: {
   364     // Invalid ciConstant returned due to OutOfMemoryError in the CI
   365     assert(C->env()->failing(), "otherwise should not see this");
   366     // These always occur because of object types; we are going to
   367     // bail out anyway, so make the stack depths match up
   368     push( zerocon(T_OBJECT) );
   369     return false;
   370   }
   371   default:
   372     ShouldNotReachHere();
   373     return false;
   374   }
   376   // success
   377   return true;
   378 }
   382 //=============================================================================
   383 void Parse::do_anewarray() {
   384   bool will_link;
   385   ciKlass* klass = iter().get_klass(will_link);
   387   // Uncommon Trap when class that array contains is not loaded
   388   // we need the loaded class for the rest of graph; do not
   389   // initialize the container class (see Java spec)!!!
   390   assert(will_link, "anewarray: typeflow responsibility");
   392   ciObjArrayKlass* array_klass = ciObjArrayKlass::make(klass);
   393   // Check that array_klass object is loaded
   394   if (!array_klass->is_loaded()) {
   395     // Generate uncommon_trap for unloaded array_class
   396     uncommon_trap(Deoptimization::Reason_unloaded,
   397                   Deoptimization::Action_reinterpret,
   398                   array_klass);
   399     return;
   400   }
   402   kill_dead_locals();
   404   const TypeKlassPtr* array_klass_type = TypeKlassPtr::make(array_klass);
   405   Node* count_val = pop();
   406   Node* obj = new_array(makecon(array_klass_type), count_val, 1);
   407   push(obj);
   408 }
   411 void Parse::do_newarray(BasicType elem_type) {
   412   kill_dead_locals();
   414   Node*   count_val = pop();
   415   const TypeKlassPtr* array_klass = TypeKlassPtr::make(ciTypeArrayKlass::make(elem_type));
   416   Node*   obj = new_array(makecon(array_klass), count_val, 1);
   417   // Push resultant oop onto stack
   418   push(obj);
   419 }
   421 // Expand simple expressions like new int[3][5] and new Object[2][nonConLen].
   422 // Also handle the degenerate 1-dimensional case of anewarray.
   423 Node* Parse::expand_multianewarray(ciArrayKlass* array_klass, Node* *lengths, int ndimensions, int nargs) {
   424   Node* length = lengths[0];
   425   assert(length != NULL, "");
   426   Node* array = new_array(makecon(TypeKlassPtr::make(array_klass)), length, nargs);
   427   if (ndimensions > 1) {
   428     jint length_con = find_int_con(length, -1);
   429     guarantee(length_con >= 0, "non-constant multianewarray");
   430     ciArrayKlass* array_klass_1 = array_klass->as_obj_array_klass()->element_klass()->as_array_klass();
   431     const TypePtr* adr_type = TypeAryPtr::OOPS;
   432     const TypeOopPtr*    elemtype = _gvn.type(array)->is_aryptr()->elem()->make_oopptr();
   433     const intptr_t header   = arrayOopDesc::base_offset_in_bytes(T_OBJECT);
   434     for (jint i = 0; i < length_con; i++) {
   435       Node*    elem   = expand_multianewarray(array_klass_1, &lengths[1], ndimensions-1, nargs);
   436       intptr_t offset = header + ((intptr_t)i << LogBytesPerHeapOop);
   437       Node*    eaddr  = basic_plus_adr(array, offset);
   438       store_oop_to_array(control(), array, eaddr, adr_type, elem, elemtype, T_OBJECT);
   439     }
   440   }
   441   return array;
   442 }
   444 void Parse::do_multianewarray() {
   445   int ndimensions = iter().get_dimensions();
   447   // the m-dimensional array
   448   bool will_link;
   449   ciArrayKlass* array_klass = iter().get_klass(will_link)->as_array_klass();
   450   assert(will_link, "multianewarray: typeflow responsibility");
   452   // Note:  Array classes are always initialized; no is_initialized check.
   454   kill_dead_locals();
   456   // get the lengths from the stack (first dimension is on top)
   457   Node** length = NEW_RESOURCE_ARRAY(Node*, ndimensions + 1);
   458   length[ndimensions] = NULL;  // terminating null for make_runtime_call
   459   int j;
   460   for (j = ndimensions-1; j >= 0 ; j--) length[j] = pop();
   462   // The original expression was of this form: new T[length0][length1]...
   463   // It is often the case that the lengths are small (except the last).
   464   // If that happens, use the fast 1-d creator a constant number of times.
   465   const jint expand_limit = MIN2((juint)MultiArrayExpandLimit, (juint)100);
   466   jint expand_count = 1;        // count of allocations in the expansion
   467   jint expand_fanout = 1;       // running total fanout
   468   for (j = 0; j < ndimensions-1; j++) {
   469     jint dim_con = find_int_con(length[j], -1);
   470     expand_fanout *= dim_con;
   471     expand_count  += expand_fanout; // count the level-J sub-arrays
   472     if (dim_con <= 0
   473         || dim_con > expand_limit
   474         || expand_count > expand_limit) {
   475       expand_count = 0;
   476       break;
   477     }
   478   }
   480   // Can use multianewarray instead of [a]newarray if only one dimension,
   481   // or if all non-final dimensions are small constants.
   482   if (ndimensions == 1 || (1 <= expand_count && expand_count <= expand_limit)) {
   483     Node* obj = NULL;
   484     // Set the original stack and the reexecute bit for the interpreter
   485     // to reexecute the multianewarray bytecode if deoptimization happens.
   486     // Do it unconditionally even for one dimension multianewarray.
   487     // Note: the reexecute bit will be set in GraphKit::add_safepoint_edges()
   488     // when AllocateArray node for newarray is created.
   489     { PreserveReexecuteState preexecs(this);
   490       inc_sp(ndimensions);
   491       // Pass 0 as nargs since uncommon trap code does not need to restore stack.
   492       obj = expand_multianewarray(array_klass, &length[0], ndimensions, 0);
   493     } //original reexecute and sp are set back here
   494     push(obj);
   495     return;
   496   }
   498   address fun = NULL;
   499   switch (ndimensions) {
   500   case 1: ShouldNotReachHere(); break;
   501   case 2: fun = OptoRuntime::multianewarray2_Java(); break;
   502   case 3: fun = OptoRuntime::multianewarray3_Java(); break;
   503   case 4: fun = OptoRuntime::multianewarray4_Java(); break;
   504   case 5: fun = OptoRuntime::multianewarray5_Java(); break;
   505   };
   506   Node* c = NULL;
   508   if (fun != NULL) {
   509     c = make_runtime_call(RC_NO_LEAF | RC_NO_IO,
   510                           OptoRuntime::multianewarray_Type(ndimensions),
   511                           fun, NULL, TypeRawPtr::BOTTOM,
   512                           makecon(TypeKlassPtr::make(array_klass)),
   513                           length[0], length[1], length[2],
   514                           (ndimensions > 2) ? length[3] : NULL,
   515                           (ndimensions > 3) ? length[4] : NULL);
   516   } else {
   517     // Create a java array for dimension sizes
   518     Node* dims = NULL;
   519     { PreserveReexecuteState preexecs(this);
   520       inc_sp(ndimensions);
   521       Node* dims_array_klass = makecon(TypeKlassPtr::make(ciArrayKlass::make(ciType::make(T_INT))));
   522       dims = new_array(dims_array_klass, intcon(ndimensions), 0);
   524       // Fill-in it with values
   525       for (j = 0; j < ndimensions; j++) {
   526         Node *dims_elem = array_element_address(dims, intcon(j), T_INT);
   527         store_to_memory(control(), dims_elem, length[j], T_INT, TypeAryPtr::INTS);
   528       }
   529     }
   531     c = make_runtime_call(RC_NO_LEAF | RC_NO_IO,
   532                           OptoRuntime::multianewarrayN_Type(),
   533                           OptoRuntime::multianewarrayN_Java(), NULL, TypeRawPtr::BOTTOM,
   534                           makecon(TypeKlassPtr::make(array_klass)),
   535                           dims);
   536   }
   537   make_slow_call_ex(c, env()->Throwable_klass(), false);
   539   Node* res = _gvn.transform(new (C) ProjNode(c, TypeFunc::Parms));
   541   const Type* type = TypeOopPtr::make_from_klass_raw(array_klass);
   543   // Improve the type:  We know it's not null, exact, and of a given length.
   544   type = type->is_ptr()->cast_to_ptr_type(TypePtr::NotNull);
   545   type = type->is_aryptr()->cast_to_exactness(true);
   547   const TypeInt* ltype = _gvn.find_int_type(length[0]);
   548   if (ltype != NULL)
   549     type = type->is_aryptr()->cast_to_size(ltype);
   551     // We cannot sharpen the nested sub-arrays, since the top level is mutable.
   553   Node* cast = _gvn.transform( new (C) CheckCastPPNode(control(), res, type) );
   554   push(cast);
   556   // Possible improvements:
   557   // - Make a fast path for small multi-arrays.  (W/ implicit init. loops.)
   558   // - Issue CastII against length[*] values, to TypeInt::POS.
   559 }

mercurial