src/share/vm/memory/defNewGeneration.cpp

Thu, 13 Jun 2013 22:02:40 -0700

author
ccheung
date
Thu, 13 Jun 2013 22:02:40 -0700
changeset 5259
ef57c43512d6
parent 5237
f2110083203d
child 5369
71180a6e5080
permissions
-rw-r--r--

8014431: cleanup warnings indicated by the -Wunused-value compiler option on linux
Reviewed-by: dholmes, coleenp
Contributed-by: jeremymanson@google.com, calvin.cheung@oracle.com

     1 /*
     2  * Copyright (c) 2001, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "gc_implementation/shared/collectorCounters.hpp"
    27 #include "gc_implementation/shared/gcPolicyCounters.hpp"
    28 #include "gc_implementation/shared/gcHeapSummary.hpp"
    29 #include "gc_implementation/shared/gcTimer.hpp"
    30 #include "gc_implementation/shared/gcTraceTime.hpp"
    31 #include "gc_implementation/shared/gcTrace.hpp"
    32 #include "gc_implementation/shared/spaceDecorator.hpp"
    33 #include "memory/defNewGeneration.inline.hpp"
    34 #include "memory/gcLocker.inline.hpp"
    35 #include "memory/genCollectedHeap.hpp"
    36 #include "memory/genOopClosures.inline.hpp"
    37 #include "memory/genRemSet.hpp"
    38 #include "memory/generationSpec.hpp"
    39 #include "memory/iterator.hpp"
    40 #include "memory/referencePolicy.hpp"
    41 #include "memory/space.inline.hpp"
    42 #include "oops/instanceRefKlass.hpp"
    43 #include "oops/oop.inline.hpp"
    44 #include "runtime/java.hpp"
    45 #include "runtime/thread.inline.hpp"
    46 #include "utilities/copy.hpp"
    47 #include "utilities/stack.inline.hpp"
    49 //
    50 // DefNewGeneration functions.
    52 // Methods of protected closure types.
    54 DefNewGeneration::IsAliveClosure::IsAliveClosure(Generation* g) : _g(g) {
    55   assert(g->level() == 0, "Optimized for youngest gen.");
    56 }
    57 bool DefNewGeneration::IsAliveClosure::do_object_b(oop p) {
    58   return (HeapWord*)p >= _g->reserved().end() || p->is_forwarded();
    59 }
    61 DefNewGeneration::KeepAliveClosure::
    62 KeepAliveClosure(ScanWeakRefClosure* cl) : _cl(cl) {
    63   GenRemSet* rs = GenCollectedHeap::heap()->rem_set();
    64   assert(rs->rs_kind() == GenRemSet::CardTable, "Wrong rem set kind.");
    65   _rs = (CardTableRS*)rs;
    66 }
    68 void DefNewGeneration::KeepAliveClosure::do_oop(oop* p)       { DefNewGeneration::KeepAliveClosure::do_oop_work(p); }
    69 void DefNewGeneration::KeepAliveClosure::do_oop(narrowOop* p) { DefNewGeneration::KeepAliveClosure::do_oop_work(p); }
    72 DefNewGeneration::FastKeepAliveClosure::
    73 FastKeepAliveClosure(DefNewGeneration* g, ScanWeakRefClosure* cl) :
    74   DefNewGeneration::KeepAliveClosure(cl) {
    75   _boundary = g->reserved().end();
    76 }
    78 void DefNewGeneration::FastKeepAliveClosure::do_oop(oop* p)       { DefNewGeneration::FastKeepAliveClosure::do_oop_work(p); }
    79 void DefNewGeneration::FastKeepAliveClosure::do_oop(narrowOop* p) { DefNewGeneration::FastKeepAliveClosure::do_oop_work(p); }
    81 DefNewGeneration::EvacuateFollowersClosure::
    82 EvacuateFollowersClosure(GenCollectedHeap* gch, int level,
    83                          ScanClosure* cur, ScanClosure* older) :
    84   _gch(gch), _level(level),
    85   _scan_cur_or_nonheap(cur), _scan_older(older)
    86 {}
    88 void DefNewGeneration::EvacuateFollowersClosure::do_void() {
    89   do {
    90     _gch->oop_since_save_marks_iterate(_level, _scan_cur_or_nonheap,
    91                                        _scan_older);
    92   } while (!_gch->no_allocs_since_save_marks(_level));
    93 }
    95 DefNewGeneration::FastEvacuateFollowersClosure::
    96 FastEvacuateFollowersClosure(GenCollectedHeap* gch, int level,
    97                              DefNewGeneration* gen,
    98                              FastScanClosure* cur, FastScanClosure* older) :
    99   _gch(gch), _level(level), _gen(gen),
   100   _scan_cur_or_nonheap(cur), _scan_older(older)
   101 {}
   103 void DefNewGeneration::FastEvacuateFollowersClosure::do_void() {
   104   do {
   105     _gch->oop_since_save_marks_iterate(_level, _scan_cur_or_nonheap,
   106                                        _scan_older);
   107   } while (!_gch->no_allocs_since_save_marks(_level));
   108   guarantee(_gen->promo_failure_scan_is_complete(), "Failed to finish scan");
   109 }
   111 ScanClosure::ScanClosure(DefNewGeneration* g, bool gc_barrier) :
   112     OopsInKlassOrGenClosure(g), _g(g), _gc_barrier(gc_barrier)
   113 {
   114   assert(_g->level() == 0, "Optimized for youngest generation");
   115   _boundary = _g->reserved().end();
   116 }
   118 void ScanClosure::do_oop(oop* p)       { ScanClosure::do_oop_work(p); }
   119 void ScanClosure::do_oop(narrowOop* p) { ScanClosure::do_oop_work(p); }
   121 FastScanClosure::FastScanClosure(DefNewGeneration* g, bool gc_barrier) :
   122     OopsInKlassOrGenClosure(g), _g(g), _gc_barrier(gc_barrier)
   123 {
   124   assert(_g->level() == 0, "Optimized for youngest generation");
   125   _boundary = _g->reserved().end();
   126 }
   128 void FastScanClosure::do_oop(oop* p)       { FastScanClosure::do_oop_work(p); }
   129 void FastScanClosure::do_oop(narrowOop* p) { FastScanClosure::do_oop_work(p); }
   131 void KlassScanClosure::do_klass(Klass* klass) {
   132 #ifndef PRODUCT
   133   if (TraceScavenge) {
   134     ResourceMark rm;
   135     gclog_or_tty->print_cr("KlassScanClosure::do_klass %p, %s, dirty: %s",
   136                            klass,
   137                            klass->external_name(),
   138                            klass->has_modified_oops() ? "true" : "false");
   139   }
   140 #endif
   142   // If the klass has not been dirtied we know that there's
   143   // no references into  the young gen and we can skip it.
   144   if (klass->has_modified_oops()) {
   145     if (_accumulate_modified_oops) {
   146       klass->accumulate_modified_oops();
   147     }
   149     // Clear this state since we're going to scavenge all the metadata.
   150     klass->clear_modified_oops();
   152     // Tell the closure which Klass is being scanned so that it can be dirtied
   153     // if oops are left pointing into the young gen.
   154     _scavenge_closure->set_scanned_klass(klass);
   156     klass->oops_do(_scavenge_closure);
   158     _scavenge_closure->set_scanned_klass(NULL);
   159   }
   160 }
   162 ScanWeakRefClosure::ScanWeakRefClosure(DefNewGeneration* g) :
   163   _g(g)
   164 {
   165   assert(_g->level() == 0, "Optimized for youngest generation");
   166   _boundary = _g->reserved().end();
   167 }
   169 void ScanWeakRefClosure::do_oop(oop* p)       { ScanWeakRefClosure::do_oop_work(p); }
   170 void ScanWeakRefClosure::do_oop(narrowOop* p) { ScanWeakRefClosure::do_oop_work(p); }
   172 void FilteringClosure::do_oop(oop* p)       { FilteringClosure::do_oop_work(p); }
   173 void FilteringClosure::do_oop(narrowOop* p) { FilteringClosure::do_oop_work(p); }
   175 KlassScanClosure::KlassScanClosure(OopsInKlassOrGenClosure* scavenge_closure,
   176                                    KlassRemSet* klass_rem_set)
   177     : _scavenge_closure(scavenge_closure),
   178       _accumulate_modified_oops(klass_rem_set->accumulate_modified_oops()) {}
   181 DefNewGeneration::DefNewGeneration(ReservedSpace rs,
   182                                    size_t initial_size,
   183                                    int level,
   184                                    const char* policy)
   185   : Generation(rs, initial_size, level),
   186     _promo_failure_drain_in_progress(false),
   187     _should_allocate_from_space(false)
   188 {
   189   MemRegion cmr((HeapWord*)_virtual_space.low(),
   190                 (HeapWord*)_virtual_space.high());
   191   Universe::heap()->barrier_set()->resize_covered_region(cmr);
   193   if (GenCollectedHeap::heap()->collector_policy()->has_soft_ended_eden()) {
   194     _eden_space = new ConcEdenSpace(this);
   195   } else {
   196     _eden_space = new EdenSpace(this);
   197   }
   198   _from_space = new ContiguousSpace();
   199   _to_space   = new ContiguousSpace();
   201   if (_eden_space == NULL || _from_space == NULL || _to_space == NULL)
   202     vm_exit_during_initialization("Could not allocate a new gen space");
   204   // Compute the maximum eden and survivor space sizes. These sizes
   205   // are computed assuming the entire reserved space is committed.
   206   // These values are exported as performance counters.
   207   uintx alignment = GenCollectedHeap::heap()->collector_policy()->min_alignment();
   208   uintx size = _virtual_space.reserved_size();
   209   _max_survivor_size = compute_survivor_size(size, alignment);
   210   _max_eden_size = size - (2*_max_survivor_size);
   212   // allocate the performance counters
   214   // Generation counters -- generation 0, 3 subspaces
   215   _gen_counters = new GenerationCounters("new", 0, 3, &_virtual_space);
   216   _gc_counters = new CollectorCounters(policy, 0);
   218   _eden_counters = new CSpaceCounters("eden", 0, _max_eden_size, _eden_space,
   219                                       _gen_counters);
   220   _from_counters = new CSpaceCounters("s0", 1, _max_survivor_size, _from_space,
   221                                       _gen_counters);
   222   _to_counters = new CSpaceCounters("s1", 2, _max_survivor_size, _to_space,
   223                                     _gen_counters);
   225   compute_space_boundaries(0, SpaceDecorator::Clear, SpaceDecorator::Mangle);
   226   update_counters();
   227   _next_gen = NULL;
   228   _tenuring_threshold = MaxTenuringThreshold;
   229   _pretenure_size_threshold_words = PretenureSizeThreshold >> LogHeapWordSize;
   231   _gc_timer = new (ResourceObj::C_HEAP, mtGC) STWGCTimer();
   232 }
   234 void DefNewGeneration::compute_space_boundaries(uintx minimum_eden_size,
   235                                                 bool clear_space,
   236                                                 bool mangle_space) {
   237   uintx alignment =
   238     GenCollectedHeap::heap()->collector_policy()->min_alignment();
   240   // If the spaces are being cleared (only done at heap initialization
   241   // currently), the survivor spaces need not be empty.
   242   // Otherwise, no care is taken for used areas in the survivor spaces
   243   // so check.
   244   assert(clear_space || (to()->is_empty() && from()->is_empty()),
   245     "Initialization of the survivor spaces assumes these are empty");
   247   // Compute sizes
   248   uintx size = _virtual_space.committed_size();
   249   uintx survivor_size = compute_survivor_size(size, alignment);
   250   uintx eden_size = size - (2*survivor_size);
   251   assert(eden_size > 0 && survivor_size <= eden_size, "just checking");
   253   if (eden_size < minimum_eden_size) {
   254     // May happen due to 64Kb rounding, if so adjust eden size back up
   255     minimum_eden_size = align_size_up(minimum_eden_size, alignment);
   256     uintx maximum_survivor_size = (size - minimum_eden_size) / 2;
   257     uintx unaligned_survivor_size =
   258       align_size_down(maximum_survivor_size, alignment);
   259     survivor_size = MAX2(unaligned_survivor_size, alignment);
   260     eden_size = size - (2*survivor_size);
   261     assert(eden_size > 0 && survivor_size <= eden_size, "just checking");
   262     assert(eden_size >= minimum_eden_size, "just checking");
   263   }
   265   char *eden_start = _virtual_space.low();
   266   char *from_start = eden_start + eden_size;
   267   char *to_start   = from_start + survivor_size;
   268   char *to_end     = to_start   + survivor_size;
   270   assert(to_end == _virtual_space.high(), "just checking");
   271   assert(Space::is_aligned((HeapWord*)eden_start), "checking alignment");
   272   assert(Space::is_aligned((HeapWord*)from_start), "checking alignment");
   273   assert(Space::is_aligned((HeapWord*)to_start),   "checking alignment");
   275   MemRegion edenMR((HeapWord*)eden_start, (HeapWord*)from_start);
   276   MemRegion fromMR((HeapWord*)from_start, (HeapWord*)to_start);
   277   MemRegion toMR  ((HeapWord*)to_start, (HeapWord*)to_end);
   279   // A minimum eden size implies that there is a part of eden that
   280   // is being used and that affects the initialization of any
   281   // newly formed eden.
   282   bool live_in_eden = minimum_eden_size > 0;
   284   // If not clearing the spaces, do some checking to verify that
   285   // the space are already mangled.
   286   if (!clear_space) {
   287     // Must check mangling before the spaces are reshaped.  Otherwise,
   288     // the bottom or end of one space may have moved into another
   289     // a failure of the check may not correctly indicate which space
   290     // is not properly mangled.
   291     if (ZapUnusedHeapArea) {
   292       HeapWord* limit = (HeapWord*) _virtual_space.high();
   293       eden()->check_mangled_unused_area(limit);
   294       from()->check_mangled_unused_area(limit);
   295         to()->check_mangled_unused_area(limit);
   296     }
   297   }
   299   // Reset the spaces for their new regions.
   300   eden()->initialize(edenMR,
   301                      clear_space && !live_in_eden,
   302                      SpaceDecorator::Mangle);
   303   // If clear_space and live_in_eden, we will not have cleared any
   304   // portion of eden above its top. This can cause newly
   305   // expanded space not to be mangled if using ZapUnusedHeapArea.
   306   // We explicitly do such mangling here.
   307   if (ZapUnusedHeapArea && clear_space && live_in_eden && mangle_space) {
   308     eden()->mangle_unused_area();
   309   }
   310   from()->initialize(fromMR, clear_space, mangle_space);
   311   to()->initialize(toMR, clear_space, mangle_space);
   313   // Set next compaction spaces.
   314   eden()->set_next_compaction_space(from());
   315   // The to-space is normally empty before a compaction so need
   316   // not be considered.  The exception is during promotion
   317   // failure handling when to-space can contain live objects.
   318   from()->set_next_compaction_space(NULL);
   319 }
   321 void DefNewGeneration::swap_spaces() {
   322   ContiguousSpace* s = from();
   323   _from_space        = to();
   324   _to_space          = s;
   325   eden()->set_next_compaction_space(from());
   326   // The to-space is normally empty before a compaction so need
   327   // not be considered.  The exception is during promotion
   328   // failure handling when to-space can contain live objects.
   329   from()->set_next_compaction_space(NULL);
   331   if (UsePerfData) {
   332     CSpaceCounters* c = _from_counters;
   333     _from_counters = _to_counters;
   334     _to_counters = c;
   335   }
   336 }
   338 bool DefNewGeneration::expand(size_t bytes) {
   339   MutexLocker x(ExpandHeap_lock);
   340   HeapWord* prev_high = (HeapWord*) _virtual_space.high();
   341   bool success = _virtual_space.expand_by(bytes);
   342   if (success && ZapUnusedHeapArea) {
   343     // Mangle newly committed space immediately because it
   344     // can be done here more simply that after the new
   345     // spaces have been computed.
   346     HeapWord* new_high = (HeapWord*) _virtual_space.high();
   347     MemRegion mangle_region(prev_high, new_high);
   348     SpaceMangler::mangle_region(mangle_region);
   349   }
   351   // Do not attempt an expand-to-the reserve size.  The
   352   // request should properly observe the maximum size of
   353   // the generation so an expand-to-reserve should be
   354   // unnecessary.  Also a second call to expand-to-reserve
   355   // value potentially can cause an undue expansion.
   356   // For example if the first expand fail for unknown reasons,
   357   // but the second succeeds and expands the heap to its maximum
   358   // value.
   359   if (GC_locker::is_active()) {
   360     if (PrintGC && Verbose) {
   361       gclog_or_tty->print_cr("Garbage collection disabled, "
   362         "expanded heap instead");
   363     }
   364   }
   366   return success;
   367 }
   370 void DefNewGeneration::compute_new_size() {
   371   // This is called after a gc that includes the following generation
   372   // (which is required to exist.)  So from-space will normally be empty.
   373   // Note that we check both spaces, since if scavenge failed they revert roles.
   374   // If not we bail out (otherwise we would have to relocate the objects)
   375   if (!from()->is_empty() || !to()->is_empty()) {
   376     return;
   377   }
   379   int next_level = level() + 1;
   380   GenCollectedHeap* gch = GenCollectedHeap::heap();
   381   assert(next_level < gch->_n_gens,
   382          "DefNewGeneration cannot be an oldest gen");
   384   Generation* next_gen = gch->_gens[next_level];
   385   size_t old_size = next_gen->capacity();
   386   size_t new_size_before = _virtual_space.committed_size();
   387   size_t min_new_size = spec()->init_size();
   388   size_t max_new_size = reserved().byte_size();
   389   assert(min_new_size <= new_size_before &&
   390          new_size_before <= max_new_size,
   391          "just checking");
   392   // All space sizes must be multiples of Generation::GenGrain.
   393   size_t alignment = Generation::GenGrain;
   395   // Compute desired new generation size based on NewRatio and
   396   // NewSizeThreadIncrease
   397   size_t desired_new_size = old_size/NewRatio;
   398   int threads_count = Threads::number_of_non_daemon_threads();
   399   size_t thread_increase_size = threads_count * NewSizeThreadIncrease;
   400   desired_new_size = align_size_up(desired_new_size + thread_increase_size, alignment);
   402   // Adjust new generation size
   403   desired_new_size = MAX2(MIN2(desired_new_size, max_new_size), min_new_size);
   404   assert(desired_new_size <= max_new_size, "just checking");
   406   bool changed = false;
   407   if (desired_new_size > new_size_before) {
   408     size_t change = desired_new_size - new_size_before;
   409     assert(change % alignment == 0, "just checking");
   410     if (expand(change)) {
   411        changed = true;
   412     }
   413     // If the heap failed to expand to the desired size,
   414     // "changed" will be false.  If the expansion failed
   415     // (and at this point it was expected to succeed),
   416     // ignore the failure (leaving "changed" as false).
   417   }
   418   if (desired_new_size < new_size_before && eden()->is_empty()) {
   419     // bail out of shrinking if objects in eden
   420     size_t change = new_size_before - desired_new_size;
   421     assert(change % alignment == 0, "just checking");
   422     _virtual_space.shrink_by(change);
   423     changed = true;
   424   }
   425   if (changed) {
   426     // The spaces have already been mangled at this point but
   427     // may not have been cleared (set top = bottom) and should be.
   428     // Mangling was done when the heap was being expanded.
   429     compute_space_boundaries(eden()->used(),
   430                              SpaceDecorator::Clear,
   431                              SpaceDecorator::DontMangle);
   432     MemRegion cmr((HeapWord*)_virtual_space.low(),
   433                   (HeapWord*)_virtual_space.high());
   434     Universe::heap()->barrier_set()->resize_covered_region(cmr);
   435     if (Verbose && PrintGC) {
   436       size_t new_size_after  = _virtual_space.committed_size();
   437       size_t eden_size_after = eden()->capacity();
   438       size_t survivor_size_after = from()->capacity();
   439       gclog_or_tty->print("New generation size " SIZE_FORMAT "K->"
   440         SIZE_FORMAT "K [eden="
   441         SIZE_FORMAT "K,survivor=" SIZE_FORMAT "K]",
   442         new_size_before/K, new_size_after/K,
   443         eden_size_after/K, survivor_size_after/K);
   444       if (WizardMode) {
   445         gclog_or_tty->print("[allowed " SIZE_FORMAT "K extra for %d threads]",
   446           thread_increase_size/K, threads_count);
   447       }
   448       gclog_or_tty->cr();
   449     }
   450   }
   451 }
   453 void DefNewGeneration::object_iterate_since_last_GC(ObjectClosure* cl) {
   454   // $$$ This may be wrong in case of "scavenge failure"?
   455   eden()->object_iterate(cl);
   456 }
   458 void DefNewGeneration::younger_refs_iterate(OopsInGenClosure* cl) {
   459   assert(false, "NYI -- are you sure you want to call this?");
   460 }
   463 size_t DefNewGeneration::capacity() const {
   464   return eden()->capacity()
   465        + from()->capacity();  // to() is only used during scavenge
   466 }
   469 size_t DefNewGeneration::used() const {
   470   return eden()->used()
   471        + from()->used();      // to() is only used during scavenge
   472 }
   475 size_t DefNewGeneration::free() const {
   476   return eden()->free()
   477        + from()->free();      // to() is only used during scavenge
   478 }
   480 size_t DefNewGeneration::max_capacity() const {
   481   const size_t alignment = GenCollectedHeap::heap()->collector_policy()->min_alignment();
   482   const size_t reserved_bytes = reserved().byte_size();
   483   return reserved_bytes - compute_survivor_size(reserved_bytes, alignment);
   484 }
   486 size_t DefNewGeneration::unsafe_max_alloc_nogc() const {
   487   return eden()->free();
   488 }
   490 size_t DefNewGeneration::capacity_before_gc() const {
   491   return eden()->capacity();
   492 }
   494 size_t DefNewGeneration::contiguous_available() const {
   495   return eden()->free();
   496 }
   499 HeapWord** DefNewGeneration::top_addr() const { return eden()->top_addr(); }
   500 HeapWord** DefNewGeneration::end_addr() const { return eden()->end_addr(); }
   502 void DefNewGeneration::object_iterate(ObjectClosure* blk) {
   503   eden()->object_iterate(blk);
   504   from()->object_iterate(blk);
   505 }
   508 void DefNewGeneration::space_iterate(SpaceClosure* blk,
   509                                      bool usedOnly) {
   510   blk->do_space(eden());
   511   blk->do_space(from());
   512   blk->do_space(to());
   513 }
   515 // The last collection bailed out, we are running out of heap space,
   516 // so we try to allocate the from-space, too.
   517 HeapWord* DefNewGeneration::allocate_from_space(size_t size) {
   518   HeapWord* result = NULL;
   519   if (Verbose && PrintGCDetails) {
   520     gclog_or_tty->print("DefNewGeneration::allocate_from_space(%u):"
   521                         "  will_fail: %s"
   522                         "  heap_lock: %s"
   523                         "  free: " SIZE_FORMAT,
   524                         size,
   525                         GenCollectedHeap::heap()->incremental_collection_will_fail(false /* don't consult_young */) ?
   526                           "true" : "false",
   527                         Heap_lock->is_locked() ? "locked" : "unlocked",
   528                         from()->free());
   529   }
   530   if (should_allocate_from_space() || GC_locker::is_active_and_needs_gc()) {
   531     if (Heap_lock->owned_by_self() ||
   532         (SafepointSynchronize::is_at_safepoint() &&
   533          Thread::current()->is_VM_thread())) {
   534       // If the Heap_lock is not locked by this thread, this will be called
   535       // again later with the Heap_lock held.
   536       result = from()->allocate(size);
   537     } else if (PrintGC && Verbose) {
   538       gclog_or_tty->print_cr("  Heap_lock is not owned by self");
   539     }
   540   } else if (PrintGC && Verbose) {
   541     gclog_or_tty->print_cr("  should_allocate_from_space: NOT");
   542   }
   543   if (PrintGC && Verbose) {
   544     gclog_or_tty->print_cr("  returns %s", result == NULL ? "NULL" : "object");
   545   }
   546   return result;
   547 }
   549 HeapWord* DefNewGeneration::expand_and_allocate(size_t size,
   550                                                 bool   is_tlab,
   551                                                 bool   parallel) {
   552   // We don't attempt to expand the young generation (but perhaps we should.)
   553   return allocate(size, is_tlab);
   554 }
   556 void DefNewGeneration::adjust_desired_tenuring_threshold() {
   557   // Set the desired survivor size to half the real survivor space
   558   _tenuring_threshold =
   559     age_table()->compute_tenuring_threshold(to()->capacity()/HeapWordSize);
   560 }
   562 void DefNewGeneration::collect(bool   full,
   563                                bool   clear_all_soft_refs,
   564                                size_t size,
   565                                bool   is_tlab) {
   566   assert(full || size > 0, "otherwise we don't want to collect");
   568   GenCollectedHeap* gch = GenCollectedHeap::heap();
   570   _gc_timer->register_gc_start(os::elapsed_counter());
   571   DefNewTracer gc_tracer;
   572   gc_tracer.report_gc_start(gch->gc_cause(), _gc_timer->gc_start());
   574   _next_gen = gch->next_gen(this);
   575   assert(_next_gen != NULL,
   576     "This must be the youngest gen, and not the only gen");
   578   // If the next generation is too full to accommodate promotion
   579   // from this generation, pass on collection; let the next generation
   580   // do it.
   581   if (!collection_attempt_is_safe()) {
   582     if (Verbose && PrintGCDetails) {
   583       gclog_or_tty->print(" :: Collection attempt not safe :: ");
   584     }
   585     gch->set_incremental_collection_failed(); // Slight lie: we did not even attempt one
   586     return;
   587   }
   588   assert(to()->is_empty(), "Else not collection_attempt_is_safe");
   590   init_assuming_no_promotion_failure();
   592   GCTraceTime t1(GCCauseString("GC", gch->gc_cause()), PrintGC && !PrintGCDetails, true, NULL);
   593   // Capture heap used before collection (for printing).
   594   size_t gch_prev_used = gch->used();
   596   gch->trace_heap_before_gc(&gc_tracer);
   598   SpecializationStats::clear();
   600   // These can be shared for all code paths
   601   IsAliveClosure is_alive(this);
   602   ScanWeakRefClosure scan_weak_ref(this);
   604   age_table()->clear();
   605   to()->clear(SpaceDecorator::Mangle);
   607   gch->rem_set()->prepare_for_younger_refs_iterate(false);
   609   assert(gch->no_allocs_since_save_marks(0),
   610          "save marks have not been newly set.");
   612   // Not very pretty.
   613   CollectorPolicy* cp = gch->collector_policy();
   615   FastScanClosure fsc_with_no_gc_barrier(this, false);
   616   FastScanClosure fsc_with_gc_barrier(this, true);
   618   KlassScanClosure klass_scan_closure(&fsc_with_no_gc_barrier,
   619                                       gch->rem_set()->klass_rem_set());
   621   set_promo_failure_scan_stack_closure(&fsc_with_no_gc_barrier);
   622   FastEvacuateFollowersClosure evacuate_followers(gch, _level, this,
   623                                                   &fsc_with_no_gc_barrier,
   624                                                   &fsc_with_gc_barrier);
   626   assert(gch->no_allocs_since_save_marks(0),
   627          "save marks have not been newly set.");
   629   int so = SharedHeap::SO_AllClasses | SharedHeap::SO_Strings | SharedHeap::SO_CodeCache;
   631   gch->gen_process_strong_roots(_level,
   632                                 true,  // Process younger gens, if any,
   633                                        // as strong roots.
   634                                 true,  // activate StrongRootsScope
   635                                 true,  // is scavenging
   636                                 SharedHeap::ScanningOption(so),
   637                                 &fsc_with_no_gc_barrier,
   638                                 true,   // walk *all* scavengable nmethods
   639                                 &fsc_with_gc_barrier,
   640                                 &klass_scan_closure);
   642   // "evacuate followers".
   643   evacuate_followers.do_void();
   645   FastKeepAliveClosure keep_alive(this, &scan_weak_ref);
   646   ReferenceProcessor* rp = ref_processor();
   647   rp->setup_policy(clear_all_soft_refs);
   648   const ReferenceProcessorStats& stats =
   649   rp->process_discovered_references(&is_alive, &keep_alive, &evacuate_followers,
   650                                     NULL, _gc_timer);
   651   gc_tracer.report_gc_reference_stats(stats);
   653   if (!_promotion_failed) {
   654     // Swap the survivor spaces.
   655     eden()->clear(SpaceDecorator::Mangle);
   656     from()->clear(SpaceDecorator::Mangle);
   657     if (ZapUnusedHeapArea) {
   658       // This is now done here because of the piece-meal mangling which
   659       // can check for valid mangling at intermediate points in the
   660       // collection(s).  When a minor collection fails to collect
   661       // sufficient space resizing of the young generation can occur
   662       // an redistribute the spaces in the young generation.  Mangle
   663       // here so that unzapped regions don't get distributed to
   664       // other spaces.
   665       to()->mangle_unused_area();
   666     }
   667     swap_spaces();
   669     assert(to()->is_empty(), "to space should be empty now");
   671     adjust_desired_tenuring_threshold();
   673     // A successful scavenge should restart the GC time limit count which is
   674     // for full GC's.
   675     AdaptiveSizePolicy* size_policy = gch->gen_policy()->size_policy();
   676     size_policy->reset_gc_overhead_limit_count();
   677     if (PrintGC && !PrintGCDetails) {
   678       gch->print_heap_change(gch_prev_used);
   679     }
   680     assert(!gch->incremental_collection_failed(), "Should be clear");
   681   } else {
   682     assert(_promo_failure_scan_stack.is_empty(), "post condition");
   683     _promo_failure_scan_stack.clear(true); // Clear cached segments.
   685     remove_forwarding_pointers();
   686     if (PrintGCDetails) {
   687       gclog_or_tty->print(" (promotion failed) ");
   688     }
   689     // Add to-space to the list of space to compact
   690     // when a promotion failure has occurred.  In that
   691     // case there can be live objects in to-space
   692     // as a result of a partial evacuation of eden
   693     // and from-space.
   694     swap_spaces();   // For uniformity wrt ParNewGeneration.
   695     from()->set_next_compaction_space(to());
   696     gch->set_incremental_collection_failed();
   698     // Inform the next generation that a promotion failure occurred.
   699     _next_gen->promotion_failure_occurred();
   700     gc_tracer.report_promotion_failed(_promotion_failed_info);
   702     // Reset the PromotionFailureALot counters.
   703     NOT_PRODUCT(Universe::heap()->reset_promotion_should_fail();)
   704   }
   705   // set new iteration safe limit for the survivor spaces
   706   from()->set_concurrent_iteration_safe_limit(from()->top());
   707   to()->set_concurrent_iteration_safe_limit(to()->top());
   708   SpecializationStats::print();
   710   // We need to use a monotonically non-decreasing time in ms
   711   // or we will see time-warp warnings and os::javaTimeMillis()
   712   // does not guarantee monotonicity.
   713   jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
   714   update_time_of_last_gc(now);
   716   gch->trace_heap_after_gc(&gc_tracer);
   717   gc_tracer.report_tenuring_threshold(tenuring_threshold());
   719   _gc_timer->register_gc_end(os::elapsed_counter());
   721   gc_tracer.report_gc_end(_gc_timer->gc_end(), _gc_timer->time_partitions());
   722 }
   724 class RemoveForwardPointerClosure: public ObjectClosure {
   725 public:
   726   void do_object(oop obj) {
   727     obj->init_mark();
   728   }
   729 };
   731 void DefNewGeneration::init_assuming_no_promotion_failure() {
   732   _promotion_failed = false;
   733   _promotion_failed_info.reset();
   734   from()->set_next_compaction_space(NULL);
   735 }
   737 void DefNewGeneration::remove_forwarding_pointers() {
   738   RemoveForwardPointerClosure rspc;
   739   eden()->object_iterate(&rspc);
   740   from()->object_iterate(&rspc);
   742   // Now restore saved marks, if any.
   743   assert(_objs_with_preserved_marks.size() == _preserved_marks_of_objs.size(),
   744          "should be the same");
   745   while (!_objs_with_preserved_marks.is_empty()) {
   746     oop obj   = _objs_with_preserved_marks.pop();
   747     markOop m = _preserved_marks_of_objs.pop();
   748     obj->set_mark(m);
   749   }
   750   _objs_with_preserved_marks.clear(true);
   751   _preserved_marks_of_objs.clear(true);
   752 }
   754 void DefNewGeneration::preserve_mark(oop obj, markOop m) {
   755   assert(_promotion_failed && m->must_be_preserved_for_promotion_failure(obj),
   756          "Oversaving!");
   757   _objs_with_preserved_marks.push(obj);
   758   _preserved_marks_of_objs.push(m);
   759 }
   761 void DefNewGeneration::preserve_mark_if_necessary(oop obj, markOop m) {
   762   if (m->must_be_preserved_for_promotion_failure(obj)) {
   763     preserve_mark(obj, m);
   764   }
   765 }
   767 void DefNewGeneration::handle_promotion_failure(oop old) {
   768   if (PrintPromotionFailure && !_promotion_failed) {
   769     gclog_or_tty->print(" (promotion failure size = " SIZE_FORMAT ") ",
   770                         old->size());
   771   }
   772   _promotion_failed = true;
   773   _promotion_failed_info.register_copy_failure(old->size());
   774   preserve_mark_if_necessary(old, old->mark());
   775   // forward to self
   776   old->forward_to(old);
   778   _promo_failure_scan_stack.push(old);
   780   if (!_promo_failure_drain_in_progress) {
   781     // prevent recursion in copy_to_survivor_space()
   782     _promo_failure_drain_in_progress = true;
   783     drain_promo_failure_scan_stack();
   784     _promo_failure_drain_in_progress = false;
   785   }
   786 }
   788 oop DefNewGeneration::copy_to_survivor_space(oop old) {
   789   assert(is_in_reserved(old) && !old->is_forwarded(),
   790          "shouldn't be scavenging this oop");
   791   size_t s = old->size();
   792   oop obj = NULL;
   794   // Try allocating obj in to-space (unless too old)
   795   if (old->age() < tenuring_threshold()) {
   796     obj = (oop) to()->allocate(s);
   797   }
   799   // Otherwise try allocating obj tenured
   800   if (obj == NULL) {
   801     obj = _next_gen->promote(old, s);
   802     if (obj == NULL) {
   803       handle_promotion_failure(old);
   804       return old;
   805     }
   806   } else {
   807     // Prefetch beyond obj
   808     const intx interval = PrefetchCopyIntervalInBytes;
   809     Prefetch::write(obj, interval);
   811     // Copy obj
   812     Copy::aligned_disjoint_words((HeapWord*)old, (HeapWord*)obj, s);
   814     // Increment age if obj still in new generation
   815     obj->incr_age();
   816     age_table()->add(obj, s);
   817   }
   819   // Done, insert forward pointer to obj in this header
   820   old->forward_to(obj);
   822   return obj;
   823 }
   825 void DefNewGeneration::drain_promo_failure_scan_stack() {
   826   while (!_promo_failure_scan_stack.is_empty()) {
   827      oop obj = _promo_failure_scan_stack.pop();
   828      obj->oop_iterate(_promo_failure_scan_stack_closure);
   829   }
   830 }
   832 void DefNewGeneration::save_marks() {
   833   eden()->set_saved_mark();
   834   to()->set_saved_mark();
   835   from()->set_saved_mark();
   836 }
   839 void DefNewGeneration::reset_saved_marks() {
   840   eden()->reset_saved_mark();
   841   to()->reset_saved_mark();
   842   from()->reset_saved_mark();
   843 }
   846 bool DefNewGeneration::no_allocs_since_save_marks() {
   847   assert(eden()->saved_mark_at_top(), "Violated spec - alloc in eden");
   848   assert(from()->saved_mark_at_top(), "Violated spec - alloc in from");
   849   return to()->saved_mark_at_top();
   850 }
   852 #define DefNew_SINCE_SAVE_MARKS_DEFN(OopClosureType, nv_suffix) \
   853                                                                 \
   854 void DefNewGeneration::                                         \
   855 oop_since_save_marks_iterate##nv_suffix(OopClosureType* cl) {   \
   856   cl->set_generation(this);                                     \
   857   eden()->oop_since_save_marks_iterate##nv_suffix(cl);          \
   858   to()->oop_since_save_marks_iterate##nv_suffix(cl);            \
   859   from()->oop_since_save_marks_iterate##nv_suffix(cl);          \
   860   cl->reset_generation();                                       \
   861   save_marks();                                                 \
   862 }
   864 ALL_SINCE_SAVE_MARKS_CLOSURES(DefNew_SINCE_SAVE_MARKS_DEFN)
   866 #undef DefNew_SINCE_SAVE_MARKS_DEFN
   868 void DefNewGeneration::contribute_scratch(ScratchBlock*& list, Generation* requestor,
   869                                          size_t max_alloc_words) {
   870   if (requestor == this || _promotion_failed) return;
   871   assert(requestor->level() > level(), "DefNewGeneration must be youngest");
   873   /* $$$ Assert this?  "trace" is a "MarkSweep" function so that's not appropriate.
   874   if (to_space->top() > to_space->bottom()) {
   875     trace("to_space not empty when contribute_scratch called");
   876   }
   877   */
   879   ContiguousSpace* to_space = to();
   880   assert(to_space->end() >= to_space->top(), "pointers out of order");
   881   size_t free_words = pointer_delta(to_space->end(), to_space->top());
   882   if (free_words >= MinFreeScratchWords) {
   883     ScratchBlock* sb = (ScratchBlock*)to_space->top();
   884     sb->num_words = free_words;
   885     sb->next = list;
   886     list = sb;
   887   }
   888 }
   890 void DefNewGeneration::reset_scratch() {
   891   // If contributing scratch in to_space, mangle all of
   892   // to_space if ZapUnusedHeapArea.  This is needed because
   893   // top is not maintained while using to-space as scratch.
   894   if (ZapUnusedHeapArea) {
   895     to()->mangle_unused_area_complete();
   896   }
   897 }
   899 bool DefNewGeneration::collection_attempt_is_safe() {
   900   if (!to()->is_empty()) {
   901     if (Verbose && PrintGCDetails) {
   902       gclog_or_tty->print(" :: to is not empty :: ");
   903     }
   904     return false;
   905   }
   906   if (_next_gen == NULL) {
   907     GenCollectedHeap* gch = GenCollectedHeap::heap();
   908     _next_gen = gch->next_gen(this);
   909     assert(_next_gen != NULL,
   910            "This must be the youngest gen, and not the only gen");
   911   }
   912   return _next_gen->promotion_attempt_is_safe(used());
   913 }
   915 void DefNewGeneration::gc_epilogue(bool full) {
   916   DEBUG_ONLY(static bool seen_incremental_collection_failed = false;)
   918   assert(!GC_locker::is_active(), "We should not be executing here");
   919   // Check if the heap is approaching full after a collection has
   920   // been done.  Generally the young generation is empty at
   921   // a minimum at the end of a collection.  If it is not, then
   922   // the heap is approaching full.
   923   GenCollectedHeap* gch = GenCollectedHeap::heap();
   924   if (full) {
   925     DEBUG_ONLY(seen_incremental_collection_failed = false;)
   926     if (!collection_attempt_is_safe() && !_eden_space->is_empty()) {
   927       if (Verbose && PrintGCDetails) {
   928         gclog_or_tty->print("DefNewEpilogue: cause(%s), full, not safe, set_failed, set_alloc_from, clear_seen",
   929                             GCCause::to_string(gch->gc_cause()));
   930       }
   931       gch->set_incremental_collection_failed(); // Slight lie: a full gc left us in that state
   932       set_should_allocate_from_space(); // we seem to be running out of space
   933     } else {
   934       if (Verbose && PrintGCDetails) {
   935         gclog_or_tty->print("DefNewEpilogue: cause(%s), full, safe, clear_failed, clear_alloc_from, clear_seen",
   936                             GCCause::to_string(gch->gc_cause()));
   937       }
   938       gch->clear_incremental_collection_failed(); // We just did a full collection
   939       clear_should_allocate_from_space(); // if set
   940     }
   941   } else {
   942 #ifdef ASSERT
   943     // It is possible that incremental_collection_failed() == true
   944     // here, because an attempted scavenge did not succeed. The policy
   945     // is normally expected to cause a full collection which should
   946     // clear that condition, so we should not be here twice in a row
   947     // with incremental_collection_failed() == true without having done
   948     // a full collection in between.
   949     if (!seen_incremental_collection_failed &&
   950         gch->incremental_collection_failed()) {
   951       if (Verbose && PrintGCDetails) {
   952         gclog_or_tty->print("DefNewEpilogue: cause(%s), not full, not_seen_failed, failed, set_seen_failed",
   953                             GCCause::to_string(gch->gc_cause()));
   954       }
   955       seen_incremental_collection_failed = true;
   956     } else if (seen_incremental_collection_failed) {
   957       if (Verbose && PrintGCDetails) {
   958         gclog_or_tty->print("DefNewEpilogue: cause(%s), not full, seen_failed, will_clear_seen_failed",
   959                             GCCause::to_string(gch->gc_cause()));
   960       }
   961       assert(gch->gc_cause() == GCCause::_scavenge_alot ||
   962              (gch->gc_cause() == GCCause::_java_lang_system_gc && UseConcMarkSweepGC && ExplicitGCInvokesConcurrent) ||
   963              !gch->incremental_collection_failed(),
   964              "Twice in a row");
   965       seen_incremental_collection_failed = false;
   966     }
   967 #endif // ASSERT
   968   }
   970   if (ZapUnusedHeapArea) {
   971     eden()->check_mangled_unused_area_complete();
   972     from()->check_mangled_unused_area_complete();
   973     to()->check_mangled_unused_area_complete();
   974   }
   976   if (!CleanChunkPoolAsync) {
   977     Chunk::clean_chunk_pool();
   978   }
   980   // update the generation and space performance counters
   981   update_counters();
   982   gch->collector_policy()->counters()->update_counters();
   983 }
   985 void DefNewGeneration::record_spaces_top() {
   986   assert(ZapUnusedHeapArea, "Not mangling unused space");
   987   eden()->set_top_for_allocations();
   988   to()->set_top_for_allocations();
   989   from()->set_top_for_allocations();
   990 }
   992 void DefNewGeneration::ref_processor_init() {
   993   Generation::ref_processor_init();
   994 }
   997 void DefNewGeneration::update_counters() {
   998   if (UsePerfData) {
   999     _eden_counters->update_all();
  1000     _from_counters->update_all();
  1001     _to_counters->update_all();
  1002     _gen_counters->update_all();
  1006 void DefNewGeneration::verify() {
  1007   eden()->verify();
  1008   from()->verify();
  1009     to()->verify();
  1012 void DefNewGeneration::print_on(outputStream* st) const {
  1013   Generation::print_on(st);
  1014   st->print("  eden");
  1015   eden()->print_on(st);
  1016   st->print("  from");
  1017   from()->print_on(st);
  1018   st->print("  to  ");
  1019   to()->print_on(st);
  1023 const char* DefNewGeneration::name() const {
  1024   return "def new generation";
  1027 // Moved from inline file as they are not called inline
  1028 CompactibleSpace* DefNewGeneration::first_compaction_space() const {
  1029   return eden();
  1032 HeapWord* DefNewGeneration::allocate(size_t word_size,
  1033                                      bool is_tlab) {
  1034   // This is the slow-path allocation for the DefNewGeneration.
  1035   // Most allocations are fast-path in compiled code.
  1036   // We try to allocate from the eden.  If that works, we are happy.
  1037   // Note that since DefNewGeneration supports lock-free allocation, we
  1038   // have to use it here, as well.
  1039   HeapWord* result = eden()->par_allocate(word_size);
  1040   if (result != NULL) {
  1041     return result;
  1043   do {
  1044     HeapWord* old_limit = eden()->soft_end();
  1045     if (old_limit < eden()->end()) {
  1046       // Tell the next generation we reached a limit.
  1047       HeapWord* new_limit =
  1048         next_gen()->allocation_limit_reached(eden(), eden()->top(), word_size);
  1049       if (new_limit != NULL) {
  1050         Atomic::cmpxchg_ptr(new_limit, eden()->soft_end_addr(), old_limit);
  1051       } else {
  1052         assert(eden()->soft_end() == eden()->end(),
  1053                "invalid state after allocation_limit_reached returned null");
  1055     } else {
  1056       // The allocation failed and the soft limit is equal to the hard limit,
  1057       // there are no reasons to do an attempt to allocate
  1058       assert(old_limit == eden()->end(), "sanity check");
  1059       break;
  1061     // Try to allocate until succeeded or the soft limit can't be adjusted
  1062     result = eden()->par_allocate(word_size);
  1063   } while (result == NULL);
  1065   // If the eden is full and the last collection bailed out, we are running
  1066   // out of heap space, and we try to allocate the from-space, too.
  1067   // allocate_from_space can't be inlined because that would introduce a
  1068   // circular dependency at compile time.
  1069   if (result == NULL) {
  1070     result = allocate_from_space(word_size);
  1072   return result;
  1075 HeapWord* DefNewGeneration::par_allocate(size_t word_size,
  1076                                          bool is_tlab) {
  1077   return eden()->par_allocate(word_size);
  1080 void DefNewGeneration::gc_prologue(bool full) {
  1081   // Ensure that _end and _soft_end are the same in eden space.
  1082   eden()->set_soft_end(eden()->end());
  1085 size_t DefNewGeneration::tlab_capacity() const {
  1086   return eden()->capacity();
  1089 size_t DefNewGeneration::unsafe_max_tlab_alloc() const {
  1090   return unsafe_max_alloc_nogc();

mercurial