src/share/vm/c1/c1_IR.cpp

Thu, 13 Jun 2013 22:02:40 -0700

author
ccheung
date
Thu, 13 Jun 2013 22:02:40 -0700
changeset 5259
ef57c43512d6
parent 4860
46f6f063b272
child 6198
55fb97c4c58d
permissions
-rw-r--r--

8014431: cleanup warnings indicated by the -Wunused-value compiler option on linux
Reviewed-by: dholmes, coleenp
Contributed-by: jeremymanson@google.com, calvin.cheung@oracle.com

     1 /*
     2  * Copyright (c) 1999, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "c1/c1_Compilation.hpp"
    27 #include "c1/c1_FrameMap.hpp"
    28 #include "c1/c1_GraphBuilder.hpp"
    29 #include "c1/c1_IR.hpp"
    30 #include "c1/c1_InstructionPrinter.hpp"
    31 #include "c1/c1_Optimizer.hpp"
    32 #include "utilities/bitMap.inline.hpp"
    35 // Implementation of XHandlers
    36 //
    37 // Note: This code could eventually go away if we are
    38 //       just using the ciExceptionHandlerStream.
    40 XHandlers::XHandlers(ciMethod* method) : _list(method->exception_table_length()) {
    41   ciExceptionHandlerStream s(method);
    42   while (!s.is_done()) {
    43     _list.append(new XHandler(s.handler()));
    44     s.next();
    45   }
    46   assert(s.count() == method->exception_table_length(), "exception table lengths inconsistent");
    47 }
    49 // deep copy of all XHandler contained in list
    50 XHandlers::XHandlers(XHandlers* other) :
    51   _list(other->length())
    52 {
    53   for (int i = 0; i < other->length(); i++) {
    54     _list.append(new XHandler(other->handler_at(i)));
    55   }
    56 }
    58 // Returns whether a particular exception type can be caught.  Also
    59 // returns true if klass is unloaded or any exception handler
    60 // classes are unloaded.  type_is_exact indicates whether the throw
    61 // is known to be exactly that class or it might throw a subtype.
    62 bool XHandlers::could_catch(ciInstanceKlass* klass, bool type_is_exact) const {
    63   // the type is unknown so be conservative
    64   if (!klass->is_loaded()) {
    65     return true;
    66   }
    68   for (int i = 0; i < length(); i++) {
    69     XHandler* handler = handler_at(i);
    70     if (handler->is_catch_all()) {
    71       // catch of ANY
    72       return true;
    73     }
    74     ciInstanceKlass* handler_klass = handler->catch_klass();
    75     // if it's unknown it might be catchable
    76     if (!handler_klass->is_loaded()) {
    77       return true;
    78     }
    79     // if the throw type is definitely a subtype of the catch type
    80     // then it can be caught.
    81     if (klass->is_subtype_of(handler_klass)) {
    82       return true;
    83     }
    84     if (!type_is_exact) {
    85       // If the type isn't exactly known then it can also be caught by
    86       // catch statements where the inexact type is a subtype of the
    87       // catch type.
    88       // given: foo extends bar extends Exception
    89       // throw bar can be caught by catch foo, catch bar, and catch
    90       // Exception, however it can't be caught by any handlers without
    91       // bar in its type hierarchy.
    92       if (handler_klass->is_subtype_of(klass)) {
    93         return true;
    94       }
    95     }
    96   }
    98   return false;
    99 }
   102 bool XHandlers::equals(XHandlers* others) const {
   103   if (others == NULL) return false;
   104   if (length() != others->length()) return false;
   106   for (int i = 0; i < length(); i++) {
   107     if (!handler_at(i)->equals(others->handler_at(i))) return false;
   108   }
   109   return true;
   110 }
   112 bool XHandler::equals(XHandler* other) const {
   113   assert(entry_pco() != -1 && other->entry_pco() != -1, "must have entry_pco");
   115   if (entry_pco() != other->entry_pco()) return false;
   116   if (scope_count() != other->scope_count()) return false;
   117   if (_desc != other->_desc) return false;
   119   assert(entry_block() == other->entry_block(), "entry_block must be equal when entry_pco is equal");
   120   return true;
   121 }
   124 // Implementation of IRScope
   125 BlockBegin* IRScope::build_graph(Compilation* compilation, int osr_bci) {
   126   GraphBuilder gm(compilation, this);
   127   NOT_PRODUCT(if (PrintValueNumbering && Verbose) gm.print_stats());
   128   if (compilation->bailed_out()) return NULL;
   129   return gm.start();
   130 }
   133 IRScope::IRScope(Compilation* compilation, IRScope* caller, int caller_bci, ciMethod* method, int osr_bci, bool create_graph)
   134 : _callees(2)
   135 , _compilation(compilation)
   136 , _requires_phi_function(method->max_locals())
   137 {
   138   _caller             = caller;
   139   _level              = caller == NULL ?  0 : caller->level() + 1;
   140   _method             = method;
   141   _xhandlers          = new XHandlers(method);
   142   _number_of_locks    = 0;
   143   _monitor_pairing_ok = method->has_balanced_monitors();
   144   _wrote_final        = false;
   145   _start              = NULL;
   147   if (osr_bci == -1) {
   148     _requires_phi_function.clear();
   149   } else {
   150         // selective creation of phi functions is not possibel in osr-methods
   151     _requires_phi_function.set_range(0, method->max_locals());
   152   }
   154   assert(method->holder()->is_loaded() , "method holder must be loaded");
   156   // build graph if monitor pairing is ok
   157   if (create_graph && monitor_pairing_ok()) _start = build_graph(compilation, osr_bci);
   158 }
   161 int IRScope::max_stack() const {
   162   int my_max = method()->max_stack();
   163   int callee_max = 0;
   164   for (int i = 0; i < number_of_callees(); i++) {
   165     callee_max = MAX2(callee_max, callee_no(i)->max_stack());
   166   }
   167   return my_max + callee_max;
   168 }
   171 bool IRScopeDebugInfo::should_reexecute() {
   172   ciMethod* cur_method = scope()->method();
   173   int       cur_bci    = bci();
   174   if (cur_method != NULL && cur_bci != SynchronizationEntryBCI) {
   175     Bytecodes::Code code = cur_method->java_code_at_bci(cur_bci);
   176     return Interpreter::bytecode_should_reexecute(code);
   177   } else
   178     return false;
   179 }
   182 // Implementation of CodeEmitInfo
   184 // Stack must be NON-null
   185 CodeEmitInfo::CodeEmitInfo(ValueStack* stack, XHandlers* exception_handlers, bool deoptimize_on_exception)
   186   : _scope(stack->scope())
   187   , _scope_debug_info(NULL)
   188   , _oop_map(NULL)
   189   , _stack(stack)
   190   , _exception_handlers(exception_handlers)
   191   , _is_method_handle_invoke(false)
   192   , _deoptimize_on_exception(deoptimize_on_exception) {
   193   assert(_stack != NULL, "must be non null");
   194 }
   197 CodeEmitInfo::CodeEmitInfo(CodeEmitInfo* info, ValueStack* stack)
   198   : _scope(info->_scope)
   199   , _exception_handlers(NULL)
   200   , _scope_debug_info(NULL)
   201   , _oop_map(NULL)
   202   , _stack(stack == NULL ? info->_stack : stack)
   203   , _is_method_handle_invoke(info->_is_method_handle_invoke)
   204   , _deoptimize_on_exception(info->_deoptimize_on_exception) {
   206   // deep copy of exception handlers
   207   if (info->_exception_handlers != NULL) {
   208     _exception_handlers = new XHandlers(info->_exception_handlers);
   209   }
   210 }
   213 void CodeEmitInfo::record_debug_info(DebugInformationRecorder* recorder, int pc_offset) {
   214   // record the safepoint before recording the debug info for enclosing scopes
   215   recorder->add_safepoint(pc_offset, _oop_map->deep_copy());
   216   _scope_debug_info->record_debug_info(recorder, pc_offset, true/*topmost*/, _is_method_handle_invoke);
   217   recorder->end_safepoint(pc_offset);
   218 }
   221 void CodeEmitInfo::add_register_oop(LIR_Opr opr) {
   222   assert(_oop_map != NULL, "oop map must already exist");
   223   assert(opr->is_single_cpu(), "should not call otherwise");
   225   VMReg name = frame_map()->regname(opr);
   226   _oop_map->set_oop(name);
   227 }
   232 // Implementation of IR
   234 IR::IR(Compilation* compilation, ciMethod* method, int osr_bci) :
   235     _locals_size(in_WordSize(-1))
   236   , _num_loops(0) {
   237   // setup IR fields
   238   _compilation = compilation;
   239   _top_scope   = new IRScope(compilation, NULL, -1, method, osr_bci, true);
   240   _code        = NULL;
   241 }
   244 void IR::optimize_blocks() {
   245   Optimizer opt(this);
   246   if (!compilation()->profile_branches()) {
   247     if (DoCEE) {
   248       opt.eliminate_conditional_expressions();
   249 #ifndef PRODUCT
   250       if (PrintCFG || PrintCFG1) { tty->print_cr("CFG after CEE"); print(true); }
   251       if (PrintIR  || PrintIR1 ) { tty->print_cr("IR after CEE"); print(false); }
   252 #endif
   253     }
   254     if (EliminateBlocks) {
   255       opt.eliminate_blocks();
   256 #ifndef PRODUCT
   257       if (PrintCFG || PrintCFG1) { tty->print_cr("CFG after block elimination"); print(true); }
   258       if (PrintIR  || PrintIR1 ) { tty->print_cr("IR after block elimination"); print(false); }
   259 #endif
   260     }
   261   }
   262 }
   264 void IR::eliminate_null_checks() {
   265   Optimizer opt(this);
   266   if (EliminateNullChecks) {
   267     opt.eliminate_null_checks();
   268 #ifndef PRODUCT
   269     if (PrintCFG || PrintCFG1) { tty->print_cr("CFG after null check elimination"); print(true); }
   270     if (PrintIR  || PrintIR1 ) { tty->print_cr("IR after null check elimination"); print(false); }
   271 #endif
   272   }
   273 }
   276 static int sort_pairs(BlockPair** a, BlockPair** b) {
   277   if ((*a)->from() == (*b)->from()) {
   278     return (*a)->to()->block_id() - (*b)->to()->block_id();
   279   } else {
   280     return (*a)->from()->block_id() - (*b)->from()->block_id();
   281   }
   282 }
   285 class CriticalEdgeFinder: public BlockClosure {
   286   BlockPairList blocks;
   287   IR*       _ir;
   289  public:
   290   CriticalEdgeFinder(IR* ir): _ir(ir) {}
   291   void block_do(BlockBegin* bb) {
   292     BlockEnd* be = bb->end();
   293     int nos = be->number_of_sux();
   294     if (nos >= 2) {
   295       for (int i = 0; i < nos; i++) {
   296         BlockBegin* sux = be->sux_at(i);
   297         if (sux->number_of_preds() >= 2) {
   298           blocks.append(new BlockPair(bb, sux));
   299         }
   300       }
   301     }
   302   }
   304   void split_edges() {
   305     BlockPair* last_pair = NULL;
   306     blocks.sort(sort_pairs);
   307     for (int i = 0; i < blocks.length(); i++) {
   308       BlockPair* pair = blocks.at(i);
   309       if (last_pair != NULL && pair->is_same(last_pair)) continue;
   310       BlockBegin* from = pair->from();
   311       BlockBegin* to = pair->to();
   312       BlockBegin* split = from->insert_block_between(to);
   313 #ifndef PRODUCT
   314       if ((PrintIR || PrintIR1) && Verbose) {
   315         tty->print_cr("Split critical edge B%d -> B%d (new block B%d)",
   316                       from->block_id(), to->block_id(), split->block_id());
   317       }
   318 #endif
   319       last_pair = pair;
   320     }
   321   }
   322 };
   324 void IR::split_critical_edges() {
   325   CriticalEdgeFinder cef(this);
   327   iterate_preorder(&cef);
   328   cef.split_edges();
   329 }
   332 class UseCountComputer: public ValueVisitor, BlockClosure {
   333  private:
   334   void visit(Value* n) {
   335     // Local instructions and Phis for expression stack values at the
   336     // start of basic blocks are not added to the instruction list
   337     if (!(*n)->is_linked() && (*n)->can_be_linked()) {
   338       assert(false, "a node was not appended to the graph");
   339       Compilation::current()->bailout("a node was not appended to the graph");
   340     }
   341     // use n's input if not visited before
   342     if (!(*n)->is_pinned() && !(*n)->has_uses()) {
   343       // note: a) if the instruction is pinned, it will be handled by compute_use_count
   344       //       b) if the instruction has uses, it was touched before
   345       //       => in both cases we don't need to update n's values
   346       uses_do(n);
   347     }
   348     // use n
   349     (*n)->_use_count++;
   350   }
   352   Values* worklist;
   353   int depth;
   354   enum {
   355     max_recurse_depth = 20
   356   };
   358   void uses_do(Value* n) {
   359     depth++;
   360     if (depth > max_recurse_depth) {
   361       // don't allow the traversal to recurse too deeply
   362       worklist->push(*n);
   363     } else {
   364       (*n)->input_values_do(this);
   365       // special handling for some instructions
   366       if ((*n)->as_BlockEnd() != NULL) {
   367         // note on BlockEnd:
   368         //   must 'use' the stack only if the method doesn't
   369         //   terminate, however, in those cases stack is empty
   370         (*n)->state_values_do(this);
   371       }
   372     }
   373     depth--;
   374   }
   376   void block_do(BlockBegin* b) {
   377     depth = 0;
   378     // process all pinned nodes as the roots of expression trees
   379     for (Instruction* n = b; n != NULL; n = n->next()) {
   380       if (n->is_pinned()) uses_do(&n);
   381     }
   382     assert(depth == 0, "should have counted back down");
   384     // now process any unpinned nodes which recursed too deeply
   385     while (worklist->length() > 0) {
   386       Value t = worklist->pop();
   387       if (!t->is_pinned()) {
   388         // compute the use count
   389         uses_do(&t);
   391         // pin the instruction so that LIRGenerator doesn't recurse
   392         // too deeply during it's evaluation.
   393         t->pin();
   394       }
   395     }
   396     assert(depth == 0, "should have counted back down");
   397   }
   399   UseCountComputer() {
   400     worklist = new Values();
   401     depth = 0;
   402   }
   404  public:
   405   static void compute(BlockList* blocks) {
   406     UseCountComputer ucc;
   407     blocks->iterate_backward(&ucc);
   408   }
   409 };
   412 // helper macro for short definition of trace-output inside code
   413 #ifndef PRODUCT
   414   #define TRACE_LINEAR_SCAN(level, code)       \
   415     if (TraceLinearScanLevel >= level) {       \
   416       code;                                    \
   417     }
   418 #else
   419   #define TRACE_LINEAR_SCAN(level, code)
   420 #endif
   422 class ComputeLinearScanOrder : public StackObj {
   423  private:
   424   int        _max_block_id;        // the highest block_id of a block
   425   int        _num_blocks;          // total number of blocks (smaller than _max_block_id)
   426   int        _num_loops;           // total number of loops
   427   bool       _iterative_dominators;// method requires iterative computation of dominatiors
   429   BlockList* _linear_scan_order;   // the resulting list of blocks in correct order
   431   BitMap     _visited_blocks;      // used for recursive processing of blocks
   432   BitMap     _active_blocks;       // used for recursive processing of blocks
   433   BitMap     _dominator_blocks;    // temproary BitMap used for computation of dominator
   434   intArray   _forward_branches;    // number of incoming forward branches for each block
   435   BlockList  _loop_end_blocks;     // list of all loop end blocks collected during count_edges
   436   BitMap2D   _loop_map;            // two-dimensional bit set: a bit is set if a block is contained in a loop
   437   BlockList  _work_list;           // temporary list (used in mark_loops and compute_order)
   438   BlockList  _loop_headers;
   440   Compilation* _compilation;
   442   // accessors for _visited_blocks and _active_blocks
   443   void init_visited()                     { _active_blocks.clear(); _visited_blocks.clear(); }
   444   bool is_visited(BlockBegin* b) const    { return _visited_blocks.at(b->block_id()); }
   445   bool is_active(BlockBegin* b) const     { return _active_blocks.at(b->block_id()); }
   446   void set_visited(BlockBegin* b)         { assert(!is_visited(b), "already set"); _visited_blocks.set_bit(b->block_id()); }
   447   void set_active(BlockBegin* b)          { assert(!is_active(b), "already set");  _active_blocks.set_bit(b->block_id()); }
   448   void clear_active(BlockBegin* b)        { assert(is_active(b), "not already");   _active_blocks.clear_bit(b->block_id()); }
   450   // accessors for _forward_branches
   451   void inc_forward_branches(BlockBegin* b) { _forward_branches.at_put(b->block_id(), _forward_branches.at(b->block_id()) + 1); }
   452   int  dec_forward_branches(BlockBegin* b) { _forward_branches.at_put(b->block_id(), _forward_branches.at(b->block_id()) - 1); return _forward_branches.at(b->block_id()); }
   454   // accessors for _loop_map
   455   bool is_block_in_loop   (int loop_idx, BlockBegin* b) const { return _loop_map.at(loop_idx, b->block_id()); }
   456   void set_block_in_loop  (int loop_idx, BlockBegin* b)       { _loop_map.set_bit(loop_idx, b->block_id()); }
   457   void clear_block_in_loop(int loop_idx, int block_id)        { _loop_map.clear_bit(loop_idx, block_id); }
   459   // count edges between blocks
   460   void count_edges(BlockBegin* cur, BlockBegin* parent);
   462   // loop detection
   463   void mark_loops();
   464   void clear_non_natural_loops(BlockBegin* start_block);
   465   void assign_loop_depth(BlockBegin* start_block);
   467   // computation of final block order
   468   BlockBegin* common_dominator(BlockBegin* a, BlockBegin* b);
   469   void compute_dominator(BlockBegin* cur, BlockBegin* parent);
   470   int  compute_weight(BlockBegin* cur);
   471   bool ready_for_processing(BlockBegin* cur);
   472   void sort_into_work_list(BlockBegin* b);
   473   void append_block(BlockBegin* cur);
   474   void compute_order(BlockBegin* start_block);
   476   // fixup of dominators for non-natural loops
   477   bool compute_dominators_iter();
   478   void compute_dominators();
   480   // debug functions
   481   NOT_PRODUCT(void print_blocks();)
   482   DEBUG_ONLY(void verify();)
   484   Compilation* compilation() const { return _compilation; }
   485  public:
   486   ComputeLinearScanOrder(Compilation* c, BlockBegin* start_block);
   488   // accessors for final result
   489   BlockList* linear_scan_order() const    { return _linear_scan_order; }
   490   int        num_loops() const            { return _num_loops; }
   491 };
   494 ComputeLinearScanOrder::ComputeLinearScanOrder(Compilation* c, BlockBegin* start_block) :
   495   _max_block_id(BlockBegin::number_of_blocks()),
   496   _num_blocks(0),
   497   _num_loops(0),
   498   _iterative_dominators(false),
   499   _visited_blocks(_max_block_id),
   500   _active_blocks(_max_block_id),
   501   _dominator_blocks(_max_block_id),
   502   _forward_branches(_max_block_id, 0),
   503   _loop_end_blocks(8),
   504   _work_list(8),
   505   _linear_scan_order(NULL), // initialized later with correct size
   506   _loop_map(0, 0),          // initialized later with correct size
   507   _compilation(c)
   508 {
   509   TRACE_LINEAR_SCAN(2, tty->print_cr("***** computing linear-scan block order"));
   511   init_visited();
   512   count_edges(start_block, NULL);
   514   if (compilation()->is_profiling()) {
   515     ciMethod *method = compilation()->method();
   516     if (!method->is_accessor()) {
   517       ciMethodData* md = method->method_data_or_null();
   518       assert(md != NULL, "Sanity");
   519       md->set_compilation_stats(_num_loops, _num_blocks);
   520     }
   521   }
   523   if (_num_loops > 0) {
   524     mark_loops();
   525     clear_non_natural_loops(start_block);
   526     assign_loop_depth(start_block);
   527   }
   529   compute_order(start_block);
   530   compute_dominators();
   532   NOT_PRODUCT(print_blocks());
   533   DEBUG_ONLY(verify());
   534 }
   537 // Traverse the CFG:
   538 // * count total number of blocks
   539 // * count all incoming edges and backward incoming edges
   540 // * number loop header blocks
   541 // * create a list with all loop end blocks
   542 void ComputeLinearScanOrder::count_edges(BlockBegin* cur, BlockBegin* parent) {
   543   TRACE_LINEAR_SCAN(3, tty->print_cr("Enter count_edges for block B%d coming from B%d", cur->block_id(), parent != NULL ? parent->block_id() : -1));
   544   assert(cur->dominator() == NULL, "dominator already initialized");
   546   if (is_active(cur)) {
   547     TRACE_LINEAR_SCAN(3, tty->print_cr("backward branch"));
   548     assert(is_visited(cur), "block must be visisted when block is active");
   549     assert(parent != NULL, "must have parent");
   551     cur->set(BlockBegin::linear_scan_loop_header_flag);
   552     cur->set(BlockBegin::backward_branch_target_flag);
   554     parent->set(BlockBegin::linear_scan_loop_end_flag);
   556     // When a loop header is also the start of an exception handler, then the backward branch is
   557     // an exception edge. Because such edges are usually critical edges which cannot be split, the
   558     // loop must be excluded here from processing.
   559     if (cur->is_set(BlockBegin::exception_entry_flag)) {
   560       // Make sure that dominators are correct in this weird situation
   561       _iterative_dominators = true;
   562       return;
   563     }
   564     assert(parent->number_of_sux() == 1 && parent->sux_at(0) == cur,
   565            "loop end blocks must have one successor (critical edges are split)");
   567     _loop_end_blocks.append(parent);
   568     return;
   569   }
   571   // increment number of incoming forward branches
   572   inc_forward_branches(cur);
   574   if (is_visited(cur)) {
   575     TRACE_LINEAR_SCAN(3, tty->print_cr("block already visited"));
   576     return;
   577   }
   579   _num_blocks++;
   580   set_visited(cur);
   581   set_active(cur);
   583   // recursive call for all successors
   584   int i;
   585   for (i = cur->number_of_sux() - 1; i >= 0; i--) {
   586     count_edges(cur->sux_at(i), cur);
   587   }
   588   for (i = cur->number_of_exception_handlers() - 1; i >= 0; i--) {
   589     count_edges(cur->exception_handler_at(i), cur);
   590   }
   592   clear_active(cur);
   594   // Each loop has a unique number.
   595   // When multiple loops are nested, assign_loop_depth assumes that the
   596   // innermost loop has the lowest number. This is guaranteed by setting
   597   // the loop number after the recursive calls for the successors above
   598   // have returned.
   599   if (cur->is_set(BlockBegin::linear_scan_loop_header_flag)) {
   600     assert(cur->loop_index() == -1, "cannot set loop-index twice");
   601     TRACE_LINEAR_SCAN(3, tty->print_cr("Block B%d is loop header of loop %d", cur->block_id(), _num_loops));
   603     cur->set_loop_index(_num_loops);
   604     _loop_headers.append(cur);
   605     _num_loops++;
   606   }
   608   TRACE_LINEAR_SCAN(3, tty->print_cr("Finished count_edges for block B%d", cur->block_id()));
   609 }
   612 void ComputeLinearScanOrder::mark_loops() {
   613   TRACE_LINEAR_SCAN(3, tty->print_cr("----- marking loops"));
   615   _loop_map = BitMap2D(_num_loops, _max_block_id);
   616   _loop_map.clear();
   618   for (int i = _loop_end_blocks.length() - 1; i >= 0; i--) {
   619     BlockBegin* loop_end   = _loop_end_blocks.at(i);
   620     BlockBegin* loop_start = loop_end->sux_at(0);
   621     int         loop_idx   = loop_start->loop_index();
   623     TRACE_LINEAR_SCAN(3, tty->print_cr("Processing loop from B%d to B%d (loop %d):", loop_start->block_id(), loop_end->block_id(), loop_idx));
   624     assert(loop_end->is_set(BlockBegin::linear_scan_loop_end_flag), "loop end flag must be set");
   625     assert(loop_end->number_of_sux() == 1, "incorrect number of successors");
   626     assert(loop_start->is_set(BlockBegin::linear_scan_loop_header_flag), "loop header flag must be set");
   627     assert(loop_idx >= 0 && loop_idx < _num_loops, "loop index not set");
   628     assert(_work_list.is_empty(), "work list must be empty before processing");
   630     // add the end-block of the loop to the working list
   631     _work_list.push(loop_end);
   632     set_block_in_loop(loop_idx, loop_end);
   633     do {
   634       BlockBegin* cur = _work_list.pop();
   636       TRACE_LINEAR_SCAN(3, tty->print_cr("    processing B%d", cur->block_id()));
   637       assert(is_block_in_loop(loop_idx, cur), "bit in loop map must be set when block is in work list");
   639       // recursive processing of all predecessors ends when start block of loop is reached
   640       if (cur != loop_start && !cur->is_set(BlockBegin::osr_entry_flag)) {
   641         for (int j = cur->number_of_preds() - 1; j >= 0; j--) {
   642           BlockBegin* pred = cur->pred_at(j);
   644           if (!is_block_in_loop(loop_idx, pred) /*&& !pred->is_set(BlockBeginosr_entry_flag)*/) {
   645             // this predecessor has not been processed yet, so add it to work list
   646             TRACE_LINEAR_SCAN(3, tty->print_cr("    pushing B%d", pred->block_id()));
   647             _work_list.push(pred);
   648             set_block_in_loop(loop_idx, pred);
   649           }
   650         }
   651       }
   652     } while (!_work_list.is_empty());
   653   }
   654 }
   657 // check for non-natural loops (loops where the loop header does not dominate
   658 // all other loop blocks = loops with mulitple entries).
   659 // such loops are ignored
   660 void ComputeLinearScanOrder::clear_non_natural_loops(BlockBegin* start_block) {
   661   for (int i = _num_loops - 1; i >= 0; i--) {
   662     if (is_block_in_loop(i, start_block)) {
   663       // loop i contains the entry block of the method
   664       // -> this is not a natural loop, so ignore it
   665       TRACE_LINEAR_SCAN(2, tty->print_cr("Loop %d is non-natural, so it is ignored", i));
   667       BlockBegin *loop_header = _loop_headers.at(i);
   668       assert(loop_header->is_set(BlockBegin::linear_scan_loop_header_flag), "Must be loop header");
   670       for (int j = 0; j < loop_header->number_of_preds(); j++) {
   671         BlockBegin *pred = loop_header->pred_at(j);
   672         pred->clear(BlockBegin::linear_scan_loop_end_flag);
   673       }
   675       loop_header->clear(BlockBegin::linear_scan_loop_header_flag);
   677       for (int block_id = _max_block_id - 1; block_id >= 0; block_id--) {
   678         clear_block_in_loop(i, block_id);
   679       }
   680       _iterative_dominators = true;
   681     }
   682   }
   683 }
   685 void ComputeLinearScanOrder::assign_loop_depth(BlockBegin* start_block) {
   686   TRACE_LINEAR_SCAN(3, tty->print_cr("----- computing loop-depth and weight"));
   687   init_visited();
   689   assert(_work_list.is_empty(), "work list must be empty before processing");
   690   _work_list.append(start_block);
   692   do {
   693     BlockBegin* cur = _work_list.pop();
   695     if (!is_visited(cur)) {
   696       set_visited(cur);
   697       TRACE_LINEAR_SCAN(4, tty->print_cr("Computing loop depth for block B%d", cur->block_id()));
   699       // compute loop-depth and loop-index for the block
   700       assert(cur->loop_depth() == 0, "cannot set loop-depth twice");
   701       int i;
   702       int loop_depth = 0;
   703       int min_loop_idx = -1;
   704       for (i = _num_loops - 1; i >= 0; i--) {
   705         if (is_block_in_loop(i, cur)) {
   706           loop_depth++;
   707           min_loop_idx = i;
   708         }
   709       }
   710       cur->set_loop_depth(loop_depth);
   711       cur->set_loop_index(min_loop_idx);
   713       // append all unvisited successors to work list
   714       for (i = cur->number_of_sux() - 1; i >= 0; i--) {
   715         _work_list.append(cur->sux_at(i));
   716       }
   717       for (i = cur->number_of_exception_handlers() - 1; i >= 0; i--) {
   718         _work_list.append(cur->exception_handler_at(i));
   719       }
   720     }
   721   } while (!_work_list.is_empty());
   722 }
   725 BlockBegin* ComputeLinearScanOrder::common_dominator(BlockBegin* a, BlockBegin* b) {
   726   assert(a != NULL && b != NULL, "must have input blocks");
   728   _dominator_blocks.clear();
   729   while (a != NULL) {
   730     _dominator_blocks.set_bit(a->block_id());
   731     assert(a->dominator() != NULL || a == _linear_scan_order->at(0), "dominator must be initialized");
   732     a = a->dominator();
   733   }
   734   while (b != NULL && !_dominator_blocks.at(b->block_id())) {
   735     assert(b->dominator() != NULL || b == _linear_scan_order->at(0), "dominator must be initialized");
   736     b = b->dominator();
   737   }
   739   assert(b != NULL, "could not find dominator");
   740   return b;
   741 }
   743 void ComputeLinearScanOrder::compute_dominator(BlockBegin* cur, BlockBegin* parent) {
   744   if (cur->dominator() == NULL) {
   745     TRACE_LINEAR_SCAN(4, tty->print_cr("DOM: initializing dominator of B%d to B%d", cur->block_id(), parent->block_id()));
   746     cur->set_dominator(parent);
   748   } else if (!(cur->is_set(BlockBegin::linear_scan_loop_header_flag) && parent->is_set(BlockBegin::linear_scan_loop_end_flag))) {
   749     TRACE_LINEAR_SCAN(4, tty->print_cr("DOM: computing dominator of B%d: common dominator of B%d and B%d is B%d", cur->block_id(), parent->block_id(), cur->dominator()->block_id(), common_dominator(cur->dominator(), parent)->block_id()));
   750     // Does not hold for exception blocks
   751     assert(cur->number_of_preds() > 1 || cur->is_set(BlockBegin::exception_entry_flag), "");
   752     cur->set_dominator(common_dominator(cur->dominator(), parent));
   753   }
   755   // Additional edge to xhandler of all our successors
   756   // range check elimination needs that the state at the end of a
   757   // block be valid in every block it dominates so cur must dominate
   758   // the exception handlers of its successors.
   759   int num_cur_xhandler = cur->number_of_exception_handlers();
   760   for (int j = 0; j < num_cur_xhandler; j++) {
   761     BlockBegin* xhandler = cur->exception_handler_at(j);
   762     compute_dominator(xhandler, parent);
   763   }
   764 }
   767 int ComputeLinearScanOrder::compute_weight(BlockBegin* cur) {
   768   BlockBegin* single_sux = NULL;
   769   if (cur->number_of_sux() == 1) {
   770     single_sux = cur->sux_at(0);
   771   }
   773   // limit loop-depth to 15 bit (only for security reason, it will never be so big)
   774   int weight = (cur->loop_depth() & 0x7FFF) << 16;
   776   // general macro for short definition of weight flags
   777   // the first instance of INC_WEIGHT_IF has the highest priority
   778   int cur_bit = 15;
   779   #define INC_WEIGHT_IF(condition) if ((condition)) { weight |= (1 << cur_bit); } cur_bit--;
   781   // this is necessery for the (very rare) case that two successing blocks have
   782   // the same loop depth, but a different loop index (can happen for endless loops
   783   // with exception handlers)
   784   INC_WEIGHT_IF(!cur->is_set(BlockBegin::linear_scan_loop_header_flag));
   786   // loop end blocks (blocks that end with a backward branch) are added
   787   // after all other blocks of the loop.
   788   INC_WEIGHT_IF(!cur->is_set(BlockBegin::linear_scan_loop_end_flag));
   790   // critical edge split blocks are prefered because than they have a bigger
   791   // proability to be completely empty
   792   INC_WEIGHT_IF(cur->is_set(BlockBegin::critical_edge_split_flag));
   794   // exceptions should not be thrown in normal control flow, so these blocks
   795   // are added as late as possible
   796   INC_WEIGHT_IF(cur->end()->as_Throw() == NULL  && (single_sux == NULL || single_sux->end()->as_Throw()  == NULL));
   797   INC_WEIGHT_IF(cur->end()->as_Return() == NULL && (single_sux == NULL || single_sux->end()->as_Return() == NULL));
   799   // exceptions handlers are added as late as possible
   800   INC_WEIGHT_IF(!cur->is_set(BlockBegin::exception_entry_flag));
   802   // guarantee that weight is > 0
   803   weight |= 1;
   805   #undef INC_WEIGHT_IF
   806   assert(cur_bit >= 0, "too many flags");
   807   assert(weight > 0, "weight cannot become negative");
   809   return weight;
   810 }
   812 bool ComputeLinearScanOrder::ready_for_processing(BlockBegin* cur) {
   813   // Discount the edge just traveled.
   814   // When the number drops to zero, all forward branches were processed
   815   if (dec_forward_branches(cur) != 0) {
   816     return false;
   817   }
   819   assert(_linear_scan_order->index_of(cur) == -1, "block already processed (block can be ready only once)");
   820   assert(_work_list.index_of(cur) == -1, "block already in work-list (block can be ready only once)");
   821   return true;
   822 }
   824 void ComputeLinearScanOrder::sort_into_work_list(BlockBegin* cur) {
   825   assert(_work_list.index_of(cur) == -1, "block already in work list");
   827   int cur_weight = compute_weight(cur);
   829   // the linear_scan_number is used to cache the weight of a block
   830   cur->set_linear_scan_number(cur_weight);
   832 #ifndef PRODUCT
   833   if (StressLinearScan) {
   834     _work_list.insert_before(0, cur);
   835     return;
   836   }
   837 #endif
   839   _work_list.append(NULL); // provide space for new element
   841   int insert_idx = _work_list.length() - 1;
   842   while (insert_idx > 0 && _work_list.at(insert_idx - 1)->linear_scan_number() > cur_weight) {
   843     _work_list.at_put(insert_idx, _work_list.at(insert_idx - 1));
   844     insert_idx--;
   845   }
   846   _work_list.at_put(insert_idx, cur);
   848   TRACE_LINEAR_SCAN(3, tty->print_cr("Sorted B%d into worklist. new worklist:", cur->block_id()));
   849   TRACE_LINEAR_SCAN(3, for (int i = 0; i < _work_list.length(); i++) tty->print_cr("%8d B%2d  weight:%6x", i, _work_list.at(i)->block_id(), _work_list.at(i)->linear_scan_number()));
   851 #ifdef ASSERT
   852   for (int i = 0; i < _work_list.length(); i++) {
   853     assert(_work_list.at(i)->linear_scan_number() > 0, "weight not set");
   854     assert(i == 0 || _work_list.at(i - 1)->linear_scan_number() <= _work_list.at(i)->linear_scan_number(), "incorrect order in worklist");
   855   }
   856 #endif
   857 }
   859 void ComputeLinearScanOrder::append_block(BlockBegin* cur) {
   860   TRACE_LINEAR_SCAN(3, tty->print_cr("appending block B%d (weight 0x%6x) to linear-scan order", cur->block_id(), cur->linear_scan_number()));
   861   assert(_linear_scan_order->index_of(cur) == -1, "cannot add the same block twice");
   863   // currently, the linear scan order and code emit order are equal.
   864   // therefore the linear_scan_number and the weight of a block must also
   865   // be equal.
   866   cur->set_linear_scan_number(_linear_scan_order->length());
   867   _linear_scan_order->append(cur);
   868 }
   870 void ComputeLinearScanOrder::compute_order(BlockBegin* start_block) {
   871   TRACE_LINEAR_SCAN(3, tty->print_cr("----- computing final block order"));
   873   // the start block is always the first block in the linear scan order
   874   _linear_scan_order = new BlockList(_num_blocks);
   875   append_block(start_block);
   877   assert(start_block->end()->as_Base() != NULL, "start block must end with Base-instruction");
   878   BlockBegin* std_entry = ((Base*)start_block->end())->std_entry();
   879   BlockBegin* osr_entry = ((Base*)start_block->end())->osr_entry();
   881   BlockBegin* sux_of_osr_entry = NULL;
   882   if (osr_entry != NULL) {
   883     // special handling for osr entry:
   884     // ignore the edge between the osr entry and its successor for processing
   885     // the osr entry block is added manually below
   886     assert(osr_entry->number_of_sux() == 1, "osr entry must have exactly one successor");
   887     assert(osr_entry->sux_at(0)->number_of_preds() >= 2, "sucessor of osr entry must have two predecessors (otherwise it is not present in normal control flow");
   889     sux_of_osr_entry = osr_entry->sux_at(0);
   890     dec_forward_branches(sux_of_osr_entry);
   892     compute_dominator(osr_entry, start_block);
   893     _iterative_dominators = true;
   894   }
   895   compute_dominator(std_entry, start_block);
   897   // start processing with standard entry block
   898   assert(_work_list.is_empty(), "list must be empty before processing");
   900   if (ready_for_processing(std_entry)) {
   901     sort_into_work_list(std_entry);
   902   } else {
   903     assert(false, "the std_entry must be ready for processing (otherwise, the method has no start block)");
   904   }
   906   do {
   907     BlockBegin* cur = _work_list.pop();
   909     if (cur == sux_of_osr_entry) {
   910       // the osr entry block is ignored in normal processing, it is never added to the
   911       // work list. Instead, it is added as late as possible manually here.
   912       append_block(osr_entry);
   913       compute_dominator(cur, osr_entry);
   914     }
   915     append_block(cur);
   917     int i;
   918     int num_sux = cur->number_of_sux();
   919     // changed loop order to get "intuitive" order of if- and else-blocks
   920     for (i = 0; i < num_sux; i++) {
   921       BlockBegin* sux = cur->sux_at(i);
   922       compute_dominator(sux, cur);
   923       if (ready_for_processing(sux)) {
   924         sort_into_work_list(sux);
   925       }
   926     }
   927     num_sux = cur->number_of_exception_handlers();
   928     for (i = 0; i < num_sux; i++) {
   929       BlockBegin* sux = cur->exception_handler_at(i);
   930       if (ready_for_processing(sux)) {
   931         sort_into_work_list(sux);
   932       }
   933     }
   934   } while (_work_list.length() > 0);
   935 }
   938 bool ComputeLinearScanOrder::compute_dominators_iter() {
   939   bool changed = false;
   940   int num_blocks = _linear_scan_order->length();
   942   assert(_linear_scan_order->at(0)->dominator() == NULL, "must not have dominator");
   943   assert(_linear_scan_order->at(0)->number_of_preds() == 0, "must not have predecessors");
   944   for (int i = 1; i < num_blocks; i++) {
   945     BlockBegin* block = _linear_scan_order->at(i);
   947     BlockBegin* dominator = block->pred_at(0);
   948     int num_preds = block->number_of_preds();
   950     TRACE_LINEAR_SCAN(4, tty->print_cr("DOM: Processing B%d", block->block_id()));
   952     for (int j = 0; j < num_preds; j++) {
   954       BlockBegin *pred = block->pred_at(j);
   955       TRACE_LINEAR_SCAN(4, tty->print_cr("   DOM: Subrocessing B%d", pred->block_id()));
   957       if (block->is_set(BlockBegin::exception_entry_flag)) {
   958         dominator = common_dominator(dominator, pred);
   959         int num_pred_preds = pred->number_of_preds();
   960         for (int k = 0; k < num_pred_preds; k++) {
   961           dominator = common_dominator(dominator, pred->pred_at(k));
   962         }
   963       } else {
   964         dominator = common_dominator(dominator, pred);
   965       }
   966     }
   968     if (dominator != block->dominator()) {
   969       TRACE_LINEAR_SCAN(4, tty->print_cr("DOM: updating dominator of B%d from B%d to B%d", block->block_id(), block->dominator()->block_id(), dominator->block_id()));
   971       block->set_dominator(dominator);
   972       changed = true;
   973     }
   974   }
   975   return changed;
   976 }
   978 void ComputeLinearScanOrder::compute_dominators() {
   979   TRACE_LINEAR_SCAN(3, tty->print_cr("----- computing dominators (iterative computation reqired: %d)", _iterative_dominators));
   981   // iterative computation of dominators is only required for methods with non-natural loops
   982   // and OSR-methods. For all other methods, the dominators computed when generating the
   983   // linear scan block order are correct.
   984   if (_iterative_dominators) {
   985     do {
   986       TRACE_LINEAR_SCAN(1, tty->print_cr("DOM: next iteration of fix-point calculation"));
   987     } while (compute_dominators_iter());
   988   }
   990   // check that dominators are correct
   991   assert(!compute_dominators_iter(), "fix point not reached");
   993   // Add Blocks to dominates-Array
   994   int num_blocks = _linear_scan_order->length();
   995   for (int i = 0; i < num_blocks; i++) {
   996     BlockBegin* block = _linear_scan_order->at(i);
   998     BlockBegin *dom = block->dominator();
   999     if (dom) {
  1000       assert(dom->dominator_depth() != -1, "Dominator must have been visited before");
  1001       dom->dominates()->append(block);
  1002       block->set_dominator_depth(dom->dominator_depth() + 1);
  1003     } else {
  1004       block->set_dominator_depth(0);
  1010 #ifndef PRODUCT
  1011 void ComputeLinearScanOrder::print_blocks() {
  1012   if (TraceLinearScanLevel >= 2) {
  1013     tty->print_cr("----- loop information:");
  1014     for (int block_idx = 0; block_idx < _linear_scan_order->length(); block_idx++) {
  1015       BlockBegin* cur = _linear_scan_order->at(block_idx);
  1017       tty->print("%4d: B%2d: ", cur->linear_scan_number(), cur->block_id());
  1018       for (int loop_idx = 0; loop_idx < _num_loops; loop_idx++) {
  1019         tty->print ("%d ", is_block_in_loop(loop_idx, cur));
  1021       tty->print_cr(" -> loop_index: %2d, loop_depth: %2d", cur->loop_index(), cur->loop_depth());
  1025   if (TraceLinearScanLevel >= 1) {
  1026     tty->print_cr("----- linear-scan block order:");
  1027     for (int block_idx = 0; block_idx < _linear_scan_order->length(); block_idx++) {
  1028       BlockBegin* cur = _linear_scan_order->at(block_idx);
  1029       tty->print("%4d: B%2d    loop: %2d  depth: %2d", cur->linear_scan_number(), cur->block_id(), cur->loop_index(), cur->loop_depth());
  1031       tty->print(cur->is_set(BlockBegin::exception_entry_flag)         ? " ex" : "   ");
  1032       tty->print(cur->is_set(BlockBegin::critical_edge_split_flag)     ? " ce" : "   ");
  1033       tty->print(cur->is_set(BlockBegin::linear_scan_loop_header_flag) ? " lh" : "   ");
  1034       tty->print(cur->is_set(BlockBegin::linear_scan_loop_end_flag)    ? " le" : "   ");
  1036       if (cur->dominator() != NULL) {
  1037         tty->print("    dom: B%d ", cur->dominator()->block_id());
  1038       } else {
  1039         tty->print("    dom: NULL ");
  1042       if (cur->number_of_preds() > 0) {
  1043         tty->print("    preds: ");
  1044         for (int j = 0; j < cur->number_of_preds(); j++) {
  1045           BlockBegin* pred = cur->pred_at(j);
  1046           tty->print("B%d ", pred->block_id());
  1049       if (cur->number_of_sux() > 0) {
  1050         tty->print("    sux: ");
  1051         for (int j = 0; j < cur->number_of_sux(); j++) {
  1052           BlockBegin* sux = cur->sux_at(j);
  1053           tty->print("B%d ", sux->block_id());
  1056       if (cur->number_of_exception_handlers() > 0) {
  1057         tty->print("    ex: ");
  1058         for (int j = 0; j < cur->number_of_exception_handlers(); j++) {
  1059           BlockBegin* ex = cur->exception_handler_at(j);
  1060           tty->print("B%d ", ex->block_id());
  1063       tty->cr();
  1067 #endif
  1069 #ifdef ASSERT
  1070 void ComputeLinearScanOrder::verify() {
  1071   assert(_linear_scan_order->length() == _num_blocks, "wrong number of blocks in list");
  1073   if (StressLinearScan) {
  1074     // blocks are scrambled when StressLinearScan is used
  1075     return;
  1078   // check that all successors of a block have a higher linear-scan-number
  1079   // and that all predecessors of a block have a lower linear-scan-number
  1080   // (only backward branches of loops are ignored)
  1081   int i;
  1082   for (i = 0; i < _linear_scan_order->length(); i++) {
  1083     BlockBegin* cur = _linear_scan_order->at(i);
  1085     assert(cur->linear_scan_number() == i, "incorrect linear_scan_number");
  1086     assert(cur->linear_scan_number() >= 0 && cur->linear_scan_number() == _linear_scan_order->index_of(cur), "incorrect linear_scan_number");
  1088     int j;
  1089     for (j = cur->number_of_sux() - 1; j >= 0; j--) {
  1090       BlockBegin* sux = cur->sux_at(j);
  1092       assert(sux->linear_scan_number() >= 0 && sux->linear_scan_number() == _linear_scan_order->index_of(sux), "incorrect linear_scan_number");
  1093       if (!sux->is_set(BlockBegin::backward_branch_target_flag)) {
  1094         assert(cur->linear_scan_number() < sux->linear_scan_number(), "invalid order");
  1096       if (cur->loop_depth() == sux->loop_depth()) {
  1097         assert(cur->loop_index() == sux->loop_index() || sux->is_set(BlockBegin::linear_scan_loop_header_flag), "successing blocks with same loop depth must have same loop index");
  1101     for (j = cur->number_of_preds() - 1; j >= 0; j--) {
  1102       BlockBegin* pred = cur->pred_at(j);
  1104       assert(pred->linear_scan_number() >= 0 && pred->linear_scan_number() == _linear_scan_order->index_of(pred), "incorrect linear_scan_number");
  1105       if (!cur->is_set(BlockBegin::backward_branch_target_flag)) {
  1106         assert(cur->linear_scan_number() > pred->linear_scan_number(), "invalid order");
  1108       if (cur->loop_depth() == pred->loop_depth()) {
  1109         assert(cur->loop_index() == pred->loop_index() || cur->is_set(BlockBegin::linear_scan_loop_header_flag), "successing blocks with same loop depth must have same loop index");
  1112       assert(cur->dominator()->linear_scan_number() <= cur->pred_at(j)->linear_scan_number(), "dominator must be before predecessors");
  1115     // check dominator
  1116     if (i == 0) {
  1117       assert(cur->dominator() == NULL, "first block has no dominator");
  1118     } else {
  1119       assert(cur->dominator() != NULL, "all but first block must have dominator");
  1121     // Assertion does not hold for exception handlers
  1122     assert(cur->number_of_preds() != 1 || cur->dominator() == cur->pred_at(0) || cur->is_set(BlockBegin::exception_entry_flag), "Single predecessor must also be dominator");
  1125   // check that all loops are continuous
  1126   for (int loop_idx = 0; loop_idx < _num_loops; loop_idx++) {
  1127     int block_idx = 0;
  1128     assert(!is_block_in_loop(loop_idx, _linear_scan_order->at(block_idx)), "the first block must not be present in any loop");
  1130     // skip blocks before the loop
  1131     while (block_idx < _num_blocks && !is_block_in_loop(loop_idx, _linear_scan_order->at(block_idx))) {
  1132       block_idx++;
  1134     // skip blocks of loop
  1135     while (block_idx < _num_blocks && is_block_in_loop(loop_idx, _linear_scan_order->at(block_idx))) {
  1136       block_idx++;
  1138     // after the first non-loop block, there must not be another loop-block
  1139     while (block_idx < _num_blocks) {
  1140       assert(!is_block_in_loop(loop_idx, _linear_scan_order->at(block_idx)), "loop not continuous in linear-scan order");
  1141       block_idx++;
  1145 #endif
  1148 void IR::compute_code() {
  1149   assert(is_valid(), "IR must be valid");
  1151   ComputeLinearScanOrder compute_order(compilation(), start());
  1152   _num_loops = compute_order.num_loops();
  1153   _code = compute_order.linear_scan_order();
  1157 void IR::compute_use_counts() {
  1158   // make sure all values coming out of this block get evaluated.
  1159   int num_blocks = _code->length();
  1160   for (int i = 0; i < num_blocks; i++) {
  1161     _code->at(i)->end()->state()->pin_stack_for_linear_scan();
  1164   // compute use counts
  1165   UseCountComputer::compute(_code);
  1169 void IR::iterate_preorder(BlockClosure* closure) {
  1170   assert(is_valid(), "IR must be valid");
  1171   start()->iterate_preorder(closure);
  1175 void IR::iterate_postorder(BlockClosure* closure) {
  1176   assert(is_valid(), "IR must be valid");
  1177   start()->iterate_postorder(closure);
  1180 void IR::iterate_linear_scan_order(BlockClosure* closure) {
  1181   linear_scan_order()->iterate_forward(closure);
  1185 #ifndef PRODUCT
  1186 class BlockPrinter: public BlockClosure {
  1187  private:
  1188   InstructionPrinter* _ip;
  1189   bool                _cfg_only;
  1190   bool                _live_only;
  1192  public:
  1193   BlockPrinter(InstructionPrinter* ip, bool cfg_only, bool live_only = false) {
  1194     _ip       = ip;
  1195     _cfg_only = cfg_only;
  1196     _live_only = live_only;
  1199   virtual void block_do(BlockBegin* block) {
  1200     if (_cfg_only) {
  1201       _ip->print_instr(block); tty->cr();
  1202     } else {
  1203       block->print_block(*_ip, _live_only);
  1206 };
  1209 void IR::print(BlockBegin* start, bool cfg_only, bool live_only) {
  1210   ttyLocker ttyl;
  1211   InstructionPrinter ip(!cfg_only);
  1212   BlockPrinter bp(&ip, cfg_only, live_only);
  1213   start->iterate_preorder(&bp);
  1214   tty->cr();
  1217 void IR::print(bool cfg_only, bool live_only) {
  1218   if (is_valid()) {
  1219     print(start(), cfg_only, live_only);
  1220   } else {
  1221     tty->print_cr("invalid IR");
  1226 define_array(BlockListArray, BlockList*)
  1227 define_stack(BlockListList, BlockListArray)
  1229 class PredecessorValidator : public BlockClosure {
  1230  private:
  1231   BlockListList* _predecessors;
  1232   BlockList*     _blocks;
  1234   static int cmp(BlockBegin** a, BlockBegin** b) {
  1235     return (*a)->block_id() - (*b)->block_id();
  1238  public:
  1239   PredecessorValidator(IR* hir) {
  1240     ResourceMark rm;
  1241     _predecessors = new BlockListList(BlockBegin::number_of_blocks(), NULL);
  1242     _blocks = new BlockList();
  1244     int i;
  1245     hir->start()->iterate_preorder(this);
  1246     if (hir->code() != NULL) {
  1247       assert(hir->code()->length() == _blocks->length(), "must match");
  1248       for (i = 0; i < _blocks->length(); i++) {
  1249         assert(hir->code()->contains(_blocks->at(i)), "should be in both lists");
  1253     for (i = 0; i < _blocks->length(); i++) {
  1254       BlockBegin* block = _blocks->at(i);
  1255       BlockList* preds = _predecessors->at(block->block_id());
  1256       if (preds == NULL) {
  1257         assert(block->number_of_preds() == 0, "should be the same");
  1258         continue;
  1261       // clone the pred list so we can mutate it
  1262       BlockList* pred_copy = new BlockList();
  1263       int j;
  1264       for (j = 0; j < block->number_of_preds(); j++) {
  1265         pred_copy->append(block->pred_at(j));
  1267       // sort them in the same order
  1268       preds->sort(cmp);
  1269       pred_copy->sort(cmp);
  1270       int length = MIN2(preds->length(), block->number_of_preds());
  1271       for (j = 0; j < block->number_of_preds(); j++) {
  1272         assert(preds->at(j) == pred_copy->at(j), "must match");
  1275       assert(preds->length() == block->number_of_preds(), "should be the same");
  1279   virtual void block_do(BlockBegin* block) {
  1280     _blocks->append(block);
  1281     BlockEnd* be = block->end();
  1282     int n = be->number_of_sux();
  1283     int i;
  1284     for (i = 0; i < n; i++) {
  1285       BlockBegin* sux = be->sux_at(i);
  1286       assert(!sux->is_set(BlockBegin::exception_entry_flag), "must not be xhandler");
  1288       BlockList* preds = _predecessors->at_grow(sux->block_id(), NULL);
  1289       if (preds == NULL) {
  1290         preds = new BlockList();
  1291         _predecessors->at_put(sux->block_id(), preds);
  1293       preds->append(block);
  1296     n = block->number_of_exception_handlers();
  1297     for (i = 0; i < n; i++) {
  1298       BlockBegin* sux = block->exception_handler_at(i);
  1299       assert(sux->is_set(BlockBegin::exception_entry_flag), "must be xhandler");
  1301       BlockList* preds = _predecessors->at_grow(sux->block_id(), NULL);
  1302       if (preds == NULL) {
  1303         preds = new BlockList();
  1304         _predecessors->at_put(sux->block_id(), preds);
  1306       preds->append(block);
  1309 };
  1311 class VerifyBlockBeginField : public BlockClosure {
  1313 public:
  1315   virtual void block_do(BlockBegin *block) {
  1316     for ( Instruction *cur = block; cur != NULL; cur = cur->next()) {
  1317       assert(cur->block() == block, "Block begin is not correct");
  1320 };
  1322 void IR::verify() {
  1323 #ifdef ASSERT
  1324   PredecessorValidator pv(this);
  1325   VerifyBlockBeginField verifier;
  1326   this->iterate_postorder(&verifier);
  1327 #endif
  1330 #endif // PRODUCT
  1332 void SubstitutionResolver::visit(Value* v) {
  1333   Value v0 = *v;
  1334   if (v0) {
  1335     Value vs = v0->subst();
  1336     if (vs != v0) {
  1337       *v = v0->subst();
  1342 #ifdef ASSERT
  1343 class SubstitutionChecker: public ValueVisitor {
  1344   void visit(Value* v) {
  1345     Value v0 = *v;
  1346     if (v0) {
  1347       Value vs = v0->subst();
  1348       assert(vs == v0, "missed substitution");
  1351 };
  1352 #endif
  1355 void SubstitutionResolver::block_do(BlockBegin* block) {
  1356   Instruction* last = NULL;
  1357   for (Instruction* n = block; n != NULL;) {
  1358     n->values_do(this);
  1359     // need to remove this instruction from the instruction stream
  1360     if (n->subst() != n) {
  1361       assert(last != NULL, "must have last");
  1362       last->set_next(n->next());
  1363     } else {
  1364       last = n;
  1366     n = last->next();
  1369 #ifdef ASSERT
  1370   SubstitutionChecker check_substitute;
  1371   if (block->state()) block->state()->values_do(&check_substitute);
  1372   block->block_values_do(&check_substitute);
  1373   if (block->end() && block->end()->state()) block->end()->state()->values_do(&check_substitute);
  1374 #endif

mercurial