src/share/vm/prims/jvmtiTagMap.cpp

Wed, 03 Jul 2019 20:42:37 +0800

author
aoqi
date
Wed, 03 Jul 2019 20:42:37 +0800
changeset 9637
eef07cd490d4
parent 9448
73d689add964
child 9756
2be326848943
permissions
-rw-r--r--

Merge

     1 /*
     2  * Copyright (c) 2003, 2018, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "classfile/symbolTable.hpp"
    27 #include "classfile/systemDictionary.hpp"
    28 #include "classfile/vmSymbols.hpp"
    29 #include "jvmtifiles/jvmtiEnv.hpp"
    30 #include "oops/instanceMirrorKlass.hpp"
    31 #include "oops/objArrayKlass.hpp"
    32 #include "oops/oop.inline2.hpp"
    33 #include "prims/jvmtiEventController.hpp"
    34 #include "prims/jvmtiEventController.inline.hpp"
    35 #include "prims/jvmtiExport.hpp"
    36 #include "prims/jvmtiImpl.hpp"
    37 #include "prims/jvmtiTagMap.hpp"
    38 #include "runtime/biasedLocking.hpp"
    39 #include "runtime/javaCalls.hpp"
    40 #include "runtime/jniHandles.hpp"
    41 #include "runtime/mutex.hpp"
    42 #include "runtime/mutexLocker.hpp"
    43 #include "runtime/reflectionUtils.hpp"
    44 #include "runtime/vframe.hpp"
    45 #include "runtime/vmThread.hpp"
    46 #include "runtime/vm_operations.hpp"
    47 #include "services/serviceUtil.hpp"
    48 #include "utilities/macros.hpp"
    49 #if INCLUDE_ALL_GCS
    50 #include "gc_implementation/g1/g1SATBCardTableModRefBS.hpp"
    51 #include "gc_implementation/parallelScavenge/parallelScavengeHeap.hpp"
    52 #endif // INCLUDE_ALL_GCS
    54 // JvmtiTagHashmapEntry
    55 //
    56 // Each entry encapsulates a reference to the tagged object
    57 // and the tag value. In addition an entry includes a next pointer which
    58 // is used to chain entries together.
    60 class JvmtiTagHashmapEntry : public CHeapObj<mtInternal> {
    61  private:
    62   friend class JvmtiTagMap;
    64   oop _object;                          // tagged object
    65   jlong _tag;                           // the tag
    66   JvmtiTagHashmapEntry* _next;          // next on the list
    68   inline void init(oop object, jlong tag) {
    69     _object = object;
    70     _tag = tag;
    71     _next = NULL;
    72   }
    74   // constructor
    75   JvmtiTagHashmapEntry(oop object, jlong tag)         { init(object, tag); }
    77  public:
    79   // accessor methods
    80   inline oop object() const                           { return _object; }
    81   inline oop* object_addr()                           { return &_object; }
    82   inline jlong tag() const                            { return _tag; }
    84   inline void set_tag(jlong tag) {
    85     assert(tag != 0, "can't be zero");
    86     _tag = tag;
    87   }
    89   inline JvmtiTagHashmapEntry* next() const             { return _next; }
    90   inline void set_next(JvmtiTagHashmapEntry* next)      { _next = next; }
    91 };
    94 // JvmtiTagHashmap
    95 //
    96 // A hashmap is essentially a table of pointers to entries. Entries
    97 // are hashed to a location, or position in the table, and then
    98 // chained from that location. The "key" for hashing is address of
    99 // the object, or oop. The "value" is the tag value.
   100 //
   101 // A hashmap maintains a count of the number entries in the hashmap
   102 // and resizes if the number of entries exceeds a given threshold.
   103 // The threshold is specified as a percentage of the size - for
   104 // example a threshold of 0.75 will trigger the hashmap to resize
   105 // if the number of entries is >75% of table size.
   106 //
   107 // A hashmap provides functions for adding, removing, and finding
   108 // entries. It also provides a function to iterate over all entries
   109 // in the hashmap.
   111 class JvmtiTagHashmap : public CHeapObj<mtInternal> {
   112  private:
   113   friend class JvmtiTagMap;
   115   enum {
   116     small_trace_threshold  = 10000,                  // threshold for tracing
   117     medium_trace_threshold = 100000,
   118     large_trace_threshold  = 1000000,
   119     initial_trace_threshold = small_trace_threshold
   120   };
   122   static int _sizes[];                  // array of possible hashmap sizes
   123   int _size;                            // actual size of the table
   124   int _size_index;                      // index into size table
   126   int _entry_count;                     // number of entries in the hashmap
   128   float _load_factor;                   // load factor as a % of the size
   129   int _resize_threshold;                // computed threshold to trigger resizing.
   130   bool _resizing_enabled;               // indicates if hashmap can resize
   132   int _trace_threshold;                 // threshold for trace messages
   134   JvmtiTagHashmapEntry** _table;        // the table of entries.
   136   // private accessors
   137   int resize_threshold() const                  { return _resize_threshold; }
   138   int trace_threshold() const                   { return _trace_threshold; }
   140   // initialize the hashmap
   141   void init(int size_index=0, float load_factor=4.0f) {
   142     int initial_size =  _sizes[size_index];
   143     _size_index = size_index;
   144     _size = initial_size;
   145     _entry_count = 0;
   146     if (TraceJVMTIObjectTagging) {
   147       _trace_threshold = initial_trace_threshold;
   148     } else {
   149       _trace_threshold = -1;
   150     }
   151     _load_factor = load_factor;
   152     _resize_threshold = (int)(_load_factor * _size);
   153     _resizing_enabled = true;
   154     size_t s = initial_size * sizeof(JvmtiTagHashmapEntry*);
   155     _table = (JvmtiTagHashmapEntry**)os::malloc(s, mtInternal);
   156     if (_table == NULL) {
   157       vm_exit_out_of_memory(s, OOM_MALLOC_ERROR,
   158         "unable to allocate initial hashtable for jvmti object tags");
   159     }
   160     for (int i=0; i<initial_size; i++) {
   161       _table[i] = NULL;
   162     }
   163   }
   165   // hash a given key (oop) with the specified size
   166   static unsigned int hash(oop key, int size) {
   167     // shift right to get better distribution (as these bits will be zero
   168     // with aligned addresses)
   169     unsigned int addr = (unsigned int)(cast_from_oop<intptr_t>(key));
   170 #ifdef _LP64
   171     return (addr >> 3) % size;
   172 #else
   173     return (addr >> 2) % size;
   174 #endif
   175   }
   177   // hash a given key (oop)
   178   unsigned int hash(oop key) {
   179     return hash(key, _size);
   180   }
   182   // resize the hashmap - allocates a large table and re-hashes
   183   // all entries into the new table.
   184   void resize() {
   185     int new_size_index = _size_index+1;
   186     int new_size = _sizes[new_size_index];
   187     if (new_size < 0) {
   188       // hashmap already at maximum capacity
   189       return;
   190     }
   192     // allocate new table
   193     size_t s = new_size * sizeof(JvmtiTagHashmapEntry*);
   194     JvmtiTagHashmapEntry** new_table = (JvmtiTagHashmapEntry**)os::malloc(s, mtInternal);
   195     if (new_table == NULL) {
   196       warning("unable to allocate larger hashtable for jvmti object tags");
   197       set_resizing_enabled(false);
   198       return;
   199     }
   201     // initialize new table
   202     int i;
   203     for (i=0; i<new_size; i++) {
   204       new_table[i] = NULL;
   205     }
   207     // rehash all entries into the new table
   208     for (i=0; i<_size; i++) {
   209       JvmtiTagHashmapEntry* entry = _table[i];
   210       while (entry != NULL) {
   211         JvmtiTagHashmapEntry* next = entry->next();
   212         oop key = entry->object();
   213         assert(key != NULL, "jni weak reference cleared!!");
   214         unsigned int h = hash(key, new_size);
   215         JvmtiTagHashmapEntry* anchor = new_table[h];
   216         if (anchor == NULL) {
   217           new_table[h] = entry;
   218           entry->set_next(NULL);
   219         } else {
   220           entry->set_next(anchor);
   221           new_table[h] = entry;
   222         }
   223         entry = next;
   224       }
   225     }
   227     // free old table and update settings.
   228     os::free((void*)_table);
   229     _table = new_table;
   230     _size_index = new_size_index;
   231     _size = new_size;
   233     // compute new resize threshold
   234     _resize_threshold = (int)(_load_factor * _size);
   235   }
   238   // internal remove function - remove an entry at a given position in the
   239   // table.
   240   inline void remove(JvmtiTagHashmapEntry* prev, int pos, JvmtiTagHashmapEntry* entry) {
   241     assert(pos >= 0 && pos < _size, "out of range");
   242     if (prev == NULL) {
   243       _table[pos] = entry->next();
   244     } else {
   245       prev->set_next(entry->next());
   246     }
   247     assert(_entry_count > 0, "checking");
   248     _entry_count--;
   249   }
   251   // resizing switch
   252   bool is_resizing_enabled() const          { return _resizing_enabled; }
   253   void set_resizing_enabled(bool enable)    { _resizing_enabled = enable; }
   255   // debugging
   256   void print_memory_usage();
   257   void compute_next_trace_threshold();
   259  public:
   261   // create a JvmtiTagHashmap of a preferred size and optionally a load factor.
   262   // The preferred size is rounded down to an actual size.
   263   JvmtiTagHashmap(int size, float load_factor=0.0f) {
   264     int i=0;
   265     while (_sizes[i] < size) {
   266       if (_sizes[i] < 0) {
   267         assert(i > 0, "sanity check");
   268         i--;
   269         break;
   270       }
   271       i++;
   272     }
   274     // if a load factor is specified then use it, otherwise use default
   275     if (load_factor > 0.01f) {
   276       init(i, load_factor);
   277     } else {
   278       init(i);
   279     }
   280   }
   282   // create a JvmtiTagHashmap with default settings
   283   JvmtiTagHashmap() {
   284     init();
   285   }
   287   // release table when JvmtiTagHashmap destroyed
   288   ~JvmtiTagHashmap() {
   289     if (_table != NULL) {
   290       os::free((void*)_table);
   291       _table = NULL;
   292     }
   293   }
   295   // accessors
   296   int size() const                              { return _size; }
   297   JvmtiTagHashmapEntry** table() const          { return _table; }
   298   int entry_count() const                       { return _entry_count; }
   300   // find an entry in the hashmap, returns NULL if not found.
   301   inline JvmtiTagHashmapEntry* find(oop key) {
   302     unsigned int h = hash(key);
   303     JvmtiTagHashmapEntry* entry = _table[h];
   304     while (entry != NULL) {
   305       if (entry->object() == key) {
   306          return entry;
   307       }
   308       entry = entry->next();
   309     }
   310     return NULL;
   311   }
   314   // add a new entry to hashmap
   315   inline void add(oop key, JvmtiTagHashmapEntry* entry) {
   316     assert(key != NULL, "checking");
   317     assert(find(key) == NULL, "duplicate detected");
   318     unsigned int h = hash(key);
   319     JvmtiTagHashmapEntry* anchor = _table[h];
   320     if (anchor == NULL) {
   321       _table[h] = entry;
   322       entry->set_next(NULL);
   323     } else {
   324       entry->set_next(anchor);
   325       _table[h] = entry;
   326     }
   328     _entry_count++;
   329     if (trace_threshold() > 0 && entry_count() >= trace_threshold()) {
   330       assert(TraceJVMTIObjectTagging, "should only get here when tracing");
   331       print_memory_usage();
   332       compute_next_trace_threshold();
   333     }
   335     // if the number of entries exceed the threshold then resize
   336     if (entry_count() > resize_threshold() && is_resizing_enabled()) {
   337       resize();
   338     }
   339   }
   341   // remove an entry with the given key.
   342   inline JvmtiTagHashmapEntry* remove(oop key) {
   343     unsigned int h = hash(key);
   344     JvmtiTagHashmapEntry* entry = _table[h];
   345     JvmtiTagHashmapEntry* prev = NULL;
   346     while (entry != NULL) {
   347       if (key == entry->object()) {
   348         break;
   349       }
   350       prev = entry;
   351       entry = entry->next();
   352     }
   353     if (entry != NULL) {
   354       remove(prev, h, entry);
   355     }
   356     return entry;
   357   }
   359   // iterate over all entries in the hashmap
   360   void entry_iterate(JvmtiTagHashmapEntryClosure* closure);
   361 };
   363 // possible hashmap sizes - odd primes that roughly double in size.
   364 // To avoid excessive resizing the odd primes from 4801-76831 and
   365 // 76831-307261 have been removed. The list must be terminated by -1.
   366 int JvmtiTagHashmap::_sizes[] =  { 4801, 76831, 307261, 614563, 1228891,
   367     2457733, 4915219, 9830479, 19660831, 39321619, 78643219, -1 };
   370 // A supporting class for iterating over all entries in Hashmap
   371 class JvmtiTagHashmapEntryClosure {
   372  public:
   373   virtual void do_entry(JvmtiTagHashmapEntry* entry) = 0;
   374 };
   377 // iterate over all entries in the hashmap
   378 void JvmtiTagHashmap::entry_iterate(JvmtiTagHashmapEntryClosure* closure) {
   379   for (int i=0; i<_size; i++) {
   380     JvmtiTagHashmapEntry* entry = _table[i];
   381     JvmtiTagHashmapEntry* prev = NULL;
   382     while (entry != NULL) {
   383       // obtain the next entry before invoking do_entry - this is
   384       // necessary because do_entry may remove the entry from the
   385       // hashmap.
   386       JvmtiTagHashmapEntry* next = entry->next();
   387       closure->do_entry(entry);
   388       entry = next;
   389      }
   390   }
   391 }
   393 // debugging
   394 void JvmtiTagHashmap::print_memory_usage() {
   395   intptr_t p = (intptr_t)this;
   396   tty->print("[JvmtiTagHashmap @ " INTPTR_FORMAT, p);
   398   // table + entries in KB
   399   int hashmap_usage = (size()*sizeof(JvmtiTagHashmapEntry*) +
   400     entry_count()*sizeof(JvmtiTagHashmapEntry))/K;
   402   int weak_globals_usage = (int)(JNIHandles::weak_global_handle_memory_usage()/K);
   403   tty->print_cr(", %d entries (%d KB) <JNI weak globals: %d KB>]",
   404     entry_count(), hashmap_usage, weak_globals_usage);
   405 }
   407 // compute threshold for the next trace message
   408 void JvmtiTagHashmap::compute_next_trace_threshold() {
   409   if (trace_threshold() < medium_trace_threshold) {
   410     _trace_threshold += small_trace_threshold;
   411   } else {
   412     if (trace_threshold() < large_trace_threshold) {
   413       _trace_threshold += medium_trace_threshold;
   414     } else {
   415       _trace_threshold += large_trace_threshold;
   416     }
   417   }
   418 }
   420 // create a JvmtiTagMap
   421 JvmtiTagMap::JvmtiTagMap(JvmtiEnv* env) :
   422   _env(env),
   423   _lock(Mutex::nonleaf+2, "JvmtiTagMap._lock", false),
   424   _free_entries(NULL),
   425   _free_entries_count(0)
   426 {
   427   assert(JvmtiThreadState_lock->is_locked(), "sanity check");
   428   assert(((JvmtiEnvBase *)env)->tag_map() == NULL, "tag map already exists for environment");
   430   _hashmap = new JvmtiTagHashmap();
   432   // finally add us to the environment
   433   ((JvmtiEnvBase *)env)->set_tag_map(this);
   434 }
   437 // destroy a JvmtiTagMap
   438 JvmtiTagMap::~JvmtiTagMap() {
   440   // no lock acquired as we assume the enclosing environment is
   441   // also being destroryed.
   442   ((JvmtiEnvBase *)_env)->set_tag_map(NULL);
   444   JvmtiTagHashmapEntry** table = _hashmap->table();
   445   for (int j = 0; j < _hashmap->size(); j++) {
   446     JvmtiTagHashmapEntry* entry = table[j];
   447     while (entry != NULL) {
   448       JvmtiTagHashmapEntry* next = entry->next();
   449       delete entry;
   450       entry = next;
   451     }
   452   }
   454   // finally destroy the hashmap
   455   delete _hashmap;
   456   _hashmap = NULL;
   458   // remove any entries on the free list
   459   JvmtiTagHashmapEntry* entry = _free_entries;
   460   while (entry != NULL) {
   461     JvmtiTagHashmapEntry* next = entry->next();
   462     delete entry;
   463     entry = next;
   464   }
   465   _free_entries = NULL;
   466 }
   468 // create a hashmap entry
   469 // - if there's an entry on the (per-environment) free list then this
   470 // is returned. Otherwise an new entry is allocated.
   471 JvmtiTagHashmapEntry* JvmtiTagMap::create_entry(oop ref, jlong tag) {
   472   assert(Thread::current()->is_VM_thread() || is_locked(), "checking");
   473   JvmtiTagHashmapEntry* entry;
   474   if (_free_entries == NULL) {
   475     entry = new JvmtiTagHashmapEntry(ref, tag);
   476   } else {
   477     assert(_free_entries_count > 0, "mismatched _free_entries_count");
   478     _free_entries_count--;
   479     entry = _free_entries;
   480     _free_entries = entry->next();
   481     entry->init(ref, tag);
   482   }
   483   return entry;
   484 }
   486 // destroy an entry by returning it to the free list
   487 void JvmtiTagMap::destroy_entry(JvmtiTagHashmapEntry* entry) {
   488   assert(SafepointSynchronize::is_at_safepoint() || is_locked(), "checking");
   489   // limit the size of the free list
   490   if (_free_entries_count >= max_free_entries) {
   491     delete entry;
   492   } else {
   493     entry->set_next(_free_entries);
   494     _free_entries = entry;
   495     _free_entries_count++;
   496   }
   497 }
   499 // returns the tag map for the given environments. If the tag map
   500 // doesn't exist then it is created.
   501 JvmtiTagMap* JvmtiTagMap::tag_map_for(JvmtiEnv* env) {
   502   JvmtiTagMap* tag_map = ((JvmtiEnvBase*)env)->tag_map();
   503   if (tag_map == NULL) {
   504     MutexLocker mu(JvmtiThreadState_lock);
   505     tag_map = ((JvmtiEnvBase*)env)->tag_map();
   506     if (tag_map == NULL) {
   507       tag_map = new JvmtiTagMap(env);
   508     }
   509   } else {
   510     CHECK_UNHANDLED_OOPS_ONLY(Thread::current()->clear_unhandled_oops());
   511   }
   512   return tag_map;
   513 }
   515 // iterate over all entries in the tag map.
   516 void JvmtiTagMap::entry_iterate(JvmtiTagHashmapEntryClosure* closure) {
   517   hashmap()->entry_iterate(closure);
   518 }
   520 // returns true if the hashmaps are empty
   521 bool JvmtiTagMap::is_empty() {
   522   assert(SafepointSynchronize::is_at_safepoint() || is_locked(), "checking");
   523   return hashmap()->entry_count() == 0;
   524 }
   527 // Return the tag value for an object, or 0 if the object is
   528 // not tagged
   529 //
   530 static inline jlong tag_for(JvmtiTagMap* tag_map, oop o) {
   531   JvmtiTagHashmapEntry* entry = tag_map->hashmap()->find(o);
   532   if (entry == NULL) {
   533     return 0;
   534   } else {
   535     return entry->tag();
   536   }
   537 }
   540 // A CallbackWrapper is a support class for querying and tagging an object
   541 // around a callback to a profiler. The constructor does pre-callback
   542 // work to get the tag value, klass tag value, ... and the destructor
   543 // does the post-callback work of tagging or untagging the object.
   544 //
   545 // {
   546 //   CallbackWrapper wrapper(tag_map, o);
   547 //
   548 //   (*callback)(wrapper.klass_tag(), wrapper.obj_size(), wrapper.obj_tag_p(), ...)
   549 //
   550 // } // wrapper goes out of scope here which results in the destructor
   551 //      checking to see if the object has been tagged, untagged, or the
   552 //      tag value has changed.
   553 //
   554 class CallbackWrapper : public StackObj {
   555  private:
   556   JvmtiTagMap* _tag_map;
   557   JvmtiTagHashmap* _hashmap;
   558   JvmtiTagHashmapEntry* _entry;
   559   oop _o;
   560   jlong _obj_size;
   561   jlong _obj_tag;
   562   jlong _klass_tag;
   564  protected:
   565   JvmtiTagMap* tag_map() const      { return _tag_map; }
   567   // invoked post-callback to tag, untag, or update the tag of an object
   568   void inline post_callback_tag_update(oop o, JvmtiTagHashmap* hashmap,
   569                                        JvmtiTagHashmapEntry* entry, jlong obj_tag);
   570  public:
   571   CallbackWrapper(JvmtiTagMap* tag_map, oop o) {
   572     assert(Thread::current()->is_VM_thread() || tag_map->is_locked(),
   573            "MT unsafe or must be VM thread");
   575     // object to tag
   576     _o = o;
   578     // object size
   579     _obj_size = (jlong)_o->size() * wordSize;
   581     // record the context
   582     _tag_map = tag_map;
   583     _hashmap = tag_map->hashmap();
   584     _entry = _hashmap->find(_o);
   586     // get object tag
   587     _obj_tag = (_entry == NULL) ? 0 : _entry->tag();
   589     // get the class and the class's tag value
   590     assert(SystemDictionary::Class_klass()->oop_is_instanceMirror(), "Is not?");
   592     _klass_tag = tag_for(tag_map, _o->klass()->java_mirror());
   593   }
   595   ~CallbackWrapper() {
   596     post_callback_tag_update(_o, _hashmap, _entry, _obj_tag);
   597   }
   599   inline jlong* obj_tag_p()                     { return &_obj_tag; }
   600   inline jlong obj_size() const                 { return _obj_size; }
   601   inline jlong obj_tag() const                  { return _obj_tag; }
   602   inline jlong klass_tag() const                { return _klass_tag; }
   603 };
   607 // callback post-callback to tag, untag, or update the tag of an object
   608 void inline CallbackWrapper::post_callback_tag_update(oop o,
   609                                                       JvmtiTagHashmap* hashmap,
   610                                                       JvmtiTagHashmapEntry* entry,
   611                                                       jlong obj_tag) {
   612   if (entry == NULL) {
   613     if (obj_tag != 0) {
   614       // callback has tagged the object
   615       assert(Thread::current()->is_VM_thread(), "must be VMThread");
   616       entry = tag_map()->create_entry(o, obj_tag);
   617       hashmap->add(o, entry);
   618     }
   619   } else {
   620     // object was previously tagged - the callback may have untagged
   621     // the object or changed the tag value
   622     if (obj_tag == 0) {
   624       JvmtiTagHashmapEntry* entry_removed = hashmap->remove(o);
   625       assert(entry_removed == entry, "checking");
   626       tag_map()->destroy_entry(entry);
   628     } else {
   629       if (obj_tag != entry->tag()) {
   630          entry->set_tag(obj_tag);
   631       }
   632     }
   633   }
   634 }
   636 // An extended CallbackWrapper used when reporting an object reference
   637 // to the agent.
   638 //
   639 // {
   640 //   TwoOopCallbackWrapper wrapper(tag_map, referrer, o);
   641 //
   642 //   (*callback)(wrapper.klass_tag(),
   643 //               wrapper.obj_size(),
   644 //               wrapper.obj_tag_p()
   645 //               wrapper.referrer_tag_p(), ...)
   646 //
   647 // } // wrapper goes out of scope here which results in the destructor
   648 //      checking to see if the referrer object has been tagged, untagged,
   649 //      or the tag value has changed.
   650 //
   651 class TwoOopCallbackWrapper : public CallbackWrapper {
   652  private:
   653   bool _is_reference_to_self;
   654   JvmtiTagHashmap* _referrer_hashmap;
   655   JvmtiTagHashmapEntry* _referrer_entry;
   656   oop _referrer;
   657   jlong _referrer_obj_tag;
   658   jlong _referrer_klass_tag;
   659   jlong* _referrer_tag_p;
   661   bool is_reference_to_self() const             { return _is_reference_to_self; }
   663  public:
   664   TwoOopCallbackWrapper(JvmtiTagMap* tag_map, oop referrer, oop o) :
   665     CallbackWrapper(tag_map, o)
   666   {
   667     // self reference needs to be handled in a special way
   668     _is_reference_to_self = (referrer == o);
   670     if (_is_reference_to_self) {
   671       _referrer_klass_tag = klass_tag();
   672       _referrer_tag_p = obj_tag_p();
   673     } else {
   674       _referrer = referrer;
   675       // record the context
   676       _referrer_hashmap = tag_map->hashmap();
   677       _referrer_entry = _referrer_hashmap->find(_referrer);
   679       // get object tag
   680       _referrer_obj_tag = (_referrer_entry == NULL) ? 0 : _referrer_entry->tag();
   681       _referrer_tag_p = &_referrer_obj_tag;
   683       // get referrer class tag.
   684       _referrer_klass_tag = tag_for(tag_map, _referrer->klass()->java_mirror());
   685     }
   686   }
   688   ~TwoOopCallbackWrapper() {
   689     if (!is_reference_to_self()){
   690       post_callback_tag_update(_referrer,
   691                                _referrer_hashmap,
   692                                _referrer_entry,
   693                                _referrer_obj_tag);
   694     }
   695   }
   697   // address of referrer tag
   698   // (for a self reference this will return the same thing as obj_tag_p())
   699   inline jlong* referrer_tag_p()        { return _referrer_tag_p; }
   701   // referrer's class tag
   702   inline jlong referrer_klass_tag()     { return _referrer_klass_tag; }
   703 };
   705 // tag an object
   706 //
   707 // This function is performance critical. If many threads attempt to tag objects
   708 // around the same time then it's possible that the Mutex associated with the
   709 // tag map will be a hot lock.
   710 void JvmtiTagMap::set_tag(jobject object, jlong tag) {
   711   MutexLocker ml(lock());
   713   // resolve the object
   714   oop o = JNIHandles::resolve_non_null(object);
   716   // see if the object is already tagged
   717   JvmtiTagHashmap* hashmap = _hashmap;
   718   JvmtiTagHashmapEntry* entry = hashmap->find(o);
   720   // if the object is not already tagged then we tag it
   721   if (entry == NULL) {
   722     if (tag != 0) {
   723       entry = create_entry(o, tag);
   724       hashmap->add(o, entry);
   725     } else {
   726       // no-op
   727     }
   728   } else {
   729     // if the object is already tagged then we either update
   730     // the tag (if a new tag value has been provided)
   731     // or remove the object if the new tag value is 0.
   732     if (tag == 0) {
   733       hashmap->remove(o);
   734       destroy_entry(entry);
   735     } else {
   736       entry->set_tag(tag);
   737     }
   738   }
   739 }
   741 // get the tag for an object
   742 jlong JvmtiTagMap::get_tag(jobject object) {
   743   MutexLocker ml(lock());
   745   // resolve the object
   746   oop o = JNIHandles::resolve_non_null(object);
   748   return tag_for(this, o);
   749 }
   752 // Helper class used to describe the static or instance fields of a class.
   753 // For each field it holds the field index (as defined by the JVMTI specification),
   754 // the field type, and the offset.
   756 class ClassFieldDescriptor: public CHeapObj<mtInternal> {
   757  private:
   758   int _field_index;
   759   int _field_offset;
   760   char _field_type;
   761  public:
   762   ClassFieldDescriptor(int index, char type, int offset) :
   763     _field_index(index), _field_type(type), _field_offset(offset) {
   764   }
   765   int field_index()  const  { return _field_index; }
   766   char field_type()  const  { return _field_type; }
   767   int field_offset() const  { return _field_offset; }
   768 };
   770 class ClassFieldMap: public CHeapObj<mtInternal> {
   771  private:
   772   enum {
   773     initial_field_count = 5
   774   };
   776   // list of field descriptors
   777   GrowableArray<ClassFieldDescriptor*>* _fields;
   779   // constructor
   780   ClassFieldMap();
   782   // add a field
   783   void add(int index, char type, int offset);
   785   // returns the field count for the given class
   786   static int compute_field_count(instanceKlassHandle ikh);
   788  public:
   789   ~ClassFieldMap();
   791   // access
   792   int field_count()                     { return _fields->length(); }
   793   ClassFieldDescriptor* field_at(int i) { return _fields->at(i); }
   795   // functions to create maps of static or instance fields
   796   static ClassFieldMap* create_map_of_static_fields(Klass* k);
   797   static ClassFieldMap* create_map_of_instance_fields(oop obj);
   798 };
   800 ClassFieldMap::ClassFieldMap() {
   801   _fields = new (ResourceObj::C_HEAP, mtInternal)
   802     GrowableArray<ClassFieldDescriptor*>(initial_field_count, true);
   803 }
   805 ClassFieldMap::~ClassFieldMap() {
   806   for (int i=0; i<_fields->length(); i++) {
   807     delete _fields->at(i);
   808   }
   809   delete _fields;
   810 }
   812 void ClassFieldMap::add(int index, char type, int offset) {
   813   ClassFieldDescriptor* field = new ClassFieldDescriptor(index, type, offset);
   814   _fields->append(field);
   815 }
   817 // Returns a heap allocated ClassFieldMap to describe the static fields
   818 // of the given class.
   819 //
   820 ClassFieldMap* ClassFieldMap::create_map_of_static_fields(Klass* k) {
   821   HandleMark hm;
   822   instanceKlassHandle ikh = instanceKlassHandle(Thread::current(), k);
   824   // create the field map
   825   ClassFieldMap* field_map = new ClassFieldMap();
   827   FilteredFieldStream f(ikh, false, false);
   828   int max_field_index = f.field_count()-1;
   830   int index = 0;
   831   for (FilteredFieldStream fld(ikh, true, true); !fld.eos(); fld.next(), index++) {
   832     // ignore instance fields
   833     if (!fld.access_flags().is_static()) {
   834       continue;
   835     }
   836     field_map->add(max_field_index - index, fld.signature()->byte_at(0), fld.offset());
   837   }
   838   return field_map;
   839 }
   841 // Returns a heap allocated ClassFieldMap to describe the instance fields
   842 // of the given class. All instance fields are included (this means public
   843 // and private fields declared in superclasses and superinterfaces too).
   844 //
   845 ClassFieldMap* ClassFieldMap::create_map_of_instance_fields(oop obj) {
   846   HandleMark hm;
   847   instanceKlassHandle ikh = instanceKlassHandle(Thread::current(), obj->klass());
   849   // create the field map
   850   ClassFieldMap* field_map = new ClassFieldMap();
   852   FilteredFieldStream f(ikh, false, false);
   854   int max_field_index = f.field_count()-1;
   856   int index = 0;
   857   for (FilteredFieldStream fld(ikh, false, false); !fld.eos(); fld.next(), index++) {
   858     // ignore static fields
   859     if (fld.access_flags().is_static()) {
   860       continue;
   861     }
   862     field_map->add(max_field_index - index, fld.signature()->byte_at(0), fld.offset());
   863   }
   865   return field_map;
   866 }
   868 // Helper class used to cache a ClassFileMap for the instance fields of
   869 // a cache. A JvmtiCachedClassFieldMap can be cached by an InstanceKlass during
   870 // heap iteration and avoid creating a field map for each object in the heap
   871 // (only need to create the map when the first instance of a class is encountered).
   872 //
   873 class JvmtiCachedClassFieldMap : public CHeapObj<mtInternal> {
   874  private:
   875    enum {
   876      initial_class_count = 200
   877    };
   878   ClassFieldMap* _field_map;
   880   ClassFieldMap* field_map() const          { return _field_map; }
   882   JvmtiCachedClassFieldMap(ClassFieldMap* field_map);
   883   ~JvmtiCachedClassFieldMap();
   885   static GrowableArray<InstanceKlass*>* _class_list;
   886   static void add_to_class_list(InstanceKlass* ik);
   888  public:
   889   // returns the field map for a given object (returning map cached
   890   // by InstanceKlass if possible
   891   static ClassFieldMap* get_map_of_instance_fields(oop obj);
   893   // removes the field map from all instanceKlasses - should be
   894   // called before VM operation completes
   895   static void clear_cache();
   897   // returns the number of ClassFieldMap cached by instanceKlasses
   898   static int cached_field_map_count();
   899 };
   901 GrowableArray<InstanceKlass*>* JvmtiCachedClassFieldMap::_class_list;
   903 JvmtiCachedClassFieldMap::JvmtiCachedClassFieldMap(ClassFieldMap* field_map) {
   904   _field_map = field_map;
   905 }
   907 JvmtiCachedClassFieldMap::~JvmtiCachedClassFieldMap() {
   908   if (_field_map != NULL) {
   909     delete _field_map;
   910   }
   911 }
   913 // Marker class to ensure that the class file map cache is only used in a defined
   914 // scope.
   915 class ClassFieldMapCacheMark : public StackObj {
   916  private:
   917    static bool _is_active;
   918  public:
   919    ClassFieldMapCacheMark() {
   920      assert(Thread::current()->is_VM_thread(), "must be VMThread");
   921      assert(JvmtiCachedClassFieldMap::cached_field_map_count() == 0, "cache not empty");
   922      assert(!_is_active, "ClassFieldMapCacheMark cannot be nested");
   923      _is_active = true;
   924    }
   925    ~ClassFieldMapCacheMark() {
   926      JvmtiCachedClassFieldMap::clear_cache();
   927      _is_active = false;
   928    }
   929    static bool is_active() { return _is_active; }
   930 };
   932 bool ClassFieldMapCacheMark::_is_active;
   935 // record that the given InstanceKlass is caching a field map
   936 void JvmtiCachedClassFieldMap::add_to_class_list(InstanceKlass* ik) {
   937   if (_class_list == NULL) {
   938     _class_list = new (ResourceObj::C_HEAP, mtInternal)
   939       GrowableArray<InstanceKlass*>(initial_class_count, true);
   940   }
   941   _class_list->push(ik);
   942 }
   944 // returns the instance field map for the given object
   945 // (returns field map cached by the InstanceKlass if possible)
   946 ClassFieldMap* JvmtiCachedClassFieldMap::get_map_of_instance_fields(oop obj) {
   947   assert(Thread::current()->is_VM_thread(), "must be VMThread");
   948   assert(ClassFieldMapCacheMark::is_active(), "ClassFieldMapCacheMark not active");
   950   Klass* k = obj->klass();
   951   InstanceKlass* ik = InstanceKlass::cast(k);
   953   // return cached map if possible
   954   JvmtiCachedClassFieldMap* cached_map = ik->jvmti_cached_class_field_map();
   955   if (cached_map != NULL) {
   956     assert(cached_map->field_map() != NULL, "missing field list");
   957     return cached_map->field_map();
   958   } else {
   959     ClassFieldMap* field_map = ClassFieldMap::create_map_of_instance_fields(obj);
   960     cached_map = new JvmtiCachedClassFieldMap(field_map);
   961     ik->set_jvmti_cached_class_field_map(cached_map);
   962     add_to_class_list(ik);
   963     return field_map;
   964   }
   965 }
   967 // remove the fields maps cached from all instanceKlasses
   968 void JvmtiCachedClassFieldMap::clear_cache() {
   969   assert(Thread::current()->is_VM_thread(), "must be VMThread");
   970   if (_class_list != NULL) {
   971     for (int i = 0; i < _class_list->length(); i++) {
   972       InstanceKlass* ik = _class_list->at(i);
   973       JvmtiCachedClassFieldMap* cached_map = ik->jvmti_cached_class_field_map();
   974       assert(cached_map != NULL, "should not be NULL");
   975       ik->set_jvmti_cached_class_field_map(NULL);
   976       delete cached_map;  // deletes the encapsulated field map
   977     }
   978     delete _class_list;
   979     _class_list = NULL;
   980   }
   981 }
   983 // returns the number of ClassFieldMap cached by instanceKlasses
   984 int JvmtiCachedClassFieldMap::cached_field_map_count() {
   985   return (_class_list == NULL) ? 0 : _class_list->length();
   986 }
   988 // helper function to indicate if an object is filtered by its tag or class tag
   989 static inline bool is_filtered_by_heap_filter(jlong obj_tag,
   990                                               jlong klass_tag,
   991                                               int heap_filter) {
   992   // apply the heap filter
   993   if (obj_tag != 0) {
   994     // filter out tagged objects
   995     if (heap_filter & JVMTI_HEAP_FILTER_TAGGED) return true;
   996   } else {
   997     // filter out untagged objects
   998     if (heap_filter & JVMTI_HEAP_FILTER_UNTAGGED) return true;
   999   }
  1000   if (klass_tag != 0) {
  1001     // filter out objects with tagged classes
  1002     if (heap_filter & JVMTI_HEAP_FILTER_CLASS_TAGGED) return true;
  1003   } else {
  1004     // filter out objects with untagged classes.
  1005     if (heap_filter & JVMTI_HEAP_FILTER_CLASS_UNTAGGED) return true;
  1007   return false;
  1010 // helper function to indicate if an object is filtered by a klass filter
  1011 static inline bool is_filtered_by_klass_filter(oop obj, KlassHandle klass_filter) {
  1012   if (!klass_filter.is_null()) {
  1013     if (obj->klass() != klass_filter()) {
  1014       return true;
  1017   return false;
  1020 // helper function to tell if a field is a primitive field or not
  1021 static inline bool is_primitive_field_type(char type) {
  1022   return (type != 'L' && type != '[');
  1025 // helper function to copy the value from location addr to jvalue.
  1026 static inline void copy_to_jvalue(jvalue *v, address addr, jvmtiPrimitiveType value_type) {
  1027   switch (value_type) {
  1028     case JVMTI_PRIMITIVE_TYPE_BOOLEAN : { v->z = *(jboolean*)addr; break; }
  1029     case JVMTI_PRIMITIVE_TYPE_BYTE    : { v->b = *(jbyte*)addr;    break; }
  1030     case JVMTI_PRIMITIVE_TYPE_CHAR    : { v->c = *(jchar*)addr;    break; }
  1031     case JVMTI_PRIMITIVE_TYPE_SHORT   : { v->s = *(jshort*)addr;   break; }
  1032     case JVMTI_PRIMITIVE_TYPE_INT     : { v->i = *(jint*)addr;     break; }
  1033     case JVMTI_PRIMITIVE_TYPE_LONG    : { v->j = *(jlong*)addr;    break; }
  1034     case JVMTI_PRIMITIVE_TYPE_FLOAT   : { v->f = *(jfloat*)addr;   break; }
  1035     case JVMTI_PRIMITIVE_TYPE_DOUBLE  : { v->d = *(jdouble*)addr;  break; }
  1036     default: ShouldNotReachHere();
  1040 // helper function to invoke string primitive value callback
  1041 // returns visit control flags
  1042 static jint invoke_string_value_callback(jvmtiStringPrimitiveValueCallback cb,
  1043                                          CallbackWrapper* wrapper,
  1044                                          oop str,
  1045                                          void* user_data)
  1047   assert(str->klass() == SystemDictionary::String_klass(), "not a string");
  1049   typeArrayOop s_value = java_lang_String::value(str);
  1051   // JDK-6584008: the value field may be null if a String instance is
  1052   // partially constructed.
  1053   if (s_value == NULL) {
  1054     return 0;
  1056   // get the string value and length
  1057   // (string value may be offset from the base)
  1058   int s_len = java_lang_String::length(str);
  1059   int s_offset = java_lang_String::offset(str);
  1060   jchar* value;
  1061   if (s_len > 0) {
  1062     value = s_value->char_at_addr(s_offset);
  1063   } else {
  1064     value = (jchar*) s_value->base(T_CHAR);
  1067   // invoke the callback
  1068   return (*cb)(wrapper->klass_tag(),
  1069                wrapper->obj_size(),
  1070                wrapper->obj_tag_p(),
  1071                value,
  1072                (jint)s_len,
  1073                user_data);
  1076 // helper function to invoke string primitive value callback
  1077 // returns visit control flags
  1078 static jint invoke_array_primitive_value_callback(jvmtiArrayPrimitiveValueCallback cb,
  1079                                                   CallbackWrapper* wrapper,
  1080                                                   oop obj,
  1081                                                   void* user_data)
  1083   assert(obj->is_typeArray(), "not a primitive array");
  1085   // get base address of first element
  1086   typeArrayOop array = typeArrayOop(obj);
  1087   BasicType type = TypeArrayKlass::cast(array->klass())->element_type();
  1088   void* elements = array->base(type);
  1090   // jvmtiPrimitiveType is defined so this mapping is always correct
  1091   jvmtiPrimitiveType elem_type = (jvmtiPrimitiveType)type2char(type);
  1093   return (*cb)(wrapper->klass_tag(),
  1094                wrapper->obj_size(),
  1095                wrapper->obj_tag_p(),
  1096                (jint)array->length(),
  1097                elem_type,
  1098                elements,
  1099                user_data);
  1102 // helper function to invoke the primitive field callback for all static fields
  1103 // of a given class
  1104 static jint invoke_primitive_field_callback_for_static_fields
  1105   (CallbackWrapper* wrapper,
  1106    oop obj,
  1107    jvmtiPrimitiveFieldCallback cb,
  1108    void* user_data)
  1110   // for static fields only the index will be set
  1111   static jvmtiHeapReferenceInfo reference_info = { 0 };
  1113   assert(obj->klass() == SystemDictionary::Class_klass(), "not a class");
  1114   if (java_lang_Class::is_primitive(obj)) {
  1115     return 0;
  1117   Klass* klass = java_lang_Class::as_Klass(obj);
  1119   // ignore classes for object and type arrays
  1120   if (!klass->oop_is_instance()) {
  1121     return 0;
  1124   // ignore classes which aren't linked yet
  1125   InstanceKlass* ik = InstanceKlass::cast(klass);
  1126   if (!ik->is_linked()) {
  1127     return 0;
  1130   // get the field map
  1131   ClassFieldMap* field_map = ClassFieldMap::create_map_of_static_fields(klass);
  1133   // invoke the callback for each static primitive field
  1134   for (int i=0; i<field_map->field_count(); i++) {
  1135     ClassFieldDescriptor* field = field_map->field_at(i);
  1137     // ignore non-primitive fields
  1138     char type = field->field_type();
  1139     if (!is_primitive_field_type(type)) {
  1140       continue;
  1142     // one-to-one mapping
  1143     jvmtiPrimitiveType value_type = (jvmtiPrimitiveType)type;
  1145     // get offset and field value
  1146     int offset = field->field_offset();
  1147     address addr = (address)klass->java_mirror() + offset;
  1148     jvalue value;
  1149     copy_to_jvalue(&value, addr, value_type);
  1151     // field index
  1152     reference_info.field.index = field->field_index();
  1154     // invoke the callback
  1155     jint res = (*cb)(JVMTI_HEAP_REFERENCE_STATIC_FIELD,
  1156                      &reference_info,
  1157                      wrapper->klass_tag(),
  1158                      wrapper->obj_tag_p(),
  1159                      value,
  1160                      value_type,
  1161                      user_data);
  1162     if (res & JVMTI_VISIT_ABORT) {
  1163       delete field_map;
  1164       return res;
  1168   delete field_map;
  1169   return 0;
  1172 // helper function to invoke the primitive field callback for all instance fields
  1173 // of a given object
  1174 static jint invoke_primitive_field_callback_for_instance_fields(
  1175   CallbackWrapper* wrapper,
  1176   oop obj,
  1177   jvmtiPrimitiveFieldCallback cb,
  1178   void* user_data)
  1180   // for instance fields only the index will be set
  1181   static jvmtiHeapReferenceInfo reference_info = { 0 };
  1183   // get the map of the instance fields
  1184   ClassFieldMap* fields = JvmtiCachedClassFieldMap::get_map_of_instance_fields(obj);
  1186   // invoke the callback for each instance primitive field
  1187   for (int i=0; i<fields->field_count(); i++) {
  1188     ClassFieldDescriptor* field = fields->field_at(i);
  1190     // ignore non-primitive fields
  1191     char type = field->field_type();
  1192     if (!is_primitive_field_type(type)) {
  1193       continue;
  1195     // one-to-one mapping
  1196     jvmtiPrimitiveType value_type = (jvmtiPrimitiveType)type;
  1198     // get offset and field value
  1199     int offset = field->field_offset();
  1200     address addr = (address)obj + offset;
  1201     jvalue value;
  1202     copy_to_jvalue(&value, addr, value_type);
  1204     // field index
  1205     reference_info.field.index = field->field_index();
  1207     // invoke the callback
  1208     jint res = (*cb)(JVMTI_HEAP_REFERENCE_FIELD,
  1209                      &reference_info,
  1210                      wrapper->klass_tag(),
  1211                      wrapper->obj_tag_p(),
  1212                      value,
  1213                      value_type,
  1214                      user_data);
  1215     if (res & JVMTI_VISIT_ABORT) {
  1216       return res;
  1219   return 0;
  1223 // VM operation to iterate over all objects in the heap (both reachable
  1224 // and unreachable)
  1225 class VM_HeapIterateOperation: public VM_Operation {
  1226  private:
  1227   ObjectClosure* _blk;
  1228  public:
  1229   VM_HeapIterateOperation(ObjectClosure* blk) { _blk = blk; }
  1231   VMOp_Type type() const { return VMOp_HeapIterateOperation; }
  1232   void doit() {
  1233     // allows class files maps to be cached during iteration
  1234     ClassFieldMapCacheMark cm;
  1236     // make sure that heap is parsable (fills TLABs with filler objects)
  1237     Universe::heap()->ensure_parsability(false);  // no need to retire TLABs
  1239     // Verify heap before iteration - if the heap gets corrupted then
  1240     // JVMTI's IterateOverHeap will crash.
  1241     if (VerifyBeforeIteration) {
  1242       Universe::verify();
  1245     // do the iteration
  1246     // If this operation encounters a bad object when using CMS,
  1247     // consider using safe_object_iterate() which avoids perm gen
  1248     // objects that may contain bad references.
  1249     Universe::heap()->object_iterate(_blk);
  1252 };
  1255 // An ObjectClosure used to support the deprecated IterateOverHeap and
  1256 // IterateOverInstancesOfClass functions
  1257 class IterateOverHeapObjectClosure: public ObjectClosure {
  1258  private:
  1259   JvmtiTagMap* _tag_map;
  1260   KlassHandle _klass;
  1261   jvmtiHeapObjectFilter _object_filter;
  1262   jvmtiHeapObjectCallback _heap_object_callback;
  1263   const void* _user_data;
  1265   // accessors
  1266   JvmtiTagMap* tag_map() const                    { return _tag_map; }
  1267   jvmtiHeapObjectFilter object_filter() const     { return _object_filter; }
  1268   jvmtiHeapObjectCallback object_callback() const { return _heap_object_callback; }
  1269   KlassHandle klass() const                       { return _klass; }
  1270   const void* user_data() const                   { return _user_data; }
  1272   // indicates if iteration has been aborted
  1273   bool _iteration_aborted;
  1274   bool is_iteration_aborted() const               { return _iteration_aborted; }
  1275   void set_iteration_aborted(bool aborted)        { _iteration_aborted = aborted; }
  1277  public:
  1278   IterateOverHeapObjectClosure(JvmtiTagMap* tag_map,
  1279                                KlassHandle klass,
  1280                                jvmtiHeapObjectFilter object_filter,
  1281                                jvmtiHeapObjectCallback heap_object_callback,
  1282                                const void* user_data) :
  1283     _tag_map(tag_map),
  1284     _klass(klass),
  1285     _object_filter(object_filter),
  1286     _heap_object_callback(heap_object_callback),
  1287     _user_data(user_data),
  1288     _iteration_aborted(false)
  1292   void do_object(oop o);
  1293 };
  1295 // invoked for each object in the heap
  1296 void IterateOverHeapObjectClosure::do_object(oop o) {
  1297   // check if iteration has been halted
  1298   if (is_iteration_aborted()) return;
  1300   // ignore any objects that aren't visible to profiler
  1301   if (!ServiceUtil::visible_oop(o)) return;
  1303   // instanceof check when filtering by klass
  1304   if (!klass().is_null() && !o->is_a(klass()())) {
  1305     return;
  1307   // prepare for the calllback
  1308   CallbackWrapper wrapper(tag_map(), o);
  1310   // if the object is tagged and we're only interested in untagged objects
  1311   // then don't invoke the callback. Similiarly, if the object is untagged
  1312   // and we're only interested in tagged objects we skip the callback.
  1313   if (wrapper.obj_tag() != 0) {
  1314     if (object_filter() == JVMTI_HEAP_OBJECT_UNTAGGED) return;
  1315   } else {
  1316     if (object_filter() == JVMTI_HEAP_OBJECT_TAGGED) return;
  1319   // invoke the agent's callback
  1320   jvmtiIterationControl control = (*object_callback())(wrapper.klass_tag(),
  1321                                                        wrapper.obj_size(),
  1322                                                        wrapper.obj_tag_p(),
  1323                                                        (void*)user_data());
  1324   if (control == JVMTI_ITERATION_ABORT) {
  1325     set_iteration_aborted(true);
  1329 // An ObjectClosure used to support the IterateThroughHeap function
  1330 class IterateThroughHeapObjectClosure: public ObjectClosure {
  1331  private:
  1332   JvmtiTagMap* _tag_map;
  1333   KlassHandle _klass;
  1334   int _heap_filter;
  1335   const jvmtiHeapCallbacks* _callbacks;
  1336   const void* _user_data;
  1338   // accessor functions
  1339   JvmtiTagMap* tag_map() const                     { return _tag_map; }
  1340   int heap_filter() const                          { return _heap_filter; }
  1341   const jvmtiHeapCallbacks* callbacks() const      { return _callbacks; }
  1342   KlassHandle klass() const                        { return _klass; }
  1343   const void* user_data() const                    { return _user_data; }
  1345   // indicates if the iteration has been aborted
  1346   bool _iteration_aborted;
  1347   bool is_iteration_aborted() const                { return _iteration_aborted; }
  1349   // used to check the visit control flags. If the abort flag is set
  1350   // then we set the iteration aborted flag so that the iteration completes
  1351   // without processing any further objects
  1352   bool check_flags_for_abort(jint flags) {
  1353     bool is_abort = (flags & JVMTI_VISIT_ABORT) != 0;
  1354     if (is_abort) {
  1355       _iteration_aborted = true;
  1357     return is_abort;
  1360  public:
  1361   IterateThroughHeapObjectClosure(JvmtiTagMap* tag_map,
  1362                                   KlassHandle klass,
  1363                                   int heap_filter,
  1364                                   const jvmtiHeapCallbacks* heap_callbacks,
  1365                                   const void* user_data) :
  1366     _tag_map(tag_map),
  1367     _klass(klass),
  1368     _heap_filter(heap_filter),
  1369     _callbacks(heap_callbacks),
  1370     _user_data(user_data),
  1371     _iteration_aborted(false)
  1375   void do_object(oop o);
  1376 };
  1378 // invoked for each object in the heap
  1379 void IterateThroughHeapObjectClosure::do_object(oop obj) {
  1380   // check if iteration has been halted
  1381   if (is_iteration_aborted()) return;
  1383   // ignore any objects that aren't visible to profiler
  1384   if (!ServiceUtil::visible_oop(obj)) return;
  1386   // apply class filter
  1387   if (is_filtered_by_klass_filter(obj, klass())) return;
  1389   // prepare for callback
  1390   CallbackWrapper wrapper(tag_map(), obj);
  1392   // check if filtered by the heap filter
  1393   if (is_filtered_by_heap_filter(wrapper.obj_tag(), wrapper.klass_tag(), heap_filter())) {
  1394     return;
  1397   // for arrays we need the length, otherwise -1
  1398   bool is_array = obj->is_array();
  1399   int len = is_array ? arrayOop(obj)->length() : -1;
  1401   // invoke the object callback (if callback is provided)
  1402   if (callbacks()->heap_iteration_callback != NULL) {
  1403     jvmtiHeapIterationCallback cb = callbacks()->heap_iteration_callback;
  1404     jint res = (*cb)(wrapper.klass_tag(),
  1405                      wrapper.obj_size(),
  1406                      wrapper.obj_tag_p(),
  1407                      (jint)len,
  1408                      (void*)user_data());
  1409     if (check_flags_for_abort(res)) return;
  1412   // for objects and classes we report primitive fields if callback provided
  1413   if (callbacks()->primitive_field_callback != NULL && obj->is_instance()) {
  1414     jint res;
  1415     jvmtiPrimitiveFieldCallback cb = callbacks()->primitive_field_callback;
  1416     if (obj->klass() == SystemDictionary::Class_klass()) {
  1417       res = invoke_primitive_field_callback_for_static_fields(&wrapper,
  1418                                                                     obj,
  1419                                                                     cb,
  1420                                                                     (void*)user_data());
  1421     } else {
  1422       res = invoke_primitive_field_callback_for_instance_fields(&wrapper,
  1423                                                                       obj,
  1424                                                                       cb,
  1425                                                                       (void*)user_data());
  1427     if (check_flags_for_abort(res)) return;
  1430   // string callback
  1431   if (!is_array &&
  1432       callbacks()->string_primitive_value_callback != NULL &&
  1433       obj->klass() == SystemDictionary::String_klass()) {
  1434     jint res = invoke_string_value_callback(
  1435                 callbacks()->string_primitive_value_callback,
  1436                 &wrapper,
  1437                 obj,
  1438                 (void*)user_data() );
  1439     if (check_flags_for_abort(res)) return;
  1442   // array callback
  1443   if (is_array &&
  1444       callbacks()->array_primitive_value_callback != NULL &&
  1445       obj->is_typeArray()) {
  1446     jint res = invoke_array_primitive_value_callback(
  1447                callbacks()->array_primitive_value_callback,
  1448                &wrapper,
  1449                obj,
  1450                (void*)user_data() );
  1451     if (check_flags_for_abort(res)) return;
  1453 };
  1456 // Deprecated function to iterate over all objects in the heap
  1457 void JvmtiTagMap::iterate_over_heap(jvmtiHeapObjectFilter object_filter,
  1458                                     KlassHandle klass,
  1459                                     jvmtiHeapObjectCallback heap_object_callback,
  1460                                     const void* user_data)
  1462   MutexLocker ml(Heap_lock);
  1463   IterateOverHeapObjectClosure blk(this,
  1464                                    klass,
  1465                                    object_filter,
  1466                                    heap_object_callback,
  1467                                    user_data);
  1468   VM_HeapIterateOperation op(&blk);
  1469   VMThread::execute(&op);
  1473 // Iterates over all objects in the heap
  1474 void JvmtiTagMap::iterate_through_heap(jint heap_filter,
  1475                                        KlassHandle klass,
  1476                                        const jvmtiHeapCallbacks* callbacks,
  1477                                        const void* user_data)
  1479   MutexLocker ml(Heap_lock);
  1480   IterateThroughHeapObjectClosure blk(this,
  1481                                       klass,
  1482                                       heap_filter,
  1483                                       callbacks,
  1484                                       user_data);
  1485   VM_HeapIterateOperation op(&blk);
  1486   VMThread::execute(&op);
  1489 // support class for get_objects_with_tags
  1491 class TagObjectCollector : public JvmtiTagHashmapEntryClosure {
  1492  private:
  1493   JvmtiEnv* _env;
  1494   jlong* _tags;
  1495   jint _tag_count;
  1497   GrowableArray<jobject>* _object_results;  // collected objects (JNI weak refs)
  1498   GrowableArray<uint64_t>* _tag_results;    // collected tags
  1500  public:
  1501   TagObjectCollector(JvmtiEnv* env, const jlong* tags, jint tag_count) {
  1502     _env = env;
  1503     _tags = (jlong*)tags;
  1504     _tag_count = tag_count;
  1505     _object_results = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<jobject>(1,true);
  1506     _tag_results = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<uint64_t>(1,true);
  1509   ~TagObjectCollector() {
  1510     delete _object_results;
  1511     delete _tag_results;
  1514   // for each tagged object check if the tag value matches
  1515   // - if it matches then we create a JNI local reference to the object
  1516   // and record the reference and tag value.
  1517   //
  1518   void do_entry(JvmtiTagHashmapEntry* entry) {
  1519     for (int i=0; i<_tag_count; i++) {
  1520       if (_tags[i] == entry->tag()) {
  1521         oop o = entry->object();
  1522         assert(o != NULL && Universe::heap()->is_in_reserved(o), "sanity check");
  1523 #if INCLUDE_ALL_GCS
  1524         if (UseG1GC) {
  1525           // The reference in this tag map could be the only (implicitly weak)
  1526           // reference to that object. If we hand it out, we need to keep it live wrt
  1527           // SATB marking similar to other j.l.ref.Reference referents.
  1528           G1SATBCardTableModRefBS::enqueue(o);
  1530 #endif
  1531         jobject ref = JNIHandles::make_local(JavaThread::current(), o);
  1532         _object_results->append(ref);
  1533         _tag_results->append((uint64_t)entry->tag());
  1538   // return the results from the collection
  1539   //
  1540   jvmtiError result(jint* count_ptr, jobject** object_result_ptr, jlong** tag_result_ptr) {
  1541     jvmtiError error;
  1542     int count = _object_results->length();
  1543     assert(count >= 0, "sanity check");
  1545     // if object_result_ptr is not NULL then allocate the result and copy
  1546     // in the object references.
  1547     if (object_result_ptr != NULL) {
  1548       error = _env->Allocate(count * sizeof(jobject), (unsigned char**)object_result_ptr);
  1549       if (error != JVMTI_ERROR_NONE) {
  1550         return error;
  1552       for (int i=0; i<count; i++) {
  1553         (*object_result_ptr)[i] = _object_results->at(i);
  1557     // if tag_result_ptr is not NULL then allocate the result and copy
  1558     // in the tag values.
  1559     if (tag_result_ptr != NULL) {
  1560       error = _env->Allocate(count * sizeof(jlong), (unsigned char**)tag_result_ptr);
  1561       if (error != JVMTI_ERROR_NONE) {
  1562         if (object_result_ptr != NULL) {
  1563           _env->Deallocate((unsigned char*)object_result_ptr);
  1565         return error;
  1567       for (int i=0; i<count; i++) {
  1568         (*tag_result_ptr)[i] = (jlong)_tag_results->at(i);
  1572     *count_ptr = count;
  1573     return JVMTI_ERROR_NONE;
  1575 };
  1577 // return the list of objects with the specified tags
  1578 jvmtiError JvmtiTagMap::get_objects_with_tags(const jlong* tags,
  1579   jint count, jint* count_ptr, jobject** object_result_ptr, jlong** tag_result_ptr) {
  1581   TagObjectCollector collector(env(), tags, count);
  1583     // iterate over all tagged objects
  1584     MutexLocker ml(lock());
  1585     entry_iterate(&collector);
  1587   return collector.result(count_ptr, object_result_ptr, tag_result_ptr);
  1591 // ObjectMarker is used to support the marking objects when walking the
  1592 // heap.
  1593 //
  1594 // This implementation uses the existing mark bits in an object for
  1595 // marking. Objects that are marked must later have their headers restored.
  1596 // As most objects are unlocked and don't have their identity hash computed
  1597 // we don't have to save their headers. Instead we save the headers that
  1598 // are "interesting". Later when the headers are restored this implementation
  1599 // restores all headers to their initial value and then restores the few
  1600 // objects that had interesting headers.
  1601 //
  1602 // Future work: This implementation currently uses growable arrays to save
  1603 // the oop and header of interesting objects. As an optimization we could
  1604 // use the same technique as the GC and make use of the unused area
  1605 // between top() and end().
  1606 //
  1608 // An ObjectClosure used to restore the mark bits of an object
  1609 class RestoreMarksClosure : public ObjectClosure {
  1610  public:
  1611   void do_object(oop o) {
  1612     if (o != NULL) {
  1613       markOop mark = o->mark();
  1614       if (mark->is_marked()) {
  1615         o->init_mark();
  1619 };
  1621 // ObjectMarker provides the mark and visited functions
  1622 class ObjectMarker : AllStatic {
  1623  private:
  1624   // saved headers
  1625   static GrowableArray<oop>* _saved_oop_stack;
  1626   static GrowableArray<markOop>* _saved_mark_stack;
  1627   static bool _needs_reset;                  // do we need to reset mark bits?
  1629  public:
  1630   static void init();                       // initialize
  1631   static void done();                       // clean-up
  1633   static inline void mark(oop o);           // mark an object
  1634   static inline bool visited(oop o);        // check if object has been visited
  1636   static inline bool needs_reset()            { return _needs_reset; }
  1637   static inline void set_needs_reset(bool v)  { _needs_reset = v; }
  1638 };
  1640 GrowableArray<oop>* ObjectMarker::_saved_oop_stack = NULL;
  1641 GrowableArray<markOop>* ObjectMarker::_saved_mark_stack = NULL;
  1642 bool ObjectMarker::_needs_reset = true;  // need to reset mark bits by default
  1644 // initialize ObjectMarker - prepares for object marking
  1645 void ObjectMarker::init() {
  1646   assert(Thread::current()->is_VM_thread(), "must be VMThread");
  1648   // prepare heap for iteration
  1649   Universe::heap()->ensure_parsability(false);  // no need to retire TLABs
  1651   // create stacks for interesting headers
  1652   _saved_mark_stack = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<markOop>(4000, true);
  1653   _saved_oop_stack = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<oop>(4000, true);
  1655   if (UseBiasedLocking) {
  1656     BiasedLocking::preserve_marks();
  1660 // Object marking is done so restore object headers
  1661 void ObjectMarker::done() {
  1662   // iterate over all objects and restore the mark bits to
  1663   // their initial value
  1664   RestoreMarksClosure blk;
  1665   if (needs_reset()) {
  1666     Universe::heap()->object_iterate(&blk);
  1667   } else {
  1668     // We don't need to reset mark bits on this call, but reset the
  1669     // flag to the default for the next call.
  1670     set_needs_reset(true);
  1673   // now restore the interesting headers
  1674   for (int i = 0; i < _saved_oop_stack->length(); i++) {
  1675     oop o = _saved_oop_stack->at(i);
  1676     markOop mark = _saved_mark_stack->at(i);
  1677     o->set_mark(mark);
  1680   if (UseBiasedLocking) {
  1681     BiasedLocking::restore_marks();
  1684   // free the stacks
  1685   delete _saved_oop_stack;
  1686   delete _saved_mark_stack;
  1689 // mark an object
  1690 inline void ObjectMarker::mark(oop o) {
  1691   assert(Universe::heap()->is_in(o), "sanity check");
  1692   assert(!o->mark()->is_marked(), "should only mark an object once");
  1694   // object's mark word
  1695   markOop mark = o->mark();
  1697   if (mark->must_be_preserved(o)) {
  1698     _saved_mark_stack->push(mark);
  1699     _saved_oop_stack->push(o);
  1702   // mark the object
  1703   o->set_mark(markOopDesc::prototype()->set_marked());
  1706 // return true if object is marked
  1707 inline bool ObjectMarker::visited(oop o) {
  1708   return o->mark()->is_marked();
  1711 // Stack allocated class to help ensure that ObjectMarker is used
  1712 // correctly. Constructor initializes ObjectMarker, destructor calls
  1713 // ObjectMarker's done() function to restore object headers.
  1714 class ObjectMarkerController : public StackObj {
  1715  public:
  1716   ObjectMarkerController() {
  1717     ObjectMarker::init();
  1719   ~ObjectMarkerController() {
  1720     ObjectMarker::done();
  1722 };
  1725 // helper to map a jvmtiHeapReferenceKind to an old style jvmtiHeapRootKind
  1726 // (not performance critical as only used for roots)
  1727 static jvmtiHeapRootKind toJvmtiHeapRootKind(jvmtiHeapReferenceKind kind) {
  1728   switch (kind) {
  1729     case JVMTI_HEAP_REFERENCE_JNI_GLOBAL:   return JVMTI_HEAP_ROOT_JNI_GLOBAL;
  1730     case JVMTI_HEAP_REFERENCE_SYSTEM_CLASS: return JVMTI_HEAP_ROOT_SYSTEM_CLASS;
  1731     case JVMTI_HEAP_REFERENCE_MONITOR:      return JVMTI_HEAP_ROOT_MONITOR;
  1732     case JVMTI_HEAP_REFERENCE_STACK_LOCAL:  return JVMTI_HEAP_ROOT_STACK_LOCAL;
  1733     case JVMTI_HEAP_REFERENCE_JNI_LOCAL:    return JVMTI_HEAP_ROOT_JNI_LOCAL;
  1734     case JVMTI_HEAP_REFERENCE_THREAD:       return JVMTI_HEAP_ROOT_THREAD;
  1735     case JVMTI_HEAP_REFERENCE_OTHER:        return JVMTI_HEAP_ROOT_OTHER;
  1736     default: ShouldNotReachHere();          return JVMTI_HEAP_ROOT_OTHER;
  1740 // Base class for all heap walk contexts. The base class maintains a flag
  1741 // to indicate if the context is valid or not.
  1742 class HeapWalkContext VALUE_OBJ_CLASS_SPEC {
  1743  private:
  1744   bool _valid;
  1745  public:
  1746   HeapWalkContext(bool valid)                   { _valid = valid; }
  1747   void invalidate()                             { _valid = false; }
  1748   bool is_valid() const                         { return _valid; }
  1749 };
  1751 // A basic heap walk context for the deprecated heap walking functions.
  1752 // The context for a basic heap walk are the callbacks and fields used by
  1753 // the referrer caching scheme.
  1754 class BasicHeapWalkContext: public HeapWalkContext {
  1755  private:
  1756   jvmtiHeapRootCallback _heap_root_callback;
  1757   jvmtiStackReferenceCallback _stack_ref_callback;
  1758   jvmtiObjectReferenceCallback _object_ref_callback;
  1760   // used for caching
  1761   oop _last_referrer;
  1762   jlong _last_referrer_tag;
  1764  public:
  1765   BasicHeapWalkContext() : HeapWalkContext(false) { }
  1767   BasicHeapWalkContext(jvmtiHeapRootCallback heap_root_callback,
  1768                        jvmtiStackReferenceCallback stack_ref_callback,
  1769                        jvmtiObjectReferenceCallback object_ref_callback) :
  1770     HeapWalkContext(true),
  1771     _heap_root_callback(heap_root_callback),
  1772     _stack_ref_callback(stack_ref_callback),
  1773     _object_ref_callback(object_ref_callback),
  1774     _last_referrer(NULL),
  1775     _last_referrer_tag(0) {
  1778   // accessors
  1779   jvmtiHeapRootCallback heap_root_callback() const         { return _heap_root_callback; }
  1780   jvmtiStackReferenceCallback stack_ref_callback() const   { return _stack_ref_callback; }
  1781   jvmtiObjectReferenceCallback object_ref_callback() const { return _object_ref_callback;  }
  1783   oop last_referrer() const               { return _last_referrer; }
  1784   void set_last_referrer(oop referrer)    { _last_referrer = referrer; }
  1785   jlong last_referrer_tag() const         { return _last_referrer_tag; }
  1786   void set_last_referrer_tag(jlong value) { _last_referrer_tag = value; }
  1787 };
  1789 // The advanced heap walk context for the FollowReferences functions.
  1790 // The context is the callbacks, and the fields used for filtering.
  1791 class AdvancedHeapWalkContext: public HeapWalkContext {
  1792  private:
  1793   jint _heap_filter;
  1794   KlassHandle _klass_filter;
  1795   const jvmtiHeapCallbacks* _heap_callbacks;
  1797  public:
  1798   AdvancedHeapWalkContext() : HeapWalkContext(false) { }
  1800   AdvancedHeapWalkContext(jint heap_filter,
  1801                            KlassHandle klass_filter,
  1802                            const jvmtiHeapCallbacks* heap_callbacks) :
  1803     HeapWalkContext(true),
  1804     _heap_filter(heap_filter),
  1805     _klass_filter(klass_filter),
  1806     _heap_callbacks(heap_callbacks) {
  1809   // accessors
  1810   jint heap_filter() const         { return _heap_filter; }
  1811   KlassHandle klass_filter() const { return _klass_filter; }
  1813   const jvmtiHeapReferenceCallback heap_reference_callback() const {
  1814     return _heap_callbacks->heap_reference_callback;
  1815   };
  1816   const jvmtiPrimitiveFieldCallback primitive_field_callback() const {
  1817     return _heap_callbacks->primitive_field_callback;
  1819   const jvmtiArrayPrimitiveValueCallback array_primitive_value_callback() const {
  1820     return _heap_callbacks->array_primitive_value_callback;
  1822   const jvmtiStringPrimitiveValueCallback string_primitive_value_callback() const {
  1823     return _heap_callbacks->string_primitive_value_callback;
  1825 };
  1827 // The CallbackInvoker is a class with static functions that the heap walk can call
  1828 // into to invoke callbacks. It works in one of two modes. The "basic" mode is
  1829 // used for the deprecated IterateOverReachableObjects functions. The "advanced"
  1830 // mode is for the newer FollowReferences function which supports a lot of
  1831 // additional callbacks.
  1832 class CallbackInvoker : AllStatic {
  1833  private:
  1834   // heap walk styles
  1835   enum { basic, advanced };
  1836   static int _heap_walk_type;
  1837   static bool is_basic_heap_walk()           { return _heap_walk_type == basic; }
  1838   static bool is_advanced_heap_walk()        { return _heap_walk_type == advanced; }
  1840   // context for basic style heap walk
  1841   static BasicHeapWalkContext _basic_context;
  1842   static BasicHeapWalkContext* basic_context() {
  1843     assert(_basic_context.is_valid(), "invalid");
  1844     return &_basic_context;
  1847   // context for advanced style heap walk
  1848   static AdvancedHeapWalkContext _advanced_context;
  1849   static AdvancedHeapWalkContext* advanced_context() {
  1850     assert(_advanced_context.is_valid(), "invalid");
  1851     return &_advanced_context;
  1854   // context needed for all heap walks
  1855   static JvmtiTagMap* _tag_map;
  1856   static const void* _user_data;
  1857   static GrowableArray<oop>* _visit_stack;
  1859   // accessors
  1860   static JvmtiTagMap* tag_map()                        { return _tag_map; }
  1861   static const void* user_data()                       { return _user_data; }
  1862   static GrowableArray<oop>* visit_stack()             { return _visit_stack; }
  1864   // if the object hasn't been visited then push it onto the visit stack
  1865   // so that it will be visited later
  1866   static inline bool check_for_visit(oop obj) {
  1867     if (!ObjectMarker::visited(obj)) visit_stack()->push(obj);
  1868     return true;
  1871   // invoke basic style callbacks
  1872   static inline bool invoke_basic_heap_root_callback
  1873     (jvmtiHeapRootKind root_kind, oop obj);
  1874   static inline bool invoke_basic_stack_ref_callback
  1875     (jvmtiHeapRootKind root_kind, jlong thread_tag, jint depth, jmethodID method,
  1876      int slot, oop obj);
  1877   static inline bool invoke_basic_object_reference_callback
  1878     (jvmtiObjectReferenceKind ref_kind, oop referrer, oop referree, jint index);
  1880   // invoke advanced style callbacks
  1881   static inline bool invoke_advanced_heap_root_callback
  1882     (jvmtiHeapReferenceKind ref_kind, oop obj);
  1883   static inline bool invoke_advanced_stack_ref_callback
  1884     (jvmtiHeapReferenceKind ref_kind, jlong thread_tag, jlong tid, int depth,
  1885      jmethodID method, jlocation bci, jint slot, oop obj);
  1886   static inline bool invoke_advanced_object_reference_callback
  1887     (jvmtiHeapReferenceKind ref_kind, oop referrer, oop referree, jint index);
  1889   // used to report the value of primitive fields
  1890   static inline bool report_primitive_field
  1891     (jvmtiHeapReferenceKind ref_kind, oop obj, jint index, address addr, char type);
  1893  public:
  1894   // initialize for basic mode
  1895   static void initialize_for_basic_heap_walk(JvmtiTagMap* tag_map,
  1896                                              GrowableArray<oop>* visit_stack,
  1897                                              const void* user_data,
  1898                                              BasicHeapWalkContext context);
  1900   // initialize for advanced mode
  1901   static void initialize_for_advanced_heap_walk(JvmtiTagMap* tag_map,
  1902                                                 GrowableArray<oop>* visit_stack,
  1903                                                 const void* user_data,
  1904                                                 AdvancedHeapWalkContext context);
  1906    // functions to report roots
  1907   static inline bool report_simple_root(jvmtiHeapReferenceKind kind, oop o);
  1908   static inline bool report_jni_local_root(jlong thread_tag, jlong tid, jint depth,
  1909     jmethodID m, oop o);
  1910   static inline bool report_stack_ref_root(jlong thread_tag, jlong tid, jint depth,
  1911     jmethodID method, jlocation bci, jint slot, oop o);
  1913   // functions to report references
  1914   static inline bool report_array_element_reference(oop referrer, oop referree, jint index);
  1915   static inline bool report_class_reference(oop referrer, oop referree);
  1916   static inline bool report_class_loader_reference(oop referrer, oop referree);
  1917   static inline bool report_signers_reference(oop referrer, oop referree);
  1918   static inline bool report_protection_domain_reference(oop referrer, oop referree);
  1919   static inline bool report_superclass_reference(oop referrer, oop referree);
  1920   static inline bool report_interface_reference(oop referrer, oop referree);
  1921   static inline bool report_static_field_reference(oop referrer, oop referree, jint slot);
  1922   static inline bool report_field_reference(oop referrer, oop referree, jint slot);
  1923   static inline bool report_constant_pool_reference(oop referrer, oop referree, jint index);
  1924   static inline bool report_primitive_array_values(oop array);
  1925   static inline bool report_string_value(oop str);
  1926   static inline bool report_primitive_instance_field(oop o, jint index, address value, char type);
  1927   static inline bool report_primitive_static_field(oop o, jint index, address value, char type);
  1928 };
  1930 // statics
  1931 int CallbackInvoker::_heap_walk_type;
  1932 BasicHeapWalkContext CallbackInvoker::_basic_context;
  1933 AdvancedHeapWalkContext CallbackInvoker::_advanced_context;
  1934 JvmtiTagMap* CallbackInvoker::_tag_map;
  1935 const void* CallbackInvoker::_user_data;
  1936 GrowableArray<oop>* CallbackInvoker::_visit_stack;
  1938 // initialize for basic heap walk (IterateOverReachableObjects et al)
  1939 void CallbackInvoker::initialize_for_basic_heap_walk(JvmtiTagMap* tag_map,
  1940                                                      GrowableArray<oop>* visit_stack,
  1941                                                      const void* user_data,
  1942                                                      BasicHeapWalkContext context) {
  1943   _tag_map = tag_map;
  1944   _visit_stack = visit_stack;
  1945   _user_data = user_data;
  1946   _basic_context = context;
  1947   _advanced_context.invalidate();       // will trigger assertion if used
  1948   _heap_walk_type = basic;
  1951 // initialize for advanced heap walk (FollowReferences)
  1952 void CallbackInvoker::initialize_for_advanced_heap_walk(JvmtiTagMap* tag_map,
  1953                                                         GrowableArray<oop>* visit_stack,
  1954                                                         const void* user_data,
  1955                                                         AdvancedHeapWalkContext context) {
  1956   _tag_map = tag_map;
  1957   _visit_stack = visit_stack;
  1958   _user_data = user_data;
  1959   _advanced_context = context;
  1960   _basic_context.invalidate();      // will trigger assertion if used
  1961   _heap_walk_type = advanced;
  1965 // invoke basic style heap root callback
  1966 inline bool CallbackInvoker::invoke_basic_heap_root_callback(jvmtiHeapRootKind root_kind, oop obj) {
  1967   assert(ServiceUtil::visible_oop(obj), "checking");
  1969   // if we heap roots should be reported
  1970   jvmtiHeapRootCallback cb = basic_context()->heap_root_callback();
  1971   if (cb == NULL) {
  1972     return check_for_visit(obj);
  1975   CallbackWrapper wrapper(tag_map(), obj);
  1976   jvmtiIterationControl control = (*cb)(root_kind,
  1977                                         wrapper.klass_tag(),
  1978                                         wrapper.obj_size(),
  1979                                         wrapper.obj_tag_p(),
  1980                                         (void*)user_data());
  1981   // push root to visit stack when following references
  1982   if (control == JVMTI_ITERATION_CONTINUE &&
  1983       basic_context()->object_ref_callback() != NULL) {
  1984     visit_stack()->push(obj);
  1986   return control != JVMTI_ITERATION_ABORT;
  1989 // invoke basic style stack ref callback
  1990 inline bool CallbackInvoker::invoke_basic_stack_ref_callback(jvmtiHeapRootKind root_kind,
  1991                                                              jlong thread_tag,
  1992                                                              jint depth,
  1993                                                              jmethodID method,
  1994                                                              jint slot,
  1995                                                              oop obj) {
  1996   assert(ServiceUtil::visible_oop(obj), "checking");
  1998   // if we stack refs should be reported
  1999   jvmtiStackReferenceCallback cb = basic_context()->stack_ref_callback();
  2000   if (cb == NULL) {
  2001     return check_for_visit(obj);
  2004   CallbackWrapper wrapper(tag_map(), obj);
  2005   jvmtiIterationControl control = (*cb)(root_kind,
  2006                                         wrapper.klass_tag(),
  2007                                         wrapper.obj_size(),
  2008                                         wrapper.obj_tag_p(),
  2009                                         thread_tag,
  2010                                         depth,
  2011                                         method,
  2012                                         slot,
  2013                                         (void*)user_data());
  2014   // push root to visit stack when following references
  2015   if (control == JVMTI_ITERATION_CONTINUE &&
  2016       basic_context()->object_ref_callback() != NULL) {
  2017     visit_stack()->push(obj);
  2019   return control != JVMTI_ITERATION_ABORT;
  2022 // invoke basic style object reference callback
  2023 inline bool CallbackInvoker::invoke_basic_object_reference_callback(jvmtiObjectReferenceKind ref_kind,
  2024                                                                     oop referrer,
  2025                                                                     oop referree,
  2026                                                                     jint index) {
  2028   assert(ServiceUtil::visible_oop(referrer), "checking");
  2029   assert(ServiceUtil::visible_oop(referree), "checking");
  2031   BasicHeapWalkContext* context = basic_context();
  2033   // callback requires the referrer's tag. If it's the same referrer
  2034   // as the last call then we use the cached value.
  2035   jlong referrer_tag;
  2036   if (referrer == context->last_referrer()) {
  2037     referrer_tag = context->last_referrer_tag();
  2038   } else {
  2039     referrer_tag = tag_for(tag_map(), referrer);
  2042   // do the callback
  2043   CallbackWrapper wrapper(tag_map(), referree);
  2044   jvmtiObjectReferenceCallback cb = context->object_ref_callback();
  2045   jvmtiIterationControl control = (*cb)(ref_kind,
  2046                                         wrapper.klass_tag(),
  2047                                         wrapper.obj_size(),
  2048                                         wrapper.obj_tag_p(),
  2049                                         referrer_tag,
  2050                                         index,
  2051                                         (void*)user_data());
  2053   // record referrer and referrer tag. For self-references record the
  2054   // tag value from the callback as this might differ from referrer_tag.
  2055   context->set_last_referrer(referrer);
  2056   if (referrer == referree) {
  2057     context->set_last_referrer_tag(*wrapper.obj_tag_p());
  2058   } else {
  2059     context->set_last_referrer_tag(referrer_tag);
  2062   if (control == JVMTI_ITERATION_CONTINUE) {
  2063     return check_for_visit(referree);
  2064   } else {
  2065     return control != JVMTI_ITERATION_ABORT;
  2069 // invoke advanced style heap root callback
  2070 inline bool CallbackInvoker::invoke_advanced_heap_root_callback(jvmtiHeapReferenceKind ref_kind,
  2071                                                                 oop obj) {
  2072   assert(ServiceUtil::visible_oop(obj), "checking");
  2074   AdvancedHeapWalkContext* context = advanced_context();
  2076   // check that callback is provided
  2077   jvmtiHeapReferenceCallback cb = context->heap_reference_callback();
  2078   if (cb == NULL) {
  2079     return check_for_visit(obj);
  2082   // apply class filter
  2083   if (is_filtered_by_klass_filter(obj, context->klass_filter())) {
  2084     return check_for_visit(obj);
  2087   // setup the callback wrapper
  2088   CallbackWrapper wrapper(tag_map(), obj);
  2090   // apply tag filter
  2091   if (is_filtered_by_heap_filter(wrapper.obj_tag(),
  2092                                  wrapper.klass_tag(),
  2093                                  context->heap_filter())) {
  2094     return check_for_visit(obj);
  2097   // for arrays we need the length, otherwise -1
  2098   jint len = (jint)(obj->is_array() ? arrayOop(obj)->length() : -1);
  2100   // invoke the callback
  2101   jint res  = (*cb)(ref_kind,
  2102                     NULL, // referrer info
  2103                     wrapper.klass_tag(),
  2104                     0,    // referrer_class_tag is 0 for heap root
  2105                     wrapper.obj_size(),
  2106                     wrapper.obj_tag_p(),
  2107                     NULL, // referrer_tag_p
  2108                     len,
  2109                     (void*)user_data());
  2110   if (res & JVMTI_VISIT_ABORT) {
  2111     return false;// referrer class tag
  2113   if (res & JVMTI_VISIT_OBJECTS) {
  2114     check_for_visit(obj);
  2116   return true;
  2119 // report a reference from a thread stack to an object
  2120 inline bool CallbackInvoker::invoke_advanced_stack_ref_callback(jvmtiHeapReferenceKind ref_kind,
  2121                                                                 jlong thread_tag,
  2122                                                                 jlong tid,
  2123                                                                 int depth,
  2124                                                                 jmethodID method,
  2125                                                                 jlocation bci,
  2126                                                                 jint slot,
  2127                                                                 oop obj) {
  2128   assert(ServiceUtil::visible_oop(obj), "checking");
  2130   AdvancedHeapWalkContext* context = advanced_context();
  2132   // check that callback is provider
  2133   jvmtiHeapReferenceCallback cb = context->heap_reference_callback();
  2134   if (cb == NULL) {
  2135     return check_for_visit(obj);
  2138   // apply class filter
  2139   if (is_filtered_by_klass_filter(obj, context->klass_filter())) {
  2140     return check_for_visit(obj);
  2143   // setup the callback wrapper
  2144   CallbackWrapper wrapper(tag_map(), obj);
  2146   // apply tag filter
  2147   if (is_filtered_by_heap_filter(wrapper.obj_tag(),
  2148                                  wrapper.klass_tag(),
  2149                                  context->heap_filter())) {
  2150     return check_for_visit(obj);
  2153   // setup the referrer info
  2154   jvmtiHeapReferenceInfo reference_info;
  2155   reference_info.stack_local.thread_tag = thread_tag;
  2156   reference_info.stack_local.thread_id = tid;
  2157   reference_info.stack_local.depth = depth;
  2158   reference_info.stack_local.method = method;
  2159   reference_info.stack_local.location = bci;
  2160   reference_info.stack_local.slot = slot;
  2162   // for arrays we need the length, otherwise -1
  2163   jint len = (jint)(obj->is_array() ? arrayOop(obj)->length() : -1);
  2165   // call into the agent
  2166   int res = (*cb)(ref_kind,
  2167                   &reference_info,
  2168                   wrapper.klass_tag(),
  2169                   0,    // referrer_class_tag is 0 for heap root (stack)
  2170                   wrapper.obj_size(),
  2171                   wrapper.obj_tag_p(),
  2172                   NULL, // referrer_tag is 0 for root
  2173                   len,
  2174                   (void*)user_data());
  2176   if (res & JVMTI_VISIT_ABORT) {
  2177     return false;
  2179   if (res & JVMTI_VISIT_OBJECTS) {
  2180     check_for_visit(obj);
  2182   return true;
  2185 // This mask is used to pass reference_info to a jvmtiHeapReferenceCallback
  2186 // only for ref_kinds defined by the JVM TI spec. Otherwise, NULL is passed.
  2187 #define REF_INFO_MASK  ((1 << JVMTI_HEAP_REFERENCE_FIELD)         \
  2188                       | (1 << JVMTI_HEAP_REFERENCE_STATIC_FIELD)  \
  2189                       | (1 << JVMTI_HEAP_REFERENCE_ARRAY_ELEMENT) \
  2190                       | (1 << JVMTI_HEAP_REFERENCE_CONSTANT_POOL) \
  2191                       | (1 << JVMTI_HEAP_REFERENCE_STACK_LOCAL)   \
  2192                       | (1 << JVMTI_HEAP_REFERENCE_JNI_LOCAL))
  2194 // invoke the object reference callback to report a reference
  2195 inline bool CallbackInvoker::invoke_advanced_object_reference_callback(jvmtiHeapReferenceKind ref_kind,
  2196                                                                        oop referrer,
  2197                                                                        oop obj,
  2198                                                                        jint index)
  2200   // field index is only valid field in reference_info
  2201   static jvmtiHeapReferenceInfo reference_info = { 0 };
  2203   assert(ServiceUtil::visible_oop(referrer), "checking");
  2204   assert(ServiceUtil::visible_oop(obj), "checking");
  2206   AdvancedHeapWalkContext* context = advanced_context();
  2208   // check that callback is provider
  2209   jvmtiHeapReferenceCallback cb = context->heap_reference_callback();
  2210   if (cb == NULL) {
  2211     return check_for_visit(obj);
  2214   // apply class filter
  2215   if (is_filtered_by_klass_filter(obj, context->klass_filter())) {
  2216     return check_for_visit(obj);
  2219   // setup the callback wrapper
  2220   TwoOopCallbackWrapper wrapper(tag_map(), referrer, obj);
  2222   // apply tag filter
  2223   if (is_filtered_by_heap_filter(wrapper.obj_tag(),
  2224                                  wrapper.klass_tag(),
  2225                                  context->heap_filter())) {
  2226     return check_for_visit(obj);
  2229   // field index is only valid field in reference_info
  2230   reference_info.field.index = index;
  2232   // for arrays we need the length, otherwise -1
  2233   jint len = (jint)(obj->is_array() ? arrayOop(obj)->length() : -1);
  2235   // invoke the callback
  2236   int res = (*cb)(ref_kind,
  2237                   (REF_INFO_MASK & (1 << ref_kind)) ? &reference_info : NULL,
  2238                   wrapper.klass_tag(),
  2239                   wrapper.referrer_klass_tag(),
  2240                   wrapper.obj_size(),
  2241                   wrapper.obj_tag_p(),
  2242                   wrapper.referrer_tag_p(),
  2243                   len,
  2244                   (void*)user_data());
  2246   if (res & JVMTI_VISIT_ABORT) {
  2247     return false;
  2249   if (res & JVMTI_VISIT_OBJECTS) {
  2250     check_for_visit(obj);
  2252   return true;
  2255 // report a "simple root"
  2256 inline bool CallbackInvoker::report_simple_root(jvmtiHeapReferenceKind kind, oop obj) {
  2257   assert(kind != JVMTI_HEAP_REFERENCE_STACK_LOCAL &&
  2258          kind != JVMTI_HEAP_REFERENCE_JNI_LOCAL, "not a simple root");
  2259   assert(ServiceUtil::visible_oop(obj), "checking");
  2261   if (is_basic_heap_walk()) {
  2262     // map to old style root kind
  2263     jvmtiHeapRootKind root_kind = toJvmtiHeapRootKind(kind);
  2264     return invoke_basic_heap_root_callback(root_kind, obj);
  2265   } else {
  2266     assert(is_advanced_heap_walk(), "wrong heap walk type");
  2267     return invoke_advanced_heap_root_callback(kind, obj);
  2272 // invoke the primitive array values
  2273 inline bool CallbackInvoker::report_primitive_array_values(oop obj) {
  2274   assert(obj->is_typeArray(), "not a primitive array");
  2276   AdvancedHeapWalkContext* context = advanced_context();
  2277   assert(context->array_primitive_value_callback() != NULL, "no callback");
  2279   // apply class filter
  2280   if (is_filtered_by_klass_filter(obj, context->klass_filter())) {
  2281     return true;
  2284   CallbackWrapper wrapper(tag_map(), obj);
  2286   // apply tag filter
  2287   if (is_filtered_by_heap_filter(wrapper.obj_tag(),
  2288                                  wrapper.klass_tag(),
  2289                                  context->heap_filter())) {
  2290     return true;
  2293   // invoke the callback
  2294   int res = invoke_array_primitive_value_callback(context->array_primitive_value_callback(),
  2295                                                   &wrapper,
  2296                                                   obj,
  2297                                                   (void*)user_data());
  2298   return (!(res & JVMTI_VISIT_ABORT));
  2301 // invoke the string value callback
  2302 inline bool CallbackInvoker::report_string_value(oop str) {
  2303   assert(str->klass() == SystemDictionary::String_klass(), "not a string");
  2305   AdvancedHeapWalkContext* context = advanced_context();
  2306   assert(context->string_primitive_value_callback() != NULL, "no callback");
  2308   // apply class filter
  2309   if (is_filtered_by_klass_filter(str, context->klass_filter())) {
  2310     return true;
  2313   CallbackWrapper wrapper(tag_map(), str);
  2315   // apply tag filter
  2316   if (is_filtered_by_heap_filter(wrapper.obj_tag(),
  2317                                  wrapper.klass_tag(),
  2318                                  context->heap_filter())) {
  2319     return true;
  2322   // invoke the callback
  2323   int res = invoke_string_value_callback(context->string_primitive_value_callback(),
  2324                                          &wrapper,
  2325                                          str,
  2326                                          (void*)user_data());
  2327   return (!(res & JVMTI_VISIT_ABORT));
  2330 // invoke the primitive field callback
  2331 inline bool CallbackInvoker::report_primitive_field(jvmtiHeapReferenceKind ref_kind,
  2332                                                     oop obj,
  2333                                                     jint index,
  2334                                                     address addr,
  2335                                                     char type)
  2337   // for primitive fields only the index will be set
  2338   static jvmtiHeapReferenceInfo reference_info = { 0 };
  2340   AdvancedHeapWalkContext* context = advanced_context();
  2341   assert(context->primitive_field_callback() != NULL, "no callback");
  2343   // apply class filter
  2344   if (is_filtered_by_klass_filter(obj, context->klass_filter())) {
  2345     return true;
  2348   CallbackWrapper wrapper(tag_map(), obj);
  2350   // apply tag filter
  2351   if (is_filtered_by_heap_filter(wrapper.obj_tag(),
  2352                                  wrapper.klass_tag(),
  2353                                  context->heap_filter())) {
  2354     return true;
  2357   // the field index in the referrer
  2358   reference_info.field.index = index;
  2360   // map the type
  2361   jvmtiPrimitiveType value_type = (jvmtiPrimitiveType)type;
  2363   // setup the jvalue
  2364   jvalue value;
  2365   copy_to_jvalue(&value, addr, value_type);
  2367   jvmtiPrimitiveFieldCallback cb = context->primitive_field_callback();
  2368   int res = (*cb)(ref_kind,
  2369                   &reference_info,
  2370                   wrapper.klass_tag(),
  2371                   wrapper.obj_tag_p(),
  2372                   value,
  2373                   value_type,
  2374                   (void*)user_data());
  2375   return (!(res & JVMTI_VISIT_ABORT));
  2379 // instance field
  2380 inline bool CallbackInvoker::report_primitive_instance_field(oop obj,
  2381                                                              jint index,
  2382                                                              address value,
  2383                                                              char type) {
  2384   return report_primitive_field(JVMTI_HEAP_REFERENCE_FIELD,
  2385                                 obj,
  2386                                 index,
  2387                                 value,
  2388                                 type);
  2391 // static field
  2392 inline bool CallbackInvoker::report_primitive_static_field(oop obj,
  2393                                                            jint index,
  2394                                                            address value,
  2395                                                            char type) {
  2396   return report_primitive_field(JVMTI_HEAP_REFERENCE_STATIC_FIELD,
  2397                                 obj,
  2398                                 index,
  2399                                 value,
  2400                                 type);
  2403 // report a JNI local (root object) to the profiler
  2404 inline bool CallbackInvoker::report_jni_local_root(jlong thread_tag, jlong tid, jint depth, jmethodID m, oop obj) {
  2405   if (is_basic_heap_walk()) {
  2406     return invoke_basic_stack_ref_callback(JVMTI_HEAP_ROOT_JNI_LOCAL,
  2407                                            thread_tag,
  2408                                            depth,
  2409                                            m,
  2410                                            -1,
  2411                                            obj);
  2412   } else {
  2413     return invoke_advanced_stack_ref_callback(JVMTI_HEAP_REFERENCE_JNI_LOCAL,
  2414                                               thread_tag, tid,
  2415                                               depth,
  2416                                               m,
  2417                                               (jlocation)-1,
  2418                                               -1,
  2419                                               obj);
  2424 // report a local (stack reference, root object)
  2425 inline bool CallbackInvoker::report_stack_ref_root(jlong thread_tag,
  2426                                                    jlong tid,
  2427                                                    jint depth,
  2428                                                    jmethodID method,
  2429                                                    jlocation bci,
  2430                                                    jint slot,
  2431                                                    oop obj) {
  2432   if (is_basic_heap_walk()) {
  2433     return invoke_basic_stack_ref_callback(JVMTI_HEAP_ROOT_STACK_LOCAL,
  2434                                            thread_tag,
  2435                                            depth,
  2436                                            method,
  2437                                            slot,
  2438                                            obj);
  2439   } else {
  2440     return invoke_advanced_stack_ref_callback(JVMTI_HEAP_REFERENCE_STACK_LOCAL,
  2441                                               thread_tag,
  2442                                               tid,
  2443                                               depth,
  2444                                               method,
  2445                                               bci,
  2446                                               slot,
  2447                                               obj);
  2451 // report an object referencing a class.
  2452 inline bool CallbackInvoker::report_class_reference(oop referrer, oop referree) {
  2453   if (is_basic_heap_walk()) {
  2454     return invoke_basic_object_reference_callback(JVMTI_REFERENCE_CLASS, referrer, referree, -1);
  2455   } else {
  2456     return invoke_advanced_object_reference_callback(JVMTI_HEAP_REFERENCE_CLASS, referrer, referree, -1);
  2460 // report a class referencing its class loader.
  2461 inline bool CallbackInvoker::report_class_loader_reference(oop referrer, oop referree) {
  2462   if (is_basic_heap_walk()) {
  2463     return invoke_basic_object_reference_callback(JVMTI_REFERENCE_CLASS_LOADER, referrer, referree, -1);
  2464   } else {
  2465     return invoke_advanced_object_reference_callback(JVMTI_HEAP_REFERENCE_CLASS_LOADER, referrer, referree, -1);
  2469 // report a class referencing its signers.
  2470 inline bool CallbackInvoker::report_signers_reference(oop referrer, oop referree) {
  2471   if (is_basic_heap_walk()) {
  2472     return invoke_basic_object_reference_callback(JVMTI_REFERENCE_SIGNERS, referrer, referree, -1);
  2473   } else {
  2474     return invoke_advanced_object_reference_callback(JVMTI_HEAP_REFERENCE_SIGNERS, referrer, referree, -1);
  2478 // report a class referencing its protection domain..
  2479 inline bool CallbackInvoker::report_protection_domain_reference(oop referrer, oop referree) {
  2480   if (is_basic_heap_walk()) {
  2481     return invoke_basic_object_reference_callback(JVMTI_REFERENCE_PROTECTION_DOMAIN, referrer, referree, -1);
  2482   } else {
  2483     return invoke_advanced_object_reference_callback(JVMTI_HEAP_REFERENCE_PROTECTION_DOMAIN, referrer, referree, -1);
  2487 // report a class referencing its superclass.
  2488 inline bool CallbackInvoker::report_superclass_reference(oop referrer, oop referree) {
  2489   if (is_basic_heap_walk()) {
  2490     // Send this to be consistent with past implementation
  2491     return invoke_basic_object_reference_callback(JVMTI_REFERENCE_CLASS, referrer, referree, -1);
  2492   } else {
  2493     return invoke_advanced_object_reference_callback(JVMTI_HEAP_REFERENCE_SUPERCLASS, referrer, referree, -1);
  2497 // report a class referencing one of its interfaces.
  2498 inline bool CallbackInvoker::report_interface_reference(oop referrer, oop referree) {
  2499   if (is_basic_heap_walk()) {
  2500     return invoke_basic_object_reference_callback(JVMTI_REFERENCE_INTERFACE, referrer, referree, -1);
  2501   } else {
  2502     return invoke_advanced_object_reference_callback(JVMTI_HEAP_REFERENCE_INTERFACE, referrer, referree, -1);
  2506 // report a class referencing one of its static fields.
  2507 inline bool CallbackInvoker::report_static_field_reference(oop referrer, oop referree, jint slot) {
  2508   if (is_basic_heap_walk()) {
  2509     return invoke_basic_object_reference_callback(JVMTI_REFERENCE_STATIC_FIELD, referrer, referree, slot);
  2510   } else {
  2511     return invoke_advanced_object_reference_callback(JVMTI_HEAP_REFERENCE_STATIC_FIELD, referrer, referree, slot);
  2515 // report an array referencing an element object
  2516 inline bool CallbackInvoker::report_array_element_reference(oop referrer, oop referree, jint index) {
  2517   if (is_basic_heap_walk()) {
  2518     return invoke_basic_object_reference_callback(JVMTI_REFERENCE_ARRAY_ELEMENT, referrer, referree, index);
  2519   } else {
  2520     return invoke_advanced_object_reference_callback(JVMTI_HEAP_REFERENCE_ARRAY_ELEMENT, referrer, referree, index);
  2524 // report an object referencing an instance field object
  2525 inline bool CallbackInvoker::report_field_reference(oop referrer, oop referree, jint slot) {
  2526   if (is_basic_heap_walk()) {
  2527     return invoke_basic_object_reference_callback(JVMTI_REFERENCE_FIELD, referrer, referree, slot);
  2528   } else {
  2529     return invoke_advanced_object_reference_callback(JVMTI_HEAP_REFERENCE_FIELD, referrer, referree, slot);
  2533 // report an array referencing an element object
  2534 inline bool CallbackInvoker::report_constant_pool_reference(oop referrer, oop referree, jint index) {
  2535   if (is_basic_heap_walk()) {
  2536     return invoke_basic_object_reference_callback(JVMTI_REFERENCE_CONSTANT_POOL, referrer, referree, index);
  2537   } else {
  2538     return invoke_advanced_object_reference_callback(JVMTI_HEAP_REFERENCE_CONSTANT_POOL, referrer, referree, index);
  2542 // A supporting closure used to process simple roots
  2543 class SimpleRootsClosure : public OopClosure {
  2544  private:
  2545   jvmtiHeapReferenceKind _kind;
  2546   bool _continue;
  2548   jvmtiHeapReferenceKind root_kind()    { return _kind; }
  2550  public:
  2551   void set_kind(jvmtiHeapReferenceKind kind) {
  2552     _kind = kind;
  2553     _continue = true;
  2556   inline bool stopped() {
  2557     return !_continue;
  2560   void do_oop(oop* obj_p) {
  2561     // iteration has terminated
  2562     if (stopped()) {
  2563       return;
  2566     // ignore null or deleted handles
  2567     oop o = *obj_p;
  2568     if (o == NULL || o == JNIHandles::deleted_handle()) {
  2569       return;
  2572     assert(Universe::heap()->is_in_reserved(o), "should be impossible");
  2574     jvmtiHeapReferenceKind kind = root_kind();
  2575     if (kind == JVMTI_HEAP_REFERENCE_SYSTEM_CLASS) {
  2576       // SystemDictionary::always_strong_oops_do reports the application
  2577       // class loader as a root. We want this root to be reported as
  2578       // a root kind of "OTHER" rather than "SYSTEM_CLASS".
  2579       if (!o->is_instanceMirror()) {
  2580         kind = JVMTI_HEAP_REFERENCE_OTHER;
  2584     // some objects are ignored - in the case of simple
  2585     // roots it's mostly Symbol*s that we are skipping
  2586     // here.
  2587     if (!ServiceUtil::visible_oop(o)) {
  2588       return;
  2591     // invoke the callback
  2592     _continue = CallbackInvoker::report_simple_root(kind, o);
  2595   virtual void do_oop(narrowOop* obj_p) { ShouldNotReachHere(); }
  2596 };
  2598 // A supporting closure used to process JNI locals
  2599 class JNILocalRootsClosure : public OopClosure {
  2600  private:
  2601   jlong _thread_tag;
  2602   jlong _tid;
  2603   jint _depth;
  2604   jmethodID _method;
  2605   bool _continue;
  2606  public:
  2607   void set_context(jlong thread_tag, jlong tid, jint depth, jmethodID method) {
  2608     _thread_tag = thread_tag;
  2609     _tid = tid;
  2610     _depth = depth;
  2611     _method = method;
  2612     _continue = true;
  2615   inline bool stopped() {
  2616     return !_continue;
  2619   void do_oop(oop* obj_p) {
  2620     // iteration has terminated
  2621     if (stopped()) {
  2622       return;
  2625     // ignore null or deleted handles
  2626     oop o = *obj_p;
  2627     if (o == NULL || o == JNIHandles::deleted_handle()) {
  2628       return;
  2631     if (!ServiceUtil::visible_oop(o)) {
  2632       return;
  2635     // invoke the callback
  2636     _continue = CallbackInvoker::report_jni_local_root(_thread_tag, _tid, _depth, _method, o);
  2638   virtual void do_oop(narrowOop* obj_p) { ShouldNotReachHere(); }
  2639 };
  2642 // A VM operation to iterate over objects that are reachable from
  2643 // a set of roots or an initial object.
  2644 //
  2645 // For VM_HeapWalkOperation the set of roots used is :-
  2646 //
  2647 // - All JNI global references
  2648 // - All inflated monitors
  2649 // - All classes loaded by the boot class loader (or all classes
  2650 //     in the event that class unloading is disabled)
  2651 // - All java threads
  2652 // - For each java thread then all locals and JNI local references
  2653 //      on the thread's execution stack
  2654 // - All visible/explainable objects from Universes::oops_do
  2655 //
  2656 class VM_HeapWalkOperation: public VM_Operation {
  2657  private:
  2658   enum {
  2659     initial_visit_stack_size = 4000
  2660   };
  2662   bool _is_advanced_heap_walk;                      // indicates FollowReferences
  2663   JvmtiTagMap* _tag_map;
  2664   Handle _initial_object;
  2665   GrowableArray<oop>* _visit_stack;                 // the visit stack
  2667   bool _collecting_heap_roots;                      // are we collecting roots
  2668   bool _following_object_refs;                      // are we following object references
  2670   bool _reporting_primitive_fields;                 // optional reporting
  2671   bool _reporting_primitive_array_values;
  2672   bool _reporting_string_values;
  2674   GrowableArray<oop>* create_visit_stack() {
  2675     return new (ResourceObj::C_HEAP, mtInternal) GrowableArray<oop>(initial_visit_stack_size, true);
  2678   // accessors
  2679   bool is_advanced_heap_walk() const               { return _is_advanced_heap_walk; }
  2680   JvmtiTagMap* tag_map() const                     { return _tag_map; }
  2681   Handle initial_object() const                    { return _initial_object; }
  2683   bool is_following_references() const             { return _following_object_refs; }
  2685   bool is_reporting_primitive_fields()  const      { return _reporting_primitive_fields; }
  2686   bool is_reporting_primitive_array_values() const { return _reporting_primitive_array_values; }
  2687   bool is_reporting_string_values() const          { return _reporting_string_values; }
  2689   GrowableArray<oop>* visit_stack() const          { return _visit_stack; }
  2691   // iterate over the various object types
  2692   inline bool iterate_over_array(oop o);
  2693   inline bool iterate_over_type_array(oop o);
  2694   inline bool iterate_over_class(oop o);
  2695   inline bool iterate_over_object(oop o);
  2697   // root collection
  2698   inline bool collect_simple_roots();
  2699   inline bool collect_stack_roots();
  2700   inline bool collect_stack_roots(JavaThread* java_thread, JNILocalRootsClosure* blk);
  2702   // visit an object
  2703   inline bool visit(oop o);
  2705  public:
  2706   VM_HeapWalkOperation(JvmtiTagMap* tag_map,
  2707                        Handle initial_object,
  2708                        BasicHeapWalkContext callbacks,
  2709                        const void* user_data);
  2711   VM_HeapWalkOperation(JvmtiTagMap* tag_map,
  2712                        Handle initial_object,
  2713                        AdvancedHeapWalkContext callbacks,
  2714                        const void* user_data);
  2716   ~VM_HeapWalkOperation();
  2718   VMOp_Type type() const { return VMOp_HeapWalkOperation; }
  2719   void doit();
  2720 };
  2723 VM_HeapWalkOperation::VM_HeapWalkOperation(JvmtiTagMap* tag_map,
  2724                                            Handle initial_object,
  2725                                            BasicHeapWalkContext callbacks,
  2726                                            const void* user_data) {
  2727   _is_advanced_heap_walk = false;
  2728   _tag_map = tag_map;
  2729   _initial_object = initial_object;
  2730   _following_object_refs = (callbacks.object_ref_callback() != NULL);
  2731   _reporting_primitive_fields = false;
  2732   _reporting_primitive_array_values = false;
  2733   _reporting_string_values = false;
  2734   _visit_stack = create_visit_stack();
  2737   CallbackInvoker::initialize_for_basic_heap_walk(tag_map, _visit_stack, user_data, callbacks);
  2740 VM_HeapWalkOperation::VM_HeapWalkOperation(JvmtiTagMap* tag_map,
  2741                                            Handle initial_object,
  2742                                            AdvancedHeapWalkContext callbacks,
  2743                                            const void* user_data) {
  2744   _is_advanced_heap_walk = true;
  2745   _tag_map = tag_map;
  2746   _initial_object = initial_object;
  2747   _following_object_refs = true;
  2748   _reporting_primitive_fields = (callbacks.primitive_field_callback() != NULL);;
  2749   _reporting_primitive_array_values = (callbacks.array_primitive_value_callback() != NULL);;
  2750   _reporting_string_values = (callbacks.string_primitive_value_callback() != NULL);;
  2751   _visit_stack = create_visit_stack();
  2753   CallbackInvoker::initialize_for_advanced_heap_walk(tag_map, _visit_stack, user_data, callbacks);
  2756 VM_HeapWalkOperation::~VM_HeapWalkOperation() {
  2757   if (_following_object_refs) {
  2758     assert(_visit_stack != NULL, "checking");
  2759     delete _visit_stack;
  2760     _visit_stack = NULL;
  2764 // an array references its class and has a reference to
  2765 // each element in the array
  2766 inline bool VM_HeapWalkOperation::iterate_over_array(oop o) {
  2767   objArrayOop array = objArrayOop(o);
  2769   // array reference to its class
  2770   oop mirror = ObjArrayKlass::cast(array->klass())->java_mirror();
  2771   if (!CallbackInvoker::report_class_reference(o, mirror)) {
  2772     return false;
  2775   // iterate over the array and report each reference to a
  2776   // non-null element
  2777   for (int index=0; index<array->length(); index++) {
  2778     oop elem = array->obj_at(index);
  2779     if (elem == NULL) {
  2780       continue;
  2783     // report the array reference o[index] = elem
  2784     if (!CallbackInvoker::report_array_element_reference(o, elem, index)) {
  2785       return false;
  2788   return true;
  2791 // a type array references its class
  2792 inline bool VM_HeapWalkOperation::iterate_over_type_array(oop o) {
  2793   Klass* k = o->klass();
  2794   oop mirror = k->java_mirror();
  2795   if (!CallbackInvoker::report_class_reference(o, mirror)) {
  2796     return false;
  2799   // report the array contents if required
  2800   if (is_reporting_primitive_array_values()) {
  2801     if (!CallbackInvoker::report_primitive_array_values(o)) {
  2802       return false;
  2805   return true;
  2808 // verify that a static oop field is in range
  2809 static inline bool verify_static_oop(InstanceKlass* ik,
  2810                                      oop mirror, int offset) {
  2811   address obj_p = (address)mirror + offset;
  2812   address start = (address)InstanceMirrorKlass::start_of_static_fields(mirror);
  2813   address end = start + (java_lang_Class::static_oop_field_count(mirror) * heapOopSize);
  2814   assert(end >= start, "sanity check");
  2816   if (obj_p >= start && obj_p < end) {
  2817     return true;
  2818   } else {
  2819     return false;
  2823 // a class references its super class, interfaces, class loader, ...
  2824 // and finally its static fields
  2825 inline bool VM_HeapWalkOperation::iterate_over_class(oop java_class) {
  2826   int i;
  2827   Klass* klass = java_lang_Class::as_Klass(java_class);
  2829   if (klass->oop_is_instance()) {
  2830     InstanceKlass* ik = InstanceKlass::cast(klass);
  2832     // ignore the class if it's has been initialized yet
  2833     if (!ik->is_linked()) {
  2834       return true;
  2837     // get the java mirror
  2838     oop mirror = klass->java_mirror();
  2840     // super (only if something more interesting than java.lang.Object)
  2841     Klass* java_super = ik->java_super();
  2842     if (java_super != NULL && java_super != SystemDictionary::Object_klass()) {
  2843       oop super = java_super->java_mirror();
  2844       if (!CallbackInvoker::report_superclass_reference(mirror, super)) {
  2845         return false;
  2849     // class loader
  2850     oop cl = ik->class_loader();
  2851     if (cl != NULL) {
  2852       if (!CallbackInvoker::report_class_loader_reference(mirror, cl)) {
  2853         return false;
  2857     // protection domain
  2858     oop pd = ik->protection_domain();
  2859     if (pd != NULL) {
  2860       if (!CallbackInvoker::report_protection_domain_reference(mirror, pd)) {
  2861         return false;
  2865     // signers
  2866     oop signers = ik->signers();
  2867     if (signers != NULL) {
  2868       if (!CallbackInvoker::report_signers_reference(mirror, signers)) {
  2869         return false;
  2873     // references from the constant pool
  2875       ConstantPool* pool = ik->constants();
  2876       for (int i = 1; i < pool->length(); i++) {
  2877         constantTag tag = pool->tag_at(i).value();
  2878         if (tag.is_string() || tag.is_klass()) {
  2879           oop entry;
  2880           if (tag.is_string()) {
  2881             entry = pool->resolved_string_at(i);
  2882             // If the entry is non-null it is resolved.
  2883             if (entry == NULL) continue;
  2884           } else {
  2885             entry = pool->resolved_klass_at(i)->java_mirror();
  2887           if (!CallbackInvoker::report_constant_pool_reference(mirror, entry, (jint)i)) {
  2888             return false;
  2894     // interfaces
  2895     // (These will already have been reported as references from the constant pool
  2896     //  but are specified by IterateOverReachableObjects and must be reported).
  2897     Array<Klass*>* interfaces = ik->local_interfaces();
  2898     for (i = 0; i < interfaces->length(); i++) {
  2899       oop interf = ((Klass*)interfaces->at(i))->java_mirror();
  2900       if (interf == NULL) {
  2901         continue;
  2903       if (!CallbackInvoker::report_interface_reference(mirror, interf)) {
  2904         return false;
  2908     // iterate over the static fields
  2910     ClassFieldMap* field_map = ClassFieldMap::create_map_of_static_fields(klass);
  2911     for (i=0; i<field_map->field_count(); i++) {
  2912       ClassFieldDescriptor* field = field_map->field_at(i);
  2913       char type = field->field_type();
  2914       if (!is_primitive_field_type(type)) {
  2915         oop fld_o = mirror->obj_field(field->field_offset());
  2916         assert(verify_static_oop(ik, mirror, field->field_offset()), "sanity check");
  2917         if (fld_o != NULL) {
  2918           int slot = field->field_index();
  2919           if (!CallbackInvoker::report_static_field_reference(mirror, fld_o, slot)) {
  2920             delete field_map;
  2921             return false;
  2924       } else {
  2925          if (is_reporting_primitive_fields()) {
  2926            address addr = (address)mirror + field->field_offset();
  2927            int slot = field->field_index();
  2928            if (!CallbackInvoker::report_primitive_static_field(mirror, slot, addr, type)) {
  2929              delete field_map;
  2930              return false;
  2935     delete field_map;
  2937     return true;
  2940   return true;
  2943 // an object references a class and its instance fields
  2944 // (static fields are ignored here as we report these as
  2945 // references from the class).
  2946 inline bool VM_HeapWalkOperation::iterate_over_object(oop o) {
  2947   // reference to the class
  2948   if (!CallbackInvoker::report_class_reference(o, o->klass()->java_mirror())) {
  2949     return false;
  2952   // iterate over instance fields
  2953   ClassFieldMap* field_map = JvmtiCachedClassFieldMap::get_map_of_instance_fields(o);
  2954   for (int i=0; i<field_map->field_count(); i++) {
  2955     ClassFieldDescriptor* field = field_map->field_at(i);
  2956     char type = field->field_type();
  2957     if (!is_primitive_field_type(type)) {
  2958       oop fld_o = o->obj_field(field->field_offset());
  2959       // ignore any objects that aren't visible to profiler
  2960       if (fld_o != NULL && ServiceUtil::visible_oop(fld_o)) {
  2961         assert(Universe::heap()->is_in_reserved(fld_o), "unsafe code should not "
  2962                "have references to Klass* anymore");
  2963         int slot = field->field_index();
  2964         if (!CallbackInvoker::report_field_reference(o, fld_o, slot)) {
  2965           return false;
  2968     } else {
  2969       if (is_reporting_primitive_fields()) {
  2970         // primitive instance field
  2971         address addr = (address)o + field->field_offset();
  2972         int slot = field->field_index();
  2973         if (!CallbackInvoker::report_primitive_instance_field(o, slot, addr, type)) {
  2974           return false;
  2980   // if the object is a java.lang.String
  2981   if (is_reporting_string_values() &&
  2982       o->klass() == SystemDictionary::String_klass()) {
  2983     if (!CallbackInvoker::report_string_value(o)) {
  2984       return false;
  2987   return true;
  2991 // Collects all simple (non-stack) roots except for threads;
  2992 // threads are handled in collect_stack_roots() as an optimization.
  2993 // if there's a heap root callback provided then the callback is
  2994 // invoked for each simple root.
  2995 // if an object reference callback is provided then all simple
  2996 // roots are pushed onto the marking stack so that they can be
  2997 // processed later
  2998 //
  2999 inline bool VM_HeapWalkOperation::collect_simple_roots() {
  3000   SimpleRootsClosure blk;
  3002   // JNI globals
  3003   blk.set_kind(JVMTI_HEAP_REFERENCE_JNI_GLOBAL);
  3004   JNIHandles::oops_do(&blk);
  3005   if (blk.stopped()) {
  3006     return false;
  3009   // Preloaded classes and loader from the system dictionary
  3010   blk.set_kind(JVMTI_HEAP_REFERENCE_SYSTEM_CLASS);
  3011   SystemDictionary::always_strong_oops_do(&blk);
  3012   KlassToOopClosure klass_blk(&blk);
  3013   ClassLoaderDataGraph::always_strong_oops_do(&blk, &klass_blk, false);
  3014   if (blk.stopped()) {
  3015     return false;
  3018   // Inflated monitors
  3019   blk.set_kind(JVMTI_HEAP_REFERENCE_MONITOR);
  3020   ObjectSynchronizer::oops_do(&blk);
  3021   if (blk.stopped()) {
  3022     return false;
  3025   // threads are now handled in collect_stack_roots()
  3027   // Other kinds of roots maintained by HotSpot
  3028   // Many of these won't be visible but others (such as instances of important
  3029   // exceptions) will be visible.
  3030   blk.set_kind(JVMTI_HEAP_REFERENCE_OTHER);
  3031   Universe::oops_do(&blk);
  3033   // If there are any non-perm roots in the code cache, visit them.
  3034   blk.set_kind(JVMTI_HEAP_REFERENCE_OTHER);
  3035   CodeBlobToOopClosure look_in_blobs(&blk, !CodeBlobToOopClosure::FixRelocations);
  3036   CodeCache::scavenge_root_nmethods_do(&look_in_blobs);
  3038   return true;
  3041 // Walk the stack of a given thread and find all references (locals
  3042 // and JNI calls) and report these as stack references
  3043 inline bool VM_HeapWalkOperation::collect_stack_roots(JavaThread* java_thread,
  3044                                                       JNILocalRootsClosure* blk)
  3046   oop threadObj = java_thread->threadObj();
  3047   assert(threadObj != NULL, "sanity check");
  3049   // only need to get the thread's tag once per thread
  3050   jlong thread_tag = tag_for(_tag_map, threadObj);
  3052   // also need the thread id
  3053   jlong tid = java_lang_Thread::thread_id(threadObj);
  3056   if (java_thread->has_last_Java_frame()) {
  3058     // vframes are resource allocated
  3059     Thread* current_thread = Thread::current();
  3060     ResourceMark rm(current_thread);
  3061     HandleMark hm(current_thread);
  3063     RegisterMap reg_map(java_thread);
  3064     frame f = java_thread->last_frame();
  3065     vframe* vf = vframe::new_vframe(&f, &reg_map, java_thread);
  3067     bool is_top_frame = true;
  3068     int depth = 0;
  3069     frame* last_entry_frame = NULL;
  3071     while (vf != NULL) {
  3072       if (vf->is_java_frame()) {
  3074         // java frame (interpreted, compiled, ...)
  3075         javaVFrame *jvf = javaVFrame::cast(vf);
  3077         // the jmethodID
  3078         jmethodID method = jvf->method()->jmethod_id();
  3080         if (!(jvf->method()->is_native())) {
  3081           jlocation bci = (jlocation)jvf->bci();
  3082           StackValueCollection* locals = jvf->locals();
  3083           for (int slot=0; slot<locals->size(); slot++) {
  3084             if (locals->at(slot)->type() == T_OBJECT) {
  3085               oop o = locals->obj_at(slot)();
  3086               if (o == NULL) {
  3087                 continue;
  3090               // stack reference
  3091               if (!CallbackInvoker::report_stack_ref_root(thread_tag, tid, depth, method,
  3092                                                    bci, slot, o)) {
  3093                 return false;
  3097         } else {
  3098           blk->set_context(thread_tag, tid, depth, method);
  3099           if (is_top_frame) {
  3100             // JNI locals for the top frame.
  3101             java_thread->active_handles()->oops_do(blk);
  3102           } else {
  3103             if (last_entry_frame != NULL) {
  3104               // JNI locals for the entry frame
  3105               assert(last_entry_frame->is_entry_frame(), "checking");
  3106               last_entry_frame->entry_frame_call_wrapper()->handles()->oops_do(blk);
  3110         last_entry_frame = NULL;
  3111         depth++;
  3112       } else {
  3113         // externalVFrame - for an entry frame then we report the JNI locals
  3114         // when we find the corresponding javaVFrame
  3115         frame* fr = vf->frame_pointer();
  3116         assert(fr != NULL, "sanity check");
  3117         if (fr->is_entry_frame()) {
  3118           last_entry_frame = fr;
  3122       vf = vf->sender();
  3123       is_top_frame = false;
  3125   } else {
  3126     // no last java frame but there may be JNI locals
  3127     blk->set_context(thread_tag, tid, 0, (jmethodID)NULL);
  3128     java_thread->active_handles()->oops_do(blk);
  3130   return true;
  3134 // Collects the simple roots for all threads and collects all
  3135 // stack roots - for each thread it walks the execution
  3136 // stack to find all references and local JNI refs.
  3137 inline bool VM_HeapWalkOperation::collect_stack_roots() {
  3138   JNILocalRootsClosure blk;
  3139   for (JavaThread* thread = Threads::first(); thread != NULL ; thread = thread->next()) {
  3140     oop threadObj = thread->threadObj();
  3141     if (threadObj != NULL && !thread->is_exiting() && !thread->is_hidden_from_external_view()) {
  3142       // Collect the simple root for this thread before we
  3143       // collect its stack roots
  3144       if (!CallbackInvoker::report_simple_root(JVMTI_HEAP_REFERENCE_THREAD,
  3145                                                threadObj)) {
  3146         return false;
  3148       if (!collect_stack_roots(thread, &blk)) {
  3149         return false;
  3153   return true;
  3156 // visit an object
  3157 // first mark the object as visited
  3158 // second get all the outbound references from this object (in other words, all
  3159 // the objects referenced by this object).
  3160 //
  3161 bool VM_HeapWalkOperation::visit(oop o) {
  3162   // mark object as visited
  3163   assert(!ObjectMarker::visited(o), "can't visit same object more than once");
  3164   ObjectMarker::mark(o);
  3166   // instance
  3167   if (o->is_instance()) {
  3168     if (o->klass() == SystemDictionary::Class_klass()) {
  3169       if (!java_lang_Class::is_primitive(o)) {
  3170         // a java.lang.Class
  3171         return iterate_over_class(o);
  3173     } else {
  3174       return iterate_over_object(o);
  3178   // object array
  3179   if (o->is_objArray()) {
  3180     return iterate_over_array(o);
  3183   // type array
  3184   if (o->is_typeArray()) {
  3185     return iterate_over_type_array(o);
  3188   return true;
  3191 void VM_HeapWalkOperation::doit() {
  3192   ResourceMark rm;
  3193   ObjectMarkerController marker;
  3194   ClassFieldMapCacheMark cm;
  3196   assert(visit_stack()->is_empty(), "visit stack must be empty");
  3198   // the heap walk starts with an initial object or the heap roots
  3199   if (initial_object().is_null()) {
  3200     // If either collect_stack_roots() or collect_simple_roots()
  3201     // returns false at this point, then there are no mark bits
  3202     // to reset.
  3203     ObjectMarker::set_needs_reset(false);
  3205     // Calling collect_stack_roots() before collect_simple_roots()
  3206     // can result in a big performance boost for an agent that is
  3207     // focused on analyzing references in the thread stacks.
  3208     if (!collect_stack_roots()) return;
  3210     if (!collect_simple_roots()) return;
  3212     // no early return so enable heap traversal to reset the mark bits
  3213     ObjectMarker::set_needs_reset(true);
  3214   } else {
  3215     visit_stack()->push(initial_object()());
  3218   // object references required
  3219   if (is_following_references()) {
  3221     // visit each object until all reachable objects have been
  3222     // visited or the callback asked to terminate the iteration.
  3223     while (!visit_stack()->is_empty()) {
  3224       oop o = visit_stack()->pop();
  3225       if (!ObjectMarker::visited(o)) {
  3226         if (!visit(o)) {
  3227           break;
  3234 // iterate over all objects that are reachable from a set of roots
  3235 void JvmtiTagMap::iterate_over_reachable_objects(jvmtiHeapRootCallback heap_root_callback,
  3236                                                  jvmtiStackReferenceCallback stack_ref_callback,
  3237                                                  jvmtiObjectReferenceCallback object_ref_callback,
  3238                                                  const void* user_data) {
  3239   MutexLocker ml(Heap_lock);
  3240   BasicHeapWalkContext context(heap_root_callback, stack_ref_callback, object_ref_callback);
  3241   VM_HeapWalkOperation op(this, Handle(), context, user_data);
  3242   VMThread::execute(&op);
  3245 // iterate over all objects that are reachable from a given object
  3246 void JvmtiTagMap::iterate_over_objects_reachable_from_object(jobject object,
  3247                                                              jvmtiObjectReferenceCallback object_ref_callback,
  3248                                                              const void* user_data) {
  3249   oop obj = JNIHandles::resolve(object);
  3250   Handle initial_object(Thread::current(), obj);
  3252   MutexLocker ml(Heap_lock);
  3253   BasicHeapWalkContext context(NULL, NULL, object_ref_callback);
  3254   VM_HeapWalkOperation op(this, initial_object, context, user_data);
  3255   VMThread::execute(&op);
  3258 // follow references from an initial object or the GC roots
  3259 void JvmtiTagMap::follow_references(jint heap_filter,
  3260                                     KlassHandle klass,
  3261                                     jobject object,
  3262                                     const jvmtiHeapCallbacks* callbacks,
  3263                                     const void* user_data)
  3265   oop obj = JNIHandles::resolve(object);
  3266   Handle initial_object(Thread::current(), obj);
  3268   MutexLocker ml(Heap_lock);
  3269   AdvancedHeapWalkContext context(heap_filter, klass, callbacks);
  3270   VM_HeapWalkOperation op(this, initial_object, context, user_data);
  3271   VMThread::execute(&op);
  3275 void JvmtiTagMap::weak_oops_do(BoolObjectClosure* is_alive, OopClosure* f) {
  3276   // No locks during VM bring-up (0 threads) and no safepoints after main
  3277   // thread creation and before VMThread creation (1 thread); initial GC
  3278   // verification can happen in that window which gets to here.
  3279   assert(Threads::number_of_threads() <= 1 ||
  3280          SafepointSynchronize::is_at_safepoint(),
  3281          "must be executed at a safepoint");
  3282   if (JvmtiEnv::environments_might_exist()) {
  3283     JvmtiEnvIterator it;
  3284     for (JvmtiEnvBase* env = it.first(); env != NULL; env = it.next(env)) {
  3285       JvmtiTagMap* tag_map = env->tag_map();
  3286       if (tag_map != NULL && !tag_map->is_empty()) {
  3287         tag_map->do_weak_oops(is_alive, f);
  3293 void JvmtiTagMap::do_weak_oops(BoolObjectClosure* is_alive, OopClosure* f) {
  3295   // does this environment have the OBJECT_FREE event enabled
  3296   bool post_object_free = env()->is_enabled(JVMTI_EVENT_OBJECT_FREE);
  3298   // counters used for trace message
  3299   int freed = 0;
  3300   int moved = 0;
  3302   JvmtiTagHashmap* hashmap = this->hashmap();
  3304   // reenable sizing (if disabled)
  3305   hashmap->set_resizing_enabled(true);
  3307   // if the hashmap is empty then we can skip it
  3308   if (hashmap->_entry_count == 0) {
  3309     return;
  3312   // now iterate through each entry in the table
  3314   JvmtiTagHashmapEntry** table = hashmap->table();
  3315   int size = hashmap->size();
  3317   JvmtiTagHashmapEntry* delayed_add = NULL;
  3319   for (int pos = 0; pos < size; ++pos) {
  3320     JvmtiTagHashmapEntry* entry = table[pos];
  3321     JvmtiTagHashmapEntry* prev = NULL;
  3323     while (entry != NULL) {
  3324       JvmtiTagHashmapEntry* next = entry->next();
  3326       oop* obj = entry->object_addr();
  3328       // has object been GC'ed
  3329       if (!is_alive->do_object_b(entry->object())) {
  3330         // grab the tag
  3331         jlong tag = entry->tag();
  3332         guarantee(tag != 0, "checking");
  3334         // remove GC'ed entry from hashmap and return the
  3335         // entry to the free list
  3336         hashmap->remove(prev, pos, entry);
  3337         destroy_entry(entry);
  3339         // post the event to the profiler
  3340         if (post_object_free) {
  3341           JvmtiExport::post_object_free(env(), tag);
  3344         ++freed;
  3345       } else {
  3346         f->do_oop(entry->object_addr());
  3347         oop new_oop = entry->object();
  3349         // if the object has moved then re-hash it and move its
  3350         // entry to its new location.
  3351         unsigned int new_pos = JvmtiTagHashmap::hash(new_oop, size);
  3352         if (new_pos != (unsigned int)pos) {
  3353           if (prev == NULL) {
  3354             table[pos] = next;
  3355           } else {
  3356             prev->set_next(next);
  3358           if (new_pos < (unsigned int)pos) {
  3359             entry->set_next(table[new_pos]);
  3360             table[new_pos] = entry;
  3361           } else {
  3362             // Delay adding this entry to it's new position as we'd end up
  3363             // hitting it again during this iteration.
  3364             entry->set_next(delayed_add);
  3365             delayed_add = entry;
  3367           moved++;
  3368         } else {
  3369           // object didn't move
  3370           prev = entry;
  3374       entry = next;
  3378   // Re-add all the entries which were kept aside
  3379   while (delayed_add != NULL) {
  3380     JvmtiTagHashmapEntry* next = delayed_add->next();
  3381     unsigned int pos = JvmtiTagHashmap::hash(delayed_add->object(), size);
  3382     delayed_add->set_next(table[pos]);
  3383     table[pos] = delayed_add;
  3384     delayed_add = next;
  3387   // stats
  3388   if (TraceJVMTIObjectTagging) {
  3389     int post_total = hashmap->_entry_count;
  3390     int pre_total = post_total + freed;
  3392     tty->print_cr("(%d->%d, %d freed, %d total moves)",
  3393         pre_total, post_total, freed, moved);

mercurial