src/share/vm/opto/type.cpp

Wed, 03 Jul 2019 20:42:37 +0800

author
aoqi
date
Wed, 03 Jul 2019 20:42:37 +0800
changeset 9637
eef07cd490d4
parent 9572
624a0741915c
parent 9610
f43f77de876a
child 9852
70aa912cebe5
permissions
-rw-r--r--

Merge

     1 /*
     2  * Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "ci/ciMethodData.hpp"
    27 #include "ci/ciTypeFlow.hpp"
    28 #include "classfile/symbolTable.hpp"
    29 #include "classfile/systemDictionary.hpp"
    30 #include "compiler/compileLog.hpp"
    31 #include "libadt/dict.hpp"
    32 #include "memory/gcLocker.hpp"
    33 #include "memory/oopFactory.hpp"
    34 #include "memory/resourceArea.hpp"
    35 #include "oops/instanceKlass.hpp"
    36 #include "oops/instanceMirrorKlass.hpp"
    37 #include "oops/objArrayKlass.hpp"
    38 #include "oops/typeArrayKlass.hpp"
    39 #include "opto/matcher.hpp"
    40 #include "opto/node.hpp"
    41 #include "opto/opcodes.hpp"
    42 #include "opto/type.hpp"
    44 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
    46 // Portions of code courtesy of Clifford Click
    48 // Optimization - Graph Style
    50 // Dictionary of types shared among compilations.
    51 Dict* Type::_shared_type_dict = NULL;
    53 // Array which maps compiler types to Basic Types
    54 const Type::TypeInfo Type::_type_info[Type::lastype] = {
    55   { Bad,             T_ILLEGAL,    "bad",           false, Node::NotAMachineReg, relocInfo::none          },  // Bad
    56   { Control,         T_ILLEGAL,    "control",       false, 0,                    relocInfo::none          },  // Control
    57   { Bottom,          T_VOID,       "top",           false, 0,                    relocInfo::none          },  // Top
    58   { Bad,             T_INT,        "int:",          false, Op_RegI,              relocInfo::none          },  // Int
    59   { Bad,             T_LONG,       "long:",         false, Op_RegL,              relocInfo::none          },  // Long
    60   { Half,            T_VOID,       "half",          false, 0,                    relocInfo::none          },  // Half
    61   { Bad,             T_NARROWOOP,  "narrowoop:",    false, Op_RegN,              relocInfo::none          },  // NarrowOop
    62   { Bad,             T_NARROWKLASS,"narrowklass:",  false, Op_RegN,              relocInfo::none          },  // NarrowKlass
    63   { Bad,             T_ILLEGAL,    "tuple:",        false, Node::NotAMachineReg, relocInfo::none          },  // Tuple
    64   { Bad,             T_ARRAY,      "array:",        false, Node::NotAMachineReg, relocInfo::none          },  // Array
    66 #ifdef SPARC
    67   { Bad,             T_ILLEGAL,    "vectors:",      false, 0,                    relocInfo::none          },  // VectorS
    68   { Bad,             T_ILLEGAL,    "vectord:",      false, Op_RegD,              relocInfo::none          },  // VectorD
    69   { Bad,             T_ILLEGAL,    "vectorx:",      false, 0,                    relocInfo::none          },  // VectorX
    70   { Bad,             T_ILLEGAL,    "vectory:",      false, 0,                    relocInfo::none          },  // VectorY
    71 #elif defined(MIPS64)
    72   { Bad,             T_ILLEGAL,    "vectors:",      false, 0,                    relocInfo::none          },  // VectorS
    73   { Bad,             T_ILLEGAL,    "vectord:",      false, Op_VecD,              relocInfo::none          },  // VectorD
    74   { Bad,             T_ILLEGAL,    "vectorx:",      false, 0,                    relocInfo::none          },  // VectorX
    75   { Bad,             T_ILLEGAL,    "vectory:",      false, 0,                    relocInfo::none          },  // VectorY
    76 #elif defined(PPC64)
    77   { Bad,             T_ILLEGAL,    "vectors:",      false, 0,                    relocInfo::none          },  // VectorS
    78   { Bad,             T_ILLEGAL,    "vectord:",      false, Op_RegL,              relocInfo::none          },  // VectorD
    79   { Bad,             T_ILLEGAL,    "vectorx:",      false, 0,                    relocInfo::none          },  // VectorX
    80   { Bad,             T_ILLEGAL,    "vectory:",      false, 0,                    relocInfo::none          },  // VectorY
    81 #else // all other
    82   { Bad,             T_ILLEGAL,    "vectors:",      false, Op_VecS,              relocInfo::none          },  // VectorS
    83   { Bad,             T_ILLEGAL,    "vectord:",      false, Op_VecD,              relocInfo::none          },  // VectorD
    84   { Bad,             T_ILLEGAL,    "vectorx:",      false, Op_VecX,              relocInfo::none          },  // VectorX
    85   { Bad,             T_ILLEGAL,    "vectory:",      false, Op_VecY,              relocInfo::none          },  // VectorY
    86 #endif
    87   { Bad,             T_ADDRESS,    "anyptr:",       false, Op_RegP,              relocInfo::none          },  // AnyPtr
    88   { Bad,             T_ADDRESS,    "rawptr:",       false, Op_RegP,              relocInfo::none          },  // RawPtr
    89   { Bad,             T_OBJECT,     "oop:",          true,  Op_RegP,              relocInfo::oop_type      },  // OopPtr
    90   { Bad,             T_OBJECT,     "inst:",         true,  Op_RegP,              relocInfo::oop_type      },  // InstPtr
    91   { Bad,             T_OBJECT,     "ary:",          true,  Op_RegP,              relocInfo::oop_type      },  // AryPtr
    92   { Bad,             T_METADATA,   "metadata:",     false, Op_RegP,              relocInfo::metadata_type },  // MetadataPtr
    93   { Bad,             T_METADATA,   "klass:",        false, Op_RegP,              relocInfo::metadata_type },  // KlassPtr
    94   { Bad,             T_OBJECT,     "func",          false, 0,                    relocInfo::none          },  // Function
    95   { Abio,            T_ILLEGAL,    "abIO",          false, 0,                    relocInfo::none          },  // Abio
    96   { Return_Address,  T_ADDRESS,    "return_address",false, Op_RegP,              relocInfo::none          },  // Return_Address
    97   { Memory,          T_ILLEGAL,    "memory",        false, 0,                    relocInfo::none          },  // Memory
    98   { FloatBot,        T_FLOAT,      "float_top",     false, Op_RegF,              relocInfo::none          },  // FloatTop
    99   { FloatCon,        T_FLOAT,      "ftcon:",        false, Op_RegF,              relocInfo::none          },  // FloatCon
   100   { FloatTop,        T_FLOAT,      "float",         false, Op_RegF,              relocInfo::none          },  // FloatBot
   101   { DoubleBot,       T_DOUBLE,     "double_top",    false, Op_RegD,              relocInfo::none          },  // DoubleTop
   102   { DoubleCon,       T_DOUBLE,     "dblcon:",       false, Op_RegD,              relocInfo::none          },  // DoubleCon
   103   { DoubleTop,       T_DOUBLE,     "double",        false, Op_RegD,              relocInfo::none          },  // DoubleBot
   104   { Top,             T_ILLEGAL,    "bottom",        false, 0,                    relocInfo::none          }   // Bottom
   105 };
   107 // Map ideal registers (machine types) to ideal types
   108 const Type *Type::mreg2type[_last_machine_leaf];
   110 // Map basic types to canonical Type* pointers.
   111 const Type* Type::     _const_basic_type[T_CONFLICT+1];
   113 // Map basic types to constant-zero Types.
   114 const Type* Type::            _zero_type[T_CONFLICT+1];
   116 // Map basic types to array-body alias types.
   117 const TypeAryPtr* TypeAryPtr::_array_body_type[T_CONFLICT+1];
   119 //=============================================================================
   120 // Convenience common pre-built types.
   121 const Type *Type::ABIO;         // State-of-machine only
   122 const Type *Type::BOTTOM;       // All values
   123 const Type *Type::CONTROL;      // Control only
   124 const Type *Type::DOUBLE;       // All doubles
   125 const Type *Type::FLOAT;        // All floats
   126 const Type *Type::HALF;         // Placeholder half of doublewide type
   127 const Type *Type::MEMORY;       // Abstract store only
   128 const Type *Type::RETURN_ADDRESS;
   129 const Type *Type::TOP;          // No values in set
   131 //------------------------------get_const_type---------------------------
   132 const Type* Type::get_const_type(ciType* type) {
   133   if (type == NULL) {
   134     return NULL;
   135   } else if (type->is_primitive_type()) {
   136     return get_const_basic_type(type->basic_type());
   137   } else {
   138     return TypeOopPtr::make_from_klass(type->as_klass());
   139   }
   140 }
   142 //---------------------------array_element_basic_type---------------------------------
   143 // Mapping to the array element's basic type.
   144 BasicType Type::array_element_basic_type() const {
   145   BasicType bt = basic_type();
   146   if (bt == T_INT) {
   147     if (this == TypeInt::INT)   return T_INT;
   148     if (this == TypeInt::CHAR)  return T_CHAR;
   149     if (this == TypeInt::BYTE)  return T_BYTE;
   150     if (this == TypeInt::BOOL)  return T_BOOLEAN;
   151     if (this == TypeInt::SHORT) return T_SHORT;
   152     return T_VOID;
   153   }
   154   return bt;
   155 }
   157 // For two instance arrays of same dimension, return the base element types.
   158 // Otherwise or if the arrays have different dimensions, return NULL.
   159 void Type::get_arrays_base_elements(const Type *a1, const Type *a2,
   160                                     const TypeInstPtr **e1, const TypeInstPtr **e2) {
   162   if (e1) *e1 = NULL;
   163   if (e2) *e2 = NULL;
   164   const TypeAryPtr* a1tap = (a1 == NULL) ? NULL : a1->isa_aryptr();
   165   const TypeAryPtr* a2tap = (a2 == NULL) ? NULL : a2->isa_aryptr();
   167   if (a1tap != NULL && a2tap != NULL) {
   168     // Handle multidimensional arrays
   169     const TypePtr* a1tp = a1tap->elem()->make_ptr();
   170     const TypePtr* a2tp = a2tap->elem()->make_ptr();
   171     while (a1tp && a1tp->isa_aryptr() && a2tp && a2tp->isa_aryptr()) {
   172       a1tap = a1tp->is_aryptr();
   173       a2tap = a2tp->is_aryptr();
   174       a1tp = a1tap->elem()->make_ptr();
   175       a2tp = a2tap->elem()->make_ptr();
   176     }
   177     if (a1tp && a1tp->isa_instptr() && a2tp && a2tp->isa_instptr()) {
   178       if (e1) *e1 = a1tp->is_instptr();
   179       if (e2) *e2 = a2tp->is_instptr();
   180     }
   181   }
   182 }
   184 //---------------------------get_typeflow_type---------------------------------
   185 // Import a type produced by ciTypeFlow.
   186 const Type* Type::get_typeflow_type(ciType* type) {
   187   switch (type->basic_type()) {
   189   case ciTypeFlow::StateVector::T_BOTTOM:
   190     assert(type == ciTypeFlow::StateVector::bottom_type(), "");
   191     return Type::BOTTOM;
   193   case ciTypeFlow::StateVector::T_TOP:
   194     assert(type == ciTypeFlow::StateVector::top_type(), "");
   195     return Type::TOP;
   197   case ciTypeFlow::StateVector::T_NULL:
   198     assert(type == ciTypeFlow::StateVector::null_type(), "");
   199     return TypePtr::NULL_PTR;
   201   case ciTypeFlow::StateVector::T_LONG2:
   202     // The ciTypeFlow pass pushes a long, then the half.
   203     // We do the same.
   204     assert(type == ciTypeFlow::StateVector::long2_type(), "");
   205     return TypeInt::TOP;
   207   case ciTypeFlow::StateVector::T_DOUBLE2:
   208     // The ciTypeFlow pass pushes double, then the half.
   209     // Our convention is the same.
   210     assert(type == ciTypeFlow::StateVector::double2_type(), "");
   211     return Type::TOP;
   213   case T_ADDRESS:
   214     assert(type->is_return_address(), "");
   215     return TypeRawPtr::make((address)(intptr_t)type->as_return_address()->bci());
   217   default:
   218     // make sure we did not mix up the cases:
   219     assert(type != ciTypeFlow::StateVector::bottom_type(), "");
   220     assert(type != ciTypeFlow::StateVector::top_type(), "");
   221     assert(type != ciTypeFlow::StateVector::null_type(), "");
   222     assert(type != ciTypeFlow::StateVector::long2_type(), "");
   223     assert(type != ciTypeFlow::StateVector::double2_type(), "");
   224     assert(!type->is_return_address(), "");
   226     return Type::get_const_type(type);
   227   }
   228 }
   231 //-----------------------make_from_constant------------------------------------
   232 const Type* Type::make_from_constant(ciConstant constant,
   233                                      bool require_constant, bool is_autobox_cache) {
   234   switch (constant.basic_type()) {
   235   case T_BOOLEAN:  return TypeInt::make(constant.as_boolean());
   236   case T_CHAR:     return TypeInt::make(constant.as_char());
   237   case T_BYTE:     return TypeInt::make(constant.as_byte());
   238   case T_SHORT:    return TypeInt::make(constant.as_short());
   239   case T_INT:      return TypeInt::make(constant.as_int());
   240   case T_LONG:     return TypeLong::make(constant.as_long());
   241   case T_FLOAT:    return TypeF::make(constant.as_float());
   242   case T_DOUBLE:   return TypeD::make(constant.as_double());
   243   case T_ARRAY:
   244   case T_OBJECT:
   245     {
   246       // cases:
   247       //   can_be_constant    = (oop not scavengable || ScavengeRootsInCode != 0)
   248       //   should_be_constant = (oop not scavengable || ScavengeRootsInCode >= 2)
   249       // An oop is not scavengable if it is in the perm gen.
   250       ciObject* oop_constant = constant.as_object();
   251       if (oop_constant->is_null_object()) {
   252         return Type::get_zero_type(T_OBJECT);
   253       } else if (require_constant || oop_constant->should_be_constant()) {
   254         return TypeOopPtr::make_from_constant(oop_constant, require_constant, is_autobox_cache);
   255       }
   256     }
   257   }
   258   // Fall through to failure
   259   return NULL;
   260 }
   263 //------------------------------make-------------------------------------------
   264 // Create a simple Type, with default empty symbol sets.  Then hashcons it
   265 // and look for an existing copy in the type dictionary.
   266 const Type *Type::make( enum TYPES t ) {
   267   return (new Type(t))->hashcons();
   268 }
   270 //------------------------------cmp--------------------------------------------
   271 int Type::cmp( const Type *const t1, const Type *const t2 ) {
   272   if( t1->_base != t2->_base )
   273     return 1;                   // Missed badly
   274   assert(t1 != t2 || t1->eq(t2), "eq must be reflexive");
   275   return !t1->eq(t2);           // Return ZERO if equal
   276 }
   278 const Type* Type::maybe_remove_speculative(bool include_speculative) const {
   279   if (!include_speculative) {
   280     return remove_speculative();
   281   }
   282   return this;
   283 }
   285 //------------------------------hash-------------------------------------------
   286 int Type::uhash( const Type *const t ) {
   287   return t->hash();
   288 }
   290 #define SMALLINT ((juint)3)  // a value too insignificant to consider widening
   292 //--------------------------Initialize_shared----------------------------------
   293 void Type::Initialize_shared(Compile* current) {
   294   // This method does not need to be locked because the first system
   295   // compilations (stub compilations) occur serially.  If they are
   296   // changed to proceed in parallel, then this section will need
   297   // locking.
   299   Arena* save = current->type_arena();
   300   Arena* shared_type_arena = new (mtCompiler)Arena(mtCompiler);
   302   current->set_type_arena(shared_type_arena);
   303   _shared_type_dict =
   304     new (shared_type_arena) Dict( (CmpKey)Type::cmp, (Hash)Type::uhash,
   305                                   shared_type_arena, 128 );
   306   current->set_type_dict(_shared_type_dict);
   308   // Make shared pre-built types.
   309   CONTROL = make(Control);      // Control only
   310   TOP     = make(Top);          // No values in set
   311   MEMORY  = make(Memory);       // Abstract store only
   312   ABIO    = make(Abio);         // State-of-machine only
   313   RETURN_ADDRESS=make(Return_Address);
   314   FLOAT   = make(FloatBot);     // All floats
   315   DOUBLE  = make(DoubleBot);    // All doubles
   316   BOTTOM  = make(Bottom);       // Everything
   317   HALF    = make(Half);         // Placeholder half of doublewide type
   319   TypeF::ZERO = TypeF::make(0.0); // Float 0 (positive zero)
   320   TypeF::ONE  = TypeF::make(1.0); // Float 1
   322   TypeD::ZERO = TypeD::make(0.0); // Double 0 (positive zero)
   323   TypeD::ONE  = TypeD::make(1.0); // Double 1
   325   TypeInt::MINUS_1 = TypeInt::make(-1);  // -1
   326   TypeInt::ZERO    = TypeInt::make( 0);  //  0
   327   TypeInt::ONE     = TypeInt::make( 1);  //  1
   328   TypeInt::BOOL    = TypeInt::make(0,1,   WidenMin);  // 0 or 1, FALSE or TRUE.
   329   TypeInt::CC      = TypeInt::make(-1, 1, WidenMin);  // -1, 0 or 1, condition codes
   330   TypeInt::CC_LT   = TypeInt::make(-1,-1, WidenMin);  // == TypeInt::MINUS_1
   331   TypeInt::CC_GT   = TypeInt::make( 1, 1, WidenMin);  // == TypeInt::ONE
   332   TypeInt::CC_EQ   = TypeInt::make( 0, 0, WidenMin);  // == TypeInt::ZERO
   333   TypeInt::CC_LE   = TypeInt::make(-1, 0, WidenMin);
   334   TypeInt::CC_GE   = TypeInt::make( 0, 1, WidenMin);  // == TypeInt::BOOL
   335   TypeInt::BYTE    = TypeInt::make(-128,127,     WidenMin); // Bytes
   336   TypeInt::UBYTE   = TypeInt::make(0, 255,       WidenMin); // Unsigned Bytes
   337   TypeInt::CHAR    = TypeInt::make(0,65535,      WidenMin); // Java chars
   338   TypeInt::SHORT   = TypeInt::make(-32768,32767, WidenMin); // Java shorts
   339   TypeInt::POS     = TypeInt::make(0,max_jint,   WidenMin); // Non-neg values
   340   TypeInt::POS1    = TypeInt::make(1,max_jint,   WidenMin); // Positive values
   341   TypeInt::INT     = TypeInt::make(min_jint,max_jint, WidenMax); // 32-bit integers
   342   TypeInt::SYMINT  = TypeInt::make(-max_jint,max_jint,WidenMin); // symmetric range
   343   TypeInt::TYPE_DOMAIN  = TypeInt::INT;
   344   // CmpL is overloaded both as the bytecode computation returning
   345   // a trinary (-1,0,+1) integer result AND as an efficient long
   346   // compare returning optimizer ideal-type flags.
   347   assert( TypeInt::CC_LT == TypeInt::MINUS_1, "types must match for CmpL to work" );
   348   assert( TypeInt::CC_GT == TypeInt::ONE,     "types must match for CmpL to work" );
   349   assert( TypeInt::CC_EQ == TypeInt::ZERO,    "types must match for CmpL to work" );
   350   assert( TypeInt::CC_GE == TypeInt::BOOL,    "types must match for CmpL to work" );
   351   assert( (juint)(TypeInt::CC->_hi - TypeInt::CC->_lo) <= SMALLINT, "CC is truly small");
   353   TypeLong::MINUS_1 = TypeLong::make(-1);        // -1
   354   TypeLong::ZERO    = TypeLong::make( 0);        //  0
   355   TypeLong::ONE     = TypeLong::make( 1);        //  1
   356   TypeLong::POS     = TypeLong::make(0,max_jlong, WidenMin); // Non-neg values
   357   TypeLong::LONG    = TypeLong::make(min_jlong,max_jlong,WidenMax); // 64-bit integers
   358   TypeLong::INT     = TypeLong::make((jlong)min_jint,(jlong)max_jint,WidenMin);
   359   TypeLong::UINT    = TypeLong::make(0,(jlong)max_juint,WidenMin);
   360   TypeLong::TYPE_DOMAIN  = TypeLong::LONG;
   362   const Type **fboth =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
   363   fboth[0] = Type::CONTROL;
   364   fboth[1] = Type::CONTROL;
   365   TypeTuple::IFBOTH = TypeTuple::make( 2, fboth );
   367   const Type **ffalse =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
   368   ffalse[0] = Type::CONTROL;
   369   ffalse[1] = Type::TOP;
   370   TypeTuple::IFFALSE = TypeTuple::make( 2, ffalse );
   372   const Type **fneither =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
   373   fneither[0] = Type::TOP;
   374   fneither[1] = Type::TOP;
   375   TypeTuple::IFNEITHER = TypeTuple::make( 2, fneither );
   377   const Type **ftrue =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
   378   ftrue[0] = Type::TOP;
   379   ftrue[1] = Type::CONTROL;
   380   TypeTuple::IFTRUE = TypeTuple::make( 2, ftrue );
   382   const Type **floop =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
   383   floop[0] = Type::CONTROL;
   384   floop[1] = TypeInt::INT;
   385   TypeTuple::LOOPBODY = TypeTuple::make( 2, floop );
   387   TypePtr::NULL_PTR= TypePtr::make( AnyPtr, TypePtr::Null, 0 );
   388   TypePtr::NOTNULL = TypePtr::make( AnyPtr, TypePtr::NotNull, OffsetBot );
   389   TypePtr::BOTTOM  = TypePtr::make( AnyPtr, TypePtr::BotPTR, OffsetBot );
   391   TypeRawPtr::BOTTOM = TypeRawPtr::make( TypePtr::BotPTR );
   392   TypeRawPtr::NOTNULL= TypeRawPtr::make( TypePtr::NotNull );
   394   const Type **fmembar = TypeTuple::fields(0);
   395   TypeTuple::MEMBAR = TypeTuple::make(TypeFunc::Parms+0, fmembar);
   397   const Type **fsc = (const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
   398   fsc[0] = TypeInt::CC;
   399   fsc[1] = Type::MEMORY;
   400   TypeTuple::STORECONDITIONAL = TypeTuple::make(2, fsc);
   402   TypeInstPtr::NOTNULL = TypeInstPtr::make(TypePtr::NotNull, current->env()->Object_klass());
   403   TypeInstPtr::BOTTOM  = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass());
   404   TypeInstPtr::MIRROR  = TypeInstPtr::make(TypePtr::NotNull, current->env()->Class_klass());
   405   TypeInstPtr::MARK    = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass(),
   406                                            false, 0, oopDesc::mark_offset_in_bytes());
   407   TypeInstPtr::KLASS   = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass(),
   408                                            false, 0, oopDesc::klass_offset_in_bytes());
   409   TypeOopPtr::BOTTOM  = TypeOopPtr::make(TypePtr::BotPTR, OffsetBot, TypeOopPtr::InstanceBot, NULL);
   411   TypeMetadataPtr::BOTTOM = TypeMetadataPtr::make(TypePtr::BotPTR, NULL, OffsetBot);
   413   TypeNarrowOop::NULL_PTR = TypeNarrowOop::make( TypePtr::NULL_PTR );
   414   TypeNarrowOop::BOTTOM   = TypeNarrowOop::make( TypeInstPtr::BOTTOM );
   416   TypeNarrowKlass::NULL_PTR = TypeNarrowKlass::make( TypePtr::NULL_PTR );
   418   mreg2type[Op_Node] = Type::BOTTOM;
   419   mreg2type[Op_Set ] = 0;
   420   mreg2type[Op_RegN] = TypeNarrowOop::BOTTOM;
   421   mreg2type[Op_RegI] = TypeInt::INT;
   422   mreg2type[Op_RegP] = TypePtr::BOTTOM;
   423   mreg2type[Op_RegF] = Type::FLOAT;
   424   mreg2type[Op_RegD] = Type::DOUBLE;
   425   mreg2type[Op_RegL] = TypeLong::LONG;
   426   mreg2type[Op_RegFlags] = TypeInt::CC;
   428   TypeAryPtr::RANGE   = TypeAryPtr::make( TypePtr::BotPTR, TypeAry::make(Type::BOTTOM,TypeInt::POS), NULL /* current->env()->Object_klass() */, false, arrayOopDesc::length_offset_in_bytes());
   430   TypeAryPtr::NARROWOOPS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeNarrowOop::BOTTOM, TypeInt::POS), NULL /*ciArrayKlass::make(o)*/,  false,  Type::OffsetBot);
   432 #ifdef _LP64
   433   if (UseCompressedOops) {
   434     assert(TypeAryPtr::NARROWOOPS->is_ptr_to_narrowoop(), "array of narrow oops must be ptr to narrow oop");
   435     TypeAryPtr::OOPS  = TypeAryPtr::NARROWOOPS;
   436   } else
   437 #endif
   438   {
   439     // There is no shared klass for Object[].  See note in TypeAryPtr::klass().
   440     TypeAryPtr::OOPS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInstPtr::BOTTOM,TypeInt::POS), NULL /*ciArrayKlass::make(o)*/,  false,  Type::OffsetBot);
   441   }
   442   TypeAryPtr::BYTES   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::BYTE      ,TypeInt::POS), ciTypeArrayKlass::make(T_BYTE),   true,  Type::OffsetBot);
   443   TypeAryPtr::SHORTS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::SHORT     ,TypeInt::POS), ciTypeArrayKlass::make(T_SHORT),  true,  Type::OffsetBot);
   444   TypeAryPtr::CHARS   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::CHAR      ,TypeInt::POS), ciTypeArrayKlass::make(T_CHAR),   true,  Type::OffsetBot);
   445   TypeAryPtr::INTS    = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::INT       ,TypeInt::POS), ciTypeArrayKlass::make(T_INT),    true,  Type::OffsetBot);
   446   TypeAryPtr::LONGS   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeLong::LONG     ,TypeInt::POS), ciTypeArrayKlass::make(T_LONG),   true,  Type::OffsetBot);
   447   TypeAryPtr::FLOATS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::FLOAT        ,TypeInt::POS), ciTypeArrayKlass::make(T_FLOAT),  true,  Type::OffsetBot);
   448   TypeAryPtr::DOUBLES = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::DOUBLE       ,TypeInt::POS), ciTypeArrayKlass::make(T_DOUBLE), true,  Type::OffsetBot);
   450   // Nobody should ask _array_body_type[T_NARROWOOP]. Use NULL as assert.
   451   TypeAryPtr::_array_body_type[T_NARROWOOP] = NULL;
   452   TypeAryPtr::_array_body_type[T_OBJECT]  = TypeAryPtr::OOPS;
   453   TypeAryPtr::_array_body_type[T_ARRAY]   = TypeAryPtr::OOPS; // arrays are stored in oop arrays
   454   TypeAryPtr::_array_body_type[T_BYTE]    = TypeAryPtr::BYTES;
   455   TypeAryPtr::_array_body_type[T_BOOLEAN] = TypeAryPtr::BYTES;  // boolean[] is a byte array
   456   TypeAryPtr::_array_body_type[T_SHORT]   = TypeAryPtr::SHORTS;
   457   TypeAryPtr::_array_body_type[T_CHAR]    = TypeAryPtr::CHARS;
   458   TypeAryPtr::_array_body_type[T_INT]     = TypeAryPtr::INTS;
   459   TypeAryPtr::_array_body_type[T_LONG]    = TypeAryPtr::LONGS;
   460   TypeAryPtr::_array_body_type[T_FLOAT]   = TypeAryPtr::FLOATS;
   461   TypeAryPtr::_array_body_type[T_DOUBLE]  = TypeAryPtr::DOUBLES;
   463   TypeKlassPtr::OBJECT = TypeKlassPtr::make( TypePtr::NotNull, current->env()->Object_klass(), 0 );
   464   TypeKlassPtr::OBJECT_OR_NULL = TypeKlassPtr::make( TypePtr::BotPTR, current->env()->Object_klass(), 0 );
   466   const Type **fi2c = TypeTuple::fields(2);
   467   fi2c[TypeFunc::Parms+0] = TypeInstPtr::BOTTOM; // Method*
   468   fi2c[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM; // argument pointer
   469   TypeTuple::START_I2C = TypeTuple::make(TypeFunc::Parms+2, fi2c);
   471   const Type **intpair = TypeTuple::fields(2);
   472   intpair[0] = TypeInt::INT;
   473   intpair[1] = TypeInt::INT;
   474   TypeTuple::INT_PAIR = TypeTuple::make(2, intpair);
   476   const Type **longpair = TypeTuple::fields(2);
   477   longpair[0] = TypeLong::LONG;
   478   longpair[1] = TypeLong::LONG;
   479   TypeTuple::LONG_PAIR = TypeTuple::make(2, longpair);
   481   const Type **intccpair = TypeTuple::fields(2);
   482   intccpair[0] = TypeInt::INT;
   483   intccpair[1] = TypeInt::CC;
   484   TypeTuple::INT_CC_PAIR = TypeTuple::make(2, intccpair);
   486   const Type **longccpair = TypeTuple::fields(2);
   487   longccpair[0] = TypeLong::LONG;
   488   longccpair[1] = TypeInt::CC;
   489   TypeTuple::LONG_CC_PAIR = TypeTuple::make(2, longccpair);
   491   _const_basic_type[T_NARROWOOP]   = TypeNarrowOop::BOTTOM;
   492   _const_basic_type[T_NARROWKLASS] = Type::BOTTOM;
   493   _const_basic_type[T_BOOLEAN]     = TypeInt::BOOL;
   494   _const_basic_type[T_CHAR]        = TypeInt::CHAR;
   495   _const_basic_type[T_BYTE]        = TypeInt::BYTE;
   496   _const_basic_type[T_SHORT]       = TypeInt::SHORT;
   497   _const_basic_type[T_INT]         = TypeInt::INT;
   498   _const_basic_type[T_LONG]        = TypeLong::LONG;
   499   _const_basic_type[T_FLOAT]       = Type::FLOAT;
   500   _const_basic_type[T_DOUBLE]      = Type::DOUBLE;
   501   _const_basic_type[T_OBJECT]      = TypeInstPtr::BOTTOM;
   502   _const_basic_type[T_ARRAY]       = TypeInstPtr::BOTTOM; // there is no separate bottom for arrays
   503   _const_basic_type[T_VOID]        = TypePtr::NULL_PTR;   // reflection represents void this way
   504   _const_basic_type[T_ADDRESS]     = TypeRawPtr::BOTTOM;  // both interpreter return addresses & random raw ptrs
   505   _const_basic_type[T_CONFLICT]    = Type::BOTTOM;        // why not?
   507   _zero_type[T_NARROWOOP]   = TypeNarrowOop::NULL_PTR;
   508   _zero_type[T_NARROWKLASS] = TypeNarrowKlass::NULL_PTR;
   509   _zero_type[T_BOOLEAN]     = TypeInt::ZERO;     // false == 0
   510   _zero_type[T_CHAR]        = TypeInt::ZERO;     // '\0' == 0
   511   _zero_type[T_BYTE]        = TypeInt::ZERO;     // 0x00 == 0
   512   _zero_type[T_SHORT]       = TypeInt::ZERO;     // 0x0000 == 0
   513   _zero_type[T_INT]         = TypeInt::ZERO;
   514   _zero_type[T_LONG]        = TypeLong::ZERO;
   515   _zero_type[T_FLOAT]       = TypeF::ZERO;
   516   _zero_type[T_DOUBLE]      = TypeD::ZERO;
   517   _zero_type[T_OBJECT]      = TypePtr::NULL_PTR;
   518   _zero_type[T_ARRAY]       = TypePtr::NULL_PTR; // null array is null oop
   519   _zero_type[T_ADDRESS]     = TypePtr::NULL_PTR; // raw pointers use the same null
   520   _zero_type[T_VOID]        = Type::TOP;         // the only void value is no value at all
   522   // get_zero_type() should not happen for T_CONFLICT
   523   _zero_type[T_CONFLICT]= NULL;
   525   // Vector predefined types, it needs initialized _const_basic_type[].
   526   if (Matcher::vector_size_supported(T_BYTE,4)) {
   527     TypeVect::VECTS = TypeVect::make(T_BYTE,4);
   528   }
   529   if (Matcher::vector_size_supported(T_FLOAT,2)) {
   530     TypeVect::VECTD = TypeVect::make(T_FLOAT,2);
   531   }
   532   if (Matcher::vector_size_supported(T_FLOAT,4)) {
   533     TypeVect::VECTX = TypeVect::make(T_FLOAT,4);
   534   }
   535   if (Matcher::vector_size_supported(T_FLOAT,8)) {
   536     TypeVect::VECTY = TypeVect::make(T_FLOAT,8);
   537   }
   538   mreg2type[Op_VecS] = TypeVect::VECTS;
   539   mreg2type[Op_VecD] = TypeVect::VECTD;
   540   mreg2type[Op_VecX] = TypeVect::VECTX;
   541   mreg2type[Op_VecY] = TypeVect::VECTY;
   543   // Restore working type arena.
   544   current->set_type_arena(save);
   545   current->set_type_dict(NULL);
   546 }
   548 //------------------------------Initialize-------------------------------------
   549 void Type::Initialize(Compile* current) {
   550   assert(current->type_arena() != NULL, "must have created type arena");
   552   if (_shared_type_dict == NULL) {
   553     Initialize_shared(current);
   554   }
   556   Arena* type_arena = current->type_arena();
   558   // Create the hash-cons'ing dictionary with top-level storage allocation
   559   Dict *tdic = new (type_arena) Dict( (CmpKey)Type::cmp,(Hash)Type::uhash, type_arena, 128 );
   560   current->set_type_dict(tdic);
   562   // Transfer the shared types.
   563   DictI i(_shared_type_dict);
   564   for( ; i.test(); ++i ) {
   565     Type* t = (Type*)i._value;
   566     tdic->Insert(t,t);  // New Type, insert into Type table
   567   }
   568 }
   570 //------------------------------hashcons---------------------------------------
   571 // Do the hash-cons trick.  If the Type already exists in the type table,
   572 // delete the current Type and return the existing Type.  Otherwise stick the
   573 // current Type in the Type table.
   574 const Type *Type::hashcons(void) {
   575   debug_only(base());           // Check the assertion in Type::base().
   576   // Look up the Type in the Type dictionary
   577   Dict *tdic = type_dict();
   578   Type* old = (Type*)(tdic->Insert(this, this, false));
   579   if( old ) {                   // Pre-existing Type?
   580     if( old != this )           // Yes, this guy is not the pre-existing?
   581       delete this;              // Yes, Nuke this guy
   582     assert( old->_dual, "" );
   583     return old;                 // Return pre-existing
   584   }
   586   // Every type has a dual (to make my lattice symmetric).
   587   // Since we just discovered a new Type, compute its dual right now.
   588   assert( !_dual, "" );         // No dual yet
   589   _dual = xdual();              // Compute the dual
   590   if( cmp(this,_dual)==0 ) {    // Handle self-symmetric
   591     _dual = this;
   592     return this;
   593   }
   594   assert( !_dual->_dual, "" );  // No reverse dual yet
   595   assert( !(*tdic)[_dual], "" ); // Dual not in type system either
   596   // New Type, insert into Type table
   597   tdic->Insert((void*)_dual,(void*)_dual);
   598   ((Type*)_dual)->_dual = this; // Finish up being symmetric
   599 #ifdef ASSERT
   600   Type *dual_dual = (Type*)_dual->xdual();
   601   assert( eq(dual_dual), "xdual(xdual()) should be identity" );
   602   delete dual_dual;
   603 #endif
   604   return this;                  // Return new Type
   605 }
   607 //------------------------------eq---------------------------------------------
   608 // Structural equality check for Type representations
   609 bool Type::eq( const Type * ) const {
   610   return true;                  // Nothing else can go wrong
   611 }
   613 //------------------------------hash-------------------------------------------
   614 // Type-specific hashing function.
   615 int Type::hash(void) const {
   616   return _base;
   617 }
   619 //------------------------------is_finite--------------------------------------
   620 // Has a finite value
   621 bool Type::is_finite() const {
   622   return false;
   623 }
   625 //------------------------------is_nan-----------------------------------------
   626 // Is not a number (NaN)
   627 bool Type::is_nan()    const {
   628   return false;
   629 }
   631 //----------------------interface_vs_oop---------------------------------------
   632 #ifdef ASSERT
   633 bool Type::interface_vs_oop_helper(const Type *t) const {
   634   bool result = false;
   636   const TypePtr* this_ptr = this->make_ptr(); // In case it is narrow_oop
   637   const TypePtr*    t_ptr =    t->make_ptr();
   638   if( this_ptr == NULL || t_ptr == NULL )
   639     return result;
   641   const TypeInstPtr* this_inst = this_ptr->isa_instptr();
   642   const TypeInstPtr*    t_inst =    t_ptr->isa_instptr();
   643   if( this_inst && this_inst->is_loaded() && t_inst && t_inst->is_loaded() ) {
   644     bool this_interface = this_inst->klass()->is_interface();
   645     bool    t_interface =    t_inst->klass()->is_interface();
   646     result = this_interface ^ t_interface;
   647   }
   649   return result;
   650 }
   652 bool Type::interface_vs_oop(const Type *t) const {
   653   if (interface_vs_oop_helper(t)) {
   654     return true;
   655   }
   656   // Now check the speculative parts as well
   657   const TypeOopPtr* this_spec = isa_oopptr() != NULL ? isa_oopptr()->speculative() : NULL;
   658   const TypeOopPtr* t_spec = t->isa_oopptr() != NULL ? t->isa_oopptr()->speculative() : NULL;
   659   if (this_spec != NULL && t_spec != NULL) {
   660     if (this_spec->interface_vs_oop_helper(t_spec)) {
   661       return true;
   662     }
   663     return false;
   664   }
   665   if (this_spec != NULL && this_spec->interface_vs_oop_helper(t)) {
   666     return true;
   667   }
   668   if (t_spec != NULL && interface_vs_oop_helper(t_spec)) {
   669     return true;
   670   }
   671   return false;
   672 }
   674 #endif
   676 //------------------------------meet-------------------------------------------
   677 // Compute the MEET of two types.  NOT virtual.  It enforces that meet is
   678 // commutative and the lattice is symmetric.
   679 const Type *Type::meet_helper(const Type *t, bool include_speculative) const {
   680   if (isa_narrowoop() && t->isa_narrowoop()) {
   681     const Type* result = make_ptr()->meet_helper(t->make_ptr(), include_speculative);
   682     return result->make_narrowoop();
   683   }
   684   if (isa_narrowklass() && t->isa_narrowklass()) {
   685     const Type* result = make_ptr()->meet_helper(t->make_ptr(), include_speculative);
   686     return result->make_narrowklass();
   687   }
   689   const Type *this_t = maybe_remove_speculative(include_speculative);
   690   t = t->maybe_remove_speculative(include_speculative);
   692   const Type *mt = this_t->xmeet(t);
   693   if (isa_narrowoop() || t->isa_narrowoop()) return mt;
   694   if (isa_narrowklass() || t->isa_narrowklass()) return mt;
   695 #ifdef ASSERT
   696   assert(mt == t->xmeet(this_t), "meet not commutative");
   697   const Type* dual_join = mt->_dual;
   698   const Type *t2t    = dual_join->xmeet(t->_dual);
   699   const Type *t2this = dual_join->xmeet(this_t->_dual);
   701   // Interface meet Oop is Not Symmetric:
   702   // Interface:AnyNull meet Oop:AnyNull == Interface:AnyNull
   703   // Interface:NotNull meet Oop:NotNull == java/lang/Object:NotNull
   705   if( !interface_vs_oop(t) && (t2t != t->_dual || t2this != this_t->_dual) ) {
   706     tty->print_cr("=== Meet Not Symmetric ===");
   707     tty->print("t   =                   ");              t->dump(); tty->cr();
   708     tty->print("this=                   ");         this_t->dump(); tty->cr();
   709     tty->print("mt=(t meet this)=       ");             mt->dump(); tty->cr();
   711     tty->print("t_dual=                 ");       t->_dual->dump(); tty->cr();
   712     tty->print("this_dual=              ");  this_t->_dual->dump(); tty->cr();
   713     tty->print("mt_dual=                ");      mt->_dual->dump(); tty->cr();
   715     tty->print("mt_dual meet t_dual=    "); t2t           ->dump(); tty->cr();
   716     tty->print("mt_dual meet this_dual= "); t2this        ->dump(); tty->cr();
   718     fatal("meet not symmetric" );
   719   }
   720 #endif
   721   return mt;
   722 }
   724 //------------------------------xmeet------------------------------------------
   725 // Compute the MEET of two types.  It returns a new Type object.
   726 const Type *Type::xmeet( const Type *t ) const {
   727   // Perform a fast test for common case; meeting the same types together.
   728   if( this == t ) return this;  // Meeting same type-rep?
   730   // Meeting TOP with anything?
   731   if( _base == Top ) return t;
   733   // Meeting BOTTOM with anything?
   734   if( _base == Bottom ) return BOTTOM;
   736   // Current "this->_base" is one of: Bad, Multi, Control, Top,
   737   // Abio, Abstore, Floatxxx, Doublexxx, Bottom, lastype.
   738   switch (t->base()) {  // Switch on original type
   740   // Cut in half the number of cases I must handle.  Only need cases for when
   741   // the given enum "t->type" is less than or equal to the local enum "type".
   742   case FloatCon:
   743   case DoubleCon:
   744   case Int:
   745   case Long:
   746     return t->xmeet(this);
   748   case OopPtr:
   749     return t->xmeet(this);
   751   case InstPtr:
   752     return t->xmeet(this);
   754   case MetadataPtr:
   755   case KlassPtr:
   756     return t->xmeet(this);
   758   case AryPtr:
   759     return t->xmeet(this);
   761   case NarrowOop:
   762     return t->xmeet(this);
   764   case NarrowKlass:
   765     return t->xmeet(this);
   767   case Bad:                     // Type check
   768   default:                      // Bogus type not in lattice
   769     typerr(t);
   770     return Type::BOTTOM;
   772   case Bottom:                  // Ye Olde Default
   773     return t;
   775   case FloatTop:
   776     if( _base == FloatTop ) return this;
   777   case FloatBot:                // Float
   778     if( _base == FloatBot || _base == FloatTop ) return FLOAT;
   779     if( _base == DoubleTop || _base == DoubleBot ) return Type::BOTTOM;
   780     typerr(t);
   781     return Type::BOTTOM;
   783   case DoubleTop:
   784     if( _base == DoubleTop ) return this;
   785   case DoubleBot:               // Double
   786     if( _base == DoubleBot || _base == DoubleTop ) return DOUBLE;
   787     if( _base == FloatTop || _base == FloatBot ) return Type::BOTTOM;
   788     typerr(t);
   789     return Type::BOTTOM;
   791   // These next few cases must match exactly or it is a compile-time error.
   792   case Control:                 // Control of code
   793   case Abio:                    // State of world outside of program
   794   case Memory:
   795     if( _base == t->_base )  return this;
   796     typerr(t);
   797     return Type::BOTTOM;
   799   case Top:                     // Top of the lattice
   800     return this;
   801   }
   803   // The type is unchanged
   804   return this;
   805 }
   807 //-----------------------------filter------------------------------------------
   808 const Type *Type::filter_helper(const Type *kills, bool include_speculative) const {
   809   const Type* ft = join_helper(kills, include_speculative);
   810   if (ft->empty())
   811     return Type::TOP;           // Canonical empty value
   812   return ft;
   813 }
   815 //------------------------------xdual------------------------------------------
   816 // Compute dual right now.
   817 const Type::TYPES Type::dual_type[Type::lastype] = {
   818   Bad,          // Bad
   819   Control,      // Control
   820   Bottom,       // Top
   821   Bad,          // Int - handled in v-call
   822   Bad,          // Long - handled in v-call
   823   Half,         // Half
   824   Bad,          // NarrowOop - handled in v-call
   825   Bad,          // NarrowKlass - handled in v-call
   827   Bad,          // Tuple - handled in v-call
   828   Bad,          // Array - handled in v-call
   829   Bad,          // VectorS - handled in v-call
   830   Bad,          // VectorD - handled in v-call
   831   Bad,          // VectorX - handled in v-call
   832   Bad,          // VectorY - handled in v-call
   834   Bad,          // AnyPtr - handled in v-call
   835   Bad,          // RawPtr - handled in v-call
   836   Bad,          // OopPtr - handled in v-call
   837   Bad,          // InstPtr - handled in v-call
   838   Bad,          // AryPtr - handled in v-call
   840   Bad,          //  MetadataPtr - handled in v-call
   841   Bad,          // KlassPtr - handled in v-call
   843   Bad,          // Function - handled in v-call
   844   Abio,         // Abio
   845   Return_Address,// Return_Address
   846   Memory,       // Memory
   847   FloatBot,     // FloatTop
   848   FloatCon,     // FloatCon
   849   FloatTop,     // FloatBot
   850   DoubleBot,    // DoubleTop
   851   DoubleCon,    // DoubleCon
   852   DoubleTop,    // DoubleBot
   853   Top           // Bottom
   854 };
   856 const Type *Type::xdual() const {
   857   // Note: the base() accessor asserts the sanity of _base.
   858   assert(_type_info[base()].dual_type != Bad, "implement with v-call");
   859   return new Type(_type_info[_base].dual_type);
   860 }
   862 //------------------------------has_memory-------------------------------------
   863 bool Type::has_memory() const {
   864   Type::TYPES tx = base();
   865   if (tx == Memory) return true;
   866   if (tx == Tuple) {
   867     const TypeTuple *t = is_tuple();
   868     for (uint i=0; i < t->cnt(); i++) {
   869       tx = t->field_at(i)->base();
   870       if (tx == Memory)  return true;
   871     }
   872   }
   873   return false;
   874 }
   876 #ifndef PRODUCT
   877 //------------------------------dump2------------------------------------------
   878 void Type::dump2( Dict &d, uint depth, outputStream *st ) const {
   879   st->print("%s", _type_info[_base].msg);
   880 }
   882 //------------------------------dump-------------------------------------------
   883 void Type::dump_on(outputStream *st) const {
   884   ResourceMark rm;
   885   Dict d(cmpkey,hashkey);       // Stop recursive type dumping
   886   dump2(d,1, st);
   887   if (is_ptr_to_narrowoop()) {
   888     st->print(" [narrow]");
   889   } else if (is_ptr_to_narrowklass()) {
   890     st->print(" [narrowklass]");
   891   }
   892 }
   894 //-----------------------------------------------------------------------------
   895 const char* Type::str(const Type* t) {
   896   stringStream ss;
   897   t->dump_on(&ss);
   898   return ss.as_string();
   899 }
   900 #endif
   902 //------------------------------singleton--------------------------------------
   903 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
   904 // constants (Ldi nodes).  Singletons are integer, float or double constants.
   905 bool Type::singleton(void) const {
   906   return _base == Top || _base == Half;
   907 }
   909 //------------------------------empty------------------------------------------
   910 // TRUE if Type is a type with no values, FALSE otherwise.
   911 bool Type::empty(void) const {
   912   switch (_base) {
   913   case DoubleTop:
   914   case FloatTop:
   915   case Top:
   916     return true;
   918   case Half:
   919   case Abio:
   920   case Return_Address:
   921   case Memory:
   922   case Bottom:
   923   case FloatBot:
   924   case DoubleBot:
   925     return false;  // never a singleton, therefore never empty
   926   }
   928   ShouldNotReachHere();
   929   return false;
   930 }
   932 //------------------------------dump_stats-------------------------------------
   933 // Dump collected statistics to stderr
   934 #ifndef PRODUCT
   935 void Type::dump_stats() {
   936   tty->print("Types made: %d\n", type_dict()->Size());
   937 }
   938 #endif
   940 //------------------------------typerr-----------------------------------------
   941 void Type::typerr( const Type *t ) const {
   942 #ifndef PRODUCT
   943   tty->print("\nError mixing types: ");
   944   dump();
   945   tty->print(" and ");
   946   t->dump();
   947   tty->print("\n");
   948 #endif
   949   ShouldNotReachHere();
   950 }
   953 //=============================================================================
   954 // Convenience common pre-built types.
   955 const TypeF *TypeF::ZERO;       // Floating point zero
   956 const TypeF *TypeF::ONE;        // Floating point one
   958 //------------------------------make-------------------------------------------
   959 // Create a float constant
   960 const TypeF *TypeF::make(float f) {
   961   return (TypeF*)(new TypeF(f))->hashcons();
   962 }
   964 //------------------------------meet-------------------------------------------
   965 // Compute the MEET of two types.  It returns a new Type object.
   966 const Type *TypeF::xmeet( const Type *t ) const {
   967   // Perform a fast test for common case; meeting the same types together.
   968   if( this == t ) return this;  // Meeting same type-rep?
   970   // Current "this->_base" is FloatCon
   971   switch (t->base()) {          // Switch on original type
   972   case AnyPtr:                  // Mixing with oops happens when javac
   973   case RawPtr:                  // reuses local variables
   974   case OopPtr:
   975   case InstPtr:
   976   case AryPtr:
   977   case MetadataPtr:
   978   case KlassPtr:
   979   case NarrowOop:
   980   case NarrowKlass:
   981   case Int:
   982   case Long:
   983   case DoubleTop:
   984   case DoubleCon:
   985   case DoubleBot:
   986   case Bottom:                  // Ye Olde Default
   987     return Type::BOTTOM;
   989   case FloatBot:
   990     return t;
   992   default:                      // All else is a mistake
   993     typerr(t);
   995   case FloatCon:                // Float-constant vs Float-constant?
   996     if( jint_cast(_f) != jint_cast(t->getf()) )         // unequal constants?
   997                                 // must compare bitwise as positive zero, negative zero and NaN have
   998                                 // all the same representation in C++
   999       return FLOAT;             // Return generic float
  1000                                 // Equal constants
  1001   case Top:
  1002   case FloatTop:
  1003     break;                      // Return the float constant
  1005   return this;                  // Return the float constant
  1008 //------------------------------xdual------------------------------------------
  1009 // Dual: symmetric
  1010 const Type *TypeF::xdual() const {
  1011   return this;
  1014 //------------------------------eq---------------------------------------------
  1015 // Structural equality check for Type representations
  1016 bool TypeF::eq(const Type *t) const {
  1017   // Bitwise comparison to distinguish between +/-0. These values must be treated
  1018   // as different to be consistent with C1 and the interpreter.
  1019   return (jint_cast(_f) == jint_cast(t->getf()));
  1022 //------------------------------hash-------------------------------------------
  1023 // Type-specific hashing function.
  1024 int TypeF::hash(void) const {
  1025   return *(int*)(&_f);
  1028 //------------------------------is_finite--------------------------------------
  1029 // Has a finite value
  1030 bool TypeF::is_finite() const {
  1031   return g_isfinite(getf()) != 0;
  1034 //------------------------------is_nan-----------------------------------------
  1035 // Is not a number (NaN)
  1036 bool TypeF::is_nan()    const {
  1037   return g_isnan(getf()) != 0;
  1040 //------------------------------dump2------------------------------------------
  1041 // Dump float constant Type
  1042 #ifndef PRODUCT
  1043 void TypeF::dump2( Dict &d, uint depth, outputStream *st ) const {
  1044   Type::dump2(d,depth, st);
  1045   st->print("%f", _f);
  1047 #endif
  1049 //------------------------------singleton--------------------------------------
  1050 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
  1051 // constants (Ldi nodes).  Singletons are integer, float or double constants
  1052 // or a single symbol.
  1053 bool TypeF::singleton(void) const {
  1054   return true;                  // Always a singleton
  1057 bool TypeF::empty(void) const {
  1058   return false;                 // always exactly a singleton
  1061 //=============================================================================
  1062 // Convenience common pre-built types.
  1063 const TypeD *TypeD::ZERO;       // Floating point zero
  1064 const TypeD *TypeD::ONE;        // Floating point one
  1066 //------------------------------make-------------------------------------------
  1067 const TypeD *TypeD::make(double d) {
  1068   return (TypeD*)(new TypeD(d))->hashcons();
  1071 //------------------------------meet-------------------------------------------
  1072 // Compute the MEET of two types.  It returns a new Type object.
  1073 const Type *TypeD::xmeet( const Type *t ) const {
  1074   // Perform a fast test for common case; meeting the same types together.
  1075   if( this == t ) return this;  // Meeting same type-rep?
  1077   // Current "this->_base" is DoubleCon
  1078   switch (t->base()) {          // Switch on original type
  1079   case AnyPtr:                  // Mixing with oops happens when javac
  1080   case RawPtr:                  // reuses local variables
  1081   case OopPtr:
  1082   case InstPtr:
  1083   case AryPtr:
  1084   case MetadataPtr:
  1085   case KlassPtr:
  1086   case NarrowOop:
  1087   case NarrowKlass:
  1088   case Int:
  1089   case Long:
  1090   case FloatTop:
  1091   case FloatCon:
  1092   case FloatBot:
  1093   case Bottom:                  // Ye Olde Default
  1094     return Type::BOTTOM;
  1096   case DoubleBot:
  1097     return t;
  1099   default:                      // All else is a mistake
  1100     typerr(t);
  1102   case DoubleCon:               // Double-constant vs Double-constant?
  1103     if( jlong_cast(_d) != jlong_cast(t->getd()) )       // unequal constants? (see comment in TypeF::xmeet)
  1104       return DOUBLE;            // Return generic double
  1105   case Top:
  1106   case DoubleTop:
  1107     break;
  1109   return this;                  // Return the double constant
  1112 //------------------------------xdual------------------------------------------
  1113 // Dual: symmetric
  1114 const Type *TypeD::xdual() const {
  1115   return this;
  1118 //------------------------------eq---------------------------------------------
  1119 // Structural equality check for Type representations
  1120 bool TypeD::eq(const Type *t) const {
  1121   // Bitwise comparison to distinguish between +/-0. These values must be treated
  1122   // as different to be consistent with C1 and the interpreter.
  1123   return (jlong_cast(_d) == jlong_cast(t->getd()));
  1126 //------------------------------hash-------------------------------------------
  1127 // Type-specific hashing function.
  1128 int TypeD::hash(void) const {
  1129   return *(int*)(&_d);
  1132 //------------------------------is_finite--------------------------------------
  1133 // Has a finite value
  1134 bool TypeD::is_finite() const {
  1135   return g_isfinite(getd()) != 0;
  1138 //------------------------------is_nan-----------------------------------------
  1139 // Is not a number (NaN)
  1140 bool TypeD::is_nan()    const {
  1141   return g_isnan(getd()) != 0;
  1144 //------------------------------dump2------------------------------------------
  1145 // Dump double constant Type
  1146 #ifndef PRODUCT
  1147 void TypeD::dump2( Dict &d, uint depth, outputStream *st ) const {
  1148   Type::dump2(d,depth,st);
  1149   st->print("%f", _d);
  1151 #endif
  1153 //------------------------------singleton--------------------------------------
  1154 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
  1155 // constants (Ldi nodes).  Singletons are integer, float or double constants
  1156 // or a single symbol.
  1157 bool TypeD::singleton(void) const {
  1158   return true;                  // Always a singleton
  1161 bool TypeD::empty(void) const {
  1162   return false;                 // always exactly a singleton
  1165 //=============================================================================
  1166 // Convience common pre-built types.
  1167 const TypeInt *TypeInt::MINUS_1;// -1
  1168 const TypeInt *TypeInt::ZERO;   // 0
  1169 const TypeInt *TypeInt::ONE;    // 1
  1170 const TypeInt *TypeInt::BOOL;   // 0 or 1, FALSE or TRUE.
  1171 const TypeInt *TypeInt::CC;     // -1,0 or 1, condition codes
  1172 const TypeInt *TypeInt::CC_LT;  // [-1]  == MINUS_1
  1173 const TypeInt *TypeInt::CC_GT;  // [1]   == ONE
  1174 const TypeInt *TypeInt::CC_EQ;  // [0]   == ZERO
  1175 const TypeInt *TypeInt::CC_LE;  // [-1,0]
  1176 const TypeInt *TypeInt::CC_GE;  // [0,1] == BOOL (!)
  1177 const TypeInt *TypeInt::BYTE;   // Bytes, -128 to 127
  1178 const TypeInt *TypeInt::UBYTE;  // Unsigned Bytes, 0 to 255
  1179 const TypeInt *TypeInt::CHAR;   // Java chars, 0-65535
  1180 const TypeInt *TypeInt::SHORT;  // Java shorts, -32768-32767
  1181 const TypeInt *TypeInt::POS;    // Positive 32-bit integers or zero
  1182 const TypeInt *TypeInt::POS1;   // Positive 32-bit integers
  1183 const TypeInt *TypeInt::INT;    // 32-bit integers
  1184 const TypeInt *TypeInt::SYMINT; // symmetric range [-max_jint..max_jint]
  1185 const TypeInt *TypeInt::TYPE_DOMAIN; // alias for TypeInt::INT
  1187 //------------------------------TypeInt----------------------------------------
  1188 TypeInt::TypeInt( jint lo, jint hi, int w ) : Type(Int), _lo(lo), _hi(hi), _widen(w) {
  1191 //------------------------------make-------------------------------------------
  1192 const TypeInt *TypeInt::make( jint lo ) {
  1193   return (TypeInt*)(new TypeInt(lo,lo,WidenMin))->hashcons();
  1196 static int normalize_int_widen( jint lo, jint hi, int w ) {
  1197   // Certain normalizations keep us sane when comparing types.
  1198   // The 'SMALLINT' covers constants and also CC and its relatives.
  1199   if (lo <= hi) {
  1200     if (((juint)hi - lo) <= SMALLINT)  w = Type::WidenMin;
  1201     if (((juint)hi - lo) >= max_juint) w = Type::WidenMax; // TypeInt::INT
  1202   } else {
  1203     if (((juint)lo - hi) <= SMALLINT)  w = Type::WidenMin;
  1204     if (((juint)lo - hi) >= max_juint) w = Type::WidenMin; // dual TypeInt::INT
  1206   return w;
  1209 const TypeInt *TypeInt::make( jint lo, jint hi, int w ) {
  1210   w = normalize_int_widen(lo, hi, w);
  1211   return (TypeInt*)(new TypeInt(lo,hi,w))->hashcons();
  1214 //------------------------------meet-------------------------------------------
  1215 // Compute the MEET of two types.  It returns a new Type representation object
  1216 // with reference count equal to the number of Types pointing at it.
  1217 // Caller should wrap a Types around it.
  1218 const Type *TypeInt::xmeet( const Type *t ) const {
  1219   // Perform a fast test for common case; meeting the same types together.
  1220   if( this == t ) return this;  // Meeting same type?
  1222   // Currently "this->_base" is a TypeInt
  1223   switch (t->base()) {          // Switch on original type
  1224   case AnyPtr:                  // Mixing with oops happens when javac
  1225   case RawPtr:                  // reuses local variables
  1226   case OopPtr:
  1227   case InstPtr:
  1228   case AryPtr:
  1229   case MetadataPtr:
  1230   case KlassPtr:
  1231   case NarrowOop:
  1232   case NarrowKlass:
  1233   case Long:
  1234   case FloatTop:
  1235   case FloatCon:
  1236   case FloatBot:
  1237   case DoubleTop:
  1238   case DoubleCon:
  1239   case DoubleBot:
  1240   case Bottom:                  // Ye Olde Default
  1241     return Type::BOTTOM;
  1242   default:                      // All else is a mistake
  1243     typerr(t);
  1244   case Top:                     // No change
  1245     return this;
  1246   case Int:                     // Int vs Int?
  1247     break;
  1250   // Expand covered set
  1251   const TypeInt *r = t->is_int();
  1252   return make( MIN2(_lo,r->_lo), MAX2(_hi,r->_hi), MAX2(_widen,r->_widen) );
  1255 //------------------------------xdual------------------------------------------
  1256 // Dual: reverse hi & lo; flip widen
  1257 const Type *TypeInt::xdual() const {
  1258   int w = normalize_int_widen(_hi,_lo, WidenMax-_widen);
  1259   return new TypeInt(_hi,_lo,w);
  1262 //------------------------------widen------------------------------------------
  1263 // Only happens for optimistic top-down optimizations.
  1264 const Type *TypeInt::widen( const Type *old, const Type* limit ) const {
  1265   // Coming from TOP or such; no widening
  1266   if( old->base() != Int ) return this;
  1267   const TypeInt *ot = old->is_int();
  1269   // If new guy is equal to old guy, no widening
  1270   if( _lo == ot->_lo && _hi == ot->_hi )
  1271     return old;
  1273   // If new guy contains old, then we widened
  1274   if( _lo <= ot->_lo && _hi >= ot->_hi ) {
  1275     // New contains old
  1276     // If new guy is already wider than old, no widening
  1277     if( _widen > ot->_widen ) return this;
  1278     // If old guy was a constant, do not bother
  1279     if (ot->_lo == ot->_hi)  return this;
  1280     // Now widen new guy.
  1281     // Check for widening too far
  1282     if (_widen == WidenMax) {
  1283       int max = max_jint;
  1284       int min = min_jint;
  1285       if (limit->isa_int()) {
  1286         max = limit->is_int()->_hi;
  1287         min = limit->is_int()->_lo;
  1289       if (min < _lo && _hi < max) {
  1290         // If neither endpoint is extremal yet, push out the endpoint
  1291         // which is closer to its respective limit.
  1292         if (_lo >= 0 ||                 // easy common case
  1293             (juint)(_lo - min) >= (juint)(max - _hi)) {
  1294           // Try to widen to an unsigned range type of 31 bits:
  1295           return make(_lo, max, WidenMax);
  1296         } else {
  1297           return make(min, _hi, WidenMax);
  1300       return TypeInt::INT;
  1302     // Returned widened new guy
  1303     return make(_lo,_hi,_widen+1);
  1306   // If old guy contains new, then we probably widened too far & dropped to
  1307   // bottom.  Return the wider fellow.
  1308   if ( ot->_lo <= _lo && ot->_hi >= _hi )
  1309     return old;
  1311   //fatal("Integer value range is not subset");
  1312   //return this;
  1313   return TypeInt::INT;
  1316 //------------------------------narrow---------------------------------------
  1317 // Only happens for pessimistic optimizations.
  1318 const Type *TypeInt::narrow( const Type *old ) const {
  1319   if (_lo >= _hi)  return this;   // already narrow enough
  1320   if (old == NULL)  return this;
  1321   const TypeInt* ot = old->isa_int();
  1322   if (ot == NULL)  return this;
  1323   jint olo = ot->_lo;
  1324   jint ohi = ot->_hi;
  1326   // If new guy is equal to old guy, no narrowing
  1327   if (_lo == olo && _hi == ohi)  return old;
  1329   // If old guy was maximum range, allow the narrowing
  1330   if (olo == min_jint && ohi == max_jint)  return this;
  1332   if (_lo < olo || _hi > ohi)
  1333     return this;                // doesn't narrow; pretty wierd
  1335   // The new type narrows the old type, so look for a "death march".
  1336   // See comments on PhaseTransform::saturate.
  1337   juint nrange = (juint)_hi - _lo;
  1338   juint orange = (juint)ohi - olo;
  1339   if (nrange < max_juint - 1 && nrange > (orange >> 1) + (SMALLINT*2)) {
  1340     // Use the new type only if the range shrinks a lot.
  1341     // We do not want the optimizer computing 2^31 point by point.
  1342     return old;
  1345   return this;
  1348 //-----------------------------filter------------------------------------------
  1349 const Type *TypeInt::filter_helper(const Type *kills, bool include_speculative) const {
  1350   const TypeInt* ft = join_helper(kills, include_speculative)->isa_int();
  1351   if (ft == NULL || ft->empty())
  1352     return Type::TOP;           // Canonical empty value
  1353   if (ft->_widen < this->_widen) {
  1354     // Do not allow the value of kill->_widen to affect the outcome.
  1355     // The widen bits must be allowed to run freely through the graph.
  1356     ft = TypeInt::make(ft->_lo, ft->_hi, this->_widen);
  1358   return ft;
  1361 //------------------------------eq---------------------------------------------
  1362 // Structural equality check for Type representations
  1363 bool TypeInt::eq( const Type *t ) const {
  1364   const TypeInt *r = t->is_int(); // Handy access
  1365   return r->_lo == _lo && r->_hi == _hi && r->_widen == _widen;
  1368 //------------------------------hash-------------------------------------------
  1369 // Type-specific hashing function.
  1370 int TypeInt::hash(void) const {
  1371   return java_add(java_add(_lo, _hi), java_add(_widen, (int)Type::Int));
  1374 //------------------------------is_finite--------------------------------------
  1375 // Has a finite value
  1376 bool TypeInt::is_finite() const {
  1377   return true;
  1380 //------------------------------dump2------------------------------------------
  1381 // Dump TypeInt
  1382 #ifndef PRODUCT
  1383 static const char* intname(char* buf, jint n) {
  1384   if (n == min_jint)
  1385     return "min";
  1386   else if (n < min_jint + 10000)
  1387     sprintf(buf, "min+" INT32_FORMAT, n - min_jint);
  1388   else if (n == max_jint)
  1389     return "max";
  1390   else if (n > max_jint - 10000)
  1391     sprintf(buf, "max-" INT32_FORMAT, max_jint - n);
  1392   else
  1393     sprintf(buf, INT32_FORMAT, n);
  1394   return buf;
  1397 void TypeInt::dump2( Dict &d, uint depth, outputStream *st ) const {
  1398   char buf[40], buf2[40];
  1399   if (_lo == min_jint && _hi == max_jint)
  1400     st->print("int");
  1401   else if (is_con())
  1402     st->print("int:%s", intname(buf, get_con()));
  1403   else if (_lo == BOOL->_lo && _hi == BOOL->_hi)
  1404     st->print("bool");
  1405   else if (_lo == BYTE->_lo && _hi == BYTE->_hi)
  1406     st->print("byte");
  1407   else if (_lo == CHAR->_lo && _hi == CHAR->_hi)
  1408     st->print("char");
  1409   else if (_lo == SHORT->_lo && _hi == SHORT->_hi)
  1410     st->print("short");
  1411   else if (_hi == max_jint)
  1412     st->print("int:>=%s", intname(buf, _lo));
  1413   else if (_lo == min_jint)
  1414     st->print("int:<=%s", intname(buf, _hi));
  1415   else
  1416     st->print("int:%s..%s", intname(buf, _lo), intname(buf2, _hi));
  1418   if (_widen != 0 && this != TypeInt::INT)
  1419     st->print(":%.*s", _widen, "wwww");
  1421 #endif
  1423 //------------------------------singleton--------------------------------------
  1424 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
  1425 // constants.
  1426 bool TypeInt::singleton(void) const {
  1427   return _lo >= _hi;
  1430 bool TypeInt::empty(void) const {
  1431   return _lo > _hi;
  1434 //=============================================================================
  1435 // Convenience common pre-built types.
  1436 const TypeLong *TypeLong::MINUS_1;// -1
  1437 const TypeLong *TypeLong::ZERO; // 0
  1438 const TypeLong *TypeLong::ONE;  // 1
  1439 const TypeLong *TypeLong::POS;  // >=0
  1440 const TypeLong *TypeLong::LONG; // 64-bit integers
  1441 const TypeLong *TypeLong::INT;  // 32-bit subrange
  1442 const TypeLong *TypeLong::UINT; // 32-bit unsigned subrange
  1443 const TypeLong *TypeLong::TYPE_DOMAIN; // alias for TypeLong::LONG
  1445 //------------------------------TypeLong---------------------------------------
  1446 TypeLong::TypeLong( jlong lo, jlong hi, int w ) : Type(Long), _lo(lo), _hi(hi), _widen(w) {
  1449 //------------------------------make-------------------------------------------
  1450 const TypeLong *TypeLong::make( jlong lo ) {
  1451   return (TypeLong*)(new TypeLong(lo,lo,WidenMin))->hashcons();
  1454 static int normalize_long_widen( jlong lo, jlong hi, int w ) {
  1455   // Certain normalizations keep us sane when comparing types.
  1456   // The 'SMALLINT' covers constants.
  1457   if (lo <= hi) {
  1458     if (((julong)hi - lo) <= SMALLINT)   w = Type::WidenMin;
  1459     if (((julong)hi - lo) >= max_julong) w = Type::WidenMax; // TypeLong::LONG
  1460   } else {
  1461     if (((julong)lo - hi) <= SMALLINT)   w = Type::WidenMin;
  1462     if (((julong)lo - hi) >= max_julong) w = Type::WidenMin; // dual TypeLong::LONG
  1464   return w;
  1467 const TypeLong *TypeLong::make( jlong lo, jlong hi, int w ) {
  1468   w = normalize_long_widen(lo, hi, w);
  1469   return (TypeLong*)(new TypeLong(lo,hi,w))->hashcons();
  1473 //------------------------------meet-------------------------------------------
  1474 // Compute the MEET of two types.  It returns a new Type representation object
  1475 // with reference count equal to the number of Types pointing at it.
  1476 // Caller should wrap a Types around it.
  1477 const Type *TypeLong::xmeet( const Type *t ) const {
  1478   // Perform a fast test for common case; meeting the same types together.
  1479   if( this == t ) return this;  // Meeting same type?
  1481   // Currently "this->_base" is a TypeLong
  1482   switch (t->base()) {          // Switch on original type
  1483   case AnyPtr:                  // Mixing with oops happens when javac
  1484   case RawPtr:                  // reuses local variables
  1485   case OopPtr:
  1486   case InstPtr:
  1487   case AryPtr:
  1488   case MetadataPtr:
  1489   case KlassPtr:
  1490   case NarrowOop:
  1491   case NarrowKlass:
  1492   case Int:
  1493   case FloatTop:
  1494   case FloatCon:
  1495   case FloatBot:
  1496   case DoubleTop:
  1497   case DoubleCon:
  1498   case DoubleBot:
  1499   case Bottom:                  // Ye Olde Default
  1500     return Type::BOTTOM;
  1501   default:                      // All else is a mistake
  1502     typerr(t);
  1503   case Top:                     // No change
  1504     return this;
  1505   case Long:                    // Long vs Long?
  1506     break;
  1509   // Expand covered set
  1510   const TypeLong *r = t->is_long(); // Turn into a TypeLong
  1511   return make( MIN2(_lo,r->_lo), MAX2(_hi,r->_hi), MAX2(_widen,r->_widen) );
  1514 //------------------------------xdual------------------------------------------
  1515 // Dual: reverse hi & lo; flip widen
  1516 const Type *TypeLong::xdual() const {
  1517   int w = normalize_long_widen(_hi,_lo, WidenMax-_widen);
  1518   return new TypeLong(_hi,_lo,w);
  1521 //------------------------------widen------------------------------------------
  1522 // Only happens for optimistic top-down optimizations.
  1523 const Type *TypeLong::widen( const Type *old, const Type* limit ) const {
  1524   // Coming from TOP or such; no widening
  1525   if( old->base() != Long ) return this;
  1526   const TypeLong *ot = old->is_long();
  1528   // If new guy is equal to old guy, no widening
  1529   if( _lo == ot->_lo && _hi == ot->_hi )
  1530     return old;
  1532   // If new guy contains old, then we widened
  1533   if( _lo <= ot->_lo && _hi >= ot->_hi ) {
  1534     // New contains old
  1535     // If new guy is already wider than old, no widening
  1536     if( _widen > ot->_widen ) return this;
  1537     // If old guy was a constant, do not bother
  1538     if (ot->_lo == ot->_hi)  return this;
  1539     // Now widen new guy.
  1540     // Check for widening too far
  1541     if (_widen == WidenMax) {
  1542       jlong max = max_jlong;
  1543       jlong min = min_jlong;
  1544       if (limit->isa_long()) {
  1545         max = limit->is_long()->_hi;
  1546         min = limit->is_long()->_lo;
  1548       if (min < _lo && _hi < max) {
  1549         // If neither endpoint is extremal yet, push out the endpoint
  1550         // which is closer to its respective limit.
  1551         if (_lo >= 0 ||                 // easy common case
  1552             ((julong)_lo - min) >= ((julong)max - _hi)) {
  1553           // Try to widen to an unsigned range type of 32/63 bits:
  1554           if (max >= max_juint && _hi < max_juint)
  1555             return make(_lo, max_juint, WidenMax);
  1556           else
  1557             return make(_lo, max, WidenMax);
  1558         } else {
  1559           return make(min, _hi, WidenMax);
  1562       return TypeLong::LONG;
  1564     // Returned widened new guy
  1565     return make(_lo,_hi,_widen+1);
  1568   // If old guy contains new, then we probably widened too far & dropped to
  1569   // bottom.  Return the wider fellow.
  1570   if ( ot->_lo <= _lo && ot->_hi >= _hi )
  1571     return old;
  1573   //  fatal("Long value range is not subset");
  1574   // return this;
  1575   return TypeLong::LONG;
  1578 //------------------------------narrow----------------------------------------
  1579 // Only happens for pessimistic optimizations.
  1580 const Type *TypeLong::narrow( const Type *old ) const {
  1581   if (_lo >= _hi)  return this;   // already narrow enough
  1582   if (old == NULL)  return this;
  1583   const TypeLong* ot = old->isa_long();
  1584   if (ot == NULL)  return this;
  1585   jlong olo = ot->_lo;
  1586   jlong ohi = ot->_hi;
  1588   // If new guy is equal to old guy, no narrowing
  1589   if (_lo == olo && _hi == ohi)  return old;
  1591   // If old guy was maximum range, allow the narrowing
  1592   if (olo == min_jlong && ohi == max_jlong)  return this;
  1594   if (_lo < olo || _hi > ohi)
  1595     return this;                // doesn't narrow; pretty wierd
  1597   // The new type narrows the old type, so look for a "death march".
  1598   // See comments on PhaseTransform::saturate.
  1599   julong nrange = _hi - _lo;
  1600   julong orange = ohi - olo;
  1601   if (nrange < max_julong - 1 && nrange > (orange >> 1) + (SMALLINT*2)) {
  1602     // Use the new type only if the range shrinks a lot.
  1603     // We do not want the optimizer computing 2^31 point by point.
  1604     return old;
  1607   return this;
  1610 //-----------------------------filter------------------------------------------
  1611 const Type *TypeLong::filter_helper(const Type *kills, bool include_speculative) const {
  1612   const TypeLong* ft = join_helper(kills, include_speculative)->isa_long();
  1613   if (ft == NULL || ft->empty())
  1614     return Type::TOP;           // Canonical empty value
  1615   if (ft->_widen < this->_widen) {
  1616     // Do not allow the value of kill->_widen to affect the outcome.
  1617     // The widen bits must be allowed to run freely through the graph.
  1618     ft = TypeLong::make(ft->_lo, ft->_hi, this->_widen);
  1620   return ft;
  1623 //------------------------------eq---------------------------------------------
  1624 // Structural equality check for Type representations
  1625 bool TypeLong::eq( const Type *t ) const {
  1626   const TypeLong *r = t->is_long(); // Handy access
  1627   return r->_lo == _lo &&  r->_hi == _hi  && r->_widen == _widen;
  1630 //------------------------------hash-------------------------------------------
  1631 // Type-specific hashing function.
  1632 int TypeLong::hash(void) const {
  1633   return (int)(_lo+_hi+_widen+(int)Type::Long);
  1636 //------------------------------is_finite--------------------------------------
  1637 // Has a finite value
  1638 bool TypeLong::is_finite() const {
  1639   return true;
  1642 //------------------------------dump2------------------------------------------
  1643 // Dump TypeLong
  1644 #ifndef PRODUCT
  1645 static const char* longnamenear(jlong x, const char* xname, char* buf, jlong n) {
  1646   if (n > x) {
  1647     if (n >= x + 10000)  return NULL;
  1648     sprintf(buf, "%s+" JLONG_FORMAT, xname, n - x);
  1649   } else if (n < x) {
  1650     if (n <= x - 10000)  return NULL;
  1651     sprintf(buf, "%s-" JLONG_FORMAT, xname, x - n);
  1652   } else {
  1653     return xname;
  1655   return buf;
  1658 static const char* longname(char* buf, jlong n) {
  1659   const char* str;
  1660   if (n == min_jlong)
  1661     return "min";
  1662   else if (n < min_jlong + 10000)
  1663     sprintf(buf, "min+" JLONG_FORMAT, n - min_jlong);
  1664   else if (n == max_jlong)
  1665     return "max";
  1666   else if (n > max_jlong - 10000)
  1667     sprintf(buf, "max-" JLONG_FORMAT, max_jlong - n);
  1668   else if ((str = longnamenear(max_juint, "maxuint", buf, n)) != NULL)
  1669     return str;
  1670   else if ((str = longnamenear(max_jint, "maxint", buf, n)) != NULL)
  1671     return str;
  1672   else if ((str = longnamenear(min_jint, "minint", buf, n)) != NULL)
  1673     return str;
  1674   else
  1675     sprintf(buf, JLONG_FORMAT, n);
  1676   return buf;
  1679 void TypeLong::dump2( Dict &d, uint depth, outputStream *st ) const {
  1680   char buf[80], buf2[80];
  1681   if (_lo == min_jlong && _hi == max_jlong)
  1682     st->print("long");
  1683   else if (is_con())
  1684     st->print("long:%s", longname(buf, get_con()));
  1685   else if (_hi == max_jlong)
  1686     st->print("long:>=%s", longname(buf, _lo));
  1687   else if (_lo == min_jlong)
  1688     st->print("long:<=%s", longname(buf, _hi));
  1689   else
  1690     st->print("long:%s..%s", longname(buf, _lo), longname(buf2, _hi));
  1692   if (_widen != 0 && this != TypeLong::LONG)
  1693     st->print(":%.*s", _widen, "wwww");
  1695 #endif
  1697 //------------------------------singleton--------------------------------------
  1698 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
  1699 // constants
  1700 bool TypeLong::singleton(void) const {
  1701   return _lo >= _hi;
  1704 bool TypeLong::empty(void) const {
  1705   return _lo > _hi;
  1708 //=============================================================================
  1709 // Convenience common pre-built types.
  1710 const TypeTuple *TypeTuple::IFBOTH;     // Return both arms of IF as reachable
  1711 const TypeTuple *TypeTuple::IFFALSE;
  1712 const TypeTuple *TypeTuple::IFTRUE;
  1713 const TypeTuple *TypeTuple::IFNEITHER;
  1714 const TypeTuple *TypeTuple::LOOPBODY;
  1715 const TypeTuple *TypeTuple::MEMBAR;
  1716 const TypeTuple *TypeTuple::STORECONDITIONAL;
  1717 const TypeTuple *TypeTuple::START_I2C;
  1718 const TypeTuple *TypeTuple::INT_PAIR;
  1719 const TypeTuple *TypeTuple::LONG_PAIR;
  1720 const TypeTuple *TypeTuple::INT_CC_PAIR;
  1721 const TypeTuple *TypeTuple::LONG_CC_PAIR;
  1724 //------------------------------make-------------------------------------------
  1725 // Make a TypeTuple from the range of a method signature
  1726 const TypeTuple *TypeTuple::make_range(ciSignature* sig) {
  1727   ciType* return_type = sig->return_type();
  1728   uint total_fields = TypeFunc::Parms + return_type->size();
  1729   const Type **field_array = fields(total_fields);
  1730   switch (return_type->basic_type()) {
  1731   case T_LONG:
  1732     field_array[TypeFunc::Parms]   = TypeLong::LONG;
  1733     field_array[TypeFunc::Parms+1] = Type::HALF;
  1734     break;
  1735   case T_DOUBLE:
  1736     field_array[TypeFunc::Parms]   = Type::DOUBLE;
  1737     field_array[TypeFunc::Parms+1] = Type::HALF;
  1738     break;
  1739   case T_OBJECT:
  1740   case T_ARRAY:
  1741   case T_BOOLEAN:
  1742   case T_CHAR:
  1743   case T_FLOAT:
  1744   case T_BYTE:
  1745   case T_SHORT:
  1746   case T_INT:
  1747     field_array[TypeFunc::Parms] = get_const_type(return_type);
  1748     break;
  1749   case T_VOID:
  1750     break;
  1751   default:
  1752     ShouldNotReachHere();
  1754   return (TypeTuple*)(new TypeTuple(total_fields,field_array))->hashcons();
  1757 // Make a TypeTuple from the domain of a method signature
  1758 const TypeTuple *TypeTuple::make_domain(ciInstanceKlass* recv, ciSignature* sig) {
  1759   uint total_fields = TypeFunc::Parms + sig->size();
  1761   uint pos = TypeFunc::Parms;
  1762   const Type **field_array;
  1763   if (recv != NULL) {
  1764     total_fields++;
  1765     field_array = fields(total_fields);
  1766     // Use get_const_type here because it respects UseUniqueSubclasses:
  1767     field_array[pos++] = get_const_type(recv)->join_speculative(TypePtr::NOTNULL);
  1768   } else {
  1769     field_array = fields(total_fields);
  1772   int i = 0;
  1773   while (pos < total_fields) {
  1774     ciType* type = sig->type_at(i);
  1776     switch (type->basic_type()) {
  1777     case T_LONG:
  1778       field_array[pos++] = TypeLong::LONG;
  1779       field_array[pos++] = Type::HALF;
  1780       break;
  1781     case T_DOUBLE:
  1782       field_array[pos++] = Type::DOUBLE;
  1783       field_array[pos++] = Type::HALF;
  1784       break;
  1785     case T_OBJECT:
  1786     case T_ARRAY:
  1787     case T_FLOAT:
  1788     case T_INT:
  1789       field_array[pos++] = get_const_type(type);
  1790       break;
  1791     case T_BOOLEAN:
  1792     case T_CHAR:
  1793     case T_BYTE:
  1794     case T_SHORT:
  1795       field_array[pos++] = TypeInt::INT;
  1796       break;
  1797     default:
  1798       ShouldNotReachHere();
  1800     i++;
  1802   return (TypeTuple*)(new TypeTuple(total_fields,field_array))->hashcons();
  1805 const TypeTuple *TypeTuple::make( uint cnt, const Type **fields ) {
  1806   return (TypeTuple*)(new TypeTuple(cnt,fields))->hashcons();
  1809 //------------------------------fields-----------------------------------------
  1810 // Subroutine call type with space allocated for argument types
  1811 const Type **TypeTuple::fields( uint arg_cnt ) {
  1812   const Type **flds = (const Type **)(Compile::current()->type_arena()->Amalloc_4((TypeFunc::Parms+arg_cnt)*sizeof(Type*) ));
  1813   flds[TypeFunc::Control  ] = Type::CONTROL;
  1814   flds[TypeFunc::I_O      ] = Type::ABIO;
  1815   flds[TypeFunc::Memory   ] = Type::MEMORY;
  1816   flds[TypeFunc::FramePtr ] = TypeRawPtr::BOTTOM;
  1817   flds[TypeFunc::ReturnAdr] = Type::RETURN_ADDRESS;
  1819   return flds;
  1822 //------------------------------meet-------------------------------------------
  1823 // Compute the MEET of two types.  It returns a new Type object.
  1824 const Type *TypeTuple::xmeet( const Type *t ) const {
  1825   // Perform a fast test for common case; meeting the same types together.
  1826   if( this == t ) return this;  // Meeting same type-rep?
  1828   // Current "this->_base" is Tuple
  1829   switch (t->base()) {          // switch on original type
  1831   case Bottom:                  // Ye Olde Default
  1832     return t;
  1834   default:                      // All else is a mistake
  1835     typerr(t);
  1837   case Tuple: {                 // Meeting 2 signatures?
  1838     const TypeTuple *x = t->is_tuple();
  1839     assert( _cnt == x->_cnt, "" );
  1840     const Type **fields = (const Type **)(Compile::current()->type_arena()->Amalloc_4( _cnt*sizeof(Type*) ));
  1841     for( uint i=0; i<_cnt; i++ )
  1842       fields[i] = field_at(i)->xmeet( x->field_at(i) );
  1843     return TypeTuple::make(_cnt,fields);
  1845   case Top:
  1846     break;
  1848   return this;                  // Return the double constant
  1851 //------------------------------xdual------------------------------------------
  1852 // Dual: compute field-by-field dual
  1853 const Type *TypeTuple::xdual() const {
  1854   const Type **fields = (const Type **)(Compile::current()->type_arena()->Amalloc_4( _cnt*sizeof(Type*) ));
  1855   for( uint i=0; i<_cnt; i++ )
  1856     fields[i] = _fields[i]->dual();
  1857   return new TypeTuple(_cnt,fields);
  1860 //------------------------------eq---------------------------------------------
  1861 // Structural equality check for Type representations
  1862 bool TypeTuple::eq( const Type *t ) const {
  1863   const TypeTuple *s = (const TypeTuple *)t;
  1864   if (_cnt != s->_cnt)  return false;  // Unequal field counts
  1865   for (uint i = 0; i < _cnt; i++)
  1866     if (field_at(i) != s->field_at(i)) // POINTER COMPARE!  NO RECURSION!
  1867       return false;             // Missed
  1868   return true;
  1871 //------------------------------hash-------------------------------------------
  1872 // Type-specific hashing function.
  1873 int TypeTuple::hash(void) const {
  1874   intptr_t sum = _cnt;
  1875   for( uint i=0; i<_cnt; i++ )
  1876     sum += (intptr_t)_fields[i];     // Hash on pointers directly
  1877   return sum;
  1880 //------------------------------dump2------------------------------------------
  1881 // Dump signature Type
  1882 #ifndef PRODUCT
  1883 void TypeTuple::dump2( Dict &d, uint depth, outputStream *st ) const {
  1884   st->print("{");
  1885   if( !depth || d[this] ) {     // Check for recursive print
  1886     st->print("...}");
  1887     return;
  1889   d.Insert((void*)this, (void*)this);   // Stop recursion
  1890   if( _cnt ) {
  1891     uint i;
  1892     for( i=0; i<_cnt-1; i++ ) {
  1893       st->print("%d:", i);
  1894       _fields[i]->dump2(d, depth-1, st);
  1895       st->print(", ");
  1897     st->print("%d:", i);
  1898     _fields[i]->dump2(d, depth-1, st);
  1900   st->print("}");
  1902 #endif
  1904 //------------------------------singleton--------------------------------------
  1905 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
  1906 // constants (Ldi nodes).  Singletons are integer, float or double constants
  1907 // or a single symbol.
  1908 bool TypeTuple::singleton(void) const {
  1909   return false;                 // Never a singleton
  1912 bool TypeTuple::empty(void) const {
  1913   for( uint i=0; i<_cnt; i++ ) {
  1914     if (_fields[i]->empty())  return true;
  1916   return false;
  1919 //=============================================================================
  1920 // Convenience common pre-built types.
  1922 inline const TypeInt* normalize_array_size(const TypeInt* size) {
  1923   // Certain normalizations keep us sane when comparing types.
  1924   // We do not want arrayOop variables to differ only by the wideness
  1925   // of their index types.  Pick minimum wideness, since that is the
  1926   // forced wideness of small ranges anyway.
  1927   if (size->_widen != Type::WidenMin)
  1928     return TypeInt::make(size->_lo, size->_hi, Type::WidenMin);
  1929   else
  1930     return size;
  1933 //------------------------------make-------------------------------------------
  1934 const TypeAry* TypeAry::make(const Type* elem, const TypeInt* size, bool stable) {
  1935   if (UseCompressedOops && elem->isa_oopptr()) {
  1936     elem = elem->make_narrowoop();
  1938   size = normalize_array_size(size);
  1939   return (TypeAry*)(new TypeAry(elem,size,stable))->hashcons();
  1942 //------------------------------meet-------------------------------------------
  1943 // Compute the MEET of two types.  It returns a new Type object.
  1944 const Type *TypeAry::xmeet( const Type *t ) const {
  1945   // Perform a fast test for common case; meeting the same types together.
  1946   if( this == t ) return this;  // Meeting same type-rep?
  1948   // Current "this->_base" is Ary
  1949   switch (t->base()) {          // switch on original type
  1951   case Bottom:                  // Ye Olde Default
  1952     return t;
  1954   default:                      // All else is a mistake
  1955     typerr(t);
  1957   case Array: {                 // Meeting 2 arrays?
  1958     const TypeAry *a = t->is_ary();
  1959     return TypeAry::make(_elem->meet_speculative(a->_elem),
  1960                          _size->xmeet(a->_size)->is_int(),
  1961                          _stable & a->_stable);
  1963   case Top:
  1964     break;
  1966   return this;                  // Return the double constant
  1969 //------------------------------xdual------------------------------------------
  1970 // Dual: compute field-by-field dual
  1971 const Type *TypeAry::xdual() const {
  1972   const TypeInt* size_dual = _size->dual()->is_int();
  1973   size_dual = normalize_array_size(size_dual);
  1974   return new TypeAry(_elem->dual(), size_dual, !_stable);
  1977 //------------------------------eq---------------------------------------------
  1978 // Structural equality check for Type representations
  1979 bool TypeAry::eq( const Type *t ) const {
  1980   const TypeAry *a = (const TypeAry*)t;
  1981   return _elem == a->_elem &&
  1982     _stable == a->_stable &&
  1983     _size == a->_size;
  1986 //------------------------------hash-------------------------------------------
  1987 // Type-specific hashing function.
  1988 int TypeAry::hash(void) const {
  1989   return (intptr_t)_elem + (intptr_t)_size + (_stable ? 43 : 0);
  1992 /**
  1993  * Return same type without a speculative part in the element
  1994  */
  1995 const Type* TypeAry::remove_speculative() const {
  1996   return make(_elem->remove_speculative(), _size, _stable);
  1999 //----------------------interface_vs_oop---------------------------------------
  2000 #ifdef ASSERT
  2001 bool TypeAry::interface_vs_oop(const Type *t) const {
  2002   const TypeAry* t_ary = t->is_ary();
  2003   if (t_ary) {
  2004     const TypePtr* this_ptr = _elem->make_ptr(); // In case we have narrow_oops
  2005     const TypePtr*    t_ptr = t_ary->_elem->make_ptr();
  2006     if(this_ptr != NULL && t_ptr != NULL) {
  2007       return this_ptr->interface_vs_oop(t_ptr);
  2010   return false;
  2012 #endif
  2014 //------------------------------dump2------------------------------------------
  2015 #ifndef PRODUCT
  2016 void TypeAry::dump2( Dict &d, uint depth, outputStream *st ) const {
  2017   if (_stable)  st->print("stable:");
  2018   _elem->dump2(d, depth, st);
  2019   st->print("[");
  2020   _size->dump2(d, depth, st);
  2021   st->print("]");
  2023 #endif
  2025 //------------------------------singleton--------------------------------------
  2026 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
  2027 // constants (Ldi nodes).  Singletons are integer, float or double constants
  2028 // or a single symbol.
  2029 bool TypeAry::singleton(void) const {
  2030   return false;                 // Never a singleton
  2033 bool TypeAry::empty(void) const {
  2034   return _elem->empty() || _size->empty();
  2037 //--------------------------ary_must_be_exact----------------------------------
  2038 bool TypeAry::ary_must_be_exact() const {
  2039   if (!UseExactTypes)       return false;
  2040   // This logic looks at the element type of an array, and returns true
  2041   // if the element type is either a primitive or a final instance class.
  2042   // In such cases, an array built on this ary must have no subclasses.
  2043   if (_elem == BOTTOM)      return false;  // general array not exact
  2044   if (_elem == TOP   )      return false;  // inverted general array not exact
  2045   const TypeOopPtr*  toop = NULL;
  2046   if (UseCompressedOops && _elem->isa_narrowoop()) {
  2047     toop = _elem->make_ptr()->isa_oopptr();
  2048   } else {
  2049     toop = _elem->isa_oopptr();
  2051   if (!toop)                return true;   // a primitive type, like int
  2052   ciKlass* tklass = toop->klass();
  2053   if (tklass == NULL)       return false;  // unloaded class
  2054   if (!tklass->is_loaded()) return false;  // unloaded class
  2055   const TypeInstPtr* tinst;
  2056   if (_elem->isa_narrowoop())
  2057     tinst = _elem->make_ptr()->isa_instptr();
  2058   else
  2059     tinst = _elem->isa_instptr();
  2060   if (tinst)
  2061     return tklass->as_instance_klass()->is_final();
  2062   const TypeAryPtr*  tap;
  2063   if (_elem->isa_narrowoop())
  2064     tap = _elem->make_ptr()->isa_aryptr();
  2065   else
  2066     tap = _elem->isa_aryptr();
  2067   if (tap)
  2068     return tap->ary()->ary_must_be_exact();
  2069   return false;
  2072 //==============================TypeVect=======================================
  2073 // Convenience common pre-built types.
  2074 const TypeVect *TypeVect::VECTS = NULL; //  32-bit vectors
  2075 const TypeVect *TypeVect::VECTD = NULL; //  64-bit vectors
  2076 const TypeVect *TypeVect::VECTX = NULL; // 128-bit vectors
  2077 const TypeVect *TypeVect::VECTY = NULL; // 256-bit vectors
  2079 //------------------------------make-------------------------------------------
  2080 const TypeVect* TypeVect::make(const Type *elem, uint length) {
  2081   BasicType elem_bt = elem->array_element_basic_type();
  2082   assert(is_java_primitive(elem_bt), "only primitive types in vector");
  2083   assert(length > 1 && is_power_of_2(length), "vector length is power of 2");
  2084   assert(Matcher::vector_size_supported(elem_bt, length), "length in range");
  2085   int size = length * type2aelembytes(elem_bt);
  2086   switch (Matcher::vector_ideal_reg(size)) {
  2087   case Op_VecS:
  2088     return (TypeVect*)(new TypeVectS(elem, length))->hashcons();
  2089   case Op_RegL:
  2090   case Op_VecD:
  2091   case Op_RegD:
  2092     return (TypeVect*)(new TypeVectD(elem, length))->hashcons();
  2093   case Op_VecX:
  2094     return (TypeVect*)(new TypeVectX(elem, length))->hashcons();
  2095   case Op_VecY:
  2096     return (TypeVect*)(new TypeVectY(elem, length))->hashcons();
  2098  ShouldNotReachHere();
  2099   return NULL;
  2102 //------------------------------meet-------------------------------------------
  2103 // Compute the MEET of two types.  It returns a new Type object.
  2104 const Type *TypeVect::xmeet( const Type *t ) const {
  2105   // Perform a fast test for common case; meeting the same types together.
  2106   if( this == t ) return this;  // Meeting same type-rep?
  2108   // Current "this->_base" is Vector
  2109   switch (t->base()) {          // switch on original type
  2111   case Bottom:                  // Ye Olde Default
  2112     return t;
  2114   default:                      // All else is a mistake
  2115     typerr(t);
  2117   case VectorS:
  2118   case VectorD:
  2119   case VectorX:
  2120   case VectorY: {                // Meeting 2 vectors?
  2121     const TypeVect* v = t->is_vect();
  2122     assert(  base() == v->base(), "");
  2123     assert(length() == v->length(), "");
  2124     assert(element_basic_type() == v->element_basic_type(), "");
  2125     return TypeVect::make(_elem->xmeet(v->_elem), _length);
  2127   case Top:
  2128     break;
  2130   return this;
  2133 //------------------------------xdual------------------------------------------
  2134 // Dual: compute field-by-field dual
  2135 const Type *TypeVect::xdual() const {
  2136   return new TypeVect(base(), _elem->dual(), _length);
  2139 //------------------------------eq---------------------------------------------
  2140 // Structural equality check for Type representations
  2141 bool TypeVect::eq(const Type *t) const {
  2142   const TypeVect *v = t->is_vect();
  2143   return (_elem == v->_elem) && (_length == v->_length);
  2146 //------------------------------hash-------------------------------------------
  2147 // Type-specific hashing function.
  2148 int TypeVect::hash(void) const {
  2149   return (intptr_t)_elem + (intptr_t)_length;
  2152 //------------------------------singleton--------------------------------------
  2153 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
  2154 // constants (Ldi nodes).  Vector is singleton if all elements are the same
  2155 // constant value (when vector is created with Replicate code).
  2156 bool TypeVect::singleton(void) const {
  2157 // There is no Con node for vectors yet.
  2158 //  return _elem->singleton();
  2159   return false;
  2162 bool TypeVect::empty(void) const {
  2163   return _elem->empty();
  2166 //------------------------------dump2------------------------------------------
  2167 #ifndef PRODUCT
  2168 void TypeVect::dump2(Dict &d, uint depth, outputStream *st) const {
  2169   switch (base()) {
  2170   case VectorS:
  2171     st->print("vectors["); break;
  2172   case VectorD:
  2173     st->print("vectord["); break;
  2174   case VectorX:
  2175     st->print("vectorx["); break;
  2176   case VectorY:
  2177     st->print("vectory["); break;
  2178   default:
  2179     ShouldNotReachHere();
  2181   st->print("%d]:{", _length);
  2182   _elem->dump2(d, depth, st);
  2183   st->print("}");
  2185 #endif
  2188 //=============================================================================
  2189 // Convenience common pre-built types.
  2190 const TypePtr *TypePtr::NULL_PTR;
  2191 const TypePtr *TypePtr::NOTNULL;
  2192 const TypePtr *TypePtr::BOTTOM;
  2194 //------------------------------meet-------------------------------------------
  2195 // Meet over the PTR enum
  2196 const TypePtr::PTR TypePtr::ptr_meet[TypePtr::lastPTR][TypePtr::lastPTR] = {
  2197   //              TopPTR,    AnyNull,   Constant, Null,   NotNull, BotPTR,
  2198   { /* Top     */ TopPTR,    AnyNull,   Constant, Null,   NotNull, BotPTR,},
  2199   { /* AnyNull */ AnyNull,   AnyNull,   Constant, BotPTR, NotNull, BotPTR,},
  2200   { /* Constant*/ Constant,  Constant,  Constant, BotPTR, NotNull, BotPTR,},
  2201   { /* Null    */ Null,      BotPTR,    BotPTR,   Null,   BotPTR,  BotPTR,},
  2202   { /* NotNull */ NotNull,   NotNull,   NotNull,  BotPTR, NotNull, BotPTR,},
  2203   { /* BotPTR  */ BotPTR,    BotPTR,    BotPTR,   BotPTR, BotPTR,  BotPTR,}
  2204 };
  2206 //------------------------------make-------------------------------------------
  2207 const TypePtr *TypePtr::make( TYPES t, enum PTR ptr, int offset ) {
  2208   return (TypePtr*)(new TypePtr(t,ptr,offset))->hashcons();
  2211 //------------------------------cast_to_ptr_type-------------------------------
  2212 const Type *TypePtr::cast_to_ptr_type(PTR ptr) const {
  2213   assert(_base == AnyPtr, "subclass must override cast_to_ptr_type");
  2214   if( ptr == _ptr ) return this;
  2215   return make(_base, ptr, _offset);
  2218 //------------------------------get_con----------------------------------------
  2219 intptr_t TypePtr::get_con() const {
  2220   assert( _ptr == Null, "" );
  2221   return _offset;
  2224 //------------------------------meet-------------------------------------------
  2225 // Compute the MEET of two types.  It returns a new Type object.
  2226 const Type *TypePtr::xmeet( const Type *t ) const {
  2227   // Perform a fast test for common case; meeting the same types together.
  2228   if( this == t ) return this;  // Meeting same type-rep?
  2230   // Current "this->_base" is AnyPtr
  2231   switch (t->base()) {          // switch on original type
  2232   case Int:                     // Mixing ints & oops happens when javac
  2233   case Long:                    // reuses local variables
  2234   case FloatTop:
  2235   case FloatCon:
  2236   case FloatBot:
  2237   case DoubleTop:
  2238   case DoubleCon:
  2239   case DoubleBot:
  2240   case NarrowOop:
  2241   case NarrowKlass:
  2242   case Bottom:                  // Ye Olde Default
  2243     return Type::BOTTOM;
  2244   case Top:
  2245     return this;
  2247   case AnyPtr: {                // Meeting to AnyPtrs
  2248     const TypePtr *tp = t->is_ptr();
  2249     return make( AnyPtr, meet_ptr(tp->ptr()), meet_offset(tp->offset()) );
  2251   case RawPtr:                  // For these, flip the call around to cut down
  2252   case OopPtr:
  2253   case InstPtr:                 // on the cases I have to handle.
  2254   case AryPtr:
  2255   case MetadataPtr:
  2256   case KlassPtr:
  2257     return t->xmeet(this);      // Call in reverse direction
  2258   default:                      // All else is a mistake
  2259     typerr(t);
  2262   return this;
  2265 //------------------------------meet_offset------------------------------------
  2266 int TypePtr::meet_offset( int offset ) const {
  2267   // Either is 'TOP' offset?  Return the other offset!
  2268   if( _offset == OffsetTop ) return offset;
  2269   if( offset == OffsetTop ) return _offset;
  2270   // If either is different, return 'BOTTOM' offset
  2271   if( _offset != offset ) return OffsetBot;
  2272   return _offset;
  2275 //------------------------------dual_offset------------------------------------
  2276 int TypePtr::dual_offset( ) const {
  2277   if( _offset == OffsetTop ) return OffsetBot;// Map 'TOP' into 'BOTTOM'
  2278   if( _offset == OffsetBot ) return OffsetTop;// Map 'BOTTOM' into 'TOP'
  2279   return _offset;               // Map everything else into self
  2282 //------------------------------xdual------------------------------------------
  2283 // Dual: compute field-by-field dual
  2284 const TypePtr::PTR TypePtr::ptr_dual[TypePtr::lastPTR] = {
  2285   BotPTR, NotNull, Constant, Null, AnyNull, TopPTR
  2286 };
  2287 const Type *TypePtr::xdual() const {
  2288   return new TypePtr( AnyPtr, dual_ptr(), dual_offset() );
  2291 //------------------------------xadd_offset------------------------------------
  2292 int TypePtr::xadd_offset( intptr_t offset ) const {
  2293   // Adding to 'TOP' offset?  Return 'TOP'!
  2294   if( _offset == OffsetTop || offset == OffsetTop ) return OffsetTop;
  2295   // Adding to 'BOTTOM' offset?  Return 'BOTTOM'!
  2296   if( _offset == OffsetBot || offset == OffsetBot ) return OffsetBot;
  2297   // Addition overflows or "accidentally" equals to OffsetTop? Return 'BOTTOM'!
  2298   offset += (intptr_t)_offset;
  2299   if (offset != (int)offset || offset == OffsetTop) return OffsetBot;
  2301   // assert( _offset >= 0 && _offset+offset >= 0, "" );
  2302   // It is possible to construct a negative offset during PhaseCCP
  2304   return (int)offset;        // Sum valid offsets
  2307 //------------------------------add_offset-------------------------------------
  2308 const TypePtr *TypePtr::add_offset( intptr_t offset ) const {
  2309   return make( AnyPtr, _ptr, xadd_offset(offset) );
  2312 //------------------------------eq---------------------------------------------
  2313 // Structural equality check for Type representations
  2314 bool TypePtr::eq( const Type *t ) const {
  2315   const TypePtr *a = (const TypePtr*)t;
  2316   return _ptr == a->ptr() && _offset == a->offset();
  2319 //------------------------------hash-------------------------------------------
  2320 // Type-specific hashing function.
  2321 int TypePtr::hash(void) const {
  2322   return java_add(_ptr, _offset);
  2325 //------------------------------dump2------------------------------------------
  2326 const char *const TypePtr::ptr_msg[TypePtr::lastPTR] = {
  2327   "TopPTR","AnyNull","Constant","NULL","NotNull","BotPTR"
  2328 };
  2330 #ifndef PRODUCT
  2331 void TypePtr::dump2( Dict &d, uint depth, outputStream *st ) const {
  2332   if( _ptr == Null ) st->print("NULL");
  2333   else st->print("%s *", ptr_msg[_ptr]);
  2334   if( _offset == OffsetTop ) st->print("+top");
  2335   else if( _offset == OffsetBot ) st->print("+bot");
  2336   else if( _offset ) st->print("+%d", _offset);
  2338 #endif
  2340 //------------------------------singleton--------------------------------------
  2341 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
  2342 // constants
  2343 bool TypePtr::singleton(void) const {
  2344   // TopPTR, Null, AnyNull, Constant are all singletons
  2345   return (_offset != OffsetBot) && !below_centerline(_ptr);
  2348 bool TypePtr::empty(void) const {
  2349   return (_offset == OffsetTop) || above_centerline(_ptr);
  2352 //=============================================================================
  2353 // Convenience common pre-built types.
  2354 const TypeRawPtr *TypeRawPtr::BOTTOM;
  2355 const TypeRawPtr *TypeRawPtr::NOTNULL;
  2357 //------------------------------make-------------------------------------------
  2358 const TypeRawPtr *TypeRawPtr::make( enum PTR ptr ) {
  2359   assert( ptr != Constant, "what is the constant?" );
  2360   assert( ptr != Null, "Use TypePtr for NULL" );
  2361   return (TypeRawPtr*)(new TypeRawPtr(ptr,0))->hashcons();
  2364 const TypeRawPtr *TypeRawPtr::make( address bits ) {
  2365   assert( bits, "Use TypePtr for NULL" );
  2366   return (TypeRawPtr*)(new TypeRawPtr(Constant,bits))->hashcons();
  2369 //------------------------------cast_to_ptr_type-------------------------------
  2370 const Type *TypeRawPtr::cast_to_ptr_type(PTR ptr) const {
  2371   assert( ptr != Constant, "what is the constant?" );
  2372   assert( ptr != Null, "Use TypePtr for NULL" );
  2373   assert( _bits==0, "Why cast a constant address?");
  2374   if( ptr == _ptr ) return this;
  2375   return make(ptr);
  2378 //------------------------------get_con----------------------------------------
  2379 intptr_t TypeRawPtr::get_con() const {
  2380   assert( _ptr == Null || _ptr == Constant, "" );
  2381   return (intptr_t)_bits;
  2384 //------------------------------meet-------------------------------------------
  2385 // Compute the MEET of two types.  It returns a new Type object.
  2386 const Type *TypeRawPtr::xmeet( const Type *t ) const {
  2387   // Perform a fast test for common case; meeting the same types together.
  2388   if( this == t ) return this;  // Meeting same type-rep?
  2390   // Current "this->_base" is RawPtr
  2391   switch( t->base() ) {         // switch on original type
  2392   case Bottom:                  // Ye Olde Default
  2393     return t;
  2394   case Top:
  2395     return this;
  2396   case AnyPtr:                  // Meeting to AnyPtrs
  2397     break;
  2398   case RawPtr: {                // might be top, bot, any/not or constant
  2399     enum PTR tptr = t->is_ptr()->ptr();
  2400     enum PTR ptr = meet_ptr( tptr );
  2401     if( ptr == Constant ) {     // Cannot be equal constants, so...
  2402       if( tptr == Constant && _ptr != Constant)  return t;
  2403       if( _ptr == Constant && tptr != Constant)  return this;
  2404       ptr = NotNull;            // Fall down in lattice
  2406     return make( ptr );
  2409   case OopPtr:
  2410   case InstPtr:
  2411   case AryPtr:
  2412   case MetadataPtr:
  2413   case KlassPtr:
  2414     return TypePtr::BOTTOM;     // Oop meet raw is not well defined
  2415   default:                      // All else is a mistake
  2416     typerr(t);
  2419   // Found an AnyPtr type vs self-RawPtr type
  2420   const TypePtr *tp = t->is_ptr();
  2421   switch (tp->ptr()) {
  2422   case TypePtr::TopPTR:  return this;
  2423   case TypePtr::BotPTR:  return t;
  2424   case TypePtr::Null:
  2425     if( _ptr == TypePtr::TopPTR ) return t;
  2426     return TypeRawPtr::BOTTOM;
  2427   case TypePtr::NotNull: return TypePtr::make( AnyPtr, meet_ptr(TypePtr::NotNull), tp->meet_offset(0) );
  2428   case TypePtr::AnyNull:
  2429     if( _ptr == TypePtr::Constant) return this;
  2430     return make( meet_ptr(TypePtr::AnyNull) );
  2431   default: ShouldNotReachHere();
  2433   return this;
  2436 //------------------------------xdual------------------------------------------
  2437 // Dual: compute field-by-field dual
  2438 const Type *TypeRawPtr::xdual() const {
  2439   return new TypeRawPtr( dual_ptr(), _bits );
  2442 //------------------------------add_offset-------------------------------------
  2443 const TypePtr *TypeRawPtr::add_offset( intptr_t offset ) const {
  2444   if( offset == OffsetTop ) return BOTTOM; // Undefined offset-> undefined pointer
  2445   if( offset == OffsetBot ) return BOTTOM; // Unknown offset-> unknown pointer
  2446   if( offset == 0 ) return this; // No change
  2447   switch (_ptr) {
  2448   case TypePtr::TopPTR:
  2449   case TypePtr::BotPTR:
  2450   case TypePtr::NotNull:
  2451     return this;
  2452   case TypePtr::Null:
  2453   case TypePtr::Constant: {
  2454     address bits = _bits+offset;
  2455     if ( bits == 0 ) return TypePtr::NULL_PTR;
  2456     return make( bits );
  2458   default:  ShouldNotReachHere();
  2460   return NULL;                  // Lint noise
  2463 //------------------------------eq---------------------------------------------
  2464 // Structural equality check for Type representations
  2465 bool TypeRawPtr::eq( const Type *t ) const {
  2466   const TypeRawPtr *a = (const TypeRawPtr*)t;
  2467   return _bits == a->_bits && TypePtr::eq(t);
  2470 //------------------------------hash-------------------------------------------
  2471 // Type-specific hashing function.
  2472 int TypeRawPtr::hash(void) const {
  2473   return (intptr_t)_bits + TypePtr::hash();
  2476 //------------------------------dump2------------------------------------------
  2477 #ifndef PRODUCT
  2478 void TypeRawPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
  2479   if( _ptr == Constant )
  2480     st->print(INTPTR_FORMAT, _bits);
  2481   else
  2482     st->print("rawptr:%s", ptr_msg[_ptr]);
  2484 #endif
  2486 //=============================================================================
  2487 // Convenience common pre-built type.
  2488 const TypeOopPtr *TypeOopPtr::BOTTOM;
  2490 //------------------------------TypeOopPtr-------------------------------------
  2491 TypeOopPtr::TypeOopPtr(TYPES t, PTR ptr, ciKlass* k, bool xk, ciObject* o, int offset, int instance_id, const TypeOopPtr* speculative, int inline_depth)
  2492   : TypePtr(t, ptr, offset),
  2493     _const_oop(o), _klass(k),
  2494     _klass_is_exact(xk),
  2495     _is_ptr_to_narrowoop(false),
  2496     _is_ptr_to_narrowklass(false),
  2497     _is_ptr_to_boxed_value(false),
  2498     _instance_id(instance_id),
  2499     _speculative(speculative),
  2500     _inline_depth(inline_depth){
  2501   if (Compile::current()->eliminate_boxing() && (t == InstPtr) &&
  2502       (offset > 0) && xk && (k != 0) && k->is_instance_klass()) {
  2503     _is_ptr_to_boxed_value = k->as_instance_klass()->is_boxed_value_offset(offset);
  2505 #ifdef _LP64
  2506   if (_offset != 0) {
  2507     if (_offset == oopDesc::klass_offset_in_bytes()) {
  2508       _is_ptr_to_narrowklass = UseCompressedClassPointers;
  2509     } else if (klass() == NULL) {
  2510       // Array with unknown body type
  2511       assert(this->isa_aryptr(), "only arrays without klass");
  2512       _is_ptr_to_narrowoop = UseCompressedOops;
  2513     } else if (this->isa_aryptr()) {
  2514       _is_ptr_to_narrowoop = (UseCompressedOops && klass()->is_obj_array_klass() &&
  2515                              _offset != arrayOopDesc::length_offset_in_bytes());
  2516     } else if (klass()->is_instance_klass()) {
  2517       ciInstanceKlass* ik = klass()->as_instance_klass();
  2518       ciField* field = NULL;
  2519       if (this->isa_klassptr()) {
  2520         // Perm objects don't use compressed references
  2521       } else if (_offset == OffsetBot || _offset == OffsetTop) {
  2522         // unsafe access
  2523         _is_ptr_to_narrowoop = UseCompressedOops;
  2524       } else { // exclude unsafe ops
  2525         assert(this->isa_instptr(), "must be an instance ptr.");
  2527         if (klass() == ciEnv::current()->Class_klass() &&
  2528             (_offset == java_lang_Class::klass_offset_in_bytes() ||
  2529              _offset == java_lang_Class::array_klass_offset_in_bytes())) {
  2530           // Special hidden fields from the Class.
  2531           assert(this->isa_instptr(), "must be an instance ptr.");
  2532           _is_ptr_to_narrowoop = false;
  2533         } else if (klass() == ciEnv::current()->Class_klass() &&
  2534                    _offset >= InstanceMirrorKlass::offset_of_static_fields()) {
  2535           // Static fields
  2536           assert(o != NULL, "must be constant");
  2537           ciInstanceKlass* k = o->as_instance()->java_lang_Class_klass()->as_instance_klass();
  2538           ciField* field = k->get_field_by_offset(_offset, true);
  2539           assert(field != NULL, "missing field");
  2540           BasicType basic_elem_type = field->layout_type();
  2541           _is_ptr_to_narrowoop = UseCompressedOops && (basic_elem_type == T_OBJECT ||
  2542                                                        basic_elem_type == T_ARRAY);
  2543         } else {
  2544           // Instance fields which contains a compressed oop references.
  2545           field = ik->get_field_by_offset(_offset, false);
  2546           if (field != NULL) {
  2547             BasicType basic_elem_type = field->layout_type();
  2548             _is_ptr_to_narrowoop = UseCompressedOops && (basic_elem_type == T_OBJECT ||
  2549                                                          basic_elem_type == T_ARRAY);
  2550           } else if (klass()->equals(ciEnv::current()->Object_klass())) {
  2551             // Compile::find_alias_type() cast exactness on all types to verify
  2552             // that it does not affect alias type.
  2553             _is_ptr_to_narrowoop = UseCompressedOops;
  2554           } else {
  2555             // Type for the copy start in LibraryCallKit::inline_native_clone().
  2556             _is_ptr_to_narrowoop = UseCompressedOops;
  2562 #endif
  2565 //------------------------------make-------------------------------------------
  2566 const TypeOopPtr *TypeOopPtr::make(PTR ptr,
  2567                                    int offset, int instance_id, const TypeOopPtr* speculative, int inline_depth) {
  2568   assert(ptr != Constant, "no constant generic pointers");
  2569   ciKlass*  k = Compile::current()->env()->Object_klass();
  2570   bool      xk = false;
  2571   ciObject* o = NULL;
  2572   return (TypeOopPtr*)(new TypeOopPtr(OopPtr, ptr, k, xk, o, offset, instance_id, speculative, inline_depth))->hashcons();
  2576 //------------------------------cast_to_ptr_type-------------------------------
  2577 const Type *TypeOopPtr::cast_to_ptr_type(PTR ptr) const {
  2578   assert(_base == OopPtr, "subclass must override cast_to_ptr_type");
  2579   if( ptr == _ptr ) return this;
  2580   return make(ptr, _offset, _instance_id, _speculative, _inline_depth);
  2583 //-----------------------------cast_to_instance_id----------------------------
  2584 const TypeOopPtr *TypeOopPtr::cast_to_instance_id(int instance_id) const {
  2585   // There are no instances of a general oop.
  2586   // Return self unchanged.
  2587   return this;
  2590 //-----------------------------cast_to_exactness-------------------------------
  2591 const Type *TypeOopPtr::cast_to_exactness(bool klass_is_exact) const {
  2592   // There is no such thing as an exact general oop.
  2593   // Return self unchanged.
  2594   return this;
  2598 //------------------------------as_klass_type----------------------------------
  2599 // Return the klass type corresponding to this instance or array type.
  2600 // It is the type that is loaded from an object of this type.
  2601 const TypeKlassPtr* TypeOopPtr::as_klass_type() const {
  2602   ciKlass* k = klass();
  2603   bool    xk = klass_is_exact();
  2604   if (k == NULL)
  2605     return TypeKlassPtr::OBJECT;
  2606   else
  2607     return TypeKlassPtr::make(xk? Constant: NotNull, k, 0);
  2610 const Type *TypeOopPtr::xmeet(const Type *t) const {
  2611   const Type* res = xmeet_helper(t);
  2612   if (res->isa_oopptr() == NULL) {
  2613     return res;
  2616   const TypeOopPtr* res_oopptr = res->is_oopptr();
  2617   if (res_oopptr->speculative() != NULL) {
  2618     // type->speculative() == NULL means that speculation is no better
  2619     // than type, i.e. type->speculative() == type. So there are 2
  2620     // ways to represent the fact that we have no useful speculative
  2621     // data and we should use a single one to be able to test for
  2622     // equality between types. Check whether type->speculative() ==
  2623     // type and set speculative to NULL if it is the case.
  2624     if (res_oopptr->remove_speculative() == res_oopptr->speculative()) {
  2625       return res_oopptr->remove_speculative();
  2629   return res;
  2632 //------------------------------meet-------------------------------------------
  2633 // Compute the MEET of two types.  It returns a new Type object.
  2634 const Type *TypeOopPtr::xmeet_helper(const Type *t) const {
  2635   // Perform a fast test for common case; meeting the same types together.
  2636   if( this == t ) return this;  // Meeting same type-rep?
  2638   // Current "this->_base" is OopPtr
  2639   switch (t->base()) {          // switch on original type
  2641   case Int:                     // Mixing ints & oops happens when javac
  2642   case Long:                    // reuses local variables
  2643   case FloatTop:
  2644   case FloatCon:
  2645   case FloatBot:
  2646   case DoubleTop:
  2647   case DoubleCon:
  2648   case DoubleBot:
  2649   case NarrowOop:
  2650   case NarrowKlass:
  2651   case Bottom:                  // Ye Olde Default
  2652     return Type::BOTTOM;
  2653   case Top:
  2654     return this;
  2656   default:                      // All else is a mistake
  2657     typerr(t);
  2659   case RawPtr:
  2660   case MetadataPtr:
  2661   case KlassPtr:
  2662     return TypePtr::BOTTOM;     // Oop meet raw is not well defined
  2664   case AnyPtr: {
  2665     // Found an AnyPtr type vs self-OopPtr type
  2666     const TypePtr *tp = t->is_ptr();
  2667     int offset = meet_offset(tp->offset());
  2668     PTR ptr = meet_ptr(tp->ptr());
  2669     switch (tp->ptr()) {
  2670     case Null:
  2671       if (ptr == Null)  return TypePtr::make(AnyPtr, ptr, offset);
  2672       // else fall through:
  2673     case TopPTR:
  2674     case AnyNull: {
  2675       int instance_id = meet_instance_id(InstanceTop);
  2676       const TypeOopPtr* speculative = _speculative;
  2677       return make(ptr, offset, instance_id, speculative, _inline_depth);
  2679     case BotPTR:
  2680     case NotNull:
  2681       return TypePtr::make(AnyPtr, ptr, offset);
  2682     default: typerr(t);
  2686   case OopPtr: {                 // Meeting to other OopPtrs
  2687     const TypeOopPtr *tp = t->is_oopptr();
  2688     int instance_id = meet_instance_id(tp->instance_id());
  2689     const TypeOopPtr* speculative = xmeet_speculative(tp);
  2690     int depth = meet_inline_depth(tp->inline_depth());
  2691     return make(meet_ptr(tp->ptr()), meet_offset(tp->offset()), instance_id, speculative, depth);
  2694   case InstPtr:                  // For these, flip the call around to cut down
  2695   case AryPtr:
  2696     return t->xmeet(this);      // Call in reverse direction
  2698   } // End of switch
  2699   return this;                  // Return the double constant
  2703 //------------------------------xdual------------------------------------------
  2704 // Dual of a pure heap pointer.  No relevant klass or oop information.
  2705 const Type *TypeOopPtr::xdual() const {
  2706   assert(klass() == Compile::current()->env()->Object_klass(), "no klasses here");
  2707   assert(const_oop() == NULL,             "no constants here");
  2708   return new TypeOopPtr(_base, dual_ptr(), klass(), klass_is_exact(), const_oop(), dual_offset(), dual_instance_id(), dual_speculative(), dual_inline_depth());
  2711 //--------------------------make_from_klass_common-----------------------------
  2712 // Computes the element-type given a klass.
  2713 const TypeOopPtr* TypeOopPtr::make_from_klass_common(ciKlass *klass, bool klass_change, bool try_for_exact) {
  2714   if (klass->is_instance_klass()) {
  2715     Compile* C = Compile::current();
  2716     Dependencies* deps = C->dependencies();
  2717     assert((deps != NULL) == (C->method() != NULL && C->method()->code_size() > 0), "sanity");
  2718     // Element is an instance
  2719     bool klass_is_exact = false;
  2720     if (klass->is_loaded()) {
  2721       // Try to set klass_is_exact.
  2722       ciInstanceKlass* ik = klass->as_instance_klass();
  2723       klass_is_exact = ik->is_final();
  2724       if (!klass_is_exact && klass_change
  2725           && deps != NULL && UseUniqueSubclasses) {
  2726         ciInstanceKlass* sub = ik->unique_concrete_subklass();
  2727         if (sub != NULL) {
  2728           deps->assert_abstract_with_unique_concrete_subtype(ik, sub);
  2729           klass = ik = sub;
  2730           klass_is_exact = sub->is_final();
  2733       if (!klass_is_exact && try_for_exact
  2734           && deps != NULL && UseExactTypes) {
  2735         if (!ik->is_interface() && !ik->has_subklass()) {
  2736           // Add a dependence; if concrete subclass added we need to recompile
  2737           deps->assert_leaf_type(ik);
  2738           klass_is_exact = true;
  2742     return TypeInstPtr::make(TypePtr::BotPTR, klass, klass_is_exact, NULL, 0);
  2743   } else if (klass->is_obj_array_klass()) {
  2744     // Element is an object array. Recursively call ourself.
  2745     const TypeOopPtr *etype = TypeOopPtr::make_from_klass_common(klass->as_obj_array_klass()->element_klass(), false, try_for_exact);
  2746     bool xk = etype->klass_is_exact();
  2747     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
  2748     // We used to pass NotNull in here, asserting that the sub-arrays
  2749     // are all not-null.  This is not true in generally, as code can
  2750     // slam NULLs down in the subarrays.
  2751     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, xk, 0);
  2752     return arr;
  2753   } else if (klass->is_type_array_klass()) {
  2754     // Element is an typeArray
  2755     const Type* etype = get_const_basic_type(klass->as_type_array_klass()->element_type());
  2756     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
  2757     // We used to pass NotNull in here, asserting that the array pointer
  2758     // is not-null. That was not true in general.
  2759     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, true, 0);
  2760     return arr;
  2761   } else {
  2762     ShouldNotReachHere();
  2763     return NULL;
  2767 //------------------------------make_from_constant-----------------------------
  2768 // Make a java pointer from an oop constant
  2769 const TypeOopPtr* TypeOopPtr::make_from_constant(ciObject* o,
  2770                                                  bool require_constant,
  2771                                                  bool is_autobox_cache) {
  2772   assert(!o->is_null_object(), "null object not yet handled here.");
  2773   ciKlass* klass = o->klass();
  2774   if (klass->is_instance_klass()) {
  2775     // Element is an instance
  2776     if (require_constant) {
  2777       if (!o->can_be_constant())  return NULL;
  2778     } else if (!o->should_be_constant()) {
  2779       return TypeInstPtr::make(TypePtr::NotNull, klass, true, NULL, 0);
  2781     return TypeInstPtr::make(o);
  2782   } else if (klass->is_obj_array_klass()) {
  2783     // Element is an object array. Recursively call ourself.
  2784     const TypeOopPtr *etype =
  2785       TypeOopPtr::make_from_klass_raw(klass->as_obj_array_klass()->element_klass());
  2786     if (is_autobox_cache) {
  2787       // The pointers in the autobox arrays are always non-null.
  2788       etype = etype->cast_to_ptr_type(TypePtr::NotNull)->is_oopptr();
  2790     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()));
  2791     // We used to pass NotNull in here, asserting that the sub-arrays
  2792     // are all not-null.  This is not true in generally, as code can
  2793     // slam NULLs down in the subarrays.
  2794     if (require_constant) {
  2795       if (!o->can_be_constant())  return NULL;
  2796     } else if (!o->should_be_constant()) {
  2797       return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, 0);
  2799     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0, InstanceBot, NULL, InlineDepthBottom, is_autobox_cache);
  2800     return arr;
  2801   } else if (klass->is_type_array_klass()) {
  2802     // Element is an typeArray
  2803     const Type* etype =
  2804       (Type*)get_const_basic_type(klass->as_type_array_klass()->element_type());
  2805     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()));
  2806     // We used to pass NotNull in here, asserting that the array pointer
  2807     // is not-null. That was not true in general.
  2808     if (require_constant) {
  2809       if (!o->can_be_constant())  return NULL;
  2810     } else if (!o->should_be_constant()) {
  2811       return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, 0);
  2813     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0);
  2814     return arr;
  2817   fatal("unhandled object type");
  2818   return NULL;
  2821 //------------------------------get_con----------------------------------------
  2822 intptr_t TypeOopPtr::get_con() const {
  2823   assert( _ptr == Null || _ptr == Constant, "" );
  2824   assert( _offset >= 0, "" );
  2826   if (_offset != 0) {
  2827     // After being ported to the compiler interface, the compiler no longer
  2828     // directly manipulates the addresses of oops.  Rather, it only has a pointer
  2829     // to a handle at compile time.  This handle is embedded in the generated
  2830     // code and dereferenced at the time the nmethod is made.  Until that time,
  2831     // it is not reasonable to do arithmetic with the addresses of oops (we don't
  2832     // have access to the addresses!).  This does not seem to currently happen,
  2833     // but this assertion here is to help prevent its occurence.
  2834     tty->print_cr("Found oop constant with non-zero offset");
  2835     ShouldNotReachHere();
  2838   return (intptr_t)const_oop()->constant_encoding();
  2842 //-----------------------------filter------------------------------------------
  2843 // Do not allow interface-vs.-noninterface joins to collapse to top.
  2844 const Type *TypeOopPtr::filter_helper(const Type *kills, bool include_speculative) const {
  2846   const Type* ft = join_helper(kills, include_speculative);
  2847   const TypeInstPtr* ftip = ft->isa_instptr();
  2848   const TypeInstPtr* ktip = kills->isa_instptr();
  2850   if (ft->empty()) {
  2851     // Check for evil case of 'this' being a class and 'kills' expecting an
  2852     // interface.  This can happen because the bytecodes do not contain
  2853     // enough type info to distinguish a Java-level interface variable
  2854     // from a Java-level object variable.  If we meet 2 classes which
  2855     // both implement interface I, but their meet is at 'j/l/O' which
  2856     // doesn't implement I, we have no way to tell if the result should
  2857     // be 'I' or 'j/l/O'.  Thus we'll pick 'j/l/O'.  If this then flows
  2858     // into a Phi which "knows" it's an Interface type we'll have to
  2859     // uplift the type.
  2860     if (!empty()) {
  2861       if (ktip != NULL && ktip->is_loaded() && ktip->klass()->is_interface()) {
  2862         return kills;           // Uplift to interface
  2864       // Also check for evil cases of 'this' being a class array
  2865       // and 'kills' expecting an array of interfaces.
  2866       Type::get_arrays_base_elements(ft, kills, NULL, &ktip);
  2867       if (ktip != NULL && ktip->is_loaded() && ktip->klass()->is_interface()) {
  2868         return kills;           // Uplift to array of interface
  2872     return Type::TOP;           // Canonical empty value
  2875   // If we have an interface-typed Phi or cast and we narrow to a class type,
  2876   // the join should report back the class.  However, if we have a J/L/Object
  2877   // class-typed Phi and an interface flows in, it's possible that the meet &
  2878   // join report an interface back out.  This isn't possible but happens
  2879   // because the type system doesn't interact well with interfaces.
  2880   if (ftip != NULL && ktip != NULL &&
  2881       ftip->is_loaded() &&  ftip->klass()->is_interface() &&
  2882       ktip->is_loaded() && !ktip->klass()->is_interface()) {
  2883     // Happens in a CTW of rt.jar, 320-341, no extra flags
  2884     assert(!ftip->klass_is_exact(), "interface could not be exact");
  2885     return ktip->cast_to_ptr_type(ftip->ptr());
  2888   return ft;
  2891 //------------------------------eq---------------------------------------------
  2892 // Structural equality check for Type representations
  2893 bool TypeOopPtr::eq( const Type *t ) const {
  2894   const TypeOopPtr *a = (const TypeOopPtr*)t;
  2895   if (_klass_is_exact != a->_klass_is_exact ||
  2896       _instance_id != a->_instance_id ||
  2897       !eq_speculative(a) ||
  2898       _inline_depth != a->_inline_depth)  return false;
  2899   ciObject* one = const_oop();
  2900   ciObject* two = a->const_oop();
  2901   if (one == NULL || two == NULL) {
  2902     return (one == two) && TypePtr::eq(t);
  2903   } else {
  2904     return one->equals(two) && TypePtr::eq(t);
  2908 //------------------------------hash-------------------------------------------
  2909 // Type-specific hashing function.
  2910 int TypeOopPtr::hash(void) const {
  2911   return
  2912     java_add(java_add(java_add(const_oop() ? const_oop()->hash() : 0, _klass_is_exact),
  2913                       java_add(_instance_id , hash_speculative())), java_add(_inline_depth , TypePtr::hash()));
  2916 //------------------------------dump2------------------------------------------
  2917 #ifndef PRODUCT
  2918 void TypeOopPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
  2919   st->print("oopptr:%s", ptr_msg[_ptr]);
  2920   if( _klass_is_exact ) st->print(":exact");
  2921   if( const_oop() ) st->print(INTPTR_FORMAT, const_oop());
  2922   switch( _offset ) {
  2923   case OffsetTop: st->print("+top"); break;
  2924   case OffsetBot: st->print("+any"); break;
  2925   case         0: break;
  2926   default:        st->print("+%d",_offset); break;
  2928   if (_instance_id == InstanceTop)
  2929     st->print(",iid=top");
  2930   else if (_instance_id != InstanceBot)
  2931     st->print(",iid=%d",_instance_id);
  2933   dump_inline_depth(st);
  2934   dump_speculative(st);
  2937 /**
  2938  *dump the speculative part of the type
  2939  */
  2940 void TypeOopPtr::dump_speculative(outputStream *st) const {
  2941   if (_speculative != NULL) {
  2942     st->print(" (speculative=");
  2943     _speculative->dump_on(st);
  2944     st->print(")");
  2948 void TypeOopPtr::dump_inline_depth(outputStream *st) const {
  2949   if (_inline_depth != InlineDepthBottom) {
  2950     if (_inline_depth == InlineDepthTop) {
  2951       st->print(" (inline_depth=InlineDepthTop)");
  2952     } else {
  2953       st->print(" (inline_depth=%d)", _inline_depth);
  2957 #endif
  2959 //------------------------------singleton--------------------------------------
  2960 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
  2961 // constants
  2962 bool TypeOopPtr::singleton(void) const {
  2963   // detune optimizer to not generate constant oop + constant offset as a constant!
  2964   // TopPTR, Null, AnyNull, Constant are all singletons
  2965   return (_offset == 0) && !below_centerline(_ptr);
  2968 //------------------------------add_offset-------------------------------------
  2969 const TypePtr *TypeOopPtr::add_offset(intptr_t offset) const {
  2970   return make(_ptr, xadd_offset(offset), _instance_id, add_offset_speculative(offset), _inline_depth);
  2973 /**
  2974  * Return same type without a speculative part
  2975  */
  2976 const Type* TypeOopPtr::remove_speculative() const {
  2977   if (_speculative == NULL) {
  2978     return this;
  2980   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
  2981   return make(_ptr, _offset, _instance_id, NULL, _inline_depth);
  2984 /**
  2985  * Return same type but with a different inline depth (used for speculation)
  2987  * @param depth  depth to meet with
  2988  */
  2989 const TypeOopPtr* TypeOopPtr::with_inline_depth(int depth) const {
  2990   if (!UseInlineDepthForSpeculativeTypes) {
  2991     return this;
  2993   return make(_ptr, _offset, _instance_id, _speculative, depth);
  2996 /**
  2997  * Check whether new profiling would improve speculative type
  2999  * @param   exact_kls    class from profiling
  3000  * @param   inline_depth inlining depth of profile point
  3002  * @return  true if type profile is valuable
  3003  */
  3004 bool TypeOopPtr::would_improve_type(ciKlass* exact_kls, int inline_depth) const {
  3005   // no way to improve an already exact type
  3006   if (klass_is_exact()) {
  3007     return false;
  3009   // no profiling?
  3010   if (exact_kls == NULL) {
  3011     return false;
  3013   // no speculative type or non exact speculative type?
  3014   if (speculative_type() == NULL) {
  3015     return true;
  3017   // If the node already has an exact speculative type keep it,
  3018   // unless it was provided by profiling that is at a deeper
  3019   // inlining level. Profiling at a higher inlining depth is
  3020   // expected to be less accurate.
  3021   if (_speculative->inline_depth() == InlineDepthBottom) {
  3022     return false;
  3024   assert(_speculative->inline_depth() != InlineDepthTop, "can't do the comparison");
  3025   return inline_depth < _speculative->inline_depth();
  3028 //------------------------------meet_instance_id--------------------------------
  3029 int TypeOopPtr::meet_instance_id( int instance_id ) const {
  3030   // Either is 'TOP' instance?  Return the other instance!
  3031   if( _instance_id == InstanceTop ) return  instance_id;
  3032   if(  instance_id == InstanceTop ) return _instance_id;
  3033   // If either is different, return 'BOTTOM' instance
  3034   if( _instance_id != instance_id ) return InstanceBot;
  3035   return _instance_id;
  3038 //------------------------------dual_instance_id--------------------------------
  3039 int TypeOopPtr::dual_instance_id( ) const {
  3040   if( _instance_id == InstanceTop ) return InstanceBot; // Map TOP into BOTTOM
  3041   if( _instance_id == InstanceBot ) return InstanceTop; // Map BOTTOM into TOP
  3042   return _instance_id;              // Map everything else into self
  3045 /**
  3046  * meet of the speculative parts of 2 types
  3048  * @param other  type to meet with
  3049  */
  3050 const TypeOopPtr* TypeOopPtr::xmeet_speculative(const TypeOopPtr* other) const {
  3051   bool this_has_spec = (_speculative != NULL);
  3052   bool other_has_spec = (other->speculative() != NULL);
  3054   if (!this_has_spec && !other_has_spec) {
  3055     return NULL;
  3058   // If we are at a point where control flow meets and one branch has
  3059   // a speculative type and the other has not, we meet the speculative
  3060   // type of one branch with the actual type of the other. If the
  3061   // actual type is exact and the speculative is as well, then the
  3062   // result is a speculative type which is exact and we can continue
  3063   // speculation further.
  3064   const TypeOopPtr* this_spec = _speculative;
  3065   const TypeOopPtr* other_spec = other->speculative();
  3067   if (!this_has_spec) {
  3068     this_spec = this;
  3071   if (!other_has_spec) {
  3072     other_spec = other;
  3075   return this_spec->meet_speculative(other_spec)->is_oopptr();
  3078 /**
  3079  * dual of the speculative part of the type
  3080  */
  3081 const TypeOopPtr* TypeOopPtr::dual_speculative() const {
  3082   if (_speculative == NULL) {
  3083     return NULL;
  3085   return _speculative->dual()->is_oopptr();
  3088 /**
  3089  * add offset to the speculative part of the type
  3091  * @param offset  offset to add
  3092  */
  3093 const TypeOopPtr* TypeOopPtr::add_offset_speculative(intptr_t offset) const {
  3094   if (_speculative == NULL) {
  3095     return NULL;
  3097   return _speculative->add_offset(offset)->is_oopptr();
  3100 /**
  3101  * Are the speculative parts of 2 types equal?
  3103  * @param other  type to compare this one to
  3104  */
  3105 bool TypeOopPtr::eq_speculative(const TypeOopPtr* other) const {
  3106   if (_speculative == NULL || other->speculative() == NULL) {
  3107     return _speculative == other->speculative();
  3110   if (_speculative->base() != other->speculative()->base()) {
  3111     return false;
  3114   return _speculative->eq(other->speculative());
  3117 /**
  3118  * Hash of the speculative part of the type
  3119  */
  3120 int TypeOopPtr::hash_speculative() const {
  3121   if (_speculative == NULL) {
  3122     return 0;
  3125   return _speculative->hash();
  3128 /**
  3129  * dual of the inline depth for this type (used for speculation)
  3130  */
  3131 int TypeOopPtr::dual_inline_depth() const {
  3132   return -inline_depth();
  3135 /**
  3136  * meet of 2 inline depth (used for speculation)
  3138  * @param depth  depth to meet with
  3139  */
  3140 int TypeOopPtr::meet_inline_depth(int depth) const {
  3141   return MAX2(inline_depth(), depth);
  3144 //=============================================================================
  3145 // Convenience common pre-built types.
  3146 const TypeInstPtr *TypeInstPtr::NOTNULL;
  3147 const TypeInstPtr *TypeInstPtr::BOTTOM;
  3148 const TypeInstPtr *TypeInstPtr::MIRROR;
  3149 const TypeInstPtr *TypeInstPtr::MARK;
  3150 const TypeInstPtr *TypeInstPtr::KLASS;
  3152 //------------------------------TypeInstPtr-------------------------------------
  3153 TypeInstPtr::TypeInstPtr(PTR ptr, ciKlass* k, bool xk, ciObject* o, int off, int instance_id, const TypeOopPtr* speculative, int inline_depth)
  3154   : TypeOopPtr(InstPtr, ptr, k, xk, o, off, instance_id, speculative, inline_depth), _name(k->name()) {
  3155    assert(k != NULL &&
  3156           (k->is_loaded() || o == NULL),
  3157           "cannot have constants with non-loaded klass");
  3158 };
  3160 //------------------------------make-------------------------------------------
  3161 const TypeInstPtr *TypeInstPtr::make(PTR ptr,
  3162                                      ciKlass* k,
  3163                                      bool xk,
  3164                                      ciObject* o,
  3165                                      int offset,
  3166                                      int instance_id,
  3167                                      const TypeOopPtr* speculative,
  3168                                      int inline_depth) {
  3169   assert( !k->is_loaded() || k->is_instance_klass(), "Must be for instance");
  3170   // Either const_oop() is NULL or else ptr is Constant
  3171   assert( (!o && ptr != Constant) || (o && ptr == Constant),
  3172           "constant pointers must have a value supplied" );
  3173   // Ptr is never Null
  3174   assert( ptr != Null, "NULL pointers are not typed" );
  3176   assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
  3177   if (!UseExactTypes)  xk = false;
  3178   if (ptr == Constant) {
  3179     // Note:  This case includes meta-object constants, such as methods.
  3180     xk = true;
  3181   } else if (k->is_loaded()) {
  3182     ciInstanceKlass* ik = k->as_instance_klass();
  3183     if (!xk && ik->is_final())     xk = true;   // no inexact final klass
  3184     if (xk && ik->is_interface())  xk = false;  // no exact interface
  3187   // Now hash this baby
  3188   TypeInstPtr *result =
  3189     (TypeInstPtr*)(new TypeInstPtr(ptr, k, xk, o ,offset, instance_id, speculative, inline_depth))->hashcons();
  3191   return result;
  3194 /**
  3195  *  Create constant type for a constant boxed value
  3196  */
  3197 const Type* TypeInstPtr::get_const_boxed_value() const {
  3198   assert(is_ptr_to_boxed_value(), "should be called only for boxed value");
  3199   assert((const_oop() != NULL), "should be called only for constant object");
  3200   ciConstant constant = const_oop()->as_instance()->field_value_by_offset(offset());
  3201   BasicType bt = constant.basic_type();
  3202   switch (bt) {
  3203     case T_BOOLEAN:  return TypeInt::make(constant.as_boolean());
  3204     case T_INT:      return TypeInt::make(constant.as_int());
  3205     case T_CHAR:     return TypeInt::make(constant.as_char());
  3206     case T_BYTE:     return TypeInt::make(constant.as_byte());
  3207     case T_SHORT:    return TypeInt::make(constant.as_short());
  3208     case T_FLOAT:    return TypeF::make(constant.as_float());
  3209     case T_DOUBLE:   return TypeD::make(constant.as_double());
  3210     case T_LONG:     return TypeLong::make(constant.as_long());
  3211     default:         break;
  3213   fatal(err_msg_res("Invalid boxed value type '%s'", type2name(bt)));
  3214   return NULL;
  3217 //------------------------------cast_to_ptr_type-------------------------------
  3218 const Type *TypeInstPtr::cast_to_ptr_type(PTR ptr) const {
  3219   if( ptr == _ptr ) return this;
  3220   // Reconstruct _sig info here since not a problem with later lazy
  3221   // construction, _sig will show up on demand.
  3222   return make(ptr, klass(), klass_is_exact(), const_oop(), _offset, _instance_id, _speculative, _inline_depth);
  3226 //-----------------------------cast_to_exactness-------------------------------
  3227 const Type *TypeInstPtr::cast_to_exactness(bool klass_is_exact) const {
  3228   if( klass_is_exact == _klass_is_exact ) return this;
  3229   if (!UseExactTypes)  return this;
  3230   if (!_klass->is_loaded())  return this;
  3231   ciInstanceKlass* ik = _klass->as_instance_klass();
  3232   if( (ik->is_final() || _const_oop) )  return this;  // cannot clear xk
  3233   if( ik->is_interface() )              return this;  // cannot set xk
  3234   return make(ptr(), klass(), klass_is_exact, const_oop(), _offset, _instance_id, _speculative, _inline_depth);
  3237 //-----------------------------cast_to_instance_id----------------------------
  3238 const TypeOopPtr *TypeInstPtr::cast_to_instance_id(int instance_id) const {
  3239   if( instance_id == _instance_id ) return this;
  3240   return make(_ptr, klass(), _klass_is_exact, const_oop(), _offset, instance_id, _speculative, _inline_depth);
  3243 //------------------------------xmeet_unloaded---------------------------------
  3244 // Compute the MEET of two InstPtrs when at least one is unloaded.
  3245 // Assume classes are different since called after check for same name/class-loader
  3246 const TypeInstPtr *TypeInstPtr::xmeet_unloaded(const TypeInstPtr *tinst) const {
  3247     int off = meet_offset(tinst->offset());
  3248     PTR ptr = meet_ptr(tinst->ptr());
  3249     int instance_id = meet_instance_id(tinst->instance_id());
  3250     const TypeOopPtr* speculative = xmeet_speculative(tinst);
  3251     int depth = meet_inline_depth(tinst->inline_depth());
  3253     const TypeInstPtr *loaded    = is_loaded() ? this  : tinst;
  3254     const TypeInstPtr *unloaded  = is_loaded() ? tinst : this;
  3255     if( loaded->klass()->equals(ciEnv::current()->Object_klass()) ) {
  3256       //
  3257       // Meet unloaded class with java/lang/Object
  3258       //
  3259       // Meet
  3260       //          |                     Unloaded Class
  3261       //  Object  |   TOP    |   AnyNull | Constant |   NotNull |  BOTTOM   |
  3262       //  ===================================================================
  3263       //   TOP    | ..........................Unloaded......................|
  3264       //  AnyNull |  U-AN    |................Unloaded......................|
  3265       // Constant | ... O-NN .................................. |   O-BOT   |
  3266       //  NotNull | ... O-NN .................................. |   O-BOT   |
  3267       //  BOTTOM  | ........................Object-BOTTOM ..................|
  3268       //
  3269       assert(loaded->ptr() != TypePtr::Null, "insanity check");
  3270       //
  3271       if(      loaded->ptr() == TypePtr::TopPTR ) { return unloaded; }
  3272       else if (loaded->ptr() == TypePtr::AnyNull) { return TypeInstPtr::make(ptr, unloaded->klass(), false, NULL, off, instance_id, speculative, depth); }
  3273       else if (loaded->ptr() == TypePtr::BotPTR ) { return TypeInstPtr::BOTTOM; }
  3274       else if (loaded->ptr() == TypePtr::Constant || loaded->ptr() == TypePtr::NotNull) {
  3275         if (unloaded->ptr() == TypePtr::BotPTR  ) { return TypeInstPtr::BOTTOM;  }
  3276         else                                      { return TypeInstPtr::NOTNULL; }
  3278       else if( unloaded->ptr() == TypePtr::TopPTR )  { return unloaded; }
  3280       return unloaded->cast_to_ptr_type(TypePtr::AnyNull)->is_instptr();
  3283     // Both are unloaded, not the same class, not Object
  3284     // Or meet unloaded with a different loaded class, not java/lang/Object
  3285     if( ptr != TypePtr::BotPTR ) {
  3286       return TypeInstPtr::NOTNULL;
  3288     return TypeInstPtr::BOTTOM;
  3292 //------------------------------meet-------------------------------------------
  3293 // Compute the MEET of two types.  It returns a new Type object.
  3294 const Type *TypeInstPtr::xmeet_helper(const Type *t) const {
  3295   // Perform a fast test for common case; meeting the same types together.
  3296   if( this == t ) return this;  // Meeting same type-rep?
  3298   // Current "this->_base" is Pointer
  3299   switch (t->base()) {          // switch on original type
  3301   case Int:                     // Mixing ints & oops happens when javac
  3302   case Long:                    // reuses local variables
  3303   case FloatTop:
  3304   case FloatCon:
  3305   case FloatBot:
  3306   case DoubleTop:
  3307   case DoubleCon:
  3308   case DoubleBot:
  3309   case NarrowOop:
  3310   case NarrowKlass:
  3311   case Bottom:                  // Ye Olde Default
  3312     return Type::BOTTOM;
  3313   case Top:
  3314     return this;
  3316   default:                      // All else is a mistake
  3317     typerr(t);
  3319   case MetadataPtr:
  3320   case KlassPtr:
  3321   case RawPtr: return TypePtr::BOTTOM;
  3323   case AryPtr: {                // All arrays inherit from Object class
  3324     const TypeAryPtr *tp = t->is_aryptr();
  3325     int offset = meet_offset(tp->offset());
  3326     PTR ptr = meet_ptr(tp->ptr());
  3327     int instance_id = meet_instance_id(tp->instance_id());
  3328     const TypeOopPtr* speculative = xmeet_speculative(tp);
  3329     int depth = meet_inline_depth(tp->inline_depth());
  3330     switch (ptr) {
  3331     case TopPTR:
  3332     case AnyNull:                // Fall 'down' to dual of object klass
  3333       // For instances when a subclass meets a superclass we fall
  3334       // below the centerline when the superclass is exact. We need to
  3335       // do the same here.
  3336       if (klass()->equals(ciEnv::current()->Object_klass()) && !klass_is_exact()) {
  3337         return TypeAryPtr::make(ptr, tp->ary(), tp->klass(), tp->klass_is_exact(), offset, instance_id, speculative, depth);
  3338       } else {
  3339         // cannot subclass, so the meet has to fall badly below the centerline
  3340         ptr = NotNull;
  3341         instance_id = InstanceBot;
  3342         return TypeInstPtr::make( ptr, ciEnv::current()->Object_klass(), false, NULL, offset, instance_id, speculative, depth);
  3344     case Constant:
  3345     case NotNull:
  3346     case BotPTR:                // Fall down to object klass
  3347       // LCA is object_klass, but if we subclass from the top we can do better
  3348       if( above_centerline(_ptr) ) { // if( _ptr == TopPTR || _ptr == AnyNull )
  3349         // If 'this' (InstPtr) is above the centerline and it is Object class
  3350         // then we can subclass in the Java class hierarchy.
  3351         // For instances when a subclass meets a superclass we fall
  3352         // below the centerline when the superclass is exact. We need
  3353         // to do the same here.
  3354         if (klass()->equals(ciEnv::current()->Object_klass()) && !klass_is_exact()) {
  3355           // that is, tp's array type is a subtype of my klass
  3356           return TypeAryPtr::make(ptr, (ptr == Constant ? tp->const_oop() : NULL),
  3357                                   tp->ary(), tp->klass(), tp->klass_is_exact(), offset, instance_id, speculative, depth);
  3360       // The other case cannot happen, since I cannot be a subtype of an array.
  3361       // The meet falls down to Object class below centerline.
  3362       if( ptr == Constant )
  3363          ptr = NotNull;
  3364       instance_id = InstanceBot;
  3365       return make(ptr, ciEnv::current()->Object_klass(), false, NULL, offset, instance_id, speculative, depth);
  3366     default: typerr(t);
  3370   case OopPtr: {                // Meeting to OopPtrs
  3371     // Found a OopPtr type vs self-InstPtr type
  3372     const TypeOopPtr *tp = t->is_oopptr();
  3373     int offset = meet_offset(tp->offset());
  3374     PTR ptr = meet_ptr(tp->ptr());
  3375     switch (tp->ptr()) {
  3376     case TopPTR:
  3377     case AnyNull: {
  3378       int instance_id = meet_instance_id(InstanceTop);
  3379       const TypeOopPtr* speculative = xmeet_speculative(tp);
  3380       int depth = meet_inline_depth(tp->inline_depth());
  3381       return make(ptr, klass(), klass_is_exact(),
  3382                   (ptr == Constant ? const_oop() : NULL), offset, instance_id, speculative, depth);
  3384     case NotNull:
  3385     case BotPTR: {
  3386       int instance_id = meet_instance_id(tp->instance_id());
  3387       const TypeOopPtr* speculative = xmeet_speculative(tp);
  3388       int depth = meet_inline_depth(tp->inline_depth());
  3389       return TypeOopPtr::make(ptr, offset, instance_id, speculative, depth);
  3391     default: typerr(t);
  3395   case AnyPtr: {                // Meeting to AnyPtrs
  3396     // Found an AnyPtr type vs self-InstPtr type
  3397     const TypePtr *tp = t->is_ptr();
  3398     int offset = meet_offset(tp->offset());
  3399     PTR ptr = meet_ptr(tp->ptr());
  3400     switch (tp->ptr()) {
  3401     case Null:
  3402       if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset);
  3403       // else fall through to AnyNull
  3404     case TopPTR:
  3405     case AnyNull: {
  3406       int instance_id = meet_instance_id(InstanceTop);
  3407       const TypeOopPtr* speculative = _speculative;
  3408       return make(ptr, klass(), klass_is_exact(),
  3409                   (ptr == Constant ? const_oop() : NULL), offset, instance_id, speculative, _inline_depth);
  3411     case NotNull:
  3412     case BotPTR:
  3413       return TypePtr::make(AnyPtr, ptr, offset);
  3414     default: typerr(t);
  3418   /*
  3419                  A-top         }
  3420                /   |   \       }  Tops
  3421            B-top A-any C-top   }
  3422               | /  |  \ |      }  Any-nulls
  3423            B-any   |   C-any   }
  3424               |    |    |
  3425            B-con A-con C-con   } constants; not comparable across classes
  3426               |    |    |
  3427            B-not   |   C-not   }
  3428               | \  |  / |      }  not-nulls
  3429            B-bot A-not C-bot   }
  3430                \   |   /       }  Bottoms
  3431                  A-bot         }
  3432   */
  3434   case InstPtr: {                // Meeting 2 Oops?
  3435     // Found an InstPtr sub-type vs self-InstPtr type
  3436     const TypeInstPtr *tinst = t->is_instptr();
  3437     int off = meet_offset( tinst->offset() );
  3438     PTR ptr = meet_ptr( tinst->ptr() );
  3439     int instance_id = meet_instance_id(tinst->instance_id());
  3440     const TypeOopPtr* speculative = xmeet_speculative(tinst);
  3441     int depth = meet_inline_depth(tinst->inline_depth());
  3443     // Check for easy case; klasses are equal (and perhaps not loaded!)
  3444     // If we have constants, then we created oops so classes are loaded
  3445     // and we can handle the constants further down.  This case handles
  3446     // both-not-loaded or both-loaded classes
  3447     if (ptr != Constant && klass()->equals(tinst->klass()) && klass_is_exact() == tinst->klass_is_exact()) {
  3448       return make(ptr, klass(), klass_is_exact(), NULL, off, instance_id, speculative, depth);
  3451     // Classes require inspection in the Java klass hierarchy.  Must be loaded.
  3452     ciKlass* tinst_klass = tinst->klass();
  3453     ciKlass* this_klass  = this->klass();
  3454     bool tinst_xk = tinst->klass_is_exact();
  3455     bool this_xk  = this->klass_is_exact();
  3456     if (!tinst_klass->is_loaded() || !this_klass->is_loaded() ) {
  3457       // One of these classes has not been loaded
  3458       const TypeInstPtr *unloaded_meet = xmeet_unloaded(tinst);
  3459 #ifndef PRODUCT
  3460       if( PrintOpto && Verbose ) {
  3461         tty->print("meet of unloaded classes resulted in: "); unloaded_meet->dump(); tty->cr();
  3462         tty->print("  this == "); this->dump(); tty->cr();
  3463         tty->print(" tinst == "); tinst->dump(); tty->cr();
  3465 #endif
  3466       return unloaded_meet;
  3469     // Handle mixing oops and interfaces first.
  3470     if( this_klass->is_interface() && !(tinst_klass->is_interface() ||
  3471                                         tinst_klass == ciEnv::current()->Object_klass())) {
  3472       ciKlass *tmp = tinst_klass; // Swap interface around
  3473       tinst_klass = this_klass;
  3474       this_klass = tmp;
  3475       bool tmp2 = tinst_xk;
  3476       tinst_xk = this_xk;
  3477       this_xk = tmp2;
  3479     if (tinst_klass->is_interface() &&
  3480         !(this_klass->is_interface() ||
  3481           // Treat java/lang/Object as an honorary interface,
  3482           // because we need a bottom for the interface hierarchy.
  3483           this_klass == ciEnv::current()->Object_klass())) {
  3484       // Oop meets interface!
  3486       // See if the oop subtypes (implements) interface.
  3487       ciKlass *k;
  3488       bool xk;
  3489       if( this_klass->is_subtype_of( tinst_klass ) ) {
  3490         // Oop indeed subtypes.  Now keep oop or interface depending
  3491         // on whether we are both above the centerline or either is
  3492         // below the centerline.  If we are on the centerline
  3493         // (e.g., Constant vs. AnyNull interface), use the constant.
  3494         k  = below_centerline(ptr) ? tinst_klass : this_klass;
  3495         // If we are keeping this_klass, keep its exactness too.
  3496         xk = below_centerline(ptr) ? tinst_xk    : this_xk;
  3497       } else {                  // Does not implement, fall to Object
  3498         // Oop does not implement interface, so mixing falls to Object
  3499         // just like the verifier does (if both are above the
  3500         // centerline fall to interface)
  3501         k = above_centerline(ptr) ? tinst_klass : ciEnv::current()->Object_klass();
  3502         xk = above_centerline(ptr) ? tinst_xk : false;
  3503         // Watch out for Constant vs. AnyNull interface.
  3504         if (ptr == Constant)  ptr = NotNull;   // forget it was a constant
  3505         instance_id = InstanceBot;
  3507       ciObject* o = NULL;  // the Constant value, if any
  3508       if (ptr == Constant) {
  3509         // Find out which constant.
  3510         o = (this_klass == klass()) ? const_oop() : tinst->const_oop();
  3512       return make(ptr, k, xk, o, off, instance_id, speculative, depth);
  3515     // Either oop vs oop or interface vs interface or interface vs Object
  3517     // !!! Here's how the symmetry requirement breaks down into invariants:
  3518     // If we split one up & one down AND they subtype, take the down man.
  3519     // If we split one up & one down AND they do NOT subtype, "fall hard".
  3520     // If both are up and they subtype, take the subtype class.
  3521     // If both are up and they do NOT subtype, "fall hard".
  3522     // If both are down and they subtype, take the supertype class.
  3523     // If both are down and they do NOT subtype, "fall hard".
  3524     // Constants treated as down.
  3526     // Now, reorder the above list; observe that both-down+subtype is also
  3527     // "fall hard"; "fall hard" becomes the default case:
  3528     // If we split one up & one down AND they subtype, take the down man.
  3529     // If both are up and they subtype, take the subtype class.
  3531     // If both are down and they subtype, "fall hard".
  3532     // If both are down and they do NOT subtype, "fall hard".
  3533     // If both are up and they do NOT subtype, "fall hard".
  3534     // If we split one up & one down AND they do NOT subtype, "fall hard".
  3536     // If a proper subtype is exact, and we return it, we return it exactly.
  3537     // If a proper supertype is exact, there can be no subtyping relationship!
  3538     // If both types are equal to the subtype, exactness is and-ed below the
  3539     // centerline and or-ed above it.  (N.B. Constants are always exact.)
  3541     // Check for subtyping:
  3542     ciKlass *subtype = NULL;
  3543     bool subtype_exact = false;
  3544     if( tinst_klass->equals(this_klass) ) {
  3545       subtype = this_klass;
  3546       subtype_exact = below_centerline(ptr) ? (this_xk & tinst_xk) : (this_xk | tinst_xk);
  3547     } else if( !tinst_xk && this_klass->is_subtype_of( tinst_klass ) ) {
  3548       subtype = this_klass;     // Pick subtyping class
  3549       subtype_exact = this_xk;
  3550     } else if( !this_xk && tinst_klass->is_subtype_of( this_klass ) ) {
  3551       subtype = tinst_klass;    // Pick subtyping class
  3552       subtype_exact = tinst_xk;
  3555     if( subtype ) {
  3556       if( above_centerline(ptr) ) { // both are up?
  3557         this_klass = tinst_klass = subtype;
  3558         this_xk = tinst_xk = subtype_exact;
  3559       } else if( above_centerline(this ->_ptr) && !above_centerline(tinst->_ptr) ) {
  3560         this_klass = tinst_klass; // tinst is down; keep down man
  3561         this_xk = tinst_xk;
  3562       } else if( above_centerline(tinst->_ptr) && !above_centerline(this ->_ptr) ) {
  3563         tinst_klass = this_klass; // this is down; keep down man
  3564         tinst_xk = this_xk;
  3565       } else {
  3566         this_xk = subtype_exact;  // either they are equal, or we'll do an LCA
  3570     // Check for classes now being equal
  3571     if (tinst_klass->equals(this_klass)) {
  3572       // If the klasses are equal, the constants may still differ.  Fall to
  3573       // NotNull if they do (neither constant is NULL; that is a special case
  3574       // handled elsewhere).
  3575       ciObject* o = NULL;             // Assume not constant when done
  3576       ciObject* this_oop  = const_oop();
  3577       ciObject* tinst_oop = tinst->const_oop();
  3578       if( ptr == Constant ) {
  3579         if (this_oop != NULL && tinst_oop != NULL &&
  3580             this_oop->equals(tinst_oop) )
  3581           o = this_oop;
  3582         else if (above_centerline(this ->_ptr))
  3583           o = tinst_oop;
  3584         else if (above_centerline(tinst ->_ptr))
  3585           o = this_oop;
  3586         else
  3587           ptr = NotNull;
  3589       return make(ptr, this_klass, this_xk, o, off, instance_id, speculative, depth);
  3590     } // Else classes are not equal
  3592     // Since klasses are different, we require a LCA in the Java
  3593     // class hierarchy - which means we have to fall to at least NotNull.
  3594     if( ptr == TopPTR || ptr == AnyNull || ptr == Constant )
  3595       ptr = NotNull;
  3596     instance_id = InstanceBot;
  3598     // Now we find the LCA of Java classes
  3599     ciKlass* k = this_klass->least_common_ancestor(tinst_klass);
  3600     return make(ptr, k, false, NULL, off, instance_id, speculative, depth);
  3601   } // End of case InstPtr
  3603   } // End of switch
  3604   return this;                  // Return the double constant
  3608 //------------------------java_mirror_type--------------------------------------
  3609 ciType* TypeInstPtr::java_mirror_type() const {
  3610   // must be a singleton type
  3611   if( const_oop() == NULL )  return NULL;
  3613   // must be of type java.lang.Class
  3614   if( klass() != ciEnv::current()->Class_klass() )  return NULL;
  3616   return const_oop()->as_instance()->java_mirror_type();
  3620 //------------------------------xdual------------------------------------------
  3621 // Dual: do NOT dual on klasses.  This means I do NOT understand the Java
  3622 // inheritance mechanism.
  3623 const Type *TypeInstPtr::xdual() const {
  3624   return new TypeInstPtr(dual_ptr(), klass(), klass_is_exact(), const_oop(), dual_offset(), dual_instance_id(), dual_speculative(), dual_inline_depth());
  3627 //------------------------------eq---------------------------------------------
  3628 // Structural equality check for Type representations
  3629 bool TypeInstPtr::eq( const Type *t ) const {
  3630   const TypeInstPtr *p = t->is_instptr();
  3631   return
  3632     klass()->equals(p->klass()) &&
  3633     TypeOopPtr::eq(p);          // Check sub-type stuff
  3636 //------------------------------hash-------------------------------------------
  3637 // Type-specific hashing function.
  3638 int TypeInstPtr::hash(void) const {
  3639   int hash = java_add(klass()->hash(), TypeOopPtr::hash());
  3640   return hash;
  3643 //------------------------------dump2------------------------------------------
  3644 // Dump oop Type
  3645 #ifndef PRODUCT
  3646 void TypeInstPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
  3647   // Print the name of the klass.
  3648   klass()->print_name_on(st);
  3650   switch( _ptr ) {
  3651   case Constant:
  3652     // TO DO: Make CI print the hex address of the underlying oop.
  3653     if (WizardMode || Verbose) {
  3654       const_oop()->print_oop(st);
  3656   case BotPTR:
  3657     if (!WizardMode && !Verbose) {
  3658       if( _klass_is_exact ) st->print(":exact");
  3659       break;
  3661   case TopPTR:
  3662   case AnyNull:
  3663   case NotNull:
  3664     st->print(":%s", ptr_msg[_ptr]);
  3665     if( _klass_is_exact ) st->print(":exact");
  3666     break;
  3669   if( _offset ) {               // Dump offset, if any
  3670     if( _offset == OffsetBot )      st->print("+any");
  3671     else if( _offset == OffsetTop ) st->print("+unknown");
  3672     else st->print("+%d", _offset);
  3675   st->print(" *");
  3676   if (_instance_id == InstanceTop)
  3677     st->print(",iid=top");
  3678   else if (_instance_id != InstanceBot)
  3679     st->print(",iid=%d",_instance_id);
  3681   dump_inline_depth(st);
  3682   dump_speculative(st);
  3684 #endif
  3686 //------------------------------add_offset-------------------------------------
  3687 const TypePtr *TypeInstPtr::add_offset(intptr_t offset) const {
  3688   return make(_ptr, klass(), klass_is_exact(), const_oop(), xadd_offset(offset), _instance_id, add_offset_speculative(offset));
  3691 const Type *TypeInstPtr::remove_speculative() const {
  3692   if (_speculative == NULL) {
  3693     return this;
  3695   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
  3696   return make(_ptr, klass(), klass_is_exact(), const_oop(), _offset, _instance_id, NULL, _inline_depth);
  3699 const TypeOopPtr *TypeInstPtr::with_inline_depth(int depth) const {
  3700   if (!UseInlineDepthForSpeculativeTypes) {
  3701     return this;
  3703   return make(_ptr, klass(), klass_is_exact(), const_oop(), _offset, _instance_id, _speculative, depth);
  3706 //=============================================================================
  3707 // Convenience common pre-built types.
  3708 const TypeAryPtr *TypeAryPtr::RANGE;
  3709 const TypeAryPtr *TypeAryPtr::OOPS;
  3710 const TypeAryPtr *TypeAryPtr::NARROWOOPS;
  3711 const TypeAryPtr *TypeAryPtr::BYTES;
  3712 const TypeAryPtr *TypeAryPtr::SHORTS;
  3713 const TypeAryPtr *TypeAryPtr::CHARS;
  3714 const TypeAryPtr *TypeAryPtr::INTS;
  3715 const TypeAryPtr *TypeAryPtr::LONGS;
  3716 const TypeAryPtr *TypeAryPtr::FLOATS;
  3717 const TypeAryPtr *TypeAryPtr::DOUBLES;
  3719 //------------------------------make-------------------------------------------
  3720 const TypeAryPtr *TypeAryPtr::make(PTR ptr, const TypeAry *ary, ciKlass* k, bool xk, int offset, int instance_id, const TypeOopPtr* speculative, int inline_depth) {
  3721   assert(!(k == NULL && ary->_elem->isa_int()),
  3722          "integral arrays must be pre-equipped with a class");
  3723   if (!xk)  xk = ary->ary_must_be_exact();
  3724   assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
  3725   if (!UseExactTypes)  xk = (ptr == Constant);
  3726   return (TypeAryPtr*)(new TypeAryPtr(ptr, NULL, ary, k, xk, offset, instance_id, false, speculative, inline_depth))->hashcons();
  3729 //------------------------------make-------------------------------------------
  3730 const TypeAryPtr *TypeAryPtr::make(PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk, int offset, int instance_id, const TypeOopPtr* speculative, int inline_depth, bool is_autobox_cache) {
  3731   assert(!(k == NULL && ary->_elem->isa_int()),
  3732          "integral arrays must be pre-equipped with a class");
  3733   assert( (ptr==Constant && o) || (ptr!=Constant && !o), "" );
  3734   if (!xk)  xk = (o != NULL) || ary->ary_must_be_exact();
  3735   assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
  3736   if (!UseExactTypes)  xk = (ptr == Constant);
  3737   return (TypeAryPtr*)(new TypeAryPtr(ptr, o, ary, k, xk, offset, instance_id, is_autobox_cache, speculative, inline_depth))->hashcons();
  3740 //------------------------------cast_to_ptr_type-------------------------------
  3741 const Type *TypeAryPtr::cast_to_ptr_type(PTR ptr) const {
  3742   if( ptr == _ptr ) return this;
  3743   return make(ptr, const_oop(), _ary, klass(), klass_is_exact(), _offset, _instance_id, _speculative, _inline_depth);
  3747 //-----------------------------cast_to_exactness-------------------------------
  3748 const Type *TypeAryPtr::cast_to_exactness(bool klass_is_exact) const {
  3749   if( klass_is_exact == _klass_is_exact ) return this;
  3750   if (!UseExactTypes)  return this;
  3751   if (_ary->ary_must_be_exact())  return this;  // cannot clear xk
  3752   return make(ptr(), const_oop(), _ary, klass(), klass_is_exact, _offset, _instance_id, _speculative, _inline_depth);
  3755 //-----------------------------cast_to_instance_id----------------------------
  3756 const TypeOopPtr *TypeAryPtr::cast_to_instance_id(int instance_id) const {
  3757   if( instance_id == _instance_id ) return this;
  3758   return make(_ptr, const_oop(), _ary, klass(), _klass_is_exact, _offset, instance_id, _speculative, _inline_depth);
  3761 //-----------------------------narrow_size_type-------------------------------
  3762 // Local cache for arrayOopDesc::max_array_length(etype),
  3763 // which is kind of slow (and cached elsewhere by other users).
  3764 static jint max_array_length_cache[T_CONFLICT+1];
  3765 static jint max_array_length(BasicType etype) {
  3766   jint& cache = max_array_length_cache[etype];
  3767   jint res = cache;
  3768   if (res == 0) {
  3769     switch (etype) {
  3770     case T_NARROWOOP:
  3771       etype = T_OBJECT;
  3772       break;
  3773     case T_NARROWKLASS:
  3774     case T_CONFLICT:
  3775     case T_ILLEGAL:
  3776     case T_VOID:
  3777       etype = T_BYTE;           // will produce conservatively high value
  3779     cache = res = arrayOopDesc::max_array_length(etype);
  3781   return res;
  3784 // Narrow the given size type to the index range for the given array base type.
  3785 // Return NULL if the resulting int type becomes empty.
  3786 const TypeInt* TypeAryPtr::narrow_size_type(const TypeInt* size) const {
  3787   jint hi = size->_hi;
  3788   jint lo = size->_lo;
  3789   jint min_lo = 0;
  3790   jint max_hi = max_array_length(elem()->basic_type());
  3791   //if (index_not_size)  --max_hi;     // type of a valid array index, FTR
  3792   bool chg = false;
  3793   if (lo < min_lo) {
  3794     lo = min_lo;
  3795     if (size->is_con()) {
  3796       hi = lo;
  3798     chg = true;
  3800   if (hi > max_hi) {
  3801     hi = max_hi;
  3802     if (size->is_con()) {
  3803       lo = hi;
  3805     chg = true;
  3807   // Negative length arrays will produce weird intermediate dead fast-path code
  3808   if (lo > hi)
  3809     return TypeInt::ZERO;
  3810   if (!chg)
  3811     return size;
  3812   return TypeInt::make(lo, hi, Type::WidenMin);
  3815 //-------------------------------cast_to_size----------------------------------
  3816 const TypeAryPtr* TypeAryPtr::cast_to_size(const TypeInt* new_size) const {
  3817   assert(new_size != NULL, "");
  3818   new_size = narrow_size_type(new_size);
  3819   if (new_size == size())  return this;
  3820   const TypeAry* new_ary = TypeAry::make(elem(), new_size, is_stable());
  3821   return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _instance_id, _speculative, _inline_depth);
  3825 //------------------------------cast_to_stable---------------------------------
  3826 const TypeAryPtr* TypeAryPtr::cast_to_stable(bool stable, int stable_dimension) const {
  3827   if (stable_dimension <= 0 || (stable_dimension == 1 && stable == this->is_stable()))
  3828     return this;
  3830   const Type* elem = this->elem();
  3831   const TypePtr* elem_ptr = elem->make_ptr();
  3833   if (stable_dimension > 1 && elem_ptr != NULL && elem_ptr->isa_aryptr()) {
  3834     // If this is widened from a narrow oop, TypeAry::make will re-narrow it.
  3835     elem = elem_ptr = elem_ptr->is_aryptr()->cast_to_stable(stable, stable_dimension - 1);
  3838   const TypeAry* new_ary = TypeAry::make(elem, size(), stable);
  3840   return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _instance_id);
  3843 //-----------------------------stable_dimension--------------------------------
  3844 int TypeAryPtr::stable_dimension() const {
  3845   if (!is_stable())  return 0;
  3846   int dim = 1;
  3847   const TypePtr* elem_ptr = elem()->make_ptr();
  3848   if (elem_ptr != NULL && elem_ptr->isa_aryptr())
  3849     dim += elem_ptr->is_aryptr()->stable_dimension();
  3850   return dim;
  3853 //------------------------------eq---------------------------------------------
  3854 // Structural equality check for Type representations
  3855 bool TypeAryPtr::eq( const Type *t ) const {
  3856   const TypeAryPtr *p = t->is_aryptr();
  3857   return
  3858     _ary == p->_ary &&  // Check array
  3859     TypeOopPtr::eq(p);  // Check sub-parts
  3862 //------------------------------hash-------------------------------------------
  3863 // Type-specific hashing function.
  3864 int TypeAryPtr::hash(void) const {
  3865   return (intptr_t)_ary + TypeOopPtr::hash();
  3868 //------------------------------meet-------------------------------------------
  3869 // Compute the MEET of two types.  It returns a new Type object.
  3870 const Type *TypeAryPtr::xmeet_helper(const Type *t) const {
  3871   // Perform a fast test for common case; meeting the same types together.
  3872   if( this == t ) return this;  // Meeting same type-rep?
  3873   // Current "this->_base" is Pointer
  3874   switch (t->base()) {          // switch on original type
  3876   // Mixing ints & oops happens when javac reuses local variables
  3877   case Int:
  3878   case Long:
  3879   case FloatTop:
  3880   case FloatCon:
  3881   case FloatBot:
  3882   case DoubleTop:
  3883   case DoubleCon:
  3884   case DoubleBot:
  3885   case NarrowOop:
  3886   case NarrowKlass:
  3887   case Bottom:                  // Ye Olde Default
  3888     return Type::BOTTOM;
  3889   case Top:
  3890     return this;
  3892   default:                      // All else is a mistake
  3893     typerr(t);
  3895   case OopPtr: {                // Meeting to OopPtrs
  3896     // Found a OopPtr type vs self-AryPtr type
  3897     const TypeOopPtr *tp = t->is_oopptr();
  3898     int offset = meet_offset(tp->offset());
  3899     PTR ptr = meet_ptr(tp->ptr());
  3900     int depth = meet_inline_depth(tp->inline_depth());
  3901     switch (tp->ptr()) {
  3902     case TopPTR:
  3903     case AnyNull: {
  3904       int instance_id = meet_instance_id(InstanceTop);
  3905       const TypeOopPtr* speculative = xmeet_speculative(tp);
  3906       return make(ptr, (ptr == Constant ? const_oop() : NULL),
  3907                   _ary, _klass, _klass_is_exact, offset, instance_id, speculative, depth);
  3909     case BotPTR:
  3910     case NotNull: {
  3911       int instance_id = meet_instance_id(tp->instance_id());
  3912       const TypeOopPtr* speculative = xmeet_speculative(tp);
  3913       return TypeOopPtr::make(ptr, offset, instance_id, speculative, depth);
  3915     default: ShouldNotReachHere();
  3919   case AnyPtr: {                // Meeting two AnyPtrs
  3920     // Found an AnyPtr type vs self-AryPtr type
  3921     const TypePtr *tp = t->is_ptr();
  3922     int offset = meet_offset(tp->offset());
  3923     PTR ptr = meet_ptr(tp->ptr());
  3924     switch (tp->ptr()) {
  3925     case TopPTR:
  3926       return this;
  3927     case BotPTR:
  3928     case NotNull:
  3929       return TypePtr::make(AnyPtr, ptr, offset);
  3930     case Null:
  3931       if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset);
  3932       // else fall through to AnyNull
  3933     case AnyNull: {
  3934       int instance_id = meet_instance_id(InstanceTop);
  3935       const TypeOopPtr* speculative = _speculative;
  3936       return make(ptr, (ptr == Constant ? const_oop() : NULL),
  3937                   _ary, _klass, _klass_is_exact, offset, instance_id, speculative, _inline_depth);
  3939     default: ShouldNotReachHere();
  3943   case MetadataPtr:
  3944   case KlassPtr:
  3945   case RawPtr: return TypePtr::BOTTOM;
  3947   case AryPtr: {                // Meeting 2 references?
  3948     const TypeAryPtr *tap = t->is_aryptr();
  3949     int off = meet_offset(tap->offset());
  3950     const TypeAry *tary = _ary->meet_speculative(tap->_ary)->is_ary();
  3951     PTR ptr = meet_ptr(tap->ptr());
  3952     int instance_id = meet_instance_id(tap->instance_id());
  3953     const TypeOopPtr* speculative = xmeet_speculative(tap);
  3954     int depth = meet_inline_depth(tap->inline_depth());
  3955     ciKlass* lazy_klass = NULL;
  3956     if (tary->_elem->isa_int()) {
  3957       // Integral array element types have irrelevant lattice relations.
  3958       // It is the klass that determines array layout, not the element type.
  3959       if (_klass == NULL)
  3960         lazy_klass = tap->_klass;
  3961       else if (tap->_klass == NULL || tap->_klass == _klass) {
  3962         lazy_klass = _klass;
  3963       } else {
  3964         // Something like byte[int+] meets char[int+].
  3965         // This must fall to bottom, not (int[-128..65535])[int+].
  3966         instance_id = InstanceBot;
  3967         tary = TypeAry::make(Type::BOTTOM, tary->_size, tary->_stable);
  3969     } else // Non integral arrays.
  3970       // Must fall to bottom if exact klasses in upper lattice
  3971       // are not equal or super klass is exact.
  3972       if ((above_centerline(ptr) || ptr == Constant) && klass() != tap->klass() &&
  3973           // meet with top[] and bottom[] are processed further down:
  3974           tap->_klass != NULL  && this->_klass != NULL   &&
  3975           // both are exact and not equal:
  3976           ((tap->_klass_is_exact && this->_klass_is_exact) ||
  3977            // 'tap'  is exact and super or unrelated:
  3978            (tap->_klass_is_exact && !tap->klass()->is_subtype_of(klass())) ||
  3979            // 'this' is exact and super or unrelated:
  3980            (this->_klass_is_exact && !klass()->is_subtype_of(tap->klass())))) {
  3981       if (above_centerline(ptr)) {
  3982         tary = TypeAry::make(Type::BOTTOM, tary->_size, tary->_stable);
  3984       return make(NotNull, NULL, tary, lazy_klass, false, off, InstanceBot);
  3987     bool xk = false;
  3988     switch (tap->ptr()) {
  3989     case AnyNull:
  3990     case TopPTR:
  3991       // Compute new klass on demand, do not use tap->_klass
  3992       if (below_centerline(this->_ptr)) {
  3993         xk = this->_klass_is_exact;
  3994       } else {
  3995         xk = (tap->_klass_is_exact | this->_klass_is_exact);
  3997       return make(ptr, const_oop(), tary, lazy_klass, xk, off, instance_id, speculative, depth);
  3998     case Constant: {
  3999       ciObject* o = const_oop();
  4000       if( _ptr == Constant ) {
  4001         if( tap->const_oop() != NULL && !o->equals(tap->const_oop()) ) {
  4002           xk = (klass() == tap->klass());
  4003           ptr = NotNull;
  4004           o = NULL;
  4005           instance_id = InstanceBot;
  4006         } else {
  4007           xk = true;
  4009       } else if(above_centerline(_ptr)) {
  4010         o = tap->const_oop();
  4011         xk = true;
  4012       } else {
  4013         // Only precise for identical arrays
  4014         xk = this->_klass_is_exact && (klass() == tap->klass());
  4016       return TypeAryPtr::make(ptr, o, tary, lazy_klass, xk, off, instance_id, speculative, depth);
  4018     case NotNull:
  4019     case BotPTR:
  4020       // Compute new klass on demand, do not use tap->_klass
  4021       if (above_centerline(this->_ptr))
  4022             xk = tap->_klass_is_exact;
  4023       else  xk = (tap->_klass_is_exact & this->_klass_is_exact) &&
  4024               (klass() == tap->klass()); // Only precise for identical arrays
  4025       return TypeAryPtr::make(ptr, NULL, tary, lazy_klass, xk, off, instance_id, speculative, depth);
  4026     default: ShouldNotReachHere();
  4030   // All arrays inherit from Object class
  4031   case InstPtr: {
  4032     const TypeInstPtr *tp = t->is_instptr();
  4033     int offset = meet_offset(tp->offset());
  4034     PTR ptr = meet_ptr(tp->ptr());
  4035     int instance_id = meet_instance_id(tp->instance_id());
  4036     const TypeOopPtr* speculative = xmeet_speculative(tp);
  4037     int depth = meet_inline_depth(tp->inline_depth());
  4038     switch (ptr) {
  4039     case TopPTR:
  4040     case AnyNull:                // Fall 'down' to dual of object klass
  4041       // For instances when a subclass meets a superclass we fall
  4042       // below the centerline when the superclass is exact. We need to
  4043       // do the same here.
  4044       if (tp->klass()->equals(ciEnv::current()->Object_klass()) && !tp->klass_is_exact()) {
  4045         return TypeAryPtr::make(ptr, _ary, _klass, _klass_is_exact, offset, instance_id, speculative, depth);
  4046       } else {
  4047         // cannot subclass, so the meet has to fall badly below the centerline
  4048         ptr = NotNull;
  4049         instance_id = InstanceBot;
  4050         return TypeInstPtr::make(ptr, ciEnv::current()->Object_klass(), false, NULL,offset, instance_id, speculative, depth);
  4052     case Constant:
  4053     case NotNull:
  4054     case BotPTR:                // Fall down to object klass
  4055       // LCA is object_klass, but if we subclass from the top we can do better
  4056       if (above_centerline(tp->ptr())) {
  4057         // If 'tp'  is above the centerline and it is Object class
  4058         // then we can subclass in the Java class hierarchy.
  4059         // For instances when a subclass meets a superclass we fall
  4060         // below the centerline when the superclass is exact. We need
  4061         // to do the same here.
  4062         if (tp->klass()->equals(ciEnv::current()->Object_klass()) && !tp->klass_is_exact()) {
  4063           // that is, my array type is a subtype of 'tp' klass
  4064           return make(ptr, (ptr == Constant ? const_oop() : NULL),
  4065                       _ary, _klass, _klass_is_exact, offset, instance_id, speculative, depth);
  4068       // The other case cannot happen, since t cannot be a subtype of an array.
  4069       // The meet falls down to Object class below centerline.
  4070       if( ptr == Constant )
  4071          ptr = NotNull;
  4072       instance_id = InstanceBot;
  4073       return TypeInstPtr::make(ptr, ciEnv::current()->Object_klass(), false, NULL,offset, instance_id, speculative, depth);
  4074     default: typerr(t);
  4078   return this;                  // Lint noise
  4081 //------------------------------xdual------------------------------------------
  4082 // Dual: compute field-by-field dual
  4083 const Type *TypeAryPtr::xdual() const {
  4084   return new TypeAryPtr(dual_ptr(), _const_oop, _ary->dual()->is_ary(),_klass, _klass_is_exact, dual_offset(), dual_instance_id(), is_autobox_cache(), dual_speculative(), dual_inline_depth());
  4087 //----------------------interface_vs_oop---------------------------------------
  4088 #ifdef ASSERT
  4089 bool TypeAryPtr::interface_vs_oop(const Type *t) const {
  4090   const TypeAryPtr* t_aryptr = t->isa_aryptr();
  4091   if (t_aryptr) {
  4092     return _ary->interface_vs_oop(t_aryptr->_ary);
  4094   return false;
  4096 #endif
  4098 //------------------------------dump2------------------------------------------
  4099 #ifndef PRODUCT
  4100 void TypeAryPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
  4101   _ary->dump2(d,depth,st);
  4102   switch( _ptr ) {
  4103   case Constant:
  4104     const_oop()->print(st);
  4105     break;
  4106   case BotPTR:
  4107     if (!WizardMode && !Verbose) {
  4108       if( _klass_is_exact ) st->print(":exact");
  4109       break;
  4111   case TopPTR:
  4112   case AnyNull:
  4113   case NotNull:
  4114     st->print(":%s", ptr_msg[_ptr]);
  4115     if( _klass_is_exact ) st->print(":exact");
  4116     break;
  4119   if( _offset != 0 ) {
  4120     int header_size = objArrayOopDesc::header_size() * wordSize;
  4121     if( _offset == OffsetTop )       st->print("+undefined");
  4122     else if( _offset == OffsetBot )  st->print("+any");
  4123     else if( _offset < header_size ) st->print("+%d", _offset);
  4124     else {
  4125       BasicType basic_elem_type = elem()->basic_type();
  4126       int array_base = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
  4127       int elem_size = type2aelembytes(basic_elem_type);
  4128       st->print("[%d]", (_offset - array_base)/elem_size);
  4131   st->print(" *");
  4132   if (_instance_id == InstanceTop)
  4133     st->print(",iid=top");
  4134   else if (_instance_id != InstanceBot)
  4135     st->print(",iid=%d",_instance_id);
  4137   dump_inline_depth(st);
  4138   dump_speculative(st);
  4140 #endif
  4142 bool TypeAryPtr::empty(void) const {
  4143   if (_ary->empty())       return true;
  4144   return TypeOopPtr::empty();
  4147 //------------------------------add_offset-------------------------------------
  4148 const TypePtr *TypeAryPtr::add_offset(intptr_t offset) const {
  4149   return make(_ptr, _const_oop, _ary, _klass, _klass_is_exact, xadd_offset(offset), _instance_id, add_offset_speculative(offset), _inline_depth);
  4152 const Type *TypeAryPtr::remove_speculative() const {
  4153   if (_speculative == NULL) {
  4154     return this;
  4156   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
  4157   return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, _instance_id, NULL, _inline_depth);
  4160 const TypeOopPtr *TypeAryPtr::with_inline_depth(int depth) const {
  4161   if (!UseInlineDepthForSpeculativeTypes) {
  4162     return this;
  4164   return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, _instance_id, _speculative, depth);
  4167 //=============================================================================
  4169 //------------------------------hash-------------------------------------------
  4170 // Type-specific hashing function.
  4171 int TypeNarrowPtr::hash(void) const {
  4172   return _ptrtype->hash() + 7;
  4175 bool TypeNarrowPtr::singleton(void) const {    // TRUE if type is a singleton
  4176   return _ptrtype->singleton();
  4179 bool TypeNarrowPtr::empty(void) const {
  4180   return _ptrtype->empty();
  4183 intptr_t TypeNarrowPtr::get_con() const {
  4184   return _ptrtype->get_con();
  4187 bool TypeNarrowPtr::eq( const Type *t ) const {
  4188   const TypeNarrowPtr* tc = isa_same_narrowptr(t);
  4189   if (tc != NULL) {
  4190     if (_ptrtype->base() != tc->_ptrtype->base()) {
  4191       return false;
  4193     return tc->_ptrtype->eq(_ptrtype);
  4195   return false;
  4198 const Type *TypeNarrowPtr::xdual() const {    // Compute dual right now.
  4199   const TypePtr* odual = _ptrtype->dual()->is_ptr();
  4200   return make_same_narrowptr(odual);
  4204 const Type *TypeNarrowPtr::filter_helper(const Type *kills, bool include_speculative) const {
  4205   if (isa_same_narrowptr(kills)) {
  4206     const Type* ft =_ptrtype->filter_helper(is_same_narrowptr(kills)->_ptrtype, include_speculative);
  4207     if (ft->empty())
  4208       return Type::TOP;           // Canonical empty value
  4209     if (ft->isa_ptr()) {
  4210       return make_hash_same_narrowptr(ft->isa_ptr());
  4212     return ft;
  4213   } else if (kills->isa_ptr()) {
  4214     const Type* ft = _ptrtype->join_helper(kills, include_speculative);
  4215     if (ft->empty())
  4216       return Type::TOP;           // Canonical empty value
  4217     return ft;
  4218   } else {
  4219     return Type::TOP;
  4223 //------------------------------xmeet------------------------------------------
  4224 // Compute the MEET of two types.  It returns a new Type object.
  4225 const Type *TypeNarrowPtr::xmeet( const Type *t ) const {
  4226   // Perform a fast test for common case; meeting the same types together.
  4227   if( this == t ) return this;  // Meeting same type-rep?
  4229   if (t->base() == base()) {
  4230     const Type* result = _ptrtype->xmeet(t->make_ptr());
  4231     if (result->isa_ptr()) {
  4232       return make_hash_same_narrowptr(result->is_ptr());
  4234     return result;
  4237   // Current "this->_base" is NarrowKlass or NarrowOop
  4238   switch (t->base()) {          // switch on original type
  4240   case Int:                     // Mixing ints & oops happens when javac
  4241   case Long:                    // reuses local variables
  4242   case FloatTop:
  4243   case FloatCon:
  4244   case FloatBot:
  4245   case DoubleTop:
  4246   case DoubleCon:
  4247   case DoubleBot:
  4248   case AnyPtr:
  4249   case RawPtr:
  4250   case OopPtr:
  4251   case InstPtr:
  4252   case AryPtr:
  4253   case MetadataPtr:
  4254   case KlassPtr:
  4255   case NarrowOop:
  4256   case NarrowKlass:
  4258   case Bottom:                  // Ye Olde Default
  4259     return Type::BOTTOM;
  4260   case Top:
  4261     return this;
  4263   default:                      // All else is a mistake
  4264     typerr(t);
  4266   } // End of switch
  4268   return this;
  4271 #ifndef PRODUCT
  4272 void TypeNarrowPtr::dump2( Dict & d, uint depth, outputStream *st ) const {
  4273   _ptrtype->dump2(d, depth, st);
  4275 #endif
  4277 const TypeNarrowOop *TypeNarrowOop::BOTTOM;
  4278 const TypeNarrowOop *TypeNarrowOop::NULL_PTR;
  4281 const TypeNarrowOop* TypeNarrowOop::make(const TypePtr* type) {
  4282   return (const TypeNarrowOop*)(new TypeNarrowOop(type))->hashcons();
  4286 #ifndef PRODUCT
  4287 void TypeNarrowOop::dump2( Dict & d, uint depth, outputStream *st ) const {
  4288   st->print("narrowoop: ");
  4289   TypeNarrowPtr::dump2(d, depth, st);
  4291 #endif
  4293 const TypeNarrowKlass *TypeNarrowKlass::NULL_PTR;
  4295 const TypeNarrowKlass* TypeNarrowKlass::make(const TypePtr* type) {
  4296   return (const TypeNarrowKlass*)(new TypeNarrowKlass(type))->hashcons();
  4299 #ifndef PRODUCT
  4300 void TypeNarrowKlass::dump2( Dict & d, uint depth, outputStream *st ) const {
  4301   st->print("narrowklass: ");
  4302   TypeNarrowPtr::dump2(d, depth, st);
  4304 #endif
  4307 //------------------------------eq---------------------------------------------
  4308 // Structural equality check for Type representations
  4309 bool TypeMetadataPtr::eq( const Type *t ) const {
  4310   const TypeMetadataPtr *a = (const TypeMetadataPtr*)t;
  4311   ciMetadata* one = metadata();
  4312   ciMetadata* two = a->metadata();
  4313   if (one == NULL || two == NULL) {
  4314     return (one == two) && TypePtr::eq(t);
  4315   } else {
  4316     return one->equals(two) && TypePtr::eq(t);
  4320 //------------------------------hash-------------------------------------------
  4321 // Type-specific hashing function.
  4322 int TypeMetadataPtr::hash(void) const {
  4323   return
  4324     (metadata() ? metadata()->hash() : 0) +
  4325     TypePtr::hash();
  4328 //------------------------------singleton--------------------------------------
  4329 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
  4330 // constants
  4331 bool TypeMetadataPtr::singleton(void) const {
  4332   // detune optimizer to not generate constant metadta + constant offset as a constant!
  4333   // TopPTR, Null, AnyNull, Constant are all singletons
  4334   return (_offset == 0) && !below_centerline(_ptr);
  4337 //------------------------------add_offset-------------------------------------
  4338 const TypePtr *TypeMetadataPtr::add_offset( intptr_t offset ) const {
  4339   return make( _ptr, _metadata, xadd_offset(offset));
  4342 //-----------------------------filter------------------------------------------
  4343 // Do not allow interface-vs.-noninterface joins to collapse to top.
  4344 const Type *TypeMetadataPtr::filter_helper(const Type *kills, bool include_speculative) const {
  4345   const TypeMetadataPtr* ft = join_helper(kills, include_speculative)->isa_metadataptr();
  4346   if (ft == NULL || ft->empty())
  4347     return Type::TOP;           // Canonical empty value
  4348   return ft;
  4351  //------------------------------get_con----------------------------------------
  4352 intptr_t TypeMetadataPtr::get_con() const {
  4353   assert( _ptr == Null || _ptr == Constant, "" );
  4354   assert( _offset >= 0, "" );
  4356   if (_offset != 0) {
  4357     // After being ported to the compiler interface, the compiler no longer
  4358     // directly manipulates the addresses of oops.  Rather, it only has a pointer
  4359     // to a handle at compile time.  This handle is embedded in the generated
  4360     // code and dereferenced at the time the nmethod is made.  Until that time,
  4361     // it is not reasonable to do arithmetic with the addresses of oops (we don't
  4362     // have access to the addresses!).  This does not seem to currently happen,
  4363     // but this assertion here is to help prevent its occurence.
  4364     tty->print_cr("Found oop constant with non-zero offset");
  4365     ShouldNotReachHere();
  4368   return (intptr_t)metadata()->constant_encoding();
  4371 //------------------------------cast_to_ptr_type-------------------------------
  4372 const Type *TypeMetadataPtr::cast_to_ptr_type(PTR ptr) const {
  4373   if( ptr == _ptr ) return this;
  4374   return make(ptr, metadata(), _offset);
  4377 //------------------------------meet-------------------------------------------
  4378 // Compute the MEET of two types.  It returns a new Type object.
  4379 const Type *TypeMetadataPtr::xmeet( const Type *t ) const {
  4380   // Perform a fast test for common case; meeting the same types together.
  4381   if( this == t ) return this;  // Meeting same type-rep?
  4383   // Current "this->_base" is OopPtr
  4384   switch (t->base()) {          // switch on original type
  4386   case Int:                     // Mixing ints & oops happens when javac
  4387   case Long:                    // reuses local variables
  4388   case FloatTop:
  4389   case FloatCon:
  4390   case FloatBot:
  4391   case DoubleTop:
  4392   case DoubleCon:
  4393   case DoubleBot:
  4394   case NarrowOop:
  4395   case NarrowKlass:
  4396   case Bottom:                  // Ye Olde Default
  4397     return Type::BOTTOM;
  4398   case Top:
  4399     return this;
  4401   default:                      // All else is a mistake
  4402     typerr(t);
  4404   case AnyPtr: {
  4405     // Found an AnyPtr type vs self-OopPtr type
  4406     const TypePtr *tp = t->is_ptr();
  4407     int offset = meet_offset(tp->offset());
  4408     PTR ptr = meet_ptr(tp->ptr());
  4409     switch (tp->ptr()) {
  4410     case Null:
  4411       if (ptr == Null)  return TypePtr::make(AnyPtr, ptr, offset);
  4412       // else fall through:
  4413     case TopPTR:
  4414     case AnyNull: {
  4415       return make(ptr, _metadata, offset);
  4417     case BotPTR:
  4418     case NotNull:
  4419       return TypePtr::make(AnyPtr, ptr, offset);
  4420     default: typerr(t);
  4424   case RawPtr:
  4425   case KlassPtr:
  4426   case OopPtr:
  4427   case InstPtr:
  4428   case AryPtr:
  4429     return TypePtr::BOTTOM;     // Oop meet raw is not well defined
  4431   case MetadataPtr: {
  4432     const TypeMetadataPtr *tp = t->is_metadataptr();
  4433     int offset = meet_offset(tp->offset());
  4434     PTR tptr = tp->ptr();
  4435     PTR ptr = meet_ptr(tptr);
  4436     ciMetadata* md = (tptr == TopPTR) ? metadata() : tp->metadata();
  4437     if (tptr == TopPTR || _ptr == TopPTR ||
  4438         metadata()->equals(tp->metadata())) {
  4439       return make(ptr, md, offset);
  4441     // metadata is different
  4442     if( ptr == Constant ) {  // Cannot be equal constants, so...
  4443       if( tptr == Constant && _ptr != Constant)  return t;
  4444       if( _ptr == Constant && tptr != Constant)  return this;
  4445       ptr = NotNull;            // Fall down in lattice
  4447     return make(ptr, NULL, offset);
  4448     break;
  4450   } // End of switch
  4451   return this;                  // Return the double constant
  4455 //------------------------------xdual------------------------------------------
  4456 // Dual of a pure metadata pointer.
  4457 const Type *TypeMetadataPtr::xdual() const {
  4458   return new TypeMetadataPtr(dual_ptr(), metadata(), dual_offset());
  4461 //------------------------------dump2------------------------------------------
  4462 #ifndef PRODUCT
  4463 void TypeMetadataPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
  4464   st->print("metadataptr:%s", ptr_msg[_ptr]);
  4465   if( metadata() ) st->print(INTPTR_FORMAT, metadata());
  4466   switch( _offset ) {
  4467   case OffsetTop: st->print("+top"); break;
  4468   case OffsetBot: st->print("+any"); break;
  4469   case         0: break;
  4470   default:        st->print("+%d",_offset); break;
  4473 #endif
  4476 //=============================================================================
  4477 // Convenience common pre-built type.
  4478 const TypeMetadataPtr *TypeMetadataPtr::BOTTOM;
  4480 TypeMetadataPtr::TypeMetadataPtr(PTR ptr, ciMetadata* metadata, int offset):
  4481   TypePtr(MetadataPtr, ptr, offset), _metadata(metadata) {
  4484 const TypeMetadataPtr* TypeMetadataPtr::make(ciMethod* m) {
  4485   return make(Constant, m, 0);
  4487 const TypeMetadataPtr* TypeMetadataPtr::make(ciMethodData* m) {
  4488   return make(Constant, m, 0);
  4491 //------------------------------make-------------------------------------------
  4492 // Create a meta data constant
  4493 const TypeMetadataPtr *TypeMetadataPtr::make(PTR ptr, ciMetadata* m, int offset) {
  4494   assert(m == NULL || !m->is_klass(), "wrong type");
  4495   return (TypeMetadataPtr*)(new TypeMetadataPtr(ptr, m, offset))->hashcons();
  4499 //=============================================================================
  4500 // Convenience common pre-built types.
  4502 // Not-null object klass or below
  4503 const TypeKlassPtr *TypeKlassPtr::OBJECT;
  4504 const TypeKlassPtr *TypeKlassPtr::OBJECT_OR_NULL;
  4506 //------------------------------TypeKlassPtr-----------------------------------
  4507 TypeKlassPtr::TypeKlassPtr( PTR ptr, ciKlass* klass, int offset )
  4508   : TypePtr(KlassPtr, ptr, offset), _klass(klass), _klass_is_exact(ptr == Constant) {
  4511 //------------------------------make-------------------------------------------
  4512 // ptr to klass 'k', if Constant, or possibly to a sub-klass if not a Constant
  4513 const TypeKlassPtr *TypeKlassPtr::make( PTR ptr, ciKlass* k, int offset ) {
  4514   assert( k != NULL, "Expect a non-NULL klass");
  4515   assert(k->is_instance_klass() || k->is_array_klass(), "Incorrect type of klass oop");
  4516   TypeKlassPtr *r =
  4517     (TypeKlassPtr*)(new TypeKlassPtr(ptr, k, offset))->hashcons();
  4519   return r;
  4522 //------------------------------eq---------------------------------------------
  4523 // Structural equality check for Type representations
  4524 bool TypeKlassPtr::eq( const Type *t ) const {
  4525   const TypeKlassPtr *p = t->is_klassptr();
  4526   return
  4527     klass()->equals(p->klass()) &&
  4528     TypePtr::eq(p);
  4531 //------------------------------hash-------------------------------------------
  4532 // Type-specific hashing function.
  4533 int TypeKlassPtr::hash(void) const {
  4534   return java_add(klass()->hash(), TypePtr::hash());
  4537 //------------------------------singleton--------------------------------------
  4538 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
  4539 // constants
  4540 bool TypeKlassPtr::singleton(void) const {
  4541   // detune optimizer to not generate constant klass + constant offset as a constant!
  4542   // TopPTR, Null, AnyNull, Constant are all singletons
  4543   return (_offset == 0) && !below_centerline(_ptr);
  4546 // Do not allow interface-vs.-noninterface joins to collapse to top.
  4547 const Type *TypeKlassPtr::filter_helper(const Type *kills, bool include_speculative) const {
  4548   // logic here mirrors the one from TypeOopPtr::filter. See comments
  4549   // there.
  4550   const Type* ft = join_helper(kills, include_speculative);
  4551   const TypeKlassPtr* ftkp = ft->isa_klassptr();
  4552   const TypeKlassPtr* ktkp = kills->isa_klassptr();
  4554   if (ft->empty()) {
  4555     if (!empty() && ktkp != NULL && ktkp->klass()->is_loaded() && ktkp->klass()->is_interface())
  4556       return kills;             // Uplift to interface
  4558     return Type::TOP;           // Canonical empty value
  4561   // Interface klass type could be exact in opposite to interface type,
  4562   // return it here instead of incorrect Constant ptr J/L/Object (6894807).
  4563   if (ftkp != NULL && ktkp != NULL &&
  4564       ftkp->is_loaded() &&  ftkp->klass()->is_interface() &&
  4565       !ftkp->klass_is_exact() && // Keep exact interface klass
  4566       ktkp->is_loaded() && !ktkp->klass()->is_interface()) {
  4567     return ktkp->cast_to_ptr_type(ftkp->ptr());
  4570   return ft;
  4573 //----------------------compute_klass------------------------------------------
  4574 // Compute the defining klass for this class
  4575 ciKlass* TypeAryPtr::compute_klass(DEBUG_ONLY(bool verify)) const {
  4576   // Compute _klass based on element type.
  4577   ciKlass* k_ary = NULL;
  4578   const TypeInstPtr *tinst;
  4579   const TypeAryPtr *tary;
  4580   const Type* el = elem();
  4581   if (el->isa_narrowoop()) {
  4582     el = el->make_ptr();
  4585   // Get element klass
  4586   if ((tinst = el->isa_instptr()) != NULL) {
  4587     // Compute array klass from element klass
  4588     k_ary = ciObjArrayKlass::make(tinst->klass());
  4589   } else if ((tary = el->isa_aryptr()) != NULL) {
  4590     // Compute array klass from element klass
  4591     ciKlass* k_elem = tary->klass();
  4592     // If element type is something like bottom[], k_elem will be null.
  4593     if (k_elem != NULL)
  4594       k_ary = ciObjArrayKlass::make(k_elem);
  4595   } else if ((el->base() == Type::Top) ||
  4596              (el->base() == Type::Bottom)) {
  4597     // element type of Bottom occurs from meet of basic type
  4598     // and object; Top occurs when doing join on Bottom.
  4599     // Leave k_ary at NULL.
  4600   } else {
  4601     // Cannot compute array klass directly from basic type,
  4602     // since subtypes of TypeInt all have basic type T_INT.
  4603 #ifdef ASSERT
  4604     if (verify && el->isa_int()) {
  4605       // Check simple cases when verifying klass.
  4606       BasicType bt = T_ILLEGAL;
  4607       if (el == TypeInt::BYTE) {
  4608         bt = T_BYTE;
  4609       } else if (el == TypeInt::SHORT) {
  4610         bt = T_SHORT;
  4611       } else if (el == TypeInt::CHAR) {
  4612         bt = T_CHAR;
  4613       } else if (el == TypeInt::INT) {
  4614         bt = T_INT;
  4615       } else {
  4616         return _klass; // just return specified klass
  4618       return ciTypeArrayKlass::make(bt);
  4620 #endif
  4621     assert(!el->isa_int(),
  4622            "integral arrays must be pre-equipped with a class");
  4623     // Compute array klass directly from basic type
  4624     k_ary = ciTypeArrayKlass::make(el->basic_type());
  4626   return k_ary;
  4629 //------------------------------klass------------------------------------------
  4630 // Return the defining klass for this class
  4631 ciKlass* TypeAryPtr::klass() const {
  4632   if( _klass ) return _klass;   // Return cached value, if possible
  4634   // Oops, need to compute _klass and cache it
  4635   ciKlass* k_ary = compute_klass();
  4637   if( this != TypeAryPtr::OOPS && this->dual() != TypeAryPtr::OOPS ) {
  4638     // The _klass field acts as a cache of the underlying
  4639     // ciKlass for this array type.  In order to set the field,
  4640     // we need to cast away const-ness.
  4641     //
  4642     // IMPORTANT NOTE: we *never* set the _klass field for the
  4643     // type TypeAryPtr::OOPS.  This Type is shared between all
  4644     // active compilations.  However, the ciKlass which represents
  4645     // this Type is *not* shared between compilations, so caching
  4646     // this value would result in fetching a dangling pointer.
  4647     //
  4648     // Recomputing the underlying ciKlass for each request is
  4649     // a bit less efficient than caching, but calls to
  4650     // TypeAryPtr::OOPS->klass() are not common enough to matter.
  4651     ((TypeAryPtr*)this)->_klass = k_ary;
  4652     if (UseCompressedOops && k_ary != NULL && k_ary->is_obj_array_klass() &&
  4653         _offset != 0 && _offset != arrayOopDesc::length_offset_in_bytes()) {
  4654       ((TypeAryPtr*)this)->_is_ptr_to_narrowoop = true;
  4657   return k_ary;
  4661 //------------------------------add_offset-------------------------------------
  4662 // Access internals of klass object
  4663 const TypePtr *TypeKlassPtr::add_offset( intptr_t offset ) const {
  4664   return make( _ptr, klass(), xadd_offset(offset) );
  4667 //------------------------------cast_to_ptr_type-------------------------------
  4668 const Type *TypeKlassPtr::cast_to_ptr_type(PTR ptr) const {
  4669   assert(_base == KlassPtr, "subclass must override cast_to_ptr_type");
  4670   if( ptr == _ptr ) return this;
  4671   return make(ptr, _klass, _offset);
  4675 //-----------------------------cast_to_exactness-------------------------------
  4676 const Type *TypeKlassPtr::cast_to_exactness(bool klass_is_exact) const {
  4677   if( klass_is_exact == _klass_is_exact ) return this;
  4678   if (!UseExactTypes)  return this;
  4679   return make(klass_is_exact ? Constant : NotNull, _klass, _offset);
  4683 //-----------------------------as_instance_type--------------------------------
  4684 // Corresponding type for an instance of the given class.
  4685 // It will be NotNull, and exact if and only if the klass type is exact.
  4686 const TypeOopPtr* TypeKlassPtr::as_instance_type() const {
  4687   ciKlass* k = klass();
  4688   bool    xk = klass_is_exact();
  4689   //return TypeInstPtr::make(TypePtr::NotNull, k, xk, NULL, 0);
  4690   const TypeOopPtr* toop = TypeOopPtr::make_from_klass_raw(k);
  4691   guarantee(toop != NULL, "need type for given klass");
  4692   toop = toop->cast_to_ptr_type(TypePtr::NotNull)->is_oopptr();
  4693   return toop->cast_to_exactness(xk)->is_oopptr();
  4697 //------------------------------xmeet------------------------------------------
  4698 // Compute the MEET of two types, return a new Type object.
  4699 const Type    *TypeKlassPtr::xmeet( const Type *t ) const {
  4700   // Perform a fast test for common case; meeting the same types together.
  4701   if( this == t ) return this;  // Meeting same type-rep?
  4703   // Current "this->_base" is Pointer
  4704   switch (t->base()) {          // switch on original type
  4706   case Int:                     // Mixing ints & oops happens when javac
  4707   case Long:                    // reuses local variables
  4708   case FloatTop:
  4709   case FloatCon:
  4710   case FloatBot:
  4711   case DoubleTop:
  4712   case DoubleCon:
  4713   case DoubleBot:
  4714   case NarrowOop:
  4715   case NarrowKlass:
  4716   case Bottom:                  // Ye Olde Default
  4717     return Type::BOTTOM;
  4718   case Top:
  4719     return this;
  4721   default:                      // All else is a mistake
  4722     typerr(t);
  4724   case AnyPtr: {                // Meeting to AnyPtrs
  4725     // Found an AnyPtr type vs self-KlassPtr type
  4726     const TypePtr *tp = t->is_ptr();
  4727     int offset = meet_offset(tp->offset());
  4728     PTR ptr = meet_ptr(tp->ptr());
  4729     switch (tp->ptr()) {
  4730     case TopPTR:
  4731       return this;
  4732     case Null:
  4733       if( ptr == Null ) return TypePtr::make( AnyPtr, ptr, offset );
  4734     case AnyNull:
  4735       return make( ptr, klass(), offset );
  4736     case BotPTR:
  4737     case NotNull:
  4738       return TypePtr::make(AnyPtr, ptr, offset);
  4739     default: typerr(t);
  4743   case RawPtr:
  4744   case MetadataPtr:
  4745   case OopPtr:
  4746   case AryPtr:                  // Meet with AryPtr
  4747   case InstPtr:                 // Meet with InstPtr
  4748     return TypePtr::BOTTOM;
  4750   //
  4751   //             A-top         }
  4752   //           /   |   \       }  Tops
  4753   //       B-top A-any C-top   }
  4754   //          | /  |  \ |      }  Any-nulls
  4755   //       B-any   |   C-any   }
  4756   //          |    |    |
  4757   //       B-con A-con C-con   } constants; not comparable across classes
  4758   //          |    |    |
  4759   //       B-not   |   C-not   }
  4760   //          | \  |  / |      }  not-nulls
  4761   //       B-bot A-not C-bot   }
  4762   //           \   |   /       }  Bottoms
  4763   //             A-bot         }
  4764   //
  4766   case KlassPtr: {  // Meet two KlassPtr types
  4767     const TypeKlassPtr *tkls = t->is_klassptr();
  4768     int  off     = meet_offset(tkls->offset());
  4769     PTR  ptr     = meet_ptr(tkls->ptr());
  4771     // Check for easy case; klasses are equal (and perhaps not loaded!)
  4772     // If we have constants, then we created oops so classes are loaded
  4773     // and we can handle the constants further down.  This case handles
  4774     // not-loaded classes
  4775     if( ptr != Constant && tkls->klass()->equals(klass()) ) {
  4776       return make( ptr, klass(), off );
  4779     // Classes require inspection in the Java klass hierarchy.  Must be loaded.
  4780     ciKlass* tkls_klass = tkls->klass();
  4781     ciKlass* this_klass = this->klass();
  4782     assert( tkls_klass->is_loaded(), "This class should have been loaded.");
  4783     assert( this_klass->is_loaded(), "This class should have been loaded.");
  4785     // If 'this' type is above the centerline and is a superclass of the
  4786     // other, we can treat 'this' as having the same type as the other.
  4787     if ((above_centerline(this->ptr())) &&
  4788         tkls_klass->is_subtype_of(this_klass)) {
  4789       this_klass = tkls_klass;
  4791     // If 'tinst' type is above the centerline and is a superclass of the
  4792     // other, we can treat 'tinst' as having the same type as the other.
  4793     if ((above_centerline(tkls->ptr())) &&
  4794         this_klass->is_subtype_of(tkls_klass)) {
  4795       tkls_klass = this_klass;
  4798     // Check for classes now being equal
  4799     if (tkls_klass->equals(this_klass)) {
  4800       // If the klasses are equal, the constants may still differ.  Fall to
  4801       // NotNull if they do (neither constant is NULL; that is a special case
  4802       // handled elsewhere).
  4803       if( ptr == Constant ) {
  4804         if (this->_ptr == Constant && tkls->_ptr == Constant &&
  4805             this->klass()->equals(tkls->klass()));
  4806         else if (above_centerline(this->ptr()));
  4807         else if (above_centerline(tkls->ptr()));
  4808         else
  4809           ptr = NotNull;
  4811       return make( ptr, this_klass, off );
  4812     } // Else classes are not equal
  4814     // Since klasses are different, we require the LCA in the Java
  4815     // class hierarchy - which means we have to fall to at least NotNull.
  4816     if( ptr == TopPTR || ptr == AnyNull || ptr == Constant )
  4817       ptr = NotNull;
  4818     // Now we find the LCA of Java classes
  4819     ciKlass* k = this_klass->least_common_ancestor(tkls_klass);
  4820     return   make( ptr, k, off );
  4821   } // End of case KlassPtr
  4823   } // End of switch
  4824   return this;                  // Return the double constant
  4827 //------------------------------xdual------------------------------------------
  4828 // Dual: compute field-by-field dual
  4829 const Type    *TypeKlassPtr::xdual() const {
  4830   return new TypeKlassPtr( dual_ptr(), klass(), dual_offset() );
  4833 //------------------------------get_con----------------------------------------
  4834 intptr_t TypeKlassPtr::get_con() const {
  4835   assert( _ptr == Null || _ptr == Constant, "" );
  4836   assert( _offset >= 0, "" );
  4838   if (_offset != 0) {
  4839     // After being ported to the compiler interface, the compiler no longer
  4840     // directly manipulates the addresses of oops.  Rather, it only has a pointer
  4841     // to a handle at compile time.  This handle is embedded in the generated
  4842     // code and dereferenced at the time the nmethod is made.  Until that time,
  4843     // it is not reasonable to do arithmetic with the addresses of oops (we don't
  4844     // have access to the addresses!).  This does not seem to currently happen,
  4845     // but this assertion here is to help prevent its occurence.
  4846     tty->print_cr("Found oop constant with non-zero offset");
  4847     ShouldNotReachHere();
  4850   return (intptr_t)klass()->constant_encoding();
  4852 //------------------------------dump2------------------------------------------
  4853 // Dump Klass Type
  4854 #ifndef PRODUCT
  4855 void TypeKlassPtr::dump2( Dict & d, uint depth, outputStream *st ) const {
  4856   switch( _ptr ) {
  4857   case Constant:
  4858     st->print("precise ");
  4859   case NotNull:
  4861       const char *name = klass()->name()->as_utf8();
  4862       if( name ) {
  4863         st->print("klass %s: " INTPTR_FORMAT, name, klass());
  4864       } else {
  4865         ShouldNotReachHere();
  4868   case BotPTR:
  4869     if( !WizardMode && !Verbose && !_klass_is_exact ) break;
  4870   case TopPTR:
  4871   case AnyNull:
  4872     st->print(":%s", ptr_msg[_ptr]);
  4873     if( _klass_is_exact ) st->print(":exact");
  4874     break;
  4877   if( _offset ) {               // Dump offset, if any
  4878     if( _offset == OffsetBot )      { st->print("+any"); }
  4879     else if( _offset == OffsetTop ) { st->print("+unknown"); }
  4880     else                            { st->print("+%d", _offset); }
  4883   st->print(" *");
  4885 #endif
  4889 //=============================================================================
  4890 // Convenience common pre-built types.
  4892 //------------------------------make-------------------------------------------
  4893 const TypeFunc *TypeFunc::make( const TypeTuple *domain, const TypeTuple *range ) {
  4894   return (TypeFunc*)(new TypeFunc(domain,range))->hashcons();
  4897 //------------------------------make-------------------------------------------
  4898 const TypeFunc *TypeFunc::make(ciMethod* method) {
  4899   Compile* C = Compile::current();
  4900   const TypeFunc* tf = C->last_tf(method); // check cache
  4901   if (tf != NULL)  return tf;  // The hit rate here is almost 50%.
  4902   const TypeTuple *domain;
  4903   if (method->is_static()) {
  4904     domain = TypeTuple::make_domain(NULL, method->signature());
  4905   } else {
  4906     domain = TypeTuple::make_domain(method->holder(), method->signature());
  4908   const TypeTuple *range  = TypeTuple::make_range(method->signature());
  4909   tf = TypeFunc::make(domain, range);
  4910   C->set_last_tf(method, tf);  // fill cache
  4911   return tf;
  4914 //------------------------------meet-------------------------------------------
  4915 // Compute the MEET of two types.  It returns a new Type object.
  4916 const Type *TypeFunc::xmeet( const Type *t ) const {
  4917   // Perform a fast test for common case; meeting the same types together.
  4918   if( this == t ) return this;  // Meeting same type-rep?
  4920   // Current "this->_base" is Func
  4921   switch (t->base()) {          // switch on original type
  4923   case Bottom:                  // Ye Olde Default
  4924     return t;
  4926   default:                      // All else is a mistake
  4927     typerr(t);
  4929   case Top:
  4930     break;
  4932   return this;                  // Return the double constant
  4935 //------------------------------xdual------------------------------------------
  4936 // Dual: compute field-by-field dual
  4937 const Type *TypeFunc::xdual() const {
  4938   return this;
  4941 //------------------------------eq---------------------------------------------
  4942 // Structural equality check for Type representations
  4943 bool TypeFunc::eq( const Type *t ) const {
  4944   const TypeFunc *a = (const TypeFunc*)t;
  4945   return _domain == a->_domain &&
  4946     _range == a->_range;
  4949 //------------------------------hash-------------------------------------------
  4950 // Type-specific hashing function.
  4951 int TypeFunc::hash(void) const {
  4952   return (intptr_t)_domain + (intptr_t)_range;
  4955 //------------------------------dump2------------------------------------------
  4956 // Dump Function Type
  4957 #ifndef PRODUCT
  4958 void TypeFunc::dump2( Dict &d, uint depth, outputStream *st ) const {
  4959   if( _range->_cnt <= Parms )
  4960     st->print("void");
  4961   else {
  4962     uint i;
  4963     for (i = Parms; i < _range->_cnt-1; i++) {
  4964       _range->field_at(i)->dump2(d,depth,st);
  4965       st->print("/");
  4967     _range->field_at(i)->dump2(d,depth,st);
  4969   st->print(" ");
  4970   st->print("( ");
  4971   if( !depth || d[this] ) {     // Check for recursive dump
  4972     st->print("...)");
  4973     return;
  4975   d.Insert((void*)this,(void*)this);    // Stop recursion
  4976   if (Parms < _domain->_cnt)
  4977     _domain->field_at(Parms)->dump2(d,depth-1,st);
  4978   for (uint i = Parms+1; i < _domain->_cnt; i++) {
  4979     st->print(", ");
  4980     _domain->field_at(i)->dump2(d,depth-1,st);
  4982   st->print(" )");
  4984 #endif
  4986 //------------------------------singleton--------------------------------------
  4987 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
  4988 // constants (Ldi nodes).  Singletons are integer, float or double constants
  4989 // or a single symbol.
  4990 bool TypeFunc::singleton(void) const {
  4991   return false;                 // Never a singleton
  4994 bool TypeFunc::empty(void) const {
  4995   return false;                 // Never empty
  4999 BasicType TypeFunc::return_type() const{
  5000   if (range()->cnt() == TypeFunc::Parms) {
  5001     return T_VOID;
  5003   return range()->field_at(TypeFunc::Parms)->basic_type();

mercurial