src/share/vm/gc_implementation/g1/concurrentMark.cpp

Tue, 19 Aug 2014 12:39:06 +0200

author
brutisso
date
Tue, 19 Aug 2014 12:39:06 +0200
changeset 7049
eec72fa4b108
parent 7024
bfba6779654b
child 7050
6701abbc4441
permissions
-rw-r--r--

8040722: G1: Clean up usages of heap_region_containing
Reviewed-by: tschatzl, jmasa

     1 /*
     2  * Copyright (c) 2001, 2014, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "classfile/symbolTable.hpp"
    27 #include "code/codeCache.hpp"
    28 #include "gc_implementation/g1/concurrentMark.inline.hpp"
    29 #include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
    30 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
    31 #include "gc_implementation/g1/g1CollectorPolicy.hpp"
    32 #include "gc_implementation/g1/g1ErgoVerbose.hpp"
    33 #include "gc_implementation/g1/g1Log.hpp"
    34 #include "gc_implementation/g1/g1OopClosures.inline.hpp"
    35 #include "gc_implementation/g1/g1RemSet.hpp"
    36 #include "gc_implementation/g1/heapRegion.inline.hpp"
    37 #include "gc_implementation/g1/heapRegionRemSet.hpp"
    38 #include "gc_implementation/g1/heapRegionSeq.inline.hpp"
    39 #include "gc_implementation/shared/vmGCOperations.hpp"
    40 #include "gc_implementation/shared/gcTimer.hpp"
    41 #include "gc_implementation/shared/gcTrace.hpp"
    42 #include "gc_implementation/shared/gcTraceTime.hpp"
    43 #include "memory/allocation.hpp"
    44 #include "memory/genOopClosures.inline.hpp"
    45 #include "memory/referencePolicy.hpp"
    46 #include "memory/resourceArea.hpp"
    47 #include "oops/oop.inline.hpp"
    48 #include "runtime/handles.inline.hpp"
    49 #include "runtime/java.hpp"
    50 #include "runtime/prefetch.inline.hpp"
    51 #include "services/memTracker.hpp"
    53 // Concurrent marking bit map wrapper
    55 CMBitMapRO::CMBitMapRO(int shifter) :
    56   _bm(),
    57   _shifter(shifter) {
    58   _bmStartWord = 0;
    59   _bmWordSize = 0;
    60 }
    62 HeapWord* CMBitMapRO::getNextMarkedWordAddress(const HeapWord* addr,
    63                                                const HeapWord* limit) const {
    64   // First we must round addr *up* to a possible object boundary.
    65   addr = (HeapWord*)align_size_up((intptr_t)addr,
    66                                   HeapWordSize << _shifter);
    67   size_t addrOffset = heapWordToOffset(addr);
    68   if (limit == NULL) {
    69     limit = _bmStartWord + _bmWordSize;
    70   }
    71   size_t limitOffset = heapWordToOffset(limit);
    72   size_t nextOffset = _bm.get_next_one_offset(addrOffset, limitOffset);
    73   HeapWord* nextAddr = offsetToHeapWord(nextOffset);
    74   assert(nextAddr >= addr, "get_next_one postcondition");
    75   assert(nextAddr == limit || isMarked(nextAddr),
    76          "get_next_one postcondition");
    77   return nextAddr;
    78 }
    80 HeapWord* CMBitMapRO::getNextUnmarkedWordAddress(const HeapWord* addr,
    81                                                  const HeapWord* limit) const {
    82   size_t addrOffset = heapWordToOffset(addr);
    83   if (limit == NULL) {
    84     limit = _bmStartWord + _bmWordSize;
    85   }
    86   size_t limitOffset = heapWordToOffset(limit);
    87   size_t nextOffset = _bm.get_next_zero_offset(addrOffset, limitOffset);
    88   HeapWord* nextAddr = offsetToHeapWord(nextOffset);
    89   assert(nextAddr >= addr, "get_next_one postcondition");
    90   assert(nextAddr == limit || !isMarked(nextAddr),
    91          "get_next_one postcondition");
    92   return nextAddr;
    93 }
    95 int CMBitMapRO::heapWordDiffToOffsetDiff(size_t diff) const {
    96   assert((diff & ((1 << _shifter) - 1)) == 0, "argument check");
    97   return (int) (diff >> _shifter);
    98 }
   100 #ifndef PRODUCT
   101 bool CMBitMapRO::covers(ReservedSpace heap_rs) const {
   102   // assert(_bm.map() == _virtual_space.low(), "map inconsistency");
   103   assert(((size_t)_bm.size() * ((size_t)1 << _shifter)) == _bmWordSize,
   104          "size inconsistency");
   105   return _bmStartWord == (HeapWord*)(heap_rs.base()) &&
   106          _bmWordSize  == heap_rs.size()>>LogHeapWordSize;
   107 }
   108 #endif
   110 void CMBitMapRO::print_on_error(outputStream* st, const char* prefix) const {
   111   _bm.print_on_error(st, prefix);
   112 }
   114 bool CMBitMap::allocate(ReservedSpace heap_rs) {
   115   _bmStartWord = (HeapWord*)(heap_rs.base());
   116   _bmWordSize  = heap_rs.size()/HeapWordSize;    // heap_rs.size() is in bytes
   117   ReservedSpace brs(ReservedSpace::allocation_align_size_up(
   118                      (_bmWordSize >> (_shifter + LogBitsPerByte)) + 1));
   119   if (!brs.is_reserved()) {
   120     warning("ConcurrentMark marking bit map allocation failure");
   121     return false;
   122   }
   123   MemTracker::record_virtual_memory_type((address)brs.base(), mtGC);
   124   // For now we'll just commit all of the bit map up front.
   125   // Later on we'll try to be more parsimonious with swap.
   126   if (!_virtual_space.initialize(brs, brs.size())) {
   127     warning("ConcurrentMark marking bit map backing store failure");
   128     return false;
   129   }
   130   assert(_virtual_space.committed_size() == brs.size(),
   131          "didn't reserve backing store for all of concurrent marking bit map?");
   132   _bm.set_map((BitMap::bm_word_t*)_virtual_space.low());
   133   assert(_virtual_space.committed_size() << (_shifter + LogBitsPerByte) >=
   134          _bmWordSize, "inconsistency in bit map sizing");
   135   _bm.set_size(_bmWordSize >> _shifter);
   136   return true;
   137 }
   139 void CMBitMap::clearAll() {
   140   _bm.clear();
   141   return;
   142 }
   144 void CMBitMap::markRange(MemRegion mr) {
   145   mr.intersection(MemRegion(_bmStartWord, _bmWordSize));
   146   assert(!mr.is_empty(), "unexpected empty region");
   147   assert((offsetToHeapWord(heapWordToOffset(mr.end())) ==
   148           ((HeapWord *) mr.end())),
   149          "markRange memory region end is not card aligned");
   150   // convert address range into offset range
   151   _bm.at_put_range(heapWordToOffset(mr.start()),
   152                    heapWordToOffset(mr.end()), true);
   153 }
   155 void CMBitMap::clearRange(MemRegion mr) {
   156   mr.intersection(MemRegion(_bmStartWord, _bmWordSize));
   157   assert(!mr.is_empty(), "unexpected empty region");
   158   // convert address range into offset range
   159   _bm.at_put_range(heapWordToOffset(mr.start()),
   160                    heapWordToOffset(mr.end()), false);
   161 }
   163 MemRegion CMBitMap::getAndClearMarkedRegion(HeapWord* addr,
   164                                             HeapWord* end_addr) {
   165   HeapWord* start = getNextMarkedWordAddress(addr);
   166   start = MIN2(start, end_addr);
   167   HeapWord* end   = getNextUnmarkedWordAddress(start);
   168   end = MIN2(end, end_addr);
   169   assert(start <= end, "Consistency check");
   170   MemRegion mr(start, end);
   171   if (!mr.is_empty()) {
   172     clearRange(mr);
   173   }
   174   return mr;
   175 }
   177 CMMarkStack::CMMarkStack(ConcurrentMark* cm) :
   178   _base(NULL), _cm(cm)
   179 #ifdef ASSERT
   180   , _drain_in_progress(false)
   181   , _drain_in_progress_yields(false)
   182 #endif
   183 {}
   185 bool CMMarkStack::allocate(size_t capacity) {
   186   // allocate a stack of the requisite depth
   187   ReservedSpace rs(ReservedSpace::allocation_align_size_up(capacity * sizeof(oop)));
   188   if (!rs.is_reserved()) {
   189     warning("ConcurrentMark MarkStack allocation failure");
   190     return false;
   191   }
   192   MemTracker::record_virtual_memory_type((address)rs.base(), mtGC);
   193   if (!_virtual_space.initialize(rs, rs.size())) {
   194     warning("ConcurrentMark MarkStack backing store failure");
   195     // Release the virtual memory reserved for the marking stack
   196     rs.release();
   197     return false;
   198   }
   199   assert(_virtual_space.committed_size() == rs.size(),
   200          "Didn't reserve backing store for all of ConcurrentMark stack?");
   201   _base = (oop*) _virtual_space.low();
   202   setEmpty();
   203   _capacity = (jint) capacity;
   204   _saved_index = -1;
   205   _should_expand = false;
   206   NOT_PRODUCT(_max_depth = 0);
   207   return true;
   208 }
   210 void CMMarkStack::expand() {
   211   // Called, during remark, if we've overflown the marking stack during marking.
   212   assert(isEmpty(), "stack should been emptied while handling overflow");
   213   assert(_capacity <= (jint) MarkStackSizeMax, "stack bigger than permitted");
   214   // Clear expansion flag
   215   _should_expand = false;
   216   if (_capacity == (jint) MarkStackSizeMax) {
   217     if (PrintGCDetails && Verbose) {
   218       gclog_or_tty->print_cr(" (benign) Can't expand marking stack capacity, at max size limit");
   219     }
   220     return;
   221   }
   222   // Double capacity if possible
   223   jint new_capacity = MIN2(_capacity*2, (jint) MarkStackSizeMax);
   224   // Do not give up existing stack until we have managed to
   225   // get the double capacity that we desired.
   226   ReservedSpace rs(ReservedSpace::allocation_align_size_up(new_capacity *
   227                                                            sizeof(oop)));
   228   if (rs.is_reserved()) {
   229     // Release the backing store associated with old stack
   230     _virtual_space.release();
   231     // Reinitialize virtual space for new stack
   232     if (!_virtual_space.initialize(rs, rs.size())) {
   233       fatal("Not enough swap for expanded marking stack capacity");
   234     }
   235     _base = (oop*)(_virtual_space.low());
   236     _index = 0;
   237     _capacity = new_capacity;
   238   } else {
   239     if (PrintGCDetails && Verbose) {
   240       // Failed to double capacity, continue;
   241       gclog_or_tty->print(" (benign) Failed to expand marking stack capacity from "
   242                           SIZE_FORMAT"K to " SIZE_FORMAT"K",
   243                           _capacity / K, new_capacity / K);
   244     }
   245   }
   246 }
   248 void CMMarkStack::set_should_expand() {
   249   // If we're resetting the marking state because of an
   250   // marking stack overflow, record that we should, if
   251   // possible, expand the stack.
   252   _should_expand = _cm->has_overflown();
   253 }
   255 CMMarkStack::~CMMarkStack() {
   256   if (_base != NULL) {
   257     _base = NULL;
   258     _virtual_space.release();
   259   }
   260 }
   262 void CMMarkStack::par_push(oop ptr) {
   263   while (true) {
   264     if (isFull()) {
   265       _overflow = true;
   266       return;
   267     }
   268     // Otherwise...
   269     jint index = _index;
   270     jint next_index = index+1;
   271     jint res = Atomic::cmpxchg(next_index, &_index, index);
   272     if (res == index) {
   273       _base[index] = ptr;
   274       // Note that we don't maintain this atomically.  We could, but it
   275       // doesn't seem necessary.
   276       NOT_PRODUCT(_max_depth = MAX2(_max_depth, next_index));
   277       return;
   278     }
   279     // Otherwise, we need to try again.
   280   }
   281 }
   283 void CMMarkStack::par_adjoin_arr(oop* ptr_arr, int n) {
   284   while (true) {
   285     if (isFull()) {
   286       _overflow = true;
   287       return;
   288     }
   289     // Otherwise...
   290     jint index = _index;
   291     jint next_index = index + n;
   292     if (next_index > _capacity) {
   293       _overflow = true;
   294       return;
   295     }
   296     jint res = Atomic::cmpxchg(next_index, &_index, index);
   297     if (res == index) {
   298       for (int i = 0; i < n; i++) {
   299         int  ind = index + i;
   300         assert(ind < _capacity, "By overflow test above.");
   301         _base[ind] = ptr_arr[i];
   302       }
   303       NOT_PRODUCT(_max_depth = MAX2(_max_depth, next_index));
   304       return;
   305     }
   306     // Otherwise, we need to try again.
   307   }
   308 }
   310 void CMMarkStack::par_push_arr(oop* ptr_arr, int n) {
   311   MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
   312   jint start = _index;
   313   jint next_index = start + n;
   314   if (next_index > _capacity) {
   315     _overflow = true;
   316     return;
   317   }
   318   // Otherwise.
   319   _index = next_index;
   320   for (int i = 0; i < n; i++) {
   321     int ind = start + i;
   322     assert(ind < _capacity, "By overflow test above.");
   323     _base[ind] = ptr_arr[i];
   324   }
   325   NOT_PRODUCT(_max_depth = MAX2(_max_depth, next_index));
   326 }
   328 bool CMMarkStack::par_pop_arr(oop* ptr_arr, int max, int* n) {
   329   MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
   330   jint index = _index;
   331   if (index == 0) {
   332     *n = 0;
   333     return false;
   334   } else {
   335     int k = MIN2(max, index);
   336     jint  new_ind = index - k;
   337     for (int j = 0; j < k; j++) {
   338       ptr_arr[j] = _base[new_ind + j];
   339     }
   340     _index = new_ind;
   341     *n = k;
   342     return true;
   343   }
   344 }
   346 template<class OopClosureClass>
   347 bool CMMarkStack::drain(OopClosureClass* cl, CMBitMap* bm, bool yield_after) {
   348   assert(!_drain_in_progress || !_drain_in_progress_yields || yield_after
   349          || SafepointSynchronize::is_at_safepoint(),
   350          "Drain recursion must be yield-safe.");
   351   bool res = true;
   352   debug_only(_drain_in_progress = true);
   353   debug_only(_drain_in_progress_yields = yield_after);
   354   while (!isEmpty()) {
   355     oop newOop = pop();
   356     assert(G1CollectedHeap::heap()->is_in_reserved(newOop), "Bad pop");
   357     assert(newOop->is_oop(), "Expected an oop");
   358     assert(bm == NULL || bm->isMarked((HeapWord*)newOop),
   359            "only grey objects on this stack");
   360     newOop->oop_iterate(cl);
   361     if (yield_after && _cm->do_yield_check()) {
   362       res = false;
   363       break;
   364     }
   365   }
   366   debug_only(_drain_in_progress = false);
   367   return res;
   368 }
   370 void CMMarkStack::note_start_of_gc() {
   371   assert(_saved_index == -1,
   372          "note_start_of_gc()/end_of_gc() bracketed incorrectly");
   373   _saved_index = _index;
   374 }
   376 void CMMarkStack::note_end_of_gc() {
   377   // This is intentionally a guarantee, instead of an assert. If we
   378   // accidentally add something to the mark stack during GC, it
   379   // will be a correctness issue so it's better if we crash. we'll
   380   // only check this once per GC anyway, so it won't be a performance
   381   // issue in any way.
   382   guarantee(_saved_index == _index,
   383             err_msg("saved index: %d index: %d", _saved_index, _index));
   384   _saved_index = -1;
   385 }
   387 void CMMarkStack::oops_do(OopClosure* f) {
   388   assert(_saved_index == _index,
   389          err_msg("saved index: %d index: %d", _saved_index, _index));
   390   for (int i = 0; i < _index; i += 1) {
   391     f->do_oop(&_base[i]);
   392   }
   393 }
   395 bool ConcurrentMark::not_yet_marked(oop obj) const {
   396   return _g1h->is_obj_ill(obj);
   397 }
   399 CMRootRegions::CMRootRegions() :
   400   _young_list(NULL), _cm(NULL), _scan_in_progress(false),
   401   _should_abort(false),  _next_survivor(NULL) { }
   403 void CMRootRegions::init(G1CollectedHeap* g1h, ConcurrentMark* cm) {
   404   _young_list = g1h->young_list();
   405   _cm = cm;
   406 }
   408 void CMRootRegions::prepare_for_scan() {
   409   assert(!scan_in_progress(), "pre-condition");
   411   // Currently, only survivors can be root regions.
   412   assert(_next_survivor == NULL, "pre-condition");
   413   _next_survivor = _young_list->first_survivor_region();
   414   _scan_in_progress = (_next_survivor != NULL);
   415   _should_abort = false;
   416 }
   418 HeapRegion* CMRootRegions::claim_next() {
   419   if (_should_abort) {
   420     // If someone has set the should_abort flag, we return NULL to
   421     // force the caller to bail out of their loop.
   422     return NULL;
   423   }
   425   // Currently, only survivors can be root regions.
   426   HeapRegion* res = _next_survivor;
   427   if (res != NULL) {
   428     MutexLockerEx x(RootRegionScan_lock, Mutex::_no_safepoint_check_flag);
   429     // Read it again in case it changed while we were waiting for the lock.
   430     res = _next_survivor;
   431     if (res != NULL) {
   432       if (res == _young_list->last_survivor_region()) {
   433         // We just claimed the last survivor so store NULL to indicate
   434         // that we're done.
   435         _next_survivor = NULL;
   436       } else {
   437         _next_survivor = res->get_next_young_region();
   438       }
   439     } else {
   440       // Someone else claimed the last survivor while we were trying
   441       // to take the lock so nothing else to do.
   442     }
   443   }
   444   assert(res == NULL || res->is_survivor(), "post-condition");
   446   return res;
   447 }
   449 void CMRootRegions::scan_finished() {
   450   assert(scan_in_progress(), "pre-condition");
   452   // Currently, only survivors can be root regions.
   453   if (!_should_abort) {
   454     assert(_next_survivor == NULL, "we should have claimed all survivors");
   455   }
   456   _next_survivor = NULL;
   458   {
   459     MutexLockerEx x(RootRegionScan_lock, Mutex::_no_safepoint_check_flag);
   460     _scan_in_progress = false;
   461     RootRegionScan_lock->notify_all();
   462   }
   463 }
   465 bool CMRootRegions::wait_until_scan_finished() {
   466   if (!scan_in_progress()) return false;
   468   {
   469     MutexLockerEx x(RootRegionScan_lock, Mutex::_no_safepoint_check_flag);
   470     while (scan_in_progress()) {
   471       RootRegionScan_lock->wait(Mutex::_no_safepoint_check_flag);
   472     }
   473   }
   474   return true;
   475 }
   477 #ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
   478 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
   479 #endif // _MSC_VER
   481 uint ConcurrentMark::scale_parallel_threads(uint n_par_threads) {
   482   return MAX2((n_par_threads + 2) / 4, 1U);
   483 }
   485 ConcurrentMark::ConcurrentMark(G1CollectedHeap* g1h, ReservedSpace heap_rs) :
   486   _g1h(g1h),
   487   _markBitMap1(log2_intptr(MinObjAlignment)),
   488   _markBitMap2(log2_intptr(MinObjAlignment)),
   489   _parallel_marking_threads(0),
   490   _max_parallel_marking_threads(0),
   491   _sleep_factor(0.0),
   492   _marking_task_overhead(1.0),
   493   _cleanup_sleep_factor(0.0),
   494   _cleanup_task_overhead(1.0),
   495   _cleanup_list("Cleanup List"),
   496   _region_bm((BitMap::idx_t)(g1h->max_regions()), false /* in_resource_area*/),
   497   _card_bm((heap_rs.size() + CardTableModRefBS::card_size - 1) >>
   498             CardTableModRefBS::card_shift,
   499             false /* in_resource_area*/),
   501   _prevMarkBitMap(&_markBitMap1),
   502   _nextMarkBitMap(&_markBitMap2),
   504   _markStack(this),
   505   // _finger set in set_non_marking_state
   507   _max_worker_id(MAX2((uint)ParallelGCThreads, 1U)),
   508   // _active_tasks set in set_non_marking_state
   509   // _tasks set inside the constructor
   510   _task_queues(new CMTaskQueueSet((int) _max_worker_id)),
   511   _terminator(ParallelTaskTerminator((int) _max_worker_id, _task_queues)),
   513   _has_overflown(false),
   514   _concurrent(false),
   515   _has_aborted(false),
   516   _aborted_gc_id(GCId::undefined()),
   517   _restart_for_overflow(false),
   518   _concurrent_marking_in_progress(false),
   520   // _verbose_level set below
   522   _init_times(),
   523   _remark_times(), _remark_mark_times(), _remark_weak_ref_times(),
   524   _cleanup_times(),
   525   _total_counting_time(0.0),
   526   _total_rs_scrub_time(0.0),
   528   _parallel_workers(NULL),
   530   _count_card_bitmaps(NULL),
   531   _count_marked_bytes(NULL),
   532   _completed_initialization(false) {
   533   CMVerboseLevel verbose_level = (CMVerboseLevel) G1MarkingVerboseLevel;
   534   if (verbose_level < no_verbose) {
   535     verbose_level = no_verbose;
   536   }
   537   if (verbose_level > high_verbose) {
   538     verbose_level = high_verbose;
   539   }
   540   _verbose_level = verbose_level;
   542   if (verbose_low()) {
   543     gclog_or_tty->print_cr("[global] init, heap start = "PTR_FORMAT", "
   544                            "heap end = " INTPTR_FORMAT, p2i(_heap_start), p2i(_heap_end));
   545   }
   547   if (!_markBitMap1.allocate(heap_rs)) {
   548     warning("Failed to allocate first CM bit map");
   549     return;
   550   }
   551   if (!_markBitMap2.allocate(heap_rs)) {
   552     warning("Failed to allocate second CM bit map");
   553     return;
   554   }
   556   // Create & start a ConcurrentMark thread.
   557   _cmThread = new ConcurrentMarkThread(this);
   558   assert(cmThread() != NULL, "CM Thread should have been created");
   559   assert(cmThread()->cm() != NULL, "CM Thread should refer to this cm");
   560   if (_cmThread->osthread() == NULL) {
   561       vm_shutdown_during_initialization("Could not create ConcurrentMarkThread");
   562   }
   564   assert(CGC_lock != NULL, "Where's the CGC_lock?");
   565   assert(_markBitMap1.covers(heap_rs), "_markBitMap1 inconsistency");
   566   assert(_markBitMap2.covers(heap_rs), "_markBitMap2 inconsistency");
   568   SATBMarkQueueSet& satb_qs = JavaThread::satb_mark_queue_set();
   569   satb_qs.set_buffer_size(G1SATBBufferSize);
   571   _root_regions.init(_g1h, this);
   573   if (ConcGCThreads > ParallelGCThreads) {
   574     warning("Can't have more ConcGCThreads (" UINTX_FORMAT ") "
   575             "than ParallelGCThreads (" UINTX_FORMAT ").",
   576             ConcGCThreads, ParallelGCThreads);
   577     return;
   578   }
   579   if (ParallelGCThreads == 0) {
   580     // if we are not running with any parallel GC threads we will not
   581     // spawn any marking threads either
   582     _parallel_marking_threads =       0;
   583     _max_parallel_marking_threads =   0;
   584     _sleep_factor             =     0.0;
   585     _marking_task_overhead    =     1.0;
   586   } else {
   587     if (!FLAG_IS_DEFAULT(ConcGCThreads) && ConcGCThreads > 0) {
   588       // Note: ConcGCThreads has precedence over G1MarkingOverheadPercent
   589       // if both are set
   590       _sleep_factor             = 0.0;
   591       _marking_task_overhead    = 1.0;
   592     } else if (G1MarkingOverheadPercent > 0) {
   593       // We will calculate the number of parallel marking threads based
   594       // on a target overhead with respect to the soft real-time goal
   595       double marking_overhead = (double) G1MarkingOverheadPercent / 100.0;
   596       double overall_cm_overhead =
   597         (double) MaxGCPauseMillis * marking_overhead /
   598         (double) GCPauseIntervalMillis;
   599       double cpu_ratio = 1.0 / (double) os::processor_count();
   600       double marking_thread_num = ceil(overall_cm_overhead / cpu_ratio);
   601       double marking_task_overhead =
   602         overall_cm_overhead / marking_thread_num *
   603                                                 (double) os::processor_count();
   604       double sleep_factor =
   605                          (1.0 - marking_task_overhead) / marking_task_overhead;
   607       FLAG_SET_ERGO(uintx, ConcGCThreads, (uint) marking_thread_num);
   608       _sleep_factor             = sleep_factor;
   609       _marking_task_overhead    = marking_task_overhead;
   610     } else {
   611       // Calculate the number of parallel marking threads by scaling
   612       // the number of parallel GC threads.
   613       uint marking_thread_num = scale_parallel_threads((uint) ParallelGCThreads);
   614       FLAG_SET_ERGO(uintx, ConcGCThreads, marking_thread_num);
   615       _sleep_factor             = 0.0;
   616       _marking_task_overhead    = 1.0;
   617     }
   619     assert(ConcGCThreads > 0, "Should have been set");
   620     _parallel_marking_threads = (uint) ConcGCThreads;
   621     _max_parallel_marking_threads = _parallel_marking_threads;
   623     if (parallel_marking_threads() > 1) {
   624       _cleanup_task_overhead = 1.0;
   625     } else {
   626       _cleanup_task_overhead = marking_task_overhead();
   627     }
   628     _cleanup_sleep_factor =
   629                      (1.0 - cleanup_task_overhead()) / cleanup_task_overhead();
   631 #if 0
   632     gclog_or_tty->print_cr("Marking Threads          %d", parallel_marking_threads());
   633     gclog_or_tty->print_cr("CM Marking Task Overhead %1.4lf", marking_task_overhead());
   634     gclog_or_tty->print_cr("CM Sleep Factor          %1.4lf", sleep_factor());
   635     gclog_or_tty->print_cr("CL Marking Task Overhead %1.4lf", cleanup_task_overhead());
   636     gclog_or_tty->print_cr("CL Sleep Factor          %1.4lf", cleanup_sleep_factor());
   637 #endif
   639     guarantee(parallel_marking_threads() > 0, "peace of mind");
   640     _parallel_workers = new FlexibleWorkGang("G1 Parallel Marking Threads",
   641          _max_parallel_marking_threads, false, true);
   642     if (_parallel_workers == NULL) {
   643       vm_exit_during_initialization("Failed necessary allocation.");
   644     } else {
   645       _parallel_workers->initialize_workers();
   646     }
   647   }
   649   if (FLAG_IS_DEFAULT(MarkStackSize)) {
   650     uintx mark_stack_size =
   651       MIN2(MarkStackSizeMax,
   652           MAX2(MarkStackSize, (uintx) (parallel_marking_threads() * TASKQUEUE_SIZE)));
   653     // Verify that the calculated value for MarkStackSize is in range.
   654     // It would be nice to use the private utility routine from Arguments.
   655     if (!(mark_stack_size >= 1 && mark_stack_size <= MarkStackSizeMax)) {
   656       warning("Invalid value calculated for MarkStackSize (" UINTX_FORMAT "): "
   657               "must be between " UINTX_FORMAT " and " UINTX_FORMAT,
   658               mark_stack_size, (uintx) 1, MarkStackSizeMax);
   659       return;
   660     }
   661     FLAG_SET_ERGO(uintx, MarkStackSize, mark_stack_size);
   662   } else {
   663     // Verify MarkStackSize is in range.
   664     if (FLAG_IS_CMDLINE(MarkStackSize)) {
   665       if (FLAG_IS_DEFAULT(MarkStackSizeMax)) {
   666         if (!(MarkStackSize >= 1 && MarkStackSize <= MarkStackSizeMax)) {
   667           warning("Invalid value specified for MarkStackSize (" UINTX_FORMAT "): "
   668                   "must be between " UINTX_FORMAT " and " UINTX_FORMAT,
   669                   MarkStackSize, (uintx) 1, MarkStackSizeMax);
   670           return;
   671         }
   672       } else if (FLAG_IS_CMDLINE(MarkStackSizeMax)) {
   673         if (!(MarkStackSize >= 1 && MarkStackSize <= MarkStackSizeMax)) {
   674           warning("Invalid value specified for MarkStackSize (" UINTX_FORMAT ")"
   675                   " or for MarkStackSizeMax (" UINTX_FORMAT ")",
   676                   MarkStackSize, MarkStackSizeMax);
   677           return;
   678         }
   679       }
   680     }
   681   }
   683   if (!_markStack.allocate(MarkStackSize)) {
   684     warning("Failed to allocate CM marking stack");
   685     return;
   686   }
   688   _tasks = NEW_C_HEAP_ARRAY(CMTask*, _max_worker_id, mtGC);
   689   _accum_task_vtime = NEW_C_HEAP_ARRAY(double, _max_worker_id, mtGC);
   691   _count_card_bitmaps = NEW_C_HEAP_ARRAY(BitMap,  _max_worker_id, mtGC);
   692   _count_marked_bytes = NEW_C_HEAP_ARRAY(size_t*, _max_worker_id, mtGC);
   694   BitMap::idx_t card_bm_size = _card_bm.size();
   696   // so that the assertion in MarkingTaskQueue::task_queue doesn't fail
   697   _active_tasks = _max_worker_id;
   699   size_t max_regions = (size_t) _g1h->max_regions();
   700   for (uint i = 0; i < _max_worker_id; ++i) {
   701     CMTaskQueue* task_queue = new CMTaskQueue();
   702     task_queue->initialize();
   703     _task_queues->register_queue(i, task_queue);
   705     _count_card_bitmaps[i] = BitMap(card_bm_size, false);
   706     _count_marked_bytes[i] = NEW_C_HEAP_ARRAY(size_t, max_regions, mtGC);
   708     _tasks[i] = new CMTask(i, this,
   709                            _count_marked_bytes[i],
   710                            &_count_card_bitmaps[i],
   711                            task_queue, _task_queues);
   713     _accum_task_vtime[i] = 0.0;
   714   }
   716   // Calculate the card number for the bottom of the heap. Used
   717   // in biasing indexes into the accounting card bitmaps.
   718   _heap_bottom_card_num =
   719     intptr_t(uintptr_t(_g1h->reserved_region().start()) >>
   720                                 CardTableModRefBS::card_shift);
   722   // Clear all the liveness counting data
   723   clear_all_count_data();
   725   // so that the call below can read a sensible value
   726   _heap_start = (HeapWord*) heap_rs.base();
   727   set_non_marking_state();
   728   _completed_initialization = true;
   729 }
   731 void ConcurrentMark::update_g1_committed(bool force) {
   732   // If concurrent marking is not in progress, then we do not need to
   733   // update _heap_end.
   734   if (!concurrent_marking_in_progress() && !force) return;
   736   MemRegion committed = _g1h->g1_committed();
   737   assert(committed.start() == _heap_start, "start shouldn't change");
   738   HeapWord* new_end = committed.end();
   739   if (new_end > _heap_end) {
   740     // The heap has been expanded.
   742     _heap_end = new_end;
   743   }
   744   // Notice that the heap can also shrink. However, this only happens
   745   // during a Full GC (at least currently) and the entire marking
   746   // phase will bail out and the task will not be restarted. So, let's
   747   // do nothing.
   748 }
   750 void ConcurrentMark::reset() {
   751   // Starting values for these two. This should be called in a STW
   752   // phase. CM will be notified of any future g1_committed expansions
   753   // will be at the end of evacuation pauses, when tasks are
   754   // inactive.
   755   MemRegion committed = _g1h->g1_committed();
   756   _heap_start = committed.start();
   757   _heap_end   = committed.end();
   759   // Separated the asserts so that we know which one fires.
   760   assert(_heap_start != NULL, "heap bounds should look ok");
   761   assert(_heap_end != NULL, "heap bounds should look ok");
   762   assert(_heap_start < _heap_end, "heap bounds should look ok");
   764   // Reset all the marking data structures and any necessary flags
   765   reset_marking_state();
   767   if (verbose_low()) {
   768     gclog_or_tty->print_cr("[global] resetting");
   769   }
   771   // We do reset all of them, since different phases will use
   772   // different number of active threads. So, it's easiest to have all
   773   // of them ready.
   774   for (uint i = 0; i < _max_worker_id; ++i) {
   775     _tasks[i]->reset(_nextMarkBitMap);
   776   }
   778   // we need this to make sure that the flag is on during the evac
   779   // pause with initial mark piggy-backed
   780   set_concurrent_marking_in_progress();
   781 }
   784 void ConcurrentMark::reset_marking_state(bool clear_overflow) {
   785   _markStack.set_should_expand();
   786   _markStack.setEmpty();        // Also clears the _markStack overflow flag
   787   if (clear_overflow) {
   788     clear_has_overflown();
   789   } else {
   790     assert(has_overflown(), "pre-condition");
   791   }
   792   _finger = _heap_start;
   794   for (uint i = 0; i < _max_worker_id; ++i) {
   795     CMTaskQueue* queue = _task_queues->queue(i);
   796     queue->set_empty();
   797   }
   798 }
   800 void ConcurrentMark::set_concurrency(uint active_tasks) {
   801   assert(active_tasks <= _max_worker_id, "we should not have more");
   803   _active_tasks = active_tasks;
   804   // Need to update the three data structures below according to the
   805   // number of active threads for this phase.
   806   _terminator   = ParallelTaskTerminator((int) active_tasks, _task_queues);
   807   _first_overflow_barrier_sync.set_n_workers((int) active_tasks);
   808   _second_overflow_barrier_sync.set_n_workers((int) active_tasks);
   809 }
   811 void ConcurrentMark::set_concurrency_and_phase(uint active_tasks, bool concurrent) {
   812   set_concurrency(active_tasks);
   814   _concurrent = concurrent;
   815   // We propagate this to all tasks, not just the active ones.
   816   for (uint i = 0; i < _max_worker_id; ++i)
   817     _tasks[i]->set_concurrent(concurrent);
   819   if (concurrent) {
   820     set_concurrent_marking_in_progress();
   821   } else {
   822     // We currently assume that the concurrent flag has been set to
   823     // false before we start remark. At this point we should also be
   824     // in a STW phase.
   825     assert(!concurrent_marking_in_progress(), "invariant");
   826     assert(out_of_regions(),
   827            err_msg("only way to get here: _finger: "PTR_FORMAT", _heap_end: "PTR_FORMAT,
   828                    p2i(_finger), p2i(_heap_end)));
   829     update_g1_committed(true);
   830   }
   831 }
   833 void ConcurrentMark::set_non_marking_state() {
   834   // We set the global marking state to some default values when we're
   835   // not doing marking.
   836   reset_marking_state();
   837   _active_tasks = 0;
   838   clear_concurrent_marking_in_progress();
   839 }
   841 ConcurrentMark::~ConcurrentMark() {
   842   // The ConcurrentMark instance is never freed.
   843   ShouldNotReachHere();
   844 }
   846 void ConcurrentMark::clearNextBitmap() {
   847   G1CollectedHeap* g1h = G1CollectedHeap::heap();
   848   G1CollectorPolicy* g1p = g1h->g1_policy();
   850   // Make sure that the concurrent mark thread looks to still be in
   851   // the current cycle.
   852   guarantee(cmThread()->during_cycle(), "invariant");
   854   // We are finishing up the current cycle by clearing the next
   855   // marking bitmap and getting it ready for the next cycle. During
   856   // this time no other cycle can start. So, let's make sure that this
   857   // is the case.
   858   guarantee(!g1h->mark_in_progress(), "invariant");
   860   // clear the mark bitmap (no grey objects to start with).
   861   // We need to do this in chunks and offer to yield in between
   862   // each chunk.
   863   HeapWord* start  = _nextMarkBitMap->startWord();
   864   HeapWord* end    = _nextMarkBitMap->endWord();
   865   HeapWord* cur    = start;
   866   size_t chunkSize = M;
   867   while (cur < end) {
   868     HeapWord* next = cur + chunkSize;
   869     if (next > end) {
   870       next = end;
   871     }
   872     MemRegion mr(cur,next);
   873     _nextMarkBitMap->clearRange(mr);
   874     cur = next;
   875     do_yield_check();
   877     // Repeat the asserts from above. We'll do them as asserts here to
   878     // minimize their overhead on the product. However, we'll have
   879     // them as guarantees at the beginning / end of the bitmap
   880     // clearing to get some checking in the product.
   881     assert(cmThread()->during_cycle(), "invariant");
   882     assert(!g1h->mark_in_progress(), "invariant");
   883   }
   885   // Clear the liveness counting data
   886   clear_all_count_data();
   888   // Repeat the asserts from above.
   889   guarantee(cmThread()->during_cycle(), "invariant");
   890   guarantee(!g1h->mark_in_progress(), "invariant");
   891 }
   893 bool ConcurrentMark::nextMarkBitmapIsClear() {
   894   return _nextMarkBitMap->getNextMarkedWordAddress(_heap_start, _heap_end) == _heap_end;
   895 }
   897 class NoteStartOfMarkHRClosure: public HeapRegionClosure {
   898 public:
   899   bool doHeapRegion(HeapRegion* r) {
   900     if (!r->continuesHumongous()) {
   901       r->note_start_of_marking();
   902     }
   903     return false;
   904   }
   905 };
   907 void ConcurrentMark::checkpointRootsInitialPre() {
   908   G1CollectedHeap*   g1h = G1CollectedHeap::heap();
   909   G1CollectorPolicy* g1p = g1h->g1_policy();
   911   _has_aborted = false;
   913 #ifndef PRODUCT
   914   if (G1PrintReachableAtInitialMark) {
   915     print_reachable("at-cycle-start",
   916                     VerifyOption_G1UsePrevMarking, true /* all */);
   917   }
   918 #endif
   920   // Initialise marking structures. This has to be done in a STW phase.
   921   reset();
   923   // For each region note start of marking.
   924   NoteStartOfMarkHRClosure startcl;
   925   g1h->heap_region_iterate(&startcl);
   926 }
   929 void ConcurrentMark::checkpointRootsInitialPost() {
   930   G1CollectedHeap*   g1h = G1CollectedHeap::heap();
   932   // If we force an overflow during remark, the remark operation will
   933   // actually abort and we'll restart concurrent marking. If we always
   934   // force an oveflow during remark we'll never actually complete the
   935   // marking phase. So, we initilize this here, at the start of the
   936   // cycle, so that at the remaining overflow number will decrease at
   937   // every remark and we'll eventually not need to cause one.
   938   force_overflow_stw()->init();
   940   // Start Concurrent Marking weak-reference discovery.
   941   ReferenceProcessor* rp = g1h->ref_processor_cm();
   942   // enable ("weak") refs discovery
   943   rp->enable_discovery(true /*verify_disabled*/, true /*verify_no_refs*/);
   944   rp->setup_policy(false); // snapshot the soft ref policy to be used in this cycle
   946   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
   947   // This is the start of  the marking cycle, we're expected all
   948   // threads to have SATB queues with active set to false.
   949   satb_mq_set.set_active_all_threads(true, /* new active value */
   950                                      false /* expected_active */);
   952   _root_regions.prepare_for_scan();
   954   // update_g1_committed() will be called at the end of an evac pause
   955   // when marking is on. So, it's also called at the end of the
   956   // initial-mark pause to update the heap end, if the heap expands
   957   // during it. No need to call it here.
   958 }
   960 /*
   961  * Notice that in the next two methods, we actually leave the STS
   962  * during the barrier sync and join it immediately afterwards. If we
   963  * do not do this, the following deadlock can occur: one thread could
   964  * be in the barrier sync code, waiting for the other thread to also
   965  * sync up, whereas another one could be trying to yield, while also
   966  * waiting for the other threads to sync up too.
   967  *
   968  * Note, however, that this code is also used during remark and in
   969  * this case we should not attempt to leave / enter the STS, otherwise
   970  * we'll either hit an asseert (debug / fastdebug) or deadlock
   971  * (product). So we should only leave / enter the STS if we are
   972  * operating concurrently.
   973  *
   974  * Because the thread that does the sync barrier has left the STS, it
   975  * is possible to be suspended for a Full GC or an evacuation pause
   976  * could occur. This is actually safe, since the entering the sync
   977  * barrier is one of the last things do_marking_step() does, and it
   978  * doesn't manipulate any data structures afterwards.
   979  */
   981 void ConcurrentMark::enter_first_sync_barrier(uint worker_id) {
   982   if (verbose_low()) {
   983     gclog_or_tty->print_cr("[%u] entering first barrier", worker_id);
   984   }
   986   if (concurrent()) {
   987     SuspendibleThreadSet::leave();
   988   }
   990   bool barrier_aborted = !_first_overflow_barrier_sync.enter();
   992   if (concurrent()) {
   993     SuspendibleThreadSet::join();
   994   }
   995   // at this point everyone should have synced up and not be doing any
   996   // more work
   998   if (verbose_low()) {
   999     if (barrier_aborted) {
  1000       gclog_or_tty->print_cr("[%u] aborted first barrier", worker_id);
  1001     } else {
  1002       gclog_or_tty->print_cr("[%u] leaving first barrier", worker_id);
  1006   if (barrier_aborted) {
  1007     // If the barrier aborted we ignore the overflow condition and
  1008     // just abort the whole marking phase as quickly as possible.
  1009     return;
  1012   // If we're executing the concurrent phase of marking, reset the marking
  1013   // state; otherwise the marking state is reset after reference processing,
  1014   // during the remark pause.
  1015   // If we reset here as a result of an overflow during the remark we will
  1016   // see assertion failures from any subsequent set_concurrency_and_phase()
  1017   // calls.
  1018   if (concurrent()) {
  1019     // let the task associated with with worker 0 do this
  1020     if (worker_id == 0) {
  1021       // task 0 is responsible for clearing the global data structures
  1022       // We should be here because of an overflow. During STW we should
  1023       // not clear the overflow flag since we rely on it being true when
  1024       // we exit this method to abort the pause and restart concurent
  1025       // marking.
  1026       reset_marking_state(true /* clear_overflow */);
  1027       force_overflow()->update();
  1029       if (G1Log::fine()) {
  1030         gclog_or_tty->gclog_stamp(concurrent_gc_id());
  1031         gclog_or_tty->print_cr("[GC concurrent-mark-reset-for-overflow]");
  1036   // after this, each task should reset its own data structures then
  1037   // then go into the second barrier
  1040 void ConcurrentMark::enter_second_sync_barrier(uint worker_id) {
  1041   if (verbose_low()) {
  1042     gclog_or_tty->print_cr("[%u] entering second barrier", worker_id);
  1045   if (concurrent()) {
  1046     SuspendibleThreadSet::leave();
  1049   bool barrier_aborted = !_second_overflow_barrier_sync.enter();
  1051   if (concurrent()) {
  1052     SuspendibleThreadSet::join();
  1054   // at this point everything should be re-initialized and ready to go
  1056   if (verbose_low()) {
  1057     if (barrier_aborted) {
  1058       gclog_or_tty->print_cr("[%u] aborted second barrier", worker_id);
  1059     } else {
  1060       gclog_or_tty->print_cr("[%u] leaving second barrier", worker_id);
  1065 #ifndef PRODUCT
  1066 void ForceOverflowSettings::init() {
  1067   _num_remaining = G1ConcMarkForceOverflow;
  1068   _force = false;
  1069   update();
  1072 void ForceOverflowSettings::update() {
  1073   if (_num_remaining > 0) {
  1074     _num_remaining -= 1;
  1075     _force = true;
  1076   } else {
  1077     _force = false;
  1081 bool ForceOverflowSettings::should_force() {
  1082   if (_force) {
  1083     _force = false;
  1084     return true;
  1085   } else {
  1086     return false;
  1089 #endif // !PRODUCT
  1091 class CMConcurrentMarkingTask: public AbstractGangTask {
  1092 private:
  1093   ConcurrentMark*       _cm;
  1094   ConcurrentMarkThread* _cmt;
  1096 public:
  1097   void work(uint worker_id) {
  1098     assert(Thread::current()->is_ConcurrentGC_thread(),
  1099            "this should only be done by a conc GC thread");
  1100     ResourceMark rm;
  1102     double start_vtime = os::elapsedVTime();
  1104     SuspendibleThreadSet::join();
  1106     assert(worker_id < _cm->active_tasks(), "invariant");
  1107     CMTask* the_task = _cm->task(worker_id);
  1108     the_task->record_start_time();
  1109     if (!_cm->has_aborted()) {
  1110       do {
  1111         double start_vtime_sec = os::elapsedVTime();
  1112         double start_time_sec = os::elapsedTime();
  1113         double mark_step_duration_ms = G1ConcMarkStepDurationMillis;
  1115         the_task->do_marking_step(mark_step_duration_ms,
  1116                                   true  /* do_termination */,
  1117                                   false /* is_serial*/);
  1119         double end_time_sec = os::elapsedTime();
  1120         double end_vtime_sec = os::elapsedVTime();
  1121         double elapsed_vtime_sec = end_vtime_sec - start_vtime_sec;
  1122         double elapsed_time_sec = end_time_sec - start_time_sec;
  1123         _cm->clear_has_overflown();
  1125         bool ret = _cm->do_yield_check(worker_id);
  1127         jlong sleep_time_ms;
  1128         if (!_cm->has_aborted() && the_task->has_aborted()) {
  1129           sleep_time_ms =
  1130             (jlong) (elapsed_vtime_sec * _cm->sleep_factor() * 1000.0);
  1131           SuspendibleThreadSet::leave();
  1132           os::sleep(Thread::current(), sleep_time_ms, false);
  1133           SuspendibleThreadSet::join();
  1135         double end_time2_sec = os::elapsedTime();
  1136         double elapsed_time2_sec = end_time2_sec - start_time_sec;
  1138 #if 0
  1139           gclog_or_tty->print_cr("CM: elapsed %1.4lf ms, sleep %1.4lf ms, "
  1140                                  "overhead %1.4lf",
  1141                                  elapsed_vtime_sec * 1000.0, (double) sleep_time_ms,
  1142                                  the_task->conc_overhead(os::elapsedTime()) * 8.0);
  1143           gclog_or_tty->print_cr("elapsed time %1.4lf ms, time 2: %1.4lf ms",
  1144                                  elapsed_time_sec * 1000.0, elapsed_time2_sec * 1000.0);
  1145 #endif
  1146       } while (!_cm->has_aborted() && the_task->has_aborted());
  1148     the_task->record_end_time();
  1149     guarantee(!the_task->has_aborted() || _cm->has_aborted(), "invariant");
  1151     SuspendibleThreadSet::leave();
  1153     double end_vtime = os::elapsedVTime();
  1154     _cm->update_accum_task_vtime(worker_id, end_vtime - start_vtime);
  1157   CMConcurrentMarkingTask(ConcurrentMark* cm,
  1158                           ConcurrentMarkThread* cmt) :
  1159       AbstractGangTask("Concurrent Mark"), _cm(cm), _cmt(cmt) { }
  1161   ~CMConcurrentMarkingTask() { }
  1162 };
  1164 // Calculates the number of active workers for a concurrent
  1165 // phase.
  1166 uint ConcurrentMark::calc_parallel_marking_threads() {
  1167   if (G1CollectedHeap::use_parallel_gc_threads()) {
  1168     uint n_conc_workers = 0;
  1169     if (!UseDynamicNumberOfGCThreads ||
  1170         (!FLAG_IS_DEFAULT(ConcGCThreads) &&
  1171          !ForceDynamicNumberOfGCThreads)) {
  1172       n_conc_workers = max_parallel_marking_threads();
  1173     } else {
  1174       n_conc_workers =
  1175         AdaptiveSizePolicy::calc_default_active_workers(
  1176                                      max_parallel_marking_threads(),
  1177                                      1, /* Minimum workers */
  1178                                      parallel_marking_threads(),
  1179                                      Threads::number_of_non_daemon_threads());
  1180       // Don't scale down "n_conc_workers" by scale_parallel_threads() because
  1181       // that scaling has already gone into "_max_parallel_marking_threads".
  1183     assert(n_conc_workers > 0, "Always need at least 1");
  1184     return n_conc_workers;
  1186   // If we are not running with any parallel GC threads we will not
  1187   // have spawned any marking threads either. Hence the number of
  1188   // concurrent workers should be 0.
  1189   return 0;
  1192 void ConcurrentMark::scanRootRegion(HeapRegion* hr, uint worker_id) {
  1193   // Currently, only survivors can be root regions.
  1194   assert(hr->next_top_at_mark_start() == hr->bottom(), "invariant");
  1195   G1RootRegionScanClosure cl(_g1h, this, worker_id);
  1197   const uintx interval = PrefetchScanIntervalInBytes;
  1198   HeapWord* curr = hr->bottom();
  1199   const HeapWord* end = hr->top();
  1200   while (curr < end) {
  1201     Prefetch::read(curr, interval);
  1202     oop obj = oop(curr);
  1203     int size = obj->oop_iterate(&cl);
  1204     assert(size == obj->size(), "sanity");
  1205     curr += size;
  1209 class CMRootRegionScanTask : public AbstractGangTask {
  1210 private:
  1211   ConcurrentMark* _cm;
  1213 public:
  1214   CMRootRegionScanTask(ConcurrentMark* cm) :
  1215     AbstractGangTask("Root Region Scan"), _cm(cm) { }
  1217   void work(uint worker_id) {
  1218     assert(Thread::current()->is_ConcurrentGC_thread(),
  1219            "this should only be done by a conc GC thread");
  1221     CMRootRegions* root_regions = _cm->root_regions();
  1222     HeapRegion* hr = root_regions->claim_next();
  1223     while (hr != NULL) {
  1224       _cm->scanRootRegion(hr, worker_id);
  1225       hr = root_regions->claim_next();
  1228 };
  1230 void ConcurrentMark::scanRootRegions() {
  1231   // Start of concurrent marking.
  1232   ClassLoaderDataGraph::clear_claimed_marks();
  1234   // scan_in_progress() will have been set to true only if there was
  1235   // at least one root region to scan. So, if it's false, we
  1236   // should not attempt to do any further work.
  1237   if (root_regions()->scan_in_progress()) {
  1238     _parallel_marking_threads = calc_parallel_marking_threads();
  1239     assert(parallel_marking_threads() <= max_parallel_marking_threads(),
  1240            "Maximum number of marking threads exceeded");
  1241     uint active_workers = MAX2(1U, parallel_marking_threads());
  1243     CMRootRegionScanTask task(this);
  1244     if (use_parallel_marking_threads()) {
  1245       _parallel_workers->set_active_workers((int) active_workers);
  1246       _parallel_workers->run_task(&task);
  1247     } else {
  1248       task.work(0);
  1251     // It's possible that has_aborted() is true here without actually
  1252     // aborting the survivor scan earlier. This is OK as it's
  1253     // mainly used for sanity checking.
  1254     root_regions()->scan_finished();
  1258 void ConcurrentMark::markFromRoots() {
  1259   // we might be tempted to assert that:
  1260   // assert(asynch == !SafepointSynchronize::is_at_safepoint(),
  1261   //        "inconsistent argument?");
  1262   // However that wouldn't be right, because it's possible that
  1263   // a safepoint is indeed in progress as a younger generation
  1264   // stop-the-world GC happens even as we mark in this generation.
  1266   _restart_for_overflow = false;
  1267   force_overflow_conc()->init();
  1269   // _g1h has _n_par_threads
  1270   _parallel_marking_threads = calc_parallel_marking_threads();
  1271   assert(parallel_marking_threads() <= max_parallel_marking_threads(),
  1272     "Maximum number of marking threads exceeded");
  1274   uint active_workers = MAX2(1U, parallel_marking_threads());
  1276   // Parallel task terminator is set in "set_concurrency_and_phase()"
  1277   set_concurrency_and_phase(active_workers, true /* concurrent */);
  1279   CMConcurrentMarkingTask markingTask(this, cmThread());
  1280   if (use_parallel_marking_threads()) {
  1281     _parallel_workers->set_active_workers((int)active_workers);
  1282     // Don't set _n_par_threads because it affects MT in process_roots()
  1283     // and the decisions on that MT processing is made elsewhere.
  1284     assert(_parallel_workers->active_workers() > 0, "Should have been set");
  1285     _parallel_workers->run_task(&markingTask);
  1286   } else {
  1287     markingTask.work(0);
  1289   print_stats();
  1292 void ConcurrentMark::checkpointRootsFinal(bool clear_all_soft_refs) {
  1293   // world is stopped at this checkpoint
  1294   assert(SafepointSynchronize::is_at_safepoint(),
  1295          "world should be stopped");
  1297   G1CollectedHeap* g1h = G1CollectedHeap::heap();
  1299   // If a full collection has happened, we shouldn't do this.
  1300   if (has_aborted()) {
  1301     g1h->set_marking_complete(); // So bitmap clearing isn't confused
  1302     return;
  1305   SvcGCMarker sgcm(SvcGCMarker::OTHER);
  1307   if (VerifyDuringGC) {
  1308     HandleMark hm;  // handle scope
  1309     Universe::heap()->prepare_for_verify();
  1310     Universe::verify(VerifyOption_G1UsePrevMarking,
  1311                      " VerifyDuringGC:(before)");
  1313   g1h->check_bitmaps("Remark Start");
  1315   G1CollectorPolicy* g1p = g1h->g1_policy();
  1316   g1p->record_concurrent_mark_remark_start();
  1318   double start = os::elapsedTime();
  1320   checkpointRootsFinalWork();
  1322   double mark_work_end = os::elapsedTime();
  1324   weakRefsWork(clear_all_soft_refs);
  1326   if (has_overflown()) {
  1327     // Oops.  We overflowed.  Restart concurrent marking.
  1328     _restart_for_overflow = true;
  1329     if (G1TraceMarkStackOverflow) {
  1330       gclog_or_tty->print_cr("\nRemark led to restart for overflow.");
  1333     // Verify the heap w.r.t. the previous marking bitmap.
  1334     if (VerifyDuringGC) {
  1335       HandleMark hm;  // handle scope
  1336       Universe::heap()->prepare_for_verify();
  1337       Universe::verify(VerifyOption_G1UsePrevMarking,
  1338                        " VerifyDuringGC:(overflow)");
  1341     // Clear the marking state because we will be restarting
  1342     // marking due to overflowing the global mark stack.
  1343     reset_marking_state();
  1344   } else {
  1345     // Aggregate the per-task counting data that we have accumulated
  1346     // while marking.
  1347     aggregate_count_data();
  1349     SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
  1350     // We're done with marking.
  1351     // This is the end of  the marking cycle, we're expected all
  1352     // threads to have SATB queues with active set to true.
  1353     satb_mq_set.set_active_all_threads(false, /* new active value */
  1354                                        true /* expected_active */);
  1356     if (VerifyDuringGC) {
  1357       HandleMark hm;  // handle scope
  1358       Universe::heap()->prepare_for_verify();
  1359       Universe::verify(VerifyOption_G1UseNextMarking,
  1360                        " VerifyDuringGC:(after)");
  1362     g1h->check_bitmaps("Remark End");
  1363     assert(!restart_for_overflow(), "sanity");
  1364     // Completely reset the marking state since marking completed
  1365     set_non_marking_state();
  1368   // Expand the marking stack, if we have to and if we can.
  1369   if (_markStack.should_expand()) {
  1370     _markStack.expand();
  1373   // Statistics
  1374   double now = os::elapsedTime();
  1375   _remark_mark_times.add((mark_work_end - start) * 1000.0);
  1376   _remark_weak_ref_times.add((now - mark_work_end) * 1000.0);
  1377   _remark_times.add((now - start) * 1000.0);
  1379   g1p->record_concurrent_mark_remark_end();
  1381   G1CMIsAliveClosure is_alive(g1h);
  1382   g1h->gc_tracer_cm()->report_object_count_after_gc(&is_alive);
  1385 // Base class of the closures that finalize and verify the
  1386 // liveness counting data.
  1387 class CMCountDataClosureBase: public HeapRegionClosure {
  1388 protected:
  1389   G1CollectedHeap* _g1h;
  1390   ConcurrentMark* _cm;
  1391   CardTableModRefBS* _ct_bs;
  1393   BitMap* _region_bm;
  1394   BitMap* _card_bm;
  1396   // Takes a region that's not empty (i.e., it has at least one
  1397   // live object in it and sets its corresponding bit on the region
  1398   // bitmap to 1. If the region is "starts humongous" it will also set
  1399   // to 1 the bits on the region bitmap that correspond to its
  1400   // associated "continues humongous" regions.
  1401   void set_bit_for_region(HeapRegion* hr) {
  1402     assert(!hr->continuesHumongous(), "should have filtered those out");
  1404     BitMap::idx_t index = (BitMap::idx_t) hr->hrs_index();
  1405     if (!hr->startsHumongous()) {
  1406       // Normal (non-humongous) case: just set the bit.
  1407       _region_bm->par_at_put(index, true);
  1408     } else {
  1409       // Starts humongous case: calculate how many regions are part of
  1410       // this humongous region and then set the bit range.
  1411       BitMap::idx_t end_index = (BitMap::idx_t) hr->last_hc_index();
  1412       _region_bm->par_at_put_range(index, end_index, true);
  1416 public:
  1417   CMCountDataClosureBase(G1CollectedHeap* g1h,
  1418                          BitMap* region_bm, BitMap* card_bm):
  1419     _g1h(g1h), _cm(g1h->concurrent_mark()),
  1420     _ct_bs((CardTableModRefBS*) (g1h->barrier_set())),
  1421     _region_bm(region_bm), _card_bm(card_bm) { }
  1422 };
  1424 // Closure that calculates the # live objects per region. Used
  1425 // for verification purposes during the cleanup pause.
  1426 class CalcLiveObjectsClosure: public CMCountDataClosureBase {
  1427   CMBitMapRO* _bm;
  1428   size_t _region_marked_bytes;
  1430 public:
  1431   CalcLiveObjectsClosure(CMBitMapRO *bm, G1CollectedHeap* g1h,
  1432                          BitMap* region_bm, BitMap* card_bm) :
  1433     CMCountDataClosureBase(g1h, region_bm, card_bm),
  1434     _bm(bm), _region_marked_bytes(0) { }
  1436   bool doHeapRegion(HeapRegion* hr) {
  1438     if (hr->continuesHumongous()) {
  1439       // We will ignore these here and process them when their
  1440       // associated "starts humongous" region is processed (see
  1441       // set_bit_for_heap_region()). Note that we cannot rely on their
  1442       // associated "starts humongous" region to have their bit set to
  1443       // 1 since, due to the region chunking in the parallel region
  1444       // iteration, a "continues humongous" region might be visited
  1445       // before its associated "starts humongous".
  1446       return false;
  1449     HeapWord* ntams = hr->next_top_at_mark_start();
  1450     HeapWord* start = hr->bottom();
  1452     assert(start <= hr->end() && start <= ntams && ntams <= hr->end(),
  1453            err_msg("Preconditions not met - "
  1454                    "start: "PTR_FORMAT", ntams: "PTR_FORMAT", end: "PTR_FORMAT,
  1455                    p2i(start), p2i(ntams), p2i(hr->end())));
  1457     // Find the first marked object at or after "start".
  1458     start = _bm->getNextMarkedWordAddress(start, ntams);
  1460     size_t marked_bytes = 0;
  1462     while (start < ntams) {
  1463       oop obj = oop(start);
  1464       int obj_sz = obj->size();
  1465       HeapWord* obj_end = start + obj_sz;
  1467       BitMap::idx_t start_idx = _cm->card_bitmap_index_for(start);
  1468       BitMap::idx_t end_idx = _cm->card_bitmap_index_for(obj_end);
  1470       // Note: if we're looking at the last region in heap - obj_end
  1471       // could be actually just beyond the end of the heap; end_idx
  1472       // will then correspond to a (non-existent) card that is also
  1473       // just beyond the heap.
  1474       if (_g1h->is_in_g1_reserved(obj_end) && !_ct_bs->is_card_aligned(obj_end)) {
  1475         // end of object is not card aligned - increment to cover
  1476         // all the cards spanned by the object
  1477         end_idx += 1;
  1480       // Set the bits in the card BM for the cards spanned by this object.
  1481       _cm->set_card_bitmap_range(_card_bm, start_idx, end_idx, true /* is_par */);
  1483       // Add the size of this object to the number of marked bytes.
  1484       marked_bytes += (size_t)obj_sz * HeapWordSize;
  1486       // Find the next marked object after this one.
  1487       start = _bm->getNextMarkedWordAddress(obj_end, ntams);
  1490     // Mark the allocated-since-marking portion...
  1491     HeapWord* top = hr->top();
  1492     if (ntams < top) {
  1493       BitMap::idx_t start_idx = _cm->card_bitmap_index_for(ntams);
  1494       BitMap::idx_t end_idx = _cm->card_bitmap_index_for(top);
  1496       // Note: if we're looking at the last region in heap - top
  1497       // could be actually just beyond the end of the heap; end_idx
  1498       // will then correspond to a (non-existent) card that is also
  1499       // just beyond the heap.
  1500       if (_g1h->is_in_g1_reserved(top) && !_ct_bs->is_card_aligned(top)) {
  1501         // end of object is not card aligned - increment to cover
  1502         // all the cards spanned by the object
  1503         end_idx += 1;
  1505       _cm->set_card_bitmap_range(_card_bm, start_idx, end_idx, true /* is_par */);
  1507       // This definitely means the region has live objects.
  1508       set_bit_for_region(hr);
  1511     // Update the live region bitmap.
  1512     if (marked_bytes > 0) {
  1513       set_bit_for_region(hr);
  1516     // Set the marked bytes for the current region so that
  1517     // it can be queried by a calling verificiation routine
  1518     _region_marked_bytes = marked_bytes;
  1520     return false;
  1523   size_t region_marked_bytes() const { return _region_marked_bytes; }
  1524 };
  1526 // Heap region closure used for verifying the counting data
  1527 // that was accumulated concurrently and aggregated during
  1528 // the remark pause. This closure is applied to the heap
  1529 // regions during the STW cleanup pause.
  1531 class VerifyLiveObjectDataHRClosure: public HeapRegionClosure {
  1532   G1CollectedHeap* _g1h;
  1533   ConcurrentMark* _cm;
  1534   CalcLiveObjectsClosure _calc_cl;
  1535   BitMap* _region_bm;   // Region BM to be verified
  1536   BitMap* _card_bm;     // Card BM to be verified
  1537   bool _verbose;        // verbose output?
  1539   BitMap* _exp_region_bm; // Expected Region BM values
  1540   BitMap* _exp_card_bm;   // Expected card BM values
  1542   int _failures;
  1544 public:
  1545   VerifyLiveObjectDataHRClosure(G1CollectedHeap* g1h,
  1546                                 BitMap* region_bm,
  1547                                 BitMap* card_bm,
  1548                                 BitMap* exp_region_bm,
  1549                                 BitMap* exp_card_bm,
  1550                                 bool verbose) :
  1551     _g1h(g1h), _cm(g1h->concurrent_mark()),
  1552     _calc_cl(_cm->nextMarkBitMap(), g1h, exp_region_bm, exp_card_bm),
  1553     _region_bm(region_bm), _card_bm(card_bm), _verbose(verbose),
  1554     _exp_region_bm(exp_region_bm), _exp_card_bm(exp_card_bm),
  1555     _failures(0) { }
  1557   int failures() const { return _failures; }
  1559   bool doHeapRegion(HeapRegion* hr) {
  1560     if (hr->continuesHumongous()) {
  1561       // We will ignore these here and process them when their
  1562       // associated "starts humongous" region is processed (see
  1563       // set_bit_for_heap_region()). Note that we cannot rely on their
  1564       // associated "starts humongous" region to have their bit set to
  1565       // 1 since, due to the region chunking in the parallel region
  1566       // iteration, a "continues humongous" region might be visited
  1567       // before its associated "starts humongous".
  1568       return false;
  1571     int failures = 0;
  1573     // Call the CalcLiveObjectsClosure to walk the marking bitmap for
  1574     // this region and set the corresponding bits in the expected region
  1575     // and card bitmaps.
  1576     bool res = _calc_cl.doHeapRegion(hr);
  1577     assert(res == false, "should be continuing");
  1579     MutexLockerEx x((_verbose ? ParGCRareEvent_lock : NULL),
  1580                     Mutex::_no_safepoint_check_flag);
  1582     // Verify the marked bytes for this region.
  1583     size_t exp_marked_bytes = _calc_cl.region_marked_bytes();
  1584     size_t act_marked_bytes = hr->next_marked_bytes();
  1586     // We're not OK if expected marked bytes > actual marked bytes. It means
  1587     // we have missed accounting some objects during the actual marking.
  1588     if (exp_marked_bytes > act_marked_bytes) {
  1589       if (_verbose) {
  1590         gclog_or_tty->print_cr("Region %u: marked bytes mismatch: "
  1591                                "expected: " SIZE_FORMAT ", actual: " SIZE_FORMAT,
  1592                                hr->hrs_index(), exp_marked_bytes, act_marked_bytes);
  1594       failures += 1;
  1597     // Verify the bit, for this region, in the actual and expected
  1598     // (which was just calculated) region bit maps.
  1599     // We're not OK if the bit in the calculated expected region
  1600     // bitmap is set and the bit in the actual region bitmap is not.
  1601     BitMap::idx_t index = (BitMap::idx_t) hr->hrs_index();
  1603     bool expected = _exp_region_bm->at(index);
  1604     bool actual = _region_bm->at(index);
  1605     if (expected && !actual) {
  1606       if (_verbose) {
  1607         gclog_or_tty->print_cr("Region %u: region bitmap mismatch: "
  1608                                "expected: %s, actual: %s",
  1609                                hr->hrs_index(),
  1610                                BOOL_TO_STR(expected), BOOL_TO_STR(actual));
  1612       failures += 1;
  1615     // Verify that the card bit maps for the cards spanned by the current
  1616     // region match. We have an error if we have a set bit in the expected
  1617     // bit map and the corresponding bit in the actual bitmap is not set.
  1619     BitMap::idx_t start_idx = _cm->card_bitmap_index_for(hr->bottom());
  1620     BitMap::idx_t end_idx = _cm->card_bitmap_index_for(hr->top());
  1622     for (BitMap::idx_t i = start_idx; i < end_idx; i+=1) {
  1623       expected = _exp_card_bm->at(i);
  1624       actual = _card_bm->at(i);
  1626       if (expected && !actual) {
  1627         if (_verbose) {
  1628           gclog_or_tty->print_cr("Region %u: card bitmap mismatch at " SIZE_FORMAT ": "
  1629                                  "expected: %s, actual: %s",
  1630                                  hr->hrs_index(), i,
  1631                                  BOOL_TO_STR(expected), BOOL_TO_STR(actual));
  1633         failures += 1;
  1637     if (failures > 0 && _verbose)  {
  1638       gclog_or_tty->print_cr("Region " HR_FORMAT ", ntams: " PTR_FORMAT ", "
  1639                              "marked_bytes: calc/actual " SIZE_FORMAT "/" SIZE_FORMAT,
  1640                              HR_FORMAT_PARAMS(hr), p2i(hr->next_top_at_mark_start()),
  1641                              _calc_cl.region_marked_bytes(), hr->next_marked_bytes());
  1644     _failures += failures;
  1646     // We could stop iteration over the heap when we
  1647     // find the first violating region by returning true.
  1648     return false;
  1650 };
  1652 class G1ParVerifyFinalCountTask: public AbstractGangTask {
  1653 protected:
  1654   G1CollectedHeap* _g1h;
  1655   ConcurrentMark* _cm;
  1656   BitMap* _actual_region_bm;
  1657   BitMap* _actual_card_bm;
  1659   uint    _n_workers;
  1661   BitMap* _expected_region_bm;
  1662   BitMap* _expected_card_bm;
  1664   int  _failures;
  1665   bool _verbose;
  1667 public:
  1668   G1ParVerifyFinalCountTask(G1CollectedHeap* g1h,
  1669                             BitMap* region_bm, BitMap* card_bm,
  1670                             BitMap* expected_region_bm, BitMap* expected_card_bm)
  1671     : AbstractGangTask("G1 verify final counting"),
  1672       _g1h(g1h), _cm(_g1h->concurrent_mark()),
  1673       _actual_region_bm(region_bm), _actual_card_bm(card_bm),
  1674       _expected_region_bm(expected_region_bm), _expected_card_bm(expected_card_bm),
  1675       _failures(0), _verbose(false),
  1676       _n_workers(0) {
  1677     assert(VerifyDuringGC, "don't call this otherwise");
  1679     // Use the value already set as the number of active threads
  1680     // in the call to run_task().
  1681     if (G1CollectedHeap::use_parallel_gc_threads()) {
  1682       assert( _g1h->workers()->active_workers() > 0,
  1683         "Should have been previously set");
  1684       _n_workers = _g1h->workers()->active_workers();
  1685     } else {
  1686       _n_workers = 1;
  1689     assert(_expected_card_bm->size() == _actual_card_bm->size(), "sanity");
  1690     assert(_expected_region_bm->size() == _actual_region_bm->size(), "sanity");
  1692     _verbose = _cm->verbose_medium();
  1695   void work(uint worker_id) {
  1696     assert(worker_id < _n_workers, "invariant");
  1698     VerifyLiveObjectDataHRClosure verify_cl(_g1h,
  1699                                             _actual_region_bm, _actual_card_bm,
  1700                                             _expected_region_bm,
  1701                                             _expected_card_bm,
  1702                                             _verbose);
  1704     if (G1CollectedHeap::use_parallel_gc_threads()) {
  1705       _g1h->heap_region_par_iterate_chunked(&verify_cl,
  1706                                             worker_id,
  1707                                             _n_workers,
  1708                                             HeapRegion::VerifyCountClaimValue);
  1709     } else {
  1710       _g1h->heap_region_iterate(&verify_cl);
  1713     Atomic::add(verify_cl.failures(), &_failures);
  1716   int failures() const { return _failures; }
  1717 };
  1719 // Closure that finalizes the liveness counting data.
  1720 // Used during the cleanup pause.
  1721 // Sets the bits corresponding to the interval [NTAMS, top]
  1722 // (which contains the implicitly live objects) in the
  1723 // card liveness bitmap. Also sets the bit for each region,
  1724 // containing live data, in the region liveness bitmap.
  1726 class FinalCountDataUpdateClosure: public CMCountDataClosureBase {
  1727  public:
  1728   FinalCountDataUpdateClosure(G1CollectedHeap* g1h,
  1729                               BitMap* region_bm,
  1730                               BitMap* card_bm) :
  1731     CMCountDataClosureBase(g1h, region_bm, card_bm) { }
  1733   bool doHeapRegion(HeapRegion* hr) {
  1735     if (hr->continuesHumongous()) {
  1736       // We will ignore these here and process them when their
  1737       // associated "starts humongous" region is processed (see
  1738       // set_bit_for_heap_region()). Note that we cannot rely on their
  1739       // associated "starts humongous" region to have their bit set to
  1740       // 1 since, due to the region chunking in the parallel region
  1741       // iteration, a "continues humongous" region might be visited
  1742       // before its associated "starts humongous".
  1743       return false;
  1746     HeapWord* ntams = hr->next_top_at_mark_start();
  1747     HeapWord* top   = hr->top();
  1749     assert(hr->bottom() <= ntams && ntams <= hr->end(), "Preconditions.");
  1751     // Mark the allocated-since-marking portion...
  1752     if (ntams < top) {
  1753       // This definitely means the region has live objects.
  1754       set_bit_for_region(hr);
  1756       // Now set the bits in the card bitmap for [ntams, top)
  1757       BitMap::idx_t start_idx = _cm->card_bitmap_index_for(ntams);
  1758       BitMap::idx_t end_idx = _cm->card_bitmap_index_for(top);
  1760       // Note: if we're looking at the last region in heap - top
  1761       // could be actually just beyond the end of the heap; end_idx
  1762       // will then correspond to a (non-existent) card that is also
  1763       // just beyond the heap.
  1764       if (_g1h->is_in_g1_reserved(top) && !_ct_bs->is_card_aligned(top)) {
  1765         // end of object is not card aligned - increment to cover
  1766         // all the cards spanned by the object
  1767         end_idx += 1;
  1770       assert(end_idx <= _card_bm->size(),
  1771              err_msg("oob: end_idx=  "SIZE_FORMAT", bitmap size= "SIZE_FORMAT,
  1772                      end_idx, _card_bm->size()));
  1773       assert(start_idx < _card_bm->size(),
  1774              err_msg("oob: start_idx=  "SIZE_FORMAT", bitmap size= "SIZE_FORMAT,
  1775                      start_idx, _card_bm->size()));
  1777       _cm->set_card_bitmap_range(_card_bm, start_idx, end_idx, true /* is_par */);
  1780     // Set the bit for the region if it contains live data
  1781     if (hr->next_marked_bytes() > 0) {
  1782       set_bit_for_region(hr);
  1785     return false;
  1787 };
  1789 class G1ParFinalCountTask: public AbstractGangTask {
  1790 protected:
  1791   G1CollectedHeap* _g1h;
  1792   ConcurrentMark* _cm;
  1793   BitMap* _actual_region_bm;
  1794   BitMap* _actual_card_bm;
  1796   uint    _n_workers;
  1798 public:
  1799   G1ParFinalCountTask(G1CollectedHeap* g1h, BitMap* region_bm, BitMap* card_bm)
  1800     : AbstractGangTask("G1 final counting"),
  1801       _g1h(g1h), _cm(_g1h->concurrent_mark()),
  1802       _actual_region_bm(region_bm), _actual_card_bm(card_bm),
  1803       _n_workers(0) {
  1804     // Use the value already set as the number of active threads
  1805     // in the call to run_task().
  1806     if (G1CollectedHeap::use_parallel_gc_threads()) {
  1807       assert( _g1h->workers()->active_workers() > 0,
  1808         "Should have been previously set");
  1809       _n_workers = _g1h->workers()->active_workers();
  1810     } else {
  1811       _n_workers = 1;
  1815   void work(uint worker_id) {
  1816     assert(worker_id < _n_workers, "invariant");
  1818     FinalCountDataUpdateClosure final_update_cl(_g1h,
  1819                                                 _actual_region_bm,
  1820                                                 _actual_card_bm);
  1822     if (G1CollectedHeap::use_parallel_gc_threads()) {
  1823       _g1h->heap_region_par_iterate_chunked(&final_update_cl,
  1824                                             worker_id,
  1825                                             _n_workers,
  1826                                             HeapRegion::FinalCountClaimValue);
  1827     } else {
  1828       _g1h->heap_region_iterate(&final_update_cl);
  1831 };
  1833 class G1ParNoteEndTask;
  1835 class G1NoteEndOfConcMarkClosure : public HeapRegionClosure {
  1836   G1CollectedHeap* _g1;
  1837   size_t _max_live_bytes;
  1838   uint _regions_claimed;
  1839   size_t _freed_bytes;
  1840   FreeRegionList* _local_cleanup_list;
  1841   HeapRegionSetCount _old_regions_removed;
  1842   HeapRegionSetCount _humongous_regions_removed;
  1843   HRRSCleanupTask* _hrrs_cleanup_task;
  1844   double _claimed_region_time;
  1845   double _max_region_time;
  1847 public:
  1848   G1NoteEndOfConcMarkClosure(G1CollectedHeap* g1,
  1849                              FreeRegionList* local_cleanup_list,
  1850                              HRRSCleanupTask* hrrs_cleanup_task) :
  1851     _g1(g1),
  1852     _max_live_bytes(0), _regions_claimed(0),
  1853     _freed_bytes(0),
  1854     _claimed_region_time(0.0), _max_region_time(0.0),
  1855     _local_cleanup_list(local_cleanup_list),
  1856     _old_regions_removed(),
  1857     _humongous_regions_removed(),
  1858     _hrrs_cleanup_task(hrrs_cleanup_task) { }
  1860   size_t freed_bytes() { return _freed_bytes; }
  1861   const HeapRegionSetCount& old_regions_removed() { return _old_regions_removed; }
  1862   const HeapRegionSetCount& humongous_regions_removed() { return _humongous_regions_removed; }
  1864   bool doHeapRegion(HeapRegion *hr) {
  1865     if (hr->continuesHumongous()) {
  1866       return false;
  1868     // We use a claim value of zero here because all regions
  1869     // were claimed with value 1 in the FinalCount task.
  1870     _g1->reset_gc_time_stamps(hr);
  1871     double start = os::elapsedTime();
  1872     _regions_claimed++;
  1873     hr->note_end_of_marking();
  1874     _max_live_bytes += hr->max_live_bytes();
  1876     if (hr->used() > 0 && hr->max_live_bytes() == 0 && !hr->is_young()) {
  1877       _freed_bytes += hr->used();
  1878       hr->set_containing_set(NULL);
  1879       if (hr->isHumongous()) {
  1880         assert(hr->startsHumongous(), "we should only see starts humongous");
  1881         _humongous_regions_removed.increment(1u, hr->capacity());
  1882         _g1->free_humongous_region(hr, _local_cleanup_list, true);
  1883       } else {
  1884         _old_regions_removed.increment(1u, hr->capacity());
  1885         _g1->free_region(hr, _local_cleanup_list, true);
  1887     } else {
  1888       hr->rem_set()->do_cleanup_work(_hrrs_cleanup_task);
  1891     double region_time = (os::elapsedTime() - start);
  1892     _claimed_region_time += region_time;
  1893     if (region_time > _max_region_time) {
  1894       _max_region_time = region_time;
  1896     return false;
  1899   size_t max_live_bytes() { return _max_live_bytes; }
  1900   uint regions_claimed() { return _regions_claimed; }
  1901   double claimed_region_time_sec() { return _claimed_region_time; }
  1902   double max_region_time_sec() { return _max_region_time; }
  1903 };
  1905 class G1ParNoteEndTask: public AbstractGangTask {
  1906   friend class G1NoteEndOfConcMarkClosure;
  1908 protected:
  1909   G1CollectedHeap* _g1h;
  1910   size_t _max_live_bytes;
  1911   size_t _freed_bytes;
  1912   FreeRegionList* _cleanup_list;
  1914 public:
  1915   G1ParNoteEndTask(G1CollectedHeap* g1h,
  1916                    FreeRegionList* cleanup_list) :
  1917     AbstractGangTask("G1 note end"), _g1h(g1h),
  1918     _max_live_bytes(0), _freed_bytes(0), _cleanup_list(cleanup_list) { }
  1920   void work(uint worker_id) {
  1921     double start = os::elapsedTime();
  1922     FreeRegionList local_cleanup_list("Local Cleanup List");
  1923     HRRSCleanupTask hrrs_cleanup_task;
  1924     G1NoteEndOfConcMarkClosure g1_note_end(_g1h, &local_cleanup_list,
  1925                                            &hrrs_cleanup_task);
  1926     if (G1CollectedHeap::use_parallel_gc_threads()) {
  1927       _g1h->heap_region_par_iterate_chunked(&g1_note_end, worker_id,
  1928                                             _g1h->workers()->active_workers(),
  1929                                             HeapRegion::NoteEndClaimValue);
  1930     } else {
  1931       _g1h->heap_region_iterate(&g1_note_end);
  1933     assert(g1_note_end.complete(), "Shouldn't have yielded!");
  1935     // Now update the lists
  1936     _g1h->remove_from_old_sets(g1_note_end.old_regions_removed(), g1_note_end.humongous_regions_removed());
  1938       MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
  1939       _g1h->decrement_summary_bytes(g1_note_end.freed_bytes());
  1940       _max_live_bytes += g1_note_end.max_live_bytes();
  1941       _freed_bytes += g1_note_end.freed_bytes();
  1943       // If we iterate over the global cleanup list at the end of
  1944       // cleanup to do this printing we will not guarantee to only
  1945       // generate output for the newly-reclaimed regions (the list
  1946       // might not be empty at the beginning of cleanup; we might
  1947       // still be working on its previous contents). So we do the
  1948       // printing here, before we append the new regions to the global
  1949       // cleanup list.
  1951       G1HRPrinter* hr_printer = _g1h->hr_printer();
  1952       if (hr_printer->is_active()) {
  1953         FreeRegionListIterator iter(&local_cleanup_list);
  1954         while (iter.more_available()) {
  1955           HeapRegion* hr = iter.get_next();
  1956           hr_printer->cleanup(hr);
  1960       _cleanup_list->add_ordered(&local_cleanup_list);
  1961       assert(local_cleanup_list.is_empty(), "post-condition");
  1963       HeapRegionRemSet::finish_cleanup_task(&hrrs_cleanup_task);
  1966   size_t max_live_bytes() { return _max_live_bytes; }
  1967   size_t freed_bytes() { return _freed_bytes; }
  1968 };
  1970 class G1ParScrubRemSetTask: public AbstractGangTask {
  1971 protected:
  1972   G1RemSet* _g1rs;
  1973   BitMap* _region_bm;
  1974   BitMap* _card_bm;
  1975 public:
  1976   G1ParScrubRemSetTask(G1CollectedHeap* g1h,
  1977                        BitMap* region_bm, BitMap* card_bm) :
  1978     AbstractGangTask("G1 ScrubRS"), _g1rs(g1h->g1_rem_set()),
  1979     _region_bm(region_bm), _card_bm(card_bm) { }
  1981   void work(uint worker_id) {
  1982     if (G1CollectedHeap::use_parallel_gc_threads()) {
  1983       _g1rs->scrub_par(_region_bm, _card_bm, worker_id,
  1984                        HeapRegion::ScrubRemSetClaimValue);
  1985     } else {
  1986       _g1rs->scrub(_region_bm, _card_bm);
  1990 };
  1992 void ConcurrentMark::cleanup() {
  1993   // world is stopped at this checkpoint
  1994   assert(SafepointSynchronize::is_at_safepoint(),
  1995          "world should be stopped");
  1996   G1CollectedHeap* g1h = G1CollectedHeap::heap();
  1998   // If a full collection has happened, we shouldn't do this.
  1999   if (has_aborted()) {
  2000     g1h->set_marking_complete(); // So bitmap clearing isn't confused
  2001     return;
  2004   g1h->verify_region_sets_optional();
  2006   if (VerifyDuringGC) {
  2007     HandleMark hm;  // handle scope
  2008     Universe::heap()->prepare_for_verify();
  2009     Universe::verify(VerifyOption_G1UsePrevMarking,
  2010                      " VerifyDuringGC:(before)");
  2012   g1h->check_bitmaps("Cleanup Start");
  2014   G1CollectorPolicy* g1p = G1CollectedHeap::heap()->g1_policy();
  2015   g1p->record_concurrent_mark_cleanup_start();
  2017   double start = os::elapsedTime();
  2019   HeapRegionRemSet::reset_for_cleanup_tasks();
  2021   uint n_workers;
  2023   // Do counting once more with the world stopped for good measure.
  2024   G1ParFinalCountTask g1_par_count_task(g1h, &_region_bm, &_card_bm);
  2026   if (G1CollectedHeap::use_parallel_gc_threads()) {
  2027    assert(g1h->check_heap_region_claim_values(HeapRegion::InitialClaimValue),
  2028            "sanity check");
  2030     g1h->set_par_threads();
  2031     n_workers = g1h->n_par_threads();
  2032     assert(g1h->n_par_threads() == n_workers,
  2033            "Should not have been reset");
  2034     g1h->workers()->run_task(&g1_par_count_task);
  2035     // Done with the parallel phase so reset to 0.
  2036     g1h->set_par_threads(0);
  2038     assert(g1h->check_heap_region_claim_values(HeapRegion::FinalCountClaimValue),
  2039            "sanity check");
  2040   } else {
  2041     n_workers = 1;
  2042     g1_par_count_task.work(0);
  2045   if (VerifyDuringGC) {
  2046     // Verify that the counting data accumulated during marking matches
  2047     // that calculated by walking the marking bitmap.
  2049     // Bitmaps to hold expected values
  2050     BitMap expected_region_bm(_region_bm.size(), true);
  2051     BitMap expected_card_bm(_card_bm.size(), true);
  2053     G1ParVerifyFinalCountTask g1_par_verify_task(g1h,
  2054                                                  &_region_bm,
  2055                                                  &_card_bm,
  2056                                                  &expected_region_bm,
  2057                                                  &expected_card_bm);
  2059     if (G1CollectedHeap::use_parallel_gc_threads()) {
  2060       g1h->set_par_threads((int)n_workers);
  2061       g1h->workers()->run_task(&g1_par_verify_task);
  2062       // Done with the parallel phase so reset to 0.
  2063       g1h->set_par_threads(0);
  2065       assert(g1h->check_heap_region_claim_values(HeapRegion::VerifyCountClaimValue),
  2066              "sanity check");
  2067     } else {
  2068       g1_par_verify_task.work(0);
  2071     guarantee(g1_par_verify_task.failures() == 0, "Unexpected accounting failures");
  2074   size_t start_used_bytes = g1h->used();
  2075   g1h->set_marking_complete();
  2077   double count_end = os::elapsedTime();
  2078   double this_final_counting_time = (count_end - start);
  2079   _total_counting_time += this_final_counting_time;
  2081   if (G1PrintRegionLivenessInfo) {
  2082     G1PrintRegionLivenessInfoClosure cl(gclog_or_tty, "Post-Marking");
  2083     _g1h->heap_region_iterate(&cl);
  2086   // Install newly created mark bitMap as "prev".
  2087   swapMarkBitMaps();
  2089   g1h->reset_gc_time_stamp();
  2091   // Note end of marking in all heap regions.
  2092   G1ParNoteEndTask g1_par_note_end_task(g1h, &_cleanup_list);
  2093   if (G1CollectedHeap::use_parallel_gc_threads()) {
  2094     g1h->set_par_threads((int)n_workers);
  2095     g1h->workers()->run_task(&g1_par_note_end_task);
  2096     g1h->set_par_threads(0);
  2098     assert(g1h->check_heap_region_claim_values(HeapRegion::NoteEndClaimValue),
  2099            "sanity check");
  2100   } else {
  2101     g1_par_note_end_task.work(0);
  2103   g1h->check_gc_time_stamps();
  2105   if (!cleanup_list_is_empty()) {
  2106     // The cleanup list is not empty, so we'll have to process it
  2107     // concurrently. Notify anyone else that might be wanting free
  2108     // regions that there will be more free regions coming soon.
  2109     g1h->set_free_regions_coming();
  2112   // call below, since it affects the metric by which we sort the heap
  2113   // regions.
  2114   if (G1ScrubRemSets) {
  2115     double rs_scrub_start = os::elapsedTime();
  2116     G1ParScrubRemSetTask g1_par_scrub_rs_task(g1h, &_region_bm, &_card_bm);
  2117     if (G1CollectedHeap::use_parallel_gc_threads()) {
  2118       g1h->set_par_threads((int)n_workers);
  2119       g1h->workers()->run_task(&g1_par_scrub_rs_task);
  2120       g1h->set_par_threads(0);
  2122       assert(g1h->check_heap_region_claim_values(
  2123                                             HeapRegion::ScrubRemSetClaimValue),
  2124              "sanity check");
  2125     } else {
  2126       g1_par_scrub_rs_task.work(0);
  2129     double rs_scrub_end = os::elapsedTime();
  2130     double this_rs_scrub_time = (rs_scrub_end - rs_scrub_start);
  2131     _total_rs_scrub_time += this_rs_scrub_time;
  2134   // this will also free any regions totally full of garbage objects,
  2135   // and sort the regions.
  2136   g1h->g1_policy()->record_concurrent_mark_cleanup_end((int)n_workers);
  2138   // Statistics.
  2139   double end = os::elapsedTime();
  2140   _cleanup_times.add((end - start) * 1000.0);
  2142   if (G1Log::fine()) {
  2143     g1h->print_size_transition(gclog_or_tty,
  2144                                start_used_bytes,
  2145                                g1h->used(),
  2146                                g1h->capacity());
  2149   // Clean up will have freed any regions completely full of garbage.
  2150   // Update the soft reference policy with the new heap occupancy.
  2151   Universe::update_heap_info_at_gc();
  2153   if (VerifyDuringGC) {
  2154     HandleMark hm;  // handle scope
  2155     Universe::heap()->prepare_for_verify();
  2156     Universe::verify(VerifyOption_G1UsePrevMarking,
  2157                      " VerifyDuringGC:(after)");
  2159   g1h->check_bitmaps("Cleanup End");
  2161   g1h->verify_region_sets_optional();
  2163   // We need to make this be a "collection" so any collection pause that
  2164   // races with it goes around and waits for completeCleanup to finish.
  2165   g1h->increment_total_collections();
  2167   // Clean out dead classes and update Metaspace sizes.
  2168   if (ClassUnloadingWithConcurrentMark) {
  2169     ClassLoaderDataGraph::purge();
  2171   MetaspaceGC::compute_new_size();
  2173   // We reclaimed old regions so we should calculate the sizes to make
  2174   // sure we update the old gen/space data.
  2175   g1h->g1mm()->update_sizes();
  2177   g1h->trace_heap_after_concurrent_cycle();
  2180 void ConcurrentMark::completeCleanup() {
  2181   if (has_aborted()) return;
  2183   G1CollectedHeap* g1h = G1CollectedHeap::heap();
  2185   _cleanup_list.verify_optional();
  2186   FreeRegionList tmp_free_list("Tmp Free List");
  2188   if (G1ConcRegionFreeingVerbose) {
  2189     gclog_or_tty->print_cr("G1ConcRegionFreeing [complete cleanup] : "
  2190                            "cleanup list has %u entries",
  2191                            _cleanup_list.length());
  2194   // Noone else should be accessing the _cleanup_list at this point,
  2195   // so it's not necessary to take any locks
  2196   while (!_cleanup_list.is_empty()) {
  2197     HeapRegion* hr = _cleanup_list.remove_head();
  2198     assert(hr != NULL, "Got NULL from a non-empty list");
  2199     hr->par_clear();
  2200     tmp_free_list.add_ordered(hr);
  2202     // Instead of adding one region at a time to the secondary_free_list,
  2203     // we accumulate them in the local list and move them a few at a
  2204     // time. This also cuts down on the number of notify_all() calls
  2205     // we do during this process. We'll also append the local list when
  2206     // _cleanup_list is empty (which means we just removed the last
  2207     // region from the _cleanup_list).
  2208     if ((tmp_free_list.length() % G1SecondaryFreeListAppendLength == 0) ||
  2209         _cleanup_list.is_empty()) {
  2210       if (G1ConcRegionFreeingVerbose) {
  2211         gclog_or_tty->print_cr("G1ConcRegionFreeing [complete cleanup] : "
  2212                                "appending %u entries to the secondary_free_list, "
  2213                                "cleanup list still has %u entries",
  2214                                tmp_free_list.length(),
  2215                                _cleanup_list.length());
  2219         MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
  2220         g1h->secondary_free_list_add(&tmp_free_list);
  2221         SecondaryFreeList_lock->notify_all();
  2224       if (G1StressConcRegionFreeing) {
  2225         for (uintx i = 0; i < G1StressConcRegionFreeingDelayMillis; ++i) {
  2226           os::sleep(Thread::current(), (jlong) 1, false);
  2231   assert(tmp_free_list.is_empty(), "post-condition");
  2234 // Supporting Object and Oop closures for reference discovery
  2235 // and processing in during marking
  2237 bool G1CMIsAliveClosure::do_object_b(oop obj) {
  2238   HeapWord* addr = (HeapWord*)obj;
  2239   return addr != NULL &&
  2240          (!_g1->is_in_g1_reserved(addr) || !_g1->is_obj_ill(obj));
  2243 // 'Keep Alive' oop closure used by both serial parallel reference processing.
  2244 // Uses the CMTask associated with a worker thread (for serial reference
  2245 // processing the CMTask for worker 0 is used) to preserve (mark) and
  2246 // trace referent objects.
  2247 //
  2248 // Using the CMTask and embedded local queues avoids having the worker
  2249 // threads operating on the global mark stack. This reduces the risk
  2250 // of overflowing the stack - which we would rather avoid at this late
  2251 // state. Also using the tasks' local queues removes the potential
  2252 // of the workers interfering with each other that could occur if
  2253 // operating on the global stack.
  2255 class G1CMKeepAliveAndDrainClosure: public OopClosure {
  2256   ConcurrentMark* _cm;
  2257   CMTask*         _task;
  2258   int             _ref_counter_limit;
  2259   int             _ref_counter;
  2260   bool            _is_serial;
  2261  public:
  2262   G1CMKeepAliveAndDrainClosure(ConcurrentMark* cm, CMTask* task, bool is_serial) :
  2263     _cm(cm), _task(task), _is_serial(is_serial),
  2264     _ref_counter_limit(G1RefProcDrainInterval) {
  2265     assert(_ref_counter_limit > 0, "sanity");
  2266     assert(!_is_serial || _task->worker_id() == 0, "only task 0 for serial code");
  2267     _ref_counter = _ref_counter_limit;
  2270   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
  2271   virtual void do_oop(      oop* p) { do_oop_work(p); }
  2273   template <class T> void do_oop_work(T* p) {
  2274     if (!_cm->has_overflown()) {
  2275       oop obj = oopDesc::load_decode_heap_oop(p);
  2276       if (_cm->verbose_high()) {
  2277         gclog_or_tty->print_cr("\t[%u] we're looking at location "
  2278                                "*"PTR_FORMAT" = "PTR_FORMAT,
  2279                                _task->worker_id(), p2i(p), p2i((void*) obj));
  2282       _task->deal_with_reference(obj);
  2283       _ref_counter--;
  2285       if (_ref_counter == 0) {
  2286         // We have dealt with _ref_counter_limit references, pushing them
  2287         // and objects reachable from them on to the local stack (and
  2288         // possibly the global stack). Call CMTask::do_marking_step() to
  2289         // process these entries.
  2290         //
  2291         // We call CMTask::do_marking_step() in a loop, which we'll exit if
  2292         // there's nothing more to do (i.e. we're done with the entries that
  2293         // were pushed as a result of the CMTask::deal_with_reference() calls
  2294         // above) or we overflow.
  2295         //
  2296         // Note: CMTask::do_marking_step() can set the CMTask::has_aborted()
  2297         // flag while there may still be some work to do. (See the comment at
  2298         // the beginning of CMTask::do_marking_step() for those conditions -
  2299         // one of which is reaching the specified time target.) It is only
  2300         // when CMTask::do_marking_step() returns without setting the
  2301         // has_aborted() flag that the marking step has completed.
  2302         do {
  2303           double mark_step_duration_ms = G1ConcMarkStepDurationMillis;
  2304           _task->do_marking_step(mark_step_duration_ms,
  2305                                  false      /* do_termination */,
  2306                                  _is_serial);
  2307         } while (_task->has_aborted() && !_cm->has_overflown());
  2308         _ref_counter = _ref_counter_limit;
  2310     } else {
  2311       if (_cm->verbose_high()) {
  2312          gclog_or_tty->print_cr("\t[%u] CM Overflow", _task->worker_id());
  2316 };
  2318 // 'Drain' oop closure used by both serial and parallel reference processing.
  2319 // Uses the CMTask associated with a given worker thread (for serial
  2320 // reference processing the CMtask for worker 0 is used). Calls the
  2321 // do_marking_step routine, with an unbelievably large timeout value,
  2322 // to drain the marking data structures of the remaining entries
  2323 // added by the 'keep alive' oop closure above.
  2325 class G1CMDrainMarkingStackClosure: public VoidClosure {
  2326   ConcurrentMark* _cm;
  2327   CMTask*         _task;
  2328   bool            _is_serial;
  2329  public:
  2330   G1CMDrainMarkingStackClosure(ConcurrentMark* cm, CMTask* task, bool is_serial) :
  2331     _cm(cm), _task(task), _is_serial(is_serial) {
  2332     assert(!_is_serial || _task->worker_id() == 0, "only task 0 for serial code");
  2335   void do_void() {
  2336     do {
  2337       if (_cm->verbose_high()) {
  2338         gclog_or_tty->print_cr("\t[%u] Drain: Calling do_marking_step - serial: %s",
  2339                                _task->worker_id(), BOOL_TO_STR(_is_serial));
  2342       // We call CMTask::do_marking_step() to completely drain the local
  2343       // and global marking stacks of entries pushed by the 'keep alive'
  2344       // oop closure (an instance of G1CMKeepAliveAndDrainClosure above).
  2345       //
  2346       // CMTask::do_marking_step() is called in a loop, which we'll exit
  2347       // if there's nothing more to do (i.e. we'completely drained the
  2348       // entries that were pushed as a a result of applying the 'keep alive'
  2349       // closure to the entries on the discovered ref lists) or we overflow
  2350       // the global marking stack.
  2351       //
  2352       // Note: CMTask::do_marking_step() can set the CMTask::has_aborted()
  2353       // flag while there may still be some work to do. (See the comment at
  2354       // the beginning of CMTask::do_marking_step() for those conditions -
  2355       // one of which is reaching the specified time target.) It is only
  2356       // when CMTask::do_marking_step() returns without setting the
  2357       // has_aborted() flag that the marking step has completed.
  2359       _task->do_marking_step(1000000000.0 /* something very large */,
  2360                              true         /* do_termination */,
  2361                              _is_serial);
  2362     } while (_task->has_aborted() && !_cm->has_overflown());
  2364 };
  2366 // Implementation of AbstractRefProcTaskExecutor for parallel
  2367 // reference processing at the end of G1 concurrent marking
  2369 class G1CMRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
  2370 private:
  2371   G1CollectedHeap* _g1h;
  2372   ConcurrentMark*  _cm;
  2373   WorkGang*        _workers;
  2374   int              _active_workers;
  2376 public:
  2377   G1CMRefProcTaskExecutor(G1CollectedHeap* g1h,
  2378                         ConcurrentMark* cm,
  2379                         WorkGang* workers,
  2380                         int n_workers) :
  2381     _g1h(g1h), _cm(cm),
  2382     _workers(workers), _active_workers(n_workers) { }
  2384   // Executes the given task using concurrent marking worker threads.
  2385   virtual void execute(ProcessTask& task);
  2386   virtual void execute(EnqueueTask& task);
  2387 };
  2389 class G1CMRefProcTaskProxy: public AbstractGangTask {
  2390   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
  2391   ProcessTask&     _proc_task;
  2392   G1CollectedHeap* _g1h;
  2393   ConcurrentMark*  _cm;
  2395 public:
  2396   G1CMRefProcTaskProxy(ProcessTask& proc_task,
  2397                      G1CollectedHeap* g1h,
  2398                      ConcurrentMark* cm) :
  2399     AbstractGangTask("Process reference objects in parallel"),
  2400     _proc_task(proc_task), _g1h(g1h), _cm(cm) {
  2401     ReferenceProcessor* rp = _g1h->ref_processor_cm();
  2402     assert(rp->processing_is_mt(), "shouldn't be here otherwise");
  2405   virtual void work(uint worker_id) {
  2406     ResourceMark rm;
  2407     HandleMark hm;
  2408     CMTask* task = _cm->task(worker_id);
  2409     G1CMIsAliveClosure g1_is_alive(_g1h);
  2410     G1CMKeepAliveAndDrainClosure g1_par_keep_alive(_cm, task, false /* is_serial */);
  2411     G1CMDrainMarkingStackClosure g1_par_drain(_cm, task, false /* is_serial */);
  2413     _proc_task.work(worker_id, g1_is_alive, g1_par_keep_alive, g1_par_drain);
  2415 };
  2417 void G1CMRefProcTaskExecutor::execute(ProcessTask& proc_task) {
  2418   assert(_workers != NULL, "Need parallel worker threads.");
  2419   assert(_g1h->ref_processor_cm()->processing_is_mt(), "processing is not MT");
  2421   G1CMRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _cm);
  2423   // We need to reset the concurrency level before each
  2424   // proxy task execution, so that the termination protocol
  2425   // and overflow handling in CMTask::do_marking_step() knows
  2426   // how many workers to wait for.
  2427   _cm->set_concurrency(_active_workers);
  2428   _g1h->set_par_threads(_active_workers);
  2429   _workers->run_task(&proc_task_proxy);
  2430   _g1h->set_par_threads(0);
  2433 class G1CMRefEnqueueTaskProxy: public AbstractGangTask {
  2434   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
  2435   EnqueueTask& _enq_task;
  2437 public:
  2438   G1CMRefEnqueueTaskProxy(EnqueueTask& enq_task) :
  2439     AbstractGangTask("Enqueue reference objects in parallel"),
  2440     _enq_task(enq_task) { }
  2442   virtual void work(uint worker_id) {
  2443     _enq_task.work(worker_id);
  2445 };
  2447 void G1CMRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
  2448   assert(_workers != NULL, "Need parallel worker threads.");
  2449   assert(_g1h->ref_processor_cm()->processing_is_mt(), "processing is not MT");
  2451   G1CMRefEnqueueTaskProxy enq_task_proxy(enq_task);
  2453   // Not strictly necessary but...
  2454   //
  2455   // We need to reset the concurrency level before each
  2456   // proxy task execution, so that the termination protocol
  2457   // and overflow handling in CMTask::do_marking_step() knows
  2458   // how many workers to wait for.
  2459   _cm->set_concurrency(_active_workers);
  2460   _g1h->set_par_threads(_active_workers);
  2461   _workers->run_task(&enq_task_proxy);
  2462   _g1h->set_par_threads(0);
  2465 void ConcurrentMark::weakRefsWorkParallelPart(BoolObjectClosure* is_alive, bool purged_classes) {
  2466   G1CollectedHeap::heap()->parallel_cleaning(is_alive, true, true, purged_classes);
  2469 // Helper class to get rid of some boilerplate code.
  2470 class G1RemarkGCTraceTime : public GCTraceTime {
  2471   static bool doit_and_prepend(bool doit) {
  2472     if (doit) {
  2473       gclog_or_tty->put(' ');
  2475     return doit;
  2478  public:
  2479   G1RemarkGCTraceTime(const char* title, bool doit)
  2480     : GCTraceTime(title, doit_and_prepend(doit), false, G1CollectedHeap::heap()->gc_timer_cm(),
  2481         G1CollectedHeap::heap()->concurrent_mark()->concurrent_gc_id()) {
  2483 };
  2485 void ConcurrentMark::weakRefsWork(bool clear_all_soft_refs) {
  2486   if (has_overflown()) {
  2487     // Skip processing the discovered references if we have
  2488     // overflown the global marking stack. Reference objects
  2489     // only get discovered once so it is OK to not
  2490     // de-populate the discovered reference lists. We could have,
  2491     // but the only benefit would be that, when marking restarts,
  2492     // less reference objects are discovered.
  2493     return;
  2496   ResourceMark rm;
  2497   HandleMark   hm;
  2499   G1CollectedHeap* g1h = G1CollectedHeap::heap();
  2501   // Is alive closure.
  2502   G1CMIsAliveClosure g1_is_alive(g1h);
  2504   // Inner scope to exclude the cleaning of the string and symbol
  2505   // tables from the displayed time.
  2507     if (G1Log::finer()) {
  2508       gclog_or_tty->put(' ');
  2510     GCTraceTime t("GC ref-proc", G1Log::finer(), false, g1h->gc_timer_cm(), concurrent_gc_id());
  2512     ReferenceProcessor* rp = g1h->ref_processor_cm();
  2514     // See the comment in G1CollectedHeap::ref_processing_init()
  2515     // about how reference processing currently works in G1.
  2517     // Set the soft reference policy
  2518     rp->setup_policy(clear_all_soft_refs);
  2519     assert(_markStack.isEmpty(), "mark stack should be empty");
  2521     // Instances of the 'Keep Alive' and 'Complete GC' closures used
  2522     // in serial reference processing. Note these closures are also
  2523     // used for serially processing (by the the current thread) the
  2524     // JNI references during parallel reference processing.
  2525     //
  2526     // These closures do not need to synchronize with the worker
  2527     // threads involved in parallel reference processing as these
  2528     // instances are executed serially by the current thread (e.g.
  2529     // reference processing is not multi-threaded and is thus
  2530     // performed by the current thread instead of a gang worker).
  2531     //
  2532     // The gang tasks involved in parallel reference procssing create
  2533     // their own instances of these closures, which do their own
  2534     // synchronization among themselves.
  2535     G1CMKeepAliveAndDrainClosure g1_keep_alive(this, task(0), true /* is_serial */);
  2536     G1CMDrainMarkingStackClosure g1_drain_mark_stack(this, task(0), true /* is_serial */);
  2538     // We need at least one active thread. If reference processing
  2539     // is not multi-threaded we use the current (VMThread) thread,
  2540     // otherwise we use the work gang from the G1CollectedHeap and
  2541     // we utilize all the worker threads we can.
  2542     bool processing_is_mt = rp->processing_is_mt() && g1h->workers() != NULL;
  2543     uint active_workers = (processing_is_mt ? g1h->workers()->active_workers() : 1U);
  2544     active_workers = MAX2(MIN2(active_workers, _max_worker_id), 1U);
  2546     // Parallel processing task executor.
  2547     G1CMRefProcTaskExecutor par_task_executor(g1h, this,
  2548                                               g1h->workers(), active_workers);
  2549     AbstractRefProcTaskExecutor* executor = (processing_is_mt ? &par_task_executor : NULL);
  2551     // Set the concurrency level. The phase was already set prior to
  2552     // executing the remark task.
  2553     set_concurrency(active_workers);
  2555     // Set the degree of MT processing here.  If the discovery was done MT,
  2556     // the number of threads involved during discovery could differ from
  2557     // the number of active workers.  This is OK as long as the discovered
  2558     // Reference lists are balanced (see balance_all_queues() and balance_queues()).
  2559     rp->set_active_mt_degree(active_workers);
  2561     // Process the weak references.
  2562     const ReferenceProcessorStats& stats =
  2563         rp->process_discovered_references(&g1_is_alive,
  2564                                           &g1_keep_alive,
  2565                                           &g1_drain_mark_stack,
  2566                                           executor,
  2567                                           g1h->gc_timer_cm(),
  2568                                           concurrent_gc_id());
  2569     g1h->gc_tracer_cm()->report_gc_reference_stats(stats);
  2571     // The do_oop work routines of the keep_alive and drain_marking_stack
  2572     // oop closures will set the has_overflown flag if we overflow the
  2573     // global marking stack.
  2575     assert(_markStack.overflow() || _markStack.isEmpty(),
  2576             "mark stack should be empty (unless it overflowed)");
  2578     if (_markStack.overflow()) {
  2579       // This should have been done already when we tried to push an
  2580       // entry on to the global mark stack. But let's do it again.
  2581       set_has_overflown();
  2584     assert(rp->num_q() == active_workers, "why not");
  2586     rp->enqueue_discovered_references(executor);
  2588     rp->verify_no_references_recorded();
  2589     assert(!rp->discovery_enabled(), "Post condition");
  2592   if (has_overflown()) {
  2593     // We can not trust g1_is_alive if the marking stack overflowed
  2594     return;
  2597   assert(_markStack.isEmpty(), "Marking should have completed");
  2599   // Unload Klasses, String, Symbols, Code Cache, etc.
  2601     G1RemarkGCTraceTime trace("Unloading", G1Log::finer());
  2603     if (ClassUnloadingWithConcurrentMark) {
  2604       bool purged_classes;
  2607         G1RemarkGCTraceTime trace("System Dictionary Unloading", G1Log::finest());
  2608         purged_classes = SystemDictionary::do_unloading(&g1_is_alive);
  2612         G1RemarkGCTraceTime trace("Parallel Unloading", G1Log::finest());
  2613         weakRefsWorkParallelPart(&g1_is_alive, purged_classes);
  2617     if (G1StringDedup::is_enabled()) {
  2618       G1RemarkGCTraceTime trace("String Deduplication Unlink", G1Log::finest());
  2619       G1StringDedup::unlink(&g1_is_alive);
  2624 void ConcurrentMark::swapMarkBitMaps() {
  2625   CMBitMapRO* temp = _prevMarkBitMap;
  2626   _prevMarkBitMap  = (CMBitMapRO*)_nextMarkBitMap;
  2627   _nextMarkBitMap  = (CMBitMap*)  temp;
  2630 class CMObjectClosure;
  2632 // Closure for iterating over objects, currently only used for
  2633 // processing SATB buffers.
  2634 class CMObjectClosure : public ObjectClosure {
  2635 private:
  2636   CMTask* _task;
  2638 public:
  2639   void do_object(oop obj) {
  2640     _task->deal_with_reference(obj);
  2643   CMObjectClosure(CMTask* task) : _task(task) { }
  2644 };
  2646 class G1RemarkThreadsClosure : public ThreadClosure {
  2647   CMObjectClosure _cm_obj;
  2648   G1CMOopClosure _cm_cl;
  2649   MarkingCodeBlobClosure _code_cl;
  2650   int _thread_parity;
  2651   bool _is_par;
  2653  public:
  2654   G1RemarkThreadsClosure(G1CollectedHeap* g1h, CMTask* task, bool is_par) :
  2655     _cm_obj(task), _cm_cl(g1h, g1h->concurrent_mark(), task), _code_cl(&_cm_cl, !CodeBlobToOopClosure::FixRelocations),
  2656     _thread_parity(SharedHeap::heap()->strong_roots_parity()), _is_par(is_par) {}
  2658   void do_thread(Thread* thread) {
  2659     if (thread->is_Java_thread()) {
  2660       if (thread->claim_oops_do(_is_par, _thread_parity)) {
  2661         JavaThread* jt = (JavaThread*)thread;
  2663         // In theory it should not be neccessary to explicitly walk the nmethods to find roots for concurrent marking
  2664         // however the liveness of oops reachable from nmethods have very complex lifecycles:
  2665         // * Alive if on the stack of an executing method
  2666         // * Weakly reachable otherwise
  2667         // Some objects reachable from nmethods, such as the class loader (or klass_holder) of the receiver should be
  2668         // live by the SATB invariant but other oops recorded in nmethods may behave differently.
  2669         jt->nmethods_do(&_code_cl);
  2671         jt->satb_mark_queue().apply_closure_and_empty(&_cm_obj);
  2673     } else if (thread->is_VM_thread()) {
  2674       if (thread->claim_oops_do(_is_par, _thread_parity)) {
  2675         JavaThread::satb_mark_queue_set().shared_satb_queue()->apply_closure_and_empty(&_cm_obj);
  2679 };
  2681 class CMRemarkTask: public AbstractGangTask {
  2682 private:
  2683   ConcurrentMark* _cm;
  2684   bool            _is_serial;
  2685 public:
  2686   void work(uint worker_id) {
  2687     // Since all available tasks are actually started, we should
  2688     // only proceed if we're supposed to be actived.
  2689     if (worker_id < _cm->active_tasks()) {
  2690       CMTask* task = _cm->task(worker_id);
  2691       task->record_start_time();
  2693         ResourceMark rm;
  2694         HandleMark hm;
  2696         G1RemarkThreadsClosure threads_f(G1CollectedHeap::heap(), task, !_is_serial);
  2697         Threads::threads_do(&threads_f);
  2700       do {
  2701         task->do_marking_step(1000000000.0 /* something very large */,
  2702                               true         /* do_termination       */,
  2703                               _is_serial);
  2704       } while (task->has_aborted() && !_cm->has_overflown());
  2705       // If we overflow, then we do not want to restart. We instead
  2706       // want to abort remark and do concurrent marking again.
  2707       task->record_end_time();
  2711   CMRemarkTask(ConcurrentMark* cm, int active_workers, bool is_serial) :
  2712     AbstractGangTask("Par Remark"), _cm(cm), _is_serial(is_serial) {
  2713     _cm->terminator()->reset_for_reuse(active_workers);
  2715 };
  2717 void ConcurrentMark::checkpointRootsFinalWork() {
  2718   ResourceMark rm;
  2719   HandleMark   hm;
  2720   G1CollectedHeap* g1h = G1CollectedHeap::heap();
  2722   G1RemarkGCTraceTime trace("Finalize Marking", G1Log::finer());
  2724   g1h->ensure_parsability(false);
  2726   if (G1CollectedHeap::use_parallel_gc_threads()) {
  2727     G1CollectedHeap::StrongRootsScope srs(g1h);
  2728     // this is remark, so we'll use up all active threads
  2729     uint active_workers = g1h->workers()->active_workers();
  2730     if (active_workers == 0) {
  2731       assert(active_workers > 0, "Should have been set earlier");
  2732       active_workers = (uint) ParallelGCThreads;
  2733       g1h->workers()->set_active_workers(active_workers);
  2735     set_concurrency_and_phase(active_workers, false /* concurrent */);
  2736     // Leave _parallel_marking_threads at it's
  2737     // value originally calculated in the ConcurrentMark
  2738     // constructor and pass values of the active workers
  2739     // through the gang in the task.
  2741     CMRemarkTask remarkTask(this, active_workers, false /* is_serial */);
  2742     // We will start all available threads, even if we decide that the
  2743     // active_workers will be fewer. The extra ones will just bail out
  2744     // immediately.
  2745     g1h->set_par_threads(active_workers);
  2746     g1h->workers()->run_task(&remarkTask);
  2747     g1h->set_par_threads(0);
  2748   } else {
  2749     G1CollectedHeap::StrongRootsScope srs(g1h);
  2750     uint active_workers = 1;
  2751     set_concurrency_and_phase(active_workers, false /* concurrent */);
  2753     // Note - if there's no work gang then the VMThread will be
  2754     // the thread to execute the remark - serially. We have
  2755     // to pass true for the is_serial parameter so that
  2756     // CMTask::do_marking_step() doesn't enter the sync
  2757     // barriers in the event of an overflow. Doing so will
  2758     // cause an assert that the current thread is not a
  2759     // concurrent GC thread.
  2760     CMRemarkTask remarkTask(this, active_workers, true /* is_serial*/);
  2761     remarkTask.work(0);
  2763   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
  2764   guarantee(has_overflown() ||
  2765             satb_mq_set.completed_buffers_num() == 0,
  2766             err_msg("Invariant: has_overflown = %s, num buffers = %d",
  2767                     BOOL_TO_STR(has_overflown()),
  2768                     satb_mq_set.completed_buffers_num()));
  2770   print_stats();
  2773 #ifndef PRODUCT
  2775 class PrintReachableOopClosure: public OopClosure {
  2776 private:
  2777   G1CollectedHeap* _g1h;
  2778   outputStream*    _out;
  2779   VerifyOption     _vo;
  2780   bool             _all;
  2782 public:
  2783   PrintReachableOopClosure(outputStream* out,
  2784                            VerifyOption  vo,
  2785                            bool          all) :
  2786     _g1h(G1CollectedHeap::heap()),
  2787     _out(out), _vo(vo), _all(all) { }
  2789   void do_oop(narrowOop* p) { do_oop_work(p); }
  2790   void do_oop(      oop* p) { do_oop_work(p); }
  2792   template <class T> void do_oop_work(T* p) {
  2793     oop         obj = oopDesc::load_decode_heap_oop(p);
  2794     const char* str = NULL;
  2795     const char* str2 = "";
  2797     if (obj == NULL) {
  2798       str = "";
  2799     } else if (!_g1h->is_in_g1_reserved(obj)) {
  2800       str = " O";
  2801     } else {
  2802       HeapRegion* hr  = _g1h->heap_region_containing(obj);
  2803       bool over_tams = _g1h->allocated_since_marking(obj, hr, _vo);
  2804       bool marked = _g1h->is_marked(obj, _vo);
  2806       if (over_tams) {
  2807         str = " >";
  2808         if (marked) {
  2809           str2 = " AND MARKED";
  2811       } else if (marked) {
  2812         str = " M";
  2813       } else {
  2814         str = " NOT";
  2818     _out->print_cr("  "PTR_FORMAT": "PTR_FORMAT"%s%s",
  2819                    p2i(p), p2i((void*) obj), str, str2);
  2821 };
  2823 class PrintReachableObjectClosure : public ObjectClosure {
  2824 private:
  2825   G1CollectedHeap* _g1h;
  2826   outputStream*    _out;
  2827   VerifyOption     _vo;
  2828   bool             _all;
  2829   HeapRegion*      _hr;
  2831 public:
  2832   PrintReachableObjectClosure(outputStream* out,
  2833                               VerifyOption  vo,
  2834                               bool          all,
  2835                               HeapRegion*   hr) :
  2836     _g1h(G1CollectedHeap::heap()),
  2837     _out(out), _vo(vo), _all(all), _hr(hr) { }
  2839   void do_object(oop o) {
  2840     bool over_tams = _g1h->allocated_since_marking(o, _hr, _vo);
  2841     bool marked = _g1h->is_marked(o, _vo);
  2842     bool print_it = _all || over_tams || marked;
  2844     if (print_it) {
  2845       _out->print_cr(" "PTR_FORMAT"%s",
  2846                      p2i((void *)o), (over_tams) ? " >" : (marked) ? " M" : "");
  2847       PrintReachableOopClosure oopCl(_out, _vo, _all);
  2848       o->oop_iterate_no_header(&oopCl);
  2851 };
  2853 class PrintReachableRegionClosure : public HeapRegionClosure {
  2854 private:
  2855   G1CollectedHeap* _g1h;
  2856   outputStream*    _out;
  2857   VerifyOption     _vo;
  2858   bool             _all;
  2860 public:
  2861   bool doHeapRegion(HeapRegion* hr) {
  2862     HeapWord* b = hr->bottom();
  2863     HeapWord* e = hr->end();
  2864     HeapWord* t = hr->top();
  2865     HeapWord* p = _g1h->top_at_mark_start(hr, _vo);
  2866     _out->print_cr("** ["PTR_FORMAT", "PTR_FORMAT"] top: "PTR_FORMAT" "
  2867                    "TAMS: " PTR_FORMAT, p2i(b), p2i(e), p2i(t), p2i(p));
  2868     _out->cr();
  2870     HeapWord* from = b;
  2871     HeapWord* to   = t;
  2873     if (to > from) {
  2874       _out->print_cr("Objects in [" PTR_FORMAT ", " PTR_FORMAT "]", p2i(from), p2i(to));
  2875       _out->cr();
  2876       PrintReachableObjectClosure ocl(_out, _vo, _all, hr);
  2877       hr->object_iterate_mem_careful(MemRegion(from, to), &ocl);
  2878       _out->cr();
  2881     return false;
  2884   PrintReachableRegionClosure(outputStream* out,
  2885                               VerifyOption  vo,
  2886                               bool          all) :
  2887     _g1h(G1CollectedHeap::heap()), _out(out), _vo(vo), _all(all) { }
  2888 };
  2890 void ConcurrentMark::print_reachable(const char* str,
  2891                                      VerifyOption vo,
  2892                                      bool all) {
  2893   gclog_or_tty->cr();
  2894   gclog_or_tty->print_cr("== Doing heap dump... ");
  2896   if (G1PrintReachableBaseFile == NULL) {
  2897     gclog_or_tty->print_cr("  #### error: no base file defined");
  2898     return;
  2901   if (strlen(G1PrintReachableBaseFile) + 1 + strlen(str) >
  2902       (JVM_MAXPATHLEN - 1)) {
  2903     gclog_or_tty->print_cr("  #### error: file name too long");
  2904     return;
  2907   char file_name[JVM_MAXPATHLEN];
  2908   sprintf(file_name, "%s.%s", G1PrintReachableBaseFile, str);
  2909   gclog_or_tty->print_cr("  dumping to file %s", file_name);
  2911   fileStream fout(file_name);
  2912   if (!fout.is_open()) {
  2913     gclog_or_tty->print_cr("  #### error: could not open file");
  2914     return;
  2917   outputStream* out = &fout;
  2918   out->print_cr("-- USING %s", _g1h->top_at_mark_start_str(vo));
  2919   out->cr();
  2921   out->print_cr("--- ITERATING OVER REGIONS");
  2922   out->cr();
  2923   PrintReachableRegionClosure rcl(out, vo, all);
  2924   _g1h->heap_region_iterate(&rcl);
  2925   out->cr();
  2927   gclog_or_tty->print_cr("  done");
  2928   gclog_or_tty->flush();
  2931 #endif // PRODUCT
  2933 void ConcurrentMark::clearRangePrevBitmap(MemRegion mr) {
  2934   // Note we are overriding the read-only view of the prev map here, via
  2935   // the cast.
  2936   ((CMBitMap*)_prevMarkBitMap)->clearRange(mr);
  2939 void ConcurrentMark::clearRangeNextBitmap(MemRegion mr) {
  2940   _nextMarkBitMap->clearRange(mr);
  2943 void ConcurrentMark::clearRangeBothBitmaps(MemRegion mr) {
  2944   clearRangePrevBitmap(mr);
  2945   clearRangeNextBitmap(mr);
  2948 HeapRegion*
  2949 ConcurrentMark::claim_region(uint worker_id) {
  2950   // "checkpoint" the finger
  2951   HeapWord* finger = _finger;
  2953   // _heap_end will not change underneath our feet; it only changes at
  2954   // yield points.
  2955   while (finger < _heap_end) {
  2956     assert(_g1h->is_in_g1_reserved(finger), "invariant");
  2958     // Note on how this code handles humongous regions. In the
  2959     // normal case the finger will reach the start of a "starts
  2960     // humongous" (SH) region. Its end will either be the end of the
  2961     // last "continues humongous" (CH) region in the sequence, or the
  2962     // standard end of the SH region (if the SH is the only region in
  2963     // the sequence). That way claim_region() will skip over the CH
  2964     // regions. However, there is a subtle race between a CM thread
  2965     // executing this method and a mutator thread doing a humongous
  2966     // object allocation. The two are not mutually exclusive as the CM
  2967     // thread does not need to hold the Heap_lock when it gets
  2968     // here. So there is a chance that claim_region() will come across
  2969     // a free region that's in the progress of becoming a SH or a CH
  2970     // region. In the former case, it will either
  2971     //   a) Miss the update to the region's end, in which case it will
  2972     //      visit every subsequent CH region, will find their bitmaps
  2973     //      empty, and do nothing, or
  2974     //   b) Will observe the update of the region's end (in which case
  2975     //      it will skip the subsequent CH regions).
  2976     // If it comes across a region that suddenly becomes CH, the
  2977     // scenario will be similar to b). So, the race between
  2978     // claim_region() and a humongous object allocation might force us
  2979     // to do a bit of unnecessary work (due to some unnecessary bitmap
  2980     // iterations) but it should not introduce and correctness issues.
  2981     HeapRegion* curr_region   = _g1h->heap_region_containing_raw(finger);
  2982     HeapWord*   bottom        = curr_region->bottom();
  2983     HeapWord*   end           = curr_region->end();
  2984     HeapWord*   limit         = curr_region->next_top_at_mark_start();
  2986     if (verbose_low()) {
  2987       gclog_or_tty->print_cr("[%u] curr_region = "PTR_FORMAT" "
  2988                              "["PTR_FORMAT", "PTR_FORMAT"), "
  2989                              "limit = "PTR_FORMAT,
  2990                              worker_id, p2i(curr_region), p2i(bottom), p2i(end), p2i(limit));
  2993     // Is the gap between reading the finger and doing the CAS too long?
  2994     HeapWord* res = (HeapWord*) Atomic::cmpxchg_ptr(end, &_finger, finger);
  2995     if (res == finger) {
  2996       // we succeeded
  2998       // notice that _finger == end cannot be guaranteed here since,
  2999       // someone else might have moved the finger even further
  3000       assert(_finger >= end, "the finger should have moved forward");
  3002       if (verbose_low()) {
  3003         gclog_or_tty->print_cr("[%u] we were successful with region = "
  3004                                PTR_FORMAT, worker_id, p2i(curr_region));
  3007       if (limit > bottom) {
  3008         if (verbose_low()) {
  3009           gclog_or_tty->print_cr("[%u] region "PTR_FORMAT" is not empty, "
  3010                                  "returning it ", worker_id, p2i(curr_region));
  3012         return curr_region;
  3013       } else {
  3014         assert(limit == bottom,
  3015                "the region limit should be at bottom");
  3016         if (verbose_low()) {
  3017           gclog_or_tty->print_cr("[%u] region "PTR_FORMAT" is empty, "
  3018                                  "returning NULL", worker_id, p2i(curr_region));
  3020         // we return NULL and the caller should try calling
  3021         // claim_region() again.
  3022         return NULL;
  3024     } else {
  3025       assert(_finger > finger, "the finger should have moved forward");
  3026       if (verbose_low()) {
  3027         gclog_or_tty->print_cr("[%u] somebody else moved the finger, "
  3028                                "global finger = "PTR_FORMAT", "
  3029                                "our finger = "PTR_FORMAT,
  3030                                worker_id, p2i(_finger), p2i(finger));
  3033       // read it again
  3034       finger = _finger;
  3038   return NULL;
  3041 #ifndef PRODUCT
  3042 enum VerifyNoCSetOopsPhase {
  3043   VerifyNoCSetOopsStack,
  3044   VerifyNoCSetOopsQueues,
  3045   VerifyNoCSetOopsSATBCompleted,
  3046   VerifyNoCSetOopsSATBThread
  3047 };
  3049 class VerifyNoCSetOopsClosure : public OopClosure, public ObjectClosure  {
  3050 private:
  3051   G1CollectedHeap* _g1h;
  3052   VerifyNoCSetOopsPhase _phase;
  3053   int _info;
  3055   const char* phase_str() {
  3056     switch (_phase) {
  3057     case VerifyNoCSetOopsStack:         return "Stack";
  3058     case VerifyNoCSetOopsQueues:        return "Queue";
  3059     case VerifyNoCSetOopsSATBCompleted: return "Completed SATB Buffers";
  3060     case VerifyNoCSetOopsSATBThread:    return "Thread SATB Buffers";
  3061     default:                            ShouldNotReachHere();
  3063     return NULL;
  3066   void do_object_work(oop obj) {
  3067     guarantee(!_g1h->obj_in_cs(obj),
  3068               err_msg("obj: "PTR_FORMAT" in CSet, phase: %s, info: %d",
  3069                       p2i((void*) obj), phase_str(), _info));
  3072 public:
  3073   VerifyNoCSetOopsClosure() : _g1h(G1CollectedHeap::heap()) { }
  3075   void set_phase(VerifyNoCSetOopsPhase phase, int info = -1) {
  3076     _phase = phase;
  3077     _info = info;
  3080   virtual void do_oop(oop* p) {
  3081     oop obj = oopDesc::load_decode_heap_oop(p);
  3082     do_object_work(obj);
  3085   virtual void do_oop(narrowOop* p) {
  3086     // We should not come across narrow oops while scanning marking
  3087     // stacks and SATB buffers.
  3088     ShouldNotReachHere();
  3091   virtual void do_object(oop obj) {
  3092     do_object_work(obj);
  3094 };
  3096 void ConcurrentMark::verify_no_cset_oops(bool verify_stacks,
  3097                                          bool verify_enqueued_buffers,
  3098                                          bool verify_thread_buffers,
  3099                                          bool verify_fingers) {
  3100   assert(SafepointSynchronize::is_at_safepoint(), "should be at a safepoint");
  3101   if (!G1CollectedHeap::heap()->mark_in_progress()) {
  3102     return;
  3105   VerifyNoCSetOopsClosure cl;
  3107   if (verify_stacks) {
  3108     // Verify entries on the global mark stack
  3109     cl.set_phase(VerifyNoCSetOopsStack);
  3110     _markStack.oops_do(&cl);
  3112     // Verify entries on the task queues
  3113     for (uint i = 0; i < _max_worker_id; i += 1) {
  3114       cl.set_phase(VerifyNoCSetOopsQueues, i);
  3115       CMTaskQueue* queue = _task_queues->queue(i);
  3116       queue->oops_do(&cl);
  3120   SATBMarkQueueSet& satb_qs = JavaThread::satb_mark_queue_set();
  3122   // Verify entries on the enqueued SATB buffers
  3123   if (verify_enqueued_buffers) {
  3124     cl.set_phase(VerifyNoCSetOopsSATBCompleted);
  3125     satb_qs.iterate_completed_buffers_read_only(&cl);
  3128   // Verify entries on the per-thread SATB buffers
  3129   if (verify_thread_buffers) {
  3130     cl.set_phase(VerifyNoCSetOopsSATBThread);
  3131     satb_qs.iterate_thread_buffers_read_only(&cl);
  3134   if (verify_fingers) {
  3135     // Verify the global finger
  3136     HeapWord* global_finger = finger();
  3137     if (global_finger != NULL && global_finger < _heap_end) {
  3138       // The global finger always points to a heap region boundary. We
  3139       // use heap_region_containing_raw() to get the containing region
  3140       // given that the global finger could be pointing to a free region
  3141       // which subsequently becomes continues humongous. If that
  3142       // happens, heap_region_containing() will return the bottom of the
  3143       // corresponding starts humongous region and the check below will
  3144       // not hold any more.
  3145       HeapRegion* global_hr = _g1h->heap_region_containing_raw(global_finger);
  3146       guarantee(global_finger == global_hr->bottom(),
  3147                 err_msg("global finger: "PTR_FORMAT" region: "HR_FORMAT,
  3148                         p2i(global_finger), HR_FORMAT_PARAMS(global_hr)));
  3151     // Verify the task fingers
  3152     assert(parallel_marking_threads() <= _max_worker_id, "sanity");
  3153     for (int i = 0; i < (int) parallel_marking_threads(); i += 1) {
  3154       CMTask* task = _tasks[i];
  3155       HeapWord* task_finger = task->finger();
  3156       if (task_finger != NULL && task_finger < _heap_end) {
  3157         // See above note on the global finger verification.
  3158         HeapRegion* task_hr = _g1h->heap_region_containing_raw(task_finger);
  3159         guarantee(task_finger == task_hr->bottom() ||
  3160                   !task_hr->in_collection_set(),
  3161                   err_msg("task finger: "PTR_FORMAT" region: "HR_FORMAT,
  3162                           p2i(task_finger), HR_FORMAT_PARAMS(task_hr)));
  3167 #endif // PRODUCT
  3169 // Aggregate the counting data that was constructed concurrently
  3170 // with marking.
  3171 class AggregateCountDataHRClosure: public HeapRegionClosure {
  3172   G1CollectedHeap* _g1h;
  3173   ConcurrentMark* _cm;
  3174   CardTableModRefBS* _ct_bs;
  3175   BitMap* _cm_card_bm;
  3176   uint _max_worker_id;
  3178  public:
  3179   AggregateCountDataHRClosure(G1CollectedHeap* g1h,
  3180                               BitMap* cm_card_bm,
  3181                               uint max_worker_id) :
  3182     _g1h(g1h), _cm(g1h->concurrent_mark()),
  3183     _ct_bs((CardTableModRefBS*) (g1h->barrier_set())),
  3184     _cm_card_bm(cm_card_bm), _max_worker_id(max_worker_id) { }
  3186   bool doHeapRegion(HeapRegion* hr) {
  3187     if (hr->continuesHumongous()) {
  3188       // We will ignore these here and process them when their
  3189       // associated "starts humongous" region is processed.
  3190       // Note that we cannot rely on their associated
  3191       // "starts humongous" region to have their bit set to 1
  3192       // since, due to the region chunking in the parallel region
  3193       // iteration, a "continues humongous" region might be visited
  3194       // before its associated "starts humongous".
  3195       return false;
  3198     HeapWord* start = hr->bottom();
  3199     HeapWord* limit = hr->next_top_at_mark_start();
  3200     HeapWord* end = hr->end();
  3202     assert(start <= limit && limit <= hr->top() && hr->top() <= hr->end(),
  3203            err_msg("Preconditions not met - "
  3204                    "start: "PTR_FORMAT", limit: "PTR_FORMAT", "
  3205                    "top: "PTR_FORMAT", end: "PTR_FORMAT,
  3206                    p2i(start), p2i(limit), p2i(hr->top()), p2i(hr->end())));
  3208     assert(hr->next_marked_bytes() == 0, "Precondition");
  3210     if (start == limit) {
  3211       // NTAMS of this region has not been set so nothing to do.
  3212       return false;
  3215     // 'start' should be in the heap.
  3216     assert(_g1h->is_in_g1_reserved(start) && _ct_bs->is_card_aligned(start), "sanity");
  3217     // 'end' *may* be just beyone the end of the heap (if hr is the last region)
  3218     assert(!_g1h->is_in_g1_reserved(end) || _ct_bs->is_card_aligned(end), "sanity");
  3220     BitMap::idx_t start_idx = _cm->card_bitmap_index_for(start);
  3221     BitMap::idx_t limit_idx = _cm->card_bitmap_index_for(limit);
  3222     BitMap::idx_t end_idx = _cm->card_bitmap_index_for(end);
  3224     // If ntams is not card aligned then we bump card bitmap index
  3225     // for limit so that we get the all the cards spanned by
  3226     // the object ending at ntams.
  3227     // Note: if this is the last region in the heap then ntams
  3228     // could be actually just beyond the end of the the heap;
  3229     // limit_idx will then  correspond to a (non-existent) card
  3230     // that is also outside the heap.
  3231     if (_g1h->is_in_g1_reserved(limit) && !_ct_bs->is_card_aligned(limit)) {
  3232       limit_idx += 1;
  3235     assert(limit_idx <= end_idx, "or else use atomics");
  3237     // Aggregate the "stripe" in the count data associated with hr.
  3238     uint hrs_index = hr->hrs_index();
  3239     size_t marked_bytes = 0;
  3241     for (uint i = 0; i < _max_worker_id; i += 1) {
  3242       size_t* marked_bytes_array = _cm->count_marked_bytes_array_for(i);
  3243       BitMap* task_card_bm = _cm->count_card_bitmap_for(i);
  3245       // Fetch the marked_bytes in this region for task i and
  3246       // add it to the running total for this region.
  3247       marked_bytes += marked_bytes_array[hrs_index];
  3249       // Now union the bitmaps[0,max_worker_id)[start_idx..limit_idx)
  3250       // into the global card bitmap.
  3251       BitMap::idx_t scan_idx = task_card_bm->get_next_one_offset(start_idx, limit_idx);
  3253       while (scan_idx < limit_idx) {
  3254         assert(task_card_bm->at(scan_idx) == true, "should be");
  3255         _cm_card_bm->set_bit(scan_idx);
  3256         assert(_cm_card_bm->at(scan_idx) == true, "should be");
  3258         // BitMap::get_next_one_offset() can handle the case when
  3259         // its left_offset parameter is greater than its right_offset
  3260         // parameter. It does, however, have an early exit if
  3261         // left_offset == right_offset. So let's limit the value
  3262         // passed in for left offset here.
  3263         BitMap::idx_t next_idx = MIN2(scan_idx + 1, limit_idx);
  3264         scan_idx = task_card_bm->get_next_one_offset(next_idx, limit_idx);
  3268     // Update the marked bytes for this region.
  3269     hr->add_to_marked_bytes(marked_bytes);
  3271     // Next heap region
  3272     return false;
  3274 };
  3276 class G1AggregateCountDataTask: public AbstractGangTask {
  3277 protected:
  3278   G1CollectedHeap* _g1h;
  3279   ConcurrentMark* _cm;
  3280   BitMap* _cm_card_bm;
  3281   uint _max_worker_id;
  3282   int _active_workers;
  3284 public:
  3285   G1AggregateCountDataTask(G1CollectedHeap* g1h,
  3286                            ConcurrentMark* cm,
  3287                            BitMap* cm_card_bm,
  3288                            uint max_worker_id,
  3289                            int n_workers) :
  3290     AbstractGangTask("Count Aggregation"),
  3291     _g1h(g1h), _cm(cm), _cm_card_bm(cm_card_bm),
  3292     _max_worker_id(max_worker_id),
  3293     _active_workers(n_workers) { }
  3295   void work(uint worker_id) {
  3296     AggregateCountDataHRClosure cl(_g1h, _cm_card_bm, _max_worker_id);
  3298     if (G1CollectedHeap::use_parallel_gc_threads()) {
  3299       _g1h->heap_region_par_iterate_chunked(&cl, worker_id,
  3300                                             _active_workers,
  3301                                             HeapRegion::AggregateCountClaimValue);
  3302     } else {
  3303       _g1h->heap_region_iterate(&cl);
  3306 };
  3309 void ConcurrentMark::aggregate_count_data() {
  3310   int n_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
  3311                         _g1h->workers()->active_workers() :
  3312                         1);
  3314   G1AggregateCountDataTask g1_par_agg_task(_g1h, this, &_card_bm,
  3315                                            _max_worker_id, n_workers);
  3317   if (G1CollectedHeap::use_parallel_gc_threads()) {
  3318     assert(_g1h->check_heap_region_claim_values(HeapRegion::InitialClaimValue),
  3319            "sanity check");
  3320     _g1h->set_par_threads(n_workers);
  3321     _g1h->workers()->run_task(&g1_par_agg_task);
  3322     _g1h->set_par_threads(0);
  3324     assert(_g1h->check_heap_region_claim_values(HeapRegion::AggregateCountClaimValue),
  3325            "sanity check");
  3326     _g1h->reset_heap_region_claim_values();
  3327   } else {
  3328     g1_par_agg_task.work(0);
  3332 // Clear the per-worker arrays used to store the per-region counting data
  3333 void ConcurrentMark::clear_all_count_data() {
  3334   // Clear the global card bitmap - it will be filled during
  3335   // liveness count aggregation (during remark) and the
  3336   // final counting task.
  3337   _card_bm.clear();
  3339   // Clear the global region bitmap - it will be filled as part
  3340   // of the final counting task.
  3341   _region_bm.clear();
  3343   uint max_regions = _g1h->max_regions();
  3344   assert(_max_worker_id > 0, "uninitialized");
  3346   for (uint i = 0; i < _max_worker_id; i += 1) {
  3347     BitMap* task_card_bm = count_card_bitmap_for(i);
  3348     size_t* marked_bytes_array = count_marked_bytes_array_for(i);
  3350     assert(task_card_bm->size() == _card_bm.size(), "size mismatch");
  3351     assert(marked_bytes_array != NULL, "uninitialized");
  3353     memset(marked_bytes_array, 0, (size_t) max_regions * sizeof(size_t));
  3354     task_card_bm->clear();
  3358 void ConcurrentMark::print_stats() {
  3359   if (verbose_stats()) {
  3360     gclog_or_tty->print_cr("---------------------------------------------------------------------");
  3361     for (size_t i = 0; i < _active_tasks; ++i) {
  3362       _tasks[i]->print_stats();
  3363       gclog_or_tty->print_cr("---------------------------------------------------------------------");
  3368 // abandon current marking iteration due to a Full GC
  3369 void ConcurrentMark::abort() {
  3370   // Clear all marks in the next bitmap for the next marking cycle. This will allow us to skip the next
  3371   // concurrent bitmap clearing.
  3372   _nextMarkBitMap->clearAll();
  3374   // Note we cannot clear the previous marking bitmap here
  3375   // since VerifyDuringGC verifies the objects marked during
  3376   // a full GC against the previous bitmap.
  3378   // Clear the liveness counting data
  3379   clear_all_count_data();
  3380   // Empty mark stack
  3381   reset_marking_state();
  3382   for (uint i = 0; i < _max_worker_id; ++i) {
  3383     _tasks[i]->clear_region_fields();
  3385   _first_overflow_barrier_sync.abort();
  3386   _second_overflow_barrier_sync.abort();
  3387   const GCId& gc_id = _g1h->gc_tracer_cm()->gc_id();
  3388   if (!gc_id.is_undefined()) {
  3389     // We can do multiple full GCs before ConcurrentMarkThread::run() gets a chance
  3390     // to detect that it was aborted. Only keep track of the first GC id that we aborted.
  3391     _aborted_gc_id = gc_id;
  3393   _has_aborted = true;
  3395   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
  3396   satb_mq_set.abandon_partial_marking();
  3397   // This can be called either during or outside marking, we'll read
  3398   // the expected_active value from the SATB queue set.
  3399   satb_mq_set.set_active_all_threads(
  3400                                  false, /* new active value */
  3401                                  satb_mq_set.is_active() /* expected_active */);
  3403   _g1h->trace_heap_after_concurrent_cycle();
  3404   _g1h->register_concurrent_cycle_end();
  3407 const GCId& ConcurrentMark::concurrent_gc_id() {
  3408   if (has_aborted()) {
  3409     return _aborted_gc_id;
  3411   return _g1h->gc_tracer_cm()->gc_id();
  3414 static void print_ms_time_info(const char* prefix, const char* name,
  3415                                NumberSeq& ns) {
  3416   gclog_or_tty->print_cr("%s%5d %12s: total time = %8.2f s (avg = %8.2f ms).",
  3417                          prefix, ns.num(), name, ns.sum()/1000.0, ns.avg());
  3418   if (ns.num() > 0) {
  3419     gclog_or_tty->print_cr("%s         [std. dev = %8.2f ms, max = %8.2f ms]",
  3420                            prefix, ns.sd(), ns.maximum());
  3424 void ConcurrentMark::print_summary_info() {
  3425   gclog_or_tty->print_cr(" Concurrent marking:");
  3426   print_ms_time_info("  ", "init marks", _init_times);
  3427   print_ms_time_info("  ", "remarks", _remark_times);
  3429     print_ms_time_info("     ", "final marks", _remark_mark_times);
  3430     print_ms_time_info("     ", "weak refs", _remark_weak_ref_times);
  3433   print_ms_time_info("  ", "cleanups", _cleanup_times);
  3434   gclog_or_tty->print_cr("    Final counting total time = %8.2f s (avg = %8.2f ms).",
  3435                          _total_counting_time,
  3436                          (_cleanup_times.num() > 0 ? _total_counting_time * 1000.0 /
  3437                           (double)_cleanup_times.num()
  3438                          : 0.0));
  3439   if (G1ScrubRemSets) {
  3440     gclog_or_tty->print_cr("    RS scrub total time = %8.2f s (avg = %8.2f ms).",
  3441                            _total_rs_scrub_time,
  3442                            (_cleanup_times.num() > 0 ? _total_rs_scrub_time * 1000.0 /
  3443                             (double)_cleanup_times.num()
  3444                            : 0.0));
  3446   gclog_or_tty->print_cr("  Total stop_world time = %8.2f s.",
  3447                          (_init_times.sum() + _remark_times.sum() +
  3448                           _cleanup_times.sum())/1000.0);
  3449   gclog_or_tty->print_cr("  Total concurrent time = %8.2f s "
  3450                 "(%8.2f s marking).",
  3451                 cmThread()->vtime_accum(),
  3452                 cmThread()->vtime_mark_accum());
  3455 void ConcurrentMark::print_worker_threads_on(outputStream* st) const {
  3456   if (use_parallel_marking_threads()) {
  3457     _parallel_workers->print_worker_threads_on(st);
  3461 void ConcurrentMark::print_on_error(outputStream* st) const {
  3462   st->print_cr("Marking Bits (Prev, Next): (CMBitMap*) " PTR_FORMAT ", (CMBitMap*) " PTR_FORMAT,
  3463       p2i(_prevMarkBitMap), p2i(_nextMarkBitMap));
  3464   _prevMarkBitMap->print_on_error(st, " Prev Bits: ");
  3465   _nextMarkBitMap->print_on_error(st, " Next Bits: ");
  3468 // We take a break if someone is trying to stop the world.
  3469 bool ConcurrentMark::do_yield_check(uint worker_id) {
  3470   if (SuspendibleThreadSet::should_yield()) {
  3471     if (worker_id == 0) {
  3472       _g1h->g1_policy()->record_concurrent_pause();
  3474     SuspendibleThreadSet::yield();
  3475     return true;
  3476   } else {
  3477     return false;
  3481 bool ConcurrentMark::containing_card_is_marked(void* p) {
  3482   size_t offset = pointer_delta(p, _g1h->reserved_region().start(), 1);
  3483   return _card_bm.at(offset >> CardTableModRefBS::card_shift);
  3486 bool ConcurrentMark::containing_cards_are_marked(void* start,
  3487                                                  void* last) {
  3488   return containing_card_is_marked(start) &&
  3489          containing_card_is_marked(last);
  3492 #ifndef PRODUCT
  3493 // for debugging purposes
  3494 void ConcurrentMark::print_finger() {
  3495   gclog_or_tty->print_cr("heap ["PTR_FORMAT", "PTR_FORMAT"), global finger = "PTR_FORMAT,
  3496                          p2i(_heap_start), p2i(_heap_end), p2i(_finger));
  3497   for (uint i = 0; i < _max_worker_id; ++i) {
  3498     gclog_or_tty->print("   %u: " PTR_FORMAT, i, p2i(_tasks[i]->finger()));
  3500   gclog_or_tty->cr();
  3502 #endif
  3504 void CMTask::scan_object(oop obj) {
  3505   assert(_nextMarkBitMap->isMarked((HeapWord*) obj), "invariant");
  3507   if (_cm->verbose_high()) {
  3508     gclog_or_tty->print_cr("[%u] we're scanning object "PTR_FORMAT,
  3509                            _worker_id, p2i((void*) obj));
  3512   size_t obj_size = obj->size();
  3513   _words_scanned += obj_size;
  3515   obj->oop_iterate(_cm_oop_closure);
  3516   statsOnly( ++_objs_scanned );
  3517   check_limits();
  3520 // Closure for iteration over bitmaps
  3521 class CMBitMapClosure : public BitMapClosure {
  3522 private:
  3523   // the bitmap that is being iterated over
  3524   CMBitMap*                   _nextMarkBitMap;
  3525   ConcurrentMark*             _cm;
  3526   CMTask*                     _task;
  3528 public:
  3529   CMBitMapClosure(CMTask *task, ConcurrentMark* cm, CMBitMap* nextMarkBitMap) :
  3530     _task(task), _cm(cm), _nextMarkBitMap(nextMarkBitMap) { }
  3532   bool do_bit(size_t offset) {
  3533     HeapWord* addr = _nextMarkBitMap->offsetToHeapWord(offset);
  3534     assert(_nextMarkBitMap->isMarked(addr), "invariant");
  3535     assert( addr < _cm->finger(), "invariant");
  3537     statsOnly( _task->increase_objs_found_on_bitmap() );
  3538     assert(addr >= _task->finger(), "invariant");
  3540     // We move that task's local finger along.
  3541     _task->move_finger_to(addr);
  3543     _task->scan_object(oop(addr));
  3544     // we only partially drain the local queue and global stack
  3545     _task->drain_local_queue(true);
  3546     _task->drain_global_stack(true);
  3548     // if the has_aborted flag has been raised, we need to bail out of
  3549     // the iteration
  3550     return !_task->has_aborted();
  3552 };
  3554 G1CMOopClosure::G1CMOopClosure(G1CollectedHeap* g1h,
  3555                                ConcurrentMark* cm,
  3556                                CMTask* task)
  3557   : _g1h(g1h), _cm(cm), _task(task) {
  3558   assert(_ref_processor == NULL, "should be initialized to NULL");
  3560   if (G1UseConcMarkReferenceProcessing) {
  3561     _ref_processor = g1h->ref_processor_cm();
  3562     assert(_ref_processor != NULL, "should not be NULL");
  3566 void CMTask::setup_for_region(HeapRegion* hr) {
  3567   assert(hr != NULL,
  3568         "claim_region() should have filtered out NULL regions");
  3569   assert(!hr->continuesHumongous(),
  3570         "claim_region() should have filtered out continues humongous regions");
  3572   if (_cm->verbose_low()) {
  3573     gclog_or_tty->print_cr("[%u] setting up for region "PTR_FORMAT,
  3574                            _worker_id, p2i(hr));
  3577   _curr_region  = hr;
  3578   _finger       = hr->bottom();
  3579   update_region_limit();
  3582 void CMTask::update_region_limit() {
  3583   HeapRegion* hr            = _curr_region;
  3584   HeapWord* bottom          = hr->bottom();
  3585   HeapWord* limit           = hr->next_top_at_mark_start();
  3587   if (limit == bottom) {
  3588     if (_cm->verbose_low()) {
  3589       gclog_or_tty->print_cr("[%u] found an empty region "
  3590                              "["PTR_FORMAT", "PTR_FORMAT")",
  3591                              _worker_id, p2i(bottom), p2i(limit));
  3593     // The region was collected underneath our feet.
  3594     // We set the finger to bottom to ensure that the bitmap
  3595     // iteration that will follow this will not do anything.
  3596     // (this is not a condition that holds when we set the region up,
  3597     // as the region is not supposed to be empty in the first place)
  3598     _finger = bottom;
  3599   } else if (limit >= _region_limit) {
  3600     assert(limit >= _finger, "peace of mind");
  3601   } else {
  3602     assert(limit < _region_limit, "only way to get here");
  3603     // This can happen under some pretty unusual circumstances.  An
  3604     // evacuation pause empties the region underneath our feet (NTAMS
  3605     // at bottom). We then do some allocation in the region (NTAMS
  3606     // stays at bottom), followed by the region being used as a GC
  3607     // alloc region (NTAMS will move to top() and the objects
  3608     // originally below it will be grayed). All objects now marked in
  3609     // the region are explicitly grayed, if below the global finger,
  3610     // and we do not need in fact to scan anything else. So, we simply
  3611     // set _finger to be limit to ensure that the bitmap iteration
  3612     // doesn't do anything.
  3613     _finger = limit;
  3616   _region_limit = limit;
  3619 void CMTask::giveup_current_region() {
  3620   assert(_curr_region != NULL, "invariant");
  3621   if (_cm->verbose_low()) {
  3622     gclog_or_tty->print_cr("[%u] giving up region "PTR_FORMAT,
  3623                            _worker_id, p2i(_curr_region));
  3625   clear_region_fields();
  3628 void CMTask::clear_region_fields() {
  3629   // Values for these three fields that indicate that we're not
  3630   // holding on to a region.
  3631   _curr_region   = NULL;
  3632   _finger        = NULL;
  3633   _region_limit  = NULL;
  3636 void CMTask::set_cm_oop_closure(G1CMOopClosure* cm_oop_closure) {
  3637   if (cm_oop_closure == NULL) {
  3638     assert(_cm_oop_closure != NULL, "invariant");
  3639   } else {
  3640     assert(_cm_oop_closure == NULL, "invariant");
  3642   _cm_oop_closure = cm_oop_closure;
  3645 void CMTask::reset(CMBitMap* nextMarkBitMap) {
  3646   guarantee(nextMarkBitMap != NULL, "invariant");
  3648   if (_cm->verbose_low()) {
  3649     gclog_or_tty->print_cr("[%u] resetting", _worker_id);
  3652   _nextMarkBitMap                = nextMarkBitMap;
  3653   clear_region_fields();
  3655   _calls                         = 0;
  3656   _elapsed_time_ms               = 0.0;
  3657   _termination_time_ms           = 0.0;
  3658   _termination_start_time_ms     = 0.0;
  3660 #if _MARKING_STATS_
  3661   _local_pushes                  = 0;
  3662   _local_pops                    = 0;
  3663   _local_max_size                = 0;
  3664   _objs_scanned                  = 0;
  3665   _global_pushes                 = 0;
  3666   _global_pops                   = 0;
  3667   _global_max_size               = 0;
  3668   _global_transfers_to           = 0;
  3669   _global_transfers_from         = 0;
  3670   _regions_claimed               = 0;
  3671   _objs_found_on_bitmap          = 0;
  3672   _satb_buffers_processed        = 0;
  3673   _steal_attempts                = 0;
  3674   _steals                        = 0;
  3675   _aborted                       = 0;
  3676   _aborted_overflow              = 0;
  3677   _aborted_cm_aborted            = 0;
  3678   _aborted_yield                 = 0;
  3679   _aborted_timed_out             = 0;
  3680   _aborted_satb                  = 0;
  3681   _aborted_termination           = 0;
  3682 #endif // _MARKING_STATS_
  3685 bool CMTask::should_exit_termination() {
  3686   regular_clock_call();
  3687   // This is called when we are in the termination protocol. We should
  3688   // quit if, for some reason, this task wants to abort or the global
  3689   // stack is not empty (this means that we can get work from it).
  3690   return !_cm->mark_stack_empty() || has_aborted();
  3693 void CMTask::reached_limit() {
  3694   assert(_words_scanned >= _words_scanned_limit ||
  3695          _refs_reached >= _refs_reached_limit ,
  3696          "shouldn't have been called otherwise");
  3697   regular_clock_call();
  3700 void CMTask::regular_clock_call() {
  3701   if (has_aborted()) return;
  3703   // First, we need to recalculate the words scanned and refs reached
  3704   // limits for the next clock call.
  3705   recalculate_limits();
  3707   // During the regular clock call we do the following
  3709   // (1) If an overflow has been flagged, then we abort.
  3710   if (_cm->has_overflown()) {
  3711     set_has_aborted();
  3712     return;
  3715   // If we are not concurrent (i.e. we're doing remark) we don't need
  3716   // to check anything else. The other steps are only needed during
  3717   // the concurrent marking phase.
  3718   if (!concurrent()) return;
  3720   // (2) If marking has been aborted for Full GC, then we also abort.
  3721   if (_cm->has_aborted()) {
  3722     set_has_aborted();
  3723     statsOnly( ++_aborted_cm_aborted );
  3724     return;
  3727   double curr_time_ms = os::elapsedVTime() * 1000.0;
  3729   // (3) If marking stats are enabled, then we update the step history.
  3730 #if _MARKING_STATS_
  3731   if (_words_scanned >= _words_scanned_limit) {
  3732     ++_clock_due_to_scanning;
  3734   if (_refs_reached >= _refs_reached_limit) {
  3735     ++_clock_due_to_marking;
  3738   double last_interval_ms = curr_time_ms - _interval_start_time_ms;
  3739   _interval_start_time_ms = curr_time_ms;
  3740   _all_clock_intervals_ms.add(last_interval_ms);
  3742   if (_cm->verbose_medium()) {
  3743       gclog_or_tty->print_cr("[%u] regular clock, interval = %1.2lfms, "
  3744                         "scanned = %d%s, refs reached = %d%s",
  3745                         _worker_id, last_interval_ms,
  3746                         _words_scanned,
  3747                         (_words_scanned >= _words_scanned_limit) ? " (*)" : "",
  3748                         _refs_reached,
  3749                         (_refs_reached >= _refs_reached_limit) ? " (*)" : "");
  3751 #endif // _MARKING_STATS_
  3753   // (4) We check whether we should yield. If we have to, then we abort.
  3754   if (SuspendibleThreadSet::should_yield()) {
  3755     // We should yield. To do this we abort the task. The caller is
  3756     // responsible for yielding.
  3757     set_has_aborted();
  3758     statsOnly( ++_aborted_yield );
  3759     return;
  3762   // (5) We check whether we've reached our time quota. If we have,
  3763   // then we abort.
  3764   double elapsed_time_ms = curr_time_ms - _start_time_ms;
  3765   if (elapsed_time_ms > _time_target_ms) {
  3766     set_has_aborted();
  3767     _has_timed_out = true;
  3768     statsOnly( ++_aborted_timed_out );
  3769     return;
  3772   // (6) Finally, we check whether there are enough completed STAB
  3773   // buffers available for processing. If there are, we abort.
  3774   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
  3775   if (!_draining_satb_buffers && satb_mq_set.process_completed_buffers()) {
  3776     if (_cm->verbose_low()) {
  3777       gclog_or_tty->print_cr("[%u] aborting to deal with pending SATB buffers",
  3778                              _worker_id);
  3780     // we do need to process SATB buffers, we'll abort and restart
  3781     // the marking task to do so
  3782     set_has_aborted();
  3783     statsOnly( ++_aborted_satb );
  3784     return;
  3788 void CMTask::recalculate_limits() {
  3789   _real_words_scanned_limit = _words_scanned + words_scanned_period;
  3790   _words_scanned_limit      = _real_words_scanned_limit;
  3792   _real_refs_reached_limit  = _refs_reached  + refs_reached_period;
  3793   _refs_reached_limit       = _real_refs_reached_limit;
  3796 void CMTask::decrease_limits() {
  3797   // This is called when we believe that we're going to do an infrequent
  3798   // operation which will increase the per byte scanned cost (i.e. move
  3799   // entries to/from the global stack). It basically tries to decrease the
  3800   // scanning limit so that the clock is called earlier.
  3802   if (_cm->verbose_medium()) {
  3803     gclog_or_tty->print_cr("[%u] decreasing limits", _worker_id);
  3806   _words_scanned_limit = _real_words_scanned_limit -
  3807     3 * words_scanned_period / 4;
  3808   _refs_reached_limit  = _real_refs_reached_limit -
  3809     3 * refs_reached_period / 4;
  3812 void CMTask::move_entries_to_global_stack() {
  3813   // local array where we'll store the entries that will be popped
  3814   // from the local queue
  3815   oop buffer[global_stack_transfer_size];
  3817   int n = 0;
  3818   oop obj;
  3819   while (n < global_stack_transfer_size && _task_queue->pop_local(obj)) {
  3820     buffer[n] = obj;
  3821     ++n;
  3824   if (n > 0) {
  3825     // we popped at least one entry from the local queue
  3827     statsOnly( ++_global_transfers_to; _local_pops += n );
  3829     if (!_cm->mark_stack_push(buffer, n)) {
  3830       if (_cm->verbose_low()) {
  3831         gclog_or_tty->print_cr("[%u] aborting due to global stack overflow",
  3832                                _worker_id);
  3834       set_has_aborted();
  3835     } else {
  3836       // the transfer was successful
  3838       if (_cm->verbose_medium()) {
  3839         gclog_or_tty->print_cr("[%u] pushed %d entries to the global stack",
  3840                                _worker_id, n);
  3842       statsOnly( int tmp_size = _cm->mark_stack_size();
  3843                  if (tmp_size > _global_max_size) {
  3844                    _global_max_size = tmp_size;
  3846                  _global_pushes += n );
  3850   // this operation was quite expensive, so decrease the limits
  3851   decrease_limits();
  3854 void CMTask::get_entries_from_global_stack() {
  3855   // local array where we'll store the entries that will be popped
  3856   // from the global stack.
  3857   oop buffer[global_stack_transfer_size];
  3858   int n;
  3859   _cm->mark_stack_pop(buffer, global_stack_transfer_size, &n);
  3860   assert(n <= global_stack_transfer_size,
  3861          "we should not pop more than the given limit");
  3862   if (n > 0) {
  3863     // yes, we did actually pop at least one entry
  3865     statsOnly( ++_global_transfers_from; _global_pops += n );
  3866     if (_cm->verbose_medium()) {
  3867       gclog_or_tty->print_cr("[%u] popped %d entries from the global stack",
  3868                              _worker_id, n);
  3870     for (int i = 0; i < n; ++i) {
  3871       bool success = _task_queue->push(buffer[i]);
  3872       // We only call this when the local queue is empty or under a
  3873       // given target limit. So, we do not expect this push to fail.
  3874       assert(success, "invariant");
  3877     statsOnly( int tmp_size = _task_queue->size();
  3878                if (tmp_size > _local_max_size) {
  3879                  _local_max_size = tmp_size;
  3881                _local_pushes += n );
  3884   // this operation was quite expensive, so decrease the limits
  3885   decrease_limits();
  3888 void CMTask::drain_local_queue(bool partially) {
  3889   if (has_aborted()) return;
  3891   // Decide what the target size is, depending whether we're going to
  3892   // drain it partially (so that other tasks can steal if they run out
  3893   // of things to do) or totally (at the very end).
  3894   size_t target_size;
  3895   if (partially) {
  3896     target_size = MIN2((size_t)_task_queue->max_elems()/3, GCDrainStackTargetSize);
  3897   } else {
  3898     target_size = 0;
  3901   if (_task_queue->size() > target_size) {
  3902     if (_cm->verbose_high()) {
  3903       gclog_or_tty->print_cr("[%u] draining local queue, target size = " SIZE_FORMAT,
  3904                              _worker_id, target_size);
  3907     oop obj;
  3908     bool ret = _task_queue->pop_local(obj);
  3909     while (ret) {
  3910       statsOnly( ++_local_pops );
  3912       if (_cm->verbose_high()) {
  3913         gclog_or_tty->print_cr("[%u] popped "PTR_FORMAT, _worker_id,
  3914                                p2i((void*) obj));
  3917       assert(_g1h->is_in_g1_reserved((HeapWord*) obj), "invariant" );
  3918       assert(!_g1h->is_on_master_free_list(
  3919                   _g1h->heap_region_containing((HeapWord*) obj)), "invariant");
  3921       scan_object(obj);
  3923       if (_task_queue->size() <= target_size || has_aborted()) {
  3924         ret = false;
  3925       } else {
  3926         ret = _task_queue->pop_local(obj);
  3930     if (_cm->verbose_high()) {
  3931       gclog_or_tty->print_cr("[%u] drained local queue, size = %d",
  3932                              _worker_id, _task_queue->size());
  3937 void CMTask::drain_global_stack(bool partially) {
  3938   if (has_aborted()) return;
  3940   // We have a policy to drain the local queue before we attempt to
  3941   // drain the global stack.
  3942   assert(partially || _task_queue->size() == 0, "invariant");
  3944   // Decide what the target size is, depending whether we're going to
  3945   // drain it partially (so that other tasks can steal if they run out
  3946   // of things to do) or totally (at the very end).  Notice that,
  3947   // because we move entries from the global stack in chunks or
  3948   // because another task might be doing the same, we might in fact
  3949   // drop below the target. But, this is not a problem.
  3950   size_t target_size;
  3951   if (partially) {
  3952     target_size = _cm->partial_mark_stack_size_target();
  3953   } else {
  3954     target_size = 0;
  3957   if (_cm->mark_stack_size() > target_size) {
  3958     if (_cm->verbose_low()) {
  3959       gclog_or_tty->print_cr("[%u] draining global_stack, target size " SIZE_FORMAT,
  3960                              _worker_id, target_size);
  3963     while (!has_aborted() && _cm->mark_stack_size() > target_size) {
  3964       get_entries_from_global_stack();
  3965       drain_local_queue(partially);
  3968     if (_cm->verbose_low()) {
  3969       gclog_or_tty->print_cr("[%u] drained global stack, size = " SIZE_FORMAT,
  3970                              _worker_id, _cm->mark_stack_size());
  3975 // SATB Queue has several assumptions on whether to call the par or
  3976 // non-par versions of the methods. this is why some of the code is
  3977 // replicated. We should really get rid of the single-threaded version
  3978 // of the code to simplify things.
  3979 void CMTask::drain_satb_buffers() {
  3980   if (has_aborted()) return;
  3982   // We set this so that the regular clock knows that we're in the
  3983   // middle of draining buffers and doesn't set the abort flag when it
  3984   // notices that SATB buffers are available for draining. It'd be
  3985   // very counter productive if it did that. :-)
  3986   _draining_satb_buffers = true;
  3988   CMObjectClosure oc(this);
  3989   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
  3990   if (G1CollectedHeap::use_parallel_gc_threads()) {
  3991     satb_mq_set.set_par_closure(_worker_id, &oc);
  3992   } else {
  3993     satb_mq_set.set_closure(&oc);
  3996   // This keeps claiming and applying the closure to completed buffers
  3997   // until we run out of buffers or we need to abort.
  3998   if (G1CollectedHeap::use_parallel_gc_threads()) {
  3999     while (!has_aborted() &&
  4000            satb_mq_set.par_apply_closure_to_completed_buffer(_worker_id)) {
  4001       if (_cm->verbose_medium()) {
  4002         gclog_or_tty->print_cr("[%u] processed an SATB buffer", _worker_id);
  4004       statsOnly( ++_satb_buffers_processed );
  4005       regular_clock_call();
  4007   } else {
  4008     while (!has_aborted() &&
  4009            satb_mq_set.apply_closure_to_completed_buffer()) {
  4010       if (_cm->verbose_medium()) {
  4011         gclog_or_tty->print_cr("[%u] processed an SATB buffer", _worker_id);
  4013       statsOnly( ++_satb_buffers_processed );
  4014       regular_clock_call();
  4018   _draining_satb_buffers = false;
  4020   assert(has_aborted() ||
  4021          concurrent() ||
  4022          satb_mq_set.completed_buffers_num() == 0, "invariant");
  4024   if (G1CollectedHeap::use_parallel_gc_threads()) {
  4025     satb_mq_set.set_par_closure(_worker_id, NULL);
  4026   } else {
  4027     satb_mq_set.set_closure(NULL);
  4030   // again, this was a potentially expensive operation, decrease the
  4031   // limits to get the regular clock call early
  4032   decrease_limits();
  4035 void CMTask::print_stats() {
  4036   gclog_or_tty->print_cr("Marking Stats, task = %u, calls = %d",
  4037                          _worker_id, _calls);
  4038   gclog_or_tty->print_cr("  Elapsed time = %1.2lfms, Termination time = %1.2lfms",
  4039                          _elapsed_time_ms, _termination_time_ms);
  4040   gclog_or_tty->print_cr("  Step Times (cum): num = %d, avg = %1.2lfms, sd = %1.2lfms",
  4041                          _step_times_ms.num(), _step_times_ms.avg(),
  4042                          _step_times_ms.sd());
  4043   gclog_or_tty->print_cr("                    max = %1.2lfms, total = %1.2lfms",
  4044                          _step_times_ms.maximum(), _step_times_ms.sum());
  4046 #if _MARKING_STATS_
  4047   gclog_or_tty->print_cr("  Clock Intervals (cum): num = %d, avg = %1.2lfms, sd = %1.2lfms",
  4048                          _all_clock_intervals_ms.num(), _all_clock_intervals_ms.avg(),
  4049                          _all_clock_intervals_ms.sd());
  4050   gclog_or_tty->print_cr("                         max = %1.2lfms, total = %1.2lfms",
  4051                          _all_clock_intervals_ms.maximum(),
  4052                          _all_clock_intervals_ms.sum());
  4053   gclog_or_tty->print_cr("  Clock Causes (cum): scanning = %d, marking = %d",
  4054                          _clock_due_to_scanning, _clock_due_to_marking);
  4055   gclog_or_tty->print_cr("  Objects: scanned = %d, found on the bitmap = %d",
  4056                          _objs_scanned, _objs_found_on_bitmap);
  4057   gclog_or_tty->print_cr("  Local Queue:  pushes = %d, pops = %d, max size = %d",
  4058                          _local_pushes, _local_pops, _local_max_size);
  4059   gclog_or_tty->print_cr("  Global Stack: pushes = %d, pops = %d, max size = %d",
  4060                          _global_pushes, _global_pops, _global_max_size);
  4061   gclog_or_tty->print_cr("                transfers to = %d, transfers from = %d",
  4062                          _global_transfers_to,_global_transfers_from);
  4063   gclog_or_tty->print_cr("  Regions: claimed = %d", _regions_claimed);
  4064   gclog_or_tty->print_cr("  SATB buffers: processed = %d", _satb_buffers_processed);
  4065   gclog_or_tty->print_cr("  Steals: attempts = %d, successes = %d",
  4066                          _steal_attempts, _steals);
  4067   gclog_or_tty->print_cr("  Aborted: %d, due to", _aborted);
  4068   gclog_or_tty->print_cr("    overflow: %d, global abort: %d, yield: %d",
  4069                          _aborted_overflow, _aborted_cm_aborted, _aborted_yield);
  4070   gclog_or_tty->print_cr("    time out: %d, SATB: %d, termination: %d",
  4071                          _aborted_timed_out, _aborted_satb, _aborted_termination);
  4072 #endif // _MARKING_STATS_
  4075 /*****************************************************************************
  4077     The do_marking_step(time_target_ms, ...) method is the building
  4078     block of the parallel marking framework. It can be called in parallel
  4079     with other invocations of do_marking_step() on different tasks
  4080     (but only one per task, obviously) and concurrently with the
  4081     mutator threads, or during remark, hence it eliminates the need
  4082     for two versions of the code. When called during remark, it will
  4083     pick up from where the task left off during the concurrent marking
  4084     phase. Interestingly, tasks are also claimable during evacuation
  4085     pauses too, since do_marking_step() ensures that it aborts before
  4086     it needs to yield.
  4088     The data structures that it uses to do marking work are the
  4089     following:
  4091       (1) Marking Bitmap. If there are gray objects that appear only
  4092       on the bitmap (this happens either when dealing with an overflow
  4093       or when the initial marking phase has simply marked the roots
  4094       and didn't push them on the stack), then tasks claim heap
  4095       regions whose bitmap they then scan to find gray objects. A
  4096       global finger indicates where the end of the last claimed region
  4097       is. A local finger indicates how far into the region a task has
  4098       scanned. The two fingers are used to determine how to gray an
  4099       object (i.e. whether simply marking it is OK, as it will be
  4100       visited by a task in the future, or whether it needs to be also
  4101       pushed on a stack).
  4103       (2) Local Queue. The local queue of the task which is accessed
  4104       reasonably efficiently by the task. Other tasks can steal from
  4105       it when they run out of work. Throughout the marking phase, a
  4106       task attempts to keep its local queue short but not totally
  4107       empty, so that entries are available for stealing by other
  4108       tasks. Only when there is no more work, a task will totally
  4109       drain its local queue.
  4111       (3) Global Mark Stack. This handles local queue overflow. During
  4112       marking only sets of entries are moved between it and the local
  4113       queues, as access to it requires a mutex and more fine-grain
  4114       interaction with it which might cause contention. If it
  4115       overflows, then the marking phase should restart and iterate
  4116       over the bitmap to identify gray objects. Throughout the marking
  4117       phase, tasks attempt to keep the global mark stack at a small
  4118       length but not totally empty, so that entries are available for
  4119       popping by other tasks. Only when there is no more work, tasks
  4120       will totally drain the global mark stack.
  4122       (4) SATB Buffer Queue. This is where completed SATB buffers are
  4123       made available. Buffers are regularly removed from this queue
  4124       and scanned for roots, so that the queue doesn't get too
  4125       long. During remark, all completed buffers are processed, as
  4126       well as the filled in parts of any uncompleted buffers.
  4128     The do_marking_step() method tries to abort when the time target
  4129     has been reached. There are a few other cases when the
  4130     do_marking_step() method also aborts:
  4132       (1) When the marking phase has been aborted (after a Full GC).
  4134       (2) When a global overflow (on the global stack) has been
  4135       triggered. Before the task aborts, it will actually sync up with
  4136       the other tasks to ensure that all the marking data structures
  4137       (local queues, stacks, fingers etc.)  are re-initialized so that
  4138       when do_marking_step() completes, the marking phase can
  4139       immediately restart.
  4141       (3) When enough completed SATB buffers are available. The
  4142       do_marking_step() method only tries to drain SATB buffers right
  4143       at the beginning. So, if enough buffers are available, the
  4144       marking step aborts and the SATB buffers are processed at
  4145       the beginning of the next invocation.
  4147       (4) To yield. when we have to yield then we abort and yield
  4148       right at the end of do_marking_step(). This saves us from a lot
  4149       of hassle as, by yielding we might allow a Full GC. If this
  4150       happens then objects will be compacted underneath our feet, the
  4151       heap might shrink, etc. We save checking for this by just
  4152       aborting and doing the yield right at the end.
  4154     From the above it follows that the do_marking_step() method should
  4155     be called in a loop (or, otherwise, regularly) until it completes.
  4157     If a marking step completes without its has_aborted() flag being
  4158     true, it means it has completed the current marking phase (and
  4159     also all other marking tasks have done so and have all synced up).
  4161     A method called regular_clock_call() is invoked "regularly" (in
  4162     sub ms intervals) throughout marking. It is this clock method that
  4163     checks all the abort conditions which were mentioned above and
  4164     decides when the task should abort. A work-based scheme is used to
  4165     trigger this clock method: when the number of object words the
  4166     marking phase has scanned or the number of references the marking
  4167     phase has visited reach a given limit. Additional invocations to
  4168     the method clock have been planted in a few other strategic places
  4169     too. The initial reason for the clock method was to avoid calling
  4170     vtime too regularly, as it is quite expensive. So, once it was in
  4171     place, it was natural to piggy-back all the other conditions on it
  4172     too and not constantly check them throughout the code.
  4174     If do_termination is true then do_marking_step will enter its
  4175     termination protocol.
  4177     The value of is_serial must be true when do_marking_step is being
  4178     called serially (i.e. by the VMThread) and do_marking_step should
  4179     skip any synchronization in the termination and overflow code.
  4180     Examples include the serial remark code and the serial reference
  4181     processing closures.
  4183     The value of is_serial must be false when do_marking_step is
  4184     being called by any of the worker threads in a work gang.
  4185     Examples include the concurrent marking code (CMMarkingTask),
  4186     the MT remark code, and the MT reference processing closures.
  4188  *****************************************************************************/
  4190 void CMTask::do_marking_step(double time_target_ms,
  4191                              bool do_termination,
  4192                              bool is_serial) {
  4193   assert(time_target_ms >= 1.0, "minimum granularity is 1ms");
  4194   assert(concurrent() == _cm->concurrent(), "they should be the same");
  4196   G1CollectorPolicy* g1_policy = _g1h->g1_policy();
  4197   assert(_task_queues != NULL, "invariant");
  4198   assert(_task_queue != NULL, "invariant");
  4199   assert(_task_queues->queue(_worker_id) == _task_queue, "invariant");
  4201   assert(!_claimed,
  4202          "only one thread should claim this task at any one time");
  4204   // OK, this doesn't safeguard again all possible scenarios, as it is
  4205   // possible for two threads to set the _claimed flag at the same
  4206   // time. But it is only for debugging purposes anyway and it will
  4207   // catch most problems.
  4208   _claimed = true;
  4210   _start_time_ms = os::elapsedVTime() * 1000.0;
  4211   statsOnly( _interval_start_time_ms = _start_time_ms );
  4213   // If do_stealing is true then do_marking_step will attempt to
  4214   // steal work from the other CMTasks. It only makes sense to
  4215   // enable stealing when the termination protocol is enabled
  4216   // and do_marking_step() is not being called serially.
  4217   bool do_stealing = do_termination && !is_serial;
  4219   double diff_prediction_ms =
  4220     g1_policy->get_new_prediction(&_marking_step_diffs_ms);
  4221   _time_target_ms = time_target_ms - diff_prediction_ms;
  4223   // set up the variables that are used in the work-based scheme to
  4224   // call the regular clock method
  4225   _words_scanned = 0;
  4226   _refs_reached  = 0;
  4227   recalculate_limits();
  4229   // clear all flags
  4230   clear_has_aborted();
  4231   _has_timed_out = false;
  4232   _draining_satb_buffers = false;
  4234   ++_calls;
  4236   if (_cm->verbose_low()) {
  4237     gclog_or_tty->print_cr("[%u] >>>>>>>>>> START, call = %d, "
  4238                            "target = %1.2lfms >>>>>>>>>>",
  4239                            _worker_id, _calls, _time_target_ms);
  4242   // Set up the bitmap and oop closures. Anything that uses them is
  4243   // eventually called from this method, so it is OK to allocate these
  4244   // statically.
  4245   CMBitMapClosure bitmap_closure(this, _cm, _nextMarkBitMap);
  4246   G1CMOopClosure  cm_oop_closure(_g1h, _cm, this);
  4247   set_cm_oop_closure(&cm_oop_closure);
  4249   if (_cm->has_overflown()) {
  4250     // This can happen if the mark stack overflows during a GC pause
  4251     // and this task, after a yield point, restarts. We have to abort
  4252     // as we need to get into the overflow protocol which happens
  4253     // right at the end of this task.
  4254     set_has_aborted();
  4257   // First drain any available SATB buffers. After this, we will not
  4258   // look at SATB buffers before the next invocation of this method.
  4259   // If enough completed SATB buffers are queued up, the regular clock
  4260   // will abort this task so that it restarts.
  4261   drain_satb_buffers();
  4262   // ...then partially drain the local queue and the global stack
  4263   drain_local_queue(true);
  4264   drain_global_stack(true);
  4266   do {
  4267     if (!has_aborted() && _curr_region != NULL) {
  4268       // This means that we're already holding on to a region.
  4269       assert(_finger != NULL, "if region is not NULL, then the finger "
  4270              "should not be NULL either");
  4272       // We might have restarted this task after an evacuation pause
  4273       // which might have evacuated the region we're holding on to
  4274       // underneath our feet. Let's read its limit again to make sure
  4275       // that we do not iterate over a region of the heap that
  4276       // contains garbage (update_region_limit() will also move
  4277       // _finger to the start of the region if it is found empty).
  4278       update_region_limit();
  4279       // We will start from _finger not from the start of the region,
  4280       // as we might be restarting this task after aborting half-way
  4281       // through scanning this region. In this case, _finger points to
  4282       // the address where we last found a marked object. If this is a
  4283       // fresh region, _finger points to start().
  4284       MemRegion mr = MemRegion(_finger, _region_limit);
  4286       if (_cm->verbose_low()) {
  4287         gclog_or_tty->print_cr("[%u] we're scanning part "
  4288                                "["PTR_FORMAT", "PTR_FORMAT") "
  4289                                "of region "HR_FORMAT,
  4290                                _worker_id, p2i(_finger), p2i(_region_limit),
  4291                                HR_FORMAT_PARAMS(_curr_region));
  4294       assert(!_curr_region->isHumongous() || mr.start() == _curr_region->bottom(),
  4295              "humongous regions should go around loop once only");
  4297       // Some special cases:
  4298       // If the memory region is empty, we can just give up the region.
  4299       // If the current region is humongous then we only need to check
  4300       // the bitmap for the bit associated with the start of the object,
  4301       // scan the object if it's live, and give up the region.
  4302       // Otherwise, let's iterate over the bitmap of the part of the region
  4303       // that is left.
  4304       // If the iteration is successful, give up the region.
  4305       if (mr.is_empty()) {
  4306         giveup_current_region();
  4307         regular_clock_call();
  4308       } else if (_curr_region->isHumongous() && mr.start() == _curr_region->bottom()) {
  4309         if (_nextMarkBitMap->isMarked(mr.start())) {
  4310           // The object is marked - apply the closure
  4311           BitMap::idx_t offset = _nextMarkBitMap->heapWordToOffset(mr.start());
  4312           bitmap_closure.do_bit(offset);
  4314         // Even if this task aborted while scanning the humongous object
  4315         // we can (and should) give up the current region.
  4316         giveup_current_region();
  4317         regular_clock_call();
  4318       } else if (_nextMarkBitMap->iterate(&bitmap_closure, mr)) {
  4319         giveup_current_region();
  4320         regular_clock_call();
  4321       } else {
  4322         assert(has_aborted(), "currently the only way to do so");
  4323         // The only way to abort the bitmap iteration is to return
  4324         // false from the do_bit() method. However, inside the
  4325         // do_bit() method we move the _finger to point to the
  4326         // object currently being looked at. So, if we bail out, we
  4327         // have definitely set _finger to something non-null.
  4328         assert(_finger != NULL, "invariant");
  4330         // Region iteration was actually aborted. So now _finger
  4331         // points to the address of the object we last scanned. If we
  4332         // leave it there, when we restart this task, we will rescan
  4333         // the object. It is easy to avoid this. We move the finger by
  4334         // enough to point to the next possible object header (the
  4335         // bitmap knows by how much we need to move it as it knows its
  4336         // granularity).
  4337         assert(_finger < _region_limit, "invariant");
  4338         HeapWord* new_finger = _nextMarkBitMap->nextObject(_finger);
  4339         // Check if bitmap iteration was aborted while scanning the last object
  4340         if (new_finger >= _region_limit) {
  4341           giveup_current_region();
  4342         } else {
  4343           move_finger_to(new_finger);
  4347     // At this point we have either completed iterating over the
  4348     // region we were holding on to, or we have aborted.
  4350     // We then partially drain the local queue and the global stack.
  4351     // (Do we really need this?)
  4352     drain_local_queue(true);
  4353     drain_global_stack(true);
  4355     // Read the note on the claim_region() method on why it might
  4356     // return NULL with potentially more regions available for
  4357     // claiming and why we have to check out_of_regions() to determine
  4358     // whether we're done or not.
  4359     while (!has_aborted() && _curr_region == NULL && !_cm->out_of_regions()) {
  4360       // We are going to try to claim a new region. We should have
  4361       // given up on the previous one.
  4362       // Separated the asserts so that we know which one fires.
  4363       assert(_curr_region  == NULL, "invariant");
  4364       assert(_finger       == NULL, "invariant");
  4365       assert(_region_limit == NULL, "invariant");
  4366       if (_cm->verbose_low()) {
  4367         gclog_or_tty->print_cr("[%u] trying to claim a new region", _worker_id);
  4369       HeapRegion* claimed_region = _cm->claim_region(_worker_id);
  4370       if (claimed_region != NULL) {
  4371         // Yes, we managed to claim one
  4372         statsOnly( ++_regions_claimed );
  4374         if (_cm->verbose_low()) {
  4375           gclog_or_tty->print_cr("[%u] we successfully claimed "
  4376                                  "region "PTR_FORMAT,
  4377                                  _worker_id, p2i(claimed_region));
  4380         setup_for_region(claimed_region);
  4381         assert(_curr_region == claimed_region, "invariant");
  4383       // It is important to call the regular clock here. It might take
  4384       // a while to claim a region if, for example, we hit a large
  4385       // block of empty regions. So we need to call the regular clock
  4386       // method once round the loop to make sure it's called
  4387       // frequently enough.
  4388       regular_clock_call();
  4391     if (!has_aborted() && _curr_region == NULL) {
  4392       assert(_cm->out_of_regions(),
  4393              "at this point we should be out of regions");
  4395   } while ( _curr_region != NULL && !has_aborted());
  4397   if (!has_aborted()) {
  4398     // We cannot check whether the global stack is empty, since other
  4399     // tasks might be pushing objects to it concurrently.
  4400     assert(_cm->out_of_regions(),
  4401            "at this point we should be out of regions");
  4403     if (_cm->verbose_low()) {
  4404       gclog_or_tty->print_cr("[%u] all regions claimed", _worker_id);
  4407     // Try to reduce the number of available SATB buffers so that
  4408     // remark has less work to do.
  4409     drain_satb_buffers();
  4412   // Since we've done everything else, we can now totally drain the
  4413   // local queue and global stack.
  4414   drain_local_queue(false);
  4415   drain_global_stack(false);
  4417   // Attempt at work stealing from other task's queues.
  4418   if (do_stealing && !has_aborted()) {
  4419     // We have not aborted. This means that we have finished all that
  4420     // we could. Let's try to do some stealing...
  4422     // We cannot check whether the global stack is empty, since other
  4423     // tasks might be pushing objects to it concurrently.
  4424     assert(_cm->out_of_regions() && _task_queue->size() == 0,
  4425            "only way to reach here");
  4427     if (_cm->verbose_low()) {
  4428       gclog_or_tty->print_cr("[%u] starting to steal", _worker_id);
  4431     while (!has_aborted()) {
  4432       oop obj;
  4433       statsOnly( ++_steal_attempts );
  4435       if (_cm->try_stealing(_worker_id, &_hash_seed, obj)) {
  4436         if (_cm->verbose_medium()) {
  4437           gclog_or_tty->print_cr("[%u] stolen "PTR_FORMAT" successfully",
  4438                                  _worker_id, p2i((void*) obj));
  4441         statsOnly( ++_steals );
  4443         assert(_nextMarkBitMap->isMarked((HeapWord*) obj),
  4444                "any stolen object should be marked");
  4445         scan_object(obj);
  4447         // And since we're towards the end, let's totally drain the
  4448         // local queue and global stack.
  4449         drain_local_queue(false);
  4450         drain_global_stack(false);
  4451       } else {
  4452         break;
  4457   // If we are about to wrap up and go into termination, check if we
  4458   // should raise the overflow flag.
  4459   if (do_termination && !has_aborted()) {
  4460     if (_cm->force_overflow()->should_force()) {
  4461       _cm->set_has_overflown();
  4462       regular_clock_call();
  4466   // We still haven't aborted. Now, let's try to get into the
  4467   // termination protocol.
  4468   if (do_termination && !has_aborted()) {
  4469     // We cannot check whether the global stack is empty, since other
  4470     // tasks might be concurrently pushing objects on it.
  4471     // Separated the asserts so that we know which one fires.
  4472     assert(_cm->out_of_regions(), "only way to reach here");
  4473     assert(_task_queue->size() == 0, "only way to reach here");
  4475     if (_cm->verbose_low()) {
  4476       gclog_or_tty->print_cr("[%u] starting termination protocol", _worker_id);
  4479     _termination_start_time_ms = os::elapsedVTime() * 1000.0;
  4481     // The CMTask class also extends the TerminatorTerminator class,
  4482     // hence its should_exit_termination() method will also decide
  4483     // whether to exit the termination protocol or not.
  4484     bool finished = (is_serial ||
  4485                      _cm->terminator()->offer_termination(this));
  4486     double termination_end_time_ms = os::elapsedVTime() * 1000.0;
  4487     _termination_time_ms +=
  4488       termination_end_time_ms - _termination_start_time_ms;
  4490     if (finished) {
  4491       // We're all done.
  4493       if (_worker_id == 0) {
  4494         // let's allow task 0 to do this
  4495         if (concurrent()) {
  4496           assert(_cm->concurrent_marking_in_progress(), "invariant");
  4497           // we need to set this to false before the next
  4498           // safepoint. This way we ensure that the marking phase
  4499           // doesn't observe any more heap expansions.
  4500           _cm->clear_concurrent_marking_in_progress();
  4504       // We can now guarantee that the global stack is empty, since
  4505       // all other tasks have finished. We separated the guarantees so
  4506       // that, if a condition is false, we can immediately find out
  4507       // which one.
  4508       guarantee(_cm->out_of_regions(), "only way to reach here");
  4509       guarantee(_cm->mark_stack_empty(), "only way to reach here");
  4510       guarantee(_task_queue->size() == 0, "only way to reach here");
  4511       guarantee(!_cm->has_overflown(), "only way to reach here");
  4512       guarantee(!_cm->mark_stack_overflow(), "only way to reach here");
  4514       if (_cm->verbose_low()) {
  4515         gclog_or_tty->print_cr("[%u] all tasks terminated", _worker_id);
  4517     } else {
  4518       // Apparently there's more work to do. Let's abort this task. It
  4519       // will restart it and we can hopefully find more things to do.
  4521       if (_cm->verbose_low()) {
  4522         gclog_or_tty->print_cr("[%u] apparently there is more work to do",
  4523                                _worker_id);
  4526       set_has_aborted();
  4527       statsOnly( ++_aborted_termination );
  4531   // Mainly for debugging purposes to make sure that a pointer to the
  4532   // closure which was statically allocated in this frame doesn't
  4533   // escape it by accident.
  4534   set_cm_oop_closure(NULL);
  4535   double end_time_ms = os::elapsedVTime() * 1000.0;
  4536   double elapsed_time_ms = end_time_ms - _start_time_ms;
  4537   // Update the step history.
  4538   _step_times_ms.add(elapsed_time_ms);
  4540   if (has_aborted()) {
  4541     // The task was aborted for some reason.
  4543     statsOnly( ++_aborted );
  4545     if (_has_timed_out) {
  4546       double diff_ms = elapsed_time_ms - _time_target_ms;
  4547       // Keep statistics of how well we did with respect to hitting
  4548       // our target only if we actually timed out (if we aborted for
  4549       // other reasons, then the results might get skewed).
  4550       _marking_step_diffs_ms.add(diff_ms);
  4553     if (_cm->has_overflown()) {
  4554       // This is the interesting one. We aborted because a global
  4555       // overflow was raised. This means we have to restart the
  4556       // marking phase and start iterating over regions. However, in
  4557       // order to do this we have to make sure that all tasks stop
  4558       // what they are doing and re-initialise in a safe manner. We
  4559       // will achieve this with the use of two barrier sync points.
  4561       if (_cm->verbose_low()) {
  4562         gclog_or_tty->print_cr("[%u] detected overflow", _worker_id);
  4565       if (!is_serial) {
  4566         // We only need to enter the sync barrier if being called
  4567         // from a parallel context
  4568         _cm->enter_first_sync_barrier(_worker_id);
  4570         // When we exit this sync barrier we know that all tasks have
  4571         // stopped doing marking work. So, it's now safe to
  4572         // re-initialise our data structures. At the end of this method,
  4573         // task 0 will clear the global data structures.
  4576       statsOnly( ++_aborted_overflow );
  4578       // We clear the local state of this task...
  4579       clear_region_fields();
  4581       if (!is_serial) {
  4582         // ...and enter the second barrier.
  4583         _cm->enter_second_sync_barrier(_worker_id);
  4585       // At this point, if we're during the concurrent phase of
  4586       // marking, everything has been re-initialized and we're
  4587       // ready to restart.
  4590     if (_cm->verbose_low()) {
  4591       gclog_or_tty->print_cr("[%u] <<<<<<<<<< ABORTING, target = %1.2lfms, "
  4592                              "elapsed = %1.2lfms <<<<<<<<<<",
  4593                              _worker_id, _time_target_ms, elapsed_time_ms);
  4594       if (_cm->has_aborted()) {
  4595         gclog_or_tty->print_cr("[%u] ========== MARKING ABORTED ==========",
  4596                                _worker_id);
  4599   } else {
  4600     if (_cm->verbose_low()) {
  4601       gclog_or_tty->print_cr("[%u] <<<<<<<<<< FINISHED, target = %1.2lfms, "
  4602                              "elapsed = %1.2lfms <<<<<<<<<<",
  4603                              _worker_id, _time_target_ms, elapsed_time_ms);
  4607   _claimed = false;
  4610 CMTask::CMTask(uint worker_id,
  4611                ConcurrentMark* cm,
  4612                size_t* marked_bytes,
  4613                BitMap* card_bm,
  4614                CMTaskQueue* task_queue,
  4615                CMTaskQueueSet* task_queues)
  4616   : _g1h(G1CollectedHeap::heap()),
  4617     _worker_id(worker_id), _cm(cm),
  4618     _claimed(false),
  4619     _nextMarkBitMap(NULL), _hash_seed(17),
  4620     _task_queue(task_queue),
  4621     _task_queues(task_queues),
  4622     _cm_oop_closure(NULL),
  4623     _marked_bytes_array(marked_bytes),
  4624     _card_bm(card_bm) {
  4625   guarantee(task_queue != NULL, "invariant");
  4626   guarantee(task_queues != NULL, "invariant");
  4628   statsOnly( _clock_due_to_scanning = 0;
  4629              _clock_due_to_marking  = 0 );
  4631   _marking_step_diffs_ms.add(0.5);
  4634 // These are formatting macros that are used below to ensure
  4635 // consistent formatting. The *_H_* versions are used to format the
  4636 // header for a particular value and they should be kept consistent
  4637 // with the corresponding macro. Also note that most of the macros add
  4638 // the necessary white space (as a prefix) which makes them a bit
  4639 // easier to compose.
  4641 // All the output lines are prefixed with this string to be able to
  4642 // identify them easily in a large log file.
  4643 #define G1PPRL_LINE_PREFIX            "###"
  4645 #define G1PPRL_ADDR_BASE_FORMAT    " "PTR_FORMAT"-"PTR_FORMAT
  4646 #ifdef _LP64
  4647 #define G1PPRL_ADDR_BASE_H_FORMAT  " %37s"
  4648 #else // _LP64
  4649 #define G1PPRL_ADDR_BASE_H_FORMAT  " %21s"
  4650 #endif // _LP64
  4652 // For per-region info
  4653 #define G1PPRL_TYPE_FORMAT            "   %-4s"
  4654 #define G1PPRL_TYPE_H_FORMAT          "   %4s"
  4655 #define G1PPRL_BYTE_FORMAT            "  "SIZE_FORMAT_W(9)
  4656 #define G1PPRL_BYTE_H_FORMAT          "  %9s"
  4657 #define G1PPRL_DOUBLE_FORMAT          "  %14.1f"
  4658 #define G1PPRL_DOUBLE_H_FORMAT        "  %14s"
  4660 // For summary info
  4661 #define G1PPRL_SUM_ADDR_FORMAT(tag)    "  "tag":"G1PPRL_ADDR_BASE_FORMAT
  4662 #define G1PPRL_SUM_BYTE_FORMAT(tag)    "  "tag": "SIZE_FORMAT
  4663 #define G1PPRL_SUM_MB_FORMAT(tag)      "  "tag": %1.2f MB"
  4664 #define G1PPRL_SUM_MB_PERC_FORMAT(tag) G1PPRL_SUM_MB_FORMAT(tag)" / %1.2f %%"
  4666 G1PrintRegionLivenessInfoClosure::
  4667 G1PrintRegionLivenessInfoClosure(outputStream* out, const char* phase_name)
  4668   : _out(out),
  4669     _total_used_bytes(0), _total_capacity_bytes(0),
  4670     _total_prev_live_bytes(0), _total_next_live_bytes(0),
  4671     _hum_used_bytes(0), _hum_capacity_bytes(0),
  4672     _hum_prev_live_bytes(0), _hum_next_live_bytes(0),
  4673     _total_remset_bytes(0), _total_strong_code_roots_bytes(0) {
  4674   G1CollectedHeap* g1h = G1CollectedHeap::heap();
  4675   MemRegion g1_committed = g1h->g1_committed();
  4676   MemRegion g1_reserved = g1h->g1_reserved();
  4677   double now = os::elapsedTime();
  4679   // Print the header of the output.
  4680   _out->cr();
  4681   _out->print_cr(G1PPRL_LINE_PREFIX" PHASE %s @ %1.3f", phase_name, now);
  4682   _out->print_cr(G1PPRL_LINE_PREFIX" HEAP"
  4683                  G1PPRL_SUM_ADDR_FORMAT("committed")
  4684                  G1PPRL_SUM_ADDR_FORMAT("reserved")
  4685                  G1PPRL_SUM_BYTE_FORMAT("region-size"),
  4686                  p2i(g1_committed.start()), p2i(g1_committed.end()),
  4687                  p2i(g1_reserved.start()), p2i(g1_reserved.end()),
  4688                  HeapRegion::GrainBytes);
  4689   _out->print_cr(G1PPRL_LINE_PREFIX);
  4690   _out->print_cr(G1PPRL_LINE_PREFIX
  4691                 G1PPRL_TYPE_H_FORMAT
  4692                 G1PPRL_ADDR_BASE_H_FORMAT
  4693                 G1PPRL_BYTE_H_FORMAT
  4694                 G1PPRL_BYTE_H_FORMAT
  4695                 G1PPRL_BYTE_H_FORMAT
  4696                 G1PPRL_DOUBLE_H_FORMAT
  4697                 G1PPRL_BYTE_H_FORMAT
  4698                 G1PPRL_BYTE_H_FORMAT,
  4699                 "type", "address-range",
  4700                 "used", "prev-live", "next-live", "gc-eff",
  4701                 "remset", "code-roots");
  4702   _out->print_cr(G1PPRL_LINE_PREFIX
  4703                 G1PPRL_TYPE_H_FORMAT
  4704                 G1PPRL_ADDR_BASE_H_FORMAT
  4705                 G1PPRL_BYTE_H_FORMAT
  4706                 G1PPRL_BYTE_H_FORMAT
  4707                 G1PPRL_BYTE_H_FORMAT
  4708                 G1PPRL_DOUBLE_H_FORMAT
  4709                 G1PPRL_BYTE_H_FORMAT
  4710                 G1PPRL_BYTE_H_FORMAT,
  4711                 "", "",
  4712                 "(bytes)", "(bytes)", "(bytes)", "(bytes/ms)",
  4713                 "(bytes)", "(bytes)");
  4716 // It takes as a parameter a reference to one of the _hum_* fields, it
  4717 // deduces the corresponding value for a region in a humongous region
  4718 // series (either the region size, or what's left if the _hum_* field
  4719 // is < the region size), and updates the _hum_* field accordingly.
  4720 size_t G1PrintRegionLivenessInfoClosure::get_hum_bytes(size_t* hum_bytes) {
  4721   size_t bytes = 0;
  4722   // The > 0 check is to deal with the prev and next live bytes which
  4723   // could be 0.
  4724   if (*hum_bytes > 0) {
  4725     bytes = MIN2(HeapRegion::GrainBytes, *hum_bytes);
  4726     *hum_bytes -= bytes;
  4728   return bytes;
  4731 // It deduces the values for a region in a humongous region series
  4732 // from the _hum_* fields and updates those accordingly. It assumes
  4733 // that that _hum_* fields have already been set up from the "starts
  4734 // humongous" region and we visit the regions in address order.
  4735 void G1PrintRegionLivenessInfoClosure::get_hum_bytes(size_t* used_bytes,
  4736                                                      size_t* capacity_bytes,
  4737                                                      size_t* prev_live_bytes,
  4738                                                      size_t* next_live_bytes) {
  4739   assert(_hum_used_bytes > 0 && _hum_capacity_bytes > 0, "pre-condition");
  4740   *used_bytes      = get_hum_bytes(&_hum_used_bytes);
  4741   *capacity_bytes  = get_hum_bytes(&_hum_capacity_bytes);
  4742   *prev_live_bytes = get_hum_bytes(&_hum_prev_live_bytes);
  4743   *next_live_bytes = get_hum_bytes(&_hum_next_live_bytes);
  4746 bool G1PrintRegionLivenessInfoClosure::doHeapRegion(HeapRegion* r) {
  4747   const char* type = "";
  4748   HeapWord* bottom       = r->bottom();
  4749   HeapWord* end          = r->end();
  4750   size_t capacity_bytes  = r->capacity();
  4751   size_t used_bytes      = r->used();
  4752   size_t prev_live_bytes = r->live_bytes();
  4753   size_t next_live_bytes = r->next_live_bytes();
  4754   double gc_eff          = r->gc_efficiency();
  4755   size_t remset_bytes    = r->rem_set()->mem_size();
  4756   size_t strong_code_roots_bytes = r->rem_set()->strong_code_roots_mem_size();
  4758   if (r->used() == 0) {
  4759     type = "FREE";
  4760   } else if (r->is_survivor()) {
  4761     type = "SURV";
  4762   } else if (r->is_young()) {
  4763     type = "EDEN";
  4764   } else if (r->startsHumongous()) {
  4765     type = "HUMS";
  4767     assert(_hum_used_bytes == 0 && _hum_capacity_bytes == 0 &&
  4768            _hum_prev_live_bytes == 0 && _hum_next_live_bytes == 0,
  4769            "they should have been zeroed after the last time we used them");
  4770     // Set up the _hum_* fields.
  4771     _hum_capacity_bytes  = capacity_bytes;
  4772     _hum_used_bytes      = used_bytes;
  4773     _hum_prev_live_bytes = prev_live_bytes;
  4774     _hum_next_live_bytes = next_live_bytes;
  4775     get_hum_bytes(&used_bytes, &capacity_bytes,
  4776                   &prev_live_bytes, &next_live_bytes);
  4777     end = bottom + HeapRegion::GrainWords;
  4778   } else if (r->continuesHumongous()) {
  4779     type = "HUMC";
  4780     get_hum_bytes(&used_bytes, &capacity_bytes,
  4781                   &prev_live_bytes, &next_live_bytes);
  4782     assert(end == bottom + HeapRegion::GrainWords, "invariant");
  4783   } else {
  4784     type = "OLD";
  4787   _total_used_bytes      += used_bytes;
  4788   _total_capacity_bytes  += capacity_bytes;
  4789   _total_prev_live_bytes += prev_live_bytes;
  4790   _total_next_live_bytes += next_live_bytes;
  4791   _total_remset_bytes    += remset_bytes;
  4792   _total_strong_code_roots_bytes += strong_code_roots_bytes;
  4794   // Print a line for this particular region.
  4795   _out->print_cr(G1PPRL_LINE_PREFIX
  4796                  G1PPRL_TYPE_FORMAT
  4797                  G1PPRL_ADDR_BASE_FORMAT
  4798                  G1PPRL_BYTE_FORMAT
  4799                  G1PPRL_BYTE_FORMAT
  4800                  G1PPRL_BYTE_FORMAT
  4801                  G1PPRL_DOUBLE_FORMAT
  4802                  G1PPRL_BYTE_FORMAT
  4803                  G1PPRL_BYTE_FORMAT,
  4804                  type, p2i(bottom), p2i(end),
  4805                  used_bytes, prev_live_bytes, next_live_bytes, gc_eff,
  4806                  remset_bytes, strong_code_roots_bytes);
  4808   return false;
  4811 G1PrintRegionLivenessInfoClosure::~G1PrintRegionLivenessInfoClosure() {
  4812   // add static memory usages to remembered set sizes
  4813   _total_remset_bytes += HeapRegionRemSet::fl_mem_size() + HeapRegionRemSet::static_mem_size();
  4814   // Print the footer of the output.
  4815   _out->print_cr(G1PPRL_LINE_PREFIX);
  4816   _out->print_cr(G1PPRL_LINE_PREFIX
  4817                  " SUMMARY"
  4818                  G1PPRL_SUM_MB_FORMAT("capacity")
  4819                  G1PPRL_SUM_MB_PERC_FORMAT("used")
  4820                  G1PPRL_SUM_MB_PERC_FORMAT("prev-live")
  4821                  G1PPRL_SUM_MB_PERC_FORMAT("next-live")
  4822                  G1PPRL_SUM_MB_FORMAT("remset")
  4823                  G1PPRL_SUM_MB_FORMAT("code-roots"),
  4824                  bytes_to_mb(_total_capacity_bytes),
  4825                  bytes_to_mb(_total_used_bytes),
  4826                  perc(_total_used_bytes, _total_capacity_bytes),
  4827                  bytes_to_mb(_total_prev_live_bytes),
  4828                  perc(_total_prev_live_bytes, _total_capacity_bytes),
  4829                  bytes_to_mb(_total_next_live_bytes),
  4830                  perc(_total_next_live_bytes, _total_capacity_bytes),
  4831                  bytes_to_mb(_total_remset_bytes),
  4832                  bytes_to_mb(_total_strong_code_roots_bytes));
  4833   _out->cr();

mercurial