src/share/vm/opto/memnode.cpp

Mon, 12 Mar 2012 10:46:47 -0700

author
kvn
date
Mon, 12 Mar 2012 10:46:47 -0700
changeset 3651
ee138854b3a6
parent 3448
52474ec73861
child 3842
0919b2e7895d
permissions
-rw-r--r--

7147744: CTW: assert(false) failed: infinite EA connection graph build
Summary: rewrote Connection graph construction code in EA to reduce time spent there.
Reviewed-by: never

     1 /*
     2  * Copyright (c) 1997, 2011, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "classfile/systemDictionary.hpp"
    27 #include "compiler/compileLog.hpp"
    28 #include "memory/allocation.inline.hpp"
    29 #include "oops/objArrayKlass.hpp"
    30 #include "opto/addnode.hpp"
    31 #include "opto/cfgnode.hpp"
    32 #include "opto/compile.hpp"
    33 #include "opto/connode.hpp"
    34 #include "opto/loopnode.hpp"
    35 #include "opto/machnode.hpp"
    36 #include "opto/matcher.hpp"
    37 #include "opto/memnode.hpp"
    38 #include "opto/mulnode.hpp"
    39 #include "opto/phaseX.hpp"
    40 #include "opto/regmask.hpp"
    42 // Portions of code courtesy of Clifford Click
    44 // Optimization - Graph Style
    46 static Node *step_through_mergemem(PhaseGVN *phase, MergeMemNode *mmem,  const TypePtr *tp, const TypePtr *adr_check, outputStream *st);
    48 //=============================================================================
    49 uint MemNode::size_of() const { return sizeof(*this); }
    51 const TypePtr *MemNode::adr_type() const {
    52   Node* adr = in(Address);
    53   const TypePtr* cross_check = NULL;
    54   DEBUG_ONLY(cross_check = _adr_type);
    55   return calculate_adr_type(adr->bottom_type(), cross_check);
    56 }
    58 #ifndef PRODUCT
    59 void MemNode::dump_spec(outputStream *st) const {
    60   if (in(Address) == NULL)  return; // node is dead
    61 #ifndef ASSERT
    62   // fake the missing field
    63   const TypePtr* _adr_type = NULL;
    64   if (in(Address) != NULL)
    65     _adr_type = in(Address)->bottom_type()->isa_ptr();
    66 #endif
    67   dump_adr_type(this, _adr_type, st);
    69   Compile* C = Compile::current();
    70   if( C->alias_type(_adr_type)->is_volatile() )
    71     st->print(" Volatile!");
    72 }
    74 void MemNode::dump_adr_type(const Node* mem, const TypePtr* adr_type, outputStream *st) {
    75   st->print(" @");
    76   if (adr_type == NULL) {
    77     st->print("NULL");
    78   } else {
    79     adr_type->dump_on(st);
    80     Compile* C = Compile::current();
    81     Compile::AliasType* atp = NULL;
    82     if (C->have_alias_type(adr_type))  atp = C->alias_type(adr_type);
    83     if (atp == NULL)
    84       st->print(", idx=?\?;");
    85     else if (atp->index() == Compile::AliasIdxBot)
    86       st->print(", idx=Bot;");
    87     else if (atp->index() == Compile::AliasIdxTop)
    88       st->print(", idx=Top;");
    89     else if (atp->index() == Compile::AliasIdxRaw)
    90       st->print(", idx=Raw;");
    91     else {
    92       ciField* field = atp->field();
    93       if (field) {
    94         st->print(", name=");
    95         field->print_name_on(st);
    96       }
    97       st->print(", idx=%d;", atp->index());
    98     }
    99   }
   100 }
   102 extern void print_alias_types();
   104 #endif
   106 Node *MemNode::optimize_simple_memory_chain(Node *mchain, const TypePtr *t_adr, PhaseGVN *phase) {
   107   const TypeOopPtr *tinst = t_adr->isa_oopptr();
   108   if (tinst == NULL || !tinst->is_known_instance_field())
   109     return mchain;  // don't try to optimize non-instance types
   110   uint instance_id = tinst->instance_id();
   111   Node *start_mem = phase->C->start()->proj_out(TypeFunc::Memory);
   112   Node *prev = NULL;
   113   Node *result = mchain;
   114   while (prev != result) {
   115     prev = result;
   116     if (result == start_mem)
   117       break;  // hit one of our sentinels
   118     // skip over a call which does not affect this memory slice
   119     if (result->is_Proj() && result->as_Proj()->_con == TypeFunc::Memory) {
   120       Node *proj_in = result->in(0);
   121       if (proj_in->is_Allocate() && proj_in->_idx == instance_id) {
   122         break;  // hit one of our sentinels
   123       } else if (proj_in->is_Call()) {
   124         CallNode *call = proj_in->as_Call();
   125         if (!call->may_modify(t_adr, phase)) {
   126           result = call->in(TypeFunc::Memory);
   127         }
   128       } else if (proj_in->is_Initialize()) {
   129         AllocateNode* alloc = proj_in->as_Initialize()->allocation();
   130         // Stop if this is the initialization for the object instance which
   131         // which contains this memory slice, otherwise skip over it.
   132         if (alloc != NULL && alloc->_idx != instance_id) {
   133           result = proj_in->in(TypeFunc::Memory);
   134         }
   135       } else if (proj_in->is_MemBar()) {
   136         result = proj_in->in(TypeFunc::Memory);
   137       } else {
   138         assert(false, "unexpected projection");
   139       }
   140     } else if (result->is_ClearArray()) {
   141       if (!ClearArrayNode::step_through(&result, instance_id, phase)) {
   142         // Can not bypass initialization of the instance
   143         // we are looking for.
   144         break;
   145       }
   146       // Otherwise skip it (the call updated 'result' value).
   147     } else if (result->is_MergeMem()) {
   148       result = step_through_mergemem(phase, result->as_MergeMem(), t_adr, NULL, tty);
   149     }
   150   }
   151   return result;
   152 }
   154 Node *MemNode::optimize_memory_chain(Node *mchain, const TypePtr *t_adr, PhaseGVN *phase) {
   155   const TypeOopPtr *t_oop = t_adr->isa_oopptr();
   156   bool is_instance = (t_oop != NULL) && t_oop->is_known_instance_field();
   157   PhaseIterGVN *igvn = phase->is_IterGVN();
   158   Node *result = mchain;
   159   result = optimize_simple_memory_chain(result, t_adr, phase);
   160   if (is_instance && igvn != NULL  && result->is_Phi()) {
   161     PhiNode *mphi = result->as_Phi();
   162     assert(mphi->bottom_type() == Type::MEMORY, "memory phi required");
   163     const TypePtr *t = mphi->adr_type();
   164     if (t == TypePtr::BOTTOM || t == TypeRawPtr::BOTTOM ||
   165         t->isa_oopptr() && !t->is_oopptr()->is_known_instance() &&
   166         t->is_oopptr()->cast_to_exactness(true)
   167          ->is_oopptr()->cast_to_ptr_type(t_oop->ptr())
   168          ->is_oopptr()->cast_to_instance_id(t_oop->instance_id()) == t_oop) {
   169       // clone the Phi with our address type
   170       result = mphi->split_out_instance(t_adr, igvn);
   171     } else {
   172       assert(phase->C->get_alias_index(t) == phase->C->get_alias_index(t_adr), "correct memory chain");
   173     }
   174   }
   175   return result;
   176 }
   178 static Node *step_through_mergemem(PhaseGVN *phase, MergeMemNode *mmem,  const TypePtr *tp, const TypePtr *adr_check, outputStream *st) {
   179   uint alias_idx = phase->C->get_alias_index(tp);
   180   Node *mem = mmem;
   181 #ifdef ASSERT
   182   {
   183     // Check that current type is consistent with the alias index used during graph construction
   184     assert(alias_idx >= Compile::AliasIdxRaw, "must not be a bad alias_idx");
   185     bool consistent =  adr_check == NULL || adr_check->empty() ||
   186                        phase->C->must_alias(adr_check, alias_idx );
   187     // Sometimes dead array references collapse to a[-1], a[-2], or a[-3]
   188     if( !consistent && adr_check != NULL && !adr_check->empty() &&
   189                tp->isa_aryptr() &&        tp->offset() == Type::OffsetBot &&
   190         adr_check->isa_aryptr() && adr_check->offset() != Type::OffsetBot &&
   191         ( adr_check->offset() == arrayOopDesc::length_offset_in_bytes() ||
   192           adr_check->offset() == oopDesc::klass_offset_in_bytes() ||
   193           adr_check->offset() == oopDesc::mark_offset_in_bytes() ) ) {
   194       // don't assert if it is dead code.
   195       consistent = true;
   196     }
   197     if( !consistent ) {
   198       st->print("alias_idx==%d, adr_check==", alias_idx);
   199       if( adr_check == NULL ) {
   200         st->print("NULL");
   201       } else {
   202         adr_check->dump();
   203       }
   204       st->cr();
   205       print_alias_types();
   206       assert(consistent, "adr_check must match alias idx");
   207     }
   208   }
   209 #endif
   210   // TypeOopPtr::NOTNULL+any is an OOP with unknown offset - generally
   211   // means an array I have not precisely typed yet.  Do not do any
   212   // alias stuff with it any time soon.
   213   const TypeOopPtr *toop = tp->isa_oopptr();
   214   if( tp->base() != Type::AnyPtr &&
   215       !(toop &&
   216         toop->klass() != NULL &&
   217         toop->klass()->is_java_lang_Object() &&
   218         toop->offset() == Type::OffsetBot) ) {
   219     // compress paths and change unreachable cycles to TOP
   220     // If not, we can update the input infinitely along a MergeMem cycle
   221     // Equivalent code in PhiNode::Ideal
   222     Node* m  = phase->transform(mmem);
   223     // If transformed to a MergeMem, get the desired slice
   224     // Otherwise the returned node represents memory for every slice
   225     mem = (m->is_MergeMem())? m->as_MergeMem()->memory_at(alias_idx) : m;
   226     // Update input if it is progress over what we have now
   227   }
   228   return mem;
   229 }
   231 //--------------------------Ideal_common---------------------------------------
   232 // Look for degenerate control and memory inputs.  Bypass MergeMem inputs.
   233 // Unhook non-raw memories from complete (macro-expanded) initializations.
   234 Node *MemNode::Ideal_common(PhaseGVN *phase, bool can_reshape) {
   235   // If our control input is a dead region, kill all below the region
   236   Node *ctl = in(MemNode::Control);
   237   if (ctl && remove_dead_region(phase, can_reshape))
   238     return this;
   239   ctl = in(MemNode::Control);
   240   // Don't bother trying to transform a dead node
   241   if( ctl && ctl->is_top() )  return NodeSentinel;
   243   PhaseIterGVN *igvn = phase->is_IterGVN();
   244   // Wait if control on the worklist.
   245   if (ctl && can_reshape && igvn != NULL) {
   246     Node* bol = NULL;
   247     Node* cmp = NULL;
   248     if (ctl->in(0)->is_If()) {
   249       assert(ctl->is_IfTrue() || ctl->is_IfFalse(), "sanity");
   250       bol = ctl->in(0)->in(1);
   251       if (bol->is_Bool())
   252         cmp = ctl->in(0)->in(1)->in(1);
   253     }
   254     if (igvn->_worklist.member(ctl) ||
   255         (bol != NULL && igvn->_worklist.member(bol)) ||
   256         (cmp != NULL && igvn->_worklist.member(cmp)) ) {
   257       // This control path may be dead.
   258       // Delay this memory node transformation until the control is processed.
   259       phase->is_IterGVN()->_worklist.push(this);
   260       return NodeSentinel; // caller will return NULL
   261     }
   262   }
   263   // Ignore if memory is dead, or self-loop
   264   Node *mem = in(MemNode::Memory);
   265   if( phase->type( mem ) == Type::TOP ) return NodeSentinel; // caller will return NULL
   266   assert( mem != this, "dead loop in MemNode::Ideal" );
   268   if (can_reshape && igvn != NULL && igvn->_worklist.member(mem)) {
   269     // This memory slice may be dead.
   270     // Delay this mem node transformation until the memory is processed.
   271     phase->is_IterGVN()->_worklist.push(this);
   272     return NodeSentinel; // caller will return NULL
   273   }
   275   Node *address = in(MemNode::Address);
   276   const Type *t_adr = phase->type( address );
   277   if( t_adr == Type::TOP )              return NodeSentinel; // caller will return NULL
   279   if( can_reshape && igvn != NULL &&
   280       (igvn->_worklist.member(address) ||
   281        igvn->_worklist.size() > 0 && (phase->type(address) != adr_type())) ) {
   282     // The address's base and type may change when the address is processed.
   283     // Delay this mem node transformation until the address is processed.
   284     phase->is_IterGVN()->_worklist.push(this);
   285     return NodeSentinel; // caller will return NULL
   286   }
   288   // Do NOT remove or optimize the next lines: ensure a new alias index
   289   // is allocated for an oop pointer type before Escape Analysis.
   290   // Note: C++ will not remove it since the call has side effect.
   291   if ( t_adr->isa_oopptr() ) {
   292     int alias_idx = phase->C->get_alias_index(t_adr->is_ptr());
   293   }
   295 #ifdef ASSERT
   296   Node* base = NULL;
   297   if (address->is_AddP())
   298     base = address->in(AddPNode::Base);
   299   assert(base == NULL || t_adr->isa_rawptr() ||
   300         !phase->type(base)->higher_equal(TypePtr::NULL_PTR), "NULL+offs not RAW address?");
   301 #endif
   303   // Avoid independent memory operations
   304   Node* old_mem = mem;
   306   // The code which unhooks non-raw memories from complete (macro-expanded)
   307   // initializations was removed. After macro-expansion all stores catched
   308   // by Initialize node became raw stores and there is no information
   309   // which memory slices they modify. So it is unsafe to move any memory
   310   // operation above these stores. Also in most cases hooked non-raw memories
   311   // were already unhooked by using information from detect_ptr_independence()
   312   // and find_previous_store().
   314   if (mem->is_MergeMem()) {
   315     MergeMemNode* mmem = mem->as_MergeMem();
   316     const TypePtr *tp = t_adr->is_ptr();
   318     mem = step_through_mergemem(phase, mmem, tp, adr_type(), tty);
   319   }
   321   if (mem != old_mem) {
   322     set_req(MemNode::Memory, mem);
   323     if (phase->type( mem ) == Type::TOP) return NodeSentinel;
   324     return this;
   325   }
   327   // let the subclass continue analyzing...
   328   return NULL;
   329 }
   331 // Helper function for proving some simple control dominations.
   332 // Attempt to prove that all control inputs of 'dom' dominate 'sub'.
   333 // Already assumes that 'dom' is available at 'sub', and that 'sub'
   334 // is not a constant (dominated by the method's StartNode).
   335 // Used by MemNode::find_previous_store to prove that the
   336 // control input of a memory operation predates (dominates)
   337 // an allocation it wants to look past.
   338 bool MemNode::all_controls_dominate(Node* dom, Node* sub) {
   339   if (dom == NULL || dom->is_top() || sub == NULL || sub->is_top())
   340     return false; // Conservative answer for dead code
   342   // Check 'dom'. Skip Proj and CatchProj nodes.
   343   dom = dom->find_exact_control(dom);
   344   if (dom == NULL || dom->is_top())
   345     return false; // Conservative answer for dead code
   347   if (dom == sub) {
   348     // For the case when, for example, 'sub' is Initialize and the original
   349     // 'dom' is Proj node of the 'sub'.
   350     return false;
   351   }
   353   if (dom->is_Con() || dom->is_Start() || dom->is_Root() || dom == sub)
   354     return true;
   356   // 'dom' dominates 'sub' if its control edge and control edges
   357   // of all its inputs dominate or equal to sub's control edge.
   359   // Currently 'sub' is either Allocate, Initialize or Start nodes.
   360   // Or Region for the check in LoadNode::Ideal();
   361   // 'sub' should have sub->in(0) != NULL.
   362   assert(sub->is_Allocate() || sub->is_Initialize() || sub->is_Start() ||
   363          sub->is_Region(), "expecting only these nodes");
   365   // Get control edge of 'sub'.
   366   Node* orig_sub = sub;
   367   sub = sub->find_exact_control(sub->in(0));
   368   if (sub == NULL || sub->is_top())
   369     return false; // Conservative answer for dead code
   371   assert(sub->is_CFG(), "expecting control");
   373   if (sub == dom)
   374     return true;
   376   if (sub->is_Start() || sub->is_Root())
   377     return false;
   379   {
   380     // Check all control edges of 'dom'.
   382     ResourceMark rm;
   383     Arena* arena = Thread::current()->resource_area();
   384     Node_List nlist(arena);
   385     Unique_Node_List dom_list(arena);
   387     dom_list.push(dom);
   388     bool only_dominating_controls = false;
   390     for (uint next = 0; next < dom_list.size(); next++) {
   391       Node* n = dom_list.at(next);
   392       if (n == orig_sub)
   393         return false; // One of dom's inputs dominated by sub.
   394       if (!n->is_CFG() && n->pinned()) {
   395         // Check only own control edge for pinned non-control nodes.
   396         n = n->find_exact_control(n->in(0));
   397         if (n == NULL || n->is_top())
   398           return false; // Conservative answer for dead code
   399         assert(n->is_CFG(), "expecting control");
   400         dom_list.push(n);
   401       } else if (n->is_Con() || n->is_Start() || n->is_Root()) {
   402         only_dominating_controls = true;
   403       } else if (n->is_CFG()) {
   404         if (n->dominates(sub, nlist))
   405           only_dominating_controls = true;
   406         else
   407           return false;
   408       } else {
   409         // First, own control edge.
   410         Node* m = n->find_exact_control(n->in(0));
   411         if (m != NULL) {
   412           if (m->is_top())
   413             return false; // Conservative answer for dead code
   414           dom_list.push(m);
   415         }
   416         // Now, the rest of edges.
   417         uint cnt = n->req();
   418         for (uint i = 1; i < cnt; i++) {
   419           m = n->find_exact_control(n->in(i));
   420           if (m == NULL || m->is_top())
   421             continue;
   422           dom_list.push(m);
   423         }
   424       }
   425     }
   426     return only_dominating_controls;
   427   }
   428 }
   430 //---------------------detect_ptr_independence---------------------------------
   431 // Used by MemNode::find_previous_store to prove that two base
   432 // pointers are never equal.
   433 // The pointers are accompanied by their associated allocations,
   434 // if any, which have been previously discovered by the caller.
   435 bool MemNode::detect_ptr_independence(Node* p1, AllocateNode* a1,
   436                                       Node* p2, AllocateNode* a2,
   437                                       PhaseTransform* phase) {
   438   // Attempt to prove that these two pointers cannot be aliased.
   439   // They may both manifestly be allocations, and they should differ.
   440   // Or, if they are not both allocations, they can be distinct constants.
   441   // Otherwise, one is an allocation and the other a pre-existing value.
   442   if (a1 == NULL && a2 == NULL) {           // neither an allocation
   443     return (p1 != p2) && p1->is_Con() && p2->is_Con();
   444   } else if (a1 != NULL && a2 != NULL) {    // both allocations
   445     return (a1 != a2);
   446   } else if (a1 != NULL) {                  // one allocation a1
   447     // (Note:  p2->is_Con implies p2->in(0)->is_Root, which dominates.)
   448     return all_controls_dominate(p2, a1);
   449   } else { //(a2 != NULL)                   // one allocation a2
   450     return all_controls_dominate(p1, a2);
   451   }
   452   return false;
   453 }
   456 // The logic for reordering loads and stores uses four steps:
   457 // (a) Walk carefully past stores and initializations which we
   458 //     can prove are independent of this load.
   459 // (b) Observe that the next memory state makes an exact match
   460 //     with self (load or store), and locate the relevant store.
   461 // (c) Ensure that, if we were to wire self directly to the store,
   462 //     the optimizer would fold it up somehow.
   463 // (d) Do the rewiring, and return, depending on some other part of
   464 //     the optimizer to fold up the load.
   465 // This routine handles steps (a) and (b).  Steps (c) and (d) are
   466 // specific to loads and stores, so they are handled by the callers.
   467 // (Currently, only LoadNode::Ideal has steps (c), (d).  More later.)
   468 //
   469 Node* MemNode::find_previous_store(PhaseTransform* phase) {
   470   Node*         ctrl   = in(MemNode::Control);
   471   Node*         adr    = in(MemNode::Address);
   472   intptr_t      offset = 0;
   473   Node*         base   = AddPNode::Ideal_base_and_offset(adr, phase, offset);
   474   AllocateNode* alloc  = AllocateNode::Ideal_allocation(base, phase);
   476   if (offset == Type::OffsetBot)
   477     return NULL;            // cannot unalias unless there are precise offsets
   479   const TypeOopPtr *addr_t = adr->bottom_type()->isa_oopptr();
   481   intptr_t size_in_bytes = memory_size();
   483   Node* mem = in(MemNode::Memory);   // start searching here...
   485   int cnt = 50;             // Cycle limiter
   486   for (;;) {                // While we can dance past unrelated stores...
   487     if (--cnt < 0)  break;  // Caught in cycle or a complicated dance?
   489     if (mem->is_Store()) {
   490       Node* st_adr = mem->in(MemNode::Address);
   491       intptr_t st_offset = 0;
   492       Node* st_base = AddPNode::Ideal_base_and_offset(st_adr, phase, st_offset);
   493       if (st_base == NULL)
   494         break;              // inscrutable pointer
   495       if (st_offset != offset && st_offset != Type::OffsetBot) {
   496         const int MAX_STORE = BytesPerLong;
   497         if (st_offset >= offset + size_in_bytes ||
   498             st_offset <= offset - MAX_STORE ||
   499             st_offset <= offset - mem->as_Store()->memory_size()) {
   500           // Success:  The offsets are provably independent.
   501           // (You may ask, why not just test st_offset != offset and be done?
   502           // The answer is that stores of different sizes can co-exist
   503           // in the same sequence of RawMem effects.  We sometimes initialize
   504           // a whole 'tile' of array elements with a single jint or jlong.)
   505           mem = mem->in(MemNode::Memory);
   506           continue;           // (a) advance through independent store memory
   507         }
   508       }
   509       if (st_base != base &&
   510           detect_ptr_independence(base, alloc,
   511                                   st_base,
   512                                   AllocateNode::Ideal_allocation(st_base, phase),
   513                                   phase)) {
   514         // Success:  The bases are provably independent.
   515         mem = mem->in(MemNode::Memory);
   516         continue;           // (a) advance through independent store memory
   517       }
   519       // (b) At this point, if the bases or offsets do not agree, we lose,
   520       // since we have not managed to prove 'this' and 'mem' independent.
   521       if (st_base == base && st_offset == offset) {
   522         return mem;         // let caller handle steps (c), (d)
   523       }
   525     } else if (mem->is_Proj() && mem->in(0)->is_Initialize()) {
   526       InitializeNode* st_init = mem->in(0)->as_Initialize();
   527       AllocateNode*  st_alloc = st_init->allocation();
   528       if (st_alloc == NULL)
   529         break;              // something degenerated
   530       bool known_identical = false;
   531       bool known_independent = false;
   532       if (alloc == st_alloc)
   533         known_identical = true;
   534       else if (alloc != NULL)
   535         known_independent = true;
   536       else if (all_controls_dominate(this, st_alloc))
   537         known_independent = true;
   539       if (known_independent) {
   540         // The bases are provably independent: Either they are
   541         // manifestly distinct allocations, or else the control
   542         // of this load dominates the store's allocation.
   543         int alias_idx = phase->C->get_alias_index(adr_type());
   544         if (alias_idx == Compile::AliasIdxRaw) {
   545           mem = st_alloc->in(TypeFunc::Memory);
   546         } else {
   547           mem = st_init->memory(alias_idx);
   548         }
   549         continue;           // (a) advance through independent store memory
   550       }
   552       // (b) at this point, if we are not looking at a store initializing
   553       // the same allocation we are loading from, we lose.
   554       if (known_identical) {
   555         // From caller, can_see_stored_value will consult find_captured_store.
   556         return mem;         // let caller handle steps (c), (d)
   557       }
   559     } else if (addr_t != NULL && addr_t->is_known_instance_field()) {
   560       // Can't use optimize_simple_memory_chain() since it needs PhaseGVN.
   561       if (mem->is_Proj() && mem->in(0)->is_Call()) {
   562         CallNode *call = mem->in(0)->as_Call();
   563         if (!call->may_modify(addr_t, phase)) {
   564           mem = call->in(TypeFunc::Memory);
   565           continue;         // (a) advance through independent call memory
   566         }
   567       } else if (mem->is_Proj() && mem->in(0)->is_MemBar()) {
   568         mem = mem->in(0)->in(TypeFunc::Memory);
   569         continue;           // (a) advance through independent MemBar memory
   570       } else if (mem->is_ClearArray()) {
   571         if (ClearArrayNode::step_through(&mem, (uint)addr_t->instance_id(), phase)) {
   572           // (the call updated 'mem' value)
   573           continue;         // (a) advance through independent allocation memory
   574         } else {
   575           // Can not bypass initialization of the instance
   576           // we are looking for.
   577           return mem;
   578         }
   579       } else if (mem->is_MergeMem()) {
   580         int alias_idx = phase->C->get_alias_index(adr_type());
   581         mem = mem->as_MergeMem()->memory_at(alias_idx);
   582         continue;           // (a) advance through independent MergeMem memory
   583       }
   584     }
   586     // Unless there is an explicit 'continue', we must bail out here,
   587     // because 'mem' is an inscrutable memory state (e.g., a call).
   588     break;
   589   }
   591   return NULL;              // bail out
   592 }
   594 //----------------------calculate_adr_type-------------------------------------
   595 // Helper function.  Notices when the given type of address hits top or bottom.
   596 // Also, asserts a cross-check of the type against the expected address type.
   597 const TypePtr* MemNode::calculate_adr_type(const Type* t, const TypePtr* cross_check) {
   598   if (t == Type::TOP)  return NULL; // does not touch memory any more?
   599   #ifdef PRODUCT
   600   cross_check = NULL;
   601   #else
   602   if (!VerifyAliases || is_error_reported() || Node::in_dump())  cross_check = NULL;
   603   #endif
   604   const TypePtr* tp = t->isa_ptr();
   605   if (tp == NULL) {
   606     assert(cross_check == NULL || cross_check == TypePtr::BOTTOM, "expected memory type must be wide");
   607     return TypePtr::BOTTOM;           // touches lots of memory
   608   } else {
   609     #ifdef ASSERT
   610     // %%%% [phh] We don't check the alias index if cross_check is
   611     //            TypeRawPtr::BOTTOM.  Needs to be investigated.
   612     if (cross_check != NULL &&
   613         cross_check != TypePtr::BOTTOM &&
   614         cross_check != TypeRawPtr::BOTTOM) {
   615       // Recheck the alias index, to see if it has changed (due to a bug).
   616       Compile* C = Compile::current();
   617       assert(C->get_alias_index(cross_check) == C->get_alias_index(tp),
   618              "must stay in the original alias category");
   619       // The type of the address must be contained in the adr_type,
   620       // disregarding "null"-ness.
   621       // (We make an exception for TypeRawPtr::BOTTOM, which is a bit bucket.)
   622       const TypePtr* tp_notnull = tp->join(TypePtr::NOTNULL)->is_ptr();
   623       assert(cross_check->meet(tp_notnull) == cross_check,
   624              "real address must not escape from expected memory type");
   625     }
   626     #endif
   627     return tp;
   628   }
   629 }
   631 //------------------------adr_phi_is_loop_invariant----------------------------
   632 // A helper function for Ideal_DU_postCCP to check if a Phi in a counted
   633 // loop is loop invariant. Make a quick traversal of Phi and associated
   634 // CastPP nodes, looking to see if they are a closed group within the loop.
   635 bool MemNode::adr_phi_is_loop_invariant(Node* adr_phi, Node* cast) {
   636   // The idea is that the phi-nest must boil down to only CastPP nodes
   637   // with the same data. This implies that any path into the loop already
   638   // includes such a CastPP, and so the original cast, whatever its input,
   639   // must be covered by an equivalent cast, with an earlier control input.
   640   ResourceMark rm;
   642   // The loop entry input of the phi should be the unique dominating
   643   // node for every Phi/CastPP in the loop.
   644   Unique_Node_List closure;
   645   closure.push(adr_phi->in(LoopNode::EntryControl));
   647   // Add the phi node and the cast to the worklist.
   648   Unique_Node_List worklist;
   649   worklist.push(adr_phi);
   650   if( cast != NULL ){
   651     if( !cast->is_ConstraintCast() ) return false;
   652     worklist.push(cast);
   653   }
   655   // Begin recursive walk of phi nodes.
   656   while( worklist.size() ){
   657     // Take a node off the worklist
   658     Node *n = worklist.pop();
   659     if( !closure.member(n) ){
   660       // Add it to the closure.
   661       closure.push(n);
   662       // Make a sanity check to ensure we don't waste too much time here.
   663       if( closure.size() > 20) return false;
   664       // This node is OK if:
   665       //  - it is a cast of an identical value
   666       //  - or it is a phi node (then we add its inputs to the worklist)
   667       // Otherwise, the node is not OK, and we presume the cast is not invariant
   668       if( n->is_ConstraintCast() ){
   669         worklist.push(n->in(1));
   670       } else if( n->is_Phi() ) {
   671         for( uint i = 1; i < n->req(); i++ ) {
   672           worklist.push(n->in(i));
   673         }
   674       } else {
   675         return false;
   676       }
   677     }
   678   }
   680   // Quit when the worklist is empty, and we've found no offending nodes.
   681   return true;
   682 }
   684 //------------------------------Ideal_DU_postCCP-------------------------------
   685 // Find any cast-away of null-ness and keep its control.  Null cast-aways are
   686 // going away in this pass and we need to make this memory op depend on the
   687 // gating null check.
   688 Node *MemNode::Ideal_DU_postCCP( PhaseCCP *ccp ) {
   689   return Ideal_common_DU_postCCP(ccp, this, in(MemNode::Address));
   690 }
   692 // I tried to leave the CastPP's in.  This makes the graph more accurate in
   693 // some sense; we get to keep around the knowledge that an oop is not-null
   694 // after some test.  Alas, the CastPP's interfere with GVN (some values are
   695 // the regular oop, some are the CastPP of the oop, all merge at Phi's which
   696 // cannot collapse, etc).  This cost us 10% on SpecJVM, even when I removed
   697 // some of the more trivial cases in the optimizer.  Removing more useless
   698 // Phi's started allowing Loads to illegally float above null checks.  I gave
   699 // up on this approach.  CNC 10/20/2000
   700 // This static method may be called not from MemNode (EncodePNode calls it).
   701 // Only the control edge of the node 'n' might be updated.
   702 Node *MemNode::Ideal_common_DU_postCCP( PhaseCCP *ccp, Node* n, Node* adr ) {
   703   Node *skipped_cast = NULL;
   704   // Need a null check?  Regular static accesses do not because they are
   705   // from constant addresses.  Array ops are gated by the range check (which
   706   // always includes a NULL check).  Just check field ops.
   707   if( n->in(MemNode::Control) == NULL ) {
   708     // Scan upwards for the highest location we can place this memory op.
   709     while( true ) {
   710       switch( adr->Opcode() ) {
   712       case Op_AddP:             // No change to NULL-ness, so peek thru AddP's
   713         adr = adr->in(AddPNode::Base);
   714         continue;
   716       case Op_DecodeN:         // No change to NULL-ness, so peek thru
   717         adr = adr->in(1);
   718         continue;
   720       case Op_CastPP:
   721         // If the CastPP is useless, just peek on through it.
   722         if( ccp->type(adr) == ccp->type(adr->in(1)) ) {
   723           // Remember the cast that we've peeked though. If we peek
   724           // through more than one, then we end up remembering the highest
   725           // one, that is, if in a loop, the one closest to the top.
   726           skipped_cast = adr;
   727           adr = adr->in(1);
   728           continue;
   729         }
   730         // CastPP is going away in this pass!  We need this memory op to be
   731         // control-dependent on the test that is guarding the CastPP.
   732         ccp->hash_delete(n);
   733         n->set_req(MemNode::Control, adr->in(0));
   734         ccp->hash_insert(n);
   735         return n;
   737       case Op_Phi:
   738         // Attempt to float above a Phi to some dominating point.
   739         if (adr->in(0) != NULL && adr->in(0)->is_CountedLoop()) {
   740           // If we've already peeked through a Cast (which could have set the
   741           // control), we can't float above a Phi, because the skipped Cast
   742           // may not be loop invariant.
   743           if (adr_phi_is_loop_invariant(adr, skipped_cast)) {
   744             adr = adr->in(1);
   745             continue;
   746           }
   747         }
   749         // Intentional fallthrough!
   751         // No obvious dominating point.  The mem op is pinned below the Phi
   752         // by the Phi itself.  If the Phi goes away (no true value is merged)
   753         // then the mem op can float, but not indefinitely.  It must be pinned
   754         // behind the controls leading to the Phi.
   755       case Op_CheckCastPP:
   756         // These usually stick around to change address type, however a
   757         // useless one can be elided and we still need to pick up a control edge
   758         if (adr->in(0) == NULL) {
   759           // This CheckCastPP node has NO control and is likely useless. But we
   760           // need check further up the ancestor chain for a control input to keep
   761           // the node in place. 4959717.
   762           skipped_cast = adr;
   763           adr = adr->in(1);
   764           continue;
   765         }
   766         ccp->hash_delete(n);
   767         n->set_req(MemNode::Control, adr->in(0));
   768         ccp->hash_insert(n);
   769         return n;
   771         // List of "safe" opcodes; those that implicitly block the memory
   772         // op below any null check.
   773       case Op_CastX2P:          // no null checks on native pointers
   774       case Op_Parm:             // 'this' pointer is not null
   775       case Op_LoadP:            // Loading from within a klass
   776       case Op_LoadN:            // Loading from within a klass
   777       case Op_LoadKlass:        // Loading from within a klass
   778       case Op_LoadNKlass:       // Loading from within a klass
   779       case Op_ConP:             // Loading from a klass
   780       case Op_ConN:             // Loading from a klass
   781       case Op_CreateEx:         // Sucking up the guts of an exception oop
   782       case Op_Con:              // Reading from TLS
   783       case Op_CMoveP:           // CMoveP is pinned
   784       case Op_CMoveN:           // CMoveN is pinned
   785         break;                  // No progress
   787       case Op_Proj:             // Direct call to an allocation routine
   788       case Op_SCMemProj:        // Memory state from store conditional ops
   789 #ifdef ASSERT
   790         {
   791           assert(adr->as_Proj()->_con == TypeFunc::Parms, "must be return value");
   792           const Node* call = adr->in(0);
   793           if (call->is_CallJava()) {
   794             const CallJavaNode* call_java = call->as_CallJava();
   795             const TypeTuple *r = call_java->tf()->range();
   796             assert(r->cnt() > TypeFunc::Parms, "must return value");
   797             const Type* ret_type = r->field_at(TypeFunc::Parms);
   798             assert(ret_type && ret_type->isa_ptr(), "must return pointer");
   799             // We further presume that this is one of
   800             // new_instance_Java, new_array_Java, or
   801             // the like, but do not assert for this.
   802           } else if (call->is_Allocate()) {
   803             // similar case to new_instance_Java, etc.
   804           } else if (!call->is_CallLeaf()) {
   805             // Projections from fetch_oop (OSR) are allowed as well.
   806             ShouldNotReachHere();
   807           }
   808         }
   809 #endif
   810         break;
   811       default:
   812         ShouldNotReachHere();
   813       }
   814       break;
   815     }
   816   }
   818   return  NULL;               // No progress
   819 }
   822 //=============================================================================
   823 uint LoadNode::size_of() const { return sizeof(*this); }
   824 uint LoadNode::cmp( const Node &n ) const
   825 { return !Type::cmp( _type, ((LoadNode&)n)._type ); }
   826 const Type *LoadNode::bottom_type() const { return _type; }
   827 uint LoadNode::ideal_reg() const {
   828   return Matcher::base2reg[_type->base()];
   829 }
   831 #ifndef PRODUCT
   832 void LoadNode::dump_spec(outputStream *st) const {
   833   MemNode::dump_spec(st);
   834   if( !Verbose && !WizardMode ) {
   835     // standard dump does this in Verbose and WizardMode
   836     st->print(" #"); _type->dump_on(st);
   837   }
   838 }
   839 #endif
   841 #ifdef ASSERT
   842 //----------------------------is_immutable_value-------------------------------
   843 // Helper function to allow a raw load without control edge for some cases
   844 bool LoadNode::is_immutable_value(Node* adr) {
   845   return (adr->is_AddP() && adr->in(AddPNode::Base)->is_top() &&
   846           adr->in(AddPNode::Address)->Opcode() == Op_ThreadLocal &&
   847           (adr->in(AddPNode::Offset)->find_intptr_t_con(-1) ==
   848            in_bytes(JavaThread::osthread_offset())));
   849 }
   850 #endif
   852 //----------------------------LoadNode::make-----------------------------------
   853 // Polymorphic factory method:
   854 Node *LoadNode::make( PhaseGVN& gvn, Node *ctl, Node *mem, Node *adr, const TypePtr* adr_type, const Type *rt, BasicType bt ) {
   855   Compile* C = gvn.C;
   857   // sanity check the alias category against the created node type
   858   assert(!(adr_type->isa_oopptr() &&
   859            adr_type->offset() == oopDesc::klass_offset_in_bytes()),
   860          "use LoadKlassNode instead");
   861   assert(!(adr_type->isa_aryptr() &&
   862            adr_type->offset() == arrayOopDesc::length_offset_in_bytes()),
   863          "use LoadRangeNode instead");
   864   // Check control edge of raw loads
   865   assert( ctl != NULL || C->get_alias_index(adr_type) != Compile::AliasIdxRaw ||
   866           // oop will be recorded in oop map if load crosses safepoint
   867           rt->isa_oopptr() || is_immutable_value(adr),
   868           "raw memory operations should have control edge");
   869   switch (bt) {
   870   case T_BOOLEAN: return new (C, 3) LoadUBNode(ctl, mem, adr, adr_type, rt->is_int()    );
   871   case T_BYTE:    return new (C, 3) LoadBNode (ctl, mem, adr, adr_type, rt->is_int()    );
   872   case T_INT:     return new (C, 3) LoadINode (ctl, mem, adr, adr_type, rt->is_int()    );
   873   case T_CHAR:    return new (C, 3) LoadUSNode(ctl, mem, adr, adr_type, rt->is_int()    );
   874   case T_SHORT:   return new (C, 3) LoadSNode (ctl, mem, adr, adr_type, rt->is_int()    );
   875   case T_LONG:    return new (C, 3) LoadLNode (ctl, mem, adr, adr_type, rt->is_long()   );
   876   case T_FLOAT:   return new (C, 3) LoadFNode (ctl, mem, adr, adr_type, rt              );
   877   case T_DOUBLE:  return new (C, 3) LoadDNode (ctl, mem, adr, adr_type, rt              );
   878   case T_ADDRESS: return new (C, 3) LoadPNode (ctl, mem, adr, adr_type, rt->is_ptr()    );
   879   case T_OBJECT:
   880 #ifdef _LP64
   881     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
   882       Node* load  = gvn.transform(new (C, 3) LoadNNode(ctl, mem, adr, adr_type, rt->make_narrowoop()));
   883       return new (C, 2) DecodeNNode(load, load->bottom_type()->make_ptr());
   884     } else
   885 #endif
   886     {
   887       assert(!adr->bottom_type()->is_ptr_to_narrowoop(), "should have got back a narrow oop");
   888       return new (C, 3) LoadPNode(ctl, mem, adr, adr_type, rt->is_oopptr());
   889     }
   890   }
   891   ShouldNotReachHere();
   892   return (LoadNode*)NULL;
   893 }
   895 LoadLNode* LoadLNode::make_atomic(Compile *C, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, const Type* rt) {
   896   bool require_atomic = true;
   897   return new (C, 3) LoadLNode(ctl, mem, adr, adr_type, rt->is_long(), require_atomic);
   898 }
   903 //------------------------------hash-------------------------------------------
   904 uint LoadNode::hash() const {
   905   // unroll addition of interesting fields
   906   return (uintptr_t)in(Control) + (uintptr_t)in(Memory) + (uintptr_t)in(Address);
   907 }
   909 //---------------------------can_see_stored_value------------------------------
   910 // This routine exists to make sure this set of tests is done the same
   911 // everywhere.  We need to make a coordinated change: first LoadNode::Ideal
   912 // will change the graph shape in a way which makes memory alive twice at the
   913 // same time (uses the Oracle model of aliasing), then some
   914 // LoadXNode::Identity will fold things back to the equivalence-class model
   915 // of aliasing.
   916 Node* MemNode::can_see_stored_value(Node* st, PhaseTransform* phase) const {
   917   Node* ld_adr = in(MemNode::Address);
   919   const TypeInstPtr* tp = phase->type(ld_adr)->isa_instptr();
   920   Compile::AliasType* atp = tp != NULL ? phase->C->alias_type(tp) : NULL;
   921   if (EliminateAutoBox && atp != NULL && atp->index() >= Compile::AliasIdxRaw &&
   922       atp->field() != NULL && !atp->field()->is_volatile()) {
   923     uint alias_idx = atp->index();
   924     bool final = atp->field()->is_final();
   925     Node* result = NULL;
   926     Node* current = st;
   927     // Skip through chains of MemBarNodes checking the MergeMems for
   928     // new states for the slice of this load.  Stop once any other
   929     // kind of node is encountered.  Loads from final memory can skip
   930     // through any kind of MemBar but normal loads shouldn't skip
   931     // through MemBarAcquire since the could allow them to move out of
   932     // a synchronized region.
   933     while (current->is_Proj()) {
   934       int opc = current->in(0)->Opcode();
   935       if ((final && (opc == Op_MemBarAcquire || opc == Op_MemBarAcquireLock)) ||
   936           opc == Op_MemBarRelease || opc == Op_MemBarCPUOrder ||
   937           opc == Op_MemBarReleaseLock) {
   938         Node* mem = current->in(0)->in(TypeFunc::Memory);
   939         if (mem->is_MergeMem()) {
   940           MergeMemNode* merge = mem->as_MergeMem();
   941           Node* new_st = merge->memory_at(alias_idx);
   942           if (new_st == merge->base_memory()) {
   943             // Keep searching
   944             current = merge->base_memory();
   945             continue;
   946           }
   947           // Save the new memory state for the slice and fall through
   948           // to exit.
   949           result = new_st;
   950         }
   951       }
   952       break;
   953     }
   954     if (result != NULL) {
   955       st = result;
   956     }
   957   }
   960   // Loop around twice in the case Load -> Initialize -> Store.
   961   // (See PhaseIterGVN::add_users_to_worklist, which knows about this case.)
   962   for (int trip = 0; trip <= 1; trip++) {
   964     if (st->is_Store()) {
   965       Node* st_adr = st->in(MemNode::Address);
   966       if (!phase->eqv(st_adr, ld_adr)) {
   967         // Try harder before giving up...  Match raw and non-raw pointers.
   968         intptr_t st_off = 0;
   969         AllocateNode* alloc = AllocateNode::Ideal_allocation(st_adr, phase, st_off);
   970         if (alloc == NULL)       return NULL;
   971         intptr_t ld_off = 0;
   972         AllocateNode* allo2 = AllocateNode::Ideal_allocation(ld_adr, phase, ld_off);
   973         if (alloc != allo2)      return NULL;
   974         if (ld_off != st_off)    return NULL;
   975         // At this point we have proven something like this setup:
   976         //  A = Allocate(...)
   977         //  L = LoadQ(,  AddP(CastPP(, A.Parm),, #Off))
   978         //  S = StoreQ(, AddP(,        A.Parm  , #Off), V)
   979         // (Actually, we haven't yet proven the Q's are the same.)
   980         // In other words, we are loading from a casted version of
   981         // the same pointer-and-offset that we stored to.
   982         // Thus, we are able to replace L by V.
   983       }
   984       // Now prove that we have a LoadQ matched to a StoreQ, for some Q.
   985       if (store_Opcode() != st->Opcode())
   986         return NULL;
   987       return st->in(MemNode::ValueIn);
   988     }
   990     intptr_t offset = 0;  // scratch
   992     // A load from a freshly-created object always returns zero.
   993     // (This can happen after LoadNode::Ideal resets the load's memory input
   994     // to find_captured_store, which returned InitializeNode::zero_memory.)
   995     if (st->is_Proj() && st->in(0)->is_Allocate() &&
   996         st->in(0) == AllocateNode::Ideal_allocation(ld_adr, phase, offset) &&
   997         offset >= st->in(0)->as_Allocate()->minimum_header_size()) {
   998       // return a zero value for the load's basic type
   999       // (This is one of the few places where a generic PhaseTransform
  1000       // can create new nodes.  Think of it as lazily manifesting
  1001       // virtually pre-existing constants.)
  1002       return phase->zerocon(memory_type());
  1005     // A load from an initialization barrier can match a captured store.
  1006     if (st->is_Proj() && st->in(0)->is_Initialize()) {
  1007       InitializeNode* init = st->in(0)->as_Initialize();
  1008       AllocateNode* alloc = init->allocation();
  1009       if (alloc != NULL &&
  1010           alloc == AllocateNode::Ideal_allocation(ld_adr, phase, offset)) {
  1011         // examine a captured store value
  1012         st = init->find_captured_store(offset, memory_size(), phase);
  1013         if (st != NULL)
  1014           continue;             // take one more trip around
  1018     break;
  1021   return NULL;
  1024 //----------------------is_instance_field_load_with_local_phi------------------
  1025 bool LoadNode::is_instance_field_load_with_local_phi(Node* ctrl) {
  1026   if( in(MemNode::Memory)->is_Phi() && in(MemNode::Memory)->in(0) == ctrl &&
  1027       in(MemNode::Address)->is_AddP() ) {
  1028     const TypeOopPtr* t_oop = in(MemNode::Address)->bottom_type()->isa_oopptr();
  1029     // Only instances.
  1030     if( t_oop != NULL && t_oop->is_known_instance_field() &&
  1031         t_oop->offset() != Type::OffsetBot &&
  1032         t_oop->offset() != Type::OffsetTop) {
  1033       return true;
  1036   return false;
  1039 //------------------------------Identity---------------------------------------
  1040 // Loads are identity if previous store is to same address
  1041 Node *LoadNode::Identity( PhaseTransform *phase ) {
  1042   // If the previous store-maker is the right kind of Store, and the store is
  1043   // to the same address, then we are equal to the value stored.
  1044   Node* mem = in(MemNode::Memory);
  1045   Node* value = can_see_stored_value(mem, phase);
  1046   if( value ) {
  1047     // byte, short & char stores truncate naturally.
  1048     // A load has to load the truncated value which requires
  1049     // some sort of masking operation and that requires an
  1050     // Ideal call instead of an Identity call.
  1051     if (memory_size() < BytesPerInt) {
  1052       // If the input to the store does not fit with the load's result type,
  1053       // it must be truncated via an Ideal call.
  1054       if (!phase->type(value)->higher_equal(phase->type(this)))
  1055         return this;
  1057     // (This works even when value is a Con, but LoadNode::Value
  1058     // usually runs first, producing the singleton type of the Con.)
  1059     return value;
  1062   // Search for an existing data phi which was generated before for the same
  1063   // instance's field to avoid infinite generation of phis in a loop.
  1064   Node *region = mem->in(0);
  1065   if (is_instance_field_load_with_local_phi(region)) {
  1066     const TypePtr *addr_t = in(MemNode::Address)->bottom_type()->isa_ptr();
  1067     int this_index  = phase->C->get_alias_index(addr_t);
  1068     int this_offset = addr_t->offset();
  1069     int this_id    = addr_t->is_oopptr()->instance_id();
  1070     const Type* this_type = bottom_type();
  1071     for (DUIterator_Fast imax, i = region->fast_outs(imax); i < imax; i++) {
  1072       Node* phi = region->fast_out(i);
  1073       if (phi->is_Phi() && phi != mem &&
  1074           phi->as_Phi()->is_same_inst_field(this_type, this_id, this_index, this_offset)) {
  1075         return phi;
  1080   return this;
  1084 // Returns true if the AliasType refers to the field that holds the
  1085 // cached box array.  Currently only handles the IntegerCache case.
  1086 static bool is_autobox_cache(Compile::AliasType* atp) {
  1087   if (atp != NULL && atp->field() != NULL) {
  1088     ciField* field = atp->field();
  1089     ciSymbol* klass = field->holder()->name();
  1090     if (field->name() == ciSymbol::cache_field_name() &&
  1091         field->holder()->uses_default_loader() &&
  1092         klass == ciSymbol::java_lang_Integer_IntegerCache()) {
  1093       return true;
  1096   return false;
  1099 // Fetch the base value in the autobox array
  1100 static bool fetch_autobox_base(Compile::AliasType* atp, int& cache_offset) {
  1101   if (atp != NULL && atp->field() != NULL) {
  1102     ciField* field = atp->field();
  1103     ciSymbol* klass = field->holder()->name();
  1104     if (field->name() == ciSymbol::cache_field_name() &&
  1105         field->holder()->uses_default_loader() &&
  1106         klass == ciSymbol::java_lang_Integer_IntegerCache()) {
  1107       assert(field->is_constant(), "what?");
  1108       ciObjArray* array = field->constant_value().as_object()->as_obj_array();
  1109       // Fetch the box object at the base of the array and get its value
  1110       ciInstance* box = array->obj_at(0)->as_instance();
  1111       ciInstanceKlass* ik = box->klass()->as_instance_klass();
  1112       if (ik->nof_nonstatic_fields() == 1) {
  1113         // This should be true nonstatic_field_at requires calling
  1114         // nof_nonstatic_fields so check it anyway
  1115         ciConstant c = box->field_value(ik->nonstatic_field_at(0));
  1116         cache_offset = c.as_int();
  1118       return true;
  1121   return false;
  1124 // Returns true if the AliasType refers to the value field of an
  1125 // autobox object.  Currently only handles Integer.
  1126 static bool is_autobox_object(Compile::AliasType* atp) {
  1127   if (atp != NULL && atp->field() != NULL) {
  1128     ciField* field = atp->field();
  1129     ciSymbol* klass = field->holder()->name();
  1130     if (field->name() == ciSymbol::value_name() &&
  1131         field->holder()->uses_default_loader() &&
  1132         klass == ciSymbol::java_lang_Integer()) {
  1133       return true;
  1136   return false;
  1140 // We're loading from an object which has autobox behaviour.
  1141 // If this object is result of a valueOf call we'll have a phi
  1142 // merging a newly allocated object and a load from the cache.
  1143 // We want to replace this load with the original incoming
  1144 // argument to the valueOf call.
  1145 Node* LoadNode::eliminate_autobox(PhaseGVN* phase) {
  1146   Node* base = in(Address)->in(AddPNode::Base);
  1147   if (base->is_Phi() && base->req() == 3) {
  1148     AllocateNode* allocation = NULL;
  1149     int allocation_index = -1;
  1150     int load_index = -1;
  1151     for (uint i = 1; i < base->req(); i++) {
  1152       allocation = AllocateNode::Ideal_allocation(base->in(i), phase);
  1153       if (allocation != NULL) {
  1154         allocation_index = i;
  1155         load_index = 3 - allocation_index;
  1156         break;
  1159     bool has_load = ( allocation != NULL &&
  1160                       (base->in(load_index)->is_Load() ||
  1161                        base->in(load_index)->is_DecodeN() &&
  1162                        base->in(load_index)->in(1)->is_Load()) );
  1163     if (has_load && in(Memory)->is_Phi() && in(Memory)->in(0) == base->in(0)) {
  1164       // Push the loads from the phi that comes from valueOf up
  1165       // through it to allow elimination of the loads and the recovery
  1166       // of the original value.
  1167       Node* mem_phi = in(Memory);
  1168       Node* offset = in(Address)->in(AddPNode::Offset);
  1169       Node* region = base->in(0);
  1171       Node* in1 = clone();
  1172       Node* in1_addr = in1->in(Address)->clone();
  1173       in1_addr->set_req(AddPNode::Base, base->in(allocation_index));
  1174       in1_addr->set_req(AddPNode::Address, base->in(allocation_index));
  1175       in1_addr->set_req(AddPNode::Offset, offset);
  1176       in1->set_req(0, region->in(allocation_index));
  1177       in1->set_req(Address, in1_addr);
  1178       in1->set_req(Memory, mem_phi->in(allocation_index));
  1180       Node* in2 = clone();
  1181       Node* in2_addr = in2->in(Address)->clone();
  1182       in2_addr->set_req(AddPNode::Base, base->in(load_index));
  1183       in2_addr->set_req(AddPNode::Address, base->in(load_index));
  1184       in2_addr->set_req(AddPNode::Offset, offset);
  1185       in2->set_req(0, region->in(load_index));
  1186       in2->set_req(Address, in2_addr);
  1187       in2->set_req(Memory, mem_phi->in(load_index));
  1189       in1_addr = phase->transform(in1_addr);
  1190       in1 =      phase->transform(in1);
  1191       in2_addr = phase->transform(in2_addr);
  1192       in2 =      phase->transform(in2);
  1194       PhiNode* result = PhiNode::make_blank(region, this);
  1195       result->set_req(allocation_index, in1);
  1196       result->set_req(load_index, in2);
  1197       return result;
  1199   } else if (base->is_Load() ||
  1200              base->is_DecodeN() && base->in(1)->is_Load()) {
  1201     if (base->is_DecodeN()) {
  1202       // Get LoadN node which loads cached Integer object
  1203       base = base->in(1);
  1205     // Eliminate the load of Integer.value for integers from the cache
  1206     // array by deriving the value from the index into the array.
  1207     // Capture the offset of the load and then reverse the computation.
  1208     Node* load_base = base->in(Address)->in(AddPNode::Base);
  1209     if (load_base->is_DecodeN()) {
  1210       // Get LoadN node which loads IntegerCache.cache field
  1211       load_base = load_base->in(1);
  1213     if (load_base != NULL) {
  1214       Compile::AliasType* atp = phase->C->alias_type(load_base->adr_type());
  1215       intptr_t cache_offset;
  1216       int shift = -1;
  1217       Node* cache = NULL;
  1218       if (is_autobox_cache(atp)) {
  1219         shift  = exact_log2(type2aelembytes(T_OBJECT));
  1220         cache = AddPNode::Ideal_base_and_offset(load_base->in(Address), phase, cache_offset);
  1222       if (cache != NULL && base->in(Address)->is_AddP()) {
  1223         Node* elements[4];
  1224         int count = base->in(Address)->as_AddP()->unpack_offsets(elements, ARRAY_SIZE(elements));
  1225         int cache_low;
  1226         if (count > 0 && fetch_autobox_base(atp, cache_low)) {
  1227           int offset = arrayOopDesc::base_offset_in_bytes(memory_type()) - (cache_low << shift);
  1228           // Add up all the offsets making of the address of the load
  1229           Node* result = elements[0];
  1230           for (int i = 1; i < count; i++) {
  1231             result = phase->transform(new (phase->C, 3) AddXNode(result, elements[i]));
  1233           // Remove the constant offset from the address and then
  1234           // remove the scaling of the offset to recover the original index.
  1235           result = phase->transform(new (phase->C, 3) AddXNode(result, phase->MakeConX(-offset)));
  1236           if (result->Opcode() == Op_LShiftX && result->in(2) == phase->intcon(shift)) {
  1237             // Peel the shift off directly but wrap it in a dummy node
  1238             // since Ideal can't return existing nodes
  1239             result = new (phase->C, 3) RShiftXNode(result->in(1), phase->intcon(0));
  1240           } else {
  1241             result = new (phase->C, 3) RShiftXNode(result, phase->intcon(shift));
  1243 #ifdef _LP64
  1244           result = new (phase->C, 2) ConvL2INode(phase->transform(result));
  1245 #endif
  1246           return result;
  1251   return NULL;
  1254 //------------------------------split_through_phi------------------------------
  1255 // Split instance field load through Phi.
  1256 Node *LoadNode::split_through_phi(PhaseGVN *phase) {
  1257   Node* mem     = in(MemNode::Memory);
  1258   Node* address = in(MemNode::Address);
  1259   const TypePtr *addr_t = phase->type(address)->isa_ptr();
  1260   const TypeOopPtr *t_oop = addr_t->isa_oopptr();
  1262   assert(mem->is_Phi() && (t_oop != NULL) &&
  1263          t_oop->is_known_instance_field(), "invalide conditions");
  1265   Node *region = mem->in(0);
  1266   if (region == NULL) {
  1267     return NULL; // Wait stable graph
  1269   uint cnt = mem->req();
  1270   for (uint i = 1; i < cnt; i++) {
  1271     Node* rc = region->in(i);
  1272     if (rc == NULL || phase->type(rc) == Type::TOP)
  1273       return NULL; // Wait stable graph
  1274     Node *in = mem->in(i);
  1275     if (in == NULL) {
  1276       return NULL; // Wait stable graph
  1279   // Check for loop invariant.
  1280   if (cnt == 3) {
  1281     for (uint i = 1; i < cnt; i++) {
  1282       Node *in = mem->in(i);
  1283       Node* m = MemNode::optimize_memory_chain(in, addr_t, phase);
  1284       if (m == mem) {
  1285         set_req(MemNode::Memory, mem->in(cnt - i)); // Skip this phi.
  1286         return this;
  1290   // Split through Phi (see original code in loopopts.cpp).
  1291   assert(phase->C->have_alias_type(addr_t), "instance should have alias type");
  1293   // Do nothing here if Identity will find a value
  1294   // (to avoid infinite chain of value phis generation).
  1295   if (!phase->eqv(this, this->Identity(phase)))
  1296     return NULL;
  1298   // Skip the split if the region dominates some control edge of the address.
  1299   if (!MemNode::all_controls_dominate(address, region))
  1300     return NULL;
  1302   const Type* this_type = this->bottom_type();
  1303   int this_index  = phase->C->get_alias_index(addr_t);
  1304   int this_offset = addr_t->offset();
  1305   int this_iid    = addr_t->is_oopptr()->instance_id();
  1306   PhaseIterGVN *igvn = phase->is_IterGVN();
  1307   Node *phi = new (igvn->C, region->req()) PhiNode(region, this_type, NULL, this_iid, this_index, this_offset);
  1308   for (uint i = 1; i < region->req(); i++) {
  1309     Node *x;
  1310     Node* the_clone = NULL;
  1311     if (region->in(i) == phase->C->top()) {
  1312       x = phase->C->top();      // Dead path?  Use a dead data op
  1313     } else {
  1314       x = this->clone();        // Else clone up the data op
  1315       the_clone = x;            // Remember for possible deletion.
  1316       // Alter data node to use pre-phi inputs
  1317       if (this->in(0) == region) {
  1318         x->set_req(0, region->in(i));
  1319       } else {
  1320         x->set_req(0, NULL);
  1322       for (uint j = 1; j < this->req(); j++) {
  1323         Node *in = this->in(j);
  1324         if (in->is_Phi() && in->in(0) == region)
  1325           x->set_req(j, in->in(i)); // Use pre-Phi input for the clone
  1328     // Check for a 'win' on some paths
  1329     const Type *t = x->Value(igvn);
  1331     bool singleton = t->singleton();
  1333     // See comments in PhaseIdealLoop::split_thru_phi().
  1334     if (singleton && t == Type::TOP) {
  1335       singleton &= region->is_Loop() && (i != LoopNode::EntryControl);
  1338     if (singleton) {
  1339       x = igvn->makecon(t);
  1340     } else {
  1341       // We now call Identity to try to simplify the cloned node.
  1342       // Note that some Identity methods call phase->type(this).
  1343       // Make sure that the type array is big enough for
  1344       // our new node, even though we may throw the node away.
  1345       // (This tweaking with igvn only works because x is a new node.)
  1346       igvn->set_type(x, t);
  1347       // If x is a TypeNode, capture any more-precise type permanently into Node
  1348       // otherwise it will be not updated during igvn->transform since
  1349       // igvn->type(x) is set to x->Value() already.
  1350       x->raise_bottom_type(t);
  1351       Node *y = x->Identity(igvn);
  1352       if (y != x) {
  1353         x = y;
  1354       } else {
  1355         y = igvn->hash_find(x);
  1356         if (y) {
  1357           x = y;
  1358         } else {
  1359           // Else x is a new node we are keeping
  1360           // We do not need register_new_node_with_optimizer
  1361           // because set_type has already been called.
  1362           igvn->_worklist.push(x);
  1366     if (x != the_clone && the_clone != NULL)
  1367       igvn->remove_dead_node(the_clone);
  1368     phi->set_req(i, x);
  1370   // Record Phi
  1371   igvn->register_new_node_with_optimizer(phi);
  1372   return phi;
  1375 //------------------------------Ideal------------------------------------------
  1376 // If the load is from Field memory and the pointer is non-null, we can
  1377 // zero out the control input.
  1378 // If the offset is constant and the base is an object allocation,
  1379 // try to hook me up to the exact initializing store.
  1380 Node *LoadNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  1381   Node* p = MemNode::Ideal_common(phase, can_reshape);
  1382   if (p)  return (p == NodeSentinel) ? NULL : p;
  1384   Node* ctrl    = in(MemNode::Control);
  1385   Node* address = in(MemNode::Address);
  1387   // Skip up past a SafePoint control.  Cannot do this for Stores because
  1388   // pointer stores & cardmarks must stay on the same side of a SafePoint.
  1389   if( ctrl != NULL && ctrl->Opcode() == Op_SafePoint &&
  1390       phase->C->get_alias_index(phase->type(address)->is_ptr()) != Compile::AliasIdxRaw ) {
  1391     ctrl = ctrl->in(0);
  1392     set_req(MemNode::Control,ctrl);
  1395   intptr_t ignore = 0;
  1396   Node*    base   = AddPNode::Ideal_base_and_offset(address, phase, ignore);
  1397   if (base != NULL
  1398       && phase->C->get_alias_index(phase->type(address)->is_ptr()) != Compile::AliasIdxRaw) {
  1399     // Check for useless control edge in some common special cases
  1400     if (in(MemNode::Control) != NULL
  1401         && phase->type(base)->higher_equal(TypePtr::NOTNULL)
  1402         && all_controls_dominate(base, phase->C->start())) {
  1403       // A method-invariant, non-null address (constant or 'this' argument).
  1404       set_req(MemNode::Control, NULL);
  1407     if (EliminateAutoBox && can_reshape) {
  1408       assert(!phase->type(base)->higher_equal(TypePtr::NULL_PTR), "the autobox pointer should be non-null");
  1409       Compile::AliasType* atp = phase->C->alias_type(adr_type());
  1410       if (is_autobox_object(atp)) {
  1411         Node* result = eliminate_autobox(phase);
  1412         if (result != NULL) return result;
  1417   Node* mem = in(MemNode::Memory);
  1418   const TypePtr *addr_t = phase->type(address)->isa_ptr();
  1420   if (addr_t != NULL) {
  1421     // try to optimize our memory input
  1422     Node* opt_mem = MemNode::optimize_memory_chain(mem, addr_t, phase);
  1423     if (opt_mem != mem) {
  1424       set_req(MemNode::Memory, opt_mem);
  1425       if (phase->type( opt_mem ) == Type::TOP) return NULL;
  1426       return this;
  1428     const TypeOopPtr *t_oop = addr_t->isa_oopptr();
  1429     if (can_reshape && opt_mem->is_Phi() &&
  1430         (t_oop != NULL) && t_oop->is_known_instance_field()) {
  1431       PhaseIterGVN *igvn = phase->is_IterGVN();
  1432       if (igvn != NULL && igvn->_worklist.member(opt_mem)) {
  1433         // Delay this transformation until memory Phi is processed.
  1434         phase->is_IterGVN()->_worklist.push(this);
  1435         return NULL;
  1437       // Split instance field load through Phi.
  1438       Node* result = split_through_phi(phase);
  1439       if (result != NULL) return result;
  1443   // Check for prior store with a different base or offset; make Load
  1444   // independent.  Skip through any number of them.  Bail out if the stores
  1445   // are in an endless dead cycle and report no progress.  This is a key
  1446   // transform for Reflection.  However, if after skipping through the Stores
  1447   // we can't then fold up against a prior store do NOT do the transform as
  1448   // this amounts to using the 'Oracle' model of aliasing.  It leaves the same
  1449   // array memory alive twice: once for the hoisted Load and again after the
  1450   // bypassed Store.  This situation only works if EVERYBODY who does
  1451   // anti-dependence work knows how to bypass.  I.e. we need all
  1452   // anti-dependence checks to ask the same Oracle.  Right now, that Oracle is
  1453   // the alias index stuff.  So instead, peek through Stores and IFF we can
  1454   // fold up, do so.
  1455   Node* prev_mem = find_previous_store(phase);
  1456   // Steps (a), (b):  Walk past independent stores to find an exact match.
  1457   if (prev_mem != NULL && prev_mem != in(MemNode::Memory)) {
  1458     // (c) See if we can fold up on the spot, but don't fold up here.
  1459     // Fold-up might require truncation (for LoadB/LoadS/LoadUS) or
  1460     // just return a prior value, which is done by Identity calls.
  1461     if (can_see_stored_value(prev_mem, phase)) {
  1462       // Make ready for step (d):
  1463       set_req(MemNode::Memory, prev_mem);
  1464       return this;
  1468   return NULL;                  // No further progress
  1471 // Helper to recognize certain Klass fields which are invariant across
  1472 // some group of array types (e.g., int[] or all T[] where T < Object).
  1473 const Type*
  1474 LoadNode::load_array_final_field(const TypeKlassPtr *tkls,
  1475                                  ciKlass* klass) const {
  1476   if (tkls->offset() == in_bytes(Klass::modifier_flags_offset())) {
  1477     // The field is Klass::_modifier_flags.  Return its (constant) value.
  1478     // (Folds up the 2nd indirection in aClassConstant.getModifiers().)
  1479     assert(this->Opcode() == Op_LoadI, "must load an int from _modifier_flags");
  1480     return TypeInt::make(klass->modifier_flags());
  1482   if (tkls->offset() == in_bytes(Klass::access_flags_offset())) {
  1483     // The field is Klass::_access_flags.  Return its (constant) value.
  1484     // (Folds up the 2nd indirection in Reflection.getClassAccessFlags(aClassConstant).)
  1485     assert(this->Opcode() == Op_LoadI, "must load an int from _access_flags");
  1486     return TypeInt::make(klass->access_flags());
  1488   if (tkls->offset() == in_bytes(Klass::layout_helper_offset())) {
  1489     // The field is Klass::_layout_helper.  Return its constant value if known.
  1490     assert(this->Opcode() == Op_LoadI, "must load an int from _layout_helper");
  1491     return TypeInt::make(klass->layout_helper());
  1494   // No match.
  1495   return NULL;
  1498 //------------------------------Value-----------------------------------------
  1499 const Type *LoadNode::Value( PhaseTransform *phase ) const {
  1500   // Either input is TOP ==> the result is TOP
  1501   Node* mem = in(MemNode::Memory);
  1502   const Type *t1 = phase->type(mem);
  1503   if (t1 == Type::TOP)  return Type::TOP;
  1504   Node* adr = in(MemNode::Address);
  1505   const TypePtr* tp = phase->type(adr)->isa_ptr();
  1506   if (tp == NULL || tp->empty())  return Type::TOP;
  1507   int off = tp->offset();
  1508   assert(off != Type::OffsetTop, "case covered by TypePtr::empty");
  1509   Compile* C = phase->C;
  1511   // Try to guess loaded type from pointer type
  1512   if (tp->base() == Type::AryPtr) {
  1513     const Type *t = tp->is_aryptr()->elem();
  1514     // Don't do this for integer types. There is only potential profit if
  1515     // the element type t is lower than _type; that is, for int types, if _type is
  1516     // more restrictive than t.  This only happens here if one is short and the other
  1517     // char (both 16 bits), and in those cases we've made an intentional decision
  1518     // to use one kind of load over the other. See AndINode::Ideal and 4965907.
  1519     // Also, do not try to narrow the type for a LoadKlass, regardless of offset.
  1520     //
  1521     // Yes, it is possible to encounter an expression like (LoadKlass p1:(AddP x x 8))
  1522     // where the _gvn.type of the AddP is wider than 8.  This occurs when an earlier
  1523     // copy p0 of (AddP x x 8) has been proven equal to p1, and the p0 has been
  1524     // subsumed by p1.  If p1 is on the worklist but has not yet been re-transformed,
  1525     // it is possible that p1 will have a type like Foo*[int+]:NotNull*+any.
  1526     // In fact, that could have been the original type of p1, and p1 could have
  1527     // had an original form like p1:(AddP x x (LShiftL quux 3)), where the
  1528     // expression (LShiftL quux 3) independently optimized to the constant 8.
  1529     if ((t->isa_int() == NULL) && (t->isa_long() == NULL)
  1530         && Opcode() != Op_LoadKlass && Opcode() != Op_LoadNKlass) {
  1531       // t might actually be lower than _type, if _type is a unique
  1532       // concrete subclass of abstract class t.
  1533       // Make sure the reference is not into the header, by comparing
  1534       // the offset against the offset of the start of the array's data.
  1535       // Different array types begin at slightly different offsets (12 vs. 16).
  1536       // We choose T_BYTE as an example base type that is least restrictive
  1537       // as to alignment, which will therefore produce the smallest
  1538       // possible base offset.
  1539       const int min_base_off = arrayOopDesc::base_offset_in_bytes(T_BYTE);
  1540       if ((uint)off >= (uint)min_base_off) {  // is the offset beyond the header?
  1541         const Type* jt = t->join(_type);
  1542         // In any case, do not allow the join, per se, to empty out the type.
  1543         if (jt->empty() && !t->empty()) {
  1544           // This can happen if a interface-typed array narrows to a class type.
  1545           jt = _type;
  1548         if (EliminateAutoBox && adr->is_AddP()) {
  1549           // The pointers in the autobox arrays are always non-null
  1550           Node* base = adr->in(AddPNode::Base);
  1551           if (base != NULL &&
  1552               !phase->type(base)->higher_equal(TypePtr::NULL_PTR)) {
  1553             Compile::AliasType* atp = C->alias_type(base->adr_type());
  1554             if (is_autobox_cache(atp)) {
  1555               return jt->join(TypePtr::NOTNULL)->is_ptr();
  1559         return jt;
  1562   } else if (tp->base() == Type::InstPtr) {
  1563     ciEnv* env = C->env();
  1564     const TypeInstPtr* tinst = tp->is_instptr();
  1565     ciKlass* klass = tinst->klass();
  1566     assert( off != Type::OffsetBot ||
  1567             // arrays can be cast to Objects
  1568             tp->is_oopptr()->klass()->is_java_lang_Object() ||
  1569             // unsafe field access may not have a constant offset
  1570             C->has_unsafe_access(),
  1571             "Field accesses must be precise" );
  1572     // For oop loads, we expect the _type to be precise
  1573     if (klass == env->String_klass() &&
  1574         adr->is_AddP() && off != Type::OffsetBot) {
  1575       // For constant Strings treat the final fields as compile time constants.
  1576       Node* base = adr->in(AddPNode::Base);
  1577       const TypeOopPtr* t = phase->type(base)->isa_oopptr();
  1578       if (t != NULL && t->singleton()) {
  1579         ciField* field = env->String_klass()->get_field_by_offset(off, false);
  1580         if (field != NULL && field->is_final()) {
  1581           ciObject* string = t->const_oop();
  1582           ciConstant constant = string->as_instance()->field_value(field);
  1583           if (constant.basic_type() == T_INT) {
  1584             return TypeInt::make(constant.as_int());
  1585           } else if (constant.basic_type() == T_ARRAY) {
  1586             if (adr->bottom_type()->is_ptr_to_narrowoop()) {
  1587               return TypeNarrowOop::make_from_constant(constant.as_object(), true);
  1588             } else {
  1589               return TypeOopPtr::make_from_constant(constant.as_object(), true);
  1595     // Optimizations for constant objects
  1596     ciObject* const_oop = tinst->const_oop();
  1597     if (const_oop != NULL) {
  1598       // For constant CallSites treat the target field as a compile time constant.
  1599       if (const_oop->is_call_site()) {
  1600         ciCallSite* call_site = const_oop->as_call_site();
  1601         ciField* field = call_site->klass()->as_instance_klass()->get_field_by_offset(off, /*is_static=*/ false);
  1602         if (field != NULL && field->is_call_site_target()) {
  1603           ciMethodHandle* target = call_site->get_target();
  1604           if (target != NULL) {  // just in case
  1605             ciConstant constant(T_OBJECT, target);
  1606             const Type* t;
  1607             if (adr->bottom_type()->is_ptr_to_narrowoop()) {
  1608               t = TypeNarrowOop::make_from_constant(constant.as_object(), true);
  1609             } else {
  1610               t = TypeOopPtr::make_from_constant(constant.as_object(), true);
  1612             // Add a dependence for invalidation of the optimization.
  1613             if (!call_site->is_constant_call_site()) {
  1614               C->dependencies()->assert_call_site_target_value(call_site, target);
  1616             return t;
  1621   } else if (tp->base() == Type::KlassPtr) {
  1622     assert( off != Type::OffsetBot ||
  1623             // arrays can be cast to Objects
  1624             tp->is_klassptr()->klass()->is_java_lang_Object() ||
  1625             // also allow array-loading from the primary supertype
  1626             // array during subtype checks
  1627             Opcode() == Op_LoadKlass,
  1628             "Field accesses must be precise" );
  1629     // For klass/static loads, we expect the _type to be precise
  1632   const TypeKlassPtr *tkls = tp->isa_klassptr();
  1633   if (tkls != NULL && !StressReflectiveCode) {
  1634     ciKlass* klass = tkls->klass();
  1635     if (klass->is_loaded() && tkls->klass_is_exact()) {
  1636       // We are loading a field from a Klass metaobject whose identity
  1637       // is known at compile time (the type is "exact" or "precise").
  1638       // Check for fields we know are maintained as constants by the VM.
  1639       if (tkls->offset() == in_bytes(Klass::super_check_offset_offset())) {
  1640         // The field is Klass::_super_check_offset.  Return its (constant) value.
  1641         // (Folds up type checking code.)
  1642         assert(Opcode() == Op_LoadI, "must load an int from _super_check_offset");
  1643         return TypeInt::make(klass->super_check_offset());
  1645       // Compute index into primary_supers array
  1646       juint depth = (tkls->offset() - in_bytes(Klass::primary_supers_offset())) / sizeof(klassOop);
  1647       // Check for overflowing; use unsigned compare to handle the negative case.
  1648       if( depth < ciKlass::primary_super_limit() ) {
  1649         // The field is an element of Klass::_primary_supers.  Return its (constant) value.
  1650         // (Folds up type checking code.)
  1651         assert(Opcode() == Op_LoadKlass, "must load a klass from _primary_supers");
  1652         ciKlass *ss = klass->super_of_depth(depth);
  1653         return ss ? TypeKlassPtr::make(ss) : TypePtr::NULL_PTR;
  1655       const Type* aift = load_array_final_field(tkls, klass);
  1656       if (aift != NULL)  return aift;
  1657       if (tkls->offset() == in_bytes(arrayKlass::component_mirror_offset())
  1658           && klass->is_array_klass()) {
  1659         // The field is arrayKlass::_component_mirror.  Return its (constant) value.
  1660         // (Folds up aClassConstant.getComponentType, common in Arrays.copyOf.)
  1661         assert(Opcode() == Op_LoadP, "must load an oop from _component_mirror");
  1662         return TypeInstPtr::make(klass->as_array_klass()->component_mirror());
  1664       if (tkls->offset() == in_bytes(Klass::java_mirror_offset())) {
  1665         // The field is Klass::_java_mirror.  Return its (constant) value.
  1666         // (Folds up the 2nd indirection in anObjConstant.getClass().)
  1667         assert(Opcode() == Op_LoadP, "must load an oop from _java_mirror");
  1668         return TypeInstPtr::make(klass->java_mirror());
  1672     // We can still check if we are loading from the primary_supers array at a
  1673     // shallow enough depth.  Even though the klass is not exact, entries less
  1674     // than or equal to its super depth are correct.
  1675     if (klass->is_loaded() ) {
  1676       ciType *inner = klass->klass();
  1677       while( inner->is_obj_array_klass() )
  1678         inner = inner->as_obj_array_klass()->base_element_type();
  1679       if( inner->is_instance_klass() &&
  1680           !inner->as_instance_klass()->flags().is_interface() ) {
  1681         // Compute index into primary_supers array
  1682         juint depth = (tkls->offset() - in_bytes(Klass::primary_supers_offset())) / sizeof(klassOop);
  1683         // Check for overflowing; use unsigned compare to handle the negative case.
  1684         if( depth < ciKlass::primary_super_limit() &&
  1685             depth <= klass->super_depth() ) { // allow self-depth checks to handle self-check case
  1686           // The field is an element of Klass::_primary_supers.  Return its (constant) value.
  1687           // (Folds up type checking code.)
  1688           assert(Opcode() == Op_LoadKlass, "must load a klass from _primary_supers");
  1689           ciKlass *ss = klass->super_of_depth(depth);
  1690           return ss ? TypeKlassPtr::make(ss) : TypePtr::NULL_PTR;
  1695     // If the type is enough to determine that the thing is not an array,
  1696     // we can give the layout_helper a positive interval type.
  1697     // This will help short-circuit some reflective code.
  1698     if (tkls->offset() == in_bytes(Klass::layout_helper_offset())
  1699         && !klass->is_array_klass() // not directly typed as an array
  1700         && !klass->is_interface()  // specifically not Serializable & Cloneable
  1701         && !klass->is_java_lang_Object()   // not the supertype of all T[]
  1702         ) {
  1703       // Note:  When interfaces are reliable, we can narrow the interface
  1704       // test to (klass != Serializable && klass != Cloneable).
  1705       assert(Opcode() == Op_LoadI, "must load an int from _layout_helper");
  1706       jint min_size = Klass::instance_layout_helper(oopDesc::header_size(), false);
  1707       // The key property of this type is that it folds up tests
  1708       // for array-ness, since it proves that the layout_helper is positive.
  1709       // Thus, a generic value like the basic object layout helper works fine.
  1710       return TypeInt::make(min_size, max_jint, Type::WidenMin);
  1714   // If we are loading from a freshly-allocated object, produce a zero,
  1715   // if the load is provably beyond the header of the object.
  1716   // (Also allow a variable load from a fresh array to produce zero.)
  1717   const TypeOopPtr *tinst = tp->isa_oopptr();
  1718   bool is_instance = (tinst != NULL) && tinst->is_known_instance_field();
  1719   if (ReduceFieldZeroing || is_instance) {
  1720     Node* value = can_see_stored_value(mem,phase);
  1721     if (value != NULL && value->is_Con()) {
  1722       assert(value->bottom_type()->higher_equal(_type),"sanity");
  1723       return value->bottom_type();
  1727   if (is_instance) {
  1728     // If we have an instance type and our memory input is the
  1729     // programs's initial memory state, there is no matching store,
  1730     // so just return a zero of the appropriate type
  1731     Node *mem = in(MemNode::Memory);
  1732     if (mem->is_Parm() && mem->in(0)->is_Start()) {
  1733       assert(mem->as_Parm()->_con == TypeFunc::Memory, "must be memory Parm");
  1734       return Type::get_zero_type(_type->basic_type());
  1737   return _type;
  1740 //------------------------------match_edge-------------------------------------
  1741 // Do we Match on this edge index or not?  Match only the address.
  1742 uint LoadNode::match_edge(uint idx) const {
  1743   return idx == MemNode::Address;
  1746 //--------------------------LoadBNode::Ideal--------------------------------------
  1747 //
  1748 //  If the previous store is to the same address as this load,
  1749 //  and the value stored was larger than a byte, replace this load
  1750 //  with the value stored truncated to a byte.  If no truncation is
  1751 //  needed, the replacement is done in LoadNode::Identity().
  1752 //
  1753 Node *LoadBNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  1754   Node* mem = in(MemNode::Memory);
  1755   Node* value = can_see_stored_value(mem,phase);
  1756   if( value && !phase->type(value)->higher_equal( _type ) ) {
  1757     Node *result = phase->transform( new (phase->C, 3) LShiftINode(value, phase->intcon(24)) );
  1758     return new (phase->C, 3) RShiftINode(result, phase->intcon(24));
  1760   // Identity call will handle the case where truncation is not needed.
  1761   return LoadNode::Ideal(phase, can_reshape);
  1764 const Type* LoadBNode::Value(PhaseTransform *phase) const {
  1765   Node* mem = in(MemNode::Memory);
  1766   Node* value = can_see_stored_value(mem,phase);
  1767   if (value != NULL && value->is_Con() &&
  1768       !value->bottom_type()->higher_equal(_type)) {
  1769     // If the input to the store does not fit with the load's result type,
  1770     // it must be truncated. We can't delay until Ideal call since
  1771     // a singleton Value is needed for split_thru_phi optimization.
  1772     int con = value->get_int();
  1773     return TypeInt::make((con << 24) >> 24);
  1775   return LoadNode::Value(phase);
  1778 //--------------------------LoadUBNode::Ideal-------------------------------------
  1779 //
  1780 //  If the previous store is to the same address as this load,
  1781 //  and the value stored was larger than a byte, replace this load
  1782 //  with the value stored truncated to a byte.  If no truncation is
  1783 //  needed, the replacement is done in LoadNode::Identity().
  1784 //
  1785 Node* LoadUBNode::Ideal(PhaseGVN* phase, bool can_reshape) {
  1786   Node* mem = in(MemNode::Memory);
  1787   Node* value = can_see_stored_value(mem, phase);
  1788   if (value && !phase->type(value)->higher_equal(_type))
  1789     return new (phase->C, 3) AndINode(value, phase->intcon(0xFF));
  1790   // Identity call will handle the case where truncation is not needed.
  1791   return LoadNode::Ideal(phase, can_reshape);
  1794 const Type* LoadUBNode::Value(PhaseTransform *phase) const {
  1795   Node* mem = in(MemNode::Memory);
  1796   Node* value = can_see_stored_value(mem,phase);
  1797   if (value != NULL && value->is_Con() &&
  1798       !value->bottom_type()->higher_equal(_type)) {
  1799     // If the input to the store does not fit with the load's result type,
  1800     // it must be truncated. We can't delay until Ideal call since
  1801     // a singleton Value is needed for split_thru_phi optimization.
  1802     int con = value->get_int();
  1803     return TypeInt::make(con & 0xFF);
  1805   return LoadNode::Value(phase);
  1808 //--------------------------LoadUSNode::Ideal-------------------------------------
  1809 //
  1810 //  If the previous store is to the same address as this load,
  1811 //  and the value stored was larger than a char, replace this load
  1812 //  with the value stored truncated to a char.  If no truncation is
  1813 //  needed, the replacement is done in LoadNode::Identity().
  1814 //
  1815 Node *LoadUSNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  1816   Node* mem = in(MemNode::Memory);
  1817   Node* value = can_see_stored_value(mem,phase);
  1818   if( value && !phase->type(value)->higher_equal( _type ) )
  1819     return new (phase->C, 3) AndINode(value,phase->intcon(0xFFFF));
  1820   // Identity call will handle the case where truncation is not needed.
  1821   return LoadNode::Ideal(phase, can_reshape);
  1824 const Type* LoadUSNode::Value(PhaseTransform *phase) const {
  1825   Node* mem = in(MemNode::Memory);
  1826   Node* value = can_see_stored_value(mem,phase);
  1827   if (value != NULL && value->is_Con() &&
  1828       !value->bottom_type()->higher_equal(_type)) {
  1829     // If the input to the store does not fit with the load's result type,
  1830     // it must be truncated. We can't delay until Ideal call since
  1831     // a singleton Value is needed for split_thru_phi optimization.
  1832     int con = value->get_int();
  1833     return TypeInt::make(con & 0xFFFF);
  1835   return LoadNode::Value(phase);
  1838 //--------------------------LoadSNode::Ideal--------------------------------------
  1839 //
  1840 //  If the previous store is to the same address as this load,
  1841 //  and the value stored was larger than a short, replace this load
  1842 //  with the value stored truncated to a short.  If no truncation is
  1843 //  needed, the replacement is done in LoadNode::Identity().
  1844 //
  1845 Node *LoadSNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  1846   Node* mem = in(MemNode::Memory);
  1847   Node* value = can_see_stored_value(mem,phase);
  1848   if( value && !phase->type(value)->higher_equal( _type ) ) {
  1849     Node *result = phase->transform( new (phase->C, 3) LShiftINode(value, phase->intcon(16)) );
  1850     return new (phase->C, 3) RShiftINode(result, phase->intcon(16));
  1852   // Identity call will handle the case where truncation is not needed.
  1853   return LoadNode::Ideal(phase, can_reshape);
  1856 const Type* LoadSNode::Value(PhaseTransform *phase) const {
  1857   Node* mem = in(MemNode::Memory);
  1858   Node* value = can_see_stored_value(mem,phase);
  1859   if (value != NULL && value->is_Con() &&
  1860       !value->bottom_type()->higher_equal(_type)) {
  1861     // If the input to the store does not fit with the load's result type,
  1862     // it must be truncated. We can't delay until Ideal call since
  1863     // a singleton Value is needed for split_thru_phi optimization.
  1864     int con = value->get_int();
  1865     return TypeInt::make((con << 16) >> 16);
  1867   return LoadNode::Value(phase);
  1870 //=============================================================================
  1871 //----------------------------LoadKlassNode::make------------------------------
  1872 // Polymorphic factory method:
  1873 Node *LoadKlassNode::make( PhaseGVN& gvn, Node *mem, Node *adr, const TypePtr* at, const TypeKlassPtr *tk ) {
  1874   Compile* C = gvn.C;
  1875   Node *ctl = NULL;
  1876   // sanity check the alias category against the created node type
  1877   const TypeOopPtr *adr_type = adr->bottom_type()->isa_oopptr();
  1878   assert(adr_type != NULL, "expecting TypeOopPtr");
  1879 #ifdef _LP64
  1880   if (adr_type->is_ptr_to_narrowoop()) {
  1881     Node* load_klass = gvn.transform(new (C, 3) LoadNKlassNode(ctl, mem, adr, at, tk->make_narrowoop()));
  1882     return new (C, 2) DecodeNNode(load_klass, load_klass->bottom_type()->make_ptr());
  1884 #endif
  1885   assert(!adr_type->is_ptr_to_narrowoop(), "should have got back a narrow oop");
  1886   return new (C, 3) LoadKlassNode(ctl, mem, adr, at, tk);
  1889 //------------------------------Value------------------------------------------
  1890 const Type *LoadKlassNode::Value( PhaseTransform *phase ) const {
  1891   return klass_value_common(phase);
  1894 const Type *LoadNode::klass_value_common( PhaseTransform *phase ) const {
  1895   // Either input is TOP ==> the result is TOP
  1896   const Type *t1 = phase->type( in(MemNode::Memory) );
  1897   if (t1 == Type::TOP)  return Type::TOP;
  1898   Node *adr = in(MemNode::Address);
  1899   const Type *t2 = phase->type( adr );
  1900   if (t2 == Type::TOP)  return Type::TOP;
  1901   const TypePtr *tp = t2->is_ptr();
  1902   if (TypePtr::above_centerline(tp->ptr()) ||
  1903       tp->ptr() == TypePtr::Null)  return Type::TOP;
  1905   // Return a more precise klass, if possible
  1906   const TypeInstPtr *tinst = tp->isa_instptr();
  1907   if (tinst != NULL) {
  1908     ciInstanceKlass* ik = tinst->klass()->as_instance_klass();
  1909     int offset = tinst->offset();
  1910     if (ik == phase->C->env()->Class_klass()
  1911         && (offset == java_lang_Class::klass_offset_in_bytes() ||
  1912             offset == java_lang_Class::array_klass_offset_in_bytes())) {
  1913       // We are loading a special hidden field from a Class mirror object,
  1914       // the field which points to the VM's Klass metaobject.
  1915       ciType* t = tinst->java_mirror_type();
  1916       // java_mirror_type returns non-null for compile-time Class constants.
  1917       if (t != NULL) {
  1918         // constant oop => constant klass
  1919         if (offset == java_lang_Class::array_klass_offset_in_bytes()) {
  1920           return TypeKlassPtr::make(ciArrayKlass::make(t));
  1922         if (!t->is_klass()) {
  1923           // a primitive Class (e.g., int.class) has NULL for a klass field
  1924           return TypePtr::NULL_PTR;
  1926         // (Folds up the 1st indirection in aClassConstant.getModifiers().)
  1927         return TypeKlassPtr::make(t->as_klass());
  1929       // non-constant mirror, so we can't tell what's going on
  1931     if( !ik->is_loaded() )
  1932       return _type;             // Bail out if not loaded
  1933     if (offset == oopDesc::klass_offset_in_bytes()) {
  1934       if (tinst->klass_is_exact()) {
  1935         return TypeKlassPtr::make(ik);
  1937       // See if we can become precise: no subklasses and no interface
  1938       // (Note:  We need to support verified interfaces.)
  1939       if (!ik->is_interface() && !ik->has_subklass()) {
  1940         //assert(!UseExactTypes, "this code should be useless with exact types");
  1941         // Add a dependence; if any subclass added we need to recompile
  1942         if (!ik->is_final()) {
  1943           // %%% should use stronger assert_unique_concrete_subtype instead
  1944           phase->C->dependencies()->assert_leaf_type(ik);
  1946         // Return precise klass
  1947         return TypeKlassPtr::make(ik);
  1950       // Return root of possible klass
  1951       return TypeKlassPtr::make(TypePtr::NotNull, ik, 0/*offset*/);
  1955   // Check for loading klass from an array
  1956   const TypeAryPtr *tary = tp->isa_aryptr();
  1957   if( tary != NULL ) {
  1958     ciKlass *tary_klass = tary->klass();
  1959     if (tary_klass != NULL   // can be NULL when at BOTTOM or TOP
  1960         && tary->offset() == oopDesc::klass_offset_in_bytes()) {
  1961       if (tary->klass_is_exact()) {
  1962         return TypeKlassPtr::make(tary_klass);
  1964       ciArrayKlass *ak = tary->klass()->as_array_klass();
  1965       // If the klass is an object array, we defer the question to the
  1966       // array component klass.
  1967       if( ak->is_obj_array_klass() ) {
  1968         assert( ak->is_loaded(), "" );
  1969         ciKlass *base_k = ak->as_obj_array_klass()->base_element_klass();
  1970         if( base_k->is_loaded() && base_k->is_instance_klass() ) {
  1971           ciInstanceKlass* ik = base_k->as_instance_klass();
  1972           // See if we can become precise: no subklasses and no interface
  1973           if (!ik->is_interface() && !ik->has_subklass()) {
  1974             //assert(!UseExactTypes, "this code should be useless with exact types");
  1975             // Add a dependence; if any subclass added we need to recompile
  1976             if (!ik->is_final()) {
  1977               phase->C->dependencies()->assert_leaf_type(ik);
  1979             // Return precise array klass
  1980             return TypeKlassPtr::make(ak);
  1983         return TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/);
  1984       } else {                  // Found a type-array?
  1985         //assert(!UseExactTypes, "this code should be useless with exact types");
  1986         assert( ak->is_type_array_klass(), "" );
  1987         return TypeKlassPtr::make(ak); // These are always precise
  1992   // Check for loading klass from an array klass
  1993   const TypeKlassPtr *tkls = tp->isa_klassptr();
  1994   if (tkls != NULL && !StressReflectiveCode) {
  1995     ciKlass* klass = tkls->klass();
  1996     if( !klass->is_loaded() )
  1997       return _type;             // Bail out if not loaded
  1998     if( klass->is_obj_array_klass() &&
  1999         tkls->offset() == in_bytes(objArrayKlass::element_klass_offset())) {
  2000       ciKlass* elem = klass->as_obj_array_klass()->element_klass();
  2001       // // Always returning precise element type is incorrect,
  2002       // // e.g., element type could be object and array may contain strings
  2003       // return TypeKlassPtr::make(TypePtr::Constant, elem, 0);
  2005       // The array's TypeKlassPtr was declared 'precise' or 'not precise'
  2006       // according to the element type's subclassing.
  2007       return TypeKlassPtr::make(tkls->ptr(), elem, 0/*offset*/);
  2009     if( klass->is_instance_klass() && tkls->klass_is_exact() &&
  2010         tkls->offset() == in_bytes(Klass::super_offset())) {
  2011       ciKlass* sup = klass->as_instance_klass()->super();
  2012       // The field is Klass::_super.  Return its (constant) value.
  2013       // (Folds up the 2nd indirection in aClassConstant.getSuperClass().)
  2014       return sup ? TypeKlassPtr::make(sup) : TypePtr::NULL_PTR;
  2018   // Bailout case
  2019   return LoadNode::Value(phase);
  2022 //------------------------------Identity---------------------------------------
  2023 // To clean up reflective code, simplify k.java_mirror.as_klass to plain k.
  2024 // Also feed through the klass in Allocate(...klass...)._klass.
  2025 Node* LoadKlassNode::Identity( PhaseTransform *phase ) {
  2026   return klass_identity_common(phase);
  2029 Node* LoadNode::klass_identity_common(PhaseTransform *phase ) {
  2030   Node* x = LoadNode::Identity(phase);
  2031   if (x != this)  return x;
  2033   // Take apart the address into an oop and and offset.
  2034   // Return 'this' if we cannot.
  2035   Node*    adr    = in(MemNode::Address);
  2036   intptr_t offset = 0;
  2037   Node*    base   = AddPNode::Ideal_base_and_offset(adr, phase, offset);
  2038   if (base == NULL)     return this;
  2039   const TypeOopPtr* toop = phase->type(adr)->isa_oopptr();
  2040   if (toop == NULL)     return this;
  2042   // We can fetch the klass directly through an AllocateNode.
  2043   // This works even if the klass is not constant (clone or newArray).
  2044   if (offset == oopDesc::klass_offset_in_bytes()) {
  2045     Node* allocated_klass = AllocateNode::Ideal_klass(base, phase);
  2046     if (allocated_klass != NULL) {
  2047       return allocated_klass;
  2051   // Simplify k.java_mirror.as_klass to plain k, where k is a klassOop.
  2052   // Simplify ak.component_mirror.array_klass to plain ak, ak an arrayKlass.
  2053   // See inline_native_Class_query for occurrences of these patterns.
  2054   // Java Example:  x.getClass().isAssignableFrom(y)
  2055   // Java Example:  Array.newInstance(x.getClass().getComponentType(), n)
  2056   //
  2057   // This improves reflective code, often making the Class
  2058   // mirror go completely dead.  (Current exception:  Class
  2059   // mirrors may appear in debug info, but we could clean them out by
  2060   // introducing a new debug info operator for klassOop.java_mirror).
  2061   if (toop->isa_instptr() && toop->klass() == phase->C->env()->Class_klass()
  2062       && (offset == java_lang_Class::klass_offset_in_bytes() ||
  2063           offset == java_lang_Class::array_klass_offset_in_bytes())) {
  2064     // We are loading a special hidden field from a Class mirror,
  2065     // the field which points to its Klass or arrayKlass metaobject.
  2066     if (base->is_Load()) {
  2067       Node* adr2 = base->in(MemNode::Address);
  2068       const TypeKlassPtr* tkls = phase->type(adr2)->isa_klassptr();
  2069       if (tkls != NULL && !tkls->empty()
  2070           && (tkls->klass()->is_instance_klass() ||
  2071               tkls->klass()->is_array_klass())
  2072           && adr2->is_AddP()
  2073           ) {
  2074         int mirror_field = in_bytes(Klass::java_mirror_offset());
  2075         if (offset == java_lang_Class::array_klass_offset_in_bytes()) {
  2076           mirror_field = in_bytes(arrayKlass::component_mirror_offset());
  2078         if (tkls->offset() == mirror_field) {
  2079           return adr2->in(AddPNode::Base);
  2085   return this;
  2089 //------------------------------Value------------------------------------------
  2090 const Type *LoadNKlassNode::Value( PhaseTransform *phase ) const {
  2091   const Type *t = klass_value_common(phase);
  2092   if (t == Type::TOP)
  2093     return t;
  2095   return t->make_narrowoop();
  2098 //------------------------------Identity---------------------------------------
  2099 // To clean up reflective code, simplify k.java_mirror.as_klass to narrow k.
  2100 // Also feed through the klass in Allocate(...klass...)._klass.
  2101 Node* LoadNKlassNode::Identity( PhaseTransform *phase ) {
  2102   Node *x = klass_identity_common(phase);
  2104   const Type *t = phase->type( x );
  2105   if( t == Type::TOP ) return x;
  2106   if( t->isa_narrowoop()) return x;
  2108   return phase->transform(new (phase->C, 2) EncodePNode(x, t->make_narrowoop()));
  2111 //------------------------------Value-----------------------------------------
  2112 const Type *LoadRangeNode::Value( PhaseTransform *phase ) const {
  2113   // Either input is TOP ==> the result is TOP
  2114   const Type *t1 = phase->type( in(MemNode::Memory) );
  2115   if( t1 == Type::TOP ) return Type::TOP;
  2116   Node *adr = in(MemNode::Address);
  2117   const Type *t2 = phase->type( adr );
  2118   if( t2 == Type::TOP ) return Type::TOP;
  2119   const TypePtr *tp = t2->is_ptr();
  2120   if (TypePtr::above_centerline(tp->ptr()))  return Type::TOP;
  2121   const TypeAryPtr *tap = tp->isa_aryptr();
  2122   if( !tap ) return _type;
  2123   return tap->size();
  2126 //-------------------------------Ideal---------------------------------------
  2127 // Feed through the length in AllocateArray(...length...)._length.
  2128 Node *LoadRangeNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  2129   Node* p = MemNode::Ideal_common(phase, can_reshape);
  2130   if (p)  return (p == NodeSentinel) ? NULL : p;
  2132   // Take apart the address into an oop and and offset.
  2133   // Return 'this' if we cannot.
  2134   Node*    adr    = in(MemNode::Address);
  2135   intptr_t offset = 0;
  2136   Node*    base   = AddPNode::Ideal_base_and_offset(adr, phase,  offset);
  2137   if (base == NULL)     return NULL;
  2138   const TypeAryPtr* tary = phase->type(adr)->isa_aryptr();
  2139   if (tary == NULL)     return NULL;
  2141   // We can fetch the length directly through an AllocateArrayNode.
  2142   // This works even if the length is not constant (clone or newArray).
  2143   if (offset == arrayOopDesc::length_offset_in_bytes()) {
  2144     AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(base, phase);
  2145     if (alloc != NULL) {
  2146       Node* allocated_length = alloc->Ideal_length();
  2147       Node* len = alloc->make_ideal_length(tary, phase);
  2148       if (allocated_length != len) {
  2149         // New CastII improves on this.
  2150         return len;
  2155   return NULL;
  2158 //------------------------------Identity---------------------------------------
  2159 // Feed through the length in AllocateArray(...length...)._length.
  2160 Node* LoadRangeNode::Identity( PhaseTransform *phase ) {
  2161   Node* x = LoadINode::Identity(phase);
  2162   if (x != this)  return x;
  2164   // Take apart the address into an oop and and offset.
  2165   // Return 'this' if we cannot.
  2166   Node*    adr    = in(MemNode::Address);
  2167   intptr_t offset = 0;
  2168   Node*    base   = AddPNode::Ideal_base_and_offset(adr, phase, offset);
  2169   if (base == NULL)     return this;
  2170   const TypeAryPtr* tary = phase->type(adr)->isa_aryptr();
  2171   if (tary == NULL)     return this;
  2173   // We can fetch the length directly through an AllocateArrayNode.
  2174   // This works even if the length is not constant (clone or newArray).
  2175   if (offset == arrayOopDesc::length_offset_in_bytes()) {
  2176     AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(base, phase);
  2177     if (alloc != NULL) {
  2178       Node* allocated_length = alloc->Ideal_length();
  2179       // Do not allow make_ideal_length to allocate a CastII node.
  2180       Node* len = alloc->make_ideal_length(tary, phase, false);
  2181       if (allocated_length == len) {
  2182         // Return allocated_length only if it would not be improved by a CastII.
  2183         return allocated_length;
  2188   return this;
  2192 //=============================================================================
  2193 //---------------------------StoreNode::make-----------------------------------
  2194 // Polymorphic factory method:
  2195 StoreNode* StoreNode::make( PhaseGVN& gvn, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val, BasicType bt ) {
  2196   Compile* C = gvn.C;
  2197   assert( C->get_alias_index(adr_type) != Compile::AliasIdxRaw ||
  2198           ctl != NULL, "raw memory operations should have control edge");
  2200   switch (bt) {
  2201   case T_BOOLEAN:
  2202   case T_BYTE:    return new (C, 4) StoreBNode(ctl, mem, adr, adr_type, val);
  2203   case T_INT:     return new (C, 4) StoreINode(ctl, mem, adr, adr_type, val);
  2204   case T_CHAR:
  2205   case T_SHORT:   return new (C, 4) StoreCNode(ctl, mem, adr, adr_type, val);
  2206   case T_LONG:    return new (C, 4) StoreLNode(ctl, mem, adr, adr_type, val);
  2207   case T_FLOAT:   return new (C, 4) StoreFNode(ctl, mem, adr, adr_type, val);
  2208   case T_DOUBLE:  return new (C, 4) StoreDNode(ctl, mem, adr, adr_type, val);
  2209   case T_ADDRESS:
  2210   case T_OBJECT:
  2211 #ifdef _LP64
  2212     if (adr->bottom_type()->is_ptr_to_narrowoop() ||
  2213         (UseCompressedOops && val->bottom_type()->isa_klassptr() &&
  2214          adr->bottom_type()->isa_rawptr())) {
  2215       val = gvn.transform(new (C, 2) EncodePNode(val, val->bottom_type()->make_narrowoop()));
  2216       return new (C, 4) StoreNNode(ctl, mem, adr, adr_type, val);
  2217     } else
  2218 #endif
  2220       return new (C, 4) StorePNode(ctl, mem, adr, adr_type, val);
  2223   ShouldNotReachHere();
  2224   return (StoreNode*)NULL;
  2227 StoreLNode* StoreLNode::make_atomic(Compile *C, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val) {
  2228   bool require_atomic = true;
  2229   return new (C, 4) StoreLNode(ctl, mem, adr, adr_type, val, require_atomic);
  2233 //--------------------------bottom_type----------------------------------------
  2234 const Type *StoreNode::bottom_type() const {
  2235   return Type::MEMORY;
  2238 //------------------------------hash-------------------------------------------
  2239 uint StoreNode::hash() const {
  2240   // unroll addition of interesting fields
  2241   //return (uintptr_t)in(Control) + (uintptr_t)in(Memory) + (uintptr_t)in(Address) + (uintptr_t)in(ValueIn);
  2243   // Since they are not commoned, do not hash them:
  2244   return NO_HASH;
  2247 //------------------------------Ideal------------------------------------------
  2248 // Change back-to-back Store(, p, x) -> Store(m, p, y) to Store(m, p, x).
  2249 // When a store immediately follows a relevant allocation/initialization,
  2250 // try to capture it into the initialization, or hoist it above.
  2251 Node *StoreNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  2252   Node* p = MemNode::Ideal_common(phase, can_reshape);
  2253   if (p)  return (p == NodeSentinel) ? NULL : p;
  2255   Node* mem     = in(MemNode::Memory);
  2256   Node* address = in(MemNode::Address);
  2258   // Back-to-back stores to same address?  Fold em up.  Generally
  2259   // unsafe if I have intervening uses...  Also disallowed for StoreCM
  2260   // since they must follow each StoreP operation.  Redundant StoreCMs
  2261   // are eliminated just before matching in final_graph_reshape.
  2262   if (mem->is_Store() && mem->in(MemNode::Address)->eqv_uncast(address) &&
  2263       mem->Opcode() != Op_StoreCM) {
  2264     // Looking at a dead closed cycle of memory?
  2265     assert(mem != mem->in(MemNode::Memory), "dead loop in StoreNode::Ideal");
  2267     assert(Opcode() == mem->Opcode() ||
  2268            phase->C->get_alias_index(adr_type()) == Compile::AliasIdxRaw,
  2269            "no mismatched stores, except on raw memory");
  2271     if (mem->outcnt() == 1 &&           // check for intervening uses
  2272         mem->as_Store()->memory_size() <= this->memory_size()) {
  2273       // If anybody other than 'this' uses 'mem', we cannot fold 'mem' away.
  2274       // For example, 'mem' might be the final state at a conditional return.
  2275       // Or, 'mem' might be used by some node which is live at the same time
  2276       // 'this' is live, which might be unschedulable.  So, require exactly
  2277       // ONE user, the 'this' store, until such time as we clone 'mem' for
  2278       // each of 'mem's uses (thus making the exactly-1-user-rule hold true).
  2279       if (can_reshape) {  // (%%% is this an anachronism?)
  2280         set_req_X(MemNode::Memory, mem->in(MemNode::Memory),
  2281                   phase->is_IterGVN());
  2282       } else {
  2283         // It's OK to do this in the parser, since DU info is always accurate,
  2284         // and the parser always refers to nodes via SafePointNode maps.
  2285         set_req(MemNode::Memory, mem->in(MemNode::Memory));
  2287       return this;
  2291   // Capture an unaliased, unconditional, simple store into an initializer.
  2292   // Or, if it is independent of the allocation, hoist it above the allocation.
  2293   if (ReduceFieldZeroing && /*can_reshape &&*/
  2294       mem->is_Proj() && mem->in(0)->is_Initialize()) {
  2295     InitializeNode* init = mem->in(0)->as_Initialize();
  2296     intptr_t offset = init->can_capture_store(this, phase);
  2297     if (offset > 0) {
  2298       Node* moved = init->capture_store(this, offset, phase);
  2299       // If the InitializeNode captured me, it made a raw copy of me,
  2300       // and I need to disappear.
  2301       if (moved != NULL) {
  2302         // %%% hack to ensure that Ideal returns a new node:
  2303         mem = MergeMemNode::make(phase->C, mem);
  2304         return mem;             // fold me away
  2309   return NULL;                  // No further progress
  2312 //------------------------------Value-----------------------------------------
  2313 const Type *StoreNode::Value( PhaseTransform *phase ) const {
  2314   // Either input is TOP ==> the result is TOP
  2315   const Type *t1 = phase->type( in(MemNode::Memory) );
  2316   if( t1 == Type::TOP ) return Type::TOP;
  2317   const Type *t2 = phase->type( in(MemNode::Address) );
  2318   if( t2 == Type::TOP ) return Type::TOP;
  2319   const Type *t3 = phase->type( in(MemNode::ValueIn) );
  2320   if( t3 == Type::TOP ) return Type::TOP;
  2321   return Type::MEMORY;
  2324 //------------------------------Identity---------------------------------------
  2325 // Remove redundant stores:
  2326 //   Store(m, p, Load(m, p)) changes to m.
  2327 //   Store(, p, x) -> Store(m, p, x) changes to Store(m, p, x).
  2328 Node *StoreNode::Identity( PhaseTransform *phase ) {
  2329   Node* mem = in(MemNode::Memory);
  2330   Node* adr = in(MemNode::Address);
  2331   Node* val = in(MemNode::ValueIn);
  2333   // Load then Store?  Then the Store is useless
  2334   if (val->is_Load() &&
  2335       val->in(MemNode::Address)->eqv_uncast(adr) &&
  2336       val->in(MemNode::Memory )->eqv_uncast(mem) &&
  2337       val->as_Load()->store_Opcode() == Opcode()) {
  2338     return mem;
  2341   // Two stores in a row of the same value?
  2342   if (mem->is_Store() &&
  2343       mem->in(MemNode::Address)->eqv_uncast(adr) &&
  2344       mem->in(MemNode::ValueIn)->eqv_uncast(val) &&
  2345       mem->Opcode() == Opcode()) {
  2346     return mem;
  2349   // Store of zero anywhere into a freshly-allocated object?
  2350   // Then the store is useless.
  2351   // (It must already have been captured by the InitializeNode.)
  2352   if (ReduceFieldZeroing && phase->type(val)->is_zero_type()) {
  2353     // a newly allocated object is already all-zeroes everywhere
  2354     if (mem->is_Proj() && mem->in(0)->is_Allocate()) {
  2355       return mem;
  2358     // the store may also apply to zero-bits in an earlier object
  2359     Node* prev_mem = find_previous_store(phase);
  2360     // Steps (a), (b):  Walk past independent stores to find an exact match.
  2361     if (prev_mem != NULL) {
  2362       Node* prev_val = can_see_stored_value(prev_mem, phase);
  2363       if (prev_val != NULL && phase->eqv(prev_val, val)) {
  2364         // prev_val and val might differ by a cast; it would be good
  2365         // to keep the more informative of the two.
  2366         return mem;
  2371   return this;
  2374 //------------------------------match_edge-------------------------------------
  2375 // Do we Match on this edge index or not?  Match only memory & value
  2376 uint StoreNode::match_edge(uint idx) const {
  2377   return idx == MemNode::Address || idx == MemNode::ValueIn;
  2380 //------------------------------cmp--------------------------------------------
  2381 // Do not common stores up together.  They generally have to be split
  2382 // back up anyways, so do not bother.
  2383 uint StoreNode::cmp( const Node &n ) const {
  2384   return (&n == this);          // Always fail except on self
  2387 //------------------------------Ideal_masked_input-----------------------------
  2388 // Check for a useless mask before a partial-word store
  2389 // (StoreB ... (AndI valIn conIa) )
  2390 // If (conIa & mask == mask) this simplifies to
  2391 // (StoreB ... (valIn) )
  2392 Node *StoreNode::Ideal_masked_input(PhaseGVN *phase, uint mask) {
  2393   Node *val = in(MemNode::ValueIn);
  2394   if( val->Opcode() == Op_AndI ) {
  2395     const TypeInt *t = phase->type( val->in(2) )->isa_int();
  2396     if( t && t->is_con() && (t->get_con() & mask) == mask ) {
  2397       set_req(MemNode::ValueIn, val->in(1));
  2398       return this;
  2401   return NULL;
  2405 //------------------------------Ideal_sign_extended_input----------------------
  2406 // Check for useless sign-extension before a partial-word store
  2407 // (StoreB ... (RShiftI _ (LShiftI _ valIn conIL ) conIR) )
  2408 // If (conIL == conIR && conIR <= num_bits)  this simplifies to
  2409 // (StoreB ... (valIn) )
  2410 Node *StoreNode::Ideal_sign_extended_input(PhaseGVN *phase, int num_bits) {
  2411   Node *val = in(MemNode::ValueIn);
  2412   if( val->Opcode() == Op_RShiftI ) {
  2413     const TypeInt *t = phase->type( val->in(2) )->isa_int();
  2414     if( t && t->is_con() && (t->get_con() <= num_bits) ) {
  2415       Node *shl = val->in(1);
  2416       if( shl->Opcode() == Op_LShiftI ) {
  2417         const TypeInt *t2 = phase->type( shl->in(2) )->isa_int();
  2418         if( t2 && t2->is_con() && (t2->get_con() == t->get_con()) ) {
  2419           set_req(MemNode::ValueIn, shl->in(1));
  2420           return this;
  2425   return NULL;
  2428 //------------------------------value_never_loaded-----------------------------------
  2429 // Determine whether there are any possible loads of the value stored.
  2430 // For simplicity, we actually check if there are any loads from the
  2431 // address stored to, not just for loads of the value stored by this node.
  2432 //
  2433 bool StoreNode::value_never_loaded( PhaseTransform *phase) const {
  2434   Node *adr = in(Address);
  2435   const TypeOopPtr *adr_oop = phase->type(adr)->isa_oopptr();
  2436   if (adr_oop == NULL)
  2437     return false;
  2438   if (!adr_oop->is_known_instance_field())
  2439     return false; // if not a distinct instance, there may be aliases of the address
  2440   for (DUIterator_Fast imax, i = adr->fast_outs(imax); i < imax; i++) {
  2441     Node *use = adr->fast_out(i);
  2442     int opc = use->Opcode();
  2443     if (use->is_Load() || use->is_LoadStore()) {
  2444       return false;
  2447   return true;
  2450 //=============================================================================
  2451 //------------------------------Ideal------------------------------------------
  2452 // If the store is from an AND mask that leaves the low bits untouched, then
  2453 // we can skip the AND operation.  If the store is from a sign-extension
  2454 // (a left shift, then right shift) we can skip both.
  2455 Node *StoreBNode::Ideal(PhaseGVN *phase, bool can_reshape){
  2456   Node *progress = StoreNode::Ideal_masked_input(phase, 0xFF);
  2457   if( progress != NULL ) return progress;
  2459   progress = StoreNode::Ideal_sign_extended_input(phase, 24);
  2460   if( progress != NULL ) return progress;
  2462   // Finally check the default case
  2463   return StoreNode::Ideal(phase, can_reshape);
  2466 //=============================================================================
  2467 //------------------------------Ideal------------------------------------------
  2468 // If the store is from an AND mask that leaves the low bits untouched, then
  2469 // we can skip the AND operation
  2470 Node *StoreCNode::Ideal(PhaseGVN *phase, bool can_reshape){
  2471   Node *progress = StoreNode::Ideal_masked_input(phase, 0xFFFF);
  2472   if( progress != NULL ) return progress;
  2474   progress = StoreNode::Ideal_sign_extended_input(phase, 16);
  2475   if( progress != NULL ) return progress;
  2477   // Finally check the default case
  2478   return StoreNode::Ideal(phase, can_reshape);
  2481 //=============================================================================
  2482 //------------------------------Identity---------------------------------------
  2483 Node *StoreCMNode::Identity( PhaseTransform *phase ) {
  2484   // No need to card mark when storing a null ptr
  2485   Node* my_store = in(MemNode::OopStore);
  2486   if (my_store->is_Store()) {
  2487     const Type *t1 = phase->type( my_store->in(MemNode::ValueIn) );
  2488     if( t1 == TypePtr::NULL_PTR ) {
  2489       return in(MemNode::Memory);
  2492   return this;
  2495 //=============================================================================
  2496 //------------------------------Ideal---------------------------------------
  2497 Node *StoreCMNode::Ideal(PhaseGVN *phase, bool can_reshape){
  2498   Node* progress = StoreNode::Ideal(phase, can_reshape);
  2499   if (progress != NULL) return progress;
  2501   Node* my_store = in(MemNode::OopStore);
  2502   if (my_store->is_MergeMem()) {
  2503     Node* mem = my_store->as_MergeMem()->memory_at(oop_alias_idx());
  2504     set_req(MemNode::OopStore, mem);
  2505     return this;
  2508   return NULL;
  2511 //------------------------------Value-----------------------------------------
  2512 const Type *StoreCMNode::Value( PhaseTransform *phase ) const {
  2513   // Either input is TOP ==> the result is TOP
  2514   const Type *t = phase->type( in(MemNode::Memory) );
  2515   if( t == Type::TOP ) return Type::TOP;
  2516   t = phase->type( in(MemNode::Address) );
  2517   if( t == Type::TOP ) return Type::TOP;
  2518   t = phase->type( in(MemNode::ValueIn) );
  2519   if( t == Type::TOP ) return Type::TOP;
  2520   // If extra input is TOP ==> the result is TOP
  2521   t = phase->type( in(MemNode::OopStore) );
  2522   if( t == Type::TOP ) return Type::TOP;
  2524   return StoreNode::Value( phase );
  2528 //=============================================================================
  2529 //----------------------------------SCMemProjNode------------------------------
  2530 const Type * SCMemProjNode::Value( PhaseTransform *phase ) const
  2532   return bottom_type();
  2535 //=============================================================================
  2536 LoadStoreNode::LoadStoreNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex ) : Node(5) {
  2537   init_req(MemNode::Control, c  );
  2538   init_req(MemNode::Memory , mem);
  2539   init_req(MemNode::Address, adr);
  2540   init_req(MemNode::ValueIn, val);
  2541   init_req(         ExpectedIn, ex );
  2542   init_class_id(Class_LoadStore);
  2546 //=============================================================================
  2547 //-------------------------------adr_type--------------------------------------
  2548 // Do we Match on this edge index or not?  Do not match memory
  2549 const TypePtr* ClearArrayNode::adr_type() const {
  2550   Node *adr = in(3);
  2551   return MemNode::calculate_adr_type(adr->bottom_type());
  2554 //------------------------------match_edge-------------------------------------
  2555 // Do we Match on this edge index or not?  Do not match memory
  2556 uint ClearArrayNode::match_edge(uint idx) const {
  2557   return idx > 1;
  2560 //------------------------------Identity---------------------------------------
  2561 // Clearing a zero length array does nothing
  2562 Node *ClearArrayNode::Identity( PhaseTransform *phase ) {
  2563   return phase->type(in(2))->higher_equal(TypeX::ZERO)  ? in(1) : this;
  2566 //------------------------------Idealize---------------------------------------
  2567 // Clearing a short array is faster with stores
  2568 Node *ClearArrayNode::Ideal(PhaseGVN *phase, bool can_reshape){
  2569   const int unit = BytesPerLong;
  2570   const TypeX* t = phase->type(in(2))->isa_intptr_t();
  2571   if (!t)  return NULL;
  2572   if (!t->is_con())  return NULL;
  2573   intptr_t raw_count = t->get_con();
  2574   intptr_t size = raw_count;
  2575   if (!Matcher::init_array_count_is_in_bytes) size *= unit;
  2576   // Clearing nothing uses the Identity call.
  2577   // Negative clears are possible on dead ClearArrays
  2578   // (see jck test stmt114.stmt11402.val).
  2579   if (size <= 0 || size % unit != 0)  return NULL;
  2580   intptr_t count = size / unit;
  2581   // Length too long; use fast hardware clear
  2582   if (size > Matcher::init_array_short_size)  return NULL;
  2583   Node *mem = in(1);
  2584   if( phase->type(mem)==Type::TOP ) return NULL;
  2585   Node *adr = in(3);
  2586   const Type* at = phase->type(adr);
  2587   if( at==Type::TOP ) return NULL;
  2588   const TypePtr* atp = at->isa_ptr();
  2589   // adjust atp to be the correct array element address type
  2590   if (atp == NULL)  atp = TypePtr::BOTTOM;
  2591   else              atp = atp->add_offset(Type::OffsetBot);
  2592   // Get base for derived pointer purposes
  2593   if( adr->Opcode() != Op_AddP ) Unimplemented();
  2594   Node *base = adr->in(1);
  2596   Node *zero = phase->makecon(TypeLong::ZERO);
  2597   Node *off  = phase->MakeConX(BytesPerLong);
  2598   mem = new (phase->C, 4) StoreLNode(in(0),mem,adr,atp,zero);
  2599   count--;
  2600   while( count-- ) {
  2601     mem = phase->transform(mem);
  2602     adr = phase->transform(new (phase->C, 4) AddPNode(base,adr,off));
  2603     mem = new (phase->C, 4) StoreLNode(in(0),mem,adr,atp,zero);
  2605   return mem;
  2608 //----------------------------step_through----------------------------------
  2609 // Return allocation input memory edge if it is different instance
  2610 // or itself if it is the one we are looking for.
  2611 bool ClearArrayNode::step_through(Node** np, uint instance_id, PhaseTransform* phase) {
  2612   Node* n = *np;
  2613   assert(n->is_ClearArray(), "sanity");
  2614   intptr_t offset;
  2615   AllocateNode* alloc = AllocateNode::Ideal_allocation(n->in(3), phase, offset);
  2616   // This method is called only before Allocate nodes are expanded during
  2617   // macro nodes expansion. Before that ClearArray nodes are only generated
  2618   // in LibraryCallKit::generate_arraycopy() which follows allocations.
  2619   assert(alloc != NULL, "should have allocation");
  2620   if (alloc->_idx == instance_id) {
  2621     // Can not bypass initialization of the instance we are looking for.
  2622     return false;
  2624   // Otherwise skip it.
  2625   InitializeNode* init = alloc->initialization();
  2626   if (init != NULL)
  2627     *np = init->in(TypeFunc::Memory);
  2628   else
  2629     *np = alloc->in(TypeFunc::Memory);
  2630   return true;
  2633 //----------------------------clear_memory-------------------------------------
  2634 // Generate code to initialize object storage to zero.
  2635 Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest,
  2636                                    intptr_t start_offset,
  2637                                    Node* end_offset,
  2638                                    PhaseGVN* phase) {
  2639   Compile* C = phase->C;
  2640   intptr_t offset = start_offset;
  2642   int unit = BytesPerLong;
  2643   if ((offset % unit) != 0) {
  2644     Node* adr = new (C, 4) AddPNode(dest, dest, phase->MakeConX(offset));
  2645     adr = phase->transform(adr);
  2646     const TypePtr* atp = TypeRawPtr::BOTTOM;
  2647     mem = StoreNode::make(*phase, ctl, mem, adr, atp, phase->zerocon(T_INT), T_INT);
  2648     mem = phase->transform(mem);
  2649     offset += BytesPerInt;
  2651   assert((offset % unit) == 0, "");
  2653   // Initialize the remaining stuff, if any, with a ClearArray.
  2654   return clear_memory(ctl, mem, dest, phase->MakeConX(offset), end_offset, phase);
  2657 Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest,
  2658                                    Node* start_offset,
  2659                                    Node* end_offset,
  2660                                    PhaseGVN* phase) {
  2661   if (start_offset == end_offset) {
  2662     // nothing to do
  2663     return mem;
  2666   Compile* C = phase->C;
  2667   int unit = BytesPerLong;
  2668   Node* zbase = start_offset;
  2669   Node* zend  = end_offset;
  2671   // Scale to the unit required by the CPU:
  2672   if (!Matcher::init_array_count_is_in_bytes) {
  2673     Node* shift = phase->intcon(exact_log2(unit));
  2674     zbase = phase->transform( new(C,3) URShiftXNode(zbase, shift) );
  2675     zend  = phase->transform( new(C,3) URShiftXNode(zend,  shift) );
  2678   Node* zsize = phase->transform( new(C,3) SubXNode(zend, zbase) );
  2679   Node* zinit = phase->zerocon((unit == BytesPerLong) ? T_LONG : T_INT);
  2681   // Bulk clear double-words
  2682   Node* adr = phase->transform( new(C,4) AddPNode(dest, dest, start_offset) );
  2683   mem = new (C, 4) ClearArrayNode(ctl, mem, zsize, adr);
  2684   return phase->transform(mem);
  2687 Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest,
  2688                                    intptr_t start_offset,
  2689                                    intptr_t end_offset,
  2690                                    PhaseGVN* phase) {
  2691   if (start_offset == end_offset) {
  2692     // nothing to do
  2693     return mem;
  2696   Compile* C = phase->C;
  2697   assert((end_offset % BytesPerInt) == 0, "odd end offset");
  2698   intptr_t done_offset = end_offset;
  2699   if ((done_offset % BytesPerLong) != 0) {
  2700     done_offset -= BytesPerInt;
  2702   if (done_offset > start_offset) {
  2703     mem = clear_memory(ctl, mem, dest,
  2704                        start_offset, phase->MakeConX(done_offset), phase);
  2706   if (done_offset < end_offset) { // emit the final 32-bit store
  2707     Node* adr = new (C, 4) AddPNode(dest, dest, phase->MakeConX(done_offset));
  2708     adr = phase->transform(adr);
  2709     const TypePtr* atp = TypeRawPtr::BOTTOM;
  2710     mem = StoreNode::make(*phase, ctl, mem, adr, atp, phase->zerocon(T_INT), T_INT);
  2711     mem = phase->transform(mem);
  2712     done_offset += BytesPerInt;
  2714   assert(done_offset == end_offset, "");
  2715   return mem;
  2718 //=============================================================================
  2719 // Do not match memory edge.
  2720 uint StrIntrinsicNode::match_edge(uint idx) const {
  2721   return idx == 2 || idx == 3;
  2724 //------------------------------Ideal------------------------------------------
  2725 // Return a node which is more "ideal" than the current node.  Strip out
  2726 // control copies
  2727 Node *StrIntrinsicNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  2728   if (remove_dead_region(phase, can_reshape)) return this;
  2729   // Don't bother trying to transform a dead node
  2730   if (in(0) && in(0)->is_top())  return NULL;
  2732   if (can_reshape) {
  2733     Node* mem = phase->transform(in(MemNode::Memory));
  2734     // If transformed to a MergeMem, get the desired slice
  2735     uint alias_idx = phase->C->get_alias_index(adr_type());
  2736     mem = mem->is_MergeMem() ? mem->as_MergeMem()->memory_at(alias_idx) : mem;
  2737     if (mem != in(MemNode::Memory)) {
  2738       set_req(MemNode::Memory, mem);
  2739       return this;
  2742   return NULL;
  2745 //------------------------------Value------------------------------------------
  2746 const Type *StrIntrinsicNode::Value( PhaseTransform *phase ) const {
  2747   if (in(0) && phase->type(in(0)) == Type::TOP) return Type::TOP;
  2748   return bottom_type();
  2751 //=============================================================================
  2752 MemBarNode::MemBarNode(Compile* C, int alias_idx, Node* precedent)
  2753   : MultiNode(TypeFunc::Parms + (precedent == NULL? 0: 1)),
  2754     _adr_type(C->get_adr_type(alias_idx))
  2756   init_class_id(Class_MemBar);
  2757   Node* top = C->top();
  2758   init_req(TypeFunc::I_O,top);
  2759   init_req(TypeFunc::FramePtr,top);
  2760   init_req(TypeFunc::ReturnAdr,top);
  2761   if (precedent != NULL)
  2762     init_req(TypeFunc::Parms, precedent);
  2765 //------------------------------cmp--------------------------------------------
  2766 uint MemBarNode::hash() const { return NO_HASH; }
  2767 uint MemBarNode::cmp( const Node &n ) const {
  2768   return (&n == this);          // Always fail except on self
  2771 //------------------------------make-------------------------------------------
  2772 MemBarNode* MemBarNode::make(Compile* C, int opcode, int atp, Node* pn) {
  2773   int len = Precedent + (pn == NULL? 0: 1);
  2774   switch (opcode) {
  2775   case Op_MemBarAcquire:   return new(C, len) MemBarAcquireNode(C,  atp, pn);
  2776   case Op_MemBarRelease:   return new(C, len) MemBarReleaseNode(C,  atp, pn);
  2777   case Op_MemBarAcquireLock: return new(C, len) MemBarAcquireLockNode(C,  atp, pn);
  2778   case Op_MemBarReleaseLock: return new(C, len) MemBarReleaseLockNode(C,  atp, pn);
  2779   case Op_MemBarVolatile:  return new(C, len) MemBarVolatileNode(C, atp, pn);
  2780   case Op_MemBarCPUOrder:  return new(C, len) MemBarCPUOrderNode(C, atp, pn);
  2781   case Op_Initialize:      return new(C, len) InitializeNode(C,     atp, pn);
  2782   case Op_MemBarStoreStore: return new(C, len) MemBarStoreStoreNode(C,  atp, pn);
  2783   default:                 ShouldNotReachHere(); return NULL;
  2787 //------------------------------Ideal------------------------------------------
  2788 // Return a node which is more "ideal" than the current node.  Strip out
  2789 // control copies
  2790 Node *MemBarNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  2791   if (remove_dead_region(phase, can_reshape)) return this;
  2792   // Don't bother trying to transform a dead node
  2793   if (in(0) && in(0)->is_top())  return NULL;
  2795   // Eliminate volatile MemBars for scalar replaced objects.
  2796   if (can_reshape && req() == (Precedent+1) &&
  2797       (Opcode() == Op_MemBarAcquire || Opcode() == Op_MemBarVolatile)) {
  2798     // Volatile field loads and stores.
  2799     Node* my_mem = in(MemBarNode::Precedent);
  2800     if (my_mem != NULL && my_mem->is_Mem()) {
  2801       const TypeOopPtr* t_oop = my_mem->in(MemNode::Address)->bottom_type()->isa_oopptr();
  2802       // Check for scalar replaced object reference.
  2803       if( t_oop != NULL && t_oop->is_known_instance_field() &&
  2804           t_oop->offset() != Type::OffsetBot &&
  2805           t_oop->offset() != Type::OffsetTop) {
  2806         // Replace MemBar projections by its inputs.
  2807         PhaseIterGVN* igvn = phase->is_IterGVN();
  2808         igvn->replace_node(proj_out(TypeFunc::Memory), in(TypeFunc::Memory));
  2809         igvn->replace_node(proj_out(TypeFunc::Control), in(TypeFunc::Control));
  2810         // Must return either the original node (now dead) or a new node
  2811         // (Do not return a top here, since that would break the uniqueness of top.)
  2812         return new (phase->C, 1) ConINode(TypeInt::ZERO);
  2816   return NULL;
  2819 //------------------------------Value------------------------------------------
  2820 const Type *MemBarNode::Value( PhaseTransform *phase ) const {
  2821   if( !in(0) ) return Type::TOP;
  2822   if( phase->type(in(0)) == Type::TOP )
  2823     return Type::TOP;
  2824   return TypeTuple::MEMBAR;
  2827 //------------------------------match------------------------------------------
  2828 // Construct projections for memory.
  2829 Node *MemBarNode::match( const ProjNode *proj, const Matcher *m ) {
  2830   switch (proj->_con) {
  2831   case TypeFunc::Control:
  2832   case TypeFunc::Memory:
  2833     return new (m->C, 1) MachProjNode(this,proj->_con,RegMask::Empty,MachProjNode::unmatched_proj);
  2835   ShouldNotReachHere();
  2836   return NULL;
  2839 //===========================InitializeNode====================================
  2840 // SUMMARY:
  2841 // This node acts as a memory barrier on raw memory, after some raw stores.
  2842 // The 'cooked' oop value feeds from the Initialize, not the Allocation.
  2843 // The Initialize can 'capture' suitably constrained stores as raw inits.
  2844 // It can coalesce related raw stores into larger units (called 'tiles').
  2845 // It can avoid zeroing new storage for memory units which have raw inits.
  2846 // At macro-expansion, it is marked 'complete', and does not optimize further.
  2847 //
  2848 // EXAMPLE:
  2849 // The object 'new short[2]' occupies 16 bytes in a 32-bit machine.
  2850 //   ctl = incoming control; mem* = incoming memory
  2851 // (Note:  A star * on a memory edge denotes I/O and other standard edges.)
  2852 // First allocate uninitialized memory and fill in the header:
  2853 //   alloc = (Allocate ctl mem* 16 #short[].klass ...)
  2854 //   ctl := alloc.Control; mem* := alloc.Memory*
  2855 //   rawmem = alloc.Memory; rawoop = alloc.RawAddress
  2856 // Then initialize to zero the non-header parts of the raw memory block:
  2857 //   init = (Initialize alloc.Control alloc.Memory* alloc.RawAddress)
  2858 //   ctl := init.Control; mem.SLICE(#short[*]) := init.Memory
  2859 // After the initialize node executes, the object is ready for service:
  2860 //   oop := (CheckCastPP init.Control alloc.RawAddress #short[])
  2861 // Suppose its body is immediately initialized as {1,2}:
  2862 //   store1 = (StoreC init.Control init.Memory (+ oop 12) 1)
  2863 //   store2 = (StoreC init.Control store1      (+ oop 14) 2)
  2864 //   mem.SLICE(#short[*]) := store2
  2865 //
  2866 // DETAILS:
  2867 // An InitializeNode collects and isolates object initialization after
  2868 // an AllocateNode and before the next possible safepoint.  As a
  2869 // memory barrier (MemBarNode), it keeps critical stores from drifting
  2870 // down past any safepoint or any publication of the allocation.
  2871 // Before this barrier, a newly-allocated object may have uninitialized bits.
  2872 // After this barrier, it may be treated as a real oop, and GC is allowed.
  2873 //
  2874 // The semantics of the InitializeNode include an implicit zeroing of
  2875 // the new object from object header to the end of the object.
  2876 // (The object header and end are determined by the AllocateNode.)
  2877 //
  2878 // Certain stores may be added as direct inputs to the InitializeNode.
  2879 // These stores must update raw memory, and they must be to addresses
  2880 // derived from the raw address produced by AllocateNode, and with
  2881 // a constant offset.  They must be ordered by increasing offset.
  2882 // The first one is at in(RawStores), the last at in(req()-1).
  2883 // Unlike most memory operations, they are not linked in a chain,
  2884 // but are displayed in parallel as users of the rawmem output of
  2885 // the allocation.
  2886 //
  2887 // (See comments in InitializeNode::capture_store, which continue
  2888 // the example given above.)
  2889 //
  2890 // When the associated Allocate is macro-expanded, the InitializeNode
  2891 // may be rewritten to optimize collected stores.  A ClearArrayNode
  2892 // may also be created at that point to represent any required zeroing.
  2893 // The InitializeNode is then marked 'complete', prohibiting further
  2894 // capturing of nearby memory operations.
  2895 //
  2896 // During macro-expansion, all captured initializations which store
  2897 // constant values of 32 bits or smaller are coalesced (if advantageous)
  2898 // into larger 'tiles' 32 or 64 bits.  This allows an object to be
  2899 // initialized in fewer memory operations.  Memory words which are
  2900 // covered by neither tiles nor non-constant stores are pre-zeroed
  2901 // by explicit stores of zero.  (The code shape happens to do all
  2902 // zeroing first, then all other stores, with both sequences occurring
  2903 // in order of ascending offsets.)
  2904 //
  2905 // Alternatively, code may be inserted between an AllocateNode and its
  2906 // InitializeNode, to perform arbitrary initialization of the new object.
  2907 // E.g., the object copying intrinsics insert complex data transfers here.
  2908 // The initialization must then be marked as 'complete' disable the
  2909 // built-in zeroing semantics and the collection of initializing stores.
  2910 //
  2911 // While an InitializeNode is incomplete, reads from the memory state
  2912 // produced by it are optimizable if they match the control edge and
  2913 // new oop address associated with the allocation/initialization.
  2914 // They return a stored value (if the offset matches) or else zero.
  2915 // A write to the memory state, if it matches control and address,
  2916 // and if it is to a constant offset, may be 'captured' by the
  2917 // InitializeNode.  It is cloned as a raw memory operation and rewired
  2918 // inside the initialization, to the raw oop produced by the allocation.
  2919 // Operations on addresses which are provably distinct (e.g., to
  2920 // other AllocateNodes) are allowed to bypass the initialization.
  2921 //
  2922 // The effect of all this is to consolidate object initialization
  2923 // (both arrays and non-arrays, both piecewise and bulk) into a
  2924 // single location, where it can be optimized as a unit.
  2925 //
  2926 // Only stores with an offset less than TrackedInitializationLimit words
  2927 // will be considered for capture by an InitializeNode.  This puts a
  2928 // reasonable limit on the complexity of optimized initializations.
  2930 //---------------------------InitializeNode------------------------------------
  2931 InitializeNode::InitializeNode(Compile* C, int adr_type, Node* rawoop)
  2932   : _is_complete(Incomplete), _does_not_escape(false),
  2933     MemBarNode(C, adr_type, rawoop)
  2935   init_class_id(Class_Initialize);
  2937   assert(adr_type == Compile::AliasIdxRaw, "only valid atp");
  2938   assert(in(RawAddress) == rawoop, "proper init");
  2939   // Note:  allocation() can be NULL, for secondary initialization barriers
  2942 // Since this node is not matched, it will be processed by the
  2943 // register allocator.  Declare that there are no constraints
  2944 // on the allocation of the RawAddress edge.
  2945 const RegMask &InitializeNode::in_RegMask(uint idx) const {
  2946   // This edge should be set to top, by the set_complete.  But be conservative.
  2947   if (idx == InitializeNode::RawAddress)
  2948     return *(Compile::current()->matcher()->idealreg2spillmask[in(idx)->ideal_reg()]);
  2949   return RegMask::Empty;
  2952 Node* InitializeNode::memory(uint alias_idx) {
  2953   Node* mem = in(Memory);
  2954   if (mem->is_MergeMem()) {
  2955     return mem->as_MergeMem()->memory_at(alias_idx);
  2956   } else {
  2957     // incoming raw memory is not split
  2958     return mem;
  2962 bool InitializeNode::is_non_zero() {
  2963   if (is_complete())  return false;
  2964   remove_extra_zeroes();
  2965   return (req() > RawStores);
  2968 void InitializeNode::set_complete(PhaseGVN* phase) {
  2969   assert(!is_complete(), "caller responsibility");
  2970   _is_complete = Complete;
  2972   // After this node is complete, it contains a bunch of
  2973   // raw-memory initializations.  There is no need for
  2974   // it to have anything to do with non-raw memory effects.
  2975   // Therefore, tell all non-raw users to re-optimize themselves,
  2976   // after skipping the memory effects of this initialization.
  2977   PhaseIterGVN* igvn = phase->is_IterGVN();
  2978   if (igvn)  igvn->add_users_to_worklist(this);
  2981 // convenience function
  2982 // return false if the init contains any stores already
  2983 bool AllocateNode::maybe_set_complete(PhaseGVN* phase) {
  2984   InitializeNode* init = initialization();
  2985   if (init == NULL || init->is_complete())  return false;
  2986   init->remove_extra_zeroes();
  2987   // for now, if this allocation has already collected any inits, bail:
  2988   if (init->is_non_zero())  return false;
  2989   init->set_complete(phase);
  2990   return true;
  2993 void InitializeNode::remove_extra_zeroes() {
  2994   if (req() == RawStores)  return;
  2995   Node* zmem = zero_memory();
  2996   uint fill = RawStores;
  2997   for (uint i = fill; i < req(); i++) {
  2998     Node* n = in(i);
  2999     if (n->is_top() || n == zmem)  continue;  // skip
  3000     if (fill < i)  set_req(fill, n);          // compact
  3001     ++fill;
  3003   // delete any empty spaces created:
  3004   while (fill < req()) {
  3005     del_req(fill);
  3009 // Helper for remembering which stores go with which offsets.
  3010 intptr_t InitializeNode::get_store_offset(Node* st, PhaseTransform* phase) {
  3011   if (!st->is_Store())  return -1;  // can happen to dead code via subsume_node
  3012   intptr_t offset = -1;
  3013   Node* base = AddPNode::Ideal_base_and_offset(st->in(MemNode::Address),
  3014                                                phase, offset);
  3015   if (base == NULL)     return -1;  // something is dead,
  3016   if (offset < 0)       return -1;  //        dead, dead
  3017   return offset;
  3020 // Helper for proving that an initialization expression is
  3021 // "simple enough" to be folded into an object initialization.
  3022 // Attempts to prove that a store's initial value 'n' can be captured
  3023 // within the initialization without creating a vicious cycle, such as:
  3024 //     { Foo p = new Foo(); p.next = p; }
  3025 // True for constants and parameters and small combinations thereof.
  3026 bool InitializeNode::detect_init_independence(Node* n,
  3027                                               bool st_is_pinned,
  3028                                               int& count) {
  3029   if (n == NULL)      return true;   // (can this really happen?)
  3030   if (n->is_Proj())   n = n->in(0);
  3031   if (n == this)      return false;  // found a cycle
  3032   if (n->is_Con())    return true;
  3033   if (n->is_Start())  return true;   // params, etc., are OK
  3034   if (n->is_Root())   return true;   // even better
  3036   Node* ctl = n->in(0);
  3037   if (ctl != NULL && !ctl->is_top()) {
  3038     if (ctl->is_Proj())  ctl = ctl->in(0);
  3039     if (ctl == this)  return false;
  3041     // If we already know that the enclosing memory op is pinned right after
  3042     // the init, then any control flow that the store has picked up
  3043     // must have preceded the init, or else be equal to the init.
  3044     // Even after loop optimizations (which might change control edges)
  3045     // a store is never pinned *before* the availability of its inputs.
  3046     if (!MemNode::all_controls_dominate(n, this))
  3047       return false;                  // failed to prove a good control
  3051   // Check data edges for possible dependencies on 'this'.
  3052   if ((count += 1) > 20)  return false;  // complexity limit
  3053   for (uint i = 1; i < n->req(); i++) {
  3054     Node* m = n->in(i);
  3055     if (m == NULL || m == n || m->is_top())  continue;
  3056     uint first_i = n->find_edge(m);
  3057     if (i != first_i)  continue;  // process duplicate edge just once
  3058     if (!detect_init_independence(m, st_is_pinned, count)) {
  3059       return false;
  3063   return true;
  3066 // Here are all the checks a Store must pass before it can be moved into
  3067 // an initialization.  Returns zero if a check fails.
  3068 // On success, returns the (constant) offset to which the store applies,
  3069 // within the initialized memory.
  3070 intptr_t InitializeNode::can_capture_store(StoreNode* st, PhaseTransform* phase) {
  3071   const int FAIL = 0;
  3072   if (st->req() != MemNode::ValueIn + 1)
  3073     return FAIL;                // an inscrutable StoreNode (card mark?)
  3074   Node* ctl = st->in(MemNode::Control);
  3075   if (!(ctl != NULL && ctl->is_Proj() && ctl->in(0) == this))
  3076     return FAIL;                // must be unconditional after the initialization
  3077   Node* mem = st->in(MemNode::Memory);
  3078   if (!(mem->is_Proj() && mem->in(0) == this))
  3079     return FAIL;                // must not be preceded by other stores
  3080   Node* adr = st->in(MemNode::Address);
  3081   intptr_t offset;
  3082   AllocateNode* alloc = AllocateNode::Ideal_allocation(adr, phase, offset);
  3083   if (alloc == NULL)
  3084     return FAIL;                // inscrutable address
  3085   if (alloc != allocation())
  3086     return FAIL;                // wrong allocation!  (store needs to float up)
  3087   Node* val = st->in(MemNode::ValueIn);
  3088   int complexity_count = 0;
  3089   if (!detect_init_independence(val, true, complexity_count))
  3090     return FAIL;                // stored value must be 'simple enough'
  3092   return offset;                // success
  3095 // Find the captured store in(i) which corresponds to the range
  3096 // [start..start+size) in the initialized object.
  3097 // If there is one, return its index i.  If there isn't, return the
  3098 // negative of the index where it should be inserted.
  3099 // Return 0 if the queried range overlaps an initialization boundary
  3100 // or if dead code is encountered.
  3101 // If size_in_bytes is zero, do not bother with overlap checks.
  3102 int InitializeNode::captured_store_insertion_point(intptr_t start,
  3103                                                    int size_in_bytes,
  3104                                                    PhaseTransform* phase) {
  3105   const int FAIL = 0, MAX_STORE = BytesPerLong;
  3107   if (is_complete())
  3108     return FAIL;                // arraycopy got here first; punt
  3110   assert(allocation() != NULL, "must be present");
  3112   // no negatives, no header fields:
  3113   if (start < (intptr_t) allocation()->minimum_header_size())  return FAIL;
  3115   // after a certain size, we bail out on tracking all the stores:
  3116   intptr_t ti_limit = (TrackedInitializationLimit * HeapWordSize);
  3117   if (start >= ti_limit)  return FAIL;
  3119   for (uint i = InitializeNode::RawStores, limit = req(); ; ) {
  3120     if (i >= limit)  return -(int)i; // not found; here is where to put it
  3122     Node*    st     = in(i);
  3123     intptr_t st_off = get_store_offset(st, phase);
  3124     if (st_off < 0) {
  3125       if (st != zero_memory()) {
  3126         return FAIL;            // bail out if there is dead garbage
  3128     } else if (st_off > start) {
  3129       // ...we are done, since stores are ordered
  3130       if (st_off < start + size_in_bytes) {
  3131         return FAIL;            // the next store overlaps
  3133       return -(int)i;           // not found; here is where to put it
  3134     } else if (st_off < start) {
  3135       if (size_in_bytes != 0 &&
  3136           start < st_off + MAX_STORE &&
  3137           start < st_off + st->as_Store()->memory_size()) {
  3138         return FAIL;            // the previous store overlaps
  3140     } else {
  3141       if (size_in_bytes != 0 &&
  3142           st->as_Store()->memory_size() != size_in_bytes) {
  3143         return FAIL;            // mismatched store size
  3145       return i;
  3148     ++i;
  3152 // Look for a captured store which initializes at the offset 'start'
  3153 // with the given size.  If there is no such store, and no other
  3154 // initialization interferes, then return zero_memory (the memory
  3155 // projection of the AllocateNode).
  3156 Node* InitializeNode::find_captured_store(intptr_t start, int size_in_bytes,
  3157                                           PhaseTransform* phase) {
  3158   assert(stores_are_sane(phase), "");
  3159   int i = captured_store_insertion_point(start, size_in_bytes, phase);
  3160   if (i == 0) {
  3161     return NULL;                // something is dead
  3162   } else if (i < 0) {
  3163     return zero_memory();       // just primordial zero bits here
  3164   } else {
  3165     Node* st = in(i);           // here is the store at this position
  3166     assert(get_store_offset(st->as_Store(), phase) == start, "sanity");
  3167     return st;
  3171 // Create, as a raw pointer, an address within my new object at 'offset'.
  3172 Node* InitializeNode::make_raw_address(intptr_t offset,
  3173                                        PhaseTransform* phase) {
  3174   Node* addr = in(RawAddress);
  3175   if (offset != 0) {
  3176     Compile* C = phase->C;
  3177     addr = phase->transform( new (C, 4) AddPNode(C->top(), addr,
  3178                                                  phase->MakeConX(offset)) );
  3180   return addr;
  3183 // Clone the given store, converting it into a raw store
  3184 // initializing a field or element of my new object.
  3185 // Caller is responsible for retiring the original store,
  3186 // with subsume_node or the like.
  3187 //
  3188 // From the example above InitializeNode::InitializeNode,
  3189 // here are the old stores to be captured:
  3190 //   store1 = (StoreC init.Control init.Memory (+ oop 12) 1)
  3191 //   store2 = (StoreC init.Control store1      (+ oop 14) 2)
  3192 //
  3193 // Here is the changed code; note the extra edges on init:
  3194 //   alloc = (Allocate ...)
  3195 //   rawoop = alloc.RawAddress
  3196 //   rawstore1 = (StoreC alloc.Control alloc.Memory (+ rawoop 12) 1)
  3197 //   rawstore2 = (StoreC alloc.Control alloc.Memory (+ rawoop 14) 2)
  3198 //   init = (Initialize alloc.Control alloc.Memory rawoop
  3199 //                      rawstore1 rawstore2)
  3200 //
  3201 Node* InitializeNode::capture_store(StoreNode* st, intptr_t start,
  3202                                     PhaseTransform* phase) {
  3203   assert(stores_are_sane(phase), "");
  3205   if (start < 0)  return NULL;
  3206   assert(can_capture_store(st, phase) == start, "sanity");
  3208   Compile* C = phase->C;
  3209   int size_in_bytes = st->memory_size();
  3210   int i = captured_store_insertion_point(start, size_in_bytes, phase);
  3211   if (i == 0)  return NULL;     // bail out
  3212   Node* prev_mem = NULL;        // raw memory for the captured store
  3213   if (i > 0) {
  3214     prev_mem = in(i);           // there is a pre-existing store under this one
  3215     set_req(i, C->top());       // temporarily disconnect it
  3216     // See StoreNode::Ideal 'st->outcnt() == 1' for the reason to disconnect.
  3217   } else {
  3218     i = -i;                     // no pre-existing store
  3219     prev_mem = zero_memory();   // a slice of the newly allocated object
  3220     if (i > InitializeNode::RawStores && in(i-1) == prev_mem)
  3221       set_req(--i, C->top());   // reuse this edge; it has been folded away
  3222     else
  3223       ins_req(i, C->top());     // build a new edge
  3225   Node* new_st = st->clone();
  3226   new_st->set_req(MemNode::Control, in(Control));
  3227   new_st->set_req(MemNode::Memory,  prev_mem);
  3228   new_st->set_req(MemNode::Address, make_raw_address(start, phase));
  3229   new_st = phase->transform(new_st);
  3231   // At this point, new_st might have swallowed a pre-existing store
  3232   // at the same offset, or perhaps new_st might have disappeared,
  3233   // if it redundantly stored the same value (or zero to fresh memory).
  3235   // In any case, wire it in:
  3236   set_req(i, new_st);
  3238   // The caller may now kill the old guy.
  3239   DEBUG_ONLY(Node* check_st = find_captured_store(start, size_in_bytes, phase));
  3240   assert(check_st == new_st || check_st == NULL, "must be findable");
  3241   assert(!is_complete(), "");
  3242   return new_st;
  3245 static bool store_constant(jlong* tiles, int num_tiles,
  3246                            intptr_t st_off, int st_size,
  3247                            jlong con) {
  3248   if ((st_off & (st_size-1)) != 0)
  3249     return false;               // strange store offset (assume size==2**N)
  3250   address addr = (address)tiles + st_off;
  3251   assert(st_off >= 0 && addr+st_size <= (address)&tiles[num_tiles], "oob");
  3252   switch (st_size) {
  3253   case sizeof(jbyte):  *(jbyte*) addr = (jbyte) con; break;
  3254   case sizeof(jchar):  *(jchar*) addr = (jchar) con; break;
  3255   case sizeof(jint):   *(jint*)  addr = (jint)  con; break;
  3256   case sizeof(jlong):  *(jlong*) addr = (jlong) con; break;
  3257   default: return false;        // strange store size (detect size!=2**N here)
  3259   return true;                  // return success to caller
  3262 // Coalesce subword constants into int constants and possibly
  3263 // into long constants.  The goal, if the CPU permits,
  3264 // is to initialize the object with a small number of 64-bit tiles.
  3265 // Also, convert floating-point constants to bit patterns.
  3266 // Non-constants are not relevant to this pass.
  3267 //
  3268 // In terms of the running example on InitializeNode::InitializeNode
  3269 // and InitializeNode::capture_store, here is the transformation
  3270 // of rawstore1 and rawstore2 into rawstore12:
  3271 //   alloc = (Allocate ...)
  3272 //   rawoop = alloc.RawAddress
  3273 //   tile12 = 0x00010002
  3274 //   rawstore12 = (StoreI alloc.Control alloc.Memory (+ rawoop 12) tile12)
  3275 //   init = (Initialize alloc.Control alloc.Memory rawoop rawstore12)
  3276 //
  3277 void
  3278 InitializeNode::coalesce_subword_stores(intptr_t header_size,
  3279                                         Node* size_in_bytes,
  3280                                         PhaseGVN* phase) {
  3281   Compile* C = phase->C;
  3283   assert(stores_are_sane(phase), "");
  3284   // Note:  After this pass, they are not completely sane,
  3285   // since there may be some overlaps.
  3287   int old_subword = 0, old_long = 0, new_int = 0, new_long = 0;
  3289   intptr_t ti_limit = (TrackedInitializationLimit * HeapWordSize);
  3290   intptr_t size_limit = phase->find_intptr_t_con(size_in_bytes, ti_limit);
  3291   size_limit = MIN2(size_limit, ti_limit);
  3292   size_limit = align_size_up(size_limit, BytesPerLong);
  3293   int num_tiles = size_limit / BytesPerLong;
  3295   // allocate space for the tile map:
  3296   const int small_len = DEBUG_ONLY(true ? 3 :) 30; // keep stack frames small
  3297   jlong  tiles_buf[small_len];
  3298   Node*  nodes_buf[small_len];
  3299   jlong  inits_buf[small_len];
  3300   jlong* tiles = ((num_tiles <= small_len) ? &tiles_buf[0]
  3301                   : NEW_RESOURCE_ARRAY(jlong, num_tiles));
  3302   Node** nodes = ((num_tiles <= small_len) ? &nodes_buf[0]
  3303                   : NEW_RESOURCE_ARRAY(Node*, num_tiles));
  3304   jlong* inits = ((num_tiles <= small_len) ? &inits_buf[0]
  3305                   : NEW_RESOURCE_ARRAY(jlong, num_tiles));
  3306   // tiles: exact bitwise model of all primitive constants
  3307   // nodes: last constant-storing node subsumed into the tiles model
  3308   // inits: which bytes (in each tile) are touched by any initializations
  3310   //// Pass A: Fill in the tile model with any relevant stores.
  3312   Copy::zero_to_bytes(tiles, sizeof(tiles[0]) * num_tiles);
  3313   Copy::zero_to_bytes(nodes, sizeof(nodes[0]) * num_tiles);
  3314   Copy::zero_to_bytes(inits, sizeof(inits[0]) * num_tiles);
  3315   Node* zmem = zero_memory(); // initially zero memory state
  3316   for (uint i = InitializeNode::RawStores, limit = req(); i < limit; i++) {
  3317     Node* st = in(i);
  3318     intptr_t st_off = get_store_offset(st, phase);
  3320     // Figure out the store's offset and constant value:
  3321     if (st_off < header_size)             continue; //skip (ignore header)
  3322     if (st->in(MemNode::Memory) != zmem)  continue; //skip (odd store chain)
  3323     int st_size = st->as_Store()->memory_size();
  3324     if (st_off + st_size > size_limit)    break;
  3326     // Record which bytes are touched, whether by constant or not.
  3327     if (!store_constant(inits, num_tiles, st_off, st_size, (jlong) -1))
  3328       continue;                 // skip (strange store size)
  3330     const Type* val = phase->type(st->in(MemNode::ValueIn));
  3331     if (!val->singleton())                continue; //skip (non-con store)
  3332     BasicType type = val->basic_type();
  3334     jlong con = 0;
  3335     switch (type) {
  3336     case T_INT:    con = val->is_int()->get_con();  break;
  3337     case T_LONG:   con = val->is_long()->get_con(); break;
  3338     case T_FLOAT:  con = jint_cast(val->getf());    break;
  3339     case T_DOUBLE: con = jlong_cast(val->getd());   break;
  3340     default:                              continue; //skip (odd store type)
  3343     if (type == T_LONG && Matcher::isSimpleConstant64(con) &&
  3344         st->Opcode() == Op_StoreL) {
  3345       continue;                 // This StoreL is already optimal.
  3348     // Store down the constant.
  3349     store_constant(tiles, num_tiles, st_off, st_size, con);
  3351     intptr_t j = st_off >> LogBytesPerLong;
  3353     if (type == T_INT && st_size == BytesPerInt
  3354         && (st_off & BytesPerInt) == BytesPerInt) {
  3355       jlong lcon = tiles[j];
  3356       if (!Matcher::isSimpleConstant64(lcon) &&
  3357           st->Opcode() == Op_StoreI) {
  3358         // This StoreI is already optimal by itself.
  3359         jint* intcon = (jint*) &tiles[j];
  3360         intcon[1] = 0;  // undo the store_constant()
  3362         // If the previous store is also optimal by itself, back up and
  3363         // undo the action of the previous loop iteration... if we can.
  3364         // But if we can't, just let the previous half take care of itself.
  3365         st = nodes[j];
  3366         st_off -= BytesPerInt;
  3367         con = intcon[0];
  3368         if (con != 0 && st != NULL && st->Opcode() == Op_StoreI) {
  3369           assert(st_off >= header_size, "still ignoring header");
  3370           assert(get_store_offset(st, phase) == st_off, "must be");
  3371           assert(in(i-1) == zmem, "must be");
  3372           DEBUG_ONLY(const Type* tcon = phase->type(st->in(MemNode::ValueIn)));
  3373           assert(con == tcon->is_int()->get_con(), "must be");
  3374           // Undo the effects of the previous loop trip, which swallowed st:
  3375           intcon[0] = 0;        // undo store_constant()
  3376           set_req(i-1, st);     // undo set_req(i, zmem)
  3377           nodes[j] = NULL;      // undo nodes[j] = st
  3378           --old_subword;        // undo ++old_subword
  3380         continue;               // This StoreI is already optimal.
  3384     // This store is not needed.
  3385     set_req(i, zmem);
  3386     nodes[j] = st;              // record for the moment
  3387     if (st_size < BytesPerLong) // something has changed
  3388           ++old_subword;        // includes int/float, but who's counting...
  3389     else  ++old_long;
  3392   if ((old_subword + old_long) == 0)
  3393     return;                     // nothing more to do
  3395   //// Pass B: Convert any non-zero tiles into optimal constant stores.
  3396   // Be sure to insert them before overlapping non-constant stores.
  3397   // (E.g., byte[] x = { 1,2,y,4 }  =>  x[int 0] = 0x01020004, x[2]=y.)
  3398   for (int j = 0; j < num_tiles; j++) {
  3399     jlong con  = tiles[j];
  3400     jlong init = inits[j];
  3401     if (con == 0)  continue;
  3402     jint con0,  con1;           // split the constant, address-wise
  3403     jint init0, init1;          // split the init map, address-wise
  3404     { union { jlong con; jint intcon[2]; } u;
  3405       u.con = con;
  3406       con0  = u.intcon[0];
  3407       con1  = u.intcon[1];
  3408       u.con = init;
  3409       init0 = u.intcon[0];
  3410       init1 = u.intcon[1];
  3413     Node* old = nodes[j];
  3414     assert(old != NULL, "need the prior store");
  3415     intptr_t offset = (j * BytesPerLong);
  3417     bool split = !Matcher::isSimpleConstant64(con);
  3419     if (offset < header_size) {
  3420       assert(offset + BytesPerInt >= header_size, "second int counts");
  3421       assert(*(jint*)&tiles[j] == 0, "junk in header");
  3422       split = true;             // only the second word counts
  3423       // Example:  int a[] = { 42 ... }
  3424     } else if (con0 == 0 && init0 == -1) {
  3425       split = true;             // first word is covered by full inits
  3426       // Example:  int a[] = { ... foo(), 42 ... }
  3427     } else if (con1 == 0 && init1 == -1) {
  3428       split = true;             // second word is covered by full inits
  3429       // Example:  int a[] = { ... 42, foo() ... }
  3432     // Here's a case where init0 is neither 0 nor -1:
  3433     //   byte a[] = { ... 0,0,foo(),0,  0,0,0,42 ... }
  3434     // Assuming big-endian memory, init0, init1 are 0x0000FF00, 0x000000FF.
  3435     // In this case the tile is not split; it is (jlong)42.
  3436     // The big tile is stored down, and then the foo() value is inserted.
  3437     // (If there were foo(),foo() instead of foo(),0, init0 would be -1.)
  3439     Node* ctl = old->in(MemNode::Control);
  3440     Node* adr = make_raw_address(offset, phase);
  3441     const TypePtr* atp = TypeRawPtr::BOTTOM;
  3443     // One or two coalesced stores to plop down.
  3444     Node*    st[2];
  3445     intptr_t off[2];
  3446     int  nst = 0;
  3447     if (!split) {
  3448       ++new_long;
  3449       off[nst] = offset;
  3450       st[nst++] = StoreNode::make(*phase, ctl, zmem, adr, atp,
  3451                                   phase->longcon(con), T_LONG);
  3452     } else {
  3453       // Omit either if it is a zero.
  3454       if (con0 != 0) {
  3455         ++new_int;
  3456         off[nst]  = offset;
  3457         st[nst++] = StoreNode::make(*phase, ctl, zmem, adr, atp,
  3458                                     phase->intcon(con0), T_INT);
  3460       if (con1 != 0) {
  3461         ++new_int;
  3462         offset += BytesPerInt;
  3463         adr = make_raw_address(offset, phase);
  3464         off[nst]  = offset;
  3465         st[nst++] = StoreNode::make(*phase, ctl, zmem, adr, atp,
  3466                                     phase->intcon(con1), T_INT);
  3470     // Insert second store first, then the first before the second.
  3471     // Insert each one just before any overlapping non-constant stores.
  3472     while (nst > 0) {
  3473       Node* st1 = st[--nst];
  3474       C->copy_node_notes_to(st1, old);
  3475       st1 = phase->transform(st1);
  3476       offset = off[nst];
  3477       assert(offset >= header_size, "do not smash header");
  3478       int ins_idx = captured_store_insertion_point(offset, /*size:*/0, phase);
  3479       guarantee(ins_idx != 0, "must re-insert constant store");
  3480       if (ins_idx < 0)  ins_idx = -ins_idx;  // never overlap
  3481       if (ins_idx > InitializeNode::RawStores && in(ins_idx-1) == zmem)
  3482         set_req(--ins_idx, st1);
  3483       else
  3484         ins_req(ins_idx, st1);
  3488   if (PrintCompilation && WizardMode)
  3489     tty->print_cr("Changed %d/%d subword/long constants into %d/%d int/long",
  3490                   old_subword, old_long, new_int, new_long);
  3491   if (C->log() != NULL)
  3492     C->log()->elem("comment that='%d/%d subword/long to %d/%d int/long'",
  3493                    old_subword, old_long, new_int, new_long);
  3495   // Clean up any remaining occurrences of zmem:
  3496   remove_extra_zeroes();
  3499 // Explore forward from in(start) to find the first fully initialized
  3500 // word, and return its offset.  Skip groups of subword stores which
  3501 // together initialize full words.  If in(start) is itself part of a
  3502 // fully initialized word, return the offset of in(start).  If there
  3503 // are no following full-word stores, or if something is fishy, return
  3504 // a negative value.
  3505 intptr_t InitializeNode::find_next_fullword_store(uint start, PhaseGVN* phase) {
  3506   int       int_map = 0;
  3507   intptr_t  int_map_off = 0;
  3508   const int FULL_MAP = right_n_bits(BytesPerInt);  // the int_map we hope for
  3510   for (uint i = start, limit = req(); i < limit; i++) {
  3511     Node* st = in(i);
  3513     intptr_t st_off = get_store_offset(st, phase);
  3514     if (st_off < 0)  break;  // return conservative answer
  3516     int st_size = st->as_Store()->memory_size();
  3517     if (st_size >= BytesPerInt && (st_off % BytesPerInt) == 0) {
  3518       return st_off;            // we found a complete word init
  3521     // update the map:
  3523     intptr_t this_int_off = align_size_down(st_off, BytesPerInt);
  3524     if (this_int_off != int_map_off) {
  3525       // reset the map:
  3526       int_map = 0;
  3527       int_map_off = this_int_off;
  3530     int subword_off = st_off - this_int_off;
  3531     int_map |= right_n_bits(st_size) << subword_off;
  3532     if ((int_map & FULL_MAP) == FULL_MAP) {
  3533       return this_int_off;      // we found a complete word init
  3536     // Did this store hit or cross the word boundary?
  3537     intptr_t next_int_off = align_size_down(st_off + st_size, BytesPerInt);
  3538     if (next_int_off == this_int_off + BytesPerInt) {
  3539       // We passed the current int, without fully initializing it.
  3540       int_map_off = next_int_off;
  3541       int_map >>= BytesPerInt;
  3542     } else if (next_int_off > this_int_off + BytesPerInt) {
  3543       // We passed the current and next int.
  3544       return this_int_off + BytesPerInt;
  3548   return -1;
  3552 // Called when the associated AllocateNode is expanded into CFG.
  3553 // At this point, we may perform additional optimizations.
  3554 // Linearize the stores by ascending offset, to make memory
  3555 // activity as coherent as possible.
  3556 Node* InitializeNode::complete_stores(Node* rawctl, Node* rawmem, Node* rawptr,
  3557                                       intptr_t header_size,
  3558                                       Node* size_in_bytes,
  3559                                       PhaseGVN* phase) {
  3560   assert(!is_complete(), "not already complete");
  3561   assert(stores_are_sane(phase), "");
  3562   assert(allocation() != NULL, "must be present");
  3564   remove_extra_zeroes();
  3566   if (ReduceFieldZeroing || ReduceBulkZeroing)
  3567     // reduce instruction count for common initialization patterns
  3568     coalesce_subword_stores(header_size, size_in_bytes, phase);
  3570   Node* zmem = zero_memory();   // initially zero memory state
  3571   Node* inits = zmem;           // accumulating a linearized chain of inits
  3572   #ifdef ASSERT
  3573   intptr_t first_offset = allocation()->minimum_header_size();
  3574   intptr_t last_init_off = first_offset;  // previous init offset
  3575   intptr_t last_init_end = first_offset;  // previous init offset+size
  3576   intptr_t last_tile_end = first_offset;  // previous tile offset+size
  3577   #endif
  3578   intptr_t zeroes_done = header_size;
  3580   bool do_zeroing = true;       // we might give up if inits are very sparse
  3581   int  big_init_gaps = 0;       // how many large gaps have we seen?
  3583   if (ZeroTLAB)  do_zeroing = false;
  3584   if (!ReduceFieldZeroing && !ReduceBulkZeroing)  do_zeroing = false;
  3586   for (uint i = InitializeNode::RawStores, limit = req(); i < limit; i++) {
  3587     Node* st = in(i);
  3588     intptr_t st_off = get_store_offset(st, phase);
  3589     if (st_off < 0)
  3590       break;                    // unknown junk in the inits
  3591     if (st->in(MemNode::Memory) != zmem)
  3592       break;                    // complicated store chains somehow in list
  3594     int st_size = st->as_Store()->memory_size();
  3595     intptr_t next_init_off = st_off + st_size;
  3597     if (do_zeroing && zeroes_done < next_init_off) {
  3598       // See if this store needs a zero before it or under it.
  3599       intptr_t zeroes_needed = st_off;
  3601       if (st_size < BytesPerInt) {
  3602         // Look for subword stores which only partially initialize words.
  3603         // If we find some, we must lay down some word-level zeroes first,
  3604         // underneath the subword stores.
  3605         //
  3606         // Examples:
  3607         //   byte[] a = { p,q,r,s }  =>  a[0]=p,a[1]=q,a[2]=r,a[3]=s
  3608         //   byte[] a = { x,y,0,0 }  =>  a[0..3] = 0, a[0]=x,a[1]=y
  3609         //   byte[] a = { 0,0,z,0 }  =>  a[0..3] = 0, a[2]=z
  3610         //
  3611         // Note:  coalesce_subword_stores may have already done this,
  3612         // if it was prompted by constant non-zero subword initializers.
  3613         // But this case can still arise with non-constant stores.
  3615         intptr_t next_full_store = find_next_fullword_store(i, phase);
  3617         // In the examples above:
  3618         //   in(i)          p   q   r   s     x   y     z
  3619         //   st_off        12  13  14  15    12  13    14
  3620         //   st_size        1   1   1   1     1   1     1
  3621         //   next_full_s.  12  16  16  16    16  16    16
  3622         //   z's_done      12  16  16  16    12  16    12
  3623         //   z's_needed    12  16  16  16    16  16    16
  3624         //   zsize          0   0   0   0     4   0     4
  3625         if (next_full_store < 0) {
  3626           // Conservative tack:  Zero to end of current word.
  3627           zeroes_needed = align_size_up(zeroes_needed, BytesPerInt);
  3628         } else {
  3629           // Zero to beginning of next fully initialized word.
  3630           // Or, don't zero at all, if we are already in that word.
  3631           assert(next_full_store >= zeroes_needed, "must go forward");
  3632           assert((next_full_store & (BytesPerInt-1)) == 0, "even boundary");
  3633           zeroes_needed = next_full_store;
  3637       if (zeroes_needed > zeroes_done) {
  3638         intptr_t zsize = zeroes_needed - zeroes_done;
  3639         // Do some incremental zeroing on rawmem, in parallel with inits.
  3640         zeroes_done = align_size_down(zeroes_done, BytesPerInt);
  3641         rawmem = ClearArrayNode::clear_memory(rawctl, rawmem, rawptr,
  3642                                               zeroes_done, zeroes_needed,
  3643                                               phase);
  3644         zeroes_done = zeroes_needed;
  3645         if (zsize > Matcher::init_array_short_size && ++big_init_gaps > 2)
  3646           do_zeroing = false;   // leave the hole, next time
  3650     // Collect the store and move on:
  3651     st->set_req(MemNode::Memory, inits);
  3652     inits = st;                 // put it on the linearized chain
  3653     set_req(i, zmem);           // unhook from previous position
  3655     if (zeroes_done == st_off)
  3656       zeroes_done = next_init_off;
  3658     assert(!do_zeroing || zeroes_done >= next_init_off, "don't miss any");
  3660     #ifdef ASSERT
  3661     // Various order invariants.  Weaker than stores_are_sane because
  3662     // a large constant tile can be filled in by smaller non-constant stores.
  3663     assert(st_off >= last_init_off, "inits do not reverse");
  3664     last_init_off = st_off;
  3665     const Type* val = NULL;
  3666     if (st_size >= BytesPerInt &&
  3667         (val = phase->type(st->in(MemNode::ValueIn)))->singleton() &&
  3668         (int)val->basic_type() < (int)T_OBJECT) {
  3669       assert(st_off >= last_tile_end, "tiles do not overlap");
  3670       assert(st_off >= last_init_end, "tiles do not overwrite inits");
  3671       last_tile_end = MAX2(last_tile_end, next_init_off);
  3672     } else {
  3673       intptr_t st_tile_end = align_size_up(next_init_off, BytesPerLong);
  3674       assert(st_tile_end >= last_tile_end, "inits stay with tiles");
  3675       assert(st_off      >= last_init_end, "inits do not overlap");
  3676       last_init_end = next_init_off;  // it's a non-tile
  3678     #endif //ASSERT
  3681   remove_extra_zeroes();        // clear out all the zmems left over
  3682   add_req(inits);
  3684   if (!ZeroTLAB) {
  3685     // If anything remains to be zeroed, zero it all now.
  3686     zeroes_done = align_size_down(zeroes_done, BytesPerInt);
  3687     // if it is the last unused 4 bytes of an instance, forget about it
  3688     intptr_t size_limit = phase->find_intptr_t_con(size_in_bytes, max_jint);
  3689     if (zeroes_done + BytesPerLong >= size_limit) {
  3690       assert(allocation() != NULL, "");
  3691       if (allocation()->Opcode() == Op_Allocate) {
  3692         Node* klass_node = allocation()->in(AllocateNode::KlassNode);
  3693         ciKlass* k = phase->type(klass_node)->is_klassptr()->klass();
  3694         if (zeroes_done == k->layout_helper())
  3695           zeroes_done = size_limit;
  3698     if (zeroes_done < size_limit) {
  3699       rawmem = ClearArrayNode::clear_memory(rawctl, rawmem, rawptr,
  3700                                             zeroes_done, size_in_bytes, phase);
  3704   set_complete(phase);
  3705   return rawmem;
  3709 #ifdef ASSERT
  3710 bool InitializeNode::stores_are_sane(PhaseTransform* phase) {
  3711   if (is_complete())
  3712     return true;                // stores could be anything at this point
  3713   assert(allocation() != NULL, "must be present");
  3714   intptr_t last_off = allocation()->minimum_header_size();
  3715   for (uint i = InitializeNode::RawStores; i < req(); i++) {
  3716     Node* st = in(i);
  3717     intptr_t st_off = get_store_offset(st, phase);
  3718     if (st_off < 0)  continue;  // ignore dead garbage
  3719     if (last_off > st_off) {
  3720       tty->print_cr("*** bad store offset at %d: %d > %d", i, last_off, st_off);
  3721       this->dump(2);
  3722       assert(false, "ascending store offsets");
  3723       return false;
  3725     last_off = st_off + st->as_Store()->memory_size();
  3727   return true;
  3729 #endif //ASSERT
  3734 //============================MergeMemNode=====================================
  3735 //
  3736 // SEMANTICS OF MEMORY MERGES:  A MergeMem is a memory state assembled from several
  3737 // contributing store or call operations.  Each contributor provides the memory
  3738 // state for a particular "alias type" (see Compile::alias_type).  For example,
  3739 // if a MergeMem has an input X for alias category #6, then any memory reference
  3740 // to alias category #6 may use X as its memory state input, as an exact equivalent
  3741 // to using the MergeMem as a whole.
  3742 //   Load<6>( MergeMem(<6>: X, ...), p ) <==> Load<6>(X,p)
  3743 //
  3744 // (Here, the <N> notation gives the index of the relevant adr_type.)
  3745 //
  3746 // In one special case (and more cases in the future), alias categories overlap.
  3747 // The special alias category "Bot" (Compile::AliasIdxBot) includes all memory
  3748 // states.  Therefore, if a MergeMem has only one contributing input W for Bot,
  3749 // it is exactly equivalent to that state W:
  3750 //   MergeMem(<Bot>: W) <==> W
  3751 //
  3752 // Usually, the merge has more than one input.  In that case, where inputs
  3753 // overlap (i.e., one is Bot), the narrower alias type determines the memory
  3754 // state for that type, and the wider alias type (Bot) fills in everywhere else:
  3755 //   Load<5>( MergeMem(<Bot>: W, <6>: X), p ) <==> Load<5>(W,p)
  3756 //   Load<6>( MergeMem(<Bot>: W, <6>: X), p ) <==> Load<6>(X,p)
  3757 //
  3758 // A merge can take a "wide" memory state as one of its narrow inputs.
  3759 // This simply means that the merge observes out only the relevant parts of
  3760 // the wide input.  That is, wide memory states arriving at narrow merge inputs
  3761 // are implicitly "filtered" or "sliced" as necessary.  (This is rare.)
  3762 //
  3763 // These rules imply that MergeMem nodes may cascade (via their <Bot> links),
  3764 // and that memory slices "leak through":
  3765 //   MergeMem(<Bot>: MergeMem(<Bot>: W, <7>: Y)) <==> MergeMem(<Bot>: W, <7>: Y)
  3766 //
  3767 // But, in such a cascade, repeated memory slices can "block the leak":
  3768 //   MergeMem(<Bot>: MergeMem(<Bot>: W, <7>: Y), <7>: Y') <==> MergeMem(<Bot>: W, <7>: Y')
  3769 //
  3770 // In the last example, Y is not part of the combined memory state of the
  3771 // outermost MergeMem.  The system must, of course, prevent unschedulable
  3772 // memory states from arising, so you can be sure that the state Y is somehow
  3773 // a precursor to state Y'.
  3774 //
  3775 //
  3776 // REPRESENTATION OF MEMORY MERGES: The indexes used to address the Node::in array
  3777 // of each MergeMemNode array are exactly the numerical alias indexes, including
  3778 // but not limited to AliasIdxTop, AliasIdxBot, and AliasIdxRaw.  The functions
  3779 // Compile::alias_type (and kin) produce and manage these indexes.
  3780 //
  3781 // By convention, the value of in(AliasIdxTop) (i.e., in(1)) is always the top node.
  3782 // (Note that this provides quick access to the top node inside MergeMem methods,
  3783 // without the need to reach out via TLS to Compile::current.)
  3784 //
  3785 // As a consequence of what was just described, a MergeMem that represents a full
  3786 // memory state has an edge in(AliasIdxBot) which is a "wide" memory state,
  3787 // containing all alias categories.
  3788 //
  3789 // MergeMem nodes never (?) have control inputs, so in(0) is NULL.
  3790 //
  3791 // All other edges in(N) (including in(AliasIdxRaw), which is in(3)) are either
  3792 // a memory state for the alias type <N>, or else the top node, meaning that
  3793 // there is no particular input for that alias type.  Note that the length of
  3794 // a MergeMem is variable, and may be extended at any time to accommodate new
  3795 // memory states at larger alias indexes.  When merges grow, they are of course
  3796 // filled with "top" in the unused in() positions.
  3797 //
  3798 // This use of top is named "empty_memory()", or "empty_mem" (no-memory) as a variable.
  3799 // (Top was chosen because it works smoothly with passes like GCM.)
  3800 //
  3801 // For convenience, we hardwire the alias index for TypeRawPtr::BOTTOM.  (It is
  3802 // the type of random VM bits like TLS references.)  Since it is always the
  3803 // first non-Bot memory slice, some low-level loops use it to initialize an
  3804 // index variable:  for (i = AliasIdxRaw; i < req(); i++).
  3805 //
  3806 //
  3807 // ACCESSORS:  There is a special accessor MergeMemNode::base_memory which returns
  3808 // the distinguished "wide" state.  The accessor MergeMemNode::memory_at(N) returns
  3809 // the memory state for alias type <N>, or (if there is no particular slice at <N>,
  3810 // it returns the base memory.  To prevent bugs, memory_at does not accept <Top>
  3811 // or <Bot> indexes.  The iterator MergeMemStream provides robust iteration over
  3812 // MergeMem nodes or pairs of such nodes, ensuring that the non-top edges are visited.
  3813 //
  3814 // %%%% We may get rid of base_memory as a separate accessor at some point; it isn't
  3815 // really that different from the other memory inputs.  An abbreviation called
  3816 // "bot_memory()" for "memory_at(AliasIdxBot)" would keep code tidy.
  3817 //
  3818 //
  3819 // PARTIAL MEMORY STATES:  During optimization, MergeMem nodes may arise that represent
  3820 // partial memory states.  When a Phi splits through a MergeMem, the copy of the Phi
  3821 // that "emerges though" the base memory will be marked as excluding the alias types
  3822 // of the other (narrow-memory) copies which "emerged through" the narrow edges:
  3823 //
  3824 //   Phi<Bot>(U, MergeMem(<Bot>: W, <8>: Y))
  3825 //     ==Ideal=>  MergeMem(<Bot>: Phi<Bot-8>(U, W), Phi<8>(U, Y))
  3826 //
  3827 // This strange "subtraction" effect is necessary to ensure IGVN convergence.
  3828 // (It is currently unimplemented.)  As you can see, the resulting merge is
  3829 // actually a disjoint union of memory states, rather than an overlay.
  3830 //
  3832 //------------------------------MergeMemNode-----------------------------------
  3833 Node* MergeMemNode::make_empty_memory() {
  3834   Node* empty_memory = (Node*) Compile::current()->top();
  3835   assert(empty_memory->is_top(), "correct sentinel identity");
  3836   return empty_memory;
  3839 MergeMemNode::MergeMemNode(Node *new_base) : Node(1+Compile::AliasIdxRaw) {
  3840   init_class_id(Class_MergeMem);
  3841   // all inputs are nullified in Node::Node(int)
  3842   // set_input(0, NULL);  // no control input
  3844   // Initialize the edges uniformly to top, for starters.
  3845   Node* empty_mem = make_empty_memory();
  3846   for (uint i = Compile::AliasIdxTop; i < req(); i++) {
  3847     init_req(i,empty_mem);
  3849   assert(empty_memory() == empty_mem, "");
  3851   if( new_base != NULL && new_base->is_MergeMem() ) {
  3852     MergeMemNode* mdef = new_base->as_MergeMem();
  3853     assert(mdef->empty_memory() == empty_mem, "consistent sentinels");
  3854     for (MergeMemStream mms(this, mdef); mms.next_non_empty2(); ) {
  3855       mms.set_memory(mms.memory2());
  3857     assert(base_memory() == mdef->base_memory(), "");
  3858   } else {
  3859     set_base_memory(new_base);
  3863 // Make a new, untransformed MergeMem with the same base as 'mem'.
  3864 // If mem is itself a MergeMem, populate the result with the same edges.
  3865 MergeMemNode* MergeMemNode::make(Compile* C, Node* mem) {
  3866   return new(C, 1+Compile::AliasIdxRaw) MergeMemNode(mem);
  3869 //------------------------------cmp--------------------------------------------
  3870 uint MergeMemNode::hash() const { return NO_HASH; }
  3871 uint MergeMemNode::cmp( const Node &n ) const {
  3872   return (&n == this);          // Always fail except on self
  3875 //------------------------------Identity---------------------------------------
  3876 Node* MergeMemNode::Identity(PhaseTransform *phase) {
  3877   // Identity if this merge point does not record any interesting memory
  3878   // disambiguations.
  3879   Node* base_mem = base_memory();
  3880   Node* empty_mem = empty_memory();
  3881   if (base_mem != empty_mem) {  // Memory path is not dead?
  3882     for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
  3883       Node* mem = in(i);
  3884       if (mem != empty_mem && mem != base_mem) {
  3885         return this;            // Many memory splits; no change
  3889   return base_mem;              // No memory splits; ID on the one true input
  3892 //------------------------------Ideal------------------------------------------
  3893 // This method is invoked recursively on chains of MergeMem nodes
  3894 Node *MergeMemNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  3895   // Remove chain'd MergeMems
  3896   //
  3897   // This is delicate, because the each "in(i)" (i >= Raw) is interpreted
  3898   // relative to the "in(Bot)".  Since we are patching both at the same time,
  3899   // we have to be careful to read each "in(i)" relative to the old "in(Bot)",
  3900   // but rewrite each "in(i)" relative to the new "in(Bot)".
  3901   Node *progress = NULL;
  3904   Node* old_base = base_memory();
  3905   Node* empty_mem = empty_memory();
  3906   if (old_base == empty_mem)
  3907     return NULL; // Dead memory path.
  3909   MergeMemNode* old_mbase;
  3910   if (old_base != NULL && old_base->is_MergeMem())
  3911     old_mbase = old_base->as_MergeMem();
  3912   else
  3913     old_mbase = NULL;
  3914   Node* new_base = old_base;
  3916   // simplify stacked MergeMems in base memory
  3917   if (old_mbase)  new_base = old_mbase->base_memory();
  3919   // the base memory might contribute new slices beyond my req()
  3920   if (old_mbase)  grow_to_match(old_mbase);
  3922   // Look carefully at the base node if it is a phi.
  3923   PhiNode* phi_base;
  3924   if (new_base != NULL && new_base->is_Phi())
  3925     phi_base = new_base->as_Phi();
  3926   else
  3927     phi_base = NULL;
  3929   Node*    phi_reg = NULL;
  3930   uint     phi_len = (uint)-1;
  3931   if (phi_base != NULL && !phi_base->is_copy()) {
  3932     // do not examine phi if degraded to a copy
  3933     phi_reg = phi_base->region();
  3934     phi_len = phi_base->req();
  3935     // see if the phi is unfinished
  3936     for (uint i = 1; i < phi_len; i++) {
  3937       if (phi_base->in(i) == NULL) {
  3938         // incomplete phi; do not look at it yet!
  3939         phi_reg = NULL;
  3940         phi_len = (uint)-1;
  3941         break;
  3946   // Note:  We do not call verify_sparse on entry, because inputs
  3947   // can normalize to the base_memory via subsume_node or similar
  3948   // mechanisms.  This method repairs that damage.
  3950   assert(!old_mbase || old_mbase->is_empty_memory(empty_mem), "consistent sentinels");
  3952   // Look at each slice.
  3953   for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
  3954     Node* old_in = in(i);
  3955     // calculate the old memory value
  3956     Node* old_mem = old_in;
  3957     if (old_mem == empty_mem)  old_mem = old_base;
  3958     assert(old_mem == memory_at(i), "");
  3960     // maybe update (reslice) the old memory value
  3962     // simplify stacked MergeMems
  3963     Node* new_mem = old_mem;
  3964     MergeMemNode* old_mmem;
  3965     if (old_mem != NULL && old_mem->is_MergeMem())
  3966       old_mmem = old_mem->as_MergeMem();
  3967     else
  3968       old_mmem = NULL;
  3969     if (old_mmem == this) {
  3970       // This can happen if loops break up and safepoints disappear.
  3971       // A merge of BotPtr (default) with a RawPtr memory derived from a
  3972       // safepoint can be rewritten to a merge of the same BotPtr with
  3973       // the BotPtr phi coming into the loop.  If that phi disappears
  3974       // also, we can end up with a self-loop of the mergemem.
  3975       // In general, if loops degenerate and memory effects disappear,
  3976       // a mergemem can be left looking at itself.  This simply means
  3977       // that the mergemem's default should be used, since there is
  3978       // no longer any apparent effect on this slice.
  3979       // Note: If a memory slice is a MergeMem cycle, it is unreachable
  3980       //       from start.  Update the input to TOP.
  3981       new_mem = (new_base == this || new_base == empty_mem)? empty_mem : new_base;
  3983     else if (old_mmem != NULL) {
  3984       new_mem = old_mmem->memory_at(i);
  3986     // else preceding memory was not a MergeMem
  3988     // replace equivalent phis (unfortunately, they do not GVN together)
  3989     if (new_mem != NULL && new_mem != new_base &&
  3990         new_mem->req() == phi_len && new_mem->in(0) == phi_reg) {
  3991       if (new_mem->is_Phi()) {
  3992         PhiNode* phi_mem = new_mem->as_Phi();
  3993         for (uint i = 1; i < phi_len; i++) {
  3994           if (phi_base->in(i) != phi_mem->in(i)) {
  3995             phi_mem = NULL;
  3996             break;
  3999         if (phi_mem != NULL) {
  4000           // equivalent phi nodes; revert to the def
  4001           new_mem = new_base;
  4006     // maybe store down a new value
  4007     Node* new_in = new_mem;
  4008     if (new_in == new_base)  new_in = empty_mem;
  4010     if (new_in != old_in) {
  4011       // Warning:  Do not combine this "if" with the previous "if"
  4012       // A memory slice might have be be rewritten even if it is semantically
  4013       // unchanged, if the base_memory value has changed.
  4014       set_req(i, new_in);
  4015       progress = this;          // Report progress
  4019   if (new_base != old_base) {
  4020     set_req(Compile::AliasIdxBot, new_base);
  4021     // Don't use set_base_memory(new_base), because we need to update du.
  4022     assert(base_memory() == new_base, "");
  4023     progress = this;
  4026   if( base_memory() == this ) {
  4027     // a self cycle indicates this memory path is dead
  4028     set_req(Compile::AliasIdxBot, empty_mem);
  4031   // Resolve external cycles by calling Ideal on a MergeMem base_memory
  4032   // Recursion must occur after the self cycle check above
  4033   if( base_memory()->is_MergeMem() ) {
  4034     MergeMemNode *new_mbase = base_memory()->as_MergeMem();
  4035     Node *m = phase->transform(new_mbase);  // Rollup any cycles
  4036     if( m != NULL && (m->is_top() ||
  4037         m->is_MergeMem() && m->as_MergeMem()->base_memory() == empty_mem) ) {
  4038       // propagate rollup of dead cycle to self
  4039       set_req(Compile::AliasIdxBot, empty_mem);
  4043   if( base_memory() == empty_mem ) {
  4044     progress = this;
  4045     // Cut inputs during Parse phase only.
  4046     // During Optimize phase a dead MergeMem node will be subsumed by Top.
  4047     if( !can_reshape ) {
  4048       for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
  4049         if( in(i) != empty_mem ) { set_req(i, empty_mem); }
  4054   if( !progress && base_memory()->is_Phi() && can_reshape ) {
  4055     // Check if PhiNode::Ideal's "Split phis through memory merges"
  4056     // transform should be attempted. Look for this->phi->this cycle.
  4057     uint merge_width = req();
  4058     if (merge_width > Compile::AliasIdxRaw) {
  4059       PhiNode* phi = base_memory()->as_Phi();
  4060       for( uint i = 1; i < phi->req(); ++i ) {// For all paths in
  4061         if (phi->in(i) == this) {
  4062           phase->is_IterGVN()->_worklist.push(phi);
  4063           break;
  4069   assert(progress || verify_sparse(), "please, no dups of base");
  4070   return progress;
  4073 //-------------------------set_base_memory-------------------------------------
  4074 void MergeMemNode::set_base_memory(Node *new_base) {
  4075   Node* empty_mem = empty_memory();
  4076   set_req(Compile::AliasIdxBot, new_base);
  4077   assert(memory_at(req()) == new_base, "must set default memory");
  4078   // Clear out other occurrences of new_base:
  4079   if (new_base != empty_mem) {
  4080     for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
  4081       if (in(i) == new_base)  set_req(i, empty_mem);
  4086 //------------------------------out_RegMask------------------------------------
  4087 const RegMask &MergeMemNode::out_RegMask() const {
  4088   return RegMask::Empty;
  4091 //------------------------------dump_spec--------------------------------------
  4092 #ifndef PRODUCT
  4093 void MergeMemNode::dump_spec(outputStream *st) const {
  4094   st->print(" {");
  4095   Node* base_mem = base_memory();
  4096   for( uint i = Compile::AliasIdxRaw; i < req(); i++ ) {
  4097     Node* mem = memory_at(i);
  4098     if (mem == base_mem) { st->print(" -"); continue; }
  4099     st->print( " N%d:", mem->_idx );
  4100     Compile::current()->get_adr_type(i)->dump_on(st);
  4102   st->print(" }");
  4104 #endif // !PRODUCT
  4107 #ifdef ASSERT
  4108 static bool might_be_same(Node* a, Node* b) {
  4109   if (a == b)  return true;
  4110   if (!(a->is_Phi() || b->is_Phi()))  return false;
  4111   // phis shift around during optimization
  4112   return true;  // pretty stupid...
  4115 // verify a narrow slice (either incoming or outgoing)
  4116 static void verify_memory_slice(const MergeMemNode* m, int alias_idx, Node* n) {
  4117   if (!VerifyAliases)       return;  // don't bother to verify unless requested
  4118   if (is_error_reported())  return;  // muzzle asserts when debugging an error
  4119   if (Node::in_dump())      return;  // muzzle asserts when printing
  4120   assert(alias_idx >= Compile::AliasIdxRaw, "must not disturb base_memory or sentinel");
  4121   assert(n != NULL, "");
  4122   // Elide intervening MergeMem's
  4123   while (n->is_MergeMem()) {
  4124     n = n->as_MergeMem()->memory_at(alias_idx);
  4126   Compile* C = Compile::current();
  4127   const TypePtr* n_adr_type = n->adr_type();
  4128   if (n == m->empty_memory()) {
  4129     // Implicit copy of base_memory()
  4130   } else if (n_adr_type != TypePtr::BOTTOM) {
  4131     assert(n_adr_type != NULL, "new memory must have a well-defined adr_type");
  4132     assert(C->must_alias(n_adr_type, alias_idx), "new memory must match selected slice");
  4133   } else {
  4134     // A few places like make_runtime_call "know" that VM calls are narrow,
  4135     // and can be used to update only the VM bits stored as TypeRawPtr::BOTTOM.
  4136     bool expected_wide_mem = false;
  4137     if (n == m->base_memory()) {
  4138       expected_wide_mem = true;
  4139     } else if (alias_idx == Compile::AliasIdxRaw ||
  4140                n == m->memory_at(Compile::AliasIdxRaw)) {
  4141       expected_wide_mem = true;
  4142     } else if (!C->alias_type(alias_idx)->is_rewritable()) {
  4143       // memory can "leak through" calls on channels that
  4144       // are write-once.  Allow this also.
  4145       expected_wide_mem = true;
  4147     assert(expected_wide_mem, "expected narrow slice replacement");
  4150 #else // !ASSERT
  4151 #define verify_memory_slice(m,i,n) (0)  // PRODUCT version is no-op
  4152 #endif
  4155 //-----------------------------memory_at---------------------------------------
  4156 Node* MergeMemNode::memory_at(uint alias_idx) const {
  4157   assert(alias_idx >= Compile::AliasIdxRaw ||
  4158          alias_idx == Compile::AliasIdxBot && Compile::current()->AliasLevel() == 0,
  4159          "must avoid base_memory and AliasIdxTop");
  4161   // Otherwise, it is a narrow slice.
  4162   Node* n = alias_idx < req() ? in(alias_idx) : empty_memory();
  4163   Compile *C = Compile::current();
  4164   if (is_empty_memory(n)) {
  4165     // the array is sparse; empty slots are the "top" node
  4166     n = base_memory();
  4167     assert(Node::in_dump()
  4168            || n == NULL || n->bottom_type() == Type::TOP
  4169            || n->adr_type() == NULL // address is TOP
  4170            || n->adr_type() == TypePtr::BOTTOM
  4171            || n->adr_type() == TypeRawPtr::BOTTOM
  4172            || Compile::current()->AliasLevel() == 0,
  4173            "must be a wide memory");
  4174     // AliasLevel == 0 if we are organizing the memory states manually.
  4175     // See verify_memory_slice for comments on TypeRawPtr::BOTTOM.
  4176   } else {
  4177     // make sure the stored slice is sane
  4178     #ifdef ASSERT
  4179     if (is_error_reported() || Node::in_dump()) {
  4180     } else if (might_be_same(n, base_memory())) {
  4181       // Give it a pass:  It is a mostly harmless repetition of the base.
  4182       // This can arise normally from node subsumption during optimization.
  4183     } else {
  4184       verify_memory_slice(this, alias_idx, n);
  4186     #endif
  4188   return n;
  4191 //---------------------------set_memory_at-------------------------------------
  4192 void MergeMemNode::set_memory_at(uint alias_idx, Node *n) {
  4193   verify_memory_slice(this, alias_idx, n);
  4194   Node* empty_mem = empty_memory();
  4195   if (n == base_memory())  n = empty_mem;  // collapse default
  4196   uint need_req = alias_idx+1;
  4197   if (req() < need_req) {
  4198     if (n == empty_mem)  return;  // already the default, so do not grow me
  4199     // grow the sparse array
  4200     do {
  4201       add_req(empty_mem);
  4202     } while (req() < need_req);
  4204   set_req( alias_idx, n );
  4209 //--------------------------iteration_setup------------------------------------
  4210 void MergeMemNode::iteration_setup(const MergeMemNode* other) {
  4211   if (other != NULL) {
  4212     grow_to_match(other);
  4213     // invariant:  the finite support of mm2 is within mm->req()
  4214     #ifdef ASSERT
  4215     for (uint i = req(); i < other->req(); i++) {
  4216       assert(other->is_empty_memory(other->in(i)), "slice left uncovered");
  4218     #endif
  4220   // Replace spurious copies of base_memory by top.
  4221   Node* base_mem = base_memory();
  4222   if (base_mem != NULL && !base_mem->is_top()) {
  4223     for (uint i = Compile::AliasIdxBot+1, imax = req(); i < imax; i++) {
  4224       if (in(i) == base_mem)
  4225         set_req(i, empty_memory());
  4230 //---------------------------grow_to_match-------------------------------------
  4231 void MergeMemNode::grow_to_match(const MergeMemNode* other) {
  4232   Node* empty_mem = empty_memory();
  4233   assert(other->is_empty_memory(empty_mem), "consistent sentinels");
  4234   // look for the finite support of the other memory
  4235   for (uint i = other->req(); --i >= req(); ) {
  4236     if (other->in(i) != empty_mem) {
  4237       uint new_len = i+1;
  4238       while (req() < new_len)  add_req(empty_mem);
  4239       break;
  4244 //---------------------------verify_sparse-------------------------------------
  4245 #ifndef PRODUCT
  4246 bool MergeMemNode::verify_sparse() const {
  4247   assert(is_empty_memory(make_empty_memory()), "sane sentinel");
  4248   Node* base_mem = base_memory();
  4249   // The following can happen in degenerate cases, since empty==top.
  4250   if (is_empty_memory(base_mem))  return true;
  4251   for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
  4252     assert(in(i) != NULL, "sane slice");
  4253     if (in(i) == base_mem)  return false;  // should have been the sentinel value!
  4255   return true;
  4258 bool MergeMemStream::match_memory(Node* mem, const MergeMemNode* mm, int idx) {
  4259   Node* n;
  4260   n = mm->in(idx);
  4261   if (mem == n)  return true;  // might be empty_memory()
  4262   n = (idx == Compile::AliasIdxBot)? mm->base_memory(): mm->memory_at(idx);
  4263   if (mem == n)  return true;
  4264   while (n->is_Phi() && (n = n->as_Phi()->is_copy()) != NULL) {
  4265     if (mem == n)  return true;
  4266     if (n == NULL)  break;
  4268   return false;
  4270 #endif // !PRODUCT

mercurial