src/share/vm/gc_implementation/parNew/parCardTableModRefBS.cpp

Mon, 04 Aug 2014 10:48:10 -0700

author
jmasa
date
Mon, 04 Aug 2014 10:48:10 -0700
changeset 7031
ee019285a52c
parent 6911
ce8f6bb717c9
child 7535
7ae4e26cb1e0
child 8659
c70ebf41026a
permissions
-rw-r--r--

8031323: Optionally align objects copied to survivor spaces
Reviewed-by: brutisso, tschatzl

     1 /*
     2  * Copyright (c) 2007, 2014, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "memory/allocation.inline.hpp"
    27 #include "memory/cardTableModRefBS.hpp"
    28 #include "memory/cardTableRS.hpp"
    29 #include "memory/sharedHeap.hpp"
    30 #include "memory/space.inline.hpp"
    31 #include "memory/universe.hpp"
    32 #include "oops/oop.inline.hpp"
    33 #include "runtime/java.hpp"
    34 #include "runtime/mutexLocker.hpp"
    35 #include "runtime/orderAccess.inline.hpp"
    36 #include "runtime/virtualspace.hpp"
    37 #include "runtime/vmThread.hpp"
    39 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
    41 void CardTableModRefBS::non_clean_card_iterate_parallel_work(Space* sp, MemRegion mr,
    42                                                              OopsInGenClosure* cl,
    43                                                              CardTableRS* ct,
    44                                                              int n_threads) {
    45   assert(n_threads > 0, "Error: expected n_threads > 0");
    46   assert((n_threads == 1 && ParallelGCThreads == 0) ||
    47          n_threads <= (int)ParallelGCThreads,
    48          "# worker threads != # requested!");
    49   assert(!Thread::current()->is_VM_thread() || (n_threads == 1), "There is only 1 VM thread");
    50   assert(UseDynamicNumberOfGCThreads ||
    51          !FLAG_IS_DEFAULT(ParallelGCThreads) ||
    52          n_threads == (int)ParallelGCThreads,
    53          "# worker threads != # requested!");
    54   // Make sure the LNC array is valid for the space.
    55   jbyte**   lowest_non_clean;
    56   uintptr_t lowest_non_clean_base_chunk_index;
    57   size_t    lowest_non_clean_chunk_size;
    58   get_LNC_array_for_space(sp, lowest_non_clean,
    59                           lowest_non_clean_base_chunk_index,
    60                           lowest_non_clean_chunk_size);
    62   uint n_strides = n_threads * ParGCStridesPerThread;
    63   SequentialSubTasksDone* pst = sp->par_seq_tasks();
    64   // Sets the condition for completion of the subtask (how many threads
    65   // need to finish in order to be done).
    66   pst->set_n_threads(n_threads);
    67   pst->set_n_tasks(n_strides);
    69   uint stride = 0;
    70   while (!pst->is_task_claimed(/* reference */ stride)) {
    71     process_stride(sp, mr, stride, n_strides, cl, ct,
    72                    lowest_non_clean,
    73                    lowest_non_clean_base_chunk_index,
    74                    lowest_non_clean_chunk_size);
    75   }
    76   if (pst->all_tasks_completed()) {
    77     // Clear lowest_non_clean array for next time.
    78     intptr_t first_chunk_index = addr_to_chunk_index(mr.start());
    79     uintptr_t last_chunk_index  = addr_to_chunk_index(mr.last());
    80     for (uintptr_t ch = first_chunk_index; ch <= last_chunk_index; ch++) {
    81       intptr_t ind = ch - lowest_non_clean_base_chunk_index;
    82       assert(0 <= ind && ind < (intptr_t)lowest_non_clean_chunk_size,
    83              "Bounds error");
    84       lowest_non_clean[ind] = NULL;
    85     }
    86   }
    87 }
    89 void
    90 CardTableModRefBS::
    91 process_stride(Space* sp,
    92                MemRegion used,
    93                jint stride, int n_strides,
    94                OopsInGenClosure* cl,
    95                CardTableRS* ct,
    96                jbyte** lowest_non_clean,
    97                uintptr_t lowest_non_clean_base_chunk_index,
    98                size_t    lowest_non_clean_chunk_size) {
    99   // We go from higher to lower addresses here; it wouldn't help that much
   100   // because of the strided parallelism pattern used here.
   102   // Find the first card address of the first chunk in the stride that is
   103   // at least "bottom" of the used region.
   104   jbyte*    start_card  = byte_for(used.start());
   105   jbyte*    end_card    = byte_after(used.last());
   106   uintptr_t start_chunk = addr_to_chunk_index(used.start());
   107   uintptr_t start_chunk_stride_num = start_chunk % n_strides;
   108   jbyte* chunk_card_start;
   110   if ((uintptr_t)stride >= start_chunk_stride_num) {
   111     chunk_card_start = (jbyte*)(start_card +
   112                                 (stride - start_chunk_stride_num) *
   113                                 ParGCCardsPerStrideChunk);
   114   } else {
   115     // Go ahead to the next chunk group boundary, then to the requested stride.
   116     chunk_card_start = (jbyte*)(start_card +
   117                                 (n_strides - start_chunk_stride_num + stride) *
   118                                 ParGCCardsPerStrideChunk);
   119   }
   121   while (chunk_card_start < end_card) {
   122     // Even though we go from lower to higher addresses below, the
   123     // strided parallelism can interleave the actual processing of the
   124     // dirty pages in various ways. For a specific chunk within this
   125     // stride, we take care to avoid double scanning or missing a card
   126     // by suitably initializing the "min_done" field in process_chunk_boundaries()
   127     // below, together with the dirty region extension accomplished in
   128     // DirtyCardToOopClosure::do_MemRegion().
   129     jbyte*    chunk_card_end = chunk_card_start + ParGCCardsPerStrideChunk;
   130     // Invariant: chunk_mr should be fully contained within the "used" region.
   131     MemRegion chunk_mr       = MemRegion(addr_for(chunk_card_start),
   132                                          chunk_card_end >= end_card ?
   133                                            used.end() : addr_for(chunk_card_end));
   134     assert(chunk_mr.word_size() > 0, "[chunk_card_start > used_end)");
   135     assert(used.contains(chunk_mr), "chunk_mr should be subset of used");
   137     DirtyCardToOopClosure* dcto_cl = sp->new_dcto_cl(cl, precision(),
   138                                                      cl->gen_boundary());
   139     ClearNoncleanCardWrapper clear_cl(dcto_cl, ct);
   142     // Process the chunk.
   143     process_chunk_boundaries(sp,
   144                              dcto_cl,
   145                              chunk_mr,
   146                              used,
   147                              lowest_non_clean,
   148                              lowest_non_clean_base_chunk_index,
   149                              lowest_non_clean_chunk_size);
   151     // We want the LNC array updates above in process_chunk_boundaries
   152     // to be visible before any of the card table value changes as a
   153     // result of the dirty card iteration below.
   154     OrderAccess::storestore();
   156     // We do not call the non_clean_card_iterate_serial() version because
   157     // we want to clear the cards: clear_cl here does the work of finding
   158     // contiguous dirty ranges of cards to process and clear.
   159     clear_cl.do_MemRegion(chunk_mr);
   161     // Find the next chunk of the stride.
   162     chunk_card_start += ParGCCardsPerStrideChunk * n_strides;
   163   }
   164 }
   167 // If you want a talkative process_chunk_boundaries,
   168 // then #define NOISY(x) x
   169 #ifdef NOISY
   170 #error "Encountered a global preprocessor flag, NOISY, which might clash with local definition to follow"
   171 #else
   172 #define NOISY(x)
   173 #endif
   175 void
   176 CardTableModRefBS::
   177 process_chunk_boundaries(Space* sp,
   178                          DirtyCardToOopClosure* dcto_cl,
   179                          MemRegion chunk_mr,
   180                          MemRegion used,
   181                          jbyte** lowest_non_clean,
   182                          uintptr_t lowest_non_clean_base_chunk_index,
   183                          size_t    lowest_non_clean_chunk_size)
   184 {
   185   // We must worry about non-array objects that cross chunk boundaries,
   186   // because such objects are both precisely and imprecisely marked:
   187   // .. if the head of such an object is dirty, the entire object
   188   //    needs to be scanned, under the interpretation that this
   189   //    was an imprecise mark
   190   // .. if the head of such an object is not dirty, we can assume
   191   //    precise marking and it's efficient to scan just the dirty
   192   //    cards.
   193   // In either case, each scanned reference must be scanned precisely
   194   // once so as to avoid cloning of a young referent. For efficiency,
   195   // our closures depend on this property and do not protect against
   196   // double scans.
   198   uintptr_t cur_chunk_index = addr_to_chunk_index(chunk_mr.start());
   199   cur_chunk_index           = cur_chunk_index - lowest_non_clean_base_chunk_index;
   201   NOISY(tty->print_cr("===========================================================================");)
   202   NOISY(tty->print_cr(" process_chunk_boundary: Called with [" PTR_FORMAT "," PTR_FORMAT ")",
   203                       chunk_mr.start(), chunk_mr.end());)
   205   // First, set "our" lowest_non_clean entry, which would be
   206   // used by the thread scanning an adjoining left chunk with
   207   // a non-array object straddling the mutual boundary.
   208   // Find the object that spans our boundary, if one exists.
   209   // first_block is the block possibly straddling our left boundary.
   210   HeapWord* first_block = sp->block_start(chunk_mr.start());
   211   assert((chunk_mr.start() != used.start()) || (first_block == chunk_mr.start()),
   212          "First chunk should always have a co-initial block");
   213   // Does the block straddle the chunk's left boundary, and is it
   214   // a non-array object?
   215   if (first_block < chunk_mr.start()        // first block straddles left bdry
   216       && sp->block_is_obj(first_block)      // first block is an object
   217       && !(oop(first_block)->is_objArray()  // first block is not an array (arrays are precisely dirtied)
   218            || oop(first_block)->is_typeArray())) {
   219     // Find our least non-clean card, so that a left neighbour
   220     // does not scan an object straddling the mutual boundary
   221     // too far to the right, and attempt to scan a portion of
   222     // that object twice.
   223     jbyte* first_dirty_card = NULL;
   224     jbyte* last_card_of_first_obj =
   225         byte_for(first_block + sp->block_size(first_block) - 1);
   226     jbyte* first_card_of_cur_chunk = byte_for(chunk_mr.start());
   227     jbyte* last_card_of_cur_chunk = byte_for(chunk_mr.last());
   228     jbyte* last_card_to_check =
   229       (jbyte*) MIN2((intptr_t) last_card_of_cur_chunk,
   230                     (intptr_t) last_card_of_first_obj);
   231     // Note that this does not need to go beyond our last card
   232     // if our first object completely straddles this chunk.
   233     for (jbyte* cur = first_card_of_cur_chunk;
   234          cur <= last_card_to_check; cur++) {
   235       jbyte val = *cur;
   236       if (card_will_be_scanned(val)) {
   237         first_dirty_card = cur; break;
   238       } else {
   239         assert(!card_may_have_been_dirty(val), "Error");
   240       }
   241     }
   242     if (first_dirty_card != NULL) {
   243       NOISY(tty->print_cr(" LNC: Found a dirty card at " PTR_FORMAT " in current chunk",
   244                     first_dirty_card);)
   245       assert(0 <= cur_chunk_index && cur_chunk_index < lowest_non_clean_chunk_size,
   246              "Bounds error.");
   247       assert(lowest_non_clean[cur_chunk_index] == NULL,
   248              "Write exactly once : value should be stable hereafter for this round");
   249       lowest_non_clean[cur_chunk_index] = first_dirty_card;
   250     } NOISY(else {
   251       tty->print_cr(" LNC: Found no dirty card in current chunk; leaving LNC entry NULL");
   252       // In the future, we could have this thread look for a non-NULL value to copy from its
   253       // right neighbour (up to the end of the first object).
   254       if (last_card_of_cur_chunk < last_card_of_first_obj) {
   255         tty->print_cr(" LNC: BEWARE!!! first obj straddles past right end of chunk:\n"
   256                       "   might be efficient to get value from right neighbour?");
   257       }
   258     })
   259   } else {
   260     // In this case we can help our neighbour by just asking them
   261     // to stop at our first card (even though it may not be dirty).
   262     NOISY(tty->print_cr(" LNC: first block is not a non-array object; setting LNC to first card of current chunk");)
   263     assert(lowest_non_clean[cur_chunk_index] == NULL, "Write once : value should be stable hereafter");
   264     jbyte* first_card_of_cur_chunk = byte_for(chunk_mr.start());
   265     lowest_non_clean[cur_chunk_index] = first_card_of_cur_chunk;
   266   }
   267   NOISY(tty->print_cr(" process_chunk_boundary: lowest_non_clean[" INTPTR_FORMAT "] = " PTR_FORMAT
   268                 "   which corresponds to the heap address " PTR_FORMAT,
   269                 cur_chunk_index, lowest_non_clean[cur_chunk_index],
   270                 (lowest_non_clean[cur_chunk_index] != NULL)
   271                 ? addr_for(lowest_non_clean[cur_chunk_index])
   272                 : NULL);)
   273   NOISY(tty->print_cr("---------------------------------------------------------------------------");)
   275   // Next, set our own max_to_do, which will strictly/exclusively bound
   276   // the highest address that we will scan past the right end of our chunk.
   277   HeapWord* max_to_do = NULL;
   278   if (chunk_mr.end() < used.end()) {
   279     // This is not the last chunk in the used region.
   280     // What is our last block? We check the first block of
   281     // the next (right) chunk rather than strictly check our last block
   282     // because it's potentially more efficient to do so.
   283     HeapWord* const last_block = sp->block_start(chunk_mr.end());
   284     assert(last_block <= chunk_mr.end(), "In case this property changes.");
   285     if ((last_block == chunk_mr.end())     // our last block does not straddle boundary
   286         || !sp->block_is_obj(last_block)   // last_block isn't an object
   287         || oop(last_block)->is_objArray()  // last_block is an array (precisely marked)
   288         || oop(last_block)->is_typeArray()) {
   289       max_to_do = chunk_mr.end();
   290       NOISY(tty->print_cr(" process_chunk_boundary: Last block on this card is not a non-array object;\n"
   291                          "   max_to_do left at " PTR_FORMAT, max_to_do);)
   292     } else {
   293       assert(last_block < chunk_mr.end(), "Tautology");
   294       // It is a non-array object that straddles the right boundary of this chunk.
   295       // last_obj_card is the card corresponding to the start of the last object
   296       // in the chunk.  Note that the last object may not start in
   297       // the chunk.
   298       jbyte* const last_obj_card = byte_for(last_block);
   299       const jbyte val = *last_obj_card;
   300       if (!card_will_be_scanned(val)) {
   301         assert(!card_may_have_been_dirty(val), "Error");
   302         // The card containing the head is not dirty.  Any marks on
   303         // subsequent cards still in this chunk must have been made
   304         // precisely; we can cap processing at the end of our chunk.
   305         max_to_do = chunk_mr.end();
   306         NOISY(tty->print_cr(" process_chunk_boundary: Head of last object on this card is not dirty;\n"
   307                             "   max_to_do left at " PTR_FORMAT,
   308                             max_to_do);)
   309       } else {
   310         // The last object must be considered dirty, and extends onto the
   311         // following chunk.  Look for a dirty card in that chunk that will
   312         // bound our processing.
   313         jbyte* limit_card = NULL;
   314         const size_t last_block_size = sp->block_size(last_block);
   315         jbyte* const last_card_of_last_obj =
   316           byte_for(last_block + last_block_size - 1);
   317         jbyte* const first_card_of_next_chunk = byte_for(chunk_mr.end());
   318         // This search potentially goes a long distance looking
   319         // for the next card that will be scanned, terminating
   320         // at the end of the last_block, if no earlier dirty card
   321         // is found.
   322         assert(byte_for(chunk_mr.end()) - byte_for(chunk_mr.start()) == ParGCCardsPerStrideChunk,
   323                "last card of next chunk may be wrong");
   324         for (jbyte* cur = first_card_of_next_chunk;
   325              cur <= last_card_of_last_obj; cur++) {
   326           const jbyte val = *cur;
   327           if (card_will_be_scanned(val)) {
   328             NOISY(tty->print_cr(" Found a non-clean card " PTR_FORMAT " with value 0x%x",
   329                                 cur, (int)val);)
   330             limit_card = cur; break;
   331           } else {
   332             assert(!card_may_have_been_dirty(val), "Error: card can't be skipped");
   333           }
   334         }
   335         if (limit_card != NULL) {
   336           max_to_do = addr_for(limit_card);
   337           assert(limit_card != NULL && max_to_do != NULL, "Error");
   338           NOISY(tty->print_cr(" process_chunk_boundary: Found a dirty card at " PTR_FORMAT
   339                         "   max_to_do set at " PTR_FORMAT " which is before end of last block in chunk: "
   340                         PTR_FORMAT " + " PTR_FORMAT " = " PTR_FORMAT,
   341                         limit_card, max_to_do, last_block, last_block_size, (last_block+last_block_size));)
   342         } else {
   343           // The following is a pessimistic value, because it's possible
   344           // that a dirty card on a subsequent chunk has been cleared by
   345           // the time we get to look at it; we'll correct for that further below,
   346           // using the LNC array which records the least non-clean card
   347           // before cards were cleared in a particular chunk.
   348           limit_card = last_card_of_last_obj;
   349           max_to_do = last_block + last_block_size;
   350           assert(limit_card != NULL && max_to_do != NULL, "Error");
   351           NOISY(tty->print_cr(" process_chunk_boundary: Found no dirty card before end of last block in chunk\n"
   352                               "   Setting limit_card to " PTR_FORMAT
   353                               " and max_to_do " PTR_FORMAT " + " PTR_FORMAT " = " PTR_FORMAT,
   354                               limit_card, last_block, last_block_size, max_to_do);)
   355         }
   356         assert(0 < cur_chunk_index+1 && cur_chunk_index+1 < lowest_non_clean_chunk_size,
   357                "Bounds error.");
   358         // It is possible that a dirty card for the last object may have been
   359         // cleared before we had a chance to examine it. In that case, the value
   360         // will have been logged in the LNC for that chunk.
   361         // We need to examine as many chunks to the right as this object
   362         // covers. However, we need to bound this checking to the largest
   363         // entry in the LNC array: this is because the heap may expand
   364         // after the LNC array has been created but before we reach this point,
   365         // and the last block in our chunk may have been expanded to include
   366         // the expansion delta (and possibly subsequently allocated from, so
   367         // it wouldn't be sufficient to check whether that last block was
   368         // or was not an object at this point).
   369         uintptr_t last_chunk_index_to_check = addr_to_chunk_index(last_block + last_block_size - 1)
   370                                               - lowest_non_clean_base_chunk_index;
   371         const uintptr_t last_chunk_index    = addr_to_chunk_index(used.last())
   372                                               - lowest_non_clean_base_chunk_index;
   373         if (last_chunk_index_to_check > last_chunk_index) {
   374           assert(last_block + last_block_size > used.end(),
   375                  err_msg("Inconsistency detected: last_block [" PTR_FORMAT "," PTR_FORMAT "]"
   376                          " does not exceed used.end() = " PTR_FORMAT ","
   377                          " yet last_chunk_index_to_check " INTPTR_FORMAT
   378                          " exceeds last_chunk_index " INTPTR_FORMAT,
   379                          last_block, last_block + last_block_size,
   380                          used.end(),
   381                          last_chunk_index_to_check, last_chunk_index));
   382           assert(sp->used_region().end() > used.end(),
   383                  err_msg("Expansion did not happen: "
   384                          "[" PTR_FORMAT "," PTR_FORMAT ") -> [" PTR_FORMAT "," PTR_FORMAT ")",
   385                          sp->used_region().start(), sp->used_region().end(), used.start(), used.end()));
   386           NOISY(tty->print_cr(" process_chunk_boundary: heap expanded; explicitly bounding last_chunk");)
   387           last_chunk_index_to_check = last_chunk_index;
   388         }
   389         for (uintptr_t lnc_index = cur_chunk_index + 1;
   390              lnc_index <= last_chunk_index_to_check;
   391              lnc_index++) {
   392           jbyte* lnc_card = lowest_non_clean[lnc_index];
   393           if (lnc_card != NULL) {
   394             // we can stop at the first non-NULL entry we find
   395             if (lnc_card <= limit_card) {
   396               NOISY(tty->print_cr(" process_chunk_boundary: LNC card " PTR_FORMAT " is lower than limit_card " PTR_FORMAT,
   397                                   "   max_to_do will be lowered to " PTR_FORMAT " from " PTR_FORMAT,
   398                                   lnc_card, limit_card, addr_for(lnc_card), max_to_do);)
   399               limit_card = lnc_card;
   400               max_to_do = addr_for(limit_card);
   401               assert(limit_card != NULL && max_to_do != NULL, "Error");
   402             }
   403             // In any case, we break now
   404             break;
   405           }  // else continue to look for a non-NULL entry if any
   406         }
   407         assert(limit_card != NULL && max_to_do != NULL, "Error");
   408       }
   409       assert(max_to_do != NULL, "OOPS 1 !");
   410     }
   411     assert(max_to_do != NULL, "OOPS 2!");
   412   } else {
   413     max_to_do = used.end();
   414     NOISY(tty->print_cr(" process_chunk_boundary: Last chunk of this space;\n"
   415                   "   max_to_do left at " PTR_FORMAT,
   416                   max_to_do);)
   417   }
   418   assert(max_to_do != NULL, "OOPS 3!");
   419   // Now we can set the closure we're using so it doesn't to beyond
   420   // max_to_do.
   421   dcto_cl->set_min_done(max_to_do);
   422 #ifndef PRODUCT
   423   dcto_cl->set_last_bottom(max_to_do);
   424 #endif
   425   NOISY(tty->print_cr("===========================================================================\n");)
   426 }
   428 #undef NOISY
   430 void
   431 CardTableModRefBS::
   432 get_LNC_array_for_space(Space* sp,
   433                         jbyte**& lowest_non_clean,
   434                         uintptr_t& lowest_non_clean_base_chunk_index,
   435                         size_t& lowest_non_clean_chunk_size) {
   437   int       i        = find_covering_region_containing(sp->bottom());
   438   MemRegion covered  = _covered[i];
   439   size_t    n_chunks = chunks_to_cover(covered);
   441   // Only the first thread to obtain the lock will resize the
   442   // LNC array for the covered region.  Any later expansion can't affect
   443   // the used_at_save_marks region.
   444   // (I observed a bug in which the first thread to execute this would
   445   // resize, and then it would cause "expand_and_allocate" that would
   446   // increase the number of chunks in the covered region.  Then a second
   447   // thread would come and execute this, see that the size didn't match,
   448   // and free and allocate again.  So the first thread would be using a
   449   // freed "_lowest_non_clean" array.)
   451   // Do a dirty read here. If we pass the conditional then take the rare
   452   // event lock and do the read again in case some other thread had already
   453   // succeeded and done the resize.
   454   int cur_collection = Universe::heap()->total_collections();
   455   if (_last_LNC_resizing_collection[i] != cur_collection) {
   456     MutexLocker x(ParGCRareEvent_lock);
   457     if (_last_LNC_resizing_collection[i] != cur_collection) {
   458       if (_lowest_non_clean[i] == NULL ||
   459           n_chunks != _lowest_non_clean_chunk_size[i]) {
   461         // Should we delete the old?
   462         if (_lowest_non_clean[i] != NULL) {
   463           assert(n_chunks != _lowest_non_clean_chunk_size[i],
   464                  "logical consequence");
   465           FREE_C_HEAP_ARRAY(CardPtr, _lowest_non_clean[i], mtGC);
   466           _lowest_non_clean[i] = NULL;
   467         }
   468         // Now allocate a new one if necessary.
   469         if (_lowest_non_clean[i] == NULL) {
   470           _lowest_non_clean[i]                  = NEW_C_HEAP_ARRAY(CardPtr, n_chunks, mtGC);
   471           _lowest_non_clean_chunk_size[i]       = n_chunks;
   472           _lowest_non_clean_base_chunk_index[i] = addr_to_chunk_index(covered.start());
   473           for (int j = 0; j < (int)n_chunks; j++)
   474             _lowest_non_clean[i][j] = NULL;
   475         }
   476       }
   477       _last_LNC_resizing_collection[i] = cur_collection;
   478     }
   479   }
   480   // In any case, now do the initialization.
   481   lowest_non_clean                  = _lowest_non_clean[i];
   482   lowest_non_clean_base_chunk_index = _lowest_non_clean_base_chunk_index[i];
   483   lowest_non_clean_chunk_size       = _lowest_non_clean_chunk_size[i];
   484 }

mercurial