src/share/vm/services/memSnapshot.cpp

Fri, 09 Nov 2012 11:04:06 -0500

author
zgu
date
Fri, 09 Nov 2012 11:04:06 -0500
changeset 4272
ed8b1e39ff4f
parent 4248
69ad7823b1ca
child 4276
8c413497f434
permissions
-rw-r--r--

8002273: NMT to report JNI memory leaks when -Xcheck:jni is on
Summary: Allows NMT to report that JNI thread failed to detach from JVM before exiting, which leaks the JavaThread object when check:jni option is on.
Reviewed-by: acorn, dholmes, coleenp, ctornqvi

     1 /*
     2  * Copyright (c) 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "runtime/mutexLocker.hpp"
    27 #include "utilities/decoder.hpp"
    28 #include "services/memBaseline.hpp"
    29 #include "services/memPtr.hpp"
    30 #include "services/memPtrArray.hpp"
    31 #include "services/memSnapshot.hpp"
    32 #include "services/memTracker.hpp"
    34 #ifdef ASSERT
    36 void decode_pointer_record(MemPointerRecord* rec) {
    37   tty->print("Pointer: [" PTR_FORMAT " - " PTR_FORMAT  "] size = %d bytes", rec->addr(),
    38     rec->addr() + rec->size(), (int)rec->size());
    39   tty->print(" type = %s", MemBaseline::type2name(FLAGS_TO_MEMORY_TYPE(rec->flags())));
    40   if (rec->is_vm_pointer()) {
    41     if (rec->is_allocation_record()) {
    42       tty->print_cr(" (reserve)");
    43     } else if (rec->is_commit_record()) {
    44       tty->print_cr(" (commit)");
    45     } else if (rec->is_uncommit_record()) {
    46       tty->print_cr(" (uncommit)");
    47     } else if (rec->is_deallocation_record()) {
    48       tty->print_cr(" (release)");
    49     } else {
    50       tty->print_cr(" (tag)");
    51     }
    52   } else {
    53     if (rec->is_arena_size_record()) {
    54       tty->print_cr(" (arena size)");
    55     } else if (rec->is_allocation_record()) {
    56       tty->print_cr(" (malloc)");
    57     } else {
    58       tty->print_cr(" (free)");
    59     }
    60   }
    61   if (MemTracker::track_callsite()) {
    62     char buf[1024];
    63     address pc = ((MemPointerRecordEx*)rec)->pc();
    64     if (pc != NULL && os::dll_address_to_function_name(pc, buf, sizeof(buf), NULL)) {
    65       tty->print_cr("\tfrom %s", buf);
    66     } else {
    67       tty->print_cr("\tcould not decode pc = " PTR_FORMAT "", pc);
    68     }
    69   }
    70 }
    72 void decode_vm_region_record(VMMemRegion* rec) {
    73   tty->print("VM Region [" PTR_FORMAT " - " PTR_FORMAT "]", rec->addr(),
    74     rec->addr() + rec->size());
    75   tty->print(" type = %s", MemBaseline::type2name(FLAGS_TO_MEMORY_TYPE(rec->flags())));
    76   if (rec->is_allocation_record()) {
    77     tty->print_cr(" (reserved)");
    78   } else if (rec->is_commit_record()) {
    79     tty->print_cr(" (committed)");
    80   } else {
    81     ShouldNotReachHere();
    82   }
    83   if (MemTracker::track_callsite()) {
    84     char buf[1024];
    85     address pc = ((VMMemRegionEx*)rec)->pc();
    86     if (pc != NULL && os::dll_address_to_function_name(pc, buf, sizeof(buf), NULL)) {
    87       tty->print_cr("\tfrom %s", buf);
    88     } else {
    89       tty->print_cr("\tcould not decode pc = " PTR_FORMAT "", pc);
    90     }
    92   }
    93 }
    95 #endif
    98 bool VMMemPointerIterator::insert_record(MemPointerRecord* rec) {
    99   VMMemRegionEx new_rec;
   100   assert(rec->is_allocation_record() || rec->is_commit_record(),
   101     "Sanity check");
   102   if (MemTracker::track_callsite()) {
   103     new_rec.init((MemPointerRecordEx*)rec);
   104   } else {
   105     new_rec.init(rec);
   106   }
   107   return insert(&new_rec);
   108 }
   110 bool VMMemPointerIterator::insert_record_after(MemPointerRecord* rec) {
   111   VMMemRegionEx new_rec;
   112   assert(rec->is_allocation_record() || rec->is_commit_record(),
   113     "Sanity check");
   114   if (MemTracker::track_callsite()) {
   115     new_rec.init((MemPointerRecordEx*)rec);
   116   } else {
   117     new_rec.init(rec);
   118   }
   119   return insert_after(&new_rec);
   120 }
   122 // we don't consolidate reserved regions, since they may be categorized
   123 // in different types.
   124 bool VMMemPointerIterator::add_reserved_region(MemPointerRecord* rec) {
   125   assert(rec->is_allocation_record(), "Sanity check");
   126   VMMemRegion* reserved_region = (VMMemRegion*)current();
   128   // we don't have anything yet
   129   if (reserved_region == NULL) {
   130     return insert_record(rec);
   131   }
   133   assert(reserved_region->is_reserved_region(), "Sanity check");
   134   // duplicated records
   135   if (reserved_region->is_same_region(rec)) {
   136     return true;
   137   }
   138   // Overlapping stack regions indicate that a JNI thread failed to
   139   // detach from the VM before exiting. This leaks the JavaThread object.
   140   if (CheckJNICalls)  {
   141       guarantee(FLAGS_TO_MEMORY_TYPE(reserved_region->flags()) != mtThreadStack ||
   142          !reserved_region->overlaps_region(rec),
   143          "Attached JNI thread exited without being detached");
   144   }
   145   // otherwise, we should not have overlapping reserved regions
   146   assert(FLAGS_TO_MEMORY_TYPE(reserved_region->flags()) == mtThreadStack ||
   147     reserved_region->base() > rec->addr(), "Just check: locate()");
   148   assert(FLAGS_TO_MEMORY_TYPE(reserved_region->flags()) == mtThreadStack ||
   149     !reserved_region->overlaps_region(rec), "overlapping reserved regions");
   151   return insert_record(rec);
   152 }
   154 // we do consolidate committed regions
   155 bool VMMemPointerIterator::add_committed_region(MemPointerRecord* rec) {
   156   assert(rec->is_commit_record(), "Sanity check");
   157   VMMemRegion* reserved_rgn = (VMMemRegion*)current();
   158   assert(reserved_rgn->is_reserved_region() && reserved_rgn->contains_region(rec),
   159     "Sanity check");
   161   // thread's native stack is always marked as "committed", ignore
   162   // the "commit" operation for creating stack guard pages
   163   if (FLAGS_TO_MEMORY_TYPE(reserved_rgn->flags()) == mtThreadStack &&
   164       FLAGS_TO_MEMORY_TYPE(rec->flags()) != mtThreadStack) {
   165     return true;
   166   }
   168   // if the reserved region has any committed regions
   169   VMMemRegion* committed_rgn  = (VMMemRegion*)next();
   170   while (committed_rgn != NULL && committed_rgn->is_committed_region()) {
   171     // duplicated commit records
   172     if(committed_rgn->contains_region(rec)) {
   173       return true;
   174     } else if (committed_rgn->overlaps_region(rec)) {
   175       // overlaps front part
   176       if (rec->addr() < committed_rgn->addr()) {
   177         committed_rgn->expand_region(rec->addr(),
   178           committed_rgn->addr() - rec->addr());
   179       } else {
   180         // overlaps tail part
   181         address committed_rgn_end = committed_rgn->addr() +
   182               committed_rgn->size();
   183         assert(committed_rgn_end < rec->addr() + rec->size(),
   184              "overlap tail part");
   185         committed_rgn->expand_region(committed_rgn_end,
   186           (rec->addr() + rec->size()) - committed_rgn_end);
   187       }
   188     } else if (committed_rgn->base() + committed_rgn->size() == rec->addr()) {
   189       // adjunct each other
   190       committed_rgn->expand_region(rec->addr(), rec->size());
   191       VMMemRegion* next_reg = (VMMemRegion*)next();
   192       // see if we can consolidate next committed region
   193       if (next_reg != NULL && next_reg->is_committed_region() &&
   194         next_reg->base() == committed_rgn->base() + committed_rgn->size()) {
   195           committed_rgn->expand_region(next_reg->base(), next_reg->size());
   196           // delete merged region
   197           remove();
   198       }
   199       return true;
   200     } else if (committed_rgn->base() > rec->addr()) {
   201       // found the location, insert this committed region
   202       return insert_record(rec);
   203     }
   204     committed_rgn = (VMMemRegion*)next();
   205   }
   206   return insert_record(rec);
   207 }
   209 bool VMMemPointerIterator::remove_uncommitted_region(MemPointerRecord* rec) {
   210   assert(rec->is_uncommit_record(), "sanity check");
   211   VMMemRegion* cur;
   212   cur = (VMMemRegion*)current();
   213   assert(cur->is_reserved_region() && cur->contains_region(rec),
   214     "Sanity check");
   215   // thread's native stack is always marked as "committed", ignore
   216   // the "commit" operation for creating stack guard pages
   217   if (FLAGS_TO_MEMORY_TYPE(cur->flags()) == mtThreadStack &&
   218       FLAGS_TO_MEMORY_TYPE(rec->flags()) != mtThreadStack) {
   219     return true;
   220   }
   222   cur = (VMMemRegion*)next();
   223   while (cur != NULL && cur->is_committed_region()) {
   224     // region already uncommitted, must be due to duplicated record
   225     if (cur->addr() >= rec->addr() + rec->size()) {
   226       break;
   227     } else if (cur->contains_region(rec)) {
   228       // uncommit whole region
   229       if (cur->is_same_region(rec)) {
   230         remove();
   231         break;
   232       } else if (rec->addr() == cur->addr() ||
   233         rec->addr() + rec->size() == cur->addr() + cur->size()) {
   234         // uncommitted from either end of current memory region.
   235         cur->exclude_region(rec->addr(), rec->size());
   236         break;
   237       } else { // split the committed region and release the middle
   238         address high_addr = cur->addr() + cur->size();
   239         size_t sz = high_addr - rec->addr();
   240         cur->exclude_region(rec->addr(), sz);
   241         sz = high_addr - (rec->addr() + rec->size());
   242         if (MemTracker::track_callsite()) {
   243           MemPointerRecordEx tmp(rec->addr() + rec->size(), cur->flags(), sz,
   244              ((VMMemRegionEx*)cur)->pc());
   245           return insert_record_after(&tmp);
   246         } else {
   247           MemPointerRecord tmp(rec->addr() + rec->size(), cur->flags(), sz);
   248           return insert_record_after(&tmp);
   249         }
   250       }
   251     }
   252     cur = (VMMemRegion*)next();
   253   }
   255   // we may not find committed record due to duplicated records
   256   return true;
   257 }
   259 bool VMMemPointerIterator::remove_released_region(MemPointerRecord* rec) {
   260   assert(rec->is_deallocation_record(), "Sanity check");
   261   VMMemRegion* cur = (VMMemRegion*)current();
   262   assert(cur->is_reserved_region() && cur->contains_region(rec),
   263     "Sanity check");
   264 #ifdef ASSERT
   265   VMMemRegion* next_reg = (VMMemRegion*)peek_next();
   266   // should not have any committed memory in this reserved region
   267   assert(next_reg == NULL || !next_reg->is_committed_region(), "Sanity check");
   268 #endif
   269   if (rec->is_same_region(cur)) {
   270     remove();
   271   } else if (rec->addr() == cur->addr() ||
   272     rec->addr() + rec->size() == cur->addr() + cur->size()) {
   273     // released region is at either end of this region
   274     cur->exclude_region(rec->addr(), rec->size());
   275   } else { // split the reserved region and release the middle
   276     address high_addr = cur->addr() + cur->size();
   277     size_t sz = high_addr - rec->addr();
   278     cur->exclude_region(rec->addr(), sz);
   279     sz = high_addr - rec->addr() - rec->size();
   280     if (MemTracker::track_callsite()) {
   281       MemPointerRecordEx tmp(rec->addr() + rec->size(), cur->flags(), sz,
   282         ((VMMemRegionEx*)cur)->pc());
   283       return insert_reserved_region(&tmp);
   284     } else {
   285       MemPointerRecord tmp(rec->addr() + rec->size(), cur->flags(), sz);
   286       return insert_reserved_region(&tmp);
   287     }
   288   }
   289   return true;
   290 }
   292 bool VMMemPointerIterator::insert_reserved_region(MemPointerRecord* rec) {
   293   // skip all 'commit' records associated with previous reserved region
   294   VMMemRegion* p = (VMMemRegion*)next();
   295   while (p != NULL && p->is_committed_region() &&
   296          p->base() + p->size() < rec->addr()) {
   297     p = (VMMemRegion*)next();
   298   }
   299   return insert_record(rec);
   300 }
   302 bool VMMemPointerIterator::split_reserved_region(VMMemRegion* rgn, address new_rgn_addr, size_t new_rgn_size) {
   303   assert(rgn->contains_region(new_rgn_addr, new_rgn_size), "Not fully contained");
   304   address pc = (MemTracker::track_callsite() ? ((VMMemRegionEx*)rgn)->pc() : NULL);
   305   if (rgn->base() == new_rgn_addr) { // new region is at the beginning of the region
   306     size_t sz = rgn->size() - new_rgn_size;
   307     // the original region becomes 'new' region
   308     rgn->exclude_region(new_rgn_addr + new_rgn_size, sz);
   309      // remaining becomes next region
   310     MemPointerRecordEx next_rgn(new_rgn_addr + new_rgn_size, rgn->flags(), sz, pc);
   311     return insert_reserved_region(&next_rgn);
   312   } else if (rgn->base() + rgn->size() == new_rgn_addr + new_rgn_size) {
   313     rgn->exclude_region(new_rgn_addr, new_rgn_size);
   314     MemPointerRecordEx next_rgn(new_rgn_addr, rgn->flags(), new_rgn_size, pc);
   315     return insert_reserved_region(&next_rgn);
   316   } else {
   317     // the orginal region will be split into three
   318     address rgn_high_addr = rgn->base() + rgn->size();
   319     // first region
   320     rgn->exclude_region(new_rgn_addr, (rgn_high_addr - new_rgn_addr));
   321     // the second region is the new region
   322     MemPointerRecordEx new_rgn(new_rgn_addr, rgn->flags(), new_rgn_size, pc);
   323     if (!insert_reserved_region(&new_rgn)) return false;
   324     // the remaining region
   325     MemPointerRecordEx rem_rgn(new_rgn_addr + new_rgn_size, rgn->flags(),
   326       rgn_high_addr - (new_rgn_addr + new_rgn_size), pc);
   327     return insert_reserved_region(&rem_rgn);
   328   }
   329 }
   331 static int sort_in_seq_order(const void* p1, const void* p2) {
   332   assert(p1 != NULL && p2 != NULL, "Sanity check");
   333   const MemPointerRecord* mp1 = (MemPointerRecord*)p1;
   334   const MemPointerRecord* mp2 = (MemPointerRecord*)p2;
   335   return (mp1->seq() - mp2->seq());
   336 }
   338 bool StagingArea::init() {
   339   if (MemTracker::track_callsite()) {
   340     _malloc_data = new (std::nothrow)MemPointerArrayImpl<SeqMemPointerRecordEx>();
   341     _vm_data = new (std::nothrow)MemPointerArrayImpl<SeqMemPointerRecordEx>();
   342   } else {
   343     _malloc_data = new (std::nothrow)MemPointerArrayImpl<SeqMemPointerRecord>();
   344     _vm_data = new (std::nothrow)MemPointerArrayImpl<SeqMemPointerRecord>();
   345   }
   347   if (_malloc_data != NULL && _vm_data != NULL &&
   348       !_malloc_data->out_of_memory() &&
   349       !_vm_data->out_of_memory()) {
   350     return true;
   351   } else {
   352     if (_malloc_data != NULL) delete _malloc_data;
   353     if (_vm_data != NULL) delete _vm_data;
   354     _malloc_data = NULL;
   355     _vm_data = NULL;
   356     return false;
   357   }
   358 }
   361 VMRecordIterator StagingArea::virtual_memory_record_walker() {
   362   MemPointerArray* arr = vm_data();
   363   // sort into seq number order
   364   arr->sort((FN_SORT)sort_in_seq_order);
   365   return VMRecordIterator(arr);
   366 }
   369 MemSnapshot::MemSnapshot() {
   370   if (MemTracker::track_callsite()) {
   371     _alloc_ptrs = new (std::nothrow) MemPointerArrayImpl<MemPointerRecordEx>();
   372     _vm_ptrs = new (std::nothrow)MemPointerArrayImpl<VMMemRegionEx>(64, true);
   373   } else {
   374     _alloc_ptrs = new (std::nothrow) MemPointerArrayImpl<MemPointerRecord>();
   375     _vm_ptrs = new (std::nothrow)MemPointerArrayImpl<VMMemRegion>(64, true);
   376   }
   378   _staging_area.init();
   379   _lock = new (std::nothrow) Mutex(Monitor::max_nonleaf - 1, "memSnapshotLock");
   380   NOT_PRODUCT(_untracked_count = 0;)
   381 }
   383 MemSnapshot::~MemSnapshot() {
   384   assert(MemTracker::shutdown_in_progress(), "native memory tracking still on");
   385   {
   386     MutexLockerEx locker(_lock);
   387     if (_alloc_ptrs != NULL) {
   388       delete _alloc_ptrs;
   389       _alloc_ptrs = NULL;
   390     }
   392     if (_vm_ptrs != NULL) {
   393       delete _vm_ptrs;
   394       _vm_ptrs = NULL;
   395     }
   396   }
   398   if (_lock != NULL) {
   399     delete _lock;
   400     _lock = NULL;
   401   }
   402 }
   404 void MemSnapshot::copy_pointer(MemPointerRecord* dest, const MemPointerRecord* src) {
   405   assert(dest != NULL && src != NULL, "Just check");
   406   assert(dest->addr() == src->addr(), "Just check");
   408   MEMFLAGS flags = dest->flags();
   410   if (MemTracker::track_callsite()) {
   411     *(MemPointerRecordEx*)dest = *(MemPointerRecordEx*)src;
   412   } else {
   413     *dest = *src;
   414   }
   415 }
   418 // merge a per-thread memory recorder to the staging area
   419 bool MemSnapshot::merge(MemRecorder* rec) {
   420   assert(rec != NULL && !rec->out_of_memory(), "Just check");
   422   SequencedRecordIterator itr(rec->pointer_itr());
   424   MutexLockerEx lock(_lock, true);
   425   MemPointerIterator malloc_staging_itr(_staging_area.malloc_data());
   426   MemPointerRecord *p1, *p2;
   427   p1 = (MemPointerRecord*) itr.current();
   428   while (p1 != NULL) {
   429     if (p1->is_vm_pointer()) {
   430       // we don't do anything with virtual memory records during merge
   431       if (!_staging_area.vm_data()->append(p1)) {
   432         return false;
   433       }
   434     } else {
   435       // locate matched record and/or also position the iterator to proper
   436       // location for this incoming record.
   437       p2 = (MemPointerRecord*)malloc_staging_itr.locate(p1->addr());
   438       // we have not seen this memory block, so just add to staging area
   439       if (p2 == NULL) {
   440         if (!malloc_staging_itr.insert(p1)) {
   441           return false;
   442         }
   443       } else if (p1->addr() == p2->addr()) {
   444         MemPointerRecord* staging_next = (MemPointerRecord*)malloc_staging_itr.peek_next();
   445         // a memory block can have many tagging records, find right one to replace or
   446         // right position to insert
   447         while (staging_next != NULL && staging_next->addr() == p1->addr()) {
   448           if ((staging_next->flags() & MemPointerRecord::tag_masks) <=
   449             (p1->flags() & MemPointerRecord::tag_masks)) {
   450             p2 = (MemPointerRecord*)malloc_staging_itr.next();
   451             staging_next = (MemPointerRecord*)malloc_staging_itr.peek_next();
   452           } else {
   453             break;
   454           }
   455         }
   456         int df = (p1->flags() & MemPointerRecord::tag_masks) -
   457           (p2->flags() & MemPointerRecord::tag_masks);
   458         if (df == 0) {
   459           assert(p1->seq() > 0, "not sequenced");
   460           assert(p2->seq() > 0, "not sequenced");
   461           if (p1->seq() > p2->seq()) {
   462             copy_pointer(p2, p1);
   463           }
   464         } else if (df < 0) {
   465           if (!malloc_staging_itr.insert(p1)) {
   466             return false;
   467           }
   468         } else {
   469           if (!malloc_staging_itr.insert_after(p1)) {
   470             return false;
   471           }
   472         }
   473       } else if (p1->addr() < p2->addr()) {
   474         if (!malloc_staging_itr.insert(p1)) {
   475           return false;
   476         }
   477       } else {
   478         if (!malloc_staging_itr.insert_after(p1)) {
   479           return false;
   480         }
   481       }
   482     }
   483     p1 = (MemPointerRecord*)itr.next();
   484   }
   485   NOT_PRODUCT(void check_staging_data();)
   486   return true;
   487 }
   491 // promote data to next generation
   492 bool MemSnapshot::promote() {
   493   assert(_alloc_ptrs != NULL && _vm_ptrs != NULL, "Just check");
   494   assert(_staging_area.malloc_data() != NULL && _staging_area.vm_data() != NULL,
   495          "Just check");
   496   MutexLockerEx lock(_lock, true);
   498   MallocRecordIterator  malloc_itr = _staging_area.malloc_record_walker();
   499   bool promoted = false;
   500   if (promote_malloc_records(&malloc_itr)) {
   501     VMRecordIterator vm_itr = _staging_area.virtual_memory_record_walker();
   502     if (promote_virtual_memory_records(&vm_itr)) {
   503       promoted = true;
   504     }
   505   }
   507   NOT_PRODUCT(check_malloc_pointers();)
   508   _staging_area.clear();
   509   return promoted;
   510 }
   512 bool MemSnapshot::promote_malloc_records(MemPointerArrayIterator* itr) {
   513   MemPointerIterator malloc_snapshot_itr(_alloc_ptrs);
   514   MemPointerRecord* new_rec = (MemPointerRecord*)itr->current();
   515   MemPointerRecord* matched_rec;
   516   while (new_rec != NULL) {
   517     matched_rec = (MemPointerRecord*)malloc_snapshot_itr.locate(new_rec->addr());
   518     // found matched memory block
   519     if (matched_rec != NULL && new_rec->addr() == matched_rec->addr()) {
   520       // snapshot already contains 'live' records
   521       assert(matched_rec->is_allocation_record() || matched_rec->is_arena_size_record(),
   522              "Sanity check");
   523       // update block states
   524       if (new_rec->is_allocation_record() || new_rec->is_arena_size_record()) {
   525         copy_pointer(matched_rec, new_rec);
   526       } else {
   527         // a deallocation record
   528         assert(new_rec->is_deallocation_record(), "Sanity check");
   529         // an arena record can be followed by a size record, we need to remove both
   530         if (matched_rec->is_arena_record()) {
   531           MemPointerRecord* next = (MemPointerRecord*)malloc_snapshot_itr.peek_next();
   532           if (next->is_arena_size_record()) {
   533             // it has to match the arena record
   534             assert(next->is_size_record_of_arena(matched_rec), "Sanity check");
   535             malloc_snapshot_itr.remove();
   536           }
   537         }
   538         // the memory is deallocated, remove related record(s)
   539         malloc_snapshot_itr.remove();
   540       }
   541     } else {
   542       // it is a new record, insert into snapshot
   543       if (new_rec->is_arena_size_record()) {
   544         MemPointerRecord* prev = (MemPointerRecord*)malloc_snapshot_itr.peek_prev();
   545         if (prev == NULL || !prev->is_arena_record() || !new_rec->is_size_record_of_arena(prev)) {
   546           // no matched arena record, ignore the size record
   547           new_rec = NULL;
   548         }
   549       }
   550       // only 'live' record can go into snapshot
   551       if (new_rec != NULL) {
   552         if  (new_rec->is_allocation_record() || new_rec->is_arena_size_record()) {
   553           if (matched_rec != NULL && new_rec->addr() > matched_rec->addr()) {
   554             if (!malloc_snapshot_itr.insert_after(new_rec)) {
   555               return false;
   556             }
   557           } else {
   558             if (!malloc_snapshot_itr.insert(new_rec)) {
   559               return false;
   560             }
   561           }
   562         }
   563 #ifndef PRODUCT
   564         else if (!has_allocation_record(new_rec->addr())) {
   565           // NMT can not track some startup memory, which is allocated before NMT is on
   566           _untracked_count ++;
   567         }
   568 #endif
   569       }
   570     }
   571     new_rec = (MemPointerRecord*)itr->next();
   572   }
   573   return true;
   574 }
   576 bool MemSnapshot::promote_virtual_memory_records(MemPointerArrayIterator* itr) {
   577   VMMemPointerIterator vm_snapshot_itr(_vm_ptrs);
   578   MemPointerRecord* new_rec = (MemPointerRecord*)itr->current();
   579   VMMemRegion*  reserved_rec;
   580   while (new_rec != NULL) {
   581     assert(new_rec->is_vm_pointer(), "Sanity check");
   583     // locate a reserved region that contains the specified address, or
   584     // the nearest reserved region has base address just above the specified
   585     // address
   586     reserved_rec = (VMMemRegion*)vm_snapshot_itr.locate(new_rec->addr());
   587     if (reserved_rec != NULL && reserved_rec->contains_region(new_rec)) {
   588       // snapshot can only have 'live' records
   589       assert(reserved_rec->is_reserved_region(), "Sanity check");
   590       if (new_rec->is_allocation_record()) {
   591         if (!reserved_rec->is_same_region(new_rec)) {
   592           // only deal with split a bigger reserved region into smaller regions.
   593           // So far, CDS is the only use case.
   594           if (!vm_snapshot_itr.split_reserved_region(reserved_rec, new_rec->addr(), new_rec->size())) {
   595             return false;
   596           }
   597         }
   598       } else if (new_rec->is_uncommit_record()) {
   599         if (!vm_snapshot_itr.remove_uncommitted_region(new_rec)) {
   600           return false;
   601         }
   602       } else if (new_rec->is_commit_record()) {
   603         // insert or expand existing committed region to cover this
   604         // newly committed region
   605         if (!vm_snapshot_itr.add_committed_region(new_rec)) {
   606           return false;
   607         }
   608       } else if (new_rec->is_deallocation_record()) {
   609         // release part or all memory region
   610         if (!vm_snapshot_itr.remove_released_region(new_rec)) {
   611           return false;
   612         }
   613       } else if (new_rec->is_type_tagging_record()) {
   614         // tag this reserved virtual memory range to a memory type. Can not re-tag a memory range
   615         // to different type.
   616         assert(FLAGS_TO_MEMORY_TYPE(reserved_rec->flags()) == mtNone ||
   617                FLAGS_TO_MEMORY_TYPE(reserved_rec->flags()) == FLAGS_TO_MEMORY_TYPE(new_rec->flags()),
   618                "Sanity check");
   619         reserved_rec->tag(new_rec->flags());
   620     } else {
   621         ShouldNotReachHere();
   622           }
   623         } else {
   624       /*
   625        * The assertion failure indicates mis-matched virtual memory records. The likely
   626        * scenario is, that some virtual memory operations are not going through os::xxxx_memory()
   627        * api, which have to be tracked manually. (perfMemory is an example).
   628       */
   629       assert(new_rec->is_allocation_record(), "Sanity check");
   630       if (!vm_snapshot_itr.add_reserved_region(new_rec)) {
   631             return false;
   632           }
   633   }
   634     new_rec = (MemPointerRecord*)itr->next();
   635   }
   636   return true;
   637 }
   639 #ifndef PRODUCT
   640 void MemSnapshot::print_snapshot_stats(outputStream* st) {
   641   st->print_cr("Snapshot:");
   642   st->print_cr("\tMalloced: %d/%d [%5.2f%%]  %dKB", _alloc_ptrs->length(), _alloc_ptrs->capacity(),
   643     (100.0 * (float)_alloc_ptrs->length()) / (float)_alloc_ptrs->capacity(), _alloc_ptrs->instance_size()/K);
   645   st->print_cr("\tVM: %d/%d [%5.2f%%] %dKB", _vm_ptrs->length(), _vm_ptrs->capacity(),
   646     (100.0 * (float)_vm_ptrs->length()) / (float)_vm_ptrs->capacity(), _vm_ptrs->instance_size()/K);
   648   st->print_cr("\tMalloc staging Area:     %d/%d [%5.2f%%] %dKB", _staging_area.malloc_data()->length(),
   649     _staging_area.malloc_data()->capacity(),
   650     (100.0 * (float)_staging_area.malloc_data()->length()) / (float)_staging_area.malloc_data()->capacity(),
   651     _staging_area.malloc_data()->instance_size()/K);
   653   st->print_cr("\tVirtual memory staging Area:     %d/%d [%5.2f%%] %dKB", _staging_area.vm_data()->length(),
   654     _staging_area.vm_data()->capacity(),
   655     (100.0 * (float)_staging_area.vm_data()->length()) / (float)_staging_area.vm_data()->capacity(),
   656     _staging_area.vm_data()->instance_size()/K);
   658   st->print_cr("\tUntracked allocation: %d", _untracked_count);
   659 }
   661 void MemSnapshot::check_malloc_pointers() {
   662   MemPointerArrayIteratorImpl mItr(_alloc_ptrs);
   663   MemPointerRecord* p = (MemPointerRecord*)mItr.current();
   664   MemPointerRecord* prev = NULL;
   665   while (p != NULL) {
   666     if (prev != NULL) {
   667       assert(p->addr() >= prev->addr(), "sorting order");
   668     }
   669     prev = p;
   670     p = (MemPointerRecord*)mItr.next();
   671   }
   672 }
   674 bool MemSnapshot::has_allocation_record(address addr) {
   675   MemPointerArrayIteratorImpl itr(_staging_area.malloc_data());
   676   MemPointerRecord* cur = (MemPointerRecord*)itr.current();
   677   while (cur != NULL) {
   678     if (cur->addr() == addr && cur->is_allocation_record()) {
   679       return true;
   680     }
   681     cur = (MemPointerRecord*)itr.next();
   682   }
   683   return false;
   684 }
   685 #endif // PRODUCT
   687 #ifdef ASSERT
   688 void MemSnapshot::check_staging_data() {
   689   MemPointerArrayIteratorImpl itr(_staging_area.malloc_data());
   690   MemPointerRecord* cur = (MemPointerRecord*)itr.current();
   691   MemPointerRecord* next = (MemPointerRecord*)itr.next();
   692   while (next != NULL) {
   693     assert((next->addr() > cur->addr()) ||
   694       ((next->flags() & MemPointerRecord::tag_masks) >
   695        (cur->flags() & MemPointerRecord::tag_masks)),
   696        "sorting order");
   697     cur = next;
   698     next = (MemPointerRecord*)itr.next();
   699   }
   701   MemPointerArrayIteratorImpl vm_itr(_staging_area.vm_data());
   702   cur = (MemPointerRecord*)vm_itr.current();
   703   while (cur != NULL) {
   704     assert(cur->is_vm_pointer(), "virtual memory pointer only");
   705     cur = (MemPointerRecord*)vm_itr.next();
   706   }
   707 }
   709 void MemSnapshot::dump_all_vm_pointers() {
   710   MemPointerArrayIteratorImpl itr(_vm_ptrs);
   711   VMMemRegion* ptr = (VMMemRegion*)itr.current();
   712   tty->print_cr("dump virtual memory pointers:");
   713   while (ptr != NULL) {
   714     if (ptr->is_committed_region()) {
   715       tty->print("\t");
   716     }
   717     tty->print("[" PTR_FORMAT " - " PTR_FORMAT "] [%x]", ptr->addr(),
   718       (ptr->addr() + ptr->size()), ptr->flags());
   720     if (MemTracker::track_callsite()) {
   721       VMMemRegionEx* ex = (VMMemRegionEx*)ptr;
   722       if (ex->pc() != NULL) {
   723         char buf[1024];
   724         if (os::dll_address_to_function_name(ex->pc(), buf, sizeof(buf), NULL)) {
   725           tty->print_cr("\t%s", buf);
   726         } else {
   727           tty->print_cr("");
   728         }
   729       }
   730     }
   732     ptr = (VMMemRegion*)itr.next();
   733   }
   734   tty->flush();
   735 }
   736 #endif // ASSERT

mercurial