src/share/vm/memory/defNewGeneration.cpp

Tue, 11 Sep 2012 14:59:23 +0200

author
stefank
date
Tue, 11 Sep 2012 14:59:23 +0200
changeset 4050
ec98e58952b2
parent 4037
da91efe96a93
child 4299
f34d701e952e
permissions
-rw-r--r--

7197350: NPG: jvmtiHeapReferenceCallback receives incorrect reference_kind for system class roots
Summary: Fix the iteration over the system classes and report the correct reference kind.
Reviewed-by: coleenp, rbackman

     1 /*
     2  * Copyright (c) 2001, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "gc_implementation/shared/collectorCounters.hpp"
    27 #include "gc_implementation/shared/gcPolicyCounters.hpp"
    28 #include "gc_implementation/shared/spaceDecorator.hpp"
    29 #include "memory/defNewGeneration.inline.hpp"
    30 #include "memory/gcLocker.inline.hpp"
    31 #include "memory/genCollectedHeap.hpp"
    32 #include "memory/genOopClosures.inline.hpp"
    33 #include "memory/genRemSet.hpp"
    34 #include "memory/generationSpec.hpp"
    35 #include "memory/iterator.hpp"
    36 #include "memory/referencePolicy.hpp"
    37 #include "memory/space.inline.hpp"
    38 #include "oops/instanceRefKlass.hpp"
    39 #include "oops/oop.inline.hpp"
    40 #include "runtime/java.hpp"
    41 #include "utilities/copy.hpp"
    42 #include "utilities/stack.inline.hpp"
    43 #ifdef TARGET_OS_FAMILY_linux
    44 # include "thread_linux.inline.hpp"
    45 #endif
    46 #ifdef TARGET_OS_FAMILY_solaris
    47 # include "thread_solaris.inline.hpp"
    48 #endif
    49 #ifdef TARGET_OS_FAMILY_windows
    50 # include "thread_windows.inline.hpp"
    51 #endif
    52 #ifdef TARGET_OS_FAMILY_bsd
    53 # include "thread_bsd.inline.hpp"
    54 #endif
    56 //
    57 // DefNewGeneration functions.
    59 // Methods of protected closure types.
    61 DefNewGeneration::IsAliveClosure::IsAliveClosure(Generation* g) : _g(g) {
    62   assert(g->level() == 0, "Optimized for youngest gen.");
    63 }
    64 void DefNewGeneration::IsAliveClosure::do_object(oop p) {
    65   assert(false, "Do not call.");
    66 }
    67 bool DefNewGeneration::IsAliveClosure::do_object_b(oop p) {
    68   return (HeapWord*)p >= _g->reserved().end() || p->is_forwarded();
    69 }
    71 DefNewGeneration::KeepAliveClosure::
    72 KeepAliveClosure(ScanWeakRefClosure* cl) : _cl(cl) {
    73   GenRemSet* rs = GenCollectedHeap::heap()->rem_set();
    74   assert(rs->rs_kind() == GenRemSet::CardTable, "Wrong rem set kind.");
    75   _rs = (CardTableRS*)rs;
    76 }
    78 void DefNewGeneration::KeepAliveClosure::do_oop(oop* p)       { DefNewGeneration::KeepAliveClosure::do_oop_work(p); }
    79 void DefNewGeneration::KeepAliveClosure::do_oop(narrowOop* p) { DefNewGeneration::KeepAliveClosure::do_oop_work(p); }
    82 DefNewGeneration::FastKeepAliveClosure::
    83 FastKeepAliveClosure(DefNewGeneration* g, ScanWeakRefClosure* cl) :
    84   DefNewGeneration::KeepAliveClosure(cl) {
    85   _boundary = g->reserved().end();
    86 }
    88 void DefNewGeneration::FastKeepAliveClosure::do_oop(oop* p)       { DefNewGeneration::FastKeepAliveClosure::do_oop_work(p); }
    89 void DefNewGeneration::FastKeepAliveClosure::do_oop(narrowOop* p) { DefNewGeneration::FastKeepAliveClosure::do_oop_work(p); }
    91 DefNewGeneration::EvacuateFollowersClosure::
    92 EvacuateFollowersClosure(GenCollectedHeap* gch, int level,
    93                          ScanClosure* cur, ScanClosure* older) :
    94   _gch(gch), _level(level),
    95   _scan_cur_or_nonheap(cur), _scan_older(older)
    96 {}
    98 void DefNewGeneration::EvacuateFollowersClosure::do_void() {
    99   do {
   100     _gch->oop_since_save_marks_iterate(_level, _scan_cur_or_nonheap,
   101                                        _scan_older);
   102   } while (!_gch->no_allocs_since_save_marks(_level));
   103 }
   105 DefNewGeneration::FastEvacuateFollowersClosure::
   106 FastEvacuateFollowersClosure(GenCollectedHeap* gch, int level,
   107                              DefNewGeneration* gen,
   108                              FastScanClosure* cur, FastScanClosure* older) :
   109   _gch(gch), _level(level), _gen(gen),
   110   _scan_cur_or_nonheap(cur), _scan_older(older)
   111 {}
   113 void DefNewGeneration::FastEvacuateFollowersClosure::do_void() {
   114   do {
   115     _gch->oop_since_save_marks_iterate(_level, _scan_cur_or_nonheap,
   116                                        _scan_older);
   117   } while (!_gch->no_allocs_since_save_marks(_level));
   118   guarantee(_gen->promo_failure_scan_is_complete(), "Failed to finish scan");
   119 }
   121 ScanClosure::ScanClosure(DefNewGeneration* g, bool gc_barrier) :
   122     OopsInKlassOrGenClosure(g), _g(g), _gc_barrier(gc_barrier)
   123 {
   124   assert(_g->level() == 0, "Optimized for youngest generation");
   125   _boundary = _g->reserved().end();
   126 }
   128 void ScanClosure::do_oop(oop* p)       { ScanClosure::do_oop_work(p); }
   129 void ScanClosure::do_oop(narrowOop* p) { ScanClosure::do_oop_work(p); }
   131 FastScanClosure::FastScanClosure(DefNewGeneration* g, bool gc_barrier) :
   132     OopsInKlassOrGenClosure(g), _g(g), _gc_barrier(gc_barrier)
   133 {
   134   assert(_g->level() == 0, "Optimized for youngest generation");
   135   _boundary = _g->reserved().end();
   136 }
   138 void FastScanClosure::do_oop(oop* p)       { FastScanClosure::do_oop_work(p); }
   139 void FastScanClosure::do_oop(narrowOop* p) { FastScanClosure::do_oop_work(p); }
   141 void KlassScanClosure::do_klass(Klass* klass) {
   142 #ifndef PRODUCT
   143   if (TraceScavenge) {
   144     ResourceMark rm;
   145     gclog_or_tty->print_cr("KlassScanClosure::do_klass %p, %s, dirty: %s",
   146                            klass,
   147                            klass->external_name(),
   148                            klass->has_modified_oops() ? "true" : "false");
   149   }
   150 #endif
   152   // If the klass has not been dirtied we know that there's
   153   // no references into  the young gen and we can skip it.
   154   if (klass->has_modified_oops()) {
   155     if (_accumulate_modified_oops) {
   156       klass->accumulate_modified_oops();
   157     }
   159     // Clear this state since we're going to scavenge all the metadata.
   160     klass->clear_modified_oops();
   162     // Tell the closure which Klass is being scanned so that it can be dirtied
   163     // if oops are left pointing into the young gen.
   164     _scavenge_closure->set_scanned_klass(klass);
   166     klass->oops_do(_scavenge_closure);
   168     _scavenge_closure->set_scanned_klass(NULL);
   169   }
   170 }
   172 ScanWeakRefClosure::ScanWeakRefClosure(DefNewGeneration* g) :
   173   _g(g)
   174 {
   175   assert(_g->level() == 0, "Optimized for youngest generation");
   176   _boundary = _g->reserved().end();
   177 }
   179 void ScanWeakRefClosure::do_oop(oop* p)       { ScanWeakRefClosure::do_oop_work(p); }
   180 void ScanWeakRefClosure::do_oop(narrowOop* p) { ScanWeakRefClosure::do_oop_work(p); }
   182 void FilteringClosure::do_oop(oop* p)       { FilteringClosure::do_oop_work(p); }
   183 void FilteringClosure::do_oop(narrowOop* p) { FilteringClosure::do_oop_work(p); }
   185 KlassScanClosure::KlassScanClosure(OopsInKlassOrGenClosure* scavenge_closure,
   186                                    KlassRemSet* klass_rem_set)
   187     : _scavenge_closure(scavenge_closure),
   188       _accumulate_modified_oops(klass_rem_set->accumulate_modified_oops()) {}
   191 DefNewGeneration::DefNewGeneration(ReservedSpace rs,
   192                                    size_t initial_size,
   193                                    int level,
   194                                    const char* policy)
   195   : Generation(rs, initial_size, level),
   196     _promo_failure_drain_in_progress(false),
   197     _should_allocate_from_space(false)
   198 {
   199   MemRegion cmr((HeapWord*)_virtual_space.low(),
   200                 (HeapWord*)_virtual_space.high());
   201   Universe::heap()->barrier_set()->resize_covered_region(cmr);
   203   if (GenCollectedHeap::heap()->collector_policy()->has_soft_ended_eden()) {
   204     _eden_space = new ConcEdenSpace(this);
   205   } else {
   206     _eden_space = new EdenSpace(this);
   207   }
   208   _from_space = new ContiguousSpace();
   209   _to_space   = new ContiguousSpace();
   211   if (_eden_space == NULL || _from_space == NULL || _to_space == NULL)
   212     vm_exit_during_initialization("Could not allocate a new gen space");
   214   // Compute the maximum eden and survivor space sizes. These sizes
   215   // are computed assuming the entire reserved space is committed.
   216   // These values are exported as performance counters.
   217   uintx alignment = GenCollectedHeap::heap()->collector_policy()->min_alignment();
   218   uintx size = _virtual_space.reserved_size();
   219   _max_survivor_size = compute_survivor_size(size, alignment);
   220   _max_eden_size = size - (2*_max_survivor_size);
   222   // allocate the performance counters
   224   // Generation counters -- generation 0, 3 subspaces
   225   _gen_counters = new GenerationCounters("new", 0, 3, &_virtual_space);
   226   _gc_counters = new CollectorCounters(policy, 0);
   228   _eden_counters = new CSpaceCounters("eden", 0, _max_eden_size, _eden_space,
   229                                       _gen_counters);
   230   _from_counters = new CSpaceCounters("s0", 1, _max_survivor_size, _from_space,
   231                                       _gen_counters);
   232   _to_counters = new CSpaceCounters("s1", 2, _max_survivor_size, _to_space,
   233                                     _gen_counters);
   235   compute_space_boundaries(0, SpaceDecorator::Clear, SpaceDecorator::Mangle);
   236   update_counters();
   237   _next_gen = NULL;
   238   _tenuring_threshold = MaxTenuringThreshold;
   239   _pretenure_size_threshold_words = PretenureSizeThreshold >> LogHeapWordSize;
   240 }
   242 void DefNewGeneration::compute_space_boundaries(uintx minimum_eden_size,
   243                                                 bool clear_space,
   244                                                 bool mangle_space) {
   245   uintx alignment =
   246     GenCollectedHeap::heap()->collector_policy()->min_alignment();
   248   // If the spaces are being cleared (only done at heap initialization
   249   // currently), the survivor spaces need not be empty.
   250   // Otherwise, no care is taken for used areas in the survivor spaces
   251   // so check.
   252   assert(clear_space || (to()->is_empty() && from()->is_empty()),
   253     "Initialization of the survivor spaces assumes these are empty");
   255   // Compute sizes
   256   uintx size = _virtual_space.committed_size();
   257   uintx survivor_size = compute_survivor_size(size, alignment);
   258   uintx eden_size = size - (2*survivor_size);
   259   assert(eden_size > 0 && survivor_size <= eden_size, "just checking");
   261   if (eden_size < minimum_eden_size) {
   262     // May happen due to 64Kb rounding, if so adjust eden size back up
   263     minimum_eden_size = align_size_up(minimum_eden_size, alignment);
   264     uintx maximum_survivor_size = (size - minimum_eden_size) / 2;
   265     uintx unaligned_survivor_size =
   266       align_size_down(maximum_survivor_size, alignment);
   267     survivor_size = MAX2(unaligned_survivor_size, alignment);
   268     eden_size = size - (2*survivor_size);
   269     assert(eden_size > 0 && survivor_size <= eden_size, "just checking");
   270     assert(eden_size >= minimum_eden_size, "just checking");
   271   }
   273   char *eden_start = _virtual_space.low();
   274   char *from_start = eden_start + eden_size;
   275   char *to_start   = from_start + survivor_size;
   276   char *to_end     = to_start   + survivor_size;
   278   assert(to_end == _virtual_space.high(), "just checking");
   279   assert(Space::is_aligned((HeapWord*)eden_start), "checking alignment");
   280   assert(Space::is_aligned((HeapWord*)from_start), "checking alignment");
   281   assert(Space::is_aligned((HeapWord*)to_start),   "checking alignment");
   283   MemRegion edenMR((HeapWord*)eden_start, (HeapWord*)from_start);
   284   MemRegion fromMR((HeapWord*)from_start, (HeapWord*)to_start);
   285   MemRegion toMR  ((HeapWord*)to_start, (HeapWord*)to_end);
   287   // A minimum eden size implies that there is a part of eden that
   288   // is being used and that affects the initialization of any
   289   // newly formed eden.
   290   bool live_in_eden = minimum_eden_size > 0;
   292   // If not clearing the spaces, do some checking to verify that
   293   // the space are already mangled.
   294   if (!clear_space) {
   295     // Must check mangling before the spaces are reshaped.  Otherwise,
   296     // the bottom or end of one space may have moved into another
   297     // a failure of the check may not correctly indicate which space
   298     // is not properly mangled.
   299     if (ZapUnusedHeapArea) {
   300       HeapWord* limit = (HeapWord*) _virtual_space.high();
   301       eden()->check_mangled_unused_area(limit);
   302       from()->check_mangled_unused_area(limit);
   303         to()->check_mangled_unused_area(limit);
   304     }
   305   }
   307   // Reset the spaces for their new regions.
   308   eden()->initialize(edenMR,
   309                      clear_space && !live_in_eden,
   310                      SpaceDecorator::Mangle);
   311   // If clear_space and live_in_eden, we will not have cleared any
   312   // portion of eden above its top. This can cause newly
   313   // expanded space not to be mangled if using ZapUnusedHeapArea.
   314   // We explicitly do such mangling here.
   315   if (ZapUnusedHeapArea && clear_space && live_in_eden && mangle_space) {
   316     eden()->mangle_unused_area();
   317   }
   318   from()->initialize(fromMR, clear_space, mangle_space);
   319   to()->initialize(toMR, clear_space, mangle_space);
   321   // Set next compaction spaces.
   322   eden()->set_next_compaction_space(from());
   323   // The to-space is normally empty before a compaction so need
   324   // not be considered.  The exception is during promotion
   325   // failure handling when to-space can contain live objects.
   326   from()->set_next_compaction_space(NULL);
   327 }
   329 void DefNewGeneration::swap_spaces() {
   330   ContiguousSpace* s = from();
   331   _from_space        = to();
   332   _to_space          = s;
   333   eden()->set_next_compaction_space(from());
   334   // The to-space is normally empty before a compaction so need
   335   // not be considered.  The exception is during promotion
   336   // failure handling when to-space can contain live objects.
   337   from()->set_next_compaction_space(NULL);
   339   if (UsePerfData) {
   340     CSpaceCounters* c = _from_counters;
   341     _from_counters = _to_counters;
   342     _to_counters = c;
   343   }
   344 }
   346 bool DefNewGeneration::expand(size_t bytes) {
   347   MutexLocker x(ExpandHeap_lock);
   348   HeapWord* prev_high = (HeapWord*) _virtual_space.high();
   349   bool success = _virtual_space.expand_by(bytes);
   350   if (success && ZapUnusedHeapArea) {
   351     // Mangle newly committed space immediately because it
   352     // can be done here more simply that after the new
   353     // spaces have been computed.
   354     HeapWord* new_high = (HeapWord*) _virtual_space.high();
   355     MemRegion mangle_region(prev_high, new_high);
   356     SpaceMangler::mangle_region(mangle_region);
   357   }
   359   // Do not attempt an expand-to-the reserve size.  The
   360   // request should properly observe the maximum size of
   361   // the generation so an expand-to-reserve should be
   362   // unnecessary.  Also a second call to expand-to-reserve
   363   // value potentially can cause an undue expansion.
   364   // For example if the first expand fail for unknown reasons,
   365   // but the second succeeds and expands the heap to its maximum
   366   // value.
   367   if (GC_locker::is_active()) {
   368     if (PrintGC && Verbose) {
   369       gclog_or_tty->print_cr("Garbage collection disabled, "
   370         "expanded heap instead");
   371     }
   372   }
   374   return success;
   375 }
   378 void DefNewGeneration::compute_new_size() {
   379   // This is called after a gc that includes the following generation
   380   // (which is required to exist.)  So from-space will normally be empty.
   381   // Note that we check both spaces, since if scavenge failed they revert roles.
   382   // If not we bail out (otherwise we would have to relocate the objects)
   383   if (!from()->is_empty() || !to()->is_empty()) {
   384     return;
   385   }
   387   int next_level = level() + 1;
   388   GenCollectedHeap* gch = GenCollectedHeap::heap();
   389   assert(next_level < gch->_n_gens,
   390          "DefNewGeneration cannot be an oldest gen");
   392   Generation* next_gen = gch->_gens[next_level];
   393   size_t old_size = next_gen->capacity();
   394   size_t new_size_before = _virtual_space.committed_size();
   395   size_t min_new_size = spec()->init_size();
   396   size_t max_new_size = reserved().byte_size();
   397   assert(min_new_size <= new_size_before &&
   398          new_size_before <= max_new_size,
   399          "just checking");
   400   // All space sizes must be multiples of Generation::GenGrain.
   401   size_t alignment = Generation::GenGrain;
   403   // Compute desired new generation size based on NewRatio and
   404   // NewSizeThreadIncrease
   405   size_t desired_new_size = old_size/NewRatio;
   406   int threads_count = Threads::number_of_non_daemon_threads();
   407   size_t thread_increase_size = threads_count * NewSizeThreadIncrease;
   408   desired_new_size = align_size_up(desired_new_size + thread_increase_size, alignment);
   410   // Adjust new generation size
   411   desired_new_size = MAX2(MIN2(desired_new_size, max_new_size), min_new_size);
   412   assert(desired_new_size <= max_new_size, "just checking");
   414   bool changed = false;
   415   if (desired_new_size > new_size_before) {
   416     size_t change = desired_new_size - new_size_before;
   417     assert(change % alignment == 0, "just checking");
   418     if (expand(change)) {
   419        changed = true;
   420     }
   421     // If the heap failed to expand to the desired size,
   422     // "changed" will be false.  If the expansion failed
   423     // (and at this point it was expected to succeed),
   424     // ignore the failure (leaving "changed" as false).
   425   }
   426   if (desired_new_size < new_size_before && eden()->is_empty()) {
   427     // bail out of shrinking if objects in eden
   428     size_t change = new_size_before - desired_new_size;
   429     assert(change % alignment == 0, "just checking");
   430     _virtual_space.shrink_by(change);
   431     changed = true;
   432   }
   433   if (changed) {
   434     // The spaces have already been mangled at this point but
   435     // may not have been cleared (set top = bottom) and should be.
   436     // Mangling was done when the heap was being expanded.
   437     compute_space_boundaries(eden()->used(),
   438                              SpaceDecorator::Clear,
   439                              SpaceDecorator::DontMangle);
   440     MemRegion cmr((HeapWord*)_virtual_space.low(),
   441                   (HeapWord*)_virtual_space.high());
   442     Universe::heap()->barrier_set()->resize_covered_region(cmr);
   443     if (Verbose && PrintGC) {
   444       size_t new_size_after  = _virtual_space.committed_size();
   445       size_t eden_size_after = eden()->capacity();
   446       size_t survivor_size_after = from()->capacity();
   447       gclog_or_tty->print("New generation size " SIZE_FORMAT "K->"
   448         SIZE_FORMAT "K [eden="
   449         SIZE_FORMAT "K,survivor=" SIZE_FORMAT "K]",
   450         new_size_before/K, new_size_after/K,
   451         eden_size_after/K, survivor_size_after/K);
   452       if (WizardMode) {
   453         gclog_or_tty->print("[allowed " SIZE_FORMAT "K extra for %d threads]",
   454           thread_increase_size/K, threads_count);
   455       }
   456       gclog_or_tty->cr();
   457     }
   458   }
   459 }
   461 void DefNewGeneration::object_iterate_since_last_GC(ObjectClosure* cl) {
   462   // $$$ This may be wrong in case of "scavenge failure"?
   463   eden()->object_iterate(cl);
   464 }
   466 void DefNewGeneration::younger_refs_iterate(OopsInGenClosure* cl) {
   467   assert(false, "NYI -- are you sure you want to call this?");
   468 }
   471 size_t DefNewGeneration::capacity() const {
   472   return eden()->capacity()
   473        + from()->capacity();  // to() is only used during scavenge
   474 }
   477 size_t DefNewGeneration::used() const {
   478   return eden()->used()
   479        + from()->used();      // to() is only used during scavenge
   480 }
   483 size_t DefNewGeneration::free() const {
   484   return eden()->free()
   485        + from()->free();      // to() is only used during scavenge
   486 }
   488 size_t DefNewGeneration::max_capacity() const {
   489   const size_t alignment = GenCollectedHeap::heap()->collector_policy()->min_alignment();
   490   const size_t reserved_bytes = reserved().byte_size();
   491   return reserved_bytes - compute_survivor_size(reserved_bytes, alignment);
   492 }
   494 size_t DefNewGeneration::unsafe_max_alloc_nogc() const {
   495   return eden()->free();
   496 }
   498 size_t DefNewGeneration::capacity_before_gc() const {
   499   return eden()->capacity();
   500 }
   502 size_t DefNewGeneration::contiguous_available() const {
   503   return eden()->free();
   504 }
   507 HeapWord** DefNewGeneration::top_addr() const { return eden()->top_addr(); }
   508 HeapWord** DefNewGeneration::end_addr() const { return eden()->end_addr(); }
   510 void DefNewGeneration::object_iterate(ObjectClosure* blk) {
   511   eden()->object_iterate(blk);
   512   from()->object_iterate(blk);
   513 }
   516 void DefNewGeneration::space_iterate(SpaceClosure* blk,
   517                                      bool usedOnly) {
   518   blk->do_space(eden());
   519   blk->do_space(from());
   520   blk->do_space(to());
   521 }
   523 // The last collection bailed out, we are running out of heap space,
   524 // so we try to allocate the from-space, too.
   525 HeapWord* DefNewGeneration::allocate_from_space(size_t size) {
   526   HeapWord* result = NULL;
   527   if (Verbose && PrintGCDetails) {
   528     gclog_or_tty->print("DefNewGeneration::allocate_from_space(%u):"
   529                         "  will_fail: %s"
   530                         "  heap_lock: %s"
   531                         "  free: " SIZE_FORMAT,
   532                         size,
   533                         GenCollectedHeap::heap()->incremental_collection_will_fail(false /* don't consult_young */) ?
   534                           "true" : "false",
   535                         Heap_lock->is_locked() ? "locked" : "unlocked",
   536                         from()->free());
   537   }
   538   if (should_allocate_from_space() || GC_locker::is_active_and_needs_gc()) {
   539     if (Heap_lock->owned_by_self() ||
   540         (SafepointSynchronize::is_at_safepoint() &&
   541          Thread::current()->is_VM_thread())) {
   542       // If the Heap_lock is not locked by this thread, this will be called
   543       // again later with the Heap_lock held.
   544       result = from()->allocate(size);
   545     } else if (PrintGC && Verbose) {
   546       gclog_or_tty->print_cr("  Heap_lock is not owned by self");
   547     }
   548   } else if (PrintGC && Verbose) {
   549     gclog_or_tty->print_cr("  should_allocate_from_space: NOT");
   550   }
   551   if (PrintGC && Verbose) {
   552     gclog_or_tty->print_cr("  returns %s", result == NULL ? "NULL" : "object");
   553   }
   554   return result;
   555 }
   557 HeapWord* DefNewGeneration::expand_and_allocate(size_t size,
   558                                                 bool   is_tlab,
   559                                                 bool   parallel) {
   560   // We don't attempt to expand the young generation (but perhaps we should.)
   561   return allocate(size, is_tlab);
   562 }
   565 void DefNewGeneration::collect(bool   full,
   566                                bool   clear_all_soft_refs,
   567                                size_t size,
   568                                bool   is_tlab) {
   569   assert(full || size > 0, "otherwise we don't want to collect");
   570   GenCollectedHeap* gch = GenCollectedHeap::heap();
   571   _next_gen = gch->next_gen(this);
   572   assert(_next_gen != NULL,
   573     "This must be the youngest gen, and not the only gen");
   575   // If the next generation is too full to accomodate promotion
   576   // from this generation, pass on collection; let the next generation
   577   // do it.
   578   if (!collection_attempt_is_safe()) {
   579     if (Verbose && PrintGCDetails) {
   580       gclog_or_tty->print(" :: Collection attempt not safe :: ");
   581     }
   582     gch->set_incremental_collection_failed(); // Slight lie: we did not even attempt one
   583     return;
   584   }
   585   assert(to()->is_empty(), "Else not collection_attempt_is_safe");
   587   init_assuming_no_promotion_failure();
   589   TraceTime t1(GCCauseString("GC", gch->gc_cause()), PrintGC && !PrintGCDetails, true, gclog_or_tty);
   590   // Capture heap used before collection (for printing).
   591   size_t gch_prev_used = gch->used();
   593   SpecializationStats::clear();
   595   // These can be shared for all code paths
   596   IsAliveClosure is_alive(this);
   597   ScanWeakRefClosure scan_weak_ref(this);
   599   age_table()->clear();
   600   to()->clear(SpaceDecorator::Mangle);
   602   gch->rem_set()->prepare_for_younger_refs_iterate(false);
   604   assert(gch->no_allocs_since_save_marks(0),
   605          "save marks have not been newly set.");
   607   // Not very pretty.
   608   CollectorPolicy* cp = gch->collector_policy();
   610   FastScanClosure fsc_with_no_gc_barrier(this, false);
   611   FastScanClosure fsc_with_gc_barrier(this, true);
   613   KlassScanClosure klass_scan_closure(&fsc_with_no_gc_barrier,
   614                                       gch->rem_set()->klass_rem_set());
   616   set_promo_failure_scan_stack_closure(&fsc_with_no_gc_barrier);
   617   FastEvacuateFollowersClosure evacuate_followers(gch, _level, this,
   618                                                   &fsc_with_no_gc_barrier,
   619                                                   &fsc_with_gc_barrier);
   621   assert(gch->no_allocs_since_save_marks(0),
   622          "save marks have not been newly set.");
   624   int so = SharedHeap::SO_AllClasses | SharedHeap::SO_Strings | SharedHeap::SO_CodeCache;
   626   gch->gen_process_strong_roots(_level,
   627                                 true,  // Process younger gens, if any,
   628                                        // as strong roots.
   629                                 true,  // activate StrongRootsScope
   630                                 true,  // is scavenging
   631                                 SharedHeap::ScanningOption(so),
   632                                 &fsc_with_no_gc_barrier,
   633                                 true,   // walk *all* scavengable nmethods
   634                                 &fsc_with_gc_barrier,
   635                                 &klass_scan_closure);
   637   // "evacuate followers".
   638   evacuate_followers.do_void();
   640   FastKeepAliveClosure keep_alive(this, &scan_weak_ref);
   641   ReferenceProcessor* rp = ref_processor();
   642   rp->setup_policy(clear_all_soft_refs);
   643   rp->process_discovered_references(&is_alive, &keep_alive, &evacuate_followers,
   644                                     NULL);
   645   if (!promotion_failed()) {
   646     // Swap the survivor spaces.
   647     eden()->clear(SpaceDecorator::Mangle);
   648     from()->clear(SpaceDecorator::Mangle);
   649     if (ZapUnusedHeapArea) {
   650       // This is now done here because of the piece-meal mangling which
   651       // can check for valid mangling at intermediate points in the
   652       // collection(s).  When a minor collection fails to collect
   653       // sufficient space resizing of the young generation can occur
   654       // an redistribute the spaces in the young generation.  Mangle
   655       // here so that unzapped regions don't get distributed to
   656       // other spaces.
   657       to()->mangle_unused_area();
   658     }
   659     swap_spaces();
   661     assert(to()->is_empty(), "to space should be empty now");
   663     // Set the desired survivor size to half the real survivor space
   664     _tenuring_threshold =
   665       age_table()->compute_tenuring_threshold(to()->capacity()/HeapWordSize);
   667     // A successful scavenge should restart the GC time limit count which is
   668     // for full GC's.
   669     AdaptiveSizePolicy* size_policy = gch->gen_policy()->size_policy();
   670     size_policy->reset_gc_overhead_limit_count();
   671     if (PrintGC && !PrintGCDetails) {
   672       gch->print_heap_change(gch_prev_used);
   673     }
   674     assert(!gch->incremental_collection_failed(), "Should be clear");
   675   } else {
   676     assert(_promo_failure_scan_stack.is_empty(), "post condition");
   677     _promo_failure_scan_stack.clear(true); // Clear cached segments.
   679     remove_forwarding_pointers();
   680     if (PrintGCDetails) {
   681       gclog_or_tty->print(" (promotion failed) ");
   682     }
   683     // Add to-space to the list of space to compact
   684     // when a promotion failure has occurred.  In that
   685     // case there can be live objects in to-space
   686     // as a result of a partial evacuation of eden
   687     // and from-space.
   688     swap_spaces();   // For uniformity wrt ParNewGeneration.
   689     from()->set_next_compaction_space(to());
   690     gch->set_incremental_collection_failed();
   692     // Inform the next generation that a promotion failure occurred.
   693     _next_gen->promotion_failure_occurred();
   695     // Reset the PromotionFailureALot counters.
   696     NOT_PRODUCT(Universe::heap()->reset_promotion_should_fail();)
   697   }
   698   // set new iteration safe limit for the survivor spaces
   699   from()->set_concurrent_iteration_safe_limit(from()->top());
   700   to()->set_concurrent_iteration_safe_limit(to()->top());
   701   SpecializationStats::print();
   703   // We need to use a monotonically non-deccreasing time in ms
   704   // or we will see time-warp warnings and os::javaTimeMillis()
   705   // does not guarantee monotonicity.
   706   jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
   707   update_time_of_last_gc(now);
   708 }
   710 class RemoveForwardPointerClosure: public ObjectClosure {
   711 public:
   712   void do_object(oop obj) {
   713     obj->init_mark();
   714   }
   715 };
   717 void DefNewGeneration::init_assuming_no_promotion_failure() {
   718   _promotion_failed = false;
   719   from()->set_next_compaction_space(NULL);
   720 }
   722 void DefNewGeneration::remove_forwarding_pointers() {
   723   RemoveForwardPointerClosure rspc;
   724   eden()->object_iterate(&rspc);
   725   from()->object_iterate(&rspc);
   727   // Now restore saved marks, if any.
   728   assert(_objs_with_preserved_marks.size() == _preserved_marks_of_objs.size(),
   729          "should be the same");
   730   while (!_objs_with_preserved_marks.is_empty()) {
   731     oop obj   = _objs_with_preserved_marks.pop();
   732     markOop m = _preserved_marks_of_objs.pop();
   733     obj->set_mark(m);
   734   }
   735   _objs_with_preserved_marks.clear(true);
   736   _preserved_marks_of_objs.clear(true);
   737 }
   739 void DefNewGeneration::preserve_mark(oop obj, markOop m) {
   740   assert(promotion_failed() && m->must_be_preserved_for_promotion_failure(obj),
   741          "Oversaving!");
   742   _objs_with_preserved_marks.push(obj);
   743   _preserved_marks_of_objs.push(m);
   744 }
   746 void DefNewGeneration::preserve_mark_if_necessary(oop obj, markOop m) {
   747   if (m->must_be_preserved_for_promotion_failure(obj)) {
   748     preserve_mark(obj, m);
   749   }
   750 }
   752 void DefNewGeneration::handle_promotion_failure(oop old) {
   753   if (PrintPromotionFailure && !_promotion_failed) {
   754     gclog_or_tty->print(" (promotion failure size = " SIZE_FORMAT ") ",
   755                         old->size());
   756   }
   757   _promotion_failed = true;
   758   preserve_mark_if_necessary(old, old->mark());
   759   // forward to self
   760   old->forward_to(old);
   762   _promo_failure_scan_stack.push(old);
   764   if (!_promo_failure_drain_in_progress) {
   765     // prevent recursion in copy_to_survivor_space()
   766     _promo_failure_drain_in_progress = true;
   767     drain_promo_failure_scan_stack();
   768     _promo_failure_drain_in_progress = false;
   769   }
   770 }
   772 oop DefNewGeneration::copy_to_survivor_space(oop old) {
   773   assert(is_in_reserved(old) && !old->is_forwarded(),
   774          "shouldn't be scavenging this oop");
   775   size_t s = old->size();
   776   oop obj = NULL;
   778   // Try allocating obj in to-space (unless too old)
   779   if (old->age() < tenuring_threshold()) {
   780     obj = (oop) to()->allocate(s);
   781   }
   783   // Otherwise try allocating obj tenured
   784   if (obj == NULL) {
   785     obj = _next_gen->promote(old, s);
   786     if (obj == NULL) {
   787       handle_promotion_failure(old);
   788       return old;
   789     }
   790   } else {
   791     // Prefetch beyond obj
   792     const intx interval = PrefetchCopyIntervalInBytes;
   793     Prefetch::write(obj, interval);
   795     // Copy obj
   796     Copy::aligned_disjoint_words((HeapWord*)old, (HeapWord*)obj, s);
   798     // Increment age if obj still in new generation
   799     obj->incr_age();
   800     age_table()->add(obj, s);
   801   }
   803   // Done, insert forward pointer to obj in this header
   804   old->forward_to(obj);
   806   return obj;
   807 }
   809 void DefNewGeneration::drain_promo_failure_scan_stack() {
   810   while (!_promo_failure_scan_stack.is_empty()) {
   811      oop obj = _promo_failure_scan_stack.pop();
   812      obj->oop_iterate(_promo_failure_scan_stack_closure);
   813   }
   814 }
   816 void DefNewGeneration::save_marks() {
   817   eden()->set_saved_mark();
   818   to()->set_saved_mark();
   819   from()->set_saved_mark();
   820 }
   823 void DefNewGeneration::reset_saved_marks() {
   824   eden()->reset_saved_mark();
   825   to()->reset_saved_mark();
   826   from()->reset_saved_mark();
   827 }
   830 bool DefNewGeneration::no_allocs_since_save_marks() {
   831   assert(eden()->saved_mark_at_top(), "Violated spec - alloc in eden");
   832   assert(from()->saved_mark_at_top(), "Violated spec - alloc in from");
   833   return to()->saved_mark_at_top();
   834 }
   836 #define DefNew_SINCE_SAVE_MARKS_DEFN(OopClosureType, nv_suffix) \
   837                                                                 \
   838 void DefNewGeneration::                                         \
   839 oop_since_save_marks_iterate##nv_suffix(OopClosureType* cl) {   \
   840   cl->set_generation(this);                                     \
   841   eden()->oop_since_save_marks_iterate##nv_suffix(cl);          \
   842   to()->oop_since_save_marks_iterate##nv_suffix(cl);            \
   843   from()->oop_since_save_marks_iterate##nv_suffix(cl);          \
   844   cl->reset_generation();                                       \
   845   save_marks();                                                 \
   846 }
   848 ALL_SINCE_SAVE_MARKS_CLOSURES(DefNew_SINCE_SAVE_MARKS_DEFN)
   850 #undef DefNew_SINCE_SAVE_MARKS_DEFN
   852 void DefNewGeneration::contribute_scratch(ScratchBlock*& list, Generation* requestor,
   853                                          size_t max_alloc_words) {
   854   if (requestor == this || _promotion_failed) return;
   855   assert(requestor->level() > level(), "DefNewGeneration must be youngest");
   857   /* $$$ Assert this?  "trace" is a "MarkSweep" function so that's not appropriate.
   858   if (to_space->top() > to_space->bottom()) {
   859     trace("to_space not empty when contribute_scratch called");
   860   }
   861   */
   863   ContiguousSpace* to_space = to();
   864   assert(to_space->end() >= to_space->top(), "pointers out of order");
   865   size_t free_words = pointer_delta(to_space->end(), to_space->top());
   866   if (free_words >= MinFreeScratchWords) {
   867     ScratchBlock* sb = (ScratchBlock*)to_space->top();
   868     sb->num_words = free_words;
   869     sb->next = list;
   870     list = sb;
   871   }
   872 }
   874 void DefNewGeneration::reset_scratch() {
   875   // If contributing scratch in to_space, mangle all of
   876   // to_space if ZapUnusedHeapArea.  This is needed because
   877   // top is not maintained while using to-space as scratch.
   878   if (ZapUnusedHeapArea) {
   879     to()->mangle_unused_area_complete();
   880   }
   881 }
   883 bool DefNewGeneration::collection_attempt_is_safe() {
   884   if (!to()->is_empty()) {
   885     if (Verbose && PrintGCDetails) {
   886       gclog_or_tty->print(" :: to is not empty :: ");
   887     }
   888     return false;
   889   }
   890   if (_next_gen == NULL) {
   891     GenCollectedHeap* gch = GenCollectedHeap::heap();
   892     _next_gen = gch->next_gen(this);
   893     assert(_next_gen != NULL,
   894            "This must be the youngest gen, and not the only gen");
   895   }
   896   return _next_gen->promotion_attempt_is_safe(used());
   897 }
   899 void DefNewGeneration::gc_epilogue(bool full) {
   900   DEBUG_ONLY(static bool seen_incremental_collection_failed = false;)
   902   assert(!GC_locker::is_active(), "We should not be executing here");
   903   // Check if the heap is approaching full after a collection has
   904   // been done.  Generally the young generation is empty at
   905   // a minimum at the end of a collection.  If it is not, then
   906   // the heap is approaching full.
   907   GenCollectedHeap* gch = GenCollectedHeap::heap();
   908   if (full) {
   909     DEBUG_ONLY(seen_incremental_collection_failed = false;)
   910     if (!collection_attempt_is_safe() && !_eden_space->is_empty()) {
   911       if (Verbose && PrintGCDetails) {
   912         gclog_or_tty->print("DefNewEpilogue: cause(%s), full, not safe, set_failed, set_alloc_from, clear_seen",
   913                             GCCause::to_string(gch->gc_cause()));
   914       }
   915       gch->set_incremental_collection_failed(); // Slight lie: a full gc left us in that state
   916       set_should_allocate_from_space(); // we seem to be running out of space
   917     } else {
   918       if (Verbose && PrintGCDetails) {
   919         gclog_or_tty->print("DefNewEpilogue: cause(%s), full, safe, clear_failed, clear_alloc_from, clear_seen",
   920                             GCCause::to_string(gch->gc_cause()));
   921       }
   922       gch->clear_incremental_collection_failed(); // We just did a full collection
   923       clear_should_allocate_from_space(); // if set
   924     }
   925   } else {
   926 #ifdef ASSERT
   927     // It is possible that incremental_collection_failed() == true
   928     // here, because an attempted scavenge did not succeed. The policy
   929     // is normally expected to cause a full collection which should
   930     // clear that condition, so we should not be here twice in a row
   931     // with incremental_collection_failed() == true without having done
   932     // a full collection in between.
   933     if (!seen_incremental_collection_failed &&
   934         gch->incremental_collection_failed()) {
   935       if (Verbose && PrintGCDetails) {
   936         gclog_or_tty->print("DefNewEpilogue: cause(%s), not full, not_seen_failed, failed, set_seen_failed",
   937                             GCCause::to_string(gch->gc_cause()));
   938       }
   939       seen_incremental_collection_failed = true;
   940     } else if (seen_incremental_collection_failed) {
   941       if (Verbose && PrintGCDetails) {
   942         gclog_or_tty->print("DefNewEpilogue: cause(%s), not full, seen_failed, will_clear_seen_failed",
   943                             GCCause::to_string(gch->gc_cause()));
   944       }
   945       assert(gch->gc_cause() == GCCause::_scavenge_alot ||
   946              (gch->gc_cause() == GCCause::_java_lang_system_gc && UseConcMarkSweepGC && ExplicitGCInvokesConcurrent) ||
   947              !gch->incremental_collection_failed(),
   948              "Twice in a row");
   949       seen_incremental_collection_failed = false;
   950     }
   951 #endif // ASSERT
   952   }
   954   if (ZapUnusedHeapArea) {
   955     eden()->check_mangled_unused_area_complete();
   956     from()->check_mangled_unused_area_complete();
   957     to()->check_mangled_unused_area_complete();
   958   }
   960   if (!CleanChunkPoolAsync) {
   961     Chunk::clean_chunk_pool();
   962   }
   964   // update the generation and space performance counters
   965   update_counters();
   966   gch->collector_policy()->counters()->update_counters();
   967 }
   969 void DefNewGeneration::record_spaces_top() {
   970   assert(ZapUnusedHeapArea, "Not mangling unused space");
   971   eden()->set_top_for_allocations();
   972   to()->set_top_for_allocations();
   973   from()->set_top_for_allocations();
   974 }
   977 void DefNewGeneration::update_counters() {
   978   if (UsePerfData) {
   979     _eden_counters->update_all();
   980     _from_counters->update_all();
   981     _to_counters->update_all();
   982     _gen_counters->update_all();
   983   }
   984 }
   986 void DefNewGeneration::verify() {
   987   eden()->verify();
   988   from()->verify();
   989     to()->verify();
   990 }
   992 void DefNewGeneration::print_on(outputStream* st) const {
   993   Generation::print_on(st);
   994   st->print("  eden");
   995   eden()->print_on(st);
   996   st->print("  from");
   997   from()->print_on(st);
   998   st->print("  to  ");
   999   to()->print_on(st);
  1003 const char* DefNewGeneration::name() const {
  1004   return "def new generation";
  1007 // Moved from inline file as they are not called inline
  1008 CompactibleSpace* DefNewGeneration::first_compaction_space() const {
  1009   return eden();
  1012 HeapWord* DefNewGeneration::allocate(size_t word_size,
  1013                                      bool is_tlab) {
  1014   // This is the slow-path allocation for the DefNewGeneration.
  1015   // Most allocations are fast-path in compiled code.
  1016   // We try to allocate from the eden.  If that works, we are happy.
  1017   // Note that since DefNewGeneration supports lock-free allocation, we
  1018   // have to use it here, as well.
  1019   HeapWord* result = eden()->par_allocate(word_size);
  1020   if (result != NULL) {
  1021     return result;
  1023   do {
  1024     HeapWord* old_limit = eden()->soft_end();
  1025     if (old_limit < eden()->end()) {
  1026       // Tell the next generation we reached a limit.
  1027       HeapWord* new_limit =
  1028         next_gen()->allocation_limit_reached(eden(), eden()->top(), word_size);
  1029       if (new_limit != NULL) {
  1030         Atomic::cmpxchg_ptr(new_limit, eden()->soft_end_addr(), old_limit);
  1031       } else {
  1032         assert(eden()->soft_end() == eden()->end(),
  1033                "invalid state after allocation_limit_reached returned null");
  1035     } else {
  1036       // The allocation failed and the soft limit is equal to the hard limit,
  1037       // there are no reasons to do an attempt to allocate
  1038       assert(old_limit == eden()->end(), "sanity check");
  1039       break;
  1041     // Try to allocate until succeeded or the soft limit can't be adjusted
  1042     result = eden()->par_allocate(word_size);
  1043   } while (result == NULL);
  1045   // If the eden is full and the last collection bailed out, we are running
  1046   // out of heap space, and we try to allocate the from-space, too.
  1047   // allocate_from_space can't be inlined because that would introduce a
  1048   // circular dependency at compile time.
  1049   if (result == NULL) {
  1050     result = allocate_from_space(word_size);
  1052   return result;
  1055 HeapWord* DefNewGeneration::par_allocate(size_t word_size,
  1056                                          bool is_tlab) {
  1057   return eden()->par_allocate(word_size);
  1060 void DefNewGeneration::gc_prologue(bool full) {
  1061   // Ensure that _end and _soft_end are the same in eden space.
  1062   eden()->set_soft_end(eden()->end());
  1065 size_t DefNewGeneration::tlab_capacity() const {
  1066   return eden()->capacity();
  1069 size_t DefNewGeneration::unsafe_max_tlab_alloc() const {
  1070   return unsafe_max_alloc_nogc();

mercurial