src/share/vm/opto/runtime.cpp

Tue, 04 Oct 2011 14:30:04 -0700

author
kvn
date
Tue, 04 Oct 2011 14:30:04 -0700
changeset 3194
ec5ce9326985
parent 3157
a92cdbac8b9e
child 3244
cec1757a0134
permissions
-rw-r--r--

6865265: JVM crashes with "missing exception handler" error
Summary: Retry the call to fast_exception_handler_bci_for() after it returned with a pending exception. Don't cache the exception handler pc computed by compute_compiled_exc_handler() if the handler is for another (nested) exception.
Reviewed-by: kamg, kvn
Contributed-by: volker.simonis@gmail.com

     1 /*
     2  * Copyright (c) 1998, 2011, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "classfile/systemDictionary.hpp"
    27 #include "classfile/vmSymbols.hpp"
    28 #include "code/compiledIC.hpp"
    29 #include "code/icBuffer.hpp"
    30 #include "code/nmethod.hpp"
    31 #include "code/pcDesc.hpp"
    32 #include "code/scopeDesc.hpp"
    33 #include "code/vtableStubs.hpp"
    34 #include "compiler/compileBroker.hpp"
    35 #include "compiler/compilerOracle.hpp"
    36 #include "compiler/oopMap.hpp"
    37 #include "gc_implementation/g1/g1SATBCardTableModRefBS.hpp"
    38 #include "gc_implementation/g1/heapRegion.hpp"
    39 #include "gc_interface/collectedHeap.hpp"
    40 #include "interpreter/bytecode.hpp"
    41 #include "interpreter/interpreter.hpp"
    42 #include "interpreter/linkResolver.hpp"
    43 #include "memory/barrierSet.hpp"
    44 #include "memory/gcLocker.inline.hpp"
    45 #include "memory/oopFactory.hpp"
    46 #include "oops/objArrayKlass.hpp"
    47 #include "oops/oop.inline.hpp"
    48 #include "opto/addnode.hpp"
    49 #include "opto/callnode.hpp"
    50 #include "opto/cfgnode.hpp"
    51 #include "opto/connode.hpp"
    52 #include "opto/graphKit.hpp"
    53 #include "opto/machnode.hpp"
    54 #include "opto/matcher.hpp"
    55 #include "opto/memnode.hpp"
    56 #include "opto/mulnode.hpp"
    57 #include "opto/runtime.hpp"
    58 #include "opto/subnode.hpp"
    59 #include "runtime/fprofiler.hpp"
    60 #include "runtime/handles.inline.hpp"
    61 #include "runtime/interfaceSupport.hpp"
    62 #include "runtime/javaCalls.hpp"
    63 #include "runtime/sharedRuntime.hpp"
    64 #include "runtime/signature.hpp"
    65 #include "runtime/threadCritical.hpp"
    66 #include "runtime/vframe.hpp"
    67 #include "runtime/vframeArray.hpp"
    68 #include "runtime/vframe_hp.hpp"
    69 #include "utilities/copy.hpp"
    70 #include "utilities/preserveException.hpp"
    71 #ifdef TARGET_ARCH_MODEL_x86_32
    72 # include "adfiles/ad_x86_32.hpp"
    73 #endif
    74 #ifdef TARGET_ARCH_MODEL_x86_64
    75 # include "adfiles/ad_x86_64.hpp"
    76 #endif
    77 #ifdef TARGET_ARCH_MODEL_sparc
    78 # include "adfiles/ad_sparc.hpp"
    79 #endif
    80 #ifdef TARGET_ARCH_MODEL_zero
    81 # include "adfiles/ad_zero.hpp"
    82 #endif
    83 #ifdef TARGET_ARCH_MODEL_arm
    84 # include "adfiles/ad_arm.hpp"
    85 #endif
    86 #ifdef TARGET_ARCH_MODEL_ppc
    87 # include "adfiles/ad_ppc.hpp"
    88 #endif
    91 // For debugging purposes:
    92 //  To force FullGCALot inside a runtime function, add the following two lines
    93 //
    94 //  Universe::release_fullgc_alot_dummy();
    95 //  MarkSweep::invoke(0, "Debugging");
    96 //
    97 // At command line specify the parameters: -XX:+FullGCALot -XX:FullGCALotStart=100000000
   102 // Compiled code entry points
   103 address OptoRuntime::_new_instance_Java                           = NULL;
   104 address OptoRuntime::_new_array_Java                              = NULL;
   105 address OptoRuntime::_new_array_nozero_Java                       = NULL;
   106 address OptoRuntime::_multianewarray2_Java                        = NULL;
   107 address OptoRuntime::_multianewarray3_Java                        = NULL;
   108 address OptoRuntime::_multianewarray4_Java                        = NULL;
   109 address OptoRuntime::_multianewarray5_Java                        = NULL;
   110 address OptoRuntime::_multianewarrayN_Java                        = NULL;
   111 address OptoRuntime::_g1_wb_pre_Java                              = NULL;
   112 address OptoRuntime::_g1_wb_post_Java                             = NULL;
   113 address OptoRuntime::_vtable_must_compile_Java                    = NULL;
   114 address OptoRuntime::_complete_monitor_locking_Java               = NULL;
   115 address OptoRuntime::_rethrow_Java                                = NULL;
   117 address OptoRuntime::_slow_arraycopy_Java                         = NULL;
   118 address OptoRuntime::_register_finalizer_Java                     = NULL;
   120 # ifdef ENABLE_ZAP_DEAD_LOCALS
   121 address OptoRuntime::_zap_dead_Java_locals_Java                   = NULL;
   122 address OptoRuntime::_zap_dead_native_locals_Java                 = NULL;
   123 # endif
   125 ExceptionBlob* OptoRuntime::_exception_blob;
   127 // This should be called in an assertion at the start of OptoRuntime routines
   128 // which are entered from compiled code (all of them)
   129 #ifndef PRODUCT
   130 static bool check_compiled_frame(JavaThread* thread) {
   131   assert(thread->last_frame().is_runtime_frame(), "cannot call runtime directly from compiled code");
   132 #ifdef ASSERT
   133   RegisterMap map(thread, false);
   134   frame caller = thread->last_frame().sender(&map);
   135   assert(caller.is_compiled_frame(), "not being called from compiled like code");
   136 #endif  /* ASSERT */
   137   return true;
   138 }
   139 #endif
   142 #define gen(env, var, type_func_gen, c_func, fancy_jump, pass_tls, save_arg_regs, return_pc) \
   143   var = generate_stub(env, type_func_gen, CAST_FROM_FN_PTR(address, c_func), #var, fancy_jump, pass_tls, save_arg_regs, return_pc)
   145 void OptoRuntime::generate(ciEnv* env) {
   147   generate_exception_blob();
   149   // Note: tls: Means fetching the return oop out of the thread-local storage
   150   //
   151   //   variable/name                       type-function-gen              , runtime method                  ,fncy_jp, tls,save_args,retpc
   152   // -------------------------------------------------------------------------------------------------------------------------------
   153   gen(env, _new_instance_Java              , new_instance_Type            , new_instance_C                  ,    0 , true , false, false);
   154   gen(env, _new_array_Java                 , new_array_Type               , new_array_C                     ,    0 , true , false, false);
   155   gen(env, _new_array_nozero_Java          , new_array_Type               , new_array_nozero_C              ,    0 , true , false, false);
   156   gen(env, _multianewarray2_Java           , multianewarray2_Type         , multianewarray2_C               ,    0 , true , false, false);
   157   gen(env, _multianewarray3_Java           , multianewarray3_Type         , multianewarray3_C               ,    0 , true , false, false);
   158   gen(env, _multianewarray4_Java           , multianewarray4_Type         , multianewarray4_C               ,    0 , true , false, false);
   159   gen(env, _multianewarray5_Java           , multianewarray5_Type         , multianewarray5_C               ,    0 , true , false, false);
   160   gen(env, _multianewarrayN_Java           , multianewarrayN_Type         , multianewarrayN_C               ,    0 , true , false, false);
   161   gen(env, _g1_wb_pre_Java                 , g1_wb_pre_Type               , SharedRuntime::g1_wb_pre        ,    0 , false, false, false);
   162   gen(env, _g1_wb_post_Java                , g1_wb_post_Type              , SharedRuntime::g1_wb_post       ,    0 , false, false, false);
   163   gen(env, _complete_monitor_locking_Java  , complete_monitor_enter_Type  , SharedRuntime::complete_monitor_locking_C      ,    0 , false, false, false);
   164   gen(env, _rethrow_Java                   , rethrow_Type                 , rethrow_C                       ,    2 , true , false, true );
   166   gen(env, _slow_arraycopy_Java            , slow_arraycopy_Type          , SharedRuntime::slow_arraycopy_C ,    0 , false, false, false);
   167   gen(env, _register_finalizer_Java        , register_finalizer_Type      , register_finalizer              ,    0 , false, false, false);
   169 # ifdef ENABLE_ZAP_DEAD_LOCALS
   170   gen(env, _zap_dead_Java_locals_Java      , zap_dead_locals_Type         , zap_dead_Java_locals_C          ,    0 , false, true , false );
   171   gen(env, _zap_dead_native_locals_Java    , zap_dead_locals_Type         , zap_dead_native_locals_C        ,    0 , false, true , false );
   172 # endif
   174 }
   176 #undef gen
   179 // Helper method to do generation of RunTimeStub's
   180 address OptoRuntime::generate_stub( ciEnv* env,
   181                                     TypeFunc_generator gen, address C_function,
   182                                     const char *name, int is_fancy_jump,
   183                                     bool pass_tls,
   184                                     bool save_argument_registers,
   185                                     bool return_pc ) {
   186   ResourceMark rm;
   187   Compile C( env, gen, C_function, name, is_fancy_jump, pass_tls, save_argument_registers, return_pc );
   188   return  C.stub_entry_point();
   189 }
   191 const char* OptoRuntime::stub_name(address entry) {
   192 #ifndef PRODUCT
   193   CodeBlob* cb = CodeCache::find_blob(entry);
   194   RuntimeStub* rs =(RuntimeStub *)cb;
   195   assert(rs != NULL && rs->is_runtime_stub(), "not a runtime stub");
   196   return rs->name();
   197 #else
   198   // Fast implementation for product mode (maybe it should be inlined too)
   199   return "runtime stub";
   200 #endif
   201 }
   204 //=============================================================================
   205 // Opto compiler runtime routines
   206 //=============================================================================
   209 //=============================allocation======================================
   210 // We failed the fast-path allocation.  Now we need to do a scavenge or GC
   211 // and try allocation again.
   213 void OptoRuntime::new_store_pre_barrier(JavaThread* thread) {
   214   // After any safepoint, just before going back to compiled code,
   215   // we inform the GC that we will be doing initializing writes to
   216   // this object in the future without emitting card-marks, so
   217   // GC may take any compensating steps.
   218   // NOTE: Keep this code consistent with GraphKit::store_barrier.
   220   oop new_obj = thread->vm_result();
   221   if (new_obj == NULL)  return;
   223   assert(Universe::heap()->can_elide_tlab_store_barriers(),
   224          "compiler must check this first");
   225   // GC may decide to give back a safer copy of new_obj.
   226   new_obj = Universe::heap()->new_store_pre_barrier(thread, new_obj);
   227   thread->set_vm_result(new_obj);
   228 }
   230 // object allocation
   231 JRT_BLOCK_ENTRY(void, OptoRuntime::new_instance_C(klassOopDesc* klass, JavaThread* thread))
   232   JRT_BLOCK;
   233 #ifndef PRODUCT
   234   SharedRuntime::_new_instance_ctr++;         // new instance requires GC
   235 #endif
   236   assert(check_compiled_frame(thread), "incorrect caller");
   238   // These checks are cheap to make and support reflective allocation.
   239   int lh = Klass::cast(klass)->layout_helper();
   240   if (Klass::layout_helper_needs_slow_path(lh)
   241       || !instanceKlass::cast(klass)->is_initialized()) {
   242     KlassHandle kh(THREAD, klass);
   243     kh->check_valid_for_instantiation(false, THREAD);
   244     if (!HAS_PENDING_EXCEPTION) {
   245       instanceKlass::cast(kh())->initialize(THREAD);
   246     }
   247     if (!HAS_PENDING_EXCEPTION) {
   248       klass = kh();
   249     } else {
   250       klass = NULL;
   251     }
   252   }
   254   if (klass != NULL) {
   255     // Scavenge and allocate an instance.
   256     oop result = instanceKlass::cast(klass)->allocate_instance(THREAD);
   257     thread->set_vm_result(result);
   259     // Pass oops back through thread local storage.  Our apparent type to Java
   260     // is that we return an oop, but we can block on exit from this routine and
   261     // a GC can trash the oop in C's return register.  The generated stub will
   262     // fetch the oop from TLS after any possible GC.
   263   }
   265   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
   266   JRT_BLOCK_END;
   268   if (GraphKit::use_ReduceInitialCardMarks()) {
   269     // inform GC that we won't do card marks for initializing writes.
   270     new_store_pre_barrier(thread);
   271   }
   272 JRT_END
   275 // array allocation
   276 JRT_BLOCK_ENTRY(void, OptoRuntime::new_array_C(klassOopDesc* array_type, int len, JavaThread *thread))
   277   JRT_BLOCK;
   278 #ifndef PRODUCT
   279   SharedRuntime::_new_array_ctr++;            // new array requires GC
   280 #endif
   281   assert(check_compiled_frame(thread), "incorrect caller");
   283   // Scavenge and allocate an instance.
   284   oop result;
   286   if (Klass::cast(array_type)->oop_is_typeArray()) {
   287     // The oopFactory likes to work with the element type.
   288     // (We could bypass the oopFactory, since it doesn't add much value.)
   289     BasicType elem_type = typeArrayKlass::cast(array_type)->element_type();
   290     result = oopFactory::new_typeArray(elem_type, len, THREAD);
   291   } else {
   292     // Although the oopFactory likes to work with the elem_type,
   293     // the compiler prefers the array_type, since it must already have
   294     // that latter value in hand for the fast path.
   295     klassOopDesc* elem_type = objArrayKlass::cast(array_type)->element_klass();
   296     result = oopFactory::new_objArray(elem_type, len, THREAD);
   297   }
   299   // Pass oops back through thread local storage.  Our apparent type to Java
   300   // is that we return an oop, but we can block on exit from this routine and
   301   // a GC can trash the oop in C's return register.  The generated stub will
   302   // fetch the oop from TLS after any possible GC.
   303   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
   304   thread->set_vm_result(result);
   305   JRT_BLOCK_END;
   307   if (GraphKit::use_ReduceInitialCardMarks()) {
   308     // inform GC that we won't do card marks for initializing writes.
   309     new_store_pre_barrier(thread);
   310   }
   311 JRT_END
   313 // array allocation without zeroing
   314 JRT_BLOCK_ENTRY(void, OptoRuntime::new_array_nozero_C(klassOopDesc* array_type, int len, JavaThread *thread))
   315   JRT_BLOCK;
   316 #ifndef PRODUCT
   317   SharedRuntime::_new_array_ctr++;            // new array requires GC
   318 #endif
   319   assert(check_compiled_frame(thread), "incorrect caller");
   321   // Scavenge and allocate an instance.
   322   oop result;
   324   assert(Klass::cast(array_type)->oop_is_typeArray(), "should be called only for type array");
   325   // The oopFactory likes to work with the element type.
   326   BasicType elem_type = typeArrayKlass::cast(array_type)->element_type();
   327   result = oopFactory::new_typeArray_nozero(elem_type, len, THREAD);
   329   // Pass oops back through thread local storage.  Our apparent type to Java
   330   // is that we return an oop, but we can block on exit from this routine and
   331   // a GC can trash the oop in C's return register.  The generated stub will
   332   // fetch the oop from TLS after any possible GC.
   333   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
   334   thread->set_vm_result(result);
   335   JRT_BLOCK_END;
   337   if (GraphKit::use_ReduceInitialCardMarks()) {
   338     // inform GC that we won't do card marks for initializing writes.
   339     new_store_pre_barrier(thread);
   340   }
   341 JRT_END
   343 // Note: multianewarray for one dimension is handled inline by GraphKit::new_array.
   345 // multianewarray for 2 dimensions
   346 JRT_ENTRY(void, OptoRuntime::multianewarray2_C(klassOopDesc* elem_type, int len1, int len2, JavaThread *thread))
   347 #ifndef PRODUCT
   348   SharedRuntime::_multi2_ctr++;                // multianewarray for 1 dimension
   349 #endif
   350   assert(check_compiled_frame(thread), "incorrect caller");
   351   assert(oop(elem_type)->is_klass(), "not a class");
   352   jint dims[2];
   353   dims[0] = len1;
   354   dims[1] = len2;
   355   oop obj = arrayKlass::cast(elem_type)->multi_allocate(2, dims, THREAD);
   356   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
   357   thread->set_vm_result(obj);
   358 JRT_END
   360 // multianewarray for 3 dimensions
   361 JRT_ENTRY(void, OptoRuntime::multianewarray3_C(klassOopDesc* elem_type, int len1, int len2, int len3, JavaThread *thread))
   362 #ifndef PRODUCT
   363   SharedRuntime::_multi3_ctr++;                // multianewarray for 1 dimension
   364 #endif
   365   assert(check_compiled_frame(thread), "incorrect caller");
   366   assert(oop(elem_type)->is_klass(), "not a class");
   367   jint dims[3];
   368   dims[0] = len1;
   369   dims[1] = len2;
   370   dims[2] = len3;
   371   oop obj = arrayKlass::cast(elem_type)->multi_allocate(3, dims, THREAD);
   372   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
   373   thread->set_vm_result(obj);
   374 JRT_END
   376 // multianewarray for 4 dimensions
   377 JRT_ENTRY(void, OptoRuntime::multianewarray4_C(klassOopDesc* elem_type, int len1, int len2, int len3, int len4, JavaThread *thread))
   378 #ifndef PRODUCT
   379   SharedRuntime::_multi4_ctr++;                // multianewarray for 1 dimension
   380 #endif
   381   assert(check_compiled_frame(thread), "incorrect caller");
   382   assert(oop(elem_type)->is_klass(), "not a class");
   383   jint dims[4];
   384   dims[0] = len1;
   385   dims[1] = len2;
   386   dims[2] = len3;
   387   dims[3] = len4;
   388   oop obj = arrayKlass::cast(elem_type)->multi_allocate(4, dims, THREAD);
   389   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
   390   thread->set_vm_result(obj);
   391 JRT_END
   393 // multianewarray for 5 dimensions
   394 JRT_ENTRY(void, OptoRuntime::multianewarray5_C(klassOopDesc* elem_type, int len1, int len2, int len3, int len4, int len5, JavaThread *thread))
   395 #ifndef PRODUCT
   396   SharedRuntime::_multi5_ctr++;                // multianewarray for 1 dimension
   397 #endif
   398   assert(check_compiled_frame(thread), "incorrect caller");
   399   assert(oop(elem_type)->is_klass(), "not a class");
   400   jint dims[5];
   401   dims[0] = len1;
   402   dims[1] = len2;
   403   dims[2] = len3;
   404   dims[3] = len4;
   405   dims[4] = len5;
   406   oop obj = arrayKlass::cast(elem_type)->multi_allocate(5, dims, THREAD);
   407   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
   408   thread->set_vm_result(obj);
   409 JRT_END
   411 JRT_ENTRY(void, OptoRuntime::multianewarrayN_C(klassOopDesc* elem_type, arrayOopDesc* dims, JavaThread *thread))
   412   assert(check_compiled_frame(thread), "incorrect caller");
   413   assert(oop(elem_type)->is_klass(), "not a class");
   414   assert(oop(dims)->is_typeArray(), "not an array");
   416   ResourceMark rm;
   417   jint len = dims->length();
   418   assert(len > 0, "Dimensions array should contain data");
   419   jint *j_dims = typeArrayOop(dims)->int_at_addr(0);
   420   jint *c_dims = NEW_RESOURCE_ARRAY(jint, len);
   421   Copy::conjoint_jints_atomic(j_dims, c_dims, len);
   423   oop obj = arrayKlass::cast(elem_type)->multi_allocate(len, c_dims, THREAD);
   424   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
   425   thread->set_vm_result(obj);
   426 JRT_END
   429 const TypeFunc *OptoRuntime::new_instance_Type() {
   430   // create input type (domain)
   431   const Type **fields = TypeTuple::fields(1);
   432   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Klass to be allocated
   433   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
   435   // create result type (range)
   436   fields = TypeTuple::fields(1);
   437   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
   439   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
   441   return TypeFunc::make(domain, range);
   442 }
   445 const TypeFunc *OptoRuntime::athrow_Type() {
   446   // create input type (domain)
   447   const Type **fields = TypeTuple::fields(1);
   448   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Klass to be allocated
   449   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
   451   // create result type (range)
   452   fields = TypeTuple::fields(0);
   454   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
   456   return TypeFunc::make(domain, range);
   457 }
   460 const TypeFunc *OptoRuntime::new_array_Type() {
   461   // create input type (domain)
   462   const Type **fields = TypeTuple::fields(2);
   463   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;   // element klass
   464   fields[TypeFunc::Parms+1] = TypeInt::INT;       // array size
   465   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
   467   // create result type (range)
   468   fields = TypeTuple::fields(1);
   469   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
   471   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
   473   return TypeFunc::make(domain, range);
   474 }
   476 const TypeFunc *OptoRuntime::multianewarray_Type(int ndim) {
   477   // create input type (domain)
   478   const int nargs = ndim + 1;
   479   const Type **fields = TypeTuple::fields(nargs);
   480   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;   // element klass
   481   for( int i = 1; i < nargs; i++ )
   482     fields[TypeFunc::Parms + i] = TypeInt::INT;       // array size
   483   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+nargs, fields);
   485   // create result type (range)
   486   fields = TypeTuple::fields(1);
   487   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
   488   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
   490   return TypeFunc::make(domain, range);
   491 }
   493 const TypeFunc *OptoRuntime::multianewarray2_Type() {
   494   return multianewarray_Type(2);
   495 }
   497 const TypeFunc *OptoRuntime::multianewarray3_Type() {
   498   return multianewarray_Type(3);
   499 }
   501 const TypeFunc *OptoRuntime::multianewarray4_Type() {
   502   return multianewarray_Type(4);
   503 }
   505 const TypeFunc *OptoRuntime::multianewarray5_Type() {
   506   return multianewarray_Type(5);
   507 }
   509 const TypeFunc *OptoRuntime::multianewarrayN_Type() {
   510   // create input type (domain)
   511   const Type **fields = TypeTuple::fields(2);
   512   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;   // element klass
   513   fields[TypeFunc::Parms+1] = TypeInstPtr::NOTNULL;   // array of dim sizes
   514   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
   516   // create result type (range)
   517   fields = TypeTuple::fields(1);
   518   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
   519   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
   521   return TypeFunc::make(domain, range);
   522 }
   524 const TypeFunc *OptoRuntime::g1_wb_pre_Type() {
   525   const Type **fields = TypeTuple::fields(2);
   526   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // original field value
   527   fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL; // thread
   528   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
   530   // create result type (range)
   531   fields = TypeTuple::fields(0);
   532   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
   534   return TypeFunc::make(domain, range);
   535 }
   537 const TypeFunc *OptoRuntime::g1_wb_post_Type() {
   539   const Type **fields = TypeTuple::fields(2);
   540   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL;  // Card addr
   541   fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL;  // thread
   542   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
   544   // create result type (range)
   545   fields = TypeTuple::fields(0);
   546   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
   548   return TypeFunc::make(domain, range);
   549 }
   551 const TypeFunc *OptoRuntime::uncommon_trap_Type() {
   552   // create input type (domain)
   553   const Type **fields = TypeTuple::fields(1);
   554   // Symbol* name of class to be loaded
   555   fields[TypeFunc::Parms+0] = TypeInt::INT;
   556   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
   558   // create result type (range)
   559   fields = TypeTuple::fields(0);
   560   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
   562   return TypeFunc::make(domain, range);
   563 }
   565 # ifdef ENABLE_ZAP_DEAD_LOCALS
   566 // Type used for stub generation for zap_dead_locals.
   567 // No inputs or outputs
   568 const TypeFunc *OptoRuntime::zap_dead_locals_Type() {
   569   // create input type (domain)
   570   const Type **fields = TypeTuple::fields(0);
   571   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms,fields);
   573   // create result type (range)
   574   fields = TypeTuple::fields(0);
   575   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms,fields);
   577   return TypeFunc::make(domain,range);
   578 }
   579 # endif
   582 //-----------------------------------------------------------------------------
   583 // Monitor Handling
   584 const TypeFunc *OptoRuntime::complete_monitor_enter_Type() {
   585   // create input type (domain)
   586   const Type **fields = TypeTuple::fields(2);
   587   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // Object to be Locked
   588   fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM;   // Address of stack location for lock
   589   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
   591   // create result type (range)
   592   fields = TypeTuple::fields(0);
   594   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
   596   return TypeFunc::make(domain,range);
   597 }
   600 //-----------------------------------------------------------------------------
   601 const TypeFunc *OptoRuntime::complete_monitor_exit_Type() {
   602   // create input type (domain)
   603   const Type **fields = TypeTuple::fields(2);
   604   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // Object to be Locked
   605   fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM;   // Address of stack location for lock
   606   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
   608   // create result type (range)
   609   fields = TypeTuple::fields(0);
   611   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
   613   return TypeFunc::make(domain,range);
   614 }
   616 const TypeFunc* OptoRuntime::flush_windows_Type() {
   617   // create input type (domain)
   618   const Type** fields = TypeTuple::fields(1);
   619   fields[TypeFunc::Parms+0] = NULL; // void
   620   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms, fields);
   622   // create result type
   623   fields = TypeTuple::fields(1);
   624   fields[TypeFunc::Parms+0] = NULL; // void
   625   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
   627   return TypeFunc::make(domain, range);
   628 }
   630 const TypeFunc* OptoRuntime::l2f_Type() {
   631   // create input type (domain)
   632   const Type **fields = TypeTuple::fields(2);
   633   fields[TypeFunc::Parms+0] = TypeLong::LONG;
   634   fields[TypeFunc::Parms+1] = Type::HALF;
   635   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
   637   // create result type (range)
   638   fields = TypeTuple::fields(1);
   639   fields[TypeFunc::Parms+0] = Type::FLOAT;
   640   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
   642   return TypeFunc::make(domain, range);
   643 }
   645 const TypeFunc* OptoRuntime::modf_Type() {
   646   const Type **fields = TypeTuple::fields(2);
   647   fields[TypeFunc::Parms+0] = Type::FLOAT;
   648   fields[TypeFunc::Parms+1] = Type::FLOAT;
   649   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
   651   // create result type (range)
   652   fields = TypeTuple::fields(1);
   653   fields[TypeFunc::Parms+0] = Type::FLOAT;
   655   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
   657   return TypeFunc::make(domain, range);
   658 }
   660 const TypeFunc *OptoRuntime::Math_D_D_Type() {
   661   // create input type (domain)
   662   const Type **fields = TypeTuple::fields(2);
   663   // Symbol* name of class to be loaded
   664   fields[TypeFunc::Parms+0] = Type::DOUBLE;
   665   fields[TypeFunc::Parms+1] = Type::HALF;
   666   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
   668   // create result type (range)
   669   fields = TypeTuple::fields(2);
   670   fields[TypeFunc::Parms+0] = Type::DOUBLE;
   671   fields[TypeFunc::Parms+1] = Type::HALF;
   672   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
   674   return TypeFunc::make(domain, range);
   675 }
   677 const TypeFunc* OptoRuntime::Math_DD_D_Type() {
   678   const Type **fields = TypeTuple::fields(4);
   679   fields[TypeFunc::Parms+0] = Type::DOUBLE;
   680   fields[TypeFunc::Parms+1] = Type::HALF;
   681   fields[TypeFunc::Parms+2] = Type::DOUBLE;
   682   fields[TypeFunc::Parms+3] = Type::HALF;
   683   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+4, fields);
   685   // create result type (range)
   686   fields = TypeTuple::fields(2);
   687   fields[TypeFunc::Parms+0] = Type::DOUBLE;
   688   fields[TypeFunc::Parms+1] = Type::HALF;
   689   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
   691   return TypeFunc::make(domain, range);
   692 }
   694 //-------------- currentTimeMillis
   696 const TypeFunc* OptoRuntime::current_time_millis_Type() {
   697   // create input type (domain)
   698   const Type **fields = TypeTuple::fields(0);
   699   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+0, fields);
   701   // create result type (range)
   702   fields = TypeTuple::fields(2);
   703   fields[TypeFunc::Parms+0] = TypeLong::LONG;
   704   fields[TypeFunc::Parms+1] = Type::HALF;
   705   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
   707   return TypeFunc::make(domain, range);
   708 }
   710 // arraycopy stub variations:
   711 enum ArrayCopyType {
   712   ac_fast,                      // void(ptr, ptr, size_t)
   713   ac_checkcast,                 //  int(ptr, ptr, size_t, size_t, ptr)
   714   ac_slow,                      // void(ptr, int, ptr, int, int)
   715   ac_generic                    //  int(ptr, int, ptr, int, int)
   716 };
   718 static const TypeFunc* make_arraycopy_Type(ArrayCopyType act) {
   719   // create input type (domain)
   720   int num_args      = (act == ac_fast ? 3 : 5);
   721   int num_size_args = (act == ac_fast ? 1 : act == ac_checkcast ? 2 : 0);
   722   int argcnt = num_args;
   723   LP64_ONLY(argcnt += num_size_args); // halfwords for lengths
   724   const Type** fields = TypeTuple::fields(argcnt);
   725   int argp = TypeFunc::Parms;
   726   fields[argp++] = TypePtr::NOTNULL;    // src
   727   if (num_size_args == 0) {
   728     fields[argp++] = TypeInt::INT;      // src_pos
   729   }
   730   fields[argp++] = TypePtr::NOTNULL;    // dest
   731   if (num_size_args == 0) {
   732     fields[argp++] = TypeInt::INT;      // dest_pos
   733     fields[argp++] = TypeInt::INT;      // length
   734   }
   735   while (num_size_args-- > 0) {
   736     fields[argp++] = TypeX_X;               // size in whatevers (size_t)
   737     LP64_ONLY(fields[argp++] = Type::HALF); // other half of long length
   738   }
   739   if (act == ac_checkcast) {
   740     fields[argp++] = TypePtr::NOTNULL;  // super_klass
   741   }
   742   assert(argp == TypeFunc::Parms+argcnt, "correct decoding of act");
   743   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
   745   // create result type if needed
   746   int retcnt = (act == ac_checkcast || act == ac_generic ? 1 : 0);
   747   fields = TypeTuple::fields(1);
   748   if (retcnt == 0)
   749     fields[TypeFunc::Parms+0] = NULL; // void
   750   else
   751     fields[TypeFunc::Parms+0] = TypeInt::INT; // status result, if needed
   752   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+retcnt, fields);
   753   return TypeFunc::make(domain, range);
   754 }
   756 const TypeFunc* OptoRuntime::fast_arraycopy_Type() {
   757   // This signature is simple:  Two base pointers and a size_t.
   758   return make_arraycopy_Type(ac_fast);
   759 }
   761 const TypeFunc* OptoRuntime::checkcast_arraycopy_Type() {
   762   // An extension of fast_arraycopy_Type which adds type checking.
   763   return make_arraycopy_Type(ac_checkcast);
   764 }
   766 const TypeFunc* OptoRuntime::slow_arraycopy_Type() {
   767   // This signature is exactly the same as System.arraycopy.
   768   // There are no intptr_t (int/long) arguments.
   769   return make_arraycopy_Type(ac_slow);
   770 }
   772 const TypeFunc* OptoRuntime::generic_arraycopy_Type() {
   773   // This signature is like System.arraycopy, except that it returns status.
   774   return make_arraycopy_Type(ac_generic);
   775 }
   778 const TypeFunc* OptoRuntime::array_fill_Type() {
   779   // create input type (domain): pointer, int, size_t
   780   const Type** fields = TypeTuple::fields(3 LP64_ONLY( + 1));
   781   int argp = TypeFunc::Parms;
   782   fields[argp++] = TypePtr::NOTNULL;
   783   fields[argp++] = TypeInt::INT;
   784   fields[argp++] = TypeX_X;               // size in whatevers (size_t)
   785   LP64_ONLY(fields[argp++] = Type::HALF); // other half of long length
   786   const TypeTuple *domain = TypeTuple::make(argp, fields);
   788   // create result type
   789   fields = TypeTuple::fields(1);
   790   fields[TypeFunc::Parms+0] = NULL; // void
   791   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
   793   return TypeFunc::make(domain, range);
   794 }
   796 //------------- Interpreter state access for on stack replacement
   797 const TypeFunc* OptoRuntime::osr_end_Type() {
   798   // create input type (domain)
   799   const Type **fields = TypeTuple::fields(1);
   800   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // OSR temp buf
   801   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
   803   // create result type
   804   fields = TypeTuple::fields(1);
   805   // fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // locked oop
   806   fields[TypeFunc::Parms+0] = NULL; // void
   807   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
   808   return TypeFunc::make(domain, range);
   809 }
   811 //-------------- methodData update helpers
   813 const TypeFunc* OptoRuntime::profile_receiver_type_Type() {
   814   // create input type (domain)
   815   const Type **fields = TypeTuple::fields(2);
   816   fields[TypeFunc::Parms+0] = TypeAryPtr::NOTNULL;    // methodData pointer
   817   fields[TypeFunc::Parms+1] = TypeInstPtr::BOTTOM;    // receiver oop
   818   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
   820   // create result type
   821   fields = TypeTuple::fields(1);
   822   fields[TypeFunc::Parms+0] = NULL; // void
   823   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
   824   return TypeFunc::make(domain,range);
   825 }
   827 JRT_LEAF(void, OptoRuntime::profile_receiver_type_C(DataLayout* data, oopDesc* receiver))
   828   if (receiver == NULL) return;
   829   klassOop receiver_klass = receiver->klass();
   831   intptr_t* mdp = ((intptr_t*)(data)) + DataLayout::header_size_in_cells();
   832   int empty_row = -1;           // free row, if any is encountered
   834   // ReceiverTypeData* vc = new ReceiverTypeData(mdp);
   835   for (uint row = 0; row < ReceiverTypeData::row_limit(); row++) {
   836     // if (vc->receiver(row) == receiver_klass)
   837     int receiver_off = ReceiverTypeData::receiver_cell_index(row);
   838     intptr_t row_recv = *(mdp + receiver_off);
   839     if (row_recv == (intptr_t) receiver_klass) {
   840       // vc->set_receiver_count(row, vc->receiver_count(row) + DataLayout::counter_increment);
   841       int count_off = ReceiverTypeData::receiver_count_cell_index(row);
   842       *(mdp + count_off) += DataLayout::counter_increment;
   843       return;
   844     } else if (row_recv == 0) {
   845       // else if (vc->receiver(row) == NULL)
   846       empty_row = (int) row;
   847     }
   848   }
   850   if (empty_row != -1) {
   851     int receiver_off = ReceiverTypeData::receiver_cell_index(empty_row);
   852     // vc->set_receiver(empty_row, receiver_klass);
   853     *(mdp + receiver_off) = (intptr_t) receiver_klass;
   854     // vc->set_receiver_count(empty_row, DataLayout::counter_increment);
   855     int count_off = ReceiverTypeData::receiver_count_cell_index(empty_row);
   856     *(mdp + count_off) = DataLayout::counter_increment;
   857   } else {
   858     // Receiver did not match any saved receiver and there is no empty row for it.
   859     // Increment total counter to indicate polymorphic case.
   860     intptr_t* count_p = (intptr_t*)(((byte*)(data)) + in_bytes(CounterData::count_offset()));
   861     *count_p += DataLayout::counter_increment;
   862   }
   863 JRT_END
   865 //-----------------------------------------------------------------------------
   866 // implicit exception support.
   868 static void report_null_exception_in_code_cache(address exception_pc) {
   869   ResourceMark rm;
   870   CodeBlob* n = CodeCache::find_blob(exception_pc);
   871   if (n != NULL) {
   872     tty->print_cr("#");
   873     tty->print_cr("# HotSpot Runtime Error, null exception in generated code");
   874     tty->print_cr("#");
   875     tty->print_cr("# pc where exception happened = " INTPTR_FORMAT, exception_pc);
   877     if (n->is_nmethod()) {
   878       methodOop method = ((nmethod*)n)->method();
   879       tty->print_cr("# Method where it happened %s.%s ", Klass::cast(method->method_holder())->name()->as_C_string(), method->name()->as_C_string());
   880       tty->print_cr("#");
   881       if (ShowMessageBoxOnError && UpdateHotSpotCompilerFileOnError) {
   882         const char* title    = "HotSpot Runtime Error";
   883         const char* question = "Do you want to exclude compilation of this method in future runs?";
   884         if (os::message_box(title, question)) {
   885           CompilerOracle::append_comment_to_file("");
   886           CompilerOracle::append_comment_to_file("Null exception in compiled code resulted in the following exclude");
   887           CompilerOracle::append_comment_to_file("");
   888           CompilerOracle::append_exclude_to_file(method);
   889           tty->print_cr("#");
   890           tty->print_cr("# %s has been updated to exclude the specified method", CompileCommandFile);
   891           tty->print_cr("#");
   892         }
   893       }
   894       fatal("Implicit null exception happened in compiled method");
   895     } else {
   896       n->print();
   897       fatal("Implicit null exception happened in generated stub");
   898     }
   899   }
   900   fatal("Implicit null exception at wrong place");
   901 }
   904 //-------------------------------------------------------------------------------------
   905 // register policy
   907 bool OptoRuntime::is_callee_saved_register(MachRegisterNumbers reg) {
   908   assert(reg >= 0 && reg < _last_Mach_Reg, "must be a machine register");
   909   switch (register_save_policy[reg]) {
   910     case 'C': return false; //SOC
   911     case 'E': return true ; //SOE
   912     case 'N': return false; //NS
   913     case 'A': return false; //AS
   914   }
   915   ShouldNotReachHere();
   916   return false;
   917 }
   919 //-----------------------------------------------------------------------
   920 // Exceptions
   921 //
   923 static void trace_exception(oop exception_oop, address exception_pc, const char* msg) PRODUCT_RETURN;
   925 // The method is an entry that is always called by a C++ method not
   926 // directly from compiled code. Compiled code will call the C++ method following.
   927 // We can't allow async exception to be installed during  exception processing.
   928 JRT_ENTRY_NO_ASYNC(address, OptoRuntime::handle_exception_C_helper(JavaThread* thread, nmethod* &nm))
   930   // Do not confuse exception_oop with pending_exception. The exception_oop
   931   // is only used to pass arguments into the method. Not for general
   932   // exception handling.  DO NOT CHANGE IT to use pending_exception, since
   933   // the runtime stubs checks this on exit.
   934   assert(thread->exception_oop() != NULL, "exception oop is found");
   935   address handler_address = NULL;
   937   Handle exception(thread, thread->exception_oop());
   939   if (TraceExceptions) {
   940     trace_exception(exception(), thread->exception_pc(), "");
   941   }
   942   // for AbortVMOnException flag
   943   NOT_PRODUCT(Exceptions::debug_check_abort(exception));
   945   #ifdef ASSERT
   946     if (!(exception->is_a(SystemDictionary::Throwable_klass()))) {
   947       // should throw an exception here
   948       ShouldNotReachHere();
   949     }
   950   #endif
   953   // new exception handling: this method is entered only from adapters
   954   // exceptions from compiled java methods are handled in compiled code
   955   // using rethrow node
   957   address pc = thread->exception_pc();
   958   nm = CodeCache::find_nmethod(pc);
   959   assert(nm != NULL, "No NMethod found");
   960   if (nm->is_native_method()) {
   961     fatal("Native mathod should not have path to exception handling");
   962   } else {
   963     // we are switching to old paradigm: search for exception handler in caller_frame
   964     // instead in exception handler of caller_frame.sender()
   966     if (JvmtiExport::can_post_on_exceptions()) {
   967       // "Full-speed catching" is not necessary here,
   968       // since we're notifying the VM on every catch.
   969       // Force deoptimization and the rest of the lookup
   970       // will be fine.
   971       deoptimize_caller_frame(thread, true);
   972     }
   974     // Check the stack guard pages.  If enabled, look for handler in this frame;
   975     // otherwise, forcibly unwind the frame.
   976     //
   977     // 4826555: use default current sp for reguard_stack instead of &nm: it's more accurate.
   978     bool force_unwind = !thread->reguard_stack();
   979     bool deopting = false;
   980     if (nm->is_deopt_pc(pc)) {
   981       deopting = true;
   982       RegisterMap map(thread, false);
   983       frame deoptee = thread->last_frame().sender(&map);
   984       assert(deoptee.is_deoptimized_frame(), "must be deopted");
   985       // Adjust the pc back to the original throwing pc
   986       pc = deoptee.pc();
   987     }
   989     // If we are forcing an unwind because of stack overflow then deopt is
   990     // irrelevant sice we are throwing the frame away anyway.
   992     if (deopting && !force_unwind) {
   993       handler_address = SharedRuntime::deopt_blob()->unpack_with_exception();
   994     } else {
   996       handler_address =
   997         force_unwind ? NULL : nm->handler_for_exception_and_pc(exception, pc);
   999       if (handler_address == NULL) {
  1000         Handle original_exception(thread, exception());
  1001         handler_address = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, force_unwind, true);
  1002         assert (handler_address != NULL, "must have compiled handler");
  1003         // Update the exception cache only when the unwind was not forced
  1004         // and there didn't happen another exception during the computation of the
  1005         // compiled exception handler.
  1006         if (!force_unwind && original_exception() == exception()) {
  1007           nm->add_handler_for_exception_and_pc(exception,pc,handler_address);
  1009       } else {
  1010         assert(handler_address == SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, force_unwind, true), "Must be the same");
  1014     thread->set_exception_pc(pc);
  1015     thread->set_exception_handler_pc(handler_address);
  1017     // Check if the exception PC is a MethodHandle call site.
  1018     thread->set_is_method_handle_return(nm->is_method_handle_return(pc));
  1021   // Restore correct return pc.  Was saved above.
  1022   thread->set_exception_oop(exception());
  1023   return handler_address;
  1025 JRT_END
  1027 // We are entering here from exception_blob
  1028 // If there is a compiled exception handler in this method, we will continue there;
  1029 // otherwise we will unwind the stack and continue at the caller of top frame method
  1030 // Note we enter without the usual JRT wrapper. We will call a helper routine that
  1031 // will do the normal VM entry. We do it this way so that we can see if the nmethod
  1032 // we looked up the handler for has been deoptimized in the meantime. If it has been
  1033 // we must not use the handler and instread return the deopt blob.
  1034 address OptoRuntime::handle_exception_C(JavaThread* thread) {
  1035 //
  1036 // We are in Java not VM and in debug mode we have a NoHandleMark
  1037 //
  1038 #ifndef PRODUCT
  1039   SharedRuntime::_find_handler_ctr++;          // find exception handler
  1040 #endif
  1041   debug_only(NoHandleMark __hm;)
  1042   nmethod* nm = NULL;
  1043   address handler_address = NULL;
  1045     // Enter the VM
  1047     ResetNoHandleMark rnhm;
  1048     handler_address = handle_exception_C_helper(thread, nm);
  1051   // Back in java: Use no oops, DON'T safepoint
  1053   // Now check to see if the handler we are returning is in a now
  1054   // deoptimized frame
  1056   if (nm != NULL) {
  1057     RegisterMap map(thread, false);
  1058     frame caller = thread->last_frame().sender(&map);
  1059 #ifdef ASSERT
  1060     assert(caller.is_compiled_frame(), "must be");
  1061 #endif // ASSERT
  1062     if (caller.is_deoptimized_frame()) {
  1063       handler_address = SharedRuntime::deopt_blob()->unpack_with_exception();
  1066   return handler_address;
  1069 //------------------------------rethrow----------------------------------------
  1070 // We get here after compiled code has executed a 'RethrowNode'.  The callee
  1071 // is either throwing or rethrowing an exception.  The callee-save registers
  1072 // have been restored, synchronized objects have been unlocked and the callee
  1073 // stack frame has been removed.  The return address was passed in.
  1074 // Exception oop is passed as the 1st argument.  This routine is then called
  1075 // from the stub.  On exit, we know where to jump in the caller's code.
  1076 // After this C code exits, the stub will pop his frame and end in a jump
  1077 // (instead of a return).  We enter the caller's default handler.
  1078 //
  1079 // This must be JRT_LEAF:
  1080 //     - caller will not change its state as we cannot block on exit,
  1081 //       therefore raw_exception_handler_for_return_address is all it takes
  1082 //       to handle deoptimized blobs
  1083 //
  1084 // However, there needs to be a safepoint check in the middle!  So compiled
  1085 // safepoints are completely watertight.
  1086 //
  1087 // Thus, it cannot be a leaf since it contains the No_GC_Verifier.
  1088 //
  1089 // *THIS IS NOT RECOMMENDED PROGRAMMING STYLE*
  1090 //
  1091 address OptoRuntime::rethrow_C(oopDesc* exception, JavaThread* thread, address ret_pc) {
  1092 #ifndef PRODUCT
  1093   SharedRuntime::_rethrow_ctr++;               // count rethrows
  1094 #endif
  1095   assert (exception != NULL, "should have thrown a NULLPointerException");
  1096 #ifdef ASSERT
  1097   if (!(exception->is_a(SystemDictionary::Throwable_klass()))) {
  1098     // should throw an exception here
  1099     ShouldNotReachHere();
  1101 #endif
  1103   thread->set_vm_result(exception);
  1104   // Frame not compiled (handles deoptimization blob)
  1105   return SharedRuntime::raw_exception_handler_for_return_address(thread, ret_pc);
  1109 const TypeFunc *OptoRuntime::rethrow_Type() {
  1110   // create input type (domain)
  1111   const Type **fields = TypeTuple::fields(1);
  1112   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Exception oop
  1113   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1,fields);
  1115   // create result type (range)
  1116   fields = TypeTuple::fields(1);
  1117   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Exception oop
  1118   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
  1120   return TypeFunc::make(domain, range);
  1124 void OptoRuntime::deoptimize_caller_frame(JavaThread *thread, bool doit) {
  1125   // Deoptimize frame
  1126   if (doit) {
  1127     // Called from within the owner thread, so no need for safepoint
  1128     RegisterMap reg_map(thread);
  1129     frame stub_frame = thread->last_frame();
  1130     assert(stub_frame.is_runtime_frame() || exception_blob()->contains(stub_frame.pc()), "sanity check");
  1131     frame caller_frame = stub_frame.sender(&reg_map);
  1133     // bypass VM_DeoptimizeFrame and deoptimize the frame directly
  1134     Deoptimization::deoptimize_frame(thread, caller_frame.id());
  1139 const TypeFunc *OptoRuntime::register_finalizer_Type() {
  1140   // create input type (domain)
  1141   const Type **fields = TypeTuple::fields(1);
  1142   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // oop;          Receiver
  1143   // // The JavaThread* is passed to each routine as the last argument
  1144   // fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL;  // JavaThread *; Executing thread
  1145   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1,fields);
  1147   // create result type (range)
  1148   fields = TypeTuple::fields(0);
  1150   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
  1152   return TypeFunc::make(domain,range);
  1156 //-----------------------------------------------------------------------------
  1157 // Dtrace support.  entry and exit probes have the same signature
  1158 const TypeFunc *OptoRuntime::dtrace_method_entry_exit_Type() {
  1159   // create input type (domain)
  1160   const Type **fields = TypeTuple::fields(2);
  1161   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // Thread-local storage
  1162   fields[TypeFunc::Parms+1] = TypeInstPtr::NOTNULL;  // methodOop;    Method we are entering
  1163   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
  1165   // create result type (range)
  1166   fields = TypeTuple::fields(0);
  1168   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
  1170   return TypeFunc::make(domain,range);
  1173 const TypeFunc *OptoRuntime::dtrace_object_alloc_Type() {
  1174   // create input type (domain)
  1175   const Type **fields = TypeTuple::fields(2);
  1176   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // Thread-local storage
  1177   fields[TypeFunc::Parms+1] = TypeInstPtr::NOTNULL;  // oop;    newly allocated object
  1179   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
  1181   // create result type (range)
  1182   fields = TypeTuple::fields(0);
  1184   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
  1186   return TypeFunc::make(domain,range);
  1190 JRT_ENTRY_NO_ASYNC(void, OptoRuntime::register_finalizer(oopDesc* obj, JavaThread* thread))
  1191   assert(obj->is_oop(), "must be a valid oop");
  1192   assert(obj->klass()->klass_part()->has_finalizer(), "shouldn't be here otherwise");
  1193   instanceKlass::register_finalizer(instanceOop(obj), CHECK);
  1194 JRT_END
  1196 //-----------------------------------------------------------------------------
  1198 NamedCounter * volatile OptoRuntime::_named_counters = NULL;
  1200 //
  1201 // dump the collected NamedCounters.
  1202 //
  1203 void OptoRuntime::print_named_counters() {
  1204   int total_lock_count = 0;
  1205   int eliminated_lock_count = 0;
  1207   NamedCounter* c = _named_counters;
  1208   while (c) {
  1209     if (c->tag() == NamedCounter::LockCounter || c->tag() == NamedCounter::EliminatedLockCounter) {
  1210       int count = c->count();
  1211       if (count > 0) {
  1212         bool eliminated = c->tag() == NamedCounter::EliminatedLockCounter;
  1213         if (Verbose) {
  1214           tty->print_cr("%d %s%s", count, c->name(), eliminated ? " (eliminated)" : "");
  1216         total_lock_count += count;
  1217         if (eliminated) {
  1218           eliminated_lock_count += count;
  1221     } else if (c->tag() == NamedCounter::BiasedLockingCounter) {
  1222       BiasedLockingCounters* blc = ((BiasedLockingNamedCounter*)c)->counters();
  1223       if (blc->nonzero()) {
  1224         tty->print_cr("%s", c->name());
  1225         blc->print_on(tty);
  1228     c = c->next();
  1230   if (total_lock_count > 0) {
  1231     tty->print_cr("dynamic locks: %d", total_lock_count);
  1232     if (eliminated_lock_count) {
  1233       tty->print_cr("eliminated locks: %d (%d%%)", eliminated_lock_count,
  1234                     (int)(eliminated_lock_count * 100.0 / total_lock_count));
  1239 //
  1240 //  Allocate a new NamedCounter.  The JVMState is used to generate the
  1241 //  name which consists of method@line for the inlining tree.
  1242 //
  1244 NamedCounter* OptoRuntime::new_named_counter(JVMState* youngest_jvms, NamedCounter::CounterTag tag) {
  1245   int max_depth = youngest_jvms->depth();
  1247   // Visit scopes from youngest to oldest.
  1248   bool first = true;
  1249   stringStream st;
  1250   for (int depth = max_depth; depth >= 1; depth--) {
  1251     JVMState* jvms = youngest_jvms->of_depth(depth);
  1252     ciMethod* m = jvms->has_method() ? jvms->method() : NULL;
  1253     if (!first) {
  1254       st.print(" ");
  1255     } else {
  1256       first = false;
  1258     int bci = jvms->bci();
  1259     if (bci < 0) bci = 0;
  1260     st.print("%s.%s@%d", m->holder()->name()->as_utf8(), m->name()->as_utf8(), bci);
  1261     // To print linenumbers instead of bci use: m->line_number_from_bci(bci)
  1263   NamedCounter* c;
  1264   if (tag == NamedCounter::BiasedLockingCounter) {
  1265     c = new BiasedLockingNamedCounter(strdup(st.as_string()));
  1266   } else {
  1267     c = new NamedCounter(strdup(st.as_string()), tag);
  1270   // atomically add the new counter to the head of the list.  We only
  1271   // add counters so this is safe.
  1272   NamedCounter* head;
  1273   do {
  1274     head = _named_counters;
  1275     c->set_next(head);
  1276   } while (Atomic::cmpxchg_ptr(c, &_named_counters, head) != head);
  1277   return c;
  1280 //-----------------------------------------------------------------------------
  1281 // Non-product code
  1282 #ifndef PRODUCT
  1284 int trace_exception_counter = 0;
  1285 static void trace_exception(oop exception_oop, address exception_pc, const char* msg) {
  1286   ttyLocker ttyl;
  1287   trace_exception_counter++;
  1288   tty->print("%d [Exception (%s): ", trace_exception_counter, msg);
  1289   exception_oop->print_value();
  1290   tty->print(" in ");
  1291   CodeBlob* blob = CodeCache::find_blob(exception_pc);
  1292   if (blob->is_nmethod()) {
  1293     ((nmethod*)blob)->method()->print_value();
  1294   } else if (blob->is_runtime_stub()) {
  1295     tty->print("<runtime-stub>");
  1296   } else {
  1297     tty->print("<unknown>");
  1299   tty->print(" at " INTPTR_FORMAT,  exception_pc);
  1300   tty->print_cr("]");
  1303 #endif  // PRODUCT
  1306 # ifdef ENABLE_ZAP_DEAD_LOCALS
  1307 // Called from call sites in compiled code with oop maps (actually safepoints)
  1308 // Zaps dead locals in first java frame.
  1309 // Is entry because may need to lock to generate oop maps
  1310 // Currently, only used for compiler frames, but someday may be used
  1311 // for interpreter frames, too.
  1313 int OptoRuntime::ZapDeadCompiledLocals_count = 0;
  1315 // avoid pointers to member funcs with these helpers
  1316 static bool is_java_frame(  frame* f) { return f->is_java_frame();   }
  1317 static bool is_native_frame(frame* f) { return f->is_native_frame(); }
  1320 void OptoRuntime::zap_dead_java_or_native_locals(JavaThread* thread,
  1321                                                 bool (*is_this_the_right_frame_to_zap)(frame*)) {
  1322   assert(JavaThread::current() == thread, "is this needed?");
  1324   if ( !ZapDeadCompiledLocals )  return;
  1326   bool skip = false;
  1328        if ( ZapDeadCompiledLocalsFirst  ==  0  ) ; // nothing special
  1329   else if ( ZapDeadCompiledLocalsFirst  >  ZapDeadCompiledLocals_count )  skip = true;
  1330   else if ( ZapDeadCompiledLocalsFirst  == ZapDeadCompiledLocals_count )
  1331     warning("starting zapping after skipping");
  1333        if ( ZapDeadCompiledLocalsLast  ==  -1  ) ; // nothing special
  1334   else if ( ZapDeadCompiledLocalsLast  <   ZapDeadCompiledLocals_count )  skip = true;
  1335   else if ( ZapDeadCompiledLocalsLast  ==  ZapDeadCompiledLocals_count )
  1336     warning("about to zap last zap");
  1338   ++ZapDeadCompiledLocals_count; // counts skipped zaps, too
  1340   if ( skip )  return;
  1342   // find java frame and zap it
  1344   for (StackFrameStream sfs(thread);  !sfs.is_done();  sfs.next()) {
  1345     if (is_this_the_right_frame_to_zap(sfs.current()) ) {
  1346       sfs.current()->zap_dead_locals(thread, sfs.register_map());
  1347       return;
  1350   warning("no frame found to zap in zap_dead_Java_locals_C");
  1353 JRT_LEAF(void, OptoRuntime::zap_dead_Java_locals_C(JavaThread* thread))
  1354   zap_dead_java_or_native_locals(thread, is_java_frame);
  1355 JRT_END
  1357 // The following does not work because for one thing, the
  1358 // thread state is wrong; it expects java, but it is native.
  1359 // Also, the invariants in a native stub are different and
  1360 // I'm not sure it is safe to have a MachCalRuntimeDirectNode
  1361 // in there.
  1362 // So for now, we do not zap in native stubs.
  1364 JRT_LEAF(void, OptoRuntime::zap_dead_native_locals_C(JavaThread* thread))
  1365   zap_dead_java_or_native_locals(thread, is_native_frame);
  1366 JRT_END
  1368 # endif

mercurial