src/os/windows/vm/perfMemory_windows.cpp

Tue, 24 Apr 2012 12:15:32 -0700

author
twisti
date
Tue, 24 Apr 2012 12:15:32 -0700
changeset 3747
ec15e8f6e4f1
parent 2543
de14f1eee390
child 3900
d2a62e0f25eb
permissions
-rw-r--r--

7157695: Add windows implementation of socket interface
Reviewed-by: kvn, dholmes, twisti
Contributed-by: Nils Eliasson <nils.eliasson@oracle.com>

     1 /*
     2  * Copyright (c) 2001, 2011, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "classfile/vmSymbols.hpp"
    27 #include "memory/allocation.inline.hpp"
    28 #include "memory/resourceArea.hpp"
    29 #include "oops/oop.inline.hpp"
    30 #include "os_windows.inline.hpp"
    31 #include "runtime/handles.inline.hpp"
    32 #include "runtime/perfMemory.hpp"
    33 #include "utilities/exceptions.hpp"
    35 #include <windows.h>
    36 #include <sys/types.h>
    37 #include <sys/stat.h>
    38 #include <errno.h>
    39 #include <lmcons.h>
    41 typedef BOOL (WINAPI *SetSecurityDescriptorControlFnPtr)(
    42    IN PSECURITY_DESCRIPTOR pSecurityDescriptor,
    43    IN SECURITY_DESCRIPTOR_CONTROL ControlBitsOfInterest,
    44    IN SECURITY_DESCRIPTOR_CONTROL ControlBitsToSet);
    46 // Standard Memory Implementation Details
    48 // create the PerfData memory region in standard memory.
    49 //
    50 static char* create_standard_memory(size_t size) {
    52   // allocate an aligned chuck of memory
    53   char* mapAddress = os::reserve_memory(size);
    55   if (mapAddress == NULL) {
    56     return NULL;
    57   }
    59   // commit memory
    60   if (!os::commit_memory(mapAddress, size)) {
    61     if (PrintMiscellaneous && Verbose) {
    62       warning("Could not commit PerfData memory\n");
    63     }
    64     os::release_memory(mapAddress, size);
    65     return NULL;
    66   }
    68   return mapAddress;
    69 }
    71 // delete the PerfData memory region
    72 //
    73 static void delete_standard_memory(char* addr, size_t size) {
    75   // there are no persistent external resources to cleanup for standard
    76   // memory. since DestroyJavaVM does not support unloading of the JVM,
    77   // cleanup of the memory resource is not performed. The memory will be
    78   // reclaimed by the OS upon termination of the process.
    79   //
    80   return;
    82 }
    84 // save the specified memory region to the given file
    85 //
    86 static void save_memory_to_file(char* addr, size_t size) {
    88   const char* destfile = PerfMemory::get_perfdata_file_path();
    89   assert(destfile[0] != '\0', "invalid Perfdata file path");
    91   int fd = ::_open(destfile, _O_BINARY|_O_CREAT|_O_WRONLY|_O_TRUNC,
    92                    _S_IREAD|_S_IWRITE);
    94   if (fd == OS_ERR) {
    95     if (PrintMiscellaneous && Verbose) {
    96       warning("Could not create Perfdata save file: %s: %s\n",
    97               destfile, strerror(errno));
    98     }
    99   } else {
   100     for (size_t remaining = size; remaining > 0;) {
   102       int nbytes = ::_write(fd, addr, (unsigned int)remaining);
   103       if (nbytes == OS_ERR) {
   104         if (PrintMiscellaneous && Verbose) {
   105           warning("Could not write Perfdata save file: %s: %s\n",
   106                   destfile, strerror(errno));
   107         }
   108         break;
   109       }
   111       remaining -= (size_t)nbytes;
   112       addr += nbytes;
   113     }
   115     int result = ::_close(fd);
   116     if (PrintMiscellaneous && Verbose) {
   117       if (result == OS_ERR) {
   118         warning("Could not close %s: %s\n", destfile, strerror(errno));
   119       }
   120     }
   121   }
   123   FREE_C_HEAP_ARRAY(char, destfile);
   124 }
   126 // Shared Memory Implementation Details
   128 // Note: the win32 shared memory implementation uses two objects to represent
   129 // the shared memory: a windows kernel based file mapping object and a backing
   130 // store file. On windows, the name space for shared memory is a kernel
   131 // based name space that is disjoint from other win32 name spaces. Since Java
   132 // is unaware of this name space, a parallel file system based name space is
   133 // maintained, which provides a common file system based shared memory name
   134 // space across the supported platforms and one that Java apps can deal with
   135 // through simple file apis.
   136 //
   137 // For performance and resource cleanup reasons, it is recommended that the
   138 // user specific directory and the backing store file be stored in either a
   139 // RAM based file system or a local disk based file system. Network based
   140 // file systems are not recommended for performance reasons. In addition,
   141 // use of SMB network based file systems may result in unsuccesful cleanup
   142 // of the disk based resource on exit of the VM. The Windows TMP and TEMP
   143 // environement variables, as used by the GetTempPath() Win32 API (see
   144 // os::get_temp_directory() in os_win32.cpp), control the location of the
   145 // user specific directory and the shared memory backing store file.
   147 static HANDLE sharedmem_fileMapHandle = NULL;
   148 static HANDLE sharedmem_fileHandle = INVALID_HANDLE_VALUE;
   149 static char*  sharedmem_fileName = NULL;
   151 // return the user specific temporary directory name.
   152 //
   153 // the caller is expected to free the allocated memory.
   154 //
   155 static char* get_user_tmp_dir(const char* user) {
   157   const char* tmpdir = os::get_temp_directory();
   158   const char* perfdir = PERFDATA_NAME;
   159   size_t nbytes = strlen(tmpdir) + strlen(perfdir) + strlen(user) + 3;
   160   char* dirname = NEW_C_HEAP_ARRAY(char, nbytes);
   162   // construct the path name to user specific tmp directory
   163   _snprintf(dirname, nbytes, "%s\\%s_%s", tmpdir, perfdir, user);
   165   return dirname;
   166 }
   168 // convert the given file name into a process id. if the file
   169 // does not meet the file naming constraints, return 0.
   170 //
   171 static int filename_to_pid(const char* filename) {
   173   // a filename that doesn't begin with a digit is not a
   174   // candidate for conversion.
   175   //
   176   if (!isdigit(*filename)) {
   177     return 0;
   178   }
   180   // check if file name can be converted to an integer without
   181   // any leftover characters.
   182   //
   183   char* remainder = NULL;
   184   errno = 0;
   185   int pid = (int)strtol(filename, &remainder, 10);
   187   if (errno != 0) {
   188     return 0;
   189   }
   191   // check for left over characters. If any, then the filename is
   192   // not a candidate for conversion.
   193   //
   194   if (remainder != NULL && *remainder != '\0') {
   195     return 0;
   196   }
   198   // successful conversion, return the pid
   199   return pid;
   200 }
   202 // check if the given path is considered a secure directory for
   203 // the backing store files. Returns true if the directory exists
   204 // and is considered a secure location. Returns false if the path
   205 // is a symbolic link or if an error occurred.
   206 //
   207 static bool is_directory_secure(const char* path) {
   209   DWORD fa;
   211   fa = GetFileAttributes(path);
   212   if (fa == 0xFFFFFFFF) {
   213     DWORD lasterror = GetLastError();
   214     if (lasterror == ERROR_FILE_NOT_FOUND) {
   215       return false;
   216     }
   217     else {
   218       // unexpected error, declare the path insecure
   219       if (PrintMiscellaneous && Verbose) {
   220         warning("could not get attributes for file %s: ",
   221                 " lasterror = %d\n", path, lasterror);
   222       }
   223       return false;
   224     }
   225   }
   227   if (fa & FILE_ATTRIBUTE_REPARSE_POINT) {
   228     // we don't accept any redirection for the user specific directory
   229     // so declare the path insecure. This may be too conservative,
   230     // as some types of reparse points might be acceptable, but it
   231     // is probably more secure to avoid these conditions.
   232     //
   233     if (PrintMiscellaneous && Verbose) {
   234       warning("%s is a reparse point\n", path);
   235     }
   236     return false;
   237   }
   239   if (fa & FILE_ATTRIBUTE_DIRECTORY) {
   240     // this is the expected case. Since windows supports symbolic
   241     // links to directories only, not to files, there is no need
   242     // to check for open write permissions on the directory. If the
   243     // directory has open write permissions, any files deposited that
   244     // are not expected will be removed by the cleanup code.
   245     //
   246     return true;
   247   }
   248   else {
   249     // this is either a regular file or some other type of file,
   250     // any of which are unexpected and therefore insecure.
   251     //
   252     if (PrintMiscellaneous && Verbose) {
   253       warning("%s is not a directory, file attributes = "
   254               INTPTR_FORMAT "\n", path, fa);
   255     }
   256     return false;
   257   }
   258 }
   260 // return the user name for the owner of this process
   261 //
   262 // the caller is expected to free the allocated memory.
   263 //
   264 static char* get_user_name() {
   266   /* get the user name. This code is adapted from code found in
   267    * the jdk in src/windows/native/java/lang/java_props_md.c
   268    * java_props_md.c  1.29 02/02/06. According to the original
   269    * source, the call to GetUserName is avoided because of a resulting
   270    * increase in footprint of 100K.
   271    */
   272   char* user = getenv("USERNAME");
   273   char buf[UNLEN+1];
   274   DWORD buflen = sizeof(buf);
   275   if (user == NULL || strlen(user) == 0) {
   276     if (GetUserName(buf, &buflen)) {
   277       user = buf;
   278     }
   279     else {
   280       return NULL;
   281     }
   282   }
   284   char* user_name = NEW_C_HEAP_ARRAY(char, strlen(user)+1);
   285   strcpy(user_name, user);
   287   return user_name;
   288 }
   290 // return the name of the user that owns the process identified by vmid.
   291 //
   292 // This method uses a slow directory search algorithm to find the backing
   293 // store file for the specified vmid and returns the user name, as determined
   294 // by the user name suffix of the hsperfdata_<username> directory name.
   295 //
   296 // the caller is expected to free the allocated memory.
   297 //
   298 static char* get_user_name_slow(int vmid) {
   300   // directory search
   301   char* latest_user = NULL;
   302   time_t latest_ctime = 0;
   304   const char* tmpdirname = os::get_temp_directory();
   306   DIR* tmpdirp = os::opendir(tmpdirname);
   308   if (tmpdirp == NULL) {
   309     return NULL;
   310   }
   312   // for each entry in the directory that matches the pattern hsperfdata_*,
   313   // open the directory and check if the file for the given vmid exists.
   314   // The file with the expected name and the latest creation date is used
   315   // to determine the user name for the process id.
   316   //
   317   struct dirent* dentry;
   318   char* tdbuf = NEW_C_HEAP_ARRAY(char, os::readdir_buf_size(tmpdirname));
   319   errno = 0;
   320   while ((dentry = os::readdir(tmpdirp, (struct dirent *)tdbuf)) != NULL) {
   322     // check if the directory entry is a hsperfdata file
   323     if (strncmp(dentry->d_name, PERFDATA_NAME, strlen(PERFDATA_NAME)) != 0) {
   324       continue;
   325     }
   327     char* usrdir_name = NEW_C_HEAP_ARRAY(char,
   328                               strlen(tmpdirname) + strlen(dentry->d_name) + 2);
   329     strcpy(usrdir_name, tmpdirname);
   330     strcat(usrdir_name, "\\");
   331     strcat(usrdir_name, dentry->d_name);
   333     DIR* subdirp = os::opendir(usrdir_name);
   335     if (subdirp == NULL) {
   336       FREE_C_HEAP_ARRAY(char, usrdir_name);
   337       continue;
   338     }
   340     // Since we don't create the backing store files in directories
   341     // pointed to by symbolic links, we also don't follow them when
   342     // looking for the files. We check for a symbolic link after the
   343     // call to opendir in order to eliminate a small window where the
   344     // symlink can be exploited.
   345     //
   346     if (!is_directory_secure(usrdir_name)) {
   347       FREE_C_HEAP_ARRAY(char, usrdir_name);
   348       os::closedir(subdirp);
   349       continue;
   350     }
   352     struct dirent* udentry;
   353     char* udbuf = NEW_C_HEAP_ARRAY(char, os::readdir_buf_size(usrdir_name));
   354     errno = 0;
   355     while ((udentry = os::readdir(subdirp, (struct dirent *)udbuf)) != NULL) {
   357       if (filename_to_pid(udentry->d_name) == vmid) {
   358         struct stat statbuf;
   360         char* filename = NEW_C_HEAP_ARRAY(char,
   361                             strlen(usrdir_name) + strlen(udentry->d_name) + 2);
   363         strcpy(filename, usrdir_name);
   364         strcat(filename, "\\");
   365         strcat(filename, udentry->d_name);
   367         if (::stat(filename, &statbuf) == OS_ERR) {
   368            FREE_C_HEAP_ARRAY(char, filename);
   369            continue;
   370         }
   372         // skip over files that are not regular files.
   373         if ((statbuf.st_mode & S_IFMT) != S_IFREG) {
   374           FREE_C_HEAP_ARRAY(char, filename);
   375           continue;
   376         }
   378         // If we found a matching file with a newer creation time, then
   379         // save the user name. The newer creation time indicates that
   380         // we found a newer incarnation of the process associated with
   381         // vmid. Due to the way that Windows recycles pids and the fact
   382         // that we can't delete the file from the file system namespace
   383         // until last close, it is possible for there to be more than
   384         // one hsperfdata file with a name matching vmid (diff users).
   385         //
   386         // We no longer ignore hsperfdata files where (st_size == 0).
   387         // In this function, all we're trying to do is determine the
   388         // name of the user that owns the process associated with vmid
   389         // so the size doesn't matter. Very rarely, we have observed
   390         // hsperfdata files where (st_size == 0) and the st_size field
   391         // later becomes the expected value.
   392         //
   393         if (statbuf.st_ctime > latest_ctime) {
   394           char* user = strchr(dentry->d_name, '_') + 1;
   396           if (latest_user != NULL) FREE_C_HEAP_ARRAY(char, latest_user);
   397           latest_user = NEW_C_HEAP_ARRAY(char, strlen(user)+1);
   399           strcpy(latest_user, user);
   400           latest_ctime = statbuf.st_ctime;
   401         }
   403         FREE_C_HEAP_ARRAY(char, filename);
   404       }
   405     }
   406     os::closedir(subdirp);
   407     FREE_C_HEAP_ARRAY(char, udbuf);
   408     FREE_C_HEAP_ARRAY(char, usrdir_name);
   409   }
   410   os::closedir(tmpdirp);
   411   FREE_C_HEAP_ARRAY(char, tdbuf);
   413   return(latest_user);
   414 }
   416 // return the name of the user that owns the process identified by vmid.
   417 //
   418 // note: this method should only be used via the Perf native methods.
   419 // There are various costs to this method and limiting its use to the
   420 // Perf native methods limits the impact to monitoring applications only.
   421 //
   422 static char* get_user_name(int vmid) {
   424   // A fast implementation is not provided at this time. It's possible
   425   // to provide a fast process id to user name mapping function using
   426   // the win32 apis, but the default ACL for the process object only
   427   // allows processes with the same owner SID to acquire the process
   428   // handle (via OpenProcess(PROCESS_QUERY_INFORMATION)). It's possible
   429   // to have the JVM change the ACL for the process object to allow arbitrary
   430   // users to access the process handle and the process security token.
   431   // The security ramifications need to be studied before providing this
   432   // mechanism.
   433   //
   434   return get_user_name_slow(vmid);
   435 }
   437 // return the name of the shared memory file mapping object for the
   438 // named shared memory region for the given user name and vmid.
   439 //
   440 // The file mapping object's name is not the file name. It is a name
   441 // in a separate name space.
   442 //
   443 // the caller is expected to free the allocated memory.
   444 //
   445 static char *get_sharedmem_objectname(const char* user, int vmid) {
   447   // construct file mapping object's name, add 3 for two '_' and a
   448   // null terminator.
   449   int nbytes = (int)strlen(PERFDATA_NAME) + (int)strlen(user) + 3;
   451   // the id is converted to an unsigned value here because win32 allows
   452   // negative process ids. However, OpenFileMapping API complains
   453   // about a name containing a '-' characters.
   454   //
   455   nbytes += UINT_CHARS;
   456   char* name = NEW_C_HEAP_ARRAY(char, nbytes);
   457   _snprintf(name, nbytes, "%s_%s_%u", PERFDATA_NAME, user, vmid);
   459   return name;
   460 }
   462 // return the file name of the backing store file for the named
   463 // shared memory region for the given user name and vmid.
   464 //
   465 // the caller is expected to free the allocated memory.
   466 //
   467 static char* get_sharedmem_filename(const char* dirname, int vmid) {
   469   // add 2 for the file separator and a null terminator.
   470   size_t nbytes = strlen(dirname) + UINT_CHARS + 2;
   472   char* name = NEW_C_HEAP_ARRAY(char, nbytes);
   473   _snprintf(name, nbytes, "%s\\%d", dirname, vmid);
   475   return name;
   476 }
   478 // remove file
   479 //
   480 // this method removes the file with the given file name.
   481 //
   482 // Note: if the indicated file is on an SMB network file system, this
   483 // method may be unsuccessful in removing the file.
   484 //
   485 static void remove_file(const char* dirname, const char* filename) {
   487   size_t nbytes = strlen(dirname) + strlen(filename) + 2;
   488   char* path = NEW_C_HEAP_ARRAY(char, nbytes);
   490   strcpy(path, dirname);
   491   strcat(path, "\\");
   492   strcat(path, filename);
   494   if (::unlink(path) == OS_ERR) {
   495     if (PrintMiscellaneous && Verbose) {
   496       if (errno != ENOENT) {
   497         warning("Could not unlink shared memory backing"
   498                 " store file %s : %s\n", path, strerror(errno));
   499       }
   500     }
   501   }
   503   FREE_C_HEAP_ARRAY(char, path);
   504 }
   506 // returns true if the process represented by pid is alive, otherwise
   507 // returns false. the validity of the result is only accurate if the
   508 // target process is owned by the same principal that owns this process.
   509 // this method should not be used if to test the status of an otherwise
   510 // arbitrary process unless it is know that this process has the appropriate
   511 // privileges to guarantee a result valid.
   512 //
   513 static bool is_alive(int pid) {
   515   HANDLE ph = OpenProcess(PROCESS_QUERY_INFORMATION, FALSE, pid);
   516   if (ph == NULL) {
   517     // the process does not exist.
   518     if (PrintMiscellaneous && Verbose) {
   519       DWORD lastError = GetLastError();
   520       if (lastError != ERROR_INVALID_PARAMETER) {
   521         warning("OpenProcess failed: %d\n", GetLastError());
   522       }
   523     }
   524     return false;
   525   }
   527   DWORD exit_status;
   528   if (!GetExitCodeProcess(ph, &exit_status)) {
   529     if (PrintMiscellaneous && Verbose) {
   530       warning("GetExitCodeProcess failed: %d\n", GetLastError());
   531     }
   532     CloseHandle(ph);
   533     return false;
   534   }
   536   CloseHandle(ph);
   537   return (exit_status == STILL_ACTIVE) ? true : false;
   538 }
   540 // check if the file system is considered secure for the backing store files
   541 //
   542 static bool is_filesystem_secure(const char* path) {
   544   char root_path[MAX_PATH];
   545   char fs_type[MAX_PATH];
   547   if (PerfBypassFileSystemCheck) {
   548     if (PrintMiscellaneous && Verbose) {
   549       warning("bypassing file system criteria checks for %s\n", path);
   550     }
   551     return true;
   552   }
   554   char* first_colon = strchr((char *)path, ':');
   555   if (first_colon == NULL) {
   556     if (PrintMiscellaneous && Verbose) {
   557       warning("expected device specifier in path: %s\n", path);
   558     }
   559     return false;
   560   }
   562   size_t len = (size_t)(first_colon - path);
   563   assert(len + 2 <= MAX_PATH, "unexpected device specifier length");
   564   strncpy(root_path, path, len + 1);
   565   root_path[len + 1] = '\\';
   566   root_path[len + 2] = '\0';
   568   // check that we have something like "C:\" or "AA:\"
   569   assert(strlen(root_path) >= 3, "device specifier too short");
   570   assert(strchr(root_path, ':') != NULL, "bad device specifier format");
   571   assert(strchr(root_path, '\\') != NULL, "bad device specifier format");
   573   DWORD maxpath;
   574   DWORD flags;
   576   if (!GetVolumeInformation(root_path, NULL, 0, NULL, &maxpath,
   577                             &flags, fs_type, MAX_PATH)) {
   578     // we can't get information about the volume, so assume unsafe.
   579     if (PrintMiscellaneous && Verbose) {
   580       warning("could not get device information for %s: "
   581               " path = %s: lasterror = %d\n",
   582               root_path, path, GetLastError());
   583     }
   584     return false;
   585   }
   587   if ((flags & FS_PERSISTENT_ACLS) == 0) {
   588     // file system doesn't support ACLs, declare file system unsafe
   589     if (PrintMiscellaneous && Verbose) {
   590       warning("file system type %s on device %s does not support"
   591               " ACLs\n", fs_type, root_path);
   592     }
   593     return false;
   594   }
   596   if ((flags & FS_VOL_IS_COMPRESSED) != 0) {
   597     // file system is compressed, declare file system unsafe
   598     if (PrintMiscellaneous && Verbose) {
   599       warning("file system type %s on device %s is compressed\n",
   600               fs_type, root_path);
   601     }
   602     return false;
   603   }
   605   return true;
   606 }
   608 // cleanup stale shared memory resources
   609 //
   610 // This method attempts to remove all stale shared memory files in
   611 // the named user temporary directory. It scans the named directory
   612 // for files matching the pattern ^$[0-9]*$. For each file found, the
   613 // process id is extracted from the file name and a test is run to
   614 // determine if the process is alive. If the process is not alive,
   615 // any stale file resources are removed.
   616 //
   617 static void cleanup_sharedmem_resources(const char* dirname) {
   619   // open the user temp directory
   620   DIR* dirp = os::opendir(dirname);
   622   if (dirp == NULL) {
   623     // directory doesn't exist, so there is nothing to cleanup
   624     return;
   625   }
   627   if (!is_directory_secure(dirname)) {
   628     // the directory is not secure, don't attempt any cleanup
   629     return;
   630   }
   632   // for each entry in the directory that matches the expected file
   633   // name pattern, determine if the file resources are stale and if
   634   // so, remove the file resources. Note, instrumented HotSpot processes
   635   // for this user may start and/or terminate during this search and
   636   // remove or create new files in this directory. The behavior of this
   637   // loop under these conditions is dependent upon the implementation of
   638   // opendir/readdir.
   639   //
   640   struct dirent* entry;
   641   char* dbuf = NEW_C_HEAP_ARRAY(char, os::readdir_buf_size(dirname));
   642   errno = 0;
   643   while ((entry = os::readdir(dirp, (struct dirent *)dbuf)) != NULL) {
   645     int pid = filename_to_pid(entry->d_name);
   647     if (pid == 0) {
   649       if (strcmp(entry->d_name, ".") != 0 && strcmp(entry->d_name, "..") != 0) {
   651         // attempt to remove all unexpected files, except "." and ".."
   652         remove_file(dirname, entry->d_name);
   653       }
   655       errno = 0;
   656       continue;
   657     }
   659     // we now have a file name that converts to a valid integer
   660     // that could represent a process id . if this process id
   661     // matches the current process id or the process is not running,
   662     // then remove the stale file resources.
   663     //
   664     // process liveness is detected by checking the exit status
   665     // of the process. if the process id is valid and the exit status
   666     // indicates that it is still running, the file file resources
   667     // are not removed. If the process id is invalid, or if we don't
   668     // have permissions to check the process status, or if the process
   669     // id is valid and the process has terminated, the the file resources
   670     // are assumed to be stale and are removed.
   671     //
   672     if (pid == os::current_process_id() || !is_alive(pid)) {
   674       // we can only remove the file resources. Any mapped views
   675       // of the file can only be unmapped by the processes that
   676       // opened those views and the file mapping object will not
   677       // get removed until all views are unmapped.
   678       //
   679       remove_file(dirname, entry->d_name);
   680     }
   681     errno = 0;
   682   }
   683   os::closedir(dirp);
   684   FREE_C_HEAP_ARRAY(char, dbuf);
   685 }
   687 // create a file mapping object with the requested name, and size
   688 // from the file represented by the given Handle object
   689 //
   690 static HANDLE create_file_mapping(const char* name, HANDLE fh, LPSECURITY_ATTRIBUTES fsa, size_t size) {
   692   DWORD lowSize = (DWORD)size;
   693   DWORD highSize = 0;
   694   HANDLE fmh = NULL;
   696   // Create a file mapping object with the given name. This function
   697   // will grow the file to the specified size.
   698   //
   699   fmh = CreateFileMapping(
   700                fh,                 /* HANDLE file handle for backing store */
   701                fsa,                /* LPSECURITY_ATTRIBUTES Not inheritable */
   702                PAGE_READWRITE,     /* DWORD protections */
   703                highSize,           /* DWORD High word of max size */
   704                lowSize,            /* DWORD Low word of max size */
   705                name);              /* LPCTSTR name for object */
   707   if (fmh == NULL) {
   708     if (PrintMiscellaneous && Verbose) {
   709       warning("CreateFileMapping failed, lasterror = %d\n", GetLastError());
   710     }
   711     return NULL;
   712   }
   714   if (GetLastError() == ERROR_ALREADY_EXISTS) {
   716     // a stale file mapping object was encountered. This object may be
   717     // owned by this or some other user and cannot be removed until
   718     // the other processes either exit or close their mapping objects
   719     // and/or mapped views of this mapping object.
   720     //
   721     if (PrintMiscellaneous && Verbose) {
   722       warning("file mapping already exists, lasterror = %d\n", GetLastError());
   723     }
   725     CloseHandle(fmh);
   726     return NULL;
   727   }
   729   return fmh;
   730 }
   733 // method to free the given security descriptor and the contained
   734 // access control list.
   735 //
   736 static void free_security_desc(PSECURITY_DESCRIPTOR pSD) {
   738   BOOL success, exists, isdefault;
   739   PACL pACL;
   741   if (pSD != NULL) {
   743     // get the access control list from the security descriptor
   744     success = GetSecurityDescriptorDacl(pSD, &exists, &pACL, &isdefault);
   746     // if an ACL existed and it was not a default acl, then it must
   747     // be an ACL we enlisted. free the resources.
   748     //
   749     if (success && exists && pACL != NULL && !isdefault) {
   750       FREE_C_HEAP_ARRAY(char, pACL);
   751     }
   753     // free the security descriptor
   754     FREE_C_HEAP_ARRAY(char, pSD);
   755   }
   756 }
   758 // method to free up a security attributes structure and any
   759 // contained security descriptors and ACL
   760 //
   761 static void free_security_attr(LPSECURITY_ATTRIBUTES lpSA) {
   763   if (lpSA != NULL) {
   764     // free the contained security descriptor and the ACL
   765     free_security_desc(lpSA->lpSecurityDescriptor);
   766     lpSA->lpSecurityDescriptor = NULL;
   768     // free the security attributes structure
   769     FREE_C_HEAP_ARRAY(char, lpSA);
   770   }
   771 }
   773 // get the user SID for the process indicated by the process handle
   774 //
   775 static PSID get_user_sid(HANDLE hProcess) {
   777   HANDLE hAccessToken;
   778   PTOKEN_USER token_buf = NULL;
   779   DWORD rsize = 0;
   781   if (hProcess == NULL) {
   782     return NULL;
   783   }
   785   // get the process token
   786   if (!OpenProcessToken(hProcess, TOKEN_READ, &hAccessToken)) {
   787     if (PrintMiscellaneous && Verbose) {
   788       warning("OpenProcessToken failure: lasterror = %d \n", GetLastError());
   789     }
   790     return NULL;
   791   }
   793   // determine the size of the token structured needed to retrieve
   794   // the user token information from the access token.
   795   //
   796   if (!GetTokenInformation(hAccessToken, TokenUser, NULL, rsize, &rsize)) {
   797     DWORD lasterror = GetLastError();
   798     if (lasterror != ERROR_INSUFFICIENT_BUFFER) {
   799       if (PrintMiscellaneous && Verbose) {
   800         warning("GetTokenInformation failure: lasterror = %d,"
   801                 " rsize = %d\n", lasterror, rsize);
   802       }
   803       CloseHandle(hAccessToken);
   804       return NULL;
   805     }
   806   }
   808   token_buf = (PTOKEN_USER) NEW_C_HEAP_ARRAY(char, rsize);
   810   // get the user token information
   811   if (!GetTokenInformation(hAccessToken, TokenUser, token_buf, rsize, &rsize)) {
   812     if (PrintMiscellaneous && Verbose) {
   813       warning("GetTokenInformation failure: lasterror = %d,"
   814               " rsize = %d\n", GetLastError(), rsize);
   815     }
   816     FREE_C_HEAP_ARRAY(char, token_buf);
   817     CloseHandle(hAccessToken);
   818     return NULL;
   819   }
   821   DWORD nbytes = GetLengthSid(token_buf->User.Sid);
   822   PSID pSID = NEW_C_HEAP_ARRAY(char, nbytes);
   824   if (!CopySid(nbytes, pSID, token_buf->User.Sid)) {
   825     if (PrintMiscellaneous && Verbose) {
   826       warning("GetTokenInformation failure: lasterror = %d,"
   827               " rsize = %d\n", GetLastError(), rsize);
   828     }
   829     FREE_C_HEAP_ARRAY(char, token_buf);
   830     FREE_C_HEAP_ARRAY(char, pSID);
   831     CloseHandle(hAccessToken);
   832     return NULL;
   833   }
   835   // close the access token.
   836   CloseHandle(hAccessToken);
   837   FREE_C_HEAP_ARRAY(char, token_buf);
   839   return pSID;
   840 }
   842 // structure used to consolidate access control entry information
   843 //
   844 typedef struct ace_data {
   845   PSID pSid;      // SID of the ACE
   846   DWORD mask;     // mask for the ACE
   847 } ace_data_t;
   850 // method to add an allow access control entry with the access rights
   851 // indicated in mask for the principal indicated in SID to the given
   852 // security descriptor. Much of the DACL handling was adapted from
   853 // the example provided here:
   854 //      http://support.microsoft.com/kb/102102/EN-US/
   855 //
   857 static bool add_allow_aces(PSECURITY_DESCRIPTOR pSD,
   858                            ace_data_t aces[], int ace_count) {
   859   PACL newACL = NULL;
   860   PACL oldACL = NULL;
   862   if (pSD == NULL) {
   863     return false;
   864   }
   866   BOOL exists, isdefault;
   868   // retrieve any existing access control list.
   869   if (!GetSecurityDescriptorDacl(pSD, &exists, &oldACL, &isdefault)) {
   870     if (PrintMiscellaneous && Verbose) {
   871       warning("GetSecurityDescriptor failure: lasterror = %d \n",
   872               GetLastError());
   873     }
   874     return false;
   875   }
   877   // get the size of the DACL
   878   ACL_SIZE_INFORMATION aclinfo;
   880   // GetSecurityDescriptorDacl may return true value for exists (lpbDaclPresent)
   881   // while oldACL is NULL for some case.
   882   if (oldACL == NULL) {
   883     exists = FALSE;
   884   }
   886   if (exists) {
   887     if (!GetAclInformation(oldACL, &aclinfo,
   888                            sizeof(ACL_SIZE_INFORMATION),
   889                            AclSizeInformation)) {
   890       if (PrintMiscellaneous && Verbose) {
   891         warning("GetAclInformation failure: lasterror = %d \n", GetLastError());
   892         return false;
   893       }
   894     }
   895   } else {
   896     aclinfo.AceCount = 0; // assume NULL DACL
   897     aclinfo.AclBytesFree = 0;
   898     aclinfo.AclBytesInUse = sizeof(ACL);
   899   }
   901   // compute the size needed for the new ACL
   902   // initial size of ACL is sum of the following:
   903   //   * size of ACL structure.
   904   //   * size of each ACE structure that ACL is to contain minus the sid
   905   //     sidStart member (DWORD) of the ACE.
   906   //   * length of the SID that each ACE is to contain.
   907   DWORD newACLsize = aclinfo.AclBytesInUse +
   908                         (sizeof(ACCESS_ALLOWED_ACE) - sizeof(DWORD)) * ace_count;
   909   for (int i = 0; i < ace_count; i++) {
   910      assert(aces[i].pSid != 0, "pSid should not be 0");
   911      newACLsize += GetLengthSid(aces[i].pSid);
   912   }
   914   // create the new ACL
   915   newACL = (PACL) NEW_C_HEAP_ARRAY(char, newACLsize);
   917   if (!InitializeAcl(newACL, newACLsize, ACL_REVISION)) {
   918     if (PrintMiscellaneous && Verbose) {
   919       warning("InitializeAcl failure: lasterror = %d \n", GetLastError());
   920     }
   921     FREE_C_HEAP_ARRAY(char, newACL);
   922     return false;
   923   }
   925   unsigned int ace_index = 0;
   926   // copy any existing ACEs from the old ACL (if any) to the new ACL.
   927   if (aclinfo.AceCount != 0) {
   928     while (ace_index < aclinfo.AceCount) {
   929       LPVOID ace;
   930       if (!GetAce(oldACL, ace_index, &ace)) {
   931         if (PrintMiscellaneous && Verbose) {
   932           warning("InitializeAcl failure: lasterror = %d \n", GetLastError());
   933         }
   934         FREE_C_HEAP_ARRAY(char, newACL);
   935         return false;
   936       }
   937       if (((ACCESS_ALLOWED_ACE *)ace)->Header.AceFlags && INHERITED_ACE) {
   938         // this is an inherited, allowed ACE; break from loop so we can
   939         // add the new access allowed, non-inherited ACE in the correct
   940         // position, immediately following all non-inherited ACEs.
   941         break;
   942       }
   944       // determine if the SID of this ACE matches any of the SIDs
   945       // for which we plan to set ACEs.
   946       int matches = 0;
   947       for (int i = 0; i < ace_count; i++) {
   948         if (EqualSid(aces[i].pSid, &(((ACCESS_ALLOWED_ACE *)ace)->SidStart))) {
   949           matches++;
   950           break;
   951         }
   952       }
   954       // if there are no SID matches, then add this existing ACE to the new ACL
   955       if (matches == 0) {
   956         if (!AddAce(newACL, ACL_REVISION, MAXDWORD, ace,
   957                     ((PACE_HEADER)ace)->AceSize)) {
   958           if (PrintMiscellaneous && Verbose) {
   959             warning("AddAce failure: lasterror = %d \n", GetLastError());
   960           }
   961           FREE_C_HEAP_ARRAY(char, newACL);
   962           return false;
   963         }
   964       }
   965       ace_index++;
   966     }
   967   }
   969   // add the passed-in access control entries to the new ACL
   970   for (int i = 0; i < ace_count; i++) {
   971     if (!AddAccessAllowedAce(newACL, ACL_REVISION,
   972                              aces[i].mask, aces[i].pSid)) {
   973       if (PrintMiscellaneous && Verbose) {
   974         warning("AddAccessAllowedAce failure: lasterror = %d \n",
   975                 GetLastError());
   976       }
   977       FREE_C_HEAP_ARRAY(char, newACL);
   978       return false;
   979     }
   980   }
   982   // now copy the rest of the inherited ACEs from the old ACL
   983   if (aclinfo.AceCount != 0) {
   984     // picking up at ace_index, where we left off in the
   985     // previous ace_index loop
   986     while (ace_index < aclinfo.AceCount) {
   987       LPVOID ace;
   988       if (!GetAce(oldACL, ace_index, &ace)) {
   989         if (PrintMiscellaneous && Verbose) {
   990           warning("InitializeAcl failure: lasterror = %d \n", GetLastError());
   991         }
   992         FREE_C_HEAP_ARRAY(char, newACL);
   993         return false;
   994       }
   995       if (!AddAce(newACL, ACL_REVISION, MAXDWORD, ace,
   996                   ((PACE_HEADER)ace)->AceSize)) {
   997         if (PrintMiscellaneous && Verbose) {
   998           warning("AddAce failure: lasterror = %d \n", GetLastError());
   999         }
  1000         FREE_C_HEAP_ARRAY(char, newACL);
  1001         return false;
  1003       ace_index++;
  1007   // add the new ACL to the security descriptor.
  1008   if (!SetSecurityDescriptorDacl(pSD, TRUE, newACL, FALSE)) {
  1009     if (PrintMiscellaneous && Verbose) {
  1010       warning("SetSecurityDescriptorDacl failure:"
  1011               " lasterror = %d \n", GetLastError());
  1013     FREE_C_HEAP_ARRAY(char, newACL);
  1014     return false;
  1017   // if running on windows 2000 or later, set the automatic inheritance
  1018   // control flags.
  1019   SetSecurityDescriptorControlFnPtr _SetSecurityDescriptorControl;
  1020   _SetSecurityDescriptorControl = (SetSecurityDescriptorControlFnPtr)
  1021        GetProcAddress(GetModuleHandle(TEXT("advapi32.dll")),
  1022                       "SetSecurityDescriptorControl");
  1024   if (_SetSecurityDescriptorControl != NULL) {
  1025     // We do not want to further propagate inherited DACLs, so making them
  1026     // protected prevents that.
  1027     if (!_SetSecurityDescriptorControl(pSD, SE_DACL_PROTECTED,
  1028                                             SE_DACL_PROTECTED)) {
  1029       if (PrintMiscellaneous && Verbose) {
  1030         warning("SetSecurityDescriptorControl failure:"
  1031                 " lasterror = %d \n", GetLastError());
  1033       FREE_C_HEAP_ARRAY(char, newACL);
  1034       return false;
  1037    // Note, the security descriptor maintains a reference to the newACL, not
  1038    // a copy of it. Therefore, the newACL is not freed here. It is freed when
  1039    // the security descriptor containing its reference is freed.
  1040    //
  1041    return true;
  1044 // method to create a security attributes structure, which contains a
  1045 // security descriptor and an access control list comprised of 0 or more
  1046 // access control entries. The method take an array of ace_data structures
  1047 // that indicate the ACE to be added to the security descriptor.
  1048 //
  1049 // the caller must free the resources associated with the security
  1050 // attributes structure created by this method by calling the
  1051 // free_security_attr() method.
  1052 //
  1053 static LPSECURITY_ATTRIBUTES make_security_attr(ace_data_t aces[], int count) {
  1055   // allocate space for a security descriptor
  1056   PSECURITY_DESCRIPTOR pSD = (PSECURITY_DESCRIPTOR)
  1057                          NEW_C_HEAP_ARRAY(char, SECURITY_DESCRIPTOR_MIN_LENGTH);
  1059   // initialize the security descriptor
  1060   if (!InitializeSecurityDescriptor(pSD, SECURITY_DESCRIPTOR_REVISION)) {
  1061     if (PrintMiscellaneous && Verbose) {
  1062       warning("InitializeSecurityDescriptor failure: "
  1063               "lasterror = %d \n", GetLastError());
  1065     free_security_desc(pSD);
  1066     return NULL;
  1069   // add the access control entries
  1070   if (!add_allow_aces(pSD, aces, count)) {
  1071     free_security_desc(pSD);
  1072     return NULL;
  1075   // allocate and initialize the security attributes structure and
  1076   // return it to the caller.
  1077   //
  1078   LPSECURITY_ATTRIBUTES lpSA = (LPSECURITY_ATTRIBUTES)
  1079                             NEW_C_HEAP_ARRAY(char, sizeof(SECURITY_ATTRIBUTES));
  1080   lpSA->nLength = sizeof(SECURITY_ATTRIBUTES);
  1081   lpSA->lpSecurityDescriptor = pSD;
  1082   lpSA->bInheritHandle = FALSE;
  1084   return(lpSA);
  1087 // method to create a security attributes structure with a restrictive
  1088 // access control list that creates a set access rights for the user/owner
  1089 // of the securable object and a separate set access rights for everyone else.
  1090 // also provides for full access rights for the administrator group.
  1091 //
  1092 // the caller must free the resources associated with the security
  1093 // attributes structure created by this method by calling the
  1094 // free_security_attr() method.
  1095 //
  1097 static LPSECURITY_ATTRIBUTES make_user_everybody_admin_security_attr(
  1098                                 DWORD umask, DWORD emask, DWORD amask) {
  1100   ace_data_t aces[3];
  1102   // initialize the user ace data
  1103   aces[0].pSid = get_user_sid(GetCurrentProcess());
  1104   aces[0].mask = umask;
  1106   if (aces[0].pSid == 0)
  1107     return NULL;
  1109   // get the well known SID for BUILTIN\Administrators
  1110   PSID administratorsSid = NULL;
  1111   SID_IDENTIFIER_AUTHORITY SIDAuthAdministrators = SECURITY_NT_AUTHORITY;
  1113   if (!AllocateAndInitializeSid( &SIDAuthAdministrators, 2,
  1114            SECURITY_BUILTIN_DOMAIN_RID,
  1115            DOMAIN_ALIAS_RID_ADMINS,
  1116            0, 0, 0, 0, 0, 0, &administratorsSid)) {
  1118     if (PrintMiscellaneous && Verbose) {
  1119       warning("AllocateAndInitializeSid failure: "
  1120               "lasterror = %d \n", GetLastError());
  1122     return NULL;
  1125   // initialize the ace data for administrator group
  1126   aces[1].pSid = administratorsSid;
  1127   aces[1].mask = amask;
  1129   // get the well known SID for the universal Everybody
  1130   PSID everybodySid = NULL;
  1131   SID_IDENTIFIER_AUTHORITY SIDAuthEverybody = SECURITY_WORLD_SID_AUTHORITY;
  1133   if (!AllocateAndInitializeSid( &SIDAuthEverybody, 1, SECURITY_WORLD_RID,
  1134            0, 0, 0, 0, 0, 0, 0, &everybodySid)) {
  1136     if (PrintMiscellaneous && Verbose) {
  1137       warning("AllocateAndInitializeSid failure: "
  1138               "lasterror = %d \n", GetLastError());
  1140     return NULL;
  1143   // initialize the ace data for everybody else.
  1144   aces[2].pSid = everybodySid;
  1145   aces[2].mask = emask;
  1147   // create a security attributes structure with access control
  1148   // entries as initialized above.
  1149   LPSECURITY_ATTRIBUTES lpSA = make_security_attr(aces, 3);
  1150   FREE_C_HEAP_ARRAY(char, aces[0].pSid);
  1151   FreeSid(everybodySid);
  1152   FreeSid(administratorsSid);
  1153   return(lpSA);
  1157 // method to create the security attributes structure for restricting
  1158 // access to the user temporary directory.
  1159 //
  1160 // the caller must free the resources associated with the security
  1161 // attributes structure created by this method by calling the
  1162 // free_security_attr() method.
  1163 //
  1164 static LPSECURITY_ATTRIBUTES make_tmpdir_security_attr() {
  1166   // create full access rights for the user/owner of the directory
  1167   // and read-only access rights for everybody else. This is
  1168   // effectively equivalent to UNIX 755 permissions on a directory.
  1169   //
  1170   DWORD umask = STANDARD_RIGHTS_REQUIRED | FILE_ALL_ACCESS;
  1171   DWORD emask = GENERIC_READ | FILE_LIST_DIRECTORY | FILE_TRAVERSE;
  1172   DWORD amask = STANDARD_RIGHTS_ALL | FILE_ALL_ACCESS;
  1174   return make_user_everybody_admin_security_attr(umask, emask, amask);
  1177 // method to create the security attributes structure for restricting
  1178 // access to the shared memory backing store file.
  1179 //
  1180 // the caller must free the resources associated with the security
  1181 // attributes structure created by this method by calling the
  1182 // free_security_attr() method.
  1183 //
  1184 static LPSECURITY_ATTRIBUTES make_file_security_attr() {
  1186   // create extensive access rights for the user/owner of the file
  1187   // and attribute read-only access rights for everybody else. This
  1188   // is effectively equivalent to UNIX 600 permissions on a file.
  1189   //
  1190   DWORD umask = STANDARD_RIGHTS_ALL | FILE_ALL_ACCESS;
  1191   DWORD emask = STANDARD_RIGHTS_READ | FILE_READ_ATTRIBUTES |
  1192                  FILE_READ_EA | FILE_LIST_DIRECTORY | FILE_TRAVERSE;
  1193   DWORD amask = STANDARD_RIGHTS_ALL | FILE_ALL_ACCESS;
  1195   return make_user_everybody_admin_security_attr(umask, emask, amask);
  1198 // method to create the security attributes structure for restricting
  1199 // access to the name shared memory file mapping object.
  1200 //
  1201 // the caller must free the resources associated with the security
  1202 // attributes structure created by this method by calling the
  1203 // free_security_attr() method.
  1204 //
  1205 static LPSECURITY_ATTRIBUTES make_smo_security_attr() {
  1207   // create extensive access rights for the user/owner of the shared
  1208   // memory object and attribute read-only access rights for everybody
  1209   // else. This is effectively equivalent to UNIX 600 permissions on
  1210   // on the shared memory object.
  1211   //
  1212   DWORD umask = STANDARD_RIGHTS_REQUIRED | FILE_MAP_ALL_ACCESS;
  1213   DWORD emask = STANDARD_RIGHTS_READ; // attributes only
  1214   DWORD amask = STANDARD_RIGHTS_ALL | FILE_MAP_ALL_ACCESS;
  1216   return make_user_everybody_admin_security_attr(umask, emask, amask);
  1219 // make the user specific temporary directory
  1220 //
  1221 static bool make_user_tmp_dir(const char* dirname) {
  1224   LPSECURITY_ATTRIBUTES pDirSA = make_tmpdir_security_attr();
  1225   if (pDirSA == NULL) {
  1226     return false;
  1230   // create the directory with the given security attributes
  1231   if (!CreateDirectory(dirname, pDirSA)) {
  1232     DWORD lasterror = GetLastError();
  1233     if (lasterror == ERROR_ALREADY_EXISTS) {
  1234       // The directory already exists and was probably created by another
  1235       // JVM instance. However, this could also be the result of a
  1236       // deliberate symlink. Verify that the existing directory is safe.
  1237       //
  1238       if (!is_directory_secure(dirname)) {
  1239         // directory is not secure
  1240         if (PrintMiscellaneous && Verbose) {
  1241           warning("%s directory is insecure\n", dirname);
  1243         return false;
  1245       // The administrator should be able to delete this directory.
  1246       // But the directory created by previous version of JVM may not
  1247       // have permission for administrators to delete this directory.
  1248       // So add full permission to the administrator. Also setting new
  1249       // DACLs might fix the corrupted the DACLs.
  1250       SECURITY_INFORMATION secInfo = DACL_SECURITY_INFORMATION;
  1251       if (!SetFileSecurity(dirname, secInfo, pDirSA->lpSecurityDescriptor)) {
  1252         if (PrintMiscellaneous && Verbose) {
  1253           lasterror = GetLastError();
  1254           warning("SetFileSecurity failed for %s directory.  lasterror %d \n",
  1255                                                         dirname, lasterror);
  1259     else {
  1260       if (PrintMiscellaneous && Verbose) {
  1261         warning("CreateDirectory failed: %d\n", GetLastError());
  1263       return false;
  1267   // free the security attributes structure
  1268   free_security_attr(pDirSA);
  1270   return true;
  1273 // create the shared memory resources
  1274 //
  1275 // This function creates the shared memory resources. This includes
  1276 // the backing store file and the file mapping shared memory object.
  1277 //
  1278 static HANDLE create_sharedmem_resources(const char* dirname, const char* filename, const char* objectname, size_t size) {
  1280   HANDLE fh = INVALID_HANDLE_VALUE;
  1281   HANDLE fmh = NULL;
  1284   // create the security attributes for the backing store file
  1285   LPSECURITY_ATTRIBUTES lpFileSA = make_file_security_attr();
  1286   if (lpFileSA == NULL) {
  1287     return NULL;
  1290   // create the security attributes for the shared memory object
  1291   LPSECURITY_ATTRIBUTES lpSmoSA = make_smo_security_attr();
  1292   if (lpSmoSA == NULL) {
  1293     free_security_attr(lpFileSA);
  1294     return NULL;
  1297   // create the user temporary directory
  1298   if (!make_user_tmp_dir(dirname)) {
  1299     // could not make/find the directory or the found directory
  1300     // was not secure
  1301     return NULL;
  1304   // Create the file - the FILE_FLAG_DELETE_ON_CLOSE flag allows the
  1305   // file to be deleted by the last process that closes its handle to
  1306   // the file. This is important as the apis do not allow a terminating
  1307   // JVM being monitored by another process to remove the file name.
  1308   //
  1309   // the FILE_SHARE_DELETE share mode is valid only in winnt
  1310   //
  1311   fh = CreateFile(
  1312              filename,                   /* LPCTSTR file name */
  1314              GENERIC_READ|GENERIC_WRITE, /* DWORD desired access */
  1316              (os::win32::is_nt() ? FILE_SHARE_DELETE : 0)|
  1317              FILE_SHARE_READ,            /* DWORD share mode, future READONLY
  1318                                           * open operations allowed
  1319                                           */
  1320              lpFileSA,                   /* LPSECURITY security attributes */
  1321              CREATE_ALWAYS,              /* DWORD creation disposition
  1322                                           * create file, if it already
  1323                                           * exists, overwrite it.
  1324                                           */
  1325              FILE_FLAG_DELETE_ON_CLOSE,  /* DWORD flags and attributes */
  1327              NULL);                      /* HANDLE template file access */
  1329   free_security_attr(lpFileSA);
  1331   if (fh == INVALID_HANDLE_VALUE) {
  1332     DWORD lasterror = GetLastError();
  1333     if (PrintMiscellaneous && Verbose) {
  1334       warning("could not create file %s: %d\n", filename, lasterror);
  1336     return NULL;
  1339   // try to create the file mapping
  1340   fmh = create_file_mapping(objectname, fh, lpSmoSA, size);
  1342   free_security_attr(lpSmoSA);
  1344   if (fmh == NULL) {
  1345     // closing the file handle here will decrement the reference count
  1346     // on the file. When all processes accessing the file close their
  1347     // handle to it, the reference count will decrement to 0 and the
  1348     // OS will delete the file. These semantics are requested by the
  1349     // FILE_FLAG_DELETE_ON_CLOSE flag in CreateFile call above.
  1350     CloseHandle(fh);
  1351     fh = NULL;
  1352     return NULL;
  1353   } else {
  1354     // We created the file mapping, but rarely the size of the
  1355     // backing store file is reported as zero (0) which can cause
  1356     // failures when trying to use the hsperfdata file.
  1357     struct stat statbuf;
  1358     int ret_code = ::stat(filename, &statbuf);
  1359     if (ret_code == OS_ERR) {
  1360       if (PrintMiscellaneous && Verbose) {
  1361         warning("Could not get status information from file %s: %s\n",
  1362             filename, strerror(errno));
  1364       CloseHandle(fmh);
  1365       CloseHandle(fh);
  1366       fh = NULL;
  1367       fmh = NULL;
  1368       return NULL;
  1371     // We could always call FlushFileBuffers() but the Microsoft
  1372     // docs indicate that it is considered expensive so we only
  1373     // call it when we observe the size as zero (0).
  1374     if (statbuf.st_size == 0 && FlushFileBuffers(fh) != TRUE) {
  1375       DWORD lasterror = GetLastError();
  1376       if (PrintMiscellaneous && Verbose) {
  1377         warning("could not flush file %s: %d\n", filename, lasterror);
  1379       CloseHandle(fmh);
  1380       CloseHandle(fh);
  1381       fh = NULL;
  1382       fmh = NULL;
  1383       return NULL;
  1387   // the file has been successfully created and the file mapping
  1388   // object has been created.
  1389   sharedmem_fileHandle = fh;
  1390   sharedmem_fileName = strdup(filename);
  1392   return fmh;
  1395 // open the shared memory object for the given vmid.
  1396 //
  1397 static HANDLE open_sharedmem_object(const char* objectname, DWORD ofm_access, TRAPS) {
  1399   HANDLE fmh;
  1401   // open the file mapping with the requested mode
  1402   fmh = OpenFileMapping(
  1403                ofm_access,       /* DWORD access mode */
  1404                FALSE,            /* BOOL inherit flag - Do not allow inherit */
  1405                objectname);      /* name for object */
  1407   if (fmh == NULL) {
  1408     if (PrintMiscellaneous && Verbose) {
  1409       warning("OpenFileMapping failed for shared memory object %s:"
  1410               " lasterror = %d\n", objectname, GetLastError());
  1412     THROW_MSG_(vmSymbols::java_lang_Exception(),
  1413                "Could not open PerfMemory", INVALID_HANDLE_VALUE);
  1416   return fmh;;
  1419 // create a named shared memory region
  1420 //
  1421 // On Win32, a named shared memory object has a name space that
  1422 // is independent of the file system name space. Shared memory object,
  1423 // or more precisely, file mapping objects, provide no mechanism to
  1424 // inquire the size of the memory region. There is also no api to
  1425 // enumerate the memory regions for various processes.
  1426 //
  1427 // This implementation utilizes the shared memory name space in parallel
  1428 // with the file system name space. This allows us to determine the
  1429 // size of the shared memory region from the size of the file and it
  1430 // allows us to provide a common, file system based name space for
  1431 // shared memory across platforms.
  1432 //
  1433 static char* mapping_create_shared(size_t size) {
  1435   void *mapAddress;
  1436   int vmid = os::current_process_id();
  1438   // get the name of the user associated with this process
  1439   char* user = get_user_name();
  1441   if (user == NULL) {
  1442     return NULL;
  1445   // construct the name of the user specific temporary directory
  1446   char* dirname = get_user_tmp_dir(user);
  1448   // check that the file system is secure - i.e. it supports ACLs.
  1449   if (!is_filesystem_secure(dirname)) {
  1450     return NULL;
  1453   // create the names of the backing store files and for the
  1454   // share memory object.
  1455   //
  1456   char* filename = get_sharedmem_filename(dirname, vmid);
  1457   char* objectname = get_sharedmem_objectname(user, vmid);
  1459   // cleanup any stale shared memory resources
  1460   cleanup_sharedmem_resources(dirname);
  1462   assert(((size != 0) && (size % os::vm_page_size() == 0)),
  1463          "unexpected PerfMemry region size");
  1465   FREE_C_HEAP_ARRAY(char, user);
  1467   // create the shared memory resources
  1468   sharedmem_fileMapHandle =
  1469                create_sharedmem_resources(dirname, filename, objectname, size);
  1471   FREE_C_HEAP_ARRAY(char, filename);
  1472   FREE_C_HEAP_ARRAY(char, objectname);
  1473   FREE_C_HEAP_ARRAY(char, dirname);
  1475   if (sharedmem_fileMapHandle == NULL) {
  1476     return NULL;
  1479   // map the file into the address space
  1480   mapAddress = MapViewOfFile(
  1481                    sharedmem_fileMapHandle, /* HANDLE = file mapping object */
  1482                    FILE_MAP_ALL_ACCESS,     /* DWORD access flags */
  1483                    0,                       /* DWORD High word of offset */
  1484                    0,                       /* DWORD Low word of offset */
  1485                    (DWORD)size);            /* DWORD Number of bytes to map */
  1487   if (mapAddress == NULL) {
  1488     if (PrintMiscellaneous && Verbose) {
  1489       warning("MapViewOfFile failed, lasterror = %d\n", GetLastError());
  1491     CloseHandle(sharedmem_fileMapHandle);
  1492     sharedmem_fileMapHandle = NULL;
  1493     return NULL;
  1496   // clear the shared memory region
  1497   (void)memset(mapAddress, '\0', size);
  1499   return (char*) mapAddress;
  1502 // this method deletes the file mapping object.
  1503 //
  1504 static void delete_file_mapping(char* addr, size_t size) {
  1506   // cleanup the persistent shared memory resources. since DestroyJavaVM does
  1507   // not support unloading of the JVM, unmapping of the memory resource is not
  1508   // performed. The memory will be reclaimed by the OS upon termination of all
  1509   // processes mapping the resource. The file mapping handle and the file
  1510   // handle are closed here to expedite the remove of the file by the OS. The
  1511   // file is not removed directly because it was created with
  1512   // FILE_FLAG_DELETE_ON_CLOSE semantics and any attempt to remove it would
  1513   // be unsuccessful.
  1515   // close the fileMapHandle. the file mapping will still be retained
  1516   // by the OS as long as any other JVM processes has an open file mapping
  1517   // handle or a mapped view of the file.
  1518   //
  1519   if (sharedmem_fileMapHandle != NULL) {
  1520     CloseHandle(sharedmem_fileMapHandle);
  1521     sharedmem_fileMapHandle = NULL;
  1524   // close the file handle. This will decrement the reference count on the
  1525   // backing store file. When the reference count decrements to 0, the OS
  1526   // will delete the file. These semantics apply because the file was
  1527   // created with the FILE_FLAG_DELETE_ON_CLOSE flag.
  1528   //
  1529   if (sharedmem_fileHandle != INVALID_HANDLE_VALUE) {
  1530     CloseHandle(sharedmem_fileHandle);
  1531     sharedmem_fileHandle = INVALID_HANDLE_VALUE;
  1535 // this method determines the size of the shared memory file
  1536 //
  1537 static size_t sharedmem_filesize(const char* filename, TRAPS) {
  1539   struct stat statbuf;
  1541   // get the file size
  1542   //
  1543   // on win95/98/me, _stat returns a file size of 0 bytes, but on
  1544   // winnt/2k the appropriate file size is returned. support for
  1545   // the sharable aspects of performance counters was abandonded
  1546   // on the non-nt win32 platforms due to this and other api
  1547   // inconsistencies
  1548   //
  1549   if (::stat(filename, &statbuf) == OS_ERR) {
  1550     if (PrintMiscellaneous && Verbose) {
  1551       warning("stat %s failed: %s\n", filename, strerror(errno));
  1553     THROW_MSG_0(vmSymbols::java_io_IOException(),
  1554                 "Could not determine PerfMemory size");
  1557   if ((statbuf.st_size == 0) || (statbuf.st_size % os::vm_page_size() != 0)) {
  1558     if (PrintMiscellaneous && Verbose) {
  1559       warning("unexpected file size: size = " SIZE_FORMAT "\n",
  1560               statbuf.st_size);
  1562     THROW_MSG_0(vmSymbols::java_lang_Exception(),
  1563                 "Invalid PerfMemory size");
  1566   return statbuf.st_size;
  1569 // this method opens a file mapping object and maps the object
  1570 // into the address space of the process
  1571 //
  1572 static void open_file_mapping(const char* user, int vmid,
  1573                               PerfMemory::PerfMemoryMode mode,
  1574                               char** addrp, size_t* sizep, TRAPS) {
  1576   ResourceMark rm;
  1578   void *mapAddress = 0;
  1579   size_t size;
  1580   HANDLE fmh;
  1581   DWORD ofm_access;
  1582   DWORD mv_access;
  1583   const char* luser = NULL;
  1585   if (mode == PerfMemory::PERF_MODE_RO) {
  1586     ofm_access = FILE_MAP_READ;
  1587     mv_access = FILE_MAP_READ;
  1589   else if (mode == PerfMemory::PERF_MODE_RW) {
  1590 #ifdef LATER
  1591     ofm_access = FILE_MAP_READ | FILE_MAP_WRITE;
  1592     mv_access = FILE_MAP_READ | FILE_MAP_WRITE;
  1593 #else
  1594     THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(),
  1595               "Unsupported access mode");
  1596 #endif
  1598   else {
  1599     THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(),
  1600               "Illegal access mode");
  1603   // if a user name wasn't specified, then find the user name for
  1604   // the owner of the target vm.
  1605   if (user == NULL || strlen(user) == 0) {
  1606     luser = get_user_name(vmid);
  1608   else {
  1609     luser = user;
  1612   if (luser == NULL) {
  1613     THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(),
  1614               "Could not map vmid to user name");
  1617   // get the names for the resources for the target vm
  1618   char* dirname = get_user_tmp_dir(luser);
  1620   // since we don't follow symbolic links when creating the backing
  1621   // store file, we also don't following them when attaching
  1622   //
  1623   if (!is_directory_secure(dirname)) {
  1624     FREE_C_HEAP_ARRAY(char, dirname);
  1625     THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(),
  1626               "Process not found");
  1629   char* filename = get_sharedmem_filename(dirname, vmid);
  1630   char* objectname = get_sharedmem_objectname(luser, vmid);
  1632   // copy heap memory to resource memory. the objectname and
  1633   // filename are passed to methods that may throw exceptions.
  1634   // using resource arrays for these names prevents the leaks
  1635   // that would otherwise occur.
  1636   //
  1637   char* rfilename = NEW_RESOURCE_ARRAY(char, strlen(filename) + 1);
  1638   char* robjectname = NEW_RESOURCE_ARRAY(char, strlen(objectname) + 1);
  1639   strcpy(rfilename, filename);
  1640   strcpy(robjectname, objectname);
  1642   // free the c heap resources that are no longer needed
  1643   if (luser != user) FREE_C_HEAP_ARRAY(char, luser);
  1644   FREE_C_HEAP_ARRAY(char, dirname);
  1645   FREE_C_HEAP_ARRAY(char, filename);
  1646   FREE_C_HEAP_ARRAY(char, objectname);
  1648   if (*sizep == 0) {
  1649     size = sharedmem_filesize(rfilename, CHECK);
  1650     assert(size != 0, "unexpected size");
  1653   // Open the file mapping object with the given name
  1654   fmh = open_sharedmem_object(robjectname, ofm_access, CHECK);
  1656   assert(fmh != INVALID_HANDLE_VALUE, "unexpected handle value");
  1658   // map the entire file into the address space
  1659   mapAddress = MapViewOfFile(
  1660                  fmh,             /* HANDLE Handle of file mapping object */
  1661                  mv_access,       /* DWORD access flags */
  1662                  0,               /* DWORD High word of offset */
  1663                  0,               /* DWORD Low word of offset */
  1664                  size);           /* DWORD Number of bytes to map */
  1666   if (mapAddress == NULL) {
  1667     if (PrintMiscellaneous && Verbose) {
  1668       warning("MapViewOfFile failed, lasterror = %d\n", GetLastError());
  1670     CloseHandle(fmh);
  1671     THROW_MSG(vmSymbols::java_lang_OutOfMemoryError(),
  1672               "Could not map PerfMemory");
  1675   *addrp = (char*)mapAddress;
  1676   *sizep = size;
  1678   // File mapping object can be closed at this time without
  1679   // invalidating the mapped view of the file
  1680   CloseHandle(fmh);
  1682   if (PerfTraceMemOps) {
  1683     tty->print("mapped " SIZE_FORMAT " bytes for vmid %d at "
  1684                INTPTR_FORMAT "\n", size, vmid, mapAddress);
  1688 // this method unmaps the the mapped view of the the
  1689 // file mapping object.
  1690 //
  1691 static void remove_file_mapping(char* addr) {
  1693   // the file mapping object was closed in open_file_mapping()
  1694   // after the file map view was created. We only need to
  1695   // unmap the file view here.
  1696   UnmapViewOfFile(addr);
  1699 // create the PerfData memory region in shared memory.
  1700 static char* create_shared_memory(size_t size) {
  1702   return mapping_create_shared(size);
  1705 // release a named, shared memory region
  1706 //
  1707 void delete_shared_memory(char* addr, size_t size) {
  1709   delete_file_mapping(addr, size);
  1715 // create the PerfData memory region
  1716 //
  1717 // This method creates the memory region used to store performance
  1718 // data for the JVM. The memory may be created in standard or
  1719 // shared memory.
  1720 //
  1721 void PerfMemory::create_memory_region(size_t size) {
  1723   if (PerfDisableSharedMem || !os::win32::is_nt()) {
  1724     // do not share the memory for the performance data.
  1725     PerfDisableSharedMem = true;
  1726     _start = create_standard_memory(size);
  1728   else {
  1729     _start = create_shared_memory(size);
  1730     if (_start == NULL) {
  1732       // creation of the shared memory region failed, attempt
  1733       // to create a contiguous, non-shared memory region instead.
  1734       //
  1735       if (PrintMiscellaneous && Verbose) {
  1736         warning("Reverting to non-shared PerfMemory region.\n");
  1738       PerfDisableSharedMem = true;
  1739       _start = create_standard_memory(size);
  1743   if (_start != NULL) _capacity = size;
  1747 // delete the PerfData memory region
  1748 //
  1749 // This method deletes the memory region used to store performance
  1750 // data for the JVM. The memory region indicated by the <address, size>
  1751 // tuple will be inaccessible after a call to this method.
  1752 //
  1753 void PerfMemory::delete_memory_region() {
  1755   assert((start() != NULL && capacity() > 0), "verify proper state");
  1757   // If user specifies PerfDataSaveFile, it will save the performance data
  1758   // to the specified file name no matter whether PerfDataSaveToFile is specified
  1759   // or not. In other word, -XX:PerfDataSaveFile=.. overrides flag
  1760   // -XX:+PerfDataSaveToFile.
  1761   if (PerfDataSaveToFile || PerfDataSaveFile != NULL) {
  1762     save_memory_to_file(start(), capacity());
  1765   if (PerfDisableSharedMem) {
  1766     delete_standard_memory(start(), capacity());
  1768   else {
  1769     delete_shared_memory(start(), capacity());
  1773 // attach to the PerfData memory region for another JVM
  1774 //
  1775 // This method returns an <address, size> tuple that points to
  1776 // a memory buffer that is kept reasonably synchronized with
  1777 // the PerfData memory region for the indicated JVM. This
  1778 // buffer may be kept in synchronization via shared memory
  1779 // or some other mechanism that keeps the buffer updated.
  1780 //
  1781 // If the JVM chooses not to support the attachability feature,
  1782 // this method should throw an UnsupportedOperation exception.
  1783 //
  1784 // This implementation utilizes named shared memory to map
  1785 // the indicated process's PerfData memory region into this JVMs
  1786 // address space.
  1787 //
  1788 void PerfMemory::attach(const char* user, int vmid, PerfMemoryMode mode,
  1789                         char** addrp, size_t* sizep, TRAPS) {
  1791   if (vmid == 0 || vmid == os::current_process_id()) {
  1792      *addrp = start();
  1793      *sizep = capacity();
  1794      return;
  1797   open_file_mapping(user, vmid, mode, addrp, sizep, CHECK);
  1800 // detach from the PerfData memory region of another JVM
  1801 //
  1802 // This method detaches the PerfData memory region of another
  1803 // JVM, specified as an <address, size> tuple of a buffer
  1804 // in this process's address space. This method may perform
  1805 // arbitrary actions to accomplish the detachment. The memory
  1806 // region specified by <address, size> will be inaccessible after
  1807 // a call to this method.
  1808 //
  1809 // If the JVM chooses not to support the attachability feature,
  1810 // this method should throw an UnsupportedOperation exception.
  1811 //
  1812 // This implementation utilizes named shared memory to detach
  1813 // the indicated process's PerfData memory region from this
  1814 // process's address space.
  1815 //
  1816 void PerfMemory::detach(char* addr, size_t bytes, TRAPS) {
  1818   assert(addr != 0, "address sanity check");
  1819   assert(bytes > 0, "capacity sanity check");
  1821   if (PerfMemory::contains(addr) || PerfMemory::contains(addr + bytes - 1)) {
  1822     // prevent accidental detachment of this process's PerfMemory region
  1823     return;
  1826   remove_file_mapping(addr);
  1829 char* PerfMemory::backing_store_filename() {
  1830   return sharedmem_fileName;

mercurial