src/os/linux/vm/os_linux.cpp

Tue, 31 Jan 2017 16:31:09 +0300

author
aefimov
date
Tue, 31 Jan 2017 16:31:09 +0300
changeset 8940
eb9e617d6f64
parent 8619
3a38e441474d
child 8942
9187473df31d
permissions
-rw-r--r--

8173631: Backout three hotspot fixes from 8u121-bpr repo
Reviewed-by: vkempik, shshahma

     1 /*
     2  * Copyright (c) 1999, 2015, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 // no precompiled headers
    26 #include "classfile/classLoader.hpp"
    27 #include "classfile/systemDictionary.hpp"
    28 #include "classfile/vmSymbols.hpp"
    29 #include "code/icBuffer.hpp"
    30 #include "code/vtableStubs.hpp"
    31 #include "compiler/compileBroker.hpp"
    32 #include "compiler/disassembler.hpp"
    33 #include "interpreter/interpreter.hpp"
    34 #include "jvm_linux.h"
    35 #include "memory/allocation.inline.hpp"
    36 #include "memory/filemap.hpp"
    37 #include "mutex_linux.inline.hpp"
    38 #include "oops/oop.inline.hpp"
    39 #include "os_share_linux.hpp"
    40 #include "prims/jniFastGetField.hpp"
    41 #include "prims/jvm.h"
    42 #include "prims/jvm_misc.hpp"
    43 #include "runtime/arguments.hpp"
    44 #include "runtime/extendedPC.hpp"
    45 #include "runtime/globals.hpp"
    46 #include "runtime/interfaceSupport.hpp"
    47 #include "runtime/init.hpp"
    48 #include "runtime/java.hpp"
    49 #include "runtime/javaCalls.hpp"
    50 #include "runtime/mutexLocker.hpp"
    51 #include "runtime/objectMonitor.hpp"
    52 #include "runtime/orderAccess.inline.hpp"
    53 #include "runtime/osThread.hpp"
    54 #include "runtime/perfMemory.hpp"
    55 #include "runtime/sharedRuntime.hpp"
    56 #include "runtime/statSampler.hpp"
    57 #include "runtime/stubRoutines.hpp"
    58 #include "runtime/thread.inline.hpp"
    59 #include "runtime/threadCritical.hpp"
    60 #include "runtime/timer.hpp"
    61 #include "services/attachListener.hpp"
    62 #include "services/memTracker.hpp"
    63 #include "services/runtimeService.hpp"
    64 #include "utilities/decoder.hpp"
    65 #include "utilities/defaultStream.hpp"
    66 #include "utilities/events.hpp"
    67 #include "utilities/elfFile.hpp"
    68 #include "utilities/growableArray.hpp"
    69 #include "utilities/vmError.hpp"
    71 // put OS-includes here
    72 # include <sys/types.h>
    73 # include <sys/mman.h>
    74 # include <sys/stat.h>
    75 # include <sys/select.h>
    76 # include <pthread.h>
    77 # include <signal.h>
    78 # include <errno.h>
    79 # include <dlfcn.h>
    80 # include <stdio.h>
    81 # include <unistd.h>
    82 # include <sys/resource.h>
    83 # include <pthread.h>
    84 # include <sys/stat.h>
    85 # include <sys/time.h>
    86 # include <sys/times.h>
    87 # include <sys/utsname.h>
    88 # include <sys/socket.h>
    89 # include <sys/wait.h>
    90 # include <pwd.h>
    91 # include <poll.h>
    92 # include <semaphore.h>
    93 # include <fcntl.h>
    94 # include <string.h>
    95 # include <syscall.h>
    96 # include <sys/sysinfo.h>
    97 # include <gnu/libc-version.h>
    98 # include <sys/ipc.h>
    99 # include <sys/shm.h>
   100 # include <link.h>
   101 # include <stdint.h>
   102 # include <inttypes.h>
   103 # include <sys/ioctl.h>
   105 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
   107 // if RUSAGE_THREAD for getrusage() has not been defined, do it here. The code calling
   108 // getrusage() is prepared to handle the associated failure.
   109 #ifndef RUSAGE_THREAD
   110 #define RUSAGE_THREAD   (1)               /* only the calling thread */
   111 #endif
   113 #define MAX_PATH    (2 * K)
   115 #define MAX_SECS 100000000
   117 // for timer info max values which include all bits
   118 #define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
   120 #define LARGEPAGES_BIT (1 << 6)
   121 ////////////////////////////////////////////////////////////////////////////////
   122 // global variables
   123 julong os::Linux::_physical_memory = 0;
   125 address   os::Linux::_initial_thread_stack_bottom = NULL;
   126 uintptr_t os::Linux::_initial_thread_stack_size   = 0;
   128 int (*os::Linux::_clock_gettime)(clockid_t, struct timespec *) = NULL;
   129 int (*os::Linux::_pthread_getcpuclockid)(pthread_t, clockid_t *) = NULL;
   130 Mutex* os::Linux::_createThread_lock = NULL;
   131 pthread_t os::Linux::_main_thread;
   132 int os::Linux::_page_size = -1;
   133 const int os::Linux::_vm_default_page_size = (8 * K);
   134 bool os::Linux::_is_floating_stack = false;
   135 bool os::Linux::_is_NPTL = false;
   136 bool os::Linux::_supports_fast_thread_cpu_time = false;
   137 const char * os::Linux::_glibc_version = NULL;
   138 const char * os::Linux::_libpthread_version = NULL;
   139 pthread_condattr_t os::Linux::_condattr[1];
   141 static jlong initial_time_count=0;
   143 static int clock_tics_per_sec = 100;
   145 // For diagnostics to print a message once. see run_periodic_checks
   146 static sigset_t check_signal_done;
   147 static bool check_signals = true;
   149 static pid_t _initial_pid = 0;
   151 /* Signal number used to suspend/resume a thread */
   153 /* do not use any signal number less than SIGSEGV, see 4355769 */
   154 static int SR_signum = SIGUSR2;
   155 sigset_t SR_sigset;
   157 /* Used to protect dlsym() calls */
   158 static pthread_mutex_t dl_mutex;
   160 // Declarations
   161 static void unpackTime(timespec* absTime, bool isAbsolute, jlong time);
   163 // utility functions
   165 static int SR_initialize();
   167 julong os::available_memory() {
   168   return Linux::available_memory();
   169 }
   171 julong os::Linux::available_memory() {
   172   // values in struct sysinfo are "unsigned long"
   173   struct sysinfo si;
   174   sysinfo(&si);
   176   return (julong)si.freeram * si.mem_unit;
   177 }
   179 julong os::physical_memory() {
   180   return Linux::physical_memory();
   181 }
   183 ////////////////////////////////////////////////////////////////////////////////
   184 // environment support
   186 bool os::getenv(const char* name, char* buf, int len) {
   187   const char* val = ::getenv(name);
   188   if (val != NULL && strlen(val) < (size_t)len) {
   189     strcpy(buf, val);
   190     return true;
   191   }
   192   if (len > 0) buf[0] = 0;  // return a null string
   193   return false;
   194 }
   197 // Return true if user is running as root.
   199 bool os::have_special_privileges() {
   200   static bool init = false;
   201   static bool privileges = false;
   202   if (!init) {
   203     privileges = (getuid() != geteuid()) || (getgid() != getegid());
   204     init = true;
   205   }
   206   return privileges;
   207 }
   210 #ifndef SYS_gettid
   211 // i386: 224, ia64: 1105, amd64: 186, sparc 143
   212   #ifdef __ia64__
   213     #define SYS_gettid 1105
   214   #else
   215     #ifdef __i386__
   216       #define SYS_gettid 224
   217     #else
   218       #ifdef __amd64__
   219         #define SYS_gettid 186
   220       #else
   221         #ifdef __sparc__
   222           #define SYS_gettid 143
   223         #else
   224           #error define gettid for the arch
   225         #endif
   226       #endif
   227     #endif
   228   #endif
   229 #endif
   231 // Cpu architecture string
   232 static char cpu_arch[] = HOTSPOT_LIB_ARCH;
   234 // pid_t gettid()
   235 //
   236 // Returns the kernel thread id of the currently running thread. Kernel
   237 // thread id is used to access /proc.
   238 //
   239 // (Note that getpid() on LinuxThreads returns kernel thread id too; but
   240 // on NPTL, it returns the same pid for all threads, as required by POSIX.)
   241 //
   242 pid_t os::Linux::gettid() {
   243   int rslt = syscall(SYS_gettid);
   244   if (rslt == -1) {
   245      // old kernel, no NPTL support
   246      return getpid();
   247   } else {
   248      return (pid_t)rslt;
   249   }
   250 }
   252 // Most versions of linux have a bug where the number of processors are
   253 // determined by looking at the /proc file system.  In a chroot environment,
   254 // the system call returns 1.  This causes the VM to act as if it is
   255 // a single processor and elide locking (see is_MP() call).
   256 static bool unsafe_chroot_detected = false;
   257 static const char *unstable_chroot_error = "/proc file system not found.\n"
   258                      "Java may be unstable running multithreaded in a chroot "
   259                      "environment on Linux when /proc filesystem is not mounted.";
   261 void os::Linux::initialize_system_info() {
   262   set_processor_count(sysconf(_SC_NPROCESSORS_CONF));
   263   if (processor_count() == 1) {
   264     pid_t pid = os::Linux::gettid();
   265     char fname[32];
   266     jio_snprintf(fname, sizeof(fname), "/proc/%d", pid);
   267     FILE *fp = fopen(fname, "r");
   268     if (fp == NULL) {
   269       unsafe_chroot_detected = true;
   270     } else {
   271       fclose(fp);
   272     }
   273   }
   274   _physical_memory = (julong)sysconf(_SC_PHYS_PAGES) * (julong)sysconf(_SC_PAGESIZE);
   275   assert(processor_count() > 0, "linux error");
   276 }
   278 void os::init_system_properties_values() {
   279   // The next steps are taken in the product version:
   280   //
   281   // Obtain the JAVA_HOME value from the location of libjvm.so.
   282   // This library should be located at:
   283   // <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm.so.
   284   //
   285   // If "/jre/lib/" appears at the right place in the path, then we
   286   // assume libjvm.so is installed in a JDK and we use this path.
   287   //
   288   // Otherwise exit with message: "Could not create the Java virtual machine."
   289   //
   290   // The following extra steps are taken in the debugging version:
   291   //
   292   // If "/jre/lib/" does NOT appear at the right place in the path
   293   // instead of exit check for $JAVA_HOME environment variable.
   294   //
   295   // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
   296   // then we append a fake suffix "hotspot/libjvm.so" to this path so
   297   // it looks like libjvm.so is installed there
   298   // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm.so.
   299   //
   300   // Otherwise exit.
   301   //
   302   // Important note: if the location of libjvm.so changes this
   303   // code needs to be changed accordingly.
   305 // See ld(1):
   306 //      The linker uses the following search paths to locate required
   307 //      shared libraries:
   308 //        1: ...
   309 //        ...
   310 //        7: The default directories, normally /lib and /usr/lib.
   311 #if defined(AMD64) || defined(_LP64) && (defined(SPARC) || defined(PPC) || defined(S390))
   312 #define DEFAULT_LIBPATH "/usr/lib64:/lib64:/lib:/usr/lib"
   313 #else
   314 #define DEFAULT_LIBPATH "/lib:/usr/lib"
   315 #endif
   317 // Base path of extensions installed on the system.
   318 #define SYS_EXT_DIR     "/usr/java/packages"
   319 #define EXTENSIONS_DIR  "/lib/ext"
   320 #define ENDORSED_DIR    "/lib/endorsed"
   322   // Buffer that fits several sprintfs.
   323   // Note that the space for the colon and the trailing null are provided
   324   // by the nulls included by the sizeof operator.
   325   const size_t bufsize =
   326     MAX3((size_t)MAXPATHLEN,  // For dll_dir & friends.
   327          (size_t)MAXPATHLEN + sizeof(EXTENSIONS_DIR) + sizeof(SYS_EXT_DIR) + sizeof(EXTENSIONS_DIR), // extensions dir
   328          (size_t)MAXPATHLEN + sizeof(ENDORSED_DIR)); // endorsed dir
   329   char *buf = (char *)NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
   331   // sysclasspath, java_home, dll_dir
   332   {
   333     char *pslash;
   334     os::jvm_path(buf, bufsize);
   336     // Found the full path to libjvm.so.
   337     // Now cut the path to <java_home>/jre if we can.
   338     *(strrchr(buf, '/')) = '\0'; // Get rid of /libjvm.so.
   339     pslash = strrchr(buf, '/');
   340     if (pslash != NULL) {
   341       *pslash = '\0';            // Get rid of /{client|server|hotspot}.
   342     }
   343     Arguments::set_dll_dir(buf);
   345     if (pslash != NULL) {
   346       pslash = strrchr(buf, '/');
   347       if (pslash != NULL) {
   348         *pslash = '\0';          // Get rid of /<arch>.
   349         pslash = strrchr(buf, '/');
   350         if (pslash != NULL) {
   351           *pslash = '\0';        // Get rid of /lib.
   352         }
   353       }
   354     }
   355     Arguments::set_java_home(buf);
   356     set_boot_path('/', ':');
   357   }
   359   // Where to look for native libraries.
   360   //
   361   // Note: Due to a legacy implementation, most of the library path
   362   // is set in the launcher. This was to accomodate linking restrictions
   363   // on legacy Linux implementations (which are no longer supported).
   364   // Eventually, all the library path setting will be done here.
   365   //
   366   // However, to prevent the proliferation of improperly built native
   367   // libraries, the new path component /usr/java/packages is added here.
   368   // Eventually, all the library path setting will be done here.
   369   {
   370     // Get the user setting of LD_LIBRARY_PATH, and prepended it. It
   371     // should always exist (until the legacy problem cited above is
   372     // addressed).
   373     const char *v = ::getenv("LD_LIBRARY_PATH");
   374     const char *v_colon = ":";
   375     if (v == NULL) { v = ""; v_colon = ""; }
   376     // That's +1 for the colon and +1 for the trailing '\0'.
   377     char *ld_library_path = (char *)NEW_C_HEAP_ARRAY(char,
   378                                                      strlen(v) + 1 +
   379                                                      sizeof(SYS_EXT_DIR) + sizeof("/lib/") + strlen(cpu_arch) + sizeof(DEFAULT_LIBPATH) + 1,
   380                                                      mtInternal);
   381     sprintf(ld_library_path, "%s%s" SYS_EXT_DIR "/lib/%s:" DEFAULT_LIBPATH, v, v_colon, cpu_arch);
   382     Arguments::set_library_path(ld_library_path);
   383     FREE_C_HEAP_ARRAY(char, ld_library_path, mtInternal);
   384   }
   386   // Extensions directories.
   387   sprintf(buf, "%s" EXTENSIONS_DIR ":" SYS_EXT_DIR EXTENSIONS_DIR, Arguments::get_java_home());
   388   Arguments::set_ext_dirs(buf);
   390   // Endorsed standards default directory.
   391   sprintf(buf, "%s" ENDORSED_DIR, Arguments::get_java_home());
   392   Arguments::set_endorsed_dirs(buf);
   394   FREE_C_HEAP_ARRAY(char, buf, mtInternal);
   396 #undef DEFAULT_LIBPATH
   397 #undef SYS_EXT_DIR
   398 #undef EXTENSIONS_DIR
   399 #undef ENDORSED_DIR
   400 }
   402 ////////////////////////////////////////////////////////////////////////////////
   403 // breakpoint support
   405 void os::breakpoint() {
   406   BREAKPOINT;
   407 }
   409 extern "C" void breakpoint() {
   410   // use debugger to set breakpoint here
   411 }
   413 ////////////////////////////////////////////////////////////////////////////////
   414 // signal support
   416 debug_only(static bool signal_sets_initialized = false);
   417 static sigset_t unblocked_sigs, vm_sigs, allowdebug_blocked_sigs;
   419 bool os::Linux::is_sig_ignored(int sig) {
   420       struct sigaction oact;
   421       sigaction(sig, (struct sigaction*)NULL, &oact);
   422       void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
   423                                      : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
   424       if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN))
   425            return true;
   426       else
   427            return false;
   428 }
   430 void os::Linux::signal_sets_init() {
   431   // Should also have an assertion stating we are still single-threaded.
   432   assert(!signal_sets_initialized, "Already initialized");
   433   // Fill in signals that are necessarily unblocked for all threads in
   434   // the VM. Currently, we unblock the following signals:
   435   // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
   436   //                         by -Xrs (=ReduceSignalUsage));
   437   // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
   438   // other threads. The "ReduceSignalUsage" boolean tells us not to alter
   439   // the dispositions or masks wrt these signals.
   440   // Programs embedding the VM that want to use the above signals for their
   441   // own purposes must, at this time, use the "-Xrs" option to prevent
   442   // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
   443   // (See bug 4345157, and other related bugs).
   444   // In reality, though, unblocking these signals is really a nop, since
   445   // these signals are not blocked by default.
   446   sigemptyset(&unblocked_sigs);
   447   sigemptyset(&allowdebug_blocked_sigs);
   448   sigaddset(&unblocked_sigs, SIGILL);
   449   sigaddset(&unblocked_sigs, SIGSEGV);
   450   sigaddset(&unblocked_sigs, SIGBUS);
   451   sigaddset(&unblocked_sigs, SIGFPE);
   452 #if defined(PPC64)
   453   sigaddset(&unblocked_sigs, SIGTRAP);
   454 #endif
   455   sigaddset(&unblocked_sigs, SR_signum);
   457   if (!ReduceSignalUsage) {
   458    if (!os::Linux::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
   459       sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
   460       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN1_SIGNAL);
   461    }
   462    if (!os::Linux::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
   463       sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
   464       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN2_SIGNAL);
   465    }
   466    if (!os::Linux::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
   467       sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
   468       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN3_SIGNAL);
   469    }
   470   }
   471   // Fill in signals that are blocked by all but the VM thread.
   472   sigemptyset(&vm_sigs);
   473   if (!ReduceSignalUsage)
   474     sigaddset(&vm_sigs, BREAK_SIGNAL);
   475   debug_only(signal_sets_initialized = true);
   477 }
   479 // These are signals that are unblocked while a thread is running Java.
   480 // (For some reason, they get blocked by default.)
   481 sigset_t* os::Linux::unblocked_signals() {
   482   assert(signal_sets_initialized, "Not initialized");
   483   return &unblocked_sigs;
   484 }
   486 // These are the signals that are blocked while a (non-VM) thread is
   487 // running Java. Only the VM thread handles these signals.
   488 sigset_t* os::Linux::vm_signals() {
   489   assert(signal_sets_initialized, "Not initialized");
   490   return &vm_sigs;
   491 }
   493 // These are signals that are blocked during cond_wait to allow debugger in
   494 sigset_t* os::Linux::allowdebug_blocked_signals() {
   495   assert(signal_sets_initialized, "Not initialized");
   496   return &allowdebug_blocked_sigs;
   497 }
   499 void os::Linux::hotspot_sigmask(Thread* thread) {
   501   //Save caller's signal mask before setting VM signal mask
   502   sigset_t caller_sigmask;
   503   pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
   505   OSThread* osthread = thread->osthread();
   506   osthread->set_caller_sigmask(caller_sigmask);
   508   pthread_sigmask(SIG_UNBLOCK, os::Linux::unblocked_signals(), NULL);
   510   if (!ReduceSignalUsage) {
   511     if (thread->is_VM_thread()) {
   512       // Only the VM thread handles BREAK_SIGNAL ...
   513       pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
   514     } else {
   515       // ... all other threads block BREAK_SIGNAL
   516       pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
   517     }
   518   }
   519 }
   521 //////////////////////////////////////////////////////////////////////////////
   522 // detecting pthread library
   524 void os::Linux::libpthread_init() {
   525   // Save glibc and pthread version strings. Note that _CS_GNU_LIBC_VERSION
   526   // and _CS_GNU_LIBPTHREAD_VERSION are supported in glibc >= 2.3.2. Use a
   527   // generic name for earlier versions.
   528   // Define macros here so we can build HotSpot on old systems.
   529 # ifndef _CS_GNU_LIBC_VERSION
   530 # define _CS_GNU_LIBC_VERSION 2
   531 # endif
   532 # ifndef _CS_GNU_LIBPTHREAD_VERSION
   533 # define _CS_GNU_LIBPTHREAD_VERSION 3
   534 # endif
   536   size_t n = confstr(_CS_GNU_LIBC_VERSION, NULL, 0);
   537   if (n > 0) {
   538      char *str = (char *)malloc(n, mtInternal);
   539      confstr(_CS_GNU_LIBC_VERSION, str, n);
   540      os::Linux::set_glibc_version(str);
   541   } else {
   542      // _CS_GNU_LIBC_VERSION is not supported, try gnu_get_libc_version()
   543      static char _gnu_libc_version[32];
   544      jio_snprintf(_gnu_libc_version, sizeof(_gnu_libc_version),
   545               "glibc %s %s", gnu_get_libc_version(), gnu_get_libc_release());
   546      os::Linux::set_glibc_version(_gnu_libc_version);
   547   }
   549   n = confstr(_CS_GNU_LIBPTHREAD_VERSION, NULL, 0);
   550   if (n > 0) {
   551      char *str = (char *)malloc(n, mtInternal);
   552      confstr(_CS_GNU_LIBPTHREAD_VERSION, str, n);
   553      // Vanilla RH-9 (glibc 2.3.2) has a bug that confstr() always tells
   554      // us "NPTL-0.29" even we are running with LinuxThreads. Check if this
   555      // is the case. LinuxThreads has a hard limit on max number of threads.
   556      // So sysconf(_SC_THREAD_THREADS_MAX) will return a positive value.
   557      // On the other hand, NPTL does not have such a limit, sysconf()
   558      // will return -1 and errno is not changed. Check if it is really NPTL.
   559      if (strcmp(os::Linux::glibc_version(), "glibc 2.3.2") == 0 &&
   560          strstr(str, "NPTL") &&
   561          sysconf(_SC_THREAD_THREADS_MAX) > 0) {
   562        free(str);
   563        os::Linux::set_libpthread_version("linuxthreads");
   564      } else {
   565        os::Linux::set_libpthread_version(str);
   566      }
   567   } else {
   568     // glibc before 2.3.2 only has LinuxThreads.
   569     os::Linux::set_libpthread_version("linuxthreads");
   570   }
   572   if (strstr(libpthread_version(), "NPTL")) {
   573      os::Linux::set_is_NPTL();
   574   } else {
   575      os::Linux::set_is_LinuxThreads();
   576   }
   578   // LinuxThreads have two flavors: floating-stack mode, which allows variable
   579   // stack size; and fixed-stack mode. NPTL is always floating-stack.
   580   if (os::Linux::is_NPTL() || os::Linux::supports_variable_stack_size()) {
   581      os::Linux::set_is_floating_stack();
   582   }
   583 }
   585 /////////////////////////////////////////////////////////////////////////////
   586 // thread stack
   588 // Force Linux kernel to expand current thread stack. If "bottom" is close
   589 // to the stack guard, caller should block all signals.
   590 //
   591 // MAP_GROWSDOWN:
   592 //   A special mmap() flag that is used to implement thread stacks. It tells
   593 //   kernel that the memory region should extend downwards when needed. This
   594 //   allows early versions of LinuxThreads to only mmap the first few pages
   595 //   when creating a new thread. Linux kernel will automatically expand thread
   596 //   stack as needed (on page faults).
   597 //
   598 //   However, because the memory region of a MAP_GROWSDOWN stack can grow on
   599 //   demand, if a page fault happens outside an already mapped MAP_GROWSDOWN
   600 //   region, it's hard to tell if the fault is due to a legitimate stack
   601 //   access or because of reading/writing non-exist memory (e.g. buffer
   602 //   overrun). As a rule, if the fault happens below current stack pointer,
   603 //   Linux kernel does not expand stack, instead a SIGSEGV is sent to the
   604 //   application (see Linux kernel fault.c).
   605 //
   606 //   This Linux feature can cause SIGSEGV when VM bangs thread stack for
   607 //   stack overflow detection.
   608 //
   609 //   Newer version of LinuxThreads (since glibc-2.2, or, RH-7.x) and NPTL do
   610 //   not use this flag. However, the stack of initial thread is not created
   611 //   by pthread, it is still MAP_GROWSDOWN. Also it's possible (though
   612 //   unlikely) that user code can create a thread with MAP_GROWSDOWN stack
   613 //   and then attach the thread to JVM.
   614 //
   615 // To get around the problem and allow stack banging on Linux, we need to
   616 // manually expand thread stack after receiving the SIGSEGV.
   617 //
   618 // There are two ways to expand thread stack to address "bottom", we used
   619 // both of them in JVM before 1.5:
   620 //   1. adjust stack pointer first so that it is below "bottom", and then
   621 //      touch "bottom"
   622 //   2. mmap() the page in question
   623 //
   624 // Now alternate signal stack is gone, it's harder to use 2. For instance,
   625 // if current sp is already near the lower end of page 101, and we need to
   626 // call mmap() to map page 100, it is possible that part of the mmap() frame
   627 // will be placed in page 100. When page 100 is mapped, it is zero-filled.
   628 // That will destroy the mmap() frame and cause VM to crash.
   629 //
   630 // The following code works by adjusting sp first, then accessing the "bottom"
   631 // page to force a page fault. Linux kernel will then automatically expand the
   632 // stack mapping.
   633 //
   634 // _expand_stack_to() assumes its frame size is less than page size, which
   635 // should always be true if the function is not inlined.
   637 #if __GNUC__ < 3    // gcc 2.x does not support noinline attribute
   638 #define NOINLINE
   639 #else
   640 #define NOINLINE __attribute__ ((noinline))
   641 #endif
   643 static void _expand_stack_to(address bottom) NOINLINE;
   645 static void _expand_stack_to(address bottom) {
   646   address sp;
   647   size_t size;
   648   volatile char *p;
   650   // Adjust bottom to point to the largest address within the same page, it
   651   // gives us a one-page buffer if alloca() allocates slightly more memory.
   652   bottom = (address)align_size_down((uintptr_t)bottom, os::Linux::page_size());
   653   bottom += os::Linux::page_size() - 1;
   655   // sp might be slightly above current stack pointer; if that's the case, we
   656   // will alloca() a little more space than necessary, which is OK. Don't use
   657   // os::current_stack_pointer(), as its result can be slightly below current
   658   // stack pointer, causing us to not alloca enough to reach "bottom".
   659   sp = (address)&sp;
   661   if (sp > bottom) {
   662     size = sp - bottom;
   663     p = (volatile char *)alloca(size);
   664     assert(p != NULL && p <= (volatile char *)bottom, "alloca problem?");
   665     p[0] = '\0';
   666   }
   667 }
   669 bool os::Linux::manually_expand_stack(JavaThread * t, address addr) {
   670   assert(t!=NULL, "just checking");
   671   assert(t->osthread()->expanding_stack(), "expand should be set");
   672   assert(t->stack_base() != NULL, "stack_base was not initialized");
   674   if (addr <  t->stack_base() && addr >= t->stack_yellow_zone_base()) {
   675     sigset_t mask_all, old_sigset;
   676     sigfillset(&mask_all);
   677     pthread_sigmask(SIG_SETMASK, &mask_all, &old_sigset);
   678     _expand_stack_to(addr);
   679     pthread_sigmask(SIG_SETMASK, &old_sigset, NULL);
   680     return true;
   681   }
   682   return false;
   683 }
   685 //////////////////////////////////////////////////////////////////////////////
   686 // create new thread
   688 static address highest_vm_reserved_address();
   690 // check if it's safe to start a new thread
   691 static bool _thread_safety_check(Thread* thread) {
   692   if (os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack()) {
   693     // Fixed stack LinuxThreads (SuSE Linux/x86, and some versions of Redhat)
   694     //   Heap is mmap'ed at lower end of memory space. Thread stacks are
   695     //   allocated (MAP_FIXED) from high address space. Every thread stack
   696     //   occupies a fixed size slot (usually 2Mbytes, but user can change
   697     //   it to other values if they rebuild LinuxThreads).
   698     //
   699     // Problem with MAP_FIXED is that mmap() can still succeed even part of
   700     // the memory region has already been mmap'ed. That means if we have too
   701     // many threads and/or very large heap, eventually thread stack will
   702     // collide with heap.
   703     //
   704     // Here we try to prevent heap/stack collision by comparing current
   705     // stack bottom with the highest address that has been mmap'ed by JVM
   706     // plus a safety margin for memory maps created by native code.
   707     //
   708     // This feature can be disabled by setting ThreadSafetyMargin to 0
   709     //
   710     if (ThreadSafetyMargin > 0) {
   711       address stack_bottom = os::current_stack_base() - os::current_stack_size();
   713       // not safe if our stack extends below the safety margin
   714       return stack_bottom - ThreadSafetyMargin >= highest_vm_reserved_address();
   715     } else {
   716       return true;
   717     }
   718   } else {
   719     // Floating stack LinuxThreads or NPTL:
   720     //   Unlike fixed stack LinuxThreads, thread stacks are not MAP_FIXED. When
   721     //   there's not enough space left, pthread_create() will fail. If we come
   722     //   here, that means enough space has been reserved for stack.
   723     return true;
   724   }
   725 }
   727 // Thread start routine for all newly created threads
   728 static void *java_start(Thread *thread) {
   729   // Try to randomize the cache line index of hot stack frames.
   730   // This helps when threads of the same stack traces evict each other's
   731   // cache lines. The threads can be either from the same JVM instance, or
   732   // from different JVM instances. The benefit is especially true for
   733   // processors with hyperthreading technology.
   734   static int counter = 0;
   735   int pid = os::current_process_id();
   736   alloca(((pid ^ counter++) & 7) * 128);
   738   ThreadLocalStorage::set_thread(thread);
   740   OSThread* osthread = thread->osthread();
   741   Monitor* sync = osthread->startThread_lock();
   743   // non floating stack LinuxThreads needs extra check, see above
   744   if (!_thread_safety_check(thread)) {
   745     // notify parent thread
   746     MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
   747     osthread->set_state(ZOMBIE);
   748     sync->notify_all();
   749     return NULL;
   750   }
   752   // thread_id is kernel thread id (similar to Solaris LWP id)
   753   osthread->set_thread_id(os::Linux::gettid());
   755   if (UseNUMA) {
   756     int lgrp_id = os::numa_get_group_id();
   757     if (lgrp_id != -1) {
   758       thread->set_lgrp_id(lgrp_id);
   759     }
   760   }
   761   // initialize signal mask for this thread
   762   os::Linux::hotspot_sigmask(thread);
   764   // initialize floating point control register
   765   os::Linux::init_thread_fpu_state();
   767   // handshaking with parent thread
   768   {
   769     MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
   771     // notify parent thread
   772     osthread->set_state(INITIALIZED);
   773     sync->notify_all();
   775     // wait until os::start_thread()
   776     while (osthread->get_state() == INITIALIZED) {
   777       sync->wait(Mutex::_no_safepoint_check_flag);
   778     }
   779   }
   781   // call one more level start routine
   782   thread->run();
   784   return 0;
   785 }
   787 bool os::create_thread(Thread* thread, ThreadType thr_type, size_t stack_size) {
   788   assert(thread->osthread() == NULL, "caller responsible");
   790   // Allocate the OSThread object
   791   OSThread* osthread = new OSThread(NULL, NULL);
   792   if (osthread == NULL) {
   793     return false;
   794   }
   796   // set the correct thread state
   797   osthread->set_thread_type(thr_type);
   799   // Initial state is ALLOCATED but not INITIALIZED
   800   osthread->set_state(ALLOCATED);
   802   thread->set_osthread(osthread);
   804   // init thread attributes
   805   pthread_attr_t attr;
   806   pthread_attr_init(&attr);
   807   pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
   809   // stack size
   810   if (os::Linux::supports_variable_stack_size()) {
   811     // calculate stack size if it's not specified by caller
   812     if (stack_size == 0) {
   813       stack_size = os::Linux::default_stack_size(thr_type);
   815       switch (thr_type) {
   816       case os::java_thread:
   817         // Java threads use ThreadStackSize which default value can be
   818         // changed with the flag -Xss
   819         assert (JavaThread::stack_size_at_create() > 0, "this should be set");
   820         stack_size = JavaThread::stack_size_at_create();
   821         break;
   822       case os::compiler_thread:
   823         if (CompilerThreadStackSize > 0) {
   824           stack_size = (size_t)(CompilerThreadStackSize * K);
   825           break;
   826         } // else fall through:
   827           // use VMThreadStackSize if CompilerThreadStackSize is not defined
   828       case os::vm_thread:
   829       case os::pgc_thread:
   830       case os::cgc_thread:
   831       case os::watcher_thread:
   832         if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
   833         break;
   834       }
   835     }
   837     stack_size = MAX2(stack_size, os::Linux::min_stack_allowed);
   838     pthread_attr_setstacksize(&attr, stack_size);
   839   } else {
   840     // let pthread_create() pick the default value.
   841   }
   843   // glibc guard page
   844   pthread_attr_setguardsize(&attr, os::Linux::default_guard_size(thr_type));
   846   ThreadState state;
   848   {
   849     // Serialize thread creation if we are running with fixed stack LinuxThreads
   850     bool lock = os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack();
   851     if (lock) {
   852       os::Linux::createThread_lock()->lock_without_safepoint_check();
   853     }
   855     pthread_t tid;
   856     int ret = pthread_create(&tid, &attr, (void* (*)(void*)) java_start, thread);
   858     pthread_attr_destroy(&attr);
   860     if (ret != 0) {
   861       if (PrintMiscellaneous && (Verbose || WizardMode)) {
   862         perror("pthread_create()");
   863       }
   864       // Need to clean up stuff we've allocated so far
   865       thread->set_osthread(NULL);
   866       delete osthread;
   867       if (lock) os::Linux::createThread_lock()->unlock();
   868       return false;
   869     }
   871     // Store pthread info into the OSThread
   872     osthread->set_pthread_id(tid);
   874     // Wait until child thread is either initialized or aborted
   875     {
   876       Monitor* sync_with_child = osthread->startThread_lock();
   877       MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
   878       while ((state = osthread->get_state()) == ALLOCATED) {
   879         sync_with_child->wait(Mutex::_no_safepoint_check_flag);
   880       }
   881     }
   883     if (lock) {
   884       os::Linux::createThread_lock()->unlock();
   885     }
   886   }
   888   // Aborted due to thread limit being reached
   889   if (state == ZOMBIE) {
   890       thread->set_osthread(NULL);
   891       delete osthread;
   892       return false;
   893   }
   895   // The thread is returned suspended (in state INITIALIZED),
   896   // and is started higher up in the call chain
   897   assert(state == INITIALIZED, "race condition");
   898   return true;
   899 }
   901 /////////////////////////////////////////////////////////////////////////////
   902 // attach existing thread
   904 // bootstrap the main thread
   905 bool os::create_main_thread(JavaThread* thread) {
   906   assert(os::Linux::_main_thread == pthread_self(), "should be called inside main thread");
   907   return create_attached_thread(thread);
   908 }
   910 bool os::create_attached_thread(JavaThread* thread) {
   911 #ifdef ASSERT
   912     thread->verify_not_published();
   913 #endif
   915   // Allocate the OSThread object
   916   OSThread* osthread = new OSThread(NULL, NULL);
   918   if (osthread == NULL) {
   919     return false;
   920   }
   922   // Store pthread info into the OSThread
   923   osthread->set_thread_id(os::Linux::gettid());
   924   osthread->set_pthread_id(::pthread_self());
   926   // initialize floating point control register
   927   os::Linux::init_thread_fpu_state();
   929   // Initial thread state is RUNNABLE
   930   osthread->set_state(RUNNABLE);
   932   thread->set_osthread(osthread);
   934   if (UseNUMA) {
   935     int lgrp_id = os::numa_get_group_id();
   936     if (lgrp_id != -1) {
   937       thread->set_lgrp_id(lgrp_id);
   938     }
   939   }
   941   if (os::Linux::is_initial_thread()) {
   942     // If current thread is initial thread, its stack is mapped on demand,
   943     // see notes about MAP_GROWSDOWN. Here we try to force kernel to map
   944     // the entire stack region to avoid SEGV in stack banging.
   945     // It is also useful to get around the heap-stack-gap problem on SuSE
   946     // kernel (see 4821821 for details). We first expand stack to the top
   947     // of yellow zone, then enable stack yellow zone (order is significant,
   948     // enabling yellow zone first will crash JVM on SuSE Linux), so there
   949     // is no gap between the last two virtual memory regions.
   951     JavaThread *jt = (JavaThread *)thread;
   952     address addr = jt->stack_yellow_zone_base();
   953     assert(addr != NULL, "initialization problem?");
   954     assert(jt->stack_available(addr) > 0, "stack guard should not be enabled");
   956     osthread->set_expanding_stack();
   957     os::Linux::manually_expand_stack(jt, addr);
   958     osthread->clear_expanding_stack();
   959   }
   961   // initialize signal mask for this thread
   962   // and save the caller's signal mask
   963   os::Linux::hotspot_sigmask(thread);
   965   return true;
   966 }
   968 void os::pd_start_thread(Thread* thread) {
   969   OSThread * osthread = thread->osthread();
   970   assert(osthread->get_state() != INITIALIZED, "just checking");
   971   Monitor* sync_with_child = osthread->startThread_lock();
   972   MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
   973   sync_with_child->notify();
   974 }
   976 // Free Linux resources related to the OSThread
   977 void os::free_thread(OSThread* osthread) {
   978   assert(osthread != NULL, "osthread not set");
   980   if (Thread::current()->osthread() == osthread) {
   981     // Restore caller's signal mask
   982     sigset_t sigmask = osthread->caller_sigmask();
   983     pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
   984    }
   986   delete osthread;
   987 }
   989 //////////////////////////////////////////////////////////////////////////////
   990 // thread local storage
   992 // Restore the thread pointer if the destructor is called. This is in case
   993 // someone from JNI code sets up a destructor with pthread_key_create to run
   994 // detachCurrentThread on thread death. Unless we restore the thread pointer we
   995 // will hang or crash. When detachCurrentThread is called the key will be set
   996 // to null and we will not be called again. If detachCurrentThread is never
   997 // called we could loop forever depending on the pthread implementation.
   998 static void restore_thread_pointer(void* p) {
   999   Thread* thread = (Thread*) p;
  1000   os::thread_local_storage_at_put(ThreadLocalStorage::thread_index(), thread);
  1003 int os::allocate_thread_local_storage() {
  1004   pthread_key_t key;
  1005   int rslt = pthread_key_create(&key, restore_thread_pointer);
  1006   assert(rslt == 0, "cannot allocate thread local storage");
  1007   return (int)key;
  1010 // Note: This is currently not used by VM, as we don't destroy TLS key
  1011 // on VM exit.
  1012 void os::free_thread_local_storage(int index) {
  1013   int rslt = pthread_key_delete((pthread_key_t)index);
  1014   assert(rslt == 0, "invalid index");
  1017 void os::thread_local_storage_at_put(int index, void* value) {
  1018   int rslt = pthread_setspecific((pthread_key_t)index, value);
  1019   assert(rslt == 0, "pthread_setspecific failed");
  1022 extern "C" Thread* get_thread() {
  1023   return ThreadLocalStorage::thread();
  1026 //////////////////////////////////////////////////////////////////////////////
  1027 // initial thread
  1029 // Check if current thread is the initial thread, similar to Solaris thr_main.
  1030 bool os::Linux::is_initial_thread(void) {
  1031   char dummy;
  1032   // If called before init complete, thread stack bottom will be null.
  1033   // Can be called if fatal error occurs before initialization.
  1034   if (initial_thread_stack_bottom() == NULL) return false;
  1035   assert(initial_thread_stack_bottom() != NULL &&
  1036          initial_thread_stack_size()   != 0,
  1037          "os::init did not locate initial thread's stack region");
  1038   if ((address)&dummy >= initial_thread_stack_bottom() &&
  1039       (address)&dummy < initial_thread_stack_bottom() + initial_thread_stack_size())
  1040        return true;
  1041   else return false;
  1044 // Find the virtual memory area that contains addr
  1045 static bool find_vma(address addr, address* vma_low, address* vma_high) {
  1046   FILE *fp = fopen("/proc/self/maps", "r");
  1047   if (fp) {
  1048     address low, high;
  1049     while (!feof(fp)) {
  1050       if (fscanf(fp, "%p-%p", &low, &high) == 2) {
  1051         if (low <= addr && addr < high) {
  1052            if (vma_low)  *vma_low  = low;
  1053            if (vma_high) *vma_high = high;
  1054            fclose (fp);
  1055            return true;
  1058       for (;;) {
  1059         int ch = fgetc(fp);
  1060         if (ch == EOF || ch == (int)'\n') break;
  1063     fclose(fp);
  1065   return false;
  1068 // Locate initial thread stack. This special handling of initial thread stack
  1069 // is needed because pthread_getattr_np() on most (all?) Linux distros returns
  1070 // bogus value for initial thread.
  1071 void os::Linux::capture_initial_stack(size_t max_size) {
  1072   // stack size is the easy part, get it from RLIMIT_STACK
  1073   size_t stack_size;
  1074   struct rlimit rlim;
  1075   getrlimit(RLIMIT_STACK, &rlim);
  1076   stack_size = rlim.rlim_cur;
  1078   // 6308388: a bug in ld.so will relocate its own .data section to the
  1079   //   lower end of primordial stack; reduce ulimit -s value a little bit
  1080   //   so we won't install guard page on ld.so's data section.
  1081   stack_size -= 2 * page_size();
  1083   // 4441425: avoid crash with "unlimited" stack size on SuSE 7.1 or Redhat
  1084   //   7.1, in both cases we will get 2G in return value.
  1085   // 4466587: glibc 2.2.x compiled w/o "--enable-kernel=2.4.0" (RH 7.0,
  1086   //   SuSE 7.2, Debian) can not handle alternate signal stack correctly
  1087   //   for initial thread if its stack size exceeds 6M. Cap it at 2M,
  1088   //   in case other parts in glibc still assumes 2M max stack size.
  1089   // FIXME: alt signal stack is gone, maybe we can relax this constraint?
  1090   // Problem still exists RH7.2 (IA64 anyway) but 2MB is a little small
  1091   if (stack_size > 2 * K * K IA64_ONLY(*2))
  1092       stack_size = 2 * K * K IA64_ONLY(*2);
  1093   // Try to figure out where the stack base (top) is. This is harder.
  1094   //
  1095   // When an application is started, glibc saves the initial stack pointer in
  1096   // a global variable "__libc_stack_end", which is then used by system
  1097   // libraries. __libc_stack_end should be pretty close to stack top. The
  1098   // variable is available since the very early days. However, because it is
  1099   // a private interface, it could disappear in the future.
  1100   //
  1101   // Linux kernel saves start_stack information in /proc/<pid>/stat. Similar
  1102   // to __libc_stack_end, it is very close to stack top, but isn't the real
  1103   // stack top. Note that /proc may not exist if VM is running as a chroot
  1104   // program, so reading /proc/<pid>/stat could fail. Also the contents of
  1105   // /proc/<pid>/stat could change in the future (though unlikely).
  1106   //
  1107   // We try __libc_stack_end first. If that doesn't work, look for
  1108   // /proc/<pid>/stat. If neither of them works, we use current stack pointer
  1109   // as a hint, which should work well in most cases.
  1111   uintptr_t stack_start;
  1113   // try __libc_stack_end first
  1114   uintptr_t *p = (uintptr_t *)dlsym(RTLD_DEFAULT, "__libc_stack_end");
  1115   if (p && *p) {
  1116     stack_start = *p;
  1117   } else {
  1118     // see if we can get the start_stack field from /proc/self/stat
  1119     FILE *fp;
  1120     int pid;
  1121     char state;
  1122     int ppid;
  1123     int pgrp;
  1124     int session;
  1125     int nr;
  1126     int tpgrp;
  1127     unsigned long flags;
  1128     unsigned long minflt;
  1129     unsigned long cminflt;
  1130     unsigned long majflt;
  1131     unsigned long cmajflt;
  1132     unsigned long utime;
  1133     unsigned long stime;
  1134     long cutime;
  1135     long cstime;
  1136     long prio;
  1137     long nice;
  1138     long junk;
  1139     long it_real;
  1140     uintptr_t start;
  1141     uintptr_t vsize;
  1142     intptr_t rss;
  1143     uintptr_t rsslim;
  1144     uintptr_t scodes;
  1145     uintptr_t ecode;
  1146     int i;
  1148     // Figure what the primordial thread stack base is. Code is inspired
  1149     // by email from Hans Boehm. /proc/self/stat begins with current pid,
  1150     // followed by command name surrounded by parentheses, state, etc.
  1151     char stat[2048];
  1152     int statlen;
  1154     fp = fopen("/proc/self/stat", "r");
  1155     if (fp) {
  1156       statlen = fread(stat, 1, 2047, fp);
  1157       stat[statlen] = '\0';
  1158       fclose(fp);
  1160       // Skip pid and the command string. Note that we could be dealing with
  1161       // weird command names, e.g. user could decide to rename java launcher
  1162       // to "java 1.4.2 :)", then the stat file would look like
  1163       //                1234 (java 1.4.2 :)) R ... ...
  1164       // We don't really need to know the command string, just find the last
  1165       // occurrence of ")" and then start parsing from there. See bug 4726580.
  1166       char * s = strrchr(stat, ')');
  1168       i = 0;
  1169       if (s) {
  1170         // Skip blank chars
  1171         do s++; while (isspace(*s));
  1173 #define _UFM UINTX_FORMAT
  1174 #define _DFM INTX_FORMAT
  1176         /*                                     1   1   1   1   1   1   1   1   1   1   2   2    2    2    2    2    2    2    2 */
  1177         /*              3  4  5  6  7  8   9   0   1   2   3   4   5   6   7   8   9   0   1    2    3    4    5    6    7    8 */
  1178         i = sscanf(s, "%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu %ld %ld %ld %ld %ld %ld " _UFM _UFM _DFM _UFM _UFM _UFM _UFM,
  1179              &state,          /* 3  %c  */
  1180              &ppid,           /* 4  %d  */
  1181              &pgrp,           /* 5  %d  */
  1182              &session,        /* 6  %d  */
  1183              &nr,             /* 7  %d  */
  1184              &tpgrp,          /* 8  %d  */
  1185              &flags,          /* 9  %lu  */
  1186              &minflt,         /* 10 %lu  */
  1187              &cminflt,        /* 11 %lu  */
  1188              &majflt,         /* 12 %lu  */
  1189              &cmajflt,        /* 13 %lu  */
  1190              &utime,          /* 14 %lu  */
  1191              &stime,          /* 15 %lu  */
  1192              &cutime,         /* 16 %ld  */
  1193              &cstime,         /* 17 %ld  */
  1194              &prio,           /* 18 %ld  */
  1195              &nice,           /* 19 %ld  */
  1196              &junk,           /* 20 %ld  */
  1197              &it_real,        /* 21 %ld  */
  1198              &start,          /* 22 UINTX_FORMAT */
  1199              &vsize,          /* 23 UINTX_FORMAT */
  1200              &rss,            /* 24 INTX_FORMAT  */
  1201              &rsslim,         /* 25 UINTX_FORMAT */
  1202              &scodes,         /* 26 UINTX_FORMAT */
  1203              &ecode,          /* 27 UINTX_FORMAT */
  1204              &stack_start);   /* 28 UINTX_FORMAT */
  1207 #undef _UFM
  1208 #undef _DFM
  1210       if (i != 28 - 2) {
  1211          assert(false, "Bad conversion from /proc/self/stat");
  1212          // product mode - assume we are the initial thread, good luck in the
  1213          // embedded case.
  1214          warning("Can't detect initial thread stack location - bad conversion");
  1215          stack_start = (uintptr_t) &rlim;
  1217     } else {
  1218       // For some reason we can't open /proc/self/stat (for example, running on
  1219       // FreeBSD with a Linux emulator, or inside chroot), this should work for
  1220       // most cases, so don't abort:
  1221       warning("Can't detect initial thread stack location - no /proc/self/stat");
  1222       stack_start = (uintptr_t) &rlim;
  1226   // Now we have a pointer (stack_start) very close to the stack top, the
  1227   // next thing to do is to figure out the exact location of stack top. We
  1228   // can find out the virtual memory area that contains stack_start by
  1229   // reading /proc/self/maps, it should be the last vma in /proc/self/maps,
  1230   // and its upper limit is the real stack top. (again, this would fail if
  1231   // running inside chroot, because /proc may not exist.)
  1233   uintptr_t stack_top;
  1234   address low, high;
  1235   if (find_vma((address)stack_start, &low, &high)) {
  1236     // success, "high" is the true stack top. (ignore "low", because initial
  1237     // thread stack grows on demand, its real bottom is high - RLIMIT_STACK.)
  1238     stack_top = (uintptr_t)high;
  1239   } else {
  1240     // failed, likely because /proc/self/maps does not exist
  1241     warning("Can't detect initial thread stack location - find_vma failed");
  1242     // best effort: stack_start is normally within a few pages below the real
  1243     // stack top, use it as stack top, and reduce stack size so we won't put
  1244     // guard page outside stack.
  1245     stack_top = stack_start;
  1246     stack_size -= 16 * page_size();
  1249   // stack_top could be partially down the page so align it
  1250   stack_top = align_size_up(stack_top, page_size());
  1252   if (max_size && stack_size > max_size) {
  1253      _initial_thread_stack_size = max_size;
  1254   } else {
  1255      _initial_thread_stack_size = stack_size;
  1258   _initial_thread_stack_size = align_size_down(_initial_thread_stack_size, page_size());
  1259   _initial_thread_stack_bottom = (address)stack_top - _initial_thread_stack_size;
  1262 ////////////////////////////////////////////////////////////////////////////////
  1263 // time support
  1265 // Time since start-up in seconds to a fine granularity.
  1266 // Used by VMSelfDestructTimer and the MemProfiler.
  1267 double os::elapsedTime() {
  1269   return ((double)os::elapsed_counter()) / os::elapsed_frequency(); // nanosecond resolution
  1272 jlong os::elapsed_counter() {
  1273   return javaTimeNanos() - initial_time_count;
  1276 jlong os::elapsed_frequency() {
  1277   return NANOSECS_PER_SEC; // nanosecond resolution
  1280 bool os::supports_vtime() { return true; }
  1281 bool os::enable_vtime()   { return false; }
  1282 bool os::vtime_enabled()  { return false; }
  1284 double os::elapsedVTime() {
  1285   struct rusage usage;
  1286   int retval = getrusage(RUSAGE_THREAD, &usage);
  1287   if (retval == 0) {
  1288     return (double) (usage.ru_utime.tv_sec + usage.ru_stime.tv_sec) + (double) (usage.ru_utime.tv_usec + usage.ru_stime.tv_usec) / (1000 * 1000);
  1289   } else {
  1290     // better than nothing, but not much
  1291     return elapsedTime();
  1295 jlong os::javaTimeMillis() {
  1296   timeval time;
  1297   int status = gettimeofday(&time, NULL);
  1298   assert(status != -1, "linux error");
  1299   return jlong(time.tv_sec) * 1000  +  jlong(time.tv_usec / 1000);
  1302 #ifndef CLOCK_MONOTONIC
  1303 #define CLOCK_MONOTONIC (1)
  1304 #endif
  1306 void os::Linux::clock_init() {
  1307   // we do dlopen's in this particular order due to bug in linux
  1308   // dynamical loader (see 6348968) leading to crash on exit
  1309   void* handle = dlopen("librt.so.1", RTLD_LAZY);
  1310   if (handle == NULL) {
  1311     handle = dlopen("librt.so", RTLD_LAZY);
  1314   if (handle) {
  1315     int (*clock_getres_func)(clockid_t, struct timespec*) =
  1316            (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_getres");
  1317     int (*clock_gettime_func)(clockid_t, struct timespec*) =
  1318            (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_gettime");
  1319     if (clock_getres_func && clock_gettime_func) {
  1320       // See if monotonic clock is supported by the kernel. Note that some
  1321       // early implementations simply return kernel jiffies (updated every
  1322       // 1/100 or 1/1000 second). It would be bad to use such a low res clock
  1323       // for nano time (though the monotonic property is still nice to have).
  1324       // It's fixed in newer kernels, however clock_getres() still returns
  1325       // 1/HZ. We check if clock_getres() works, but will ignore its reported
  1326       // resolution for now. Hopefully as people move to new kernels, this
  1327       // won't be a problem.
  1328       struct timespec res;
  1329       struct timespec tp;
  1330       if (clock_getres_func (CLOCK_MONOTONIC, &res) == 0 &&
  1331           clock_gettime_func(CLOCK_MONOTONIC, &tp)  == 0) {
  1332         // yes, monotonic clock is supported
  1333         _clock_gettime = clock_gettime_func;
  1334         return;
  1335       } else {
  1336         // close librt if there is no monotonic clock
  1337         dlclose(handle);
  1341   warning("No monotonic clock was available - timed services may " \
  1342           "be adversely affected if the time-of-day clock changes");
  1345 #ifndef SYS_clock_getres
  1347 #if defined(IA32) || defined(AMD64)
  1348 #define SYS_clock_getres IA32_ONLY(266)  AMD64_ONLY(229)
  1349 #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
  1350 #else
  1351 #warning "SYS_clock_getres not defined for this platform, disabling fast_thread_cpu_time"
  1352 #define sys_clock_getres(x,y)  -1
  1353 #endif
  1355 #else
  1356 #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
  1357 #endif
  1359 void os::Linux::fast_thread_clock_init() {
  1360   if (!UseLinuxPosixThreadCPUClocks) {
  1361     return;
  1363   clockid_t clockid;
  1364   struct timespec tp;
  1365   int (*pthread_getcpuclockid_func)(pthread_t, clockid_t *) =
  1366       (int(*)(pthread_t, clockid_t *)) dlsym(RTLD_DEFAULT, "pthread_getcpuclockid");
  1368   // Switch to using fast clocks for thread cpu time if
  1369   // the sys_clock_getres() returns 0 error code.
  1370   // Note, that some kernels may support the current thread
  1371   // clock (CLOCK_THREAD_CPUTIME_ID) but not the clocks
  1372   // returned by the pthread_getcpuclockid().
  1373   // If the fast Posix clocks are supported then the sys_clock_getres()
  1374   // must return at least tp.tv_sec == 0 which means a resolution
  1375   // better than 1 sec. This is extra check for reliability.
  1377   if(pthread_getcpuclockid_func &&
  1378      pthread_getcpuclockid_func(_main_thread, &clockid) == 0 &&
  1379      sys_clock_getres(clockid, &tp) == 0 && tp.tv_sec == 0) {
  1381     _supports_fast_thread_cpu_time = true;
  1382     _pthread_getcpuclockid = pthread_getcpuclockid_func;
  1386 jlong os::javaTimeNanos() {
  1387   if (Linux::supports_monotonic_clock()) {
  1388     struct timespec tp;
  1389     int status = Linux::clock_gettime(CLOCK_MONOTONIC, &tp);
  1390     assert(status == 0, "gettime error");
  1391     jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
  1392     return result;
  1393   } else {
  1394     timeval time;
  1395     int status = gettimeofday(&time, NULL);
  1396     assert(status != -1, "linux error");
  1397     jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
  1398     return 1000 * usecs;
  1402 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
  1403   if (Linux::supports_monotonic_clock()) {
  1404     info_ptr->max_value = ALL_64_BITS;
  1406     // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
  1407     info_ptr->may_skip_backward = false;      // not subject to resetting or drifting
  1408     info_ptr->may_skip_forward = false;       // not subject to resetting or drifting
  1409   } else {
  1410     // gettimeofday - based on time in seconds since the Epoch thus does not wrap
  1411     info_ptr->max_value = ALL_64_BITS;
  1413     // gettimeofday is a real time clock so it skips
  1414     info_ptr->may_skip_backward = true;
  1415     info_ptr->may_skip_forward = true;
  1418   info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
  1421 // Return the real, user, and system times in seconds from an
  1422 // arbitrary fixed point in the past.
  1423 bool os::getTimesSecs(double* process_real_time,
  1424                       double* process_user_time,
  1425                       double* process_system_time) {
  1426   struct tms ticks;
  1427   clock_t real_ticks = times(&ticks);
  1429   if (real_ticks == (clock_t) (-1)) {
  1430     return false;
  1431   } else {
  1432     double ticks_per_second = (double) clock_tics_per_sec;
  1433     *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
  1434     *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
  1435     *process_real_time = ((double) real_ticks) / ticks_per_second;
  1437     return true;
  1442 char * os::local_time_string(char *buf, size_t buflen) {
  1443   struct tm t;
  1444   time_t long_time;
  1445   time(&long_time);
  1446   localtime_r(&long_time, &t);
  1447   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
  1448                t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
  1449                t.tm_hour, t.tm_min, t.tm_sec);
  1450   return buf;
  1453 struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
  1454   return localtime_r(clock, res);
  1457 ////////////////////////////////////////////////////////////////////////////////
  1458 // runtime exit support
  1460 // Note: os::shutdown() might be called very early during initialization, or
  1461 // called from signal handler. Before adding something to os::shutdown(), make
  1462 // sure it is async-safe and can handle partially initialized VM.
  1463 void os::shutdown() {
  1465   // allow PerfMemory to attempt cleanup of any persistent resources
  1466   perfMemory_exit();
  1468   // needs to remove object in file system
  1469   AttachListener::abort();
  1471   // flush buffered output, finish log files
  1472   ostream_abort();
  1474   // Check for abort hook
  1475   abort_hook_t abort_hook = Arguments::abort_hook();
  1476   if (abort_hook != NULL) {
  1477     abort_hook();
  1482 // Note: os::abort() might be called very early during initialization, or
  1483 // called from signal handler. Before adding something to os::abort(), make
  1484 // sure it is async-safe and can handle partially initialized VM.
  1485 void os::abort(bool dump_core) {
  1486   os::shutdown();
  1487   if (dump_core) {
  1488 #ifndef PRODUCT
  1489     fdStream out(defaultStream::output_fd());
  1490     out.print_raw("Current thread is ");
  1491     char buf[16];
  1492     jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
  1493     out.print_raw_cr(buf);
  1494     out.print_raw_cr("Dumping core ...");
  1495 #endif
  1496     ::abort(); // dump core
  1499   ::exit(1);
  1502 // Die immediately, no exit hook, no abort hook, no cleanup.
  1503 void os::die() {
  1504   // _exit() on LinuxThreads only kills current thread
  1505   ::abort();
  1509 // This method is a copy of JDK's sysGetLastErrorString
  1510 // from src/solaris/hpi/src/system_md.c
  1512 size_t os::lasterror(char *buf, size_t len) {
  1514   if (errno == 0)  return 0;
  1516   const char *s = ::strerror(errno);
  1517   size_t n = ::strlen(s);
  1518   if (n >= len) {
  1519     n = len - 1;
  1521   ::strncpy(buf, s, n);
  1522   buf[n] = '\0';
  1523   return n;
  1526 intx os::current_thread_id() { return (intx)pthread_self(); }
  1527 int os::current_process_id() {
  1529   // Under the old linux thread library, linux gives each thread
  1530   // its own process id. Because of this each thread will return
  1531   // a different pid if this method were to return the result
  1532   // of getpid(2). Linux provides no api that returns the pid
  1533   // of the launcher thread for the vm. This implementation
  1534   // returns a unique pid, the pid of the launcher thread
  1535   // that starts the vm 'process'.
  1537   // Under the NPTL, getpid() returns the same pid as the
  1538   // launcher thread rather than a unique pid per thread.
  1539   // Use gettid() if you want the old pre NPTL behaviour.
  1541   // if you are looking for the result of a call to getpid() that
  1542   // returns a unique pid for the calling thread, then look at the
  1543   // OSThread::thread_id() method in osThread_linux.hpp file
  1545   return (int)(_initial_pid ? _initial_pid : getpid());
  1548 // DLL functions
  1550 const char* os::dll_file_extension() { return ".so"; }
  1552 // This must be hard coded because it's the system's temporary
  1553 // directory not the java application's temp directory, ala java.io.tmpdir.
  1554 const char* os::get_temp_directory() { return "/tmp"; }
  1556 static bool file_exists(const char* filename) {
  1557   struct stat statbuf;
  1558   if (filename == NULL || strlen(filename) == 0) {
  1559     return false;
  1561   return os::stat(filename, &statbuf) == 0;
  1564 bool os::dll_build_name(char* buffer, size_t buflen,
  1565                         const char* pname, const char* fname) {
  1566   bool retval = false;
  1567   // Copied from libhpi
  1568   const size_t pnamelen = pname ? strlen(pname) : 0;
  1570   // Return error on buffer overflow.
  1571   if (pnamelen + strlen(fname) + 10 > (size_t) buflen) {
  1572     return retval;
  1575   if (pnamelen == 0) {
  1576     snprintf(buffer, buflen, "lib%s.so", fname);
  1577     retval = true;
  1578   } else if (strchr(pname, *os::path_separator()) != NULL) {
  1579     int n;
  1580     char** pelements = split_path(pname, &n);
  1581     if (pelements == NULL) {
  1582       return false;
  1584     for (int i = 0 ; i < n ; i++) {
  1585       // Really shouldn't be NULL, but check can't hurt
  1586       if (pelements[i] == NULL || strlen(pelements[i]) == 0) {
  1587         continue; // skip the empty path values
  1589       snprintf(buffer, buflen, "%s/lib%s.so", pelements[i], fname);
  1590       if (file_exists(buffer)) {
  1591         retval = true;
  1592         break;
  1595     // release the storage
  1596     for (int i = 0 ; i < n ; i++) {
  1597       if (pelements[i] != NULL) {
  1598         FREE_C_HEAP_ARRAY(char, pelements[i], mtInternal);
  1601     if (pelements != NULL) {
  1602       FREE_C_HEAP_ARRAY(char*, pelements, mtInternal);
  1604   } else {
  1605     snprintf(buffer, buflen, "%s/lib%s.so", pname, fname);
  1606     retval = true;
  1608   return retval;
  1611 // check if addr is inside libjvm.so
  1612 bool os::address_is_in_vm(address addr) {
  1613   static address libjvm_base_addr;
  1614   Dl_info dlinfo;
  1616   if (libjvm_base_addr == NULL) {
  1617     if (dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo) != 0) {
  1618       libjvm_base_addr = (address)dlinfo.dli_fbase;
  1620     assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
  1623   if (dladdr((void *)addr, &dlinfo) != 0) {
  1624     if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
  1627   return false;
  1630 bool os::dll_address_to_function_name(address addr, char *buf,
  1631                                       int buflen, int *offset) {
  1632   // buf is not optional, but offset is optional
  1633   assert(buf != NULL, "sanity check");
  1635   Dl_info dlinfo;
  1637   if (dladdr((void*)addr, &dlinfo) != 0) {
  1638     // see if we have a matching symbol
  1639     if (dlinfo.dli_saddr != NULL && dlinfo.dli_sname != NULL) {
  1640       if (!Decoder::demangle(dlinfo.dli_sname, buf, buflen)) {
  1641         jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
  1643       if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
  1644       return true;
  1646     // no matching symbol so try for just file info
  1647     if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) {
  1648       if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
  1649                           buf, buflen, offset, dlinfo.dli_fname)) {
  1650         return true;
  1655   buf[0] = '\0';
  1656   if (offset != NULL) *offset = -1;
  1657   return false;
  1660 struct _address_to_library_name {
  1661   address addr;          // input : memory address
  1662   size_t  buflen;        //         size of fname
  1663   char*   fname;         // output: library name
  1664   address base;          //         library base addr
  1665 };
  1667 static int address_to_library_name_callback(struct dl_phdr_info *info,
  1668                                             size_t size, void *data) {
  1669   int i;
  1670   bool found = false;
  1671   address libbase = NULL;
  1672   struct _address_to_library_name * d = (struct _address_to_library_name *)data;
  1674   // iterate through all loadable segments
  1675   for (i = 0; i < info->dlpi_phnum; i++) {
  1676     address segbase = (address)(info->dlpi_addr + info->dlpi_phdr[i].p_vaddr);
  1677     if (info->dlpi_phdr[i].p_type == PT_LOAD) {
  1678       // base address of a library is the lowest address of its loaded
  1679       // segments.
  1680       if (libbase == NULL || libbase > segbase) {
  1681         libbase = segbase;
  1683       // see if 'addr' is within current segment
  1684       if (segbase <= d->addr &&
  1685           d->addr < segbase + info->dlpi_phdr[i].p_memsz) {
  1686         found = true;
  1691   // dlpi_name is NULL or empty if the ELF file is executable, return 0
  1692   // so dll_address_to_library_name() can fall through to use dladdr() which
  1693   // can figure out executable name from argv[0].
  1694   if (found && info->dlpi_name && info->dlpi_name[0]) {
  1695     d->base = libbase;
  1696     if (d->fname) {
  1697       jio_snprintf(d->fname, d->buflen, "%s", info->dlpi_name);
  1699     return 1;
  1701   return 0;
  1704 bool os::dll_address_to_library_name(address addr, char* buf,
  1705                                      int buflen, int* offset) {
  1706   // buf is not optional, but offset is optional
  1707   assert(buf != NULL, "sanity check");
  1709   Dl_info dlinfo;
  1710   struct _address_to_library_name data;
  1712   // There is a bug in old glibc dladdr() implementation that it could resolve
  1713   // to wrong library name if the .so file has a base address != NULL. Here
  1714   // we iterate through the program headers of all loaded libraries to find
  1715   // out which library 'addr' really belongs to. This workaround can be
  1716   // removed once the minimum requirement for glibc is moved to 2.3.x.
  1717   data.addr = addr;
  1718   data.fname = buf;
  1719   data.buflen = buflen;
  1720   data.base = NULL;
  1721   int rslt = dl_iterate_phdr(address_to_library_name_callback, (void *)&data);
  1723   if (rslt) {
  1724      // buf already contains library name
  1725      if (offset) *offset = addr - data.base;
  1726      return true;
  1728   if (dladdr((void*)addr, &dlinfo) != 0) {
  1729     if (dlinfo.dli_fname != NULL) {
  1730       jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
  1732     if (dlinfo.dli_fbase != NULL && offset != NULL) {
  1733       *offset = addr - (address)dlinfo.dli_fbase;
  1735     return true;
  1738   buf[0] = '\0';
  1739   if (offset) *offset = -1;
  1740   return false;
  1743   // Loads .dll/.so and
  1744   // in case of error it checks if .dll/.so was built for the
  1745   // same architecture as Hotspot is running on
  1748 // Remember the stack's state. The Linux dynamic linker will change
  1749 // the stack to 'executable' at most once, so we must safepoint only once.
  1750 bool os::Linux::_stack_is_executable = false;
  1752 // VM operation that loads a library.  This is necessary if stack protection
  1753 // of the Java stacks can be lost during loading the library.  If we
  1754 // do not stop the Java threads, they can stack overflow before the stacks
  1755 // are protected again.
  1756 class VM_LinuxDllLoad: public VM_Operation {
  1757  private:
  1758   const char *_filename;
  1759   char *_ebuf;
  1760   int _ebuflen;
  1761   void *_lib;
  1762  public:
  1763   VM_LinuxDllLoad(const char *fn, char *ebuf, int ebuflen) :
  1764     _filename(fn), _ebuf(ebuf), _ebuflen(ebuflen), _lib(NULL) {}
  1765   VMOp_Type type() const { return VMOp_LinuxDllLoad; }
  1766   void doit() {
  1767     _lib = os::Linux::dll_load_in_vmthread(_filename, _ebuf, _ebuflen);
  1768     os::Linux::_stack_is_executable = true;
  1770   void* loaded_library() { return _lib; }
  1771 };
  1773 void * os::dll_load(const char *filename, char *ebuf, int ebuflen)
  1775   void * result = NULL;
  1776   bool load_attempted = false;
  1778   // Check whether the library to load might change execution rights
  1779   // of the stack. If they are changed, the protection of the stack
  1780   // guard pages will be lost. We need a safepoint to fix this.
  1781   //
  1782   // See Linux man page execstack(8) for more info.
  1783   if (os::uses_stack_guard_pages() && !os::Linux::_stack_is_executable) {
  1784     ElfFile ef(filename);
  1785     if (!ef.specifies_noexecstack()) {
  1786       if (!is_init_completed()) {
  1787         os::Linux::_stack_is_executable = true;
  1788         // This is OK - No Java threads have been created yet, and hence no
  1789         // stack guard pages to fix.
  1790         //
  1791         // This should happen only when you are building JDK7 using a very
  1792         // old version of JDK6 (e.g., with JPRT) and running test_gamma.
  1793         //
  1794         // Dynamic loader will make all stacks executable after
  1795         // this function returns, and will not do that again.
  1796         assert(Threads::first() == NULL, "no Java threads should exist yet.");
  1797       } else {
  1798         warning("You have loaded library %s which might have disabled stack guard. "
  1799                 "The VM will try to fix the stack guard now.\n"
  1800                 "It's highly recommended that you fix the library with "
  1801                 "'execstack -c <libfile>', or link it with '-z noexecstack'.",
  1802                 filename);
  1804         assert(Thread::current()->is_Java_thread(), "must be Java thread");
  1805         JavaThread *jt = JavaThread::current();
  1806         if (jt->thread_state() != _thread_in_native) {
  1807           // This happens when a compiler thread tries to load a hsdis-<arch>.so file
  1808           // that requires ExecStack. Cannot enter safe point. Let's give up.
  1809           warning("Unable to fix stack guard. Giving up.");
  1810         } else {
  1811           if (!LoadExecStackDllInVMThread) {
  1812             // This is for the case where the DLL has an static
  1813             // constructor function that executes JNI code. We cannot
  1814             // load such DLLs in the VMThread.
  1815             result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
  1818           ThreadInVMfromNative tiv(jt);
  1819           debug_only(VMNativeEntryWrapper vew;)
  1821           VM_LinuxDllLoad op(filename, ebuf, ebuflen);
  1822           VMThread::execute(&op);
  1823           if (LoadExecStackDllInVMThread) {
  1824             result = op.loaded_library();
  1826           load_attempted = true;
  1832   if (!load_attempted) {
  1833     result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
  1836   if (result != NULL) {
  1837     // Successful loading
  1838     return result;
  1841   Elf32_Ehdr elf_head;
  1842   int diag_msg_max_length=ebuflen-strlen(ebuf);
  1843   char* diag_msg_buf=ebuf+strlen(ebuf);
  1845   if (diag_msg_max_length==0) {
  1846     // No more space in ebuf for additional diagnostics message
  1847     return NULL;
  1851   int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
  1853   if (file_descriptor < 0) {
  1854     // Can't open library, report dlerror() message
  1855     return NULL;
  1858   bool failed_to_read_elf_head=
  1859     (sizeof(elf_head)!=
  1860         (::read(file_descriptor, &elf_head,sizeof(elf_head)))) ;
  1862   ::close(file_descriptor);
  1863   if (failed_to_read_elf_head) {
  1864     // file i/o error - report dlerror() msg
  1865     return NULL;
  1868   typedef struct {
  1869     Elf32_Half  code;         // Actual value as defined in elf.h
  1870     Elf32_Half  compat_class; // Compatibility of archs at VM's sense
  1871     char        elf_class;    // 32 or 64 bit
  1872     char        endianess;    // MSB or LSB
  1873     char*       name;         // String representation
  1874   } arch_t;
  1876   #ifndef EM_486
  1877   #define EM_486          6               /* Intel 80486 */
  1878   #endif
  1880   static const arch_t arch_array[]={
  1881     {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
  1882     {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
  1883     {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
  1884     {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
  1885     {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
  1886     {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
  1887     {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
  1888     {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
  1889 #if defined(VM_LITTLE_ENDIAN)
  1890     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2LSB, (char*)"Power PC 64"},
  1891 #else
  1892     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
  1893 #endif
  1894     {EM_ARM,         EM_ARM,     ELFCLASS32,   ELFDATA2LSB, (char*)"ARM"},
  1895     {EM_S390,        EM_S390,    ELFCLASSNONE, ELFDATA2MSB, (char*)"IBM System/390"},
  1896     {EM_ALPHA,       EM_ALPHA,   ELFCLASS64, ELFDATA2LSB, (char*)"Alpha"},
  1897     {EM_MIPS_RS3_LE, EM_MIPS_RS3_LE, ELFCLASS32, ELFDATA2LSB, (char*)"MIPSel"},
  1898     {EM_MIPS,        EM_MIPS,    ELFCLASS32, ELFDATA2MSB, (char*)"MIPS"},
  1899     {EM_PARISC,      EM_PARISC,  ELFCLASS32, ELFDATA2MSB, (char*)"PARISC"},
  1900     {EM_68K,         EM_68K,     ELFCLASS32, ELFDATA2MSB, (char*)"M68k"}
  1901   };
  1903   #if  (defined IA32)
  1904     static  Elf32_Half running_arch_code=EM_386;
  1905   #elif   (defined AMD64)
  1906     static  Elf32_Half running_arch_code=EM_X86_64;
  1907   #elif  (defined IA64)
  1908     static  Elf32_Half running_arch_code=EM_IA_64;
  1909   #elif  (defined __sparc) && (defined _LP64)
  1910     static  Elf32_Half running_arch_code=EM_SPARCV9;
  1911   #elif  (defined __sparc) && (!defined _LP64)
  1912     static  Elf32_Half running_arch_code=EM_SPARC;
  1913   #elif  (defined __powerpc64__)
  1914     static  Elf32_Half running_arch_code=EM_PPC64;
  1915   #elif  (defined __powerpc__)
  1916     static  Elf32_Half running_arch_code=EM_PPC;
  1917   #elif  (defined ARM)
  1918     static  Elf32_Half running_arch_code=EM_ARM;
  1919   #elif  (defined S390)
  1920     static  Elf32_Half running_arch_code=EM_S390;
  1921   #elif  (defined ALPHA)
  1922     static  Elf32_Half running_arch_code=EM_ALPHA;
  1923   #elif  (defined MIPSEL)
  1924     static  Elf32_Half running_arch_code=EM_MIPS_RS3_LE;
  1925   #elif  (defined PARISC)
  1926     static  Elf32_Half running_arch_code=EM_PARISC;
  1927   #elif  (defined MIPS)
  1928     static  Elf32_Half running_arch_code=EM_MIPS;
  1929   #elif  (defined M68K)
  1930     static  Elf32_Half running_arch_code=EM_68K;
  1931   #else
  1932     #error Method os::dll_load requires that one of following is defined:\
  1933          IA32, AMD64, IA64, __sparc, __powerpc__, ARM, S390, ALPHA, MIPS, MIPSEL, PARISC, M68K
  1934   #endif
  1936   // Identify compatability class for VM's architecture and library's architecture
  1937   // Obtain string descriptions for architectures
  1939   arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
  1940   int running_arch_index=-1;
  1942   for (unsigned int i=0 ; i < ARRAY_SIZE(arch_array) ; i++ ) {
  1943     if (running_arch_code == arch_array[i].code) {
  1944       running_arch_index    = i;
  1946     if (lib_arch.code == arch_array[i].code) {
  1947       lib_arch.compat_class = arch_array[i].compat_class;
  1948       lib_arch.name         = arch_array[i].name;
  1952   assert(running_arch_index != -1,
  1953     "Didn't find running architecture code (running_arch_code) in arch_array");
  1954   if (running_arch_index == -1) {
  1955     // Even though running architecture detection failed
  1956     // we may still continue with reporting dlerror() message
  1957     return NULL;
  1960   if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
  1961     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
  1962     return NULL;
  1965 #ifndef S390
  1966   if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
  1967     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
  1968     return NULL;
  1970 #endif // !S390
  1972   if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
  1973     if ( lib_arch.name!=NULL ) {
  1974       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
  1975         " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
  1976         lib_arch.name, arch_array[running_arch_index].name);
  1977     } else {
  1978       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
  1979       " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
  1980         lib_arch.code,
  1981         arch_array[running_arch_index].name);
  1985   return NULL;
  1988 void * os::Linux::dlopen_helper(const char *filename, char *ebuf, int ebuflen) {
  1989   void * result = ::dlopen(filename, RTLD_LAZY);
  1990   if (result == NULL) {
  1991     ::strncpy(ebuf, ::dlerror(), ebuflen - 1);
  1992     ebuf[ebuflen-1] = '\0';
  1994   return result;
  1997 void * os::Linux::dll_load_in_vmthread(const char *filename, char *ebuf, int ebuflen) {
  1998   void * result = NULL;
  1999   if (LoadExecStackDllInVMThread) {
  2000     result = dlopen_helper(filename, ebuf, ebuflen);
  2003   // Since 7019808, libjvm.so is linked with -noexecstack. If the VM loads a
  2004   // library that requires an executable stack, or which does not have this
  2005   // stack attribute set, dlopen changes the stack attribute to executable. The
  2006   // read protection of the guard pages gets lost.
  2007   //
  2008   // Need to check _stack_is_executable again as multiple VM_LinuxDllLoad
  2009   // may have been queued at the same time.
  2011   if (!_stack_is_executable) {
  2012     JavaThread *jt = Threads::first();
  2014     while (jt) {
  2015       if (!jt->stack_guard_zone_unused() &&        // Stack not yet fully initialized
  2016           jt->stack_yellow_zone_enabled()) {       // No pending stack overflow exceptions
  2017         if (!os::guard_memory((char *) jt->stack_red_zone_base() - jt->stack_red_zone_size(),
  2018                               jt->stack_yellow_zone_size() + jt->stack_red_zone_size())) {
  2019           warning("Attempt to reguard stack yellow zone failed.");
  2022       jt = jt->next();
  2026   return result;
  2029 /*
  2030  * glibc-2.0 libdl is not MT safe.  If you are building with any glibc,
  2031  * chances are you might want to run the generated bits against glibc-2.0
  2032  * libdl.so, so always use locking for any version of glibc.
  2033  */
  2034 void* os::dll_lookup(void* handle, const char* name) {
  2035   pthread_mutex_lock(&dl_mutex);
  2036   void* res = dlsym(handle, name);
  2037   pthread_mutex_unlock(&dl_mutex);
  2038   return res;
  2041 void* os::get_default_process_handle() {
  2042   return (void*)::dlopen(NULL, RTLD_LAZY);
  2045 static bool _print_ascii_file(const char* filename, outputStream* st) {
  2046   int fd = ::open(filename, O_RDONLY);
  2047   if (fd == -1) {
  2048      return false;
  2051   char buf[32];
  2052   int bytes;
  2053   while ((bytes = ::read(fd, buf, sizeof(buf))) > 0) {
  2054     st->print_raw(buf, bytes);
  2057   ::close(fd);
  2059   return true;
  2062 void os::print_dll_info(outputStream *st) {
  2063    st->print_cr("Dynamic libraries:");
  2065    char fname[32];
  2066    pid_t pid = os::Linux::gettid();
  2068    jio_snprintf(fname, sizeof(fname), "/proc/%d/maps", pid);
  2070    if (!_print_ascii_file(fname, st)) {
  2071      st->print("Can not get library information for pid = %d\n", pid);
  2075 void os::print_os_info_brief(outputStream* st) {
  2076   os::Linux::print_distro_info(st);
  2078   os::Posix::print_uname_info(st);
  2080   os::Linux::print_libversion_info(st);
  2084 void os::print_os_info(outputStream* st) {
  2085   st->print("OS:");
  2087   os::Linux::print_distro_info(st);
  2089   os::Posix::print_uname_info(st);
  2091   // Print warning if unsafe chroot environment detected
  2092   if (unsafe_chroot_detected) {
  2093     st->print("WARNING!! ");
  2094     st->print_cr("%s", unstable_chroot_error);
  2097   os::Linux::print_libversion_info(st);
  2099   os::Posix::print_rlimit_info(st);
  2101   os::Posix::print_load_average(st);
  2103   os::Linux::print_full_memory_info(st);
  2106 // Try to identify popular distros.
  2107 // Most Linux distributions have a /etc/XXX-release file, which contains
  2108 // the OS version string. Newer Linux distributions have a /etc/lsb-release
  2109 // file that also contains the OS version string. Some have more than one
  2110 // /etc/XXX-release file (e.g. Mandrake has both /etc/mandrake-release and
  2111 // /etc/redhat-release.), so the order is important.
  2112 // Any Linux that is based on Redhat (i.e. Oracle, Mandrake, Sun JDS...) have
  2113 // their own specific XXX-release file as well as a redhat-release file.
  2114 // Because of this the XXX-release file needs to be searched for before the
  2115 // redhat-release file.
  2116 // Since Red Hat has a lsb-release file that is not very descriptive the
  2117 // search for redhat-release needs to be before lsb-release.
  2118 // Since the lsb-release file is the new standard it needs to be searched
  2119 // before the older style release files.
  2120 // Searching system-release (Red Hat) and os-release (other Linuxes) are a
  2121 // next to last resort.  The os-release file is a new standard that contains
  2122 // distribution information and the system-release file seems to be an old
  2123 // standard that has been replaced by the lsb-release and os-release files.
  2124 // Searching for the debian_version file is the last resort.  It contains
  2125 // an informative string like "6.0.6" or "wheezy/sid". Because of this
  2126 // "Debian " is printed before the contents of the debian_version file.
  2127 void os::Linux::print_distro_info(outputStream* st) {
  2128    if (!_print_ascii_file("/etc/oracle-release", st) &&
  2129        !_print_ascii_file("/etc/mandriva-release", st) &&
  2130        !_print_ascii_file("/etc/mandrake-release", st) &&
  2131        !_print_ascii_file("/etc/sun-release", st) &&
  2132        !_print_ascii_file("/etc/redhat-release", st) &&
  2133        !_print_ascii_file("/etc/lsb-release", st) &&
  2134        !_print_ascii_file("/etc/SuSE-release", st) &&
  2135        !_print_ascii_file("/etc/turbolinux-release", st) &&
  2136        !_print_ascii_file("/etc/gentoo-release", st) &&
  2137        !_print_ascii_file("/etc/ltib-release", st) &&
  2138        !_print_ascii_file("/etc/angstrom-version", st) &&
  2139        !_print_ascii_file("/etc/system-release", st) &&
  2140        !_print_ascii_file("/etc/os-release", st)) {
  2142        if (file_exists("/etc/debian_version")) {
  2143          st->print("Debian ");
  2144          _print_ascii_file("/etc/debian_version", st);
  2145        } else {
  2146          st->print("Linux");
  2149    st->cr();
  2152 void os::Linux::print_libversion_info(outputStream* st) {
  2153   // libc, pthread
  2154   st->print("libc:");
  2155   st->print("%s ", os::Linux::glibc_version());
  2156   st->print("%s ", os::Linux::libpthread_version());
  2157   if (os::Linux::is_LinuxThreads()) {
  2158      st->print("(%s stack)", os::Linux::is_floating_stack() ? "floating" : "fixed");
  2160   st->cr();
  2163 void os::Linux::print_full_memory_info(outputStream* st) {
  2164    st->print("\n/proc/meminfo:\n");
  2165    _print_ascii_file("/proc/meminfo", st);
  2166    st->cr();
  2169 void os::print_memory_info(outputStream* st) {
  2171   st->print("Memory:");
  2172   st->print(" %dk page", os::vm_page_size()>>10);
  2174   // values in struct sysinfo are "unsigned long"
  2175   struct sysinfo si;
  2176   sysinfo(&si);
  2178   st->print(", physical " UINT64_FORMAT "k",
  2179             os::physical_memory() >> 10);
  2180   st->print("(" UINT64_FORMAT "k free)",
  2181             os::available_memory() >> 10);
  2182   st->print(", swap " UINT64_FORMAT "k",
  2183             ((jlong)si.totalswap * si.mem_unit) >> 10);
  2184   st->print("(" UINT64_FORMAT "k free)",
  2185             ((jlong)si.freeswap * si.mem_unit) >> 10);
  2186   st->cr();
  2189 void os::pd_print_cpu_info(outputStream* st) {
  2190   st->print("\n/proc/cpuinfo:\n");
  2191   if (!_print_ascii_file("/proc/cpuinfo", st)) {
  2192     st->print("  <Not Available>");
  2194   st->cr();
  2197 void os::print_siginfo(outputStream* st, void* siginfo) {
  2198   const siginfo_t* si = (const siginfo_t*)siginfo;
  2200   os::Posix::print_siginfo_brief(st, si);
  2201 #if INCLUDE_CDS
  2202   if (si && (si->si_signo == SIGBUS || si->si_signo == SIGSEGV) &&
  2203       UseSharedSpaces) {
  2204     FileMapInfo* mapinfo = FileMapInfo::current_info();
  2205     if (mapinfo->is_in_shared_space(si->si_addr)) {
  2206       st->print("\n\nError accessing class data sharing archive."   \
  2207                 " Mapped file inaccessible during execution, "      \
  2208                 " possible disk/network problem.");
  2211 #endif
  2212   st->cr();
  2216 static void print_signal_handler(outputStream* st, int sig,
  2217                                  char* buf, size_t buflen);
  2219 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
  2220   st->print_cr("Signal Handlers:");
  2221   print_signal_handler(st, SIGSEGV, buf, buflen);
  2222   print_signal_handler(st, SIGBUS , buf, buflen);
  2223   print_signal_handler(st, SIGFPE , buf, buflen);
  2224   print_signal_handler(st, SIGPIPE, buf, buflen);
  2225   print_signal_handler(st, SIGXFSZ, buf, buflen);
  2226   print_signal_handler(st, SIGILL , buf, buflen);
  2227   print_signal_handler(st, INTERRUPT_SIGNAL, buf, buflen);
  2228   print_signal_handler(st, SR_signum, buf, buflen);
  2229   print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
  2230   print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
  2231   print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
  2232   print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
  2233 #if defined(PPC64)
  2234   print_signal_handler(st, SIGTRAP, buf, buflen);
  2235 #endif
  2238 static char saved_jvm_path[MAXPATHLEN] = {0};
  2240 // Find the full path to the current module, libjvm.so
  2241 void os::jvm_path(char *buf, jint buflen) {
  2242   // Error checking.
  2243   if (buflen < MAXPATHLEN) {
  2244     assert(false, "must use a large-enough buffer");
  2245     buf[0] = '\0';
  2246     return;
  2248   // Lazy resolve the path to current module.
  2249   if (saved_jvm_path[0] != 0) {
  2250     strcpy(buf, saved_jvm_path);
  2251     return;
  2254   char dli_fname[MAXPATHLEN];
  2255   bool ret = dll_address_to_library_name(
  2256                 CAST_FROM_FN_PTR(address, os::jvm_path),
  2257                 dli_fname, sizeof(dli_fname), NULL);
  2258   assert(ret, "cannot locate libjvm");
  2259   char *rp = NULL;
  2260   if (ret && dli_fname[0] != '\0') {
  2261     rp = realpath(dli_fname, buf);
  2263   if (rp == NULL)
  2264     return;
  2266   if (Arguments::created_by_gamma_launcher()) {
  2267     // Support for the gamma launcher.  Typical value for buf is
  2268     // "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm.so".  If "/jre/lib/" appears at
  2269     // the right place in the string, then assume we are installed in a JDK and
  2270     // we're done.  Otherwise, check for a JAVA_HOME environment variable and fix
  2271     // up the path so it looks like libjvm.so is installed there (append a
  2272     // fake suffix hotspot/libjvm.so).
  2273     const char *p = buf + strlen(buf) - 1;
  2274     for (int count = 0; p > buf && count < 5; ++count) {
  2275       for (--p; p > buf && *p != '/'; --p)
  2276         /* empty */ ;
  2279     if (strncmp(p, "/jre/lib/", 9) != 0) {
  2280       // Look for JAVA_HOME in the environment.
  2281       char* java_home_var = ::getenv("JAVA_HOME");
  2282       if (java_home_var != NULL && java_home_var[0] != 0) {
  2283         char* jrelib_p;
  2284         int len;
  2286         // Check the current module name "libjvm.so".
  2287         p = strrchr(buf, '/');
  2288         assert(strstr(p, "/libjvm") == p, "invalid library name");
  2290         rp = realpath(java_home_var, buf);
  2291         if (rp == NULL)
  2292           return;
  2294         // determine if this is a legacy image or modules image
  2295         // modules image doesn't have "jre" subdirectory
  2296         len = strlen(buf);
  2297         assert(len < buflen, "Ran out of buffer room");
  2298         jrelib_p = buf + len;
  2299         snprintf(jrelib_p, buflen-len, "/jre/lib/%s", cpu_arch);
  2300         if (0 != access(buf, F_OK)) {
  2301           snprintf(jrelib_p, buflen-len, "/lib/%s", cpu_arch);
  2304         if (0 == access(buf, F_OK)) {
  2305           // Use current module name "libjvm.so"
  2306           len = strlen(buf);
  2307           snprintf(buf + len, buflen-len, "/hotspot/libjvm.so");
  2308         } else {
  2309           // Go back to path of .so
  2310           rp = realpath(dli_fname, buf);
  2311           if (rp == NULL)
  2312             return;
  2318   strncpy(saved_jvm_path, buf, MAXPATHLEN);
  2321 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
  2322   // no prefix required, not even "_"
  2325 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
  2326   // no suffix required
  2329 ////////////////////////////////////////////////////////////////////////////////
  2330 // sun.misc.Signal support
  2332 static volatile jint sigint_count = 0;
  2334 static void
  2335 UserHandler(int sig, void *siginfo, void *context) {
  2336   // 4511530 - sem_post is serialized and handled by the manager thread. When
  2337   // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
  2338   // don't want to flood the manager thread with sem_post requests.
  2339   if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1)
  2340       return;
  2342   // Ctrl-C is pressed during error reporting, likely because the error
  2343   // handler fails to abort. Let VM die immediately.
  2344   if (sig == SIGINT && is_error_reported()) {
  2345      os::die();
  2348   os::signal_notify(sig);
  2351 void* os::user_handler() {
  2352   return CAST_FROM_FN_PTR(void*, UserHandler);
  2355 class Semaphore : public StackObj {
  2356   public:
  2357     Semaphore();
  2358     ~Semaphore();
  2359     void signal();
  2360     void wait();
  2361     bool trywait();
  2362     bool timedwait(unsigned int sec, int nsec);
  2363   private:
  2364     sem_t _semaphore;
  2365 };
  2367 Semaphore::Semaphore() {
  2368   sem_init(&_semaphore, 0, 0);
  2371 Semaphore::~Semaphore() {
  2372   sem_destroy(&_semaphore);
  2375 void Semaphore::signal() {
  2376   sem_post(&_semaphore);
  2379 void Semaphore::wait() {
  2380   sem_wait(&_semaphore);
  2383 bool Semaphore::trywait() {
  2384   return sem_trywait(&_semaphore) == 0;
  2387 bool Semaphore::timedwait(unsigned int sec, int nsec) {
  2389   struct timespec ts;
  2390   // Semaphore's are always associated with CLOCK_REALTIME
  2391   os::Linux::clock_gettime(CLOCK_REALTIME, &ts);
  2392   // see unpackTime for discussion on overflow checking
  2393   if (sec >= MAX_SECS) {
  2394     ts.tv_sec += MAX_SECS;
  2395     ts.tv_nsec = 0;
  2396   } else {
  2397     ts.tv_sec += sec;
  2398     ts.tv_nsec += nsec;
  2399     if (ts.tv_nsec >= NANOSECS_PER_SEC) {
  2400       ts.tv_nsec -= NANOSECS_PER_SEC;
  2401       ++ts.tv_sec; // note: this must be <= max_secs
  2405   while (1) {
  2406     int result = sem_timedwait(&_semaphore, &ts);
  2407     if (result == 0) {
  2408       return true;
  2409     } else if (errno == EINTR) {
  2410       continue;
  2411     } else if (errno == ETIMEDOUT) {
  2412       return false;
  2413     } else {
  2414       return false;
  2419 extern "C" {
  2420   typedef void (*sa_handler_t)(int);
  2421   typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
  2424 void* os::signal(int signal_number, void* handler) {
  2425   struct sigaction sigAct, oldSigAct;
  2427   sigfillset(&(sigAct.sa_mask));
  2428   sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
  2429   sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
  2431   if (sigaction(signal_number, &sigAct, &oldSigAct)) {
  2432     // -1 means registration failed
  2433     return (void *)-1;
  2436   return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
  2439 void os::signal_raise(int signal_number) {
  2440   ::raise(signal_number);
  2443 /*
  2444  * The following code is moved from os.cpp for making this
  2445  * code platform specific, which it is by its very nature.
  2446  */
  2448 // Will be modified when max signal is changed to be dynamic
  2449 int os::sigexitnum_pd() {
  2450   return NSIG;
  2453 // a counter for each possible signal value
  2454 static volatile jint pending_signals[NSIG+1] = { 0 };
  2456 // Linux(POSIX) specific hand shaking semaphore.
  2457 static sem_t sig_sem;
  2458 static Semaphore sr_semaphore;
  2460 void os::signal_init_pd() {
  2461   // Initialize signal structures
  2462   ::memset((void*)pending_signals, 0, sizeof(pending_signals));
  2464   // Initialize signal semaphore
  2465   ::sem_init(&sig_sem, 0, 0);
  2468 void os::signal_notify(int sig) {
  2469   Atomic::inc(&pending_signals[sig]);
  2470   ::sem_post(&sig_sem);
  2473 static int check_pending_signals(bool wait) {
  2474   Atomic::store(0, &sigint_count);
  2475   for (;;) {
  2476     for (int i = 0; i < NSIG + 1; i++) {
  2477       jint n = pending_signals[i];
  2478       if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
  2479         return i;
  2482     if (!wait) {
  2483       return -1;
  2485     JavaThread *thread = JavaThread::current();
  2486     ThreadBlockInVM tbivm(thread);
  2488     bool threadIsSuspended;
  2489     do {
  2490       thread->set_suspend_equivalent();
  2491       // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
  2492       ::sem_wait(&sig_sem);
  2494       // were we externally suspended while we were waiting?
  2495       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
  2496       if (threadIsSuspended) {
  2497         //
  2498         // The semaphore has been incremented, but while we were waiting
  2499         // another thread suspended us. We don't want to continue running
  2500         // while suspended because that would surprise the thread that
  2501         // suspended us.
  2502         //
  2503         ::sem_post(&sig_sem);
  2505         thread->java_suspend_self();
  2507     } while (threadIsSuspended);
  2511 int os::signal_lookup() {
  2512   return check_pending_signals(false);
  2515 int os::signal_wait() {
  2516   return check_pending_signals(true);
  2519 ////////////////////////////////////////////////////////////////////////////////
  2520 // Virtual Memory
  2522 int os::vm_page_size() {
  2523   // Seems redundant as all get out
  2524   assert(os::Linux::page_size() != -1, "must call os::init");
  2525   return os::Linux::page_size();
  2528 // Solaris allocates memory by pages.
  2529 int os::vm_allocation_granularity() {
  2530   assert(os::Linux::page_size() != -1, "must call os::init");
  2531   return os::Linux::page_size();
  2534 // Rationale behind this function:
  2535 //  current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
  2536 //  mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
  2537 //  samples for JITted code. Here we create private executable mapping over the code cache
  2538 //  and then we can use standard (well, almost, as mapping can change) way to provide
  2539 //  info for the reporting script by storing timestamp and location of symbol
  2540 void linux_wrap_code(char* base, size_t size) {
  2541   static volatile jint cnt = 0;
  2543   if (!UseOprofile) {
  2544     return;
  2547   char buf[PATH_MAX+1];
  2548   int num = Atomic::add(1, &cnt);
  2550   snprintf(buf, sizeof(buf), "%s/hs-vm-%d-%d",
  2551            os::get_temp_directory(), os::current_process_id(), num);
  2552   unlink(buf);
  2554   int fd = ::open(buf, O_CREAT | O_RDWR, S_IRWXU);
  2556   if (fd != -1) {
  2557     off_t rv = ::lseek(fd, size-2, SEEK_SET);
  2558     if (rv != (off_t)-1) {
  2559       if (::write(fd, "", 1) == 1) {
  2560         mmap(base, size,
  2561              PROT_READ|PROT_WRITE|PROT_EXEC,
  2562              MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
  2565     ::close(fd);
  2566     unlink(buf);
  2570 static bool recoverable_mmap_error(int err) {
  2571   // See if the error is one we can let the caller handle. This
  2572   // list of errno values comes from JBS-6843484. I can't find a
  2573   // Linux man page that documents this specific set of errno
  2574   // values so while this list currently matches Solaris, it may
  2575   // change as we gain experience with this failure mode.
  2576   switch (err) {
  2577   case EBADF:
  2578   case EINVAL:
  2579   case ENOTSUP:
  2580     // let the caller deal with these errors
  2581     return true;
  2583   default:
  2584     // Any remaining errors on this OS can cause our reserved mapping
  2585     // to be lost. That can cause confusion where different data
  2586     // structures think they have the same memory mapped. The worst
  2587     // scenario is if both the VM and a library think they have the
  2588     // same memory mapped.
  2589     return false;
  2593 static void warn_fail_commit_memory(char* addr, size_t size, bool exec,
  2594                                     int err) {
  2595   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
  2596           ", %d) failed; error='%s' (errno=%d)", addr, size, exec,
  2597           strerror(err), err);
  2600 static void warn_fail_commit_memory(char* addr, size_t size,
  2601                                     size_t alignment_hint, bool exec,
  2602                                     int err) {
  2603   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
  2604           ", " SIZE_FORMAT ", %d) failed; error='%s' (errno=%d)", addr, size,
  2605           alignment_hint, exec, strerror(err), err);
  2608 // NOTE: Linux kernel does not really reserve the pages for us.
  2609 //       All it does is to check if there are enough free pages
  2610 //       left at the time of mmap(). This could be a potential
  2611 //       problem.
  2612 int os::Linux::commit_memory_impl(char* addr, size_t size, bool exec) {
  2613   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
  2614   uintptr_t res = (uintptr_t) ::mmap(addr, size, prot,
  2615                                    MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
  2616   if (res != (uintptr_t) MAP_FAILED) {
  2617     if (UseNUMAInterleaving) {
  2618       numa_make_global(addr, size);
  2620     return 0;
  2623   int err = errno;  // save errno from mmap() call above
  2625   if (!recoverable_mmap_error(err)) {
  2626     warn_fail_commit_memory(addr, size, exec, err);
  2627     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "committing reserved memory.");
  2630   return err;
  2633 bool os::pd_commit_memory(char* addr, size_t size, bool exec) {
  2634   return os::Linux::commit_memory_impl(addr, size, exec) == 0;
  2637 void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
  2638                                   const char* mesg) {
  2639   assert(mesg != NULL, "mesg must be specified");
  2640   int err = os::Linux::commit_memory_impl(addr, size, exec);
  2641   if (err != 0) {
  2642     // the caller wants all commit errors to exit with the specified mesg:
  2643     warn_fail_commit_memory(addr, size, exec, err);
  2644     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, mesg);
  2648 // Define MAP_HUGETLB here so we can build HotSpot on old systems.
  2649 #ifndef MAP_HUGETLB
  2650 #define MAP_HUGETLB 0x40000
  2651 #endif
  2653 // Define MADV_HUGEPAGE here so we can build HotSpot on old systems.
  2654 #ifndef MADV_HUGEPAGE
  2655 #define MADV_HUGEPAGE 14
  2656 #endif
  2658 int os::Linux::commit_memory_impl(char* addr, size_t size,
  2659                                   size_t alignment_hint, bool exec) {
  2660   int err = os::Linux::commit_memory_impl(addr, size, exec);
  2661   if (err == 0) {
  2662     realign_memory(addr, size, alignment_hint);
  2664   return err;
  2667 bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
  2668                           bool exec) {
  2669   return os::Linux::commit_memory_impl(addr, size, alignment_hint, exec) == 0;
  2672 void os::pd_commit_memory_or_exit(char* addr, size_t size,
  2673                                   size_t alignment_hint, bool exec,
  2674                                   const char* mesg) {
  2675   assert(mesg != NULL, "mesg must be specified");
  2676   int err = os::Linux::commit_memory_impl(addr, size, alignment_hint, exec);
  2677   if (err != 0) {
  2678     // the caller wants all commit errors to exit with the specified mesg:
  2679     warn_fail_commit_memory(addr, size, alignment_hint, exec, err);
  2680     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, mesg);
  2684 void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
  2685   if (UseTransparentHugePages && alignment_hint > (size_t)vm_page_size()) {
  2686     // We don't check the return value: madvise(MADV_HUGEPAGE) may not
  2687     // be supported or the memory may already be backed by huge pages.
  2688     ::madvise(addr, bytes, MADV_HUGEPAGE);
  2692 void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) {
  2693   // This method works by doing an mmap over an existing mmaping and effectively discarding
  2694   // the existing pages. However it won't work for SHM-based large pages that cannot be
  2695   // uncommitted at all. We don't do anything in this case to avoid creating a segment with
  2696   // small pages on top of the SHM segment. This method always works for small pages, so we
  2697   // allow that in any case.
  2698   if (alignment_hint <= (size_t)os::vm_page_size() || can_commit_large_page_memory()) {
  2699     commit_memory(addr, bytes, alignment_hint, !ExecMem);
  2703 void os::numa_make_global(char *addr, size_t bytes) {
  2704   Linux::numa_interleave_memory(addr, bytes);
  2707 // Define for numa_set_bind_policy(int). Setting the argument to 0 will set the
  2708 // bind policy to MPOL_PREFERRED for the current thread.
  2709 #define USE_MPOL_PREFERRED 0
  2711 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
  2712   // To make NUMA and large pages more robust when both enabled, we need to ease
  2713   // the requirements on where the memory should be allocated. MPOL_BIND is the
  2714   // default policy and it will force memory to be allocated on the specified
  2715   // node. Changing this to MPOL_PREFERRED will prefer to allocate the memory on
  2716   // the specified node, but will not force it. Using this policy will prevent
  2717   // getting SIGBUS when trying to allocate large pages on NUMA nodes with no
  2718   // free large pages.
  2719   Linux::numa_set_bind_policy(USE_MPOL_PREFERRED);
  2720   Linux::numa_tonode_memory(addr, bytes, lgrp_hint);
  2723 bool os::numa_topology_changed()   { return false; }
  2725 size_t os::numa_get_groups_num() {
  2726   int max_node = Linux::numa_max_node();
  2727   return max_node > 0 ? max_node + 1 : 1;
  2730 int os::numa_get_group_id() {
  2731   int cpu_id = Linux::sched_getcpu();
  2732   if (cpu_id != -1) {
  2733     int lgrp_id = Linux::get_node_by_cpu(cpu_id);
  2734     if (lgrp_id != -1) {
  2735       return lgrp_id;
  2738   return 0;
  2741 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
  2742   for (size_t i = 0; i < size; i++) {
  2743     ids[i] = i;
  2745   return size;
  2748 bool os::get_page_info(char *start, page_info* info) {
  2749   return false;
  2752 char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) {
  2753   return end;
  2757 int os::Linux::sched_getcpu_syscall(void) {
  2758   unsigned int cpu = 0;
  2759   int retval = -1;
  2761 #if defined(IA32)
  2762 # ifndef SYS_getcpu
  2763 # define SYS_getcpu 318
  2764 # endif
  2765   retval = syscall(SYS_getcpu, &cpu, NULL, NULL);
  2766 #elif defined(AMD64)
  2767 // Unfortunately we have to bring all these macros here from vsyscall.h
  2768 // to be able to compile on old linuxes.
  2769 # define __NR_vgetcpu 2
  2770 # define VSYSCALL_START (-10UL << 20)
  2771 # define VSYSCALL_SIZE 1024
  2772 # define VSYSCALL_ADDR(vsyscall_nr) (VSYSCALL_START+VSYSCALL_SIZE*(vsyscall_nr))
  2773   typedef long (*vgetcpu_t)(unsigned int *cpu, unsigned int *node, unsigned long *tcache);
  2774   vgetcpu_t vgetcpu = (vgetcpu_t)VSYSCALL_ADDR(__NR_vgetcpu);
  2775   retval = vgetcpu(&cpu, NULL, NULL);
  2776 #endif
  2778   return (retval == -1) ? retval : cpu;
  2781 // Something to do with the numa-aware allocator needs these symbols
  2782 extern "C" JNIEXPORT void numa_warn(int number, char *where, ...) { }
  2783 extern "C" JNIEXPORT void numa_error(char *where) { }
  2784 extern "C" JNIEXPORT int fork1() { return fork(); }
  2787 // If we are running with libnuma version > 2, then we should
  2788 // be trying to use symbols with versions 1.1
  2789 // If we are running with earlier version, which did not have symbol versions,
  2790 // we should use the base version.
  2791 void* os::Linux::libnuma_dlsym(void* handle, const char *name) {
  2792   void *f = dlvsym(handle, name, "libnuma_1.1");
  2793   if (f == NULL) {
  2794     f = dlsym(handle, name);
  2796   return f;
  2799 bool os::Linux::libnuma_init() {
  2800   // sched_getcpu() should be in libc.
  2801   set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
  2802                                   dlsym(RTLD_DEFAULT, "sched_getcpu")));
  2804   // If it's not, try a direct syscall.
  2805   if (sched_getcpu() == -1)
  2806     set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t, (void*)&sched_getcpu_syscall));
  2808   if (sched_getcpu() != -1) { // Does it work?
  2809     void *handle = dlopen("libnuma.so.1", RTLD_LAZY);
  2810     if (handle != NULL) {
  2811       set_numa_node_to_cpus(CAST_TO_FN_PTR(numa_node_to_cpus_func_t,
  2812                                            libnuma_dlsym(handle, "numa_node_to_cpus")));
  2813       set_numa_max_node(CAST_TO_FN_PTR(numa_max_node_func_t,
  2814                                        libnuma_dlsym(handle, "numa_max_node")));
  2815       set_numa_available(CAST_TO_FN_PTR(numa_available_func_t,
  2816                                         libnuma_dlsym(handle, "numa_available")));
  2817       set_numa_tonode_memory(CAST_TO_FN_PTR(numa_tonode_memory_func_t,
  2818                                             libnuma_dlsym(handle, "numa_tonode_memory")));
  2819       set_numa_interleave_memory(CAST_TO_FN_PTR(numa_interleave_memory_func_t,
  2820                                             libnuma_dlsym(handle, "numa_interleave_memory")));
  2821       set_numa_set_bind_policy(CAST_TO_FN_PTR(numa_set_bind_policy_func_t,
  2822                                             libnuma_dlsym(handle, "numa_set_bind_policy")));
  2825       if (numa_available() != -1) {
  2826         set_numa_all_nodes((unsigned long*)libnuma_dlsym(handle, "numa_all_nodes"));
  2827         // Create a cpu -> node mapping
  2828         _cpu_to_node = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<int>(0, true);
  2829         rebuild_cpu_to_node_map();
  2830         return true;
  2834   return false;
  2837 // rebuild_cpu_to_node_map() constructs a table mapping cpud id to node id.
  2838 // The table is later used in get_node_by_cpu().
  2839 void os::Linux::rebuild_cpu_to_node_map() {
  2840   const size_t NCPUS = 32768; // Since the buffer size computation is very obscure
  2841                               // in libnuma (possible values are starting from 16,
  2842                               // and continuing up with every other power of 2, but less
  2843                               // than the maximum number of CPUs supported by kernel), and
  2844                               // is a subject to change (in libnuma version 2 the requirements
  2845                               // are more reasonable) we'll just hardcode the number they use
  2846                               // in the library.
  2847   const size_t BitsPerCLong = sizeof(long) * CHAR_BIT;
  2849   size_t cpu_num = os::active_processor_count();
  2850   size_t cpu_map_size = NCPUS / BitsPerCLong;
  2851   size_t cpu_map_valid_size =
  2852     MIN2((cpu_num + BitsPerCLong - 1) / BitsPerCLong, cpu_map_size);
  2854   cpu_to_node()->clear();
  2855   cpu_to_node()->at_grow(cpu_num - 1);
  2856   size_t node_num = numa_get_groups_num();
  2858   unsigned long *cpu_map = NEW_C_HEAP_ARRAY(unsigned long, cpu_map_size, mtInternal);
  2859   for (size_t i = 0; i < node_num; i++) {
  2860     if (numa_node_to_cpus(i, cpu_map, cpu_map_size * sizeof(unsigned long)) != -1) {
  2861       for (size_t j = 0; j < cpu_map_valid_size; j++) {
  2862         if (cpu_map[j] != 0) {
  2863           for (size_t k = 0; k < BitsPerCLong; k++) {
  2864             if (cpu_map[j] & (1UL << k)) {
  2865               cpu_to_node()->at_put(j * BitsPerCLong + k, i);
  2872   FREE_C_HEAP_ARRAY(unsigned long, cpu_map, mtInternal);
  2875 int os::Linux::get_node_by_cpu(int cpu_id) {
  2876   if (cpu_to_node() != NULL && cpu_id >= 0 && cpu_id < cpu_to_node()->length()) {
  2877     return cpu_to_node()->at(cpu_id);
  2879   return -1;
  2882 GrowableArray<int>* os::Linux::_cpu_to_node;
  2883 os::Linux::sched_getcpu_func_t os::Linux::_sched_getcpu;
  2884 os::Linux::numa_node_to_cpus_func_t os::Linux::_numa_node_to_cpus;
  2885 os::Linux::numa_max_node_func_t os::Linux::_numa_max_node;
  2886 os::Linux::numa_available_func_t os::Linux::_numa_available;
  2887 os::Linux::numa_tonode_memory_func_t os::Linux::_numa_tonode_memory;
  2888 os::Linux::numa_interleave_memory_func_t os::Linux::_numa_interleave_memory;
  2889 os::Linux::numa_set_bind_policy_func_t os::Linux::_numa_set_bind_policy;
  2890 unsigned long* os::Linux::_numa_all_nodes;
  2892 bool os::pd_uncommit_memory(char* addr, size_t size) {
  2893   uintptr_t res = (uintptr_t) ::mmap(addr, size, PROT_NONE,
  2894                 MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0);
  2895   return res  != (uintptr_t) MAP_FAILED;
  2898 static
  2899 address get_stack_commited_bottom(address bottom, size_t size) {
  2900   address nbot = bottom;
  2901   address ntop = bottom + size;
  2903   size_t page_sz = os::vm_page_size();
  2904   unsigned pages = size / page_sz;
  2906   unsigned char vec[1];
  2907   unsigned imin = 1, imax = pages + 1, imid;
  2908   int mincore_return_value = 0;
  2910   assert(imin <= imax, "Unexpected page size");
  2912   while (imin < imax) {
  2913     imid = (imax + imin) / 2;
  2914     nbot = ntop - (imid * page_sz);
  2916     // Use a trick with mincore to check whether the page is mapped or not.
  2917     // mincore sets vec to 1 if page resides in memory and to 0 if page
  2918     // is swapped output but if page we are asking for is unmapped
  2919     // it returns -1,ENOMEM
  2920     mincore_return_value = mincore(nbot, page_sz, vec);
  2922     if (mincore_return_value == -1) {
  2923       // Page is not mapped go up
  2924       // to find first mapped page
  2925       if (errno != EAGAIN) {
  2926         assert(errno == ENOMEM, "Unexpected mincore errno");
  2927         imax = imid;
  2929     } else {
  2930       // Page is mapped go down
  2931       // to find first not mapped page
  2932       imin = imid + 1;
  2936   nbot = nbot + page_sz;
  2938   // Adjust stack bottom one page up if last checked page is not mapped
  2939   if (mincore_return_value == -1) {
  2940     nbot = nbot + page_sz;
  2943   return nbot;
  2947 // Linux uses a growable mapping for the stack, and if the mapping for
  2948 // the stack guard pages is not removed when we detach a thread the
  2949 // stack cannot grow beyond the pages where the stack guard was
  2950 // mapped.  If at some point later in the process the stack expands to
  2951 // that point, the Linux kernel cannot expand the stack any further
  2952 // because the guard pages are in the way, and a segfault occurs.
  2953 //
  2954 // However, it's essential not to split the stack region by unmapping
  2955 // a region (leaving a hole) that's already part of the stack mapping,
  2956 // so if the stack mapping has already grown beyond the guard pages at
  2957 // the time we create them, we have to truncate the stack mapping.
  2958 // So, we need to know the extent of the stack mapping when
  2959 // create_stack_guard_pages() is called.
  2961 // We only need this for stacks that are growable: at the time of
  2962 // writing thread stacks don't use growable mappings (i.e. those
  2963 // creeated with MAP_GROWSDOWN), and aren't marked "[stack]", so this
  2964 // only applies to the main thread.
  2966 // If the (growable) stack mapping already extends beyond the point
  2967 // where we're going to put our guard pages, truncate the mapping at
  2968 // that point by munmap()ping it.  This ensures that when we later
  2969 // munmap() the guard pages we don't leave a hole in the stack
  2970 // mapping. This only affects the main/initial thread
  2972 bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
  2974   if (os::Linux::is_initial_thread()) {
  2975     // As we manually grow stack up to bottom inside create_attached_thread(),
  2976     // it's likely that os::Linux::initial_thread_stack_bottom is mapped and
  2977     // we don't need to do anything special.
  2978     // Check it first, before calling heavy function.
  2979     uintptr_t stack_extent = (uintptr_t) os::Linux::initial_thread_stack_bottom();
  2980     unsigned char vec[1];
  2982     if (mincore((address)stack_extent, os::vm_page_size(), vec) == -1) {
  2983       // Fallback to slow path on all errors, including EAGAIN
  2984       stack_extent = (uintptr_t) get_stack_commited_bottom(
  2985                                     os::Linux::initial_thread_stack_bottom(),
  2986                                     (size_t)addr - stack_extent);
  2989     if (stack_extent < (uintptr_t)addr) {
  2990       ::munmap((void*)stack_extent, (uintptr_t)(addr - stack_extent));
  2994   return os::commit_memory(addr, size, !ExecMem);
  2997 // If this is a growable mapping, remove the guard pages entirely by
  2998 // munmap()ping them.  If not, just call uncommit_memory(). This only
  2999 // affects the main/initial thread, but guard against future OS changes
  3000 // It's safe to always unmap guard pages for initial thread because we
  3001 // always place it right after end of the mapped region
  3003 bool os::remove_stack_guard_pages(char* addr, size_t size) {
  3004   uintptr_t stack_extent, stack_base;
  3006   if (os::Linux::is_initial_thread()) {
  3007     return ::munmap(addr, size) == 0;
  3010   return os::uncommit_memory(addr, size);
  3013 static address _highest_vm_reserved_address = NULL;
  3015 // If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
  3016 // at 'requested_addr'. If there are existing memory mappings at the same
  3017 // location, however, they will be overwritten. If 'fixed' is false,
  3018 // 'requested_addr' is only treated as a hint, the return value may or
  3019 // may not start from the requested address. Unlike Linux mmap(), this
  3020 // function returns NULL to indicate failure.
  3021 static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
  3022   char * addr;
  3023   int flags;
  3025   flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
  3026   if (fixed) {
  3027     assert((uintptr_t)requested_addr % os::Linux::page_size() == 0, "unaligned address");
  3028     flags |= MAP_FIXED;
  3031   // Map reserved/uncommitted pages PROT_NONE so we fail early if we
  3032   // touch an uncommitted page. Otherwise, the read/write might
  3033   // succeed if we have enough swap space to back the physical page.
  3034   addr = (char*)::mmap(requested_addr, bytes, PROT_NONE,
  3035                        flags, -1, 0);
  3037   if (addr != MAP_FAILED) {
  3038     // anon_mmap() should only get called during VM initialization,
  3039     // don't need lock (actually we can skip locking even it can be called
  3040     // from multiple threads, because _highest_vm_reserved_address is just a
  3041     // hint about the upper limit of non-stack memory regions.)
  3042     if ((address)addr + bytes > _highest_vm_reserved_address) {
  3043       _highest_vm_reserved_address = (address)addr + bytes;
  3047   return addr == MAP_FAILED ? NULL : addr;
  3050 // Allocate (using mmap, NO_RESERVE, with small pages) at either a given request address
  3051 //   (req_addr != NULL) or with a given alignment.
  3052 //  - bytes shall be a multiple of alignment.
  3053 //  - req_addr can be NULL. If not NULL, it must be a multiple of alignment.
  3054 //  - alignment sets the alignment at which memory shall be allocated.
  3055 //     It must be a multiple of allocation granularity.
  3056 // Returns address of memory or NULL. If req_addr was not NULL, will only return
  3057 //  req_addr or NULL.
  3058 static char* anon_mmap_aligned(size_t bytes, size_t alignment, char* req_addr) {
  3060   size_t extra_size = bytes;
  3061   if (req_addr == NULL && alignment > 0) {
  3062     extra_size += alignment;
  3065   char* start = (char*) ::mmap(req_addr, extra_size, PROT_NONE,
  3066     MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
  3067     -1, 0);
  3068   if (start == MAP_FAILED) {
  3069     start = NULL;
  3070   } else {
  3071     if (req_addr != NULL) {
  3072       if (start != req_addr) {
  3073         ::munmap(start, extra_size);
  3074         start = NULL;
  3076     } else {
  3077       char* const start_aligned = (char*) align_ptr_up(start, alignment);
  3078       char* const end_aligned = start_aligned + bytes;
  3079       char* const end = start + extra_size;
  3080       if (start_aligned > start) {
  3081         ::munmap(start, start_aligned - start);
  3083       if (end_aligned < end) {
  3084         ::munmap(end_aligned, end - end_aligned);
  3086       start = start_aligned;
  3089   return start;
  3092 // Don't update _highest_vm_reserved_address, because there might be memory
  3093 // regions above addr + size. If so, releasing a memory region only creates
  3094 // a hole in the address space, it doesn't help prevent heap-stack collision.
  3095 //
  3096 static int anon_munmap(char * addr, size_t size) {
  3097   return ::munmap(addr, size) == 0;
  3100 char* os::pd_reserve_memory(size_t bytes, char* requested_addr,
  3101                          size_t alignment_hint) {
  3102   return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
  3105 bool os::pd_release_memory(char* addr, size_t size) {
  3106   return anon_munmap(addr, size);
  3109 static address highest_vm_reserved_address() {
  3110   return _highest_vm_reserved_address;
  3113 static bool linux_mprotect(char* addr, size_t size, int prot) {
  3114   // Linux wants the mprotect address argument to be page aligned.
  3115   char* bottom = (char*)align_size_down((intptr_t)addr, os::Linux::page_size());
  3117   // According to SUSv3, mprotect() should only be used with mappings
  3118   // established by mmap(), and mmap() always maps whole pages. Unaligned
  3119   // 'addr' likely indicates problem in the VM (e.g. trying to change
  3120   // protection of malloc'ed or statically allocated memory). Check the
  3121   // caller if you hit this assert.
  3122   assert(addr == bottom, "sanity check");
  3124   size = align_size_up(pointer_delta(addr, bottom, 1) + size, os::Linux::page_size());
  3125   return ::mprotect(bottom, size, prot) == 0;
  3128 // Set protections specified
  3129 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
  3130                         bool is_committed) {
  3131   unsigned int p = 0;
  3132   switch (prot) {
  3133   case MEM_PROT_NONE: p = PROT_NONE; break;
  3134   case MEM_PROT_READ: p = PROT_READ; break;
  3135   case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
  3136   case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
  3137   default:
  3138     ShouldNotReachHere();
  3140   // is_committed is unused.
  3141   return linux_mprotect(addr, bytes, p);
  3144 bool os::guard_memory(char* addr, size_t size) {
  3145   return linux_mprotect(addr, size, PROT_NONE);
  3148 bool os::unguard_memory(char* addr, size_t size) {
  3149   return linux_mprotect(addr, size, PROT_READ|PROT_WRITE);
  3152 bool os::Linux::transparent_huge_pages_sanity_check(bool warn, size_t page_size) {
  3153   bool result = false;
  3154   void *p = mmap(NULL, page_size * 2, PROT_READ|PROT_WRITE,
  3155                  MAP_ANONYMOUS|MAP_PRIVATE,
  3156                  -1, 0);
  3157   if (p != MAP_FAILED) {
  3158     void *aligned_p = align_ptr_up(p, page_size);
  3160     result = madvise(aligned_p, page_size, MADV_HUGEPAGE) == 0;
  3162     munmap(p, page_size * 2);
  3165   if (warn && !result) {
  3166     warning("TransparentHugePages is not supported by the operating system.");
  3169   return result;
  3172 bool os::Linux::hugetlbfs_sanity_check(bool warn, size_t page_size) {
  3173   bool result = false;
  3174   void *p = mmap(NULL, page_size, PROT_READ|PROT_WRITE,
  3175                  MAP_ANONYMOUS|MAP_PRIVATE|MAP_HUGETLB,
  3176                  -1, 0);
  3178   if (p != MAP_FAILED) {
  3179     // We don't know if this really is a huge page or not.
  3180     FILE *fp = fopen("/proc/self/maps", "r");
  3181     if (fp) {
  3182       while (!feof(fp)) {
  3183         char chars[257];
  3184         long x = 0;
  3185         if (fgets(chars, sizeof(chars), fp)) {
  3186           if (sscanf(chars, "%lx-%*x", &x) == 1
  3187               && x == (long)p) {
  3188             if (strstr (chars, "hugepage")) {
  3189               result = true;
  3190               break;
  3195       fclose(fp);
  3197     munmap(p, page_size);
  3200   if (warn && !result) {
  3201     warning("HugeTLBFS is not supported by the operating system.");
  3204   return result;
  3207 /*
  3208 * Set the coredump_filter bits to include largepages in core dump (bit 6)
  3210 * From the coredump_filter documentation:
  3212 * - (bit 0) anonymous private memory
  3213 * - (bit 1) anonymous shared memory
  3214 * - (bit 2) file-backed private memory
  3215 * - (bit 3) file-backed shared memory
  3216 * - (bit 4) ELF header pages in file-backed private memory areas (it is
  3217 *           effective only if the bit 2 is cleared)
  3218 * - (bit 5) hugetlb private memory
  3219 * - (bit 6) hugetlb shared memory
  3220 */
  3221 static void set_coredump_filter(void) {
  3222   FILE *f;
  3223   long cdm;
  3225   if ((f = fopen("/proc/self/coredump_filter", "r+")) == NULL) {
  3226     return;
  3229   if (fscanf(f, "%lx", &cdm) != 1) {
  3230     fclose(f);
  3231     return;
  3234   rewind(f);
  3236   if ((cdm & LARGEPAGES_BIT) == 0) {
  3237     cdm |= LARGEPAGES_BIT;
  3238     fprintf(f, "%#lx", cdm);
  3241   fclose(f);
  3244 // Large page support
  3246 static size_t _large_page_size = 0;
  3248 size_t os::Linux::find_large_page_size() {
  3249   size_t large_page_size = 0;
  3251   // large_page_size on Linux is used to round up heap size. x86 uses either
  3252   // 2M or 4M page, depending on whether PAE (Physical Address Extensions)
  3253   // mode is enabled. AMD64/EM64T uses 2M page in 64bit mode. IA64 can use
  3254   // page as large as 256M.
  3255   //
  3256   // Here we try to figure out page size by parsing /proc/meminfo and looking
  3257   // for a line with the following format:
  3258   //    Hugepagesize:     2048 kB
  3259   //
  3260   // If we can't determine the value (e.g. /proc is not mounted, or the text
  3261   // format has been changed), we'll use the largest page size supported by
  3262   // the processor.
  3264 #ifndef ZERO
  3265   large_page_size = IA32_ONLY(4 * M) AMD64_ONLY(2 * M) IA64_ONLY(256 * M) SPARC_ONLY(4 * M)
  3266                      ARM_ONLY(2 * M) PPC_ONLY(4 * M);
  3267 #endif // ZERO
  3269   FILE *fp = fopen("/proc/meminfo", "r");
  3270   if (fp) {
  3271     while (!feof(fp)) {
  3272       int x = 0;
  3273       char buf[16];
  3274       if (fscanf(fp, "Hugepagesize: %d", &x) == 1) {
  3275         if (x && fgets(buf, sizeof(buf), fp) && strcmp(buf, " kB\n") == 0) {
  3276           large_page_size = x * K;
  3277           break;
  3279       } else {
  3280         // skip to next line
  3281         for (;;) {
  3282           int ch = fgetc(fp);
  3283           if (ch == EOF || ch == (int)'\n') break;
  3287     fclose(fp);
  3290   if (!FLAG_IS_DEFAULT(LargePageSizeInBytes) && LargePageSizeInBytes != large_page_size) {
  3291     warning("Setting LargePageSizeInBytes has no effect on this OS. Large page size is "
  3292         SIZE_FORMAT "%s.", byte_size_in_proper_unit(large_page_size),
  3293         proper_unit_for_byte_size(large_page_size));
  3296   return large_page_size;
  3299 size_t os::Linux::setup_large_page_size() {
  3300   _large_page_size = Linux::find_large_page_size();
  3301   const size_t default_page_size = (size_t)Linux::page_size();
  3302   if (_large_page_size > default_page_size) {
  3303     _page_sizes[0] = _large_page_size;
  3304     _page_sizes[1] = default_page_size;
  3305     _page_sizes[2] = 0;
  3308   return _large_page_size;
  3311 bool os::Linux::setup_large_page_type(size_t page_size) {
  3312   if (FLAG_IS_DEFAULT(UseHugeTLBFS) &&
  3313       FLAG_IS_DEFAULT(UseSHM) &&
  3314       FLAG_IS_DEFAULT(UseTransparentHugePages)) {
  3316     // The type of large pages has not been specified by the user.
  3318     // Try UseHugeTLBFS and then UseSHM.
  3319     UseHugeTLBFS = UseSHM = true;
  3321     // Don't try UseTransparentHugePages since there are known
  3322     // performance issues with it turned on. This might change in the future.
  3323     UseTransparentHugePages = false;
  3326   if (UseTransparentHugePages) {
  3327     bool warn_on_failure = !FLAG_IS_DEFAULT(UseTransparentHugePages);
  3328     if (transparent_huge_pages_sanity_check(warn_on_failure, page_size)) {
  3329       UseHugeTLBFS = false;
  3330       UseSHM = false;
  3331       return true;
  3333     UseTransparentHugePages = false;
  3336   if (UseHugeTLBFS) {
  3337     bool warn_on_failure = !FLAG_IS_DEFAULT(UseHugeTLBFS);
  3338     if (hugetlbfs_sanity_check(warn_on_failure, page_size)) {
  3339       UseSHM = false;
  3340       return true;
  3342     UseHugeTLBFS = false;
  3345   return UseSHM;
  3348 void os::large_page_init() {
  3349   if (!UseLargePages &&
  3350       !UseTransparentHugePages &&
  3351       !UseHugeTLBFS &&
  3352       !UseSHM) {
  3353     // Not using large pages.
  3354     return;
  3357   if (!FLAG_IS_DEFAULT(UseLargePages) && !UseLargePages) {
  3358     // The user explicitly turned off large pages.
  3359     // Ignore the rest of the large pages flags.
  3360     UseTransparentHugePages = false;
  3361     UseHugeTLBFS = false;
  3362     UseSHM = false;
  3363     return;
  3366   size_t large_page_size = Linux::setup_large_page_size();
  3367   UseLargePages          = Linux::setup_large_page_type(large_page_size);
  3369   set_coredump_filter();
  3372 #ifndef SHM_HUGETLB
  3373 #define SHM_HUGETLB 04000
  3374 #endif
  3376 #define shm_warning_format(format, ...)              \
  3377   do {                                               \
  3378     if (UseLargePages &&                             \
  3379         (!FLAG_IS_DEFAULT(UseLargePages) ||          \
  3380          !FLAG_IS_DEFAULT(UseSHM) ||                 \
  3381          !FLAG_IS_DEFAULT(LargePageSizeInBytes))) {  \
  3382       warning(format, __VA_ARGS__);                  \
  3383     }                                                \
  3384   } while (0)
  3386 #define shm_warning(str) shm_warning_format("%s", str)
  3388 #define shm_warning_with_errno(str)                \
  3389   do {                                             \
  3390     int err = errno;                               \
  3391     shm_warning_format(str " (error = %d)", err);  \
  3392   } while (0)
  3394 static char* shmat_with_alignment(int shmid, size_t bytes, size_t alignment) {
  3395   assert(is_size_aligned(bytes, alignment), "Must be divisible by the alignment");
  3397   if (!is_size_aligned(alignment, SHMLBA)) {
  3398     assert(false, "Code below assumes that alignment is at least SHMLBA aligned");
  3399     return NULL;
  3402   // To ensure that we get 'alignment' aligned memory from shmat,
  3403   // we pre-reserve aligned virtual memory and then attach to that.
  3405   char* pre_reserved_addr = anon_mmap_aligned(bytes, alignment, NULL);
  3406   if (pre_reserved_addr == NULL) {
  3407     // Couldn't pre-reserve aligned memory.
  3408     shm_warning("Failed to pre-reserve aligned memory for shmat.");
  3409     return NULL;
  3412   // SHM_REMAP is needed to allow shmat to map over an existing mapping.
  3413   char* addr = (char*)shmat(shmid, pre_reserved_addr, SHM_REMAP);
  3415   if ((intptr_t)addr == -1) {
  3416     int err = errno;
  3417     shm_warning_with_errno("Failed to attach shared memory.");
  3419     assert(err != EACCES, "Unexpected error");
  3420     assert(err != EIDRM,  "Unexpected error");
  3421     assert(err != EINVAL, "Unexpected error");
  3423     // Since we don't know if the kernel unmapped the pre-reserved memory area
  3424     // we can't unmap it, since that would potentially unmap memory that was
  3425     // mapped from other threads.
  3426     return NULL;
  3429   return addr;
  3432 static char* shmat_at_address(int shmid, char* req_addr) {
  3433   if (!is_ptr_aligned(req_addr, SHMLBA)) {
  3434     assert(false, "Requested address needs to be SHMLBA aligned");
  3435     return NULL;
  3438   char* addr = (char*)shmat(shmid, req_addr, 0);
  3440   if ((intptr_t)addr == -1) {
  3441     shm_warning_with_errno("Failed to attach shared memory.");
  3442     return NULL;
  3445   return addr;
  3448 static char* shmat_large_pages(int shmid, size_t bytes, size_t alignment, char* req_addr) {
  3449   // If a req_addr has been provided, we assume that the caller has already aligned the address.
  3450   if (req_addr != NULL) {
  3451     assert(is_ptr_aligned(req_addr, os::large_page_size()), "Must be divisible by the large page size");
  3452     assert(is_ptr_aligned(req_addr, alignment), "Must be divisible by given alignment");
  3453     return shmat_at_address(shmid, req_addr);
  3456   // Since shmid has been setup with SHM_HUGETLB, shmat will automatically
  3457   // return large page size aligned memory addresses when req_addr == NULL.
  3458   // However, if the alignment is larger than the large page size, we have
  3459   // to manually ensure that the memory returned is 'alignment' aligned.
  3460   if (alignment > os::large_page_size()) {
  3461     assert(is_size_aligned(alignment, os::large_page_size()), "Must be divisible by the large page size");
  3462     return shmat_with_alignment(shmid, bytes, alignment);
  3463   } else {
  3464     return shmat_at_address(shmid, NULL);
  3468 char* os::Linux::reserve_memory_special_shm(size_t bytes, size_t alignment, char* req_addr, bool exec) {
  3469   // "exec" is passed in but not used.  Creating the shared image for
  3470   // the code cache doesn't have an SHM_X executable permission to check.
  3471   assert(UseLargePages && UseSHM, "only for SHM large pages");
  3472   assert(is_ptr_aligned(req_addr, os::large_page_size()), "Unaligned address");
  3473   assert(is_ptr_aligned(req_addr, alignment), "Unaligned address");
  3475   if (!is_size_aligned(bytes, os::large_page_size())) {
  3476     return NULL; // Fallback to small pages.
  3479   // Create a large shared memory region to attach to based on size.
  3480   // Currently, size is the total size of the heap.
  3481   int shmid = shmget(IPC_PRIVATE, bytes, SHM_HUGETLB|IPC_CREAT|SHM_R|SHM_W);
  3482   if (shmid == -1) {
  3483     // Possible reasons for shmget failure:
  3484     // 1. shmmax is too small for Java heap.
  3485     //    > check shmmax value: cat /proc/sys/kernel/shmmax
  3486     //    > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
  3487     // 2. not enough large page memory.
  3488     //    > check available large pages: cat /proc/meminfo
  3489     //    > increase amount of large pages:
  3490     //          echo new_value > /proc/sys/vm/nr_hugepages
  3491     //      Note 1: different Linux may use different name for this property,
  3492     //            e.g. on Redhat AS-3 it is "hugetlb_pool".
  3493     //      Note 2: it's possible there's enough physical memory available but
  3494     //            they are so fragmented after a long run that they can't
  3495     //            coalesce into large pages. Try to reserve large pages when
  3496     //            the system is still "fresh".
  3497     shm_warning_with_errno("Failed to reserve shared memory.");
  3498     return NULL;
  3501   // Attach to the region.
  3502   char* addr = shmat_large_pages(shmid, bytes, alignment, req_addr);
  3504   // Remove shmid. If shmat() is successful, the actual shared memory segment
  3505   // will be deleted when it's detached by shmdt() or when the process
  3506   // terminates. If shmat() is not successful this will remove the shared
  3507   // segment immediately.
  3508   shmctl(shmid, IPC_RMID, NULL);
  3510   return addr;
  3513 static void warn_on_large_pages_failure(char* req_addr, size_t bytes, int error) {
  3514   assert(error == ENOMEM, "Only expect to fail if no memory is available");
  3516   bool warn_on_failure = UseLargePages &&
  3517       (!FLAG_IS_DEFAULT(UseLargePages) ||
  3518        !FLAG_IS_DEFAULT(UseHugeTLBFS) ||
  3519        !FLAG_IS_DEFAULT(LargePageSizeInBytes));
  3521   if (warn_on_failure) {
  3522     char msg[128];
  3523     jio_snprintf(msg, sizeof(msg), "Failed to reserve large pages memory req_addr: "
  3524         PTR_FORMAT " bytes: " SIZE_FORMAT " (errno = %d).", req_addr, bytes, error);
  3525     warning("%s", msg);
  3529 char* os::Linux::reserve_memory_special_huge_tlbfs_only(size_t bytes, char* req_addr, bool exec) {
  3530   assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
  3531   assert(is_size_aligned(bytes, os::large_page_size()), "Unaligned size");
  3532   assert(is_ptr_aligned(req_addr, os::large_page_size()), "Unaligned address");
  3534   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
  3535   char* addr = (char*)::mmap(req_addr, bytes, prot,
  3536                              MAP_PRIVATE|MAP_ANONYMOUS|MAP_HUGETLB,
  3537                              -1, 0);
  3539   if (addr == MAP_FAILED) {
  3540     warn_on_large_pages_failure(req_addr, bytes, errno);
  3541     return NULL;
  3544   assert(is_ptr_aligned(addr, os::large_page_size()), "Must be");
  3546   return addr;
  3549 // Reserve memory using mmap(MAP_HUGETLB).
  3550 //  - bytes shall be a multiple of alignment.
  3551 //  - req_addr can be NULL. If not NULL, it must be a multiple of alignment.
  3552 //  - alignment sets the alignment at which memory shall be allocated.
  3553 //     It must be a multiple of allocation granularity.
  3554 // Returns address of memory or NULL. If req_addr was not NULL, will only return
  3555 //  req_addr or NULL.
  3556 char* os::Linux::reserve_memory_special_huge_tlbfs_mixed(size_t bytes, size_t alignment, char* req_addr, bool exec) {
  3557   size_t large_page_size = os::large_page_size();
  3558   assert(bytes >= large_page_size, "Shouldn't allocate large pages for small sizes");
  3560   assert(is_ptr_aligned(req_addr, alignment), "Must be");
  3561   assert(is_size_aligned(bytes, alignment), "Must be");
  3563   // First reserve - but not commit - the address range in small pages.
  3564   char* const start = anon_mmap_aligned(bytes, alignment, req_addr);
  3566   if (start == NULL) {
  3567     return NULL;
  3570   assert(is_ptr_aligned(start, alignment), "Must be");
  3572   char* end = start + bytes;
  3574   // Find the regions of the allocated chunk that can be promoted to large pages.
  3575   char* lp_start = (char*)align_ptr_up(start, large_page_size);
  3576   char* lp_end   = (char*)align_ptr_down(end, large_page_size);
  3578   size_t lp_bytes = lp_end - lp_start;
  3580   assert(is_size_aligned(lp_bytes, large_page_size), "Must be");
  3582   if (lp_bytes == 0) {
  3583     // The mapped region doesn't even span the start and the end of a large page.
  3584     // Fall back to allocate a non-special area.
  3585     ::munmap(start, end - start);
  3586     return NULL;
  3589   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
  3591   void* result;
  3593   // Commit small-paged leading area.
  3594   if (start != lp_start) {
  3595     result = ::mmap(start, lp_start - start, prot,
  3596                     MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
  3597                     -1, 0);
  3598     if (result == MAP_FAILED) {
  3599       ::munmap(lp_start, end - lp_start);
  3600       return NULL;
  3604   // Commit large-paged area.
  3605   result = ::mmap(lp_start, lp_bytes, prot,
  3606                   MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED|MAP_HUGETLB,
  3607                   -1, 0);
  3608   if (result == MAP_FAILED) {
  3609     warn_on_large_pages_failure(lp_start, lp_bytes, errno);
  3610     // If the mmap above fails, the large pages region will be unmapped and we
  3611     // have regions before and after with small pages. Release these regions.
  3612     //
  3613     // |  mapped  |  unmapped  |  mapped  |
  3614     // ^          ^            ^          ^
  3615     // start      lp_start     lp_end     end
  3616     //
  3617     ::munmap(start, lp_start - start);
  3618     ::munmap(lp_end, end - lp_end);
  3619     return NULL;
  3622   // Commit small-paged trailing area.
  3623   if (lp_end != end) {
  3624       result = ::mmap(lp_end, end - lp_end, prot,
  3625                       MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
  3626                       -1, 0);
  3627     if (result == MAP_FAILED) {
  3628       ::munmap(start, lp_end - start);
  3629       return NULL;
  3633   return start;
  3636 char* os::Linux::reserve_memory_special_huge_tlbfs(size_t bytes, size_t alignment, char* req_addr, bool exec) {
  3637   assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
  3638   assert(is_ptr_aligned(req_addr, alignment), "Must be");
  3639   assert(is_size_aligned(alignment, os::vm_allocation_granularity()), "Must be");
  3640   assert(is_power_of_2(os::large_page_size()), "Must be");
  3641   assert(bytes >= os::large_page_size(), "Shouldn't allocate large pages for small sizes");
  3643   if (is_size_aligned(bytes, os::large_page_size()) && alignment <= os::large_page_size()) {
  3644     return reserve_memory_special_huge_tlbfs_only(bytes, req_addr, exec);
  3645   } else {
  3646     return reserve_memory_special_huge_tlbfs_mixed(bytes, alignment, req_addr, exec);
  3650 char* os::reserve_memory_special(size_t bytes, size_t alignment, char* req_addr, bool exec) {
  3651   assert(UseLargePages, "only for large pages");
  3653   char* addr;
  3654   if (UseSHM) {
  3655     addr = os::Linux::reserve_memory_special_shm(bytes, alignment, req_addr, exec);
  3656   } else {
  3657     assert(UseHugeTLBFS, "must be");
  3658     addr = os::Linux::reserve_memory_special_huge_tlbfs(bytes, alignment, req_addr, exec);
  3661   if (addr != NULL) {
  3662     if (UseNUMAInterleaving) {
  3663       numa_make_global(addr, bytes);
  3666     // The memory is committed
  3667     MemTracker::record_virtual_memory_reserve_and_commit((address)addr, bytes, CALLER_PC);
  3670   return addr;
  3673 bool os::Linux::release_memory_special_shm(char* base, size_t bytes) {
  3674   // detaching the SHM segment will also delete it, see reserve_memory_special_shm()
  3675   return shmdt(base) == 0;
  3678 bool os::Linux::release_memory_special_huge_tlbfs(char* base, size_t bytes) {
  3679   return pd_release_memory(base, bytes);
  3682 bool os::release_memory_special(char* base, size_t bytes) {
  3683   bool res;
  3684   if (MemTracker::tracking_level() > NMT_minimal) {
  3685     Tracker tkr = MemTracker::get_virtual_memory_release_tracker();
  3686     res = os::Linux::release_memory_special_impl(base, bytes);
  3687     if (res) {
  3688       tkr.record((address)base, bytes);
  3691   } else {
  3692     res = os::Linux::release_memory_special_impl(base, bytes);
  3694   return res;
  3697 bool os::Linux::release_memory_special_impl(char* base, size_t bytes) {
  3698   assert(UseLargePages, "only for large pages");
  3699   bool res;
  3701   if (UseSHM) {
  3702     res = os::Linux::release_memory_special_shm(base, bytes);
  3703   } else {
  3704     assert(UseHugeTLBFS, "must be");
  3705     res = os::Linux::release_memory_special_huge_tlbfs(base, bytes);
  3707   return res;
  3710 size_t os::large_page_size() {
  3711   return _large_page_size;
  3714 // With SysV SHM the entire memory region must be allocated as shared
  3715 // memory.
  3716 // HugeTLBFS allows application to commit large page memory on demand.
  3717 // However, when committing memory with HugeTLBFS fails, the region
  3718 // that was supposed to be committed will lose the old reservation
  3719 // and allow other threads to steal that memory region. Because of this
  3720 // behavior we can't commit HugeTLBFS memory.
  3721 bool os::can_commit_large_page_memory() {
  3722   return UseTransparentHugePages;
  3725 bool os::can_execute_large_page_memory() {
  3726   return UseTransparentHugePages || UseHugeTLBFS;
  3729 // Reserve memory at an arbitrary address, only if that area is
  3730 // available (and not reserved for something else).
  3732 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
  3733   const int max_tries = 10;
  3734   char* base[max_tries];
  3735   size_t size[max_tries];
  3736   const size_t gap = 0x000000;
  3738   // Assert only that the size is a multiple of the page size, since
  3739   // that's all that mmap requires, and since that's all we really know
  3740   // about at this low abstraction level.  If we need higher alignment,
  3741   // we can either pass an alignment to this method or verify alignment
  3742   // in one of the methods further up the call chain.  See bug 5044738.
  3743   assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
  3745   // Repeatedly allocate blocks until the block is allocated at the
  3746   // right spot. Give up after max_tries. Note that reserve_memory() will
  3747   // automatically update _highest_vm_reserved_address if the call is
  3748   // successful. The variable tracks the highest memory address every reserved
  3749   // by JVM. It is used to detect heap-stack collision if running with
  3750   // fixed-stack LinuxThreads. Because here we may attempt to reserve more
  3751   // space than needed, it could confuse the collision detecting code. To
  3752   // solve the problem, save current _highest_vm_reserved_address and
  3753   // calculate the correct value before return.
  3754   address old_highest = _highest_vm_reserved_address;
  3756   // Linux mmap allows caller to pass an address as hint; give it a try first,
  3757   // if kernel honors the hint then we can return immediately.
  3758   char * addr = anon_mmap(requested_addr, bytes, false);
  3759   if (addr == requested_addr) {
  3760      return requested_addr;
  3763   if (addr != NULL) {
  3764      // mmap() is successful but it fails to reserve at the requested address
  3765      anon_munmap(addr, bytes);
  3768   int i;
  3769   for (i = 0; i < max_tries; ++i) {
  3770     base[i] = reserve_memory(bytes);
  3772     if (base[i] != NULL) {
  3773       // Is this the block we wanted?
  3774       if (base[i] == requested_addr) {
  3775         size[i] = bytes;
  3776         break;
  3779       // Does this overlap the block we wanted? Give back the overlapped
  3780       // parts and try again.
  3782       size_t top_overlap = requested_addr + (bytes + gap) - base[i];
  3783       if (top_overlap >= 0 && top_overlap < bytes) {
  3784         unmap_memory(base[i], top_overlap);
  3785         base[i] += top_overlap;
  3786         size[i] = bytes - top_overlap;
  3787       } else {
  3788         size_t bottom_overlap = base[i] + bytes - requested_addr;
  3789         if (bottom_overlap >= 0 && bottom_overlap < bytes) {
  3790           unmap_memory(requested_addr, bottom_overlap);
  3791           size[i] = bytes - bottom_overlap;
  3792         } else {
  3793           size[i] = bytes;
  3799   // Give back the unused reserved pieces.
  3801   for (int j = 0; j < i; ++j) {
  3802     if (base[j] != NULL) {
  3803       unmap_memory(base[j], size[j]);
  3807   if (i < max_tries) {
  3808     _highest_vm_reserved_address = MAX2(old_highest, (address)requested_addr + bytes);
  3809     return requested_addr;
  3810   } else {
  3811     _highest_vm_reserved_address = old_highest;
  3812     return NULL;
  3816 size_t os::read(int fd, void *buf, unsigned int nBytes) {
  3817   return ::read(fd, buf, nBytes);
  3820 // TODO-FIXME: reconcile Solaris' os::sleep with the linux variation.
  3821 // Solaris uses poll(), linux uses park().
  3822 // Poll() is likely a better choice, assuming that Thread.interrupt()
  3823 // generates a SIGUSRx signal. Note that SIGUSR1 can interfere with
  3824 // SIGSEGV, see 4355769.
  3826 int os::sleep(Thread* thread, jlong millis, bool interruptible) {
  3827   assert(thread == Thread::current(),  "thread consistency check");
  3829   ParkEvent * const slp = thread->_SleepEvent ;
  3830   slp->reset() ;
  3831   OrderAccess::fence() ;
  3833   if (interruptible) {
  3834     jlong prevtime = javaTimeNanos();
  3836     for (;;) {
  3837       if (os::is_interrupted(thread, true)) {
  3838         return OS_INTRPT;
  3841       jlong newtime = javaTimeNanos();
  3843       if (newtime - prevtime < 0) {
  3844         // time moving backwards, should only happen if no monotonic clock
  3845         // not a guarantee() because JVM should not abort on kernel/glibc bugs
  3846         assert(!Linux::supports_monotonic_clock(), "time moving backwards");
  3847       } else {
  3848         millis -= (newtime - prevtime) / NANOSECS_PER_MILLISEC;
  3851       if(millis <= 0) {
  3852         return OS_OK;
  3855       prevtime = newtime;
  3858         assert(thread->is_Java_thread(), "sanity check");
  3859         JavaThread *jt = (JavaThread *) thread;
  3860         ThreadBlockInVM tbivm(jt);
  3861         OSThreadWaitState osts(jt->osthread(), false /* not Object.wait() */);
  3863         jt->set_suspend_equivalent();
  3864         // cleared by handle_special_suspend_equivalent_condition() or
  3865         // java_suspend_self() via check_and_wait_while_suspended()
  3867         slp->park(millis);
  3869         // were we externally suspended while we were waiting?
  3870         jt->check_and_wait_while_suspended();
  3873   } else {
  3874     OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
  3875     jlong prevtime = javaTimeNanos();
  3877     for (;;) {
  3878       // It'd be nice to avoid the back-to-back javaTimeNanos() calls on
  3879       // the 1st iteration ...
  3880       jlong newtime = javaTimeNanos();
  3882       if (newtime - prevtime < 0) {
  3883         // time moving backwards, should only happen if no monotonic clock
  3884         // not a guarantee() because JVM should not abort on kernel/glibc bugs
  3885         assert(!Linux::supports_monotonic_clock(), "time moving backwards");
  3886       } else {
  3887         millis -= (newtime - prevtime) / NANOSECS_PER_MILLISEC;
  3890       if(millis <= 0) break ;
  3892       prevtime = newtime;
  3893       slp->park(millis);
  3895     return OS_OK ;
  3899 //
  3900 // Short sleep, direct OS call.
  3901 //
  3902 // Note: certain versions of Linux CFS scheduler (since 2.6.23) do not guarantee
  3903 // sched_yield(2) will actually give up the CPU:
  3904 //
  3905 //   * Alone on this pariticular CPU, keeps running.
  3906 //   * Before the introduction of "skip_buddy" with "compat_yield" disabled
  3907 //     (pre 2.6.39).
  3908 //
  3909 // So calling this with 0 is an alternative.
  3910 //
  3911 void os::naked_short_sleep(jlong ms) {
  3912   struct timespec req;
  3914   assert(ms < 1000, "Un-interruptable sleep, short time use only");
  3915   req.tv_sec = 0;
  3916   if (ms > 0) {
  3917     req.tv_nsec = (ms % 1000) * 1000000;
  3919   else {
  3920     req.tv_nsec = 1;
  3923   nanosleep(&req, NULL);
  3925   return;
  3928 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
  3929 void os::infinite_sleep() {
  3930   while (true) {    // sleep forever ...
  3931     ::sleep(100);   // ... 100 seconds at a time
  3935 // Used to convert frequent JVM_Yield() to nops
  3936 bool os::dont_yield() {
  3937   return DontYieldALot;
  3940 void os::yield() {
  3941   sched_yield();
  3944 os::YieldResult os::NakedYield() { sched_yield(); return os::YIELD_UNKNOWN ;}
  3946 void os::yield_all(int attempts) {
  3947   // Yields to all threads, including threads with lower priorities
  3948   // Threads on Linux are all with same priority. The Solaris style
  3949   // os::yield_all() with nanosleep(1ms) is not necessary.
  3950   sched_yield();
  3953 // Called from the tight loops to possibly influence time-sharing heuristics
  3954 void os::loop_breaker(int attempts) {
  3955   os::yield_all(attempts);
  3958 ////////////////////////////////////////////////////////////////////////////////
  3959 // thread priority support
  3961 // Note: Normal Linux applications are run with SCHED_OTHER policy. SCHED_OTHER
  3962 // only supports dynamic priority, static priority must be zero. For real-time
  3963 // applications, Linux supports SCHED_RR which allows static priority (1-99).
  3964 // However, for large multi-threaded applications, SCHED_RR is not only slower
  3965 // than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
  3966 // of 5 runs - Sep 2005).
  3967 //
  3968 // The following code actually changes the niceness of kernel-thread/LWP. It
  3969 // has an assumption that setpriority() only modifies one kernel-thread/LWP,
  3970 // not the entire user process, and user level threads are 1:1 mapped to kernel
  3971 // threads. It has always been the case, but could change in the future. For
  3972 // this reason, the code should not be used as default (ThreadPriorityPolicy=0).
  3973 // It is only used when ThreadPriorityPolicy=1 and requires root privilege.
  3975 int os::java_to_os_priority[CriticalPriority + 1] = {
  3976   19,              // 0 Entry should never be used
  3978    4,              // 1 MinPriority
  3979    3,              // 2
  3980    2,              // 3
  3982    1,              // 4
  3983    0,              // 5 NormPriority
  3984   -1,              // 6
  3986   -2,              // 7
  3987   -3,              // 8
  3988   -4,              // 9 NearMaxPriority
  3990   -5,              // 10 MaxPriority
  3992   -5               // 11 CriticalPriority
  3993 };
  3995 static int prio_init() {
  3996   if (ThreadPriorityPolicy == 1) {
  3997     // Only root can raise thread priority. Don't allow ThreadPriorityPolicy=1
  3998     // if effective uid is not root. Perhaps, a more elegant way of doing
  3999     // this is to test CAP_SYS_NICE capability, but that will require libcap.so
  4000     if (geteuid() != 0) {
  4001       if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) {
  4002         warning("-XX:ThreadPriorityPolicy requires root privilege on Linux");
  4004       ThreadPriorityPolicy = 0;
  4007   if (UseCriticalJavaThreadPriority) {
  4008     os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
  4010   return 0;
  4013 OSReturn os::set_native_priority(Thread* thread, int newpri) {
  4014   if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) return OS_OK;
  4016   int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
  4017   return (ret == 0) ? OS_OK : OS_ERR;
  4020 OSReturn os::get_native_priority(const Thread* const thread, int *priority_ptr) {
  4021   if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) {
  4022     *priority_ptr = java_to_os_priority[NormPriority];
  4023     return OS_OK;
  4026   errno = 0;
  4027   *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
  4028   return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
  4031 // Hint to the underlying OS that a task switch would not be good.
  4032 // Void return because it's a hint and can fail.
  4033 void os::hint_no_preempt() {}
  4035 ////////////////////////////////////////////////////////////////////////////////
  4036 // suspend/resume support
  4038 //  the low-level signal-based suspend/resume support is a remnant from the
  4039 //  old VM-suspension that used to be for java-suspension, safepoints etc,
  4040 //  within hotspot. Now there is a single use-case for this:
  4041 //    - calling get_thread_pc() on the VMThread by the flat-profiler task
  4042 //      that runs in the watcher thread.
  4043 //  The remaining code is greatly simplified from the more general suspension
  4044 //  code that used to be used.
  4045 //
  4046 //  The protocol is quite simple:
  4047 //  - suspend:
  4048 //      - sends a signal to the target thread
  4049 //      - polls the suspend state of the osthread using a yield loop
  4050 //      - target thread signal handler (SR_handler) sets suspend state
  4051 //        and blocks in sigsuspend until continued
  4052 //  - resume:
  4053 //      - sets target osthread state to continue
  4054 //      - sends signal to end the sigsuspend loop in the SR_handler
  4055 //
  4056 //  Note that the SR_lock plays no role in this suspend/resume protocol.
  4057 //
  4059 static void resume_clear_context(OSThread *osthread) {
  4060   osthread->set_ucontext(NULL);
  4061   osthread->set_siginfo(NULL);
  4064 static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo, ucontext_t* context) {
  4065   osthread->set_ucontext(context);
  4066   osthread->set_siginfo(siginfo);
  4069 //
  4070 // Handler function invoked when a thread's execution is suspended or
  4071 // resumed. We have to be careful that only async-safe functions are
  4072 // called here (Note: most pthread functions are not async safe and
  4073 // should be avoided.)
  4074 //
  4075 // Note: sigwait() is a more natural fit than sigsuspend() from an
  4076 // interface point of view, but sigwait() prevents the signal hander
  4077 // from being run. libpthread would get very confused by not having
  4078 // its signal handlers run and prevents sigwait()'s use with the
  4079 // mutex granting granting signal.
  4080 //
  4081 // Currently only ever called on the VMThread and JavaThreads (PC sampling)
  4082 //
  4083 static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
  4084   // Save and restore errno to avoid confusing native code with EINTR
  4085   // after sigsuspend.
  4086   int old_errno = errno;
  4088   Thread* thread = Thread::current();
  4089   OSThread* osthread = thread->osthread();
  4090   assert(thread->is_VM_thread() || thread->is_Java_thread(), "Must be VMThread or JavaThread");
  4092   os::SuspendResume::State current = osthread->sr.state();
  4093   if (current == os::SuspendResume::SR_SUSPEND_REQUEST) {
  4094     suspend_save_context(osthread, siginfo, context);
  4096     // attempt to switch the state, we assume we had a SUSPEND_REQUEST
  4097     os::SuspendResume::State state = osthread->sr.suspended();
  4098     if (state == os::SuspendResume::SR_SUSPENDED) {
  4099       sigset_t suspend_set;  // signals for sigsuspend()
  4101       // get current set of blocked signals and unblock resume signal
  4102       pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
  4103       sigdelset(&suspend_set, SR_signum);
  4105       sr_semaphore.signal();
  4106       // wait here until we are resumed
  4107       while (1) {
  4108         sigsuspend(&suspend_set);
  4110         os::SuspendResume::State result = osthread->sr.running();
  4111         if (result == os::SuspendResume::SR_RUNNING) {
  4112           sr_semaphore.signal();
  4113           break;
  4117     } else if (state == os::SuspendResume::SR_RUNNING) {
  4118       // request was cancelled, continue
  4119     } else {
  4120       ShouldNotReachHere();
  4123     resume_clear_context(osthread);
  4124   } else if (current == os::SuspendResume::SR_RUNNING) {
  4125     // request was cancelled, continue
  4126   } else if (current == os::SuspendResume::SR_WAKEUP_REQUEST) {
  4127     // ignore
  4128   } else {
  4129     // ignore
  4132   errno = old_errno;
  4136 static int SR_initialize() {
  4137   struct sigaction act;
  4138   char *s;
  4139   /* Get signal number to use for suspend/resume */
  4140   if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
  4141     int sig = ::strtol(s, 0, 10);
  4142     if (sig > 0 || sig < _NSIG) {
  4143         SR_signum = sig;
  4147   assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
  4148         "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
  4150   sigemptyset(&SR_sigset);
  4151   sigaddset(&SR_sigset, SR_signum);
  4153   /* Set up signal handler for suspend/resume */
  4154   act.sa_flags = SA_RESTART|SA_SIGINFO;
  4155   act.sa_handler = (void (*)(int)) SR_handler;
  4157   // SR_signum is blocked by default.
  4158   // 4528190 - We also need to block pthread restart signal (32 on all
  4159   // supported Linux platforms). Note that LinuxThreads need to block
  4160   // this signal for all threads to work properly. So we don't have
  4161   // to use hard-coded signal number when setting up the mask.
  4162   pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
  4164   if (sigaction(SR_signum, &act, 0) == -1) {
  4165     return -1;
  4168   // Save signal flag
  4169   os::Linux::set_our_sigflags(SR_signum, act.sa_flags);
  4170   return 0;
  4173 static int sr_notify(OSThread* osthread) {
  4174   int status = pthread_kill(osthread->pthread_id(), SR_signum);
  4175   assert_status(status == 0, status, "pthread_kill");
  4176   return status;
  4179 // "Randomly" selected value for how long we want to spin
  4180 // before bailing out on suspending a thread, also how often
  4181 // we send a signal to a thread we want to resume
  4182 static const int RANDOMLY_LARGE_INTEGER = 1000000;
  4183 static const int RANDOMLY_LARGE_INTEGER2 = 100;
  4185 // returns true on success and false on error - really an error is fatal
  4186 // but this seems the normal response to library errors
  4187 static bool do_suspend(OSThread* osthread) {
  4188   assert(osthread->sr.is_running(), "thread should be running");
  4189   assert(!sr_semaphore.trywait(), "semaphore has invalid state");
  4191   // mark as suspended and send signal
  4192   if (osthread->sr.request_suspend() != os::SuspendResume::SR_SUSPEND_REQUEST) {
  4193     // failed to switch, state wasn't running?
  4194     ShouldNotReachHere();
  4195     return false;
  4198   if (sr_notify(osthread) != 0) {
  4199     ShouldNotReachHere();
  4202   // managed to send the signal and switch to SUSPEND_REQUEST, now wait for SUSPENDED
  4203   while (true) {
  4204     if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
  4205       break;
  4206     } else {
  4207       // timeout
  4208       os::SuspendResume::State cancelled = osthread->sr.cancel_suspend();
  4209       if (cancelled == os::SuspendResume::SR_RUNNING) {
  4210         return false;
  4211       } else if (cancelled == os::SuspendResume::SR_SUSPENDED) {
  4212         // make sure that we consume the signal on the semaphore as well
  4213         sr_semaphore.wait();
  4214         break;
  4215       } else {
  4216         ShouldNotReachHere();
  4217         return false;
  4222   guarantee(osthread->sr.is_suspended(), "Must be suspended");
  4223   return true;
  4226 static void do_resume(OSThread* osthread) {
  4227   assert(osthread->sr.is_suspended(), "thread should be suspended");
  4228   assert(!sr_semaphore.trywait(), "invalid semaphore state");
  4230   if (osthread->sr.request_wakeup() != os::SuspendResume::SR_WAKEUP_REQUEST) {
  4231     // failed to switch to WAKEUP_REQUEST
  4232     ShouldNotReachHere();
  4233     return;
  4236   while (true) {
  4237     if (sr_notify(osthread) == 0) {
  4238       if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
  4239         if (osthread->sr.is_running()) {
  4240           return;
  4243     } else {
  4244       ShouldNotReachHere();
  4248   guarantee(osthread->sr.is_running(), "Must be running!");
  4251 ////////////////////////////////////////////////////////////////////////////////
  4252 // interrupt support
  4254 void os::interrupt(Thread* thread) {
  4255   assert(Thread::current() == thread || Threads_lock->owned_by_self(),
  4256     "possibility of dangling Thread pointer");
  4258   OSThread* osthread = thread->osthread();
  4260   if (!osthread->interrupted()) {
  4261     osthread->set_interrupted(true);
  4262     // More than one thread can get here with the same value of osthread,
  4263     // resulting in multiple notifications.  We do, however, want the store
  4264     // to interrupted() to be visible to other threads before we execute unpark().
  4265     OrderAccess::fence();
  4266     ParkEvent * const slp = thread->_SleepEvent ;
  4267     if (slp != NULL) slp->unpark() ;
  4270   // For JSR166. Unpark even if interrupt status already was set
  4271   if (thread->is_Java_thread())
  4272     ((JavaThread*)thread)->parker()->unpark();
  4274   ParkEvent * ev = thread->_ParkEvent ;
  4275   if (ev != NULL) ev->unpark() ;
  4279 bool os::is_interrupted(Thread* thread, bool clear_interrupted) {
  4280   assert(Thread::current() == thread || Threads_lock->owned_by_self(),
  4281     "possibility of dangling Thread pointer");
  4283   OSThread* osthread = thread->osthread();
  4285   bool interrupted = osthread->interrupted();
  4287   if (interrupted && clear_interrupted) {
  4288     osthread->set_interrupted(false);
  4289     // consider thread->_SleepEvent->reset() ... optional optimization
  4292   return interrupted;
  4295 ///////////////////////////////////////////////////////////////////////////////////
  4296 // signal handling (except suspend/resume)
  4298 // This routine may be used by user applications as a "hook" to catch signals.
  4299 // The user-defined signal handler must pass unrecognized signals to this
  4300 // routine, and if it returns true (non-zero), then the signal handler must
  4301 // return immediately.  If the flag "abort_if_unrecognized" is true, then this
  4302 // routine will never retun false (zero), but instead will execute a VM panic
  4303 // routine kill the process.
  4304 //
  4305 // If this routine returns false, it is OK to call it again.  This allows
  4306 // the user-defined signal handler to perform checks either before or after
  4307 // the VM performs its own checks.  Naturally, the user code would be making
  4308 // a serious error if it tried to handle an exception (such as a null check
  4309 // or breakpoint) that the VM was generating for its own correct operation.
  4310 //
  4311 // This routine may recognize any of the following kinds of signals:
  4312 //    SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
  4313 // It should be consulted by handlers for any of those signals.
  4314 //
  4315 // The caller of this routine must pass in the three arguments supplied
  4316 // to the function referred to in the "sa_sigaction" (not the "sa_handler")
  4317 // field of the structure passed to sigaction().  This routine assumes that
  4318 // the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
  4319 //
  4320 // Note that the VM will print warnings if it detects conflicting signal
  4321 // handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
  4322 //
  4323 extern "C" JNIEXPORT int
  4324 JVM_handle_linux_signal(int signo, siginfo_t* siginfo,
  4325                         void* ucontext, int abort_if_unrecognized);
  4327 void signalHandler(int sig, siginfo_t* info, void* uc) {
  4328   assert(info != NULL && uc != NULL, "it must be old kernel");
  4329   int orig_errno = errno;  // Preserve errno value over signal handler.
  4330   JVM_handle_linux_signal(sig, info, uc, true);
  4331   errno = orig_errno;
  4335 // This boolean allows users to forward their own non-matching signals
  4336 // to JVM_handle_linux_signal, harmlessly.
  4337 bool os::Linux::signal_handlers_are_installed = false;
  4339 // For signal-chaining
  4340 struct sigaction os::Linux::sigact[MAXSIGNUM];
  4341 unsigned int os::Linux::sigs = 0;
  4342 bool os::Linux::libjsig_is_loaded = false;
  4343 typedef struct sigaction *(*get_signal_t)(int);
  4344 get_signal_t os::Linux::get_signal_action = NULL;
  4346 struct sigaction* os::Linux::get_chained_signal_action(int sig) {
  4347   struct sigaction *actp = NULL;
  4349   if (libjsig_is_loaded) {
  4350     // Retrieve the old signal handler from libjsig
  4351     actp = (*get_signal_action)(sig);
  4353   if (actp == NULL) {
  4354     // Retrieve the preinstalled signal handler from jvm
  4355     actp = get_preinstalled_handler(sig);
  4358   return actp;
  4361 static bool call_chained_handler(struct sigaction *actp, int sig,
  4362                                  siginfo_t *siginfo, void *context) {
  4363   // Call the old signal handler
  4364   if (actp->sa_handler == SIG_DFL) {
  4365     // It's more reasonable to let jvm treat it as an unexpected exception
  4366     // instead of taking the default action.
  4367     return false;
  4368   } else if (actp->sa_handler != SIG_IGN) {
  4369     if ((actp->sa_flags & SA_NODEFER) == 0) {
  4370       // automaticlly block the signal
  4371       sigaddset(&(actp->sa_mask), sig);
  4374     sa_handler_t hand = NULL;
  4375     sa_sigaction_t sa = NULL;
  4376     bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
  4377     // retrieve the chained handler
  4378     if (siginfo_flag_set) {
  4379       sa = actp->sa_sigaction;
  4380     } else {
  4381       hand = actp->sa_handler;
  4384     if ((actp->sa_flags & SA_RESETHAND) != 0) {
  4385       actp->sa_handler = SIG_DFL;
  4388     // try to honor the signal mask
  4389     sigset_t oset;
  4390     pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
  4392     // call into the chained handler
  4393     if (siginfo_flag_set) {
  4394       (*sa)(sig, siginfo, context);
  4395     } else {
  4396       (*hand)(sig);
  4399     // restore the signal mask
  4400     pthread_sigmask(SIG_SETMASK, &oset, 0);
  4402   // Tell jvm's signal handler the signal is taken care of.
  4403   return true;
  4406 bool os::Linux::chained_handler(int sig, siginfo_t* siginfo, void* context) {
  4407   bool chained = false;
  4408   // signal-chaining
  4409   if (UseSignalChaining) {
  4410     struct sigaction *actp = get_chained_signal_action(sig);
  4411     if (actp != NULL) {
  4412       chained = call_chained_handler(actp, sig, siginfo, context);
  4415   return chained;
  4418 struct sigaction* os::Linux::get_preinstalled_handler(int sig) {
  4419   if ((( (unsigned int)1 << sig ) & sigs) != 0) {
  4420     return &sigact[sig];
  4422   return NULL;
  4425 void os::Linux::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
  4426   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
  4427   sigact[sig] = oldAct;
  4428   sigs |= (unsigned int)1 << sig;
  4431 // for diagnostic
  4432 int os::Linux::sigflags[MAXSIGNUM];
  4434 int os::Linux::get_our_sigflags(int sig) {
  4435   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
  4436   return sigflags[sig];
  4439 void os::Linux::set_our_sigflags(int sig, int flags) {
  4440   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
  4441   sigflags[sig] = flags;
  4444 void os::Linux::set_signal_handler(int sig, bool set_installed) {
  4445   // Check for overwrite.
  4446   struct sigaction oldAct;
  4447   sigaction(sig, (struct sigaction*)NULL, &oldAct);
  4449   void* oldhand = oldAct.sa_sigaction
  4450                 ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
  4451                 : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
  4452   if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
  4453       oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
  4454       oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
  4455     if (AllowUserSignalHandlers || !set_installed) {
  4456       // Do not overwrite; user takes responsibility to forward to us.
  4457       return;
  4458     } else if (UseSignalChaining) {
  4459       // save the old handler in jvm
  4460       save_preinstalled_handler(sig, oldAct);
  4461       // libjsig also interposes the sigaction() call below and saves the
  4462       // old sigaction on it own.
  4463     } else {
  4464       fatal(err_msg("Encountered unexpected pre-existing sigaction handler "
  4465                     "%#lx for signal %d.", (long)oldhand, sig));
  4469   struct sigaction sigAct;
  4470   sigfillset(&(sigAct.sa_mask));
  4471   sigAct.sa_handler = SIG_DFL;
  4472   if (!set_installed) {
  4473     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
  4474   } else {
  4475     sigAct.sa_sigaction = signalHandler;
  4476     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
  4478   // Save flags, which are set by ours
  4479   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
  4480   sigflags[sig] = sigAct.sa_flags;
  4482   int ret = sigaction(sig, &sigAct, &oldAct);
  4483   assert(ret == 0, "check");
  4485   void* oldhand2  = oldAct.sa_sigaction
  4486                   ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
  4487                   : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
  4488   assert(oldhand2 == oldhand, "no concurrent signal handler installation");
  4491 // install signal handlers for signals that HotSpot needs to
  4492 // handle in order to support Java-level exception handling.
  4494 void os::Linux::install_signal_handlers() {
  4495   if (!signal_handlers_are_installed) {
  4496     signal_handlers_are_installed = true;
  4498     // signal-chaining
  4499     typedef void (*signal_setting_t)();
  4500     signal_setting_t begin_signal_setting = NULL;
  4501     signal_setting_t end_signal_setting = NULL;
  4502     begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
  4503                              dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
  4504     if (begin_signal_setting != NULL) {
  4505       end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
  4506                              dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
  4507       get_signal_action = CAST_TO_FN_PTR(get_signal_t,
  4508                             dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
  4509       libjsig_is_loaded = true;
  4510       assert(UseSignalChaining, "should enable signal-chaining");
  4512     if (libjsig_is_loaded) {
  4513       // Tell libjsig jvm is setting signal handlers
  4514       (*begin_signal_setting)();
  4517     set_signal_handler(SIGSEGV, true);
  4518     set_signal_handler(SIGPIPE, true);
  4519     set_signal_handler(SIGBUS, true);
  4520     set_signal_handler(SIGILL, true);
  4521     set_signal_handler(SIGFPE, true);
  4522 #if defined(PPC64)
  4523     set_signal_handler(SIGTRAP, true);
  4524 #endif
  4525     set_signal_handler(SIGXFSZ, true);
  4527     if (libjsig_is_loaded) {
  4528       // Tell libjsig jvm finishes setting signal handlers
  4529       (*end_signal_setting)();
  4532     // We don't activate signal checker if libjsig is in place, we trust ourselves
  4533     // and if UserSignalHandler is installed all bets are off.
  4534     // Log that signal checking is off only if -verbose:jni is specified.
  4535     if (CheckJNICalls) {
  4536       if (libjsig_is_loaded) {
  4537         if (PrintJNIResolving) {
  4538           tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
  4540         check_signals = false;
  4542       if (AllowUserSignalHandlers) {
  4543         if (PrintJNIResolving) {
  4544           tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
  4546         check_signals = false;
  4552 // This is the fastest way to get thread cpu time on Linux.
  4553 // Returns cpu time (user+sys) for any thread, not only for current.
  4554 // POSIX compliant clocks are implemented in the kernels 2.6.16+.
  4555 // It might work on 2.6.10+ with a special kernel/glibc patch.
  4556 // For reference, please, see IEEE Std 1003.1-2004:
  4557 //   http://www.unix.org/single_unix_specification
  4559 jlong os::Linux::fast_thread_cpu_time(clockid_t clockid) {
  4560   struct timespec tp;
  4561   int rc = os::Linux::clock_gettime(clockid, &tp);
  4562   assert(rc == 0, "clock_gettime is expected to return 0 code");
  4564   return (tp.tv_sec * NANOSECS_PER_SEC) + tp.tv_nsec;
  4567 /////
  4568 // glibc on Linux platform uses non-documented flag
  4569 // to indicate, that some special sort of signal
  4570 // trampoline is used.
  4571 // We will never set this flag, and we should
  4572 // ignore this flag in our diagnostic
  4573 #ifdef SIGNIFICANT_SIGNAL_MASK
  4574 #undef SIGNIFICANT_SIGNAL_MASK
  4575 #endif
  4576 #define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
  4578 static const char* get_signal_handler_name(address handler,
  4579                                            char* buf, int buflen) {
  4580   int offset = 0;
  4581   bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
  4582   if (found) {
  4583     // skip directory names
  4584     const char *p1, *p2;
  4585     p1 = buf;
  4586     size_t len = strlen(os::file_separator());
  4587     while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
  4588     jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
  4589   } else {
  4590     jio_snprintf(buf, buflen, PTR_FORMAT, handler);
  4592   return buf;
  4595 static void print_signal_handler(outputStream* st, int sig,
  4596                                  char* buf, size_t buflen) {
  4597   struct sigaction sa;
  4599   sigaction(sig, NULL, &sa);
  4601   // See comment for SIGNIFICANT_SIGNAL_MASK define
  4602   sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
  4604   st->print("%s: ", os::exception_name(sig, buf, buflen));
  4606   address handler = (sa.sa_flags & SA_SIGINFO)
  4607     ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
  4608     : CAST_FROM_FN_PTR(address, sa.sa_handler);
  4610   if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
  4611     st->print("SIG_DFL");
  4612   } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
  4613     st->print("SIG_IGN");
  4614   } else {
  4615     st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
  4618   st->print(", sa_mask[0]=");
  4619   os::Posix::print_signal_set_short(st, &sa.sa_mask);
  4621   address rh = VMError::get_resetted_sighandler(sig);
  4622   // May be, handler was resetted by VMError?
  4623   if(rh != NULL) {
  4624     handler = rh;
  4625     sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
  4628   st->print(", sa_flags=");
  4629   os::Posix::print_sa_flags(st, sa.sa_flags);
  4631   // Check: is it our handler?
  4632   if(handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
  4633      handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
  4634     // It is our signal handler
  4635     // check for flags, reset system-used one!
  4636     if((int)sa.sa_flags != os::Linux::get_our_sigflags(sig)) {
  4637       st->print(
  4638                 ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
  4639                 os::Linux::get_our_sigflags(sig));
  4642   st->cr();
  4646 #define DO_SIGNAL_CHECK(sig) \
  4647   if (!sigismember(&check_signal_done, sig)) \
  4648     os::Linux::check_signal_handler(sig)
  4650 // This method is a periodic task to check for misbehaving JNI applications
  4651 // under CheckJNI, we can add any periodic checks here
  4653 void os::run_periodic_checks() {
  4655   if (check_signals == false) return;
  4657   // SEGV and BUS if overridden could potentially prevent
  4658   // generation of hs*.log in the event of a crash, debugging
  4659   // such a case can be very challenging, so we absolutely
  4660   // check the following for a good measure:
  4661   DO_SIGNAL_CHECK(SIGSEGV);
  4662   DO_SIGNAL_CHECK(SIGILL);
  4663   DO_SIGNAL_CHECK(SIGFPE);
  4664   DO_SIGNAL_CHECK(SIGBUS);
  4665   DO_SIGNAL_CHECK(SIGPIPE);
  4666   DO_SIGNAL_CHECK(SIGXFSZ);
  4667 #if defined(PPC64)
  4668   DO_SIGNAL_CHECK(SIGTRAP);
  4669 #endif
  4671   // ReduceSignalUsage allows the user to override these handlers
  4672   // see comments at the very top and jvm_solaris.h
  4673   if (!ReduceSignalUsage) {
  4674     DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
  4675     DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
  4676     DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
  4677     DO_SIGNAL_CHECK(BREAK_SIGNAL);
  4680   DO_SIGNAL_CHECK(SR_signum);
  4681   DO_SIGNAL_CHECK(INTERRUPT_SIGNAL);
  4684 typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
  4686 static os_sigaction_t os_sigaction = NULL;
  4688 void os::Linux::check_signal_handler(int sig) {
  4689   char buf[O_BUFLEN];
  4690   address jvmHandler = NULL;
  4693   struct sigaction act;
  4694   if (os_sigaction == NULL) {
  4695     // only trust the default sigaction, in case it has been interposed
  4696     os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
  4697     if (os_sigaction == NULL) return;
  4700   os_sigaction(sig, (struct sigaction*)NULL, &act);
  4703   act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
  4705   address thisHandler = (act.sa_flags & SA_SIGINFO)
  4706     ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
  4707     : CAST_FROM_FN_PTR(address, act.sa_handler) ;
  4710   switch(sig) {
  4711   case SIGSEGV:
  4712   case SIGBUS:
  4713   case SIGFPE:
  4714   case SIGPIPE:
  4715   case SIGILL:
  4716   case SIGXFSZ:
  4717     jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
  4718     break;
  4720   case SHUTDOWN1_SIGNAL:
  4721   case SHUTDOWN2_SIGNAL:
  4722   case SHUTDOWN3_SIGNAL:
  4723   case BREAK_SIGNAL:
  4724     jvmHandler = (address)user_handler();
  4725     break;
  4727   case INTERRUPT_SIGNAL:
  4728     jvmHandler = CAST_FROM_FN_PTR(address, SIG_DFL);
  4729     break;
  4731   default:
  4732     if (sig == SR_signum) {
  4733       jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
  4734     } else {
  4735       return;
  4737     break;
  4740   if (thisHandler != jvmHandler) {
  4741     tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
  4742     tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
  4743     tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
  4744     // No need to check this sig any longer
  4745     sigaddset(&check_signal_done, sig);
  4746     // Running under non-interactive shell, SHUTDOWN2_SIGNAL will be reassigned SIG_IGN
  4747     if (sig == SHUTDOWN2_SIGNAL && !isatty(fileno(stdin))) {
  4748       tty->print_cr("Running in non-interactive shell, %s handler is replaced by shell",
  4749                     exception_name(sig, buf, O_BUFLEN));
  4751   } else if(os::Linux::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Linux::get_our_sigflags(sig)) {
  4752     tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
  4753     tty->print("expected:" PTR32_FORMAT, os::Linux::get_our_sigflags(sig));
  4754     tty->print_cr("  found:" PTR32_FORMAT, act.sa_flags);
  4755     // No need to check this sig any longer
  4756     sigaddset(&check_signal_done, sig);
  4759   // Dump all the signal
  4760   if (sigismember(&check_signal_done, sig)) {
  4761     print_signal_handlers(tty, buf, O_BUFLEN);
  4765 extern void report_error(char* file_name, int line_no, char* title, char* format, ...);
  4767 extern bool signal_name(int signo, char* buf, size_t len);
  4769 const char* os::exception_name(int exception_code, char* buf, size_t size) {
  4770   if (0 < exception_code && exception_code <= SIGRTMAX) {
  4771     // signal
  4772     if (!signal_name(exception_code, buf, size)) {
  4773       jio_snprintf(buf, size, "SIG%d", exception_code);
  4775     return buf;
  4776   } else {
  4777     return NULL;
  4781 // this is called _before_ the most of global arguments have been parsed
  4782 void os::init(void) {
  4783   char dummy;   /* used to get a guess on initial stack address */
  4784 //  first_hrtime = gethrtime();
  4786   // With LinuxThreads the JavaMain thread pid (primordial thread)
  4787   // is different than the pid of the java launcher thread.
  4788   // So, on Linux, the launcher thread pid is passed to the VM
  4789   // via the sun.java.launcher.pid property.
  4790   // Use this property instead of getpid() if it was correctly passed.
  4791   // See bug 6351349.
  4792   pid_t java_launcher_pid = (pid_t) Arguments::sun_java_launcher_pid();
  4794   _initial_pid = (java_launcher_pid > 0) ? java_launcher_pid : getpid();
  4796   clock_tics_per_sec = sysconf(_SC_CLK_TCK);
  4798   init_random(1234567);
  4800   ThreadCritical::initialize();
  4802   Linux::set_page_size(sysconf(_SC_PAGESIZE));
  4803   if (Linux::page_size() == -1) {
  4804     fatal(err_msg("os_linux.cpp: os::init: sysconf failed (%s)",
  4805                   strerror(errno)));
  4807   init_page_sizes((size_t) Linux::page_size());
  4809   Linux::initialize_system_info();
  4811   // main_thread points to the aboriginal thread
  4812   Linux::_main_thread = pthread_self();
  4814   Linux::clock_init();
  4815   initial_time_count = javaTimeNanos();
  4817   // pthread_condattr initialization for monotonic clock
  4818   int status;
  4819   pthread_condattr_t* _condattr = os::Linux::condAttr();
  4820   if ((status = pthread_condattr_init(_condattr)) != 0) {
  4821     fatal(err_msg("pthread_condattr_init: %s", strerror(status)));
  4823   // Only set the clock if CLOCK_MONOTONIC is available
  4824   if (Linux::supports_monotonic_clock()) {
  4825     if ((status = pthread_condattr_setclock(_condattr, CLOCK_MONOTONIC)) != 0) {
  4826       if (status == EINVAL) {
  4827         warning("Unable to use monotonic clock with relative timed-waits" \
  4828                 " - changes to the time-of-day clock may have adverse affects");
  4829       } else {
  4830         fatal(err_msg("pthread_condattr_setclock: %s", strerror(status)));
  4834   // else it defaults to CLOCK_REALTIME
  4836   pthread_mutex_init(&dl_mutex, NULL);
  4838   // If the pagesize of the VM is greater than 8K determine the appropriate
  4839   // number of initial guard pages.  The user can change this with the
  4840   // command line arguments, if needed.
  4841   if (vm_page_size() > (int)Linux::vm_default_page_size()) {
  4842     StackYellowPages = 1;
  4843     StackRedPages = 1;
  4844     StackShadowPages = round_to((StackShadowPages*Linux::vm_default_page_size()), vm_page_size()) / vm_page_size();
  4848 // To install functions for atexit system call
  4849 extern "C" {
  4850   static void perfMemory_exit_helper() {
  4851     perfMemory_exit();
  4855 // this is called _after_ the global arguments have been parsed
  4856 jint os::init_2(void)
  4858   Linux::fast_thread_clock_init();
  4860   // Allocate a single page and mark it as readable for safepoint polling
  4861   address polling_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
  4862   guarantee( polling_page != MAP_FAILED, "os::init_2: failed to allocate polling page" );
  4864   os::set_polling_page( polling_page );
  4866 #ifndef PRODUCT
  4867   if(Verbose && PrintMiscellaneous)
  4868     tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n", (intptr_t)polling_page);
  4869 #endif
  4871   if (!UseMembar) {
  4872     address mem_serialize_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ | PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
  4873     guarantee( mem_serialize_page != MAP_FAILED, "mmap Failed for memory serialize page");
  4874     os::set_memory_serialize_page( mem_serialize_page );
  4876 #ifndef PRODUCT
  4877     if(Verbose && PrintMiscellaneous)
  4878       tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n", (intptr_t)mem_serialize_page);
  4879 #endif
  4882   // initialize suspend/resume support - must do this before signal_sets_init()
  4883   if (SR_initialize() != 0) {
  4884     perror("SR_initialize failed");
  4885     return JNI_ERR;
  4888   Linux::signal_sets_init();
  4889   Linux::install_signal_handlers();
  4891   // Check minimum allowable stack size for thread creation and to initialize
  4892   // the java system classes, including StackOverflowError - depends on page
  4893   // size.  Add a page for compiler2 recursion in main thread.
  4894   // Add in 2*BytesPerWord times page size to account for VM stack during
  4895   // class initialization depending on 32 or 64 bit VM.
  4896   os::Linux::min_stack_allowed = MAX2(os::Linux::min_stack_allowed,
  4897             (size_t)(StackYellowPages+StackRedPages+StackShadowPages) * Linux::page_size() +
  4898                     (2*BytesPerWord COMPILER2_PRESENT(+1)) * Linux::vm_default_page_size());
  4900   size_t threadStackSizeInBytes = ThreadStackSize * K;
  4901   if (threadStackSizeInBytes != 0 &&
  4902       threadStackSizeInBytes < os::Linux::min_stack_allowed) {
  4903         tty->print_cr("\nThe stack size specified is too small, "
  4904                       "Specify at least %dk",
  4905                       os::Linux::min_stack_allowed/ K);
  4906         return JNI_ERR;
  4909   // Make the stack size a multiple of the page size so that
  4910   // the yellow/red zones can be guarded.
  4911   JavaThread::set_stack_size_at_create(round_to(threadStackSizeInBytes,
  4912         vm_page_size()));
  4914   Linux::capture_initial_stack(JavaThread::stack_size_at_create());
  4916 #if defined(IA32)
  4917   workaround_expand_exec_shield_cs_limit();
  4918 #endif
  4920   Linux::libpthread_init();
  4921   if (PrintMiscellaneous && (Verbose || WizardMode)) {
  4922      tty->print_cr("[HotSpot is running with %s, %s(%s)]\n",
  4923           Linux::glibc_version(), Linux::libpthread_version(),
  4924           Linux::is_floating_stack() ? "floating stack" : "fixed stack");
  4927   if (UseNUMA) {
  4928     if (!Linux::libnuma_init()) {
  4929       UseNUMA = false;
  4930     } else {
  4931       if ((Linux::numa_max_node() < 1)) {
  4932         // There's only one node(they start from 0), disable NUMA.
  4933         UseNUMA = false;
  4936     // With SHM and HugeTLBFS large pages we cannot uncommit a page, so there's no way
  4937     // we can make the adaptive lgrp chunk resizing work. If the user specified
  4938     // both UseNUMA and UseLargePages (or UseSHM/UseHugeTLBFS) on the command line - warn and
  4939     // disable adaptive resizing.
  4940     if (UseNUMA && UseLargePages && !can_commit_large_page_memory()) {
  4941       if (FLAG_IS_DEFAULT(UseNUMA)) {
  4942         UseNUMA = false;
  4943       } else {
  4944         if (FLAG_IS_DEFAULT(UseLargePages) &&
  4945             FLAG_IS_DEFAULT(UseSHM) &&
  4946             FLAG_IS_DEFAULT(UseHugeTLBFS)) {
  4947           UseLargePages = false;
  4948         } else {
  4949           warning("UseNUMA is not fully compatible with SHM/HugeTLBFS large pages, disabling adaptive resizing");
  4950           UseAdaptiveSizePolicy = false;
  4951           UseAdaptiveNUMAChunkSizing = false;
  4955     if (!UseNUMA && ForceNUMA) {
  4956       UseNUMA = true;
  4960   if (MaxFDLimit) {
  4961     // set the number of file descriptors to max. print out error
  4962     // if getrlimit/setrlimit fails but continue regardless.
  4963     struct rlimit nbr_files;
  4964     int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
  4965     if (status != 0) {
  4966       if (PrintMiscellaneous && (Verbose || WizardMode))
  4967         perror("os::init_2 getrlimit failed");
  4968     } else {
  4969       nbr_files.rlim_cur = nbr_files.rlim_max;
  4970       status = setrlimit(RLIMIT_NOFILE, &nbr_files);
  4971       if (status != 0) {
  4972         if (PrintMiscellaneous && (Verbose || WizardMode))
  4973           perror("os::init_2 setrlimit failed");
  4978   // Initialize lock used to serialize thread creation (see os::create_thread)
  4979   Linux::set_createThread_lock(new Mutex(Mutex::leaf, "createThread_lock", false));
  4981   // at-exit methods are called in the reverse order of their registration.
  4982   // atexit functions are called on return from main or as a result of a
  4983   // call to exit(3C). There can be only 32 of these functions registered
  4984   // and atexit() does not set errno.
  4986   if (PerfAllowAtExitRegistration) {
  4987     // only register atexit functions if PerfAllowAtExitRegistration is set.
  4988     // atexit functions can be delayed until process exit time, which
  4989     // can be problematic for embedded VM situations. Embedded VMs should
  4990     // call DestroyJavaVM() to assure that VM resources are released.
  4992     // note: perfMemory_exit_helper atexit function may be removed in
  4993     // the future if the appropriate cleanup code can be added to the
  4994     // VM_Exit VMOperation's doit method.
  4995     if (atexit(perfMemory_exit_helper) != 0) {
  4996       warning("os::init_2 atexit(perfMemory_exit_helper) failed");
  5000   // initialize thread priority policy
  5001   prio_init();
  5003   return JNI_OK;
  5006 // Mark the polling page as unreadable
  5007 void os::make_polling_page_unreadable(void) {
  5008   if( !guard_memory((char*)_polling_page, Linux::page_size()) )
  5009     fatal("Could not disable polling page");
  5010 };
  5012 // Mark the polling page as readable
  5013 void os::make_polling_page_readable(void) {
  5014   if( !linux_mprotect((char *)_polling_page, Linux::page_size(), PROT_READ)) {
  5015     fatal("Could not enable polling page");
  5017 };
  5019 int os::active_processor_count() {
  5020   // Linux doesn't yet have a (official) notion of processor sets,
  5021   // so just return the number of online processors.
  5022   int online_cpus = ::sysconf(_SC_NPROCESSORS_ONLN);
  5023   assert(online_cpus > 0 && online_cpus <= processor_count(), "sanity check");
  5024   return online_cpus;
  5027 void os::set_native_thread_name(const char *name) {
  5028   // Not yet implemented.
  5029   return;
  5032 bool os::distribute_processes(uint length, uint* distribution) {
  5033   // Not yet implemented.
  5034   return false;
  5037 bool os::bind_to_processor(uint processor_id) {
  5038   // Not yet implemented.
  5039   return false;
  5042 ///
  5044 void os::SuspendedThreadTask::internal_do_task() {
  5045   if (do_suspend(_thread->osthread())) {
  5046     SuspendedThreadTaskContext context(_thread, _thread->osthread()->ucontext());
  5047     do_task(context);
  5048     do_resume(_thread->osthread());
  5052 class PcFetcher : public os::SuspendedThreadTask {
  5053 public:
  5054   PcFetcher(Thread* thread) : os::SuspendedThreadTask(thread) {}
  5055   ExtendedPC result();
  5056 protected:
  5057   void do_task(const os::SuspendedThreadTaskContext& context);
  5058 private:
  5059   ExtendedPC _epc;
  5060 };
  5062 ExtendedPC PcFetcher::result() {
  5063   guarantee(is_done(), "task is not done yet.");
  5064   return _epc;
  5067 void PcFetcher::do_task(const os::SuspendedThreadTaskContext& context) {
  5068   Thread* thread = context.thread();
  5069   OSThread* osthread = thread->osthread();
  5070   if (osthread->ucontext() != NULL) {
  5071     _epc = os::Linux::ucontext_get_pc((ucontext_t *) context.ucontext());
  5072   } else {
  5073     // NULL context is unexpected, double-check this is the VMThread
  5074     guarantee(thread->is_VM_thread(), "can only be called for VMThread");
  5078 // Suspends the target using the signal mechanism and then grabs the PC before
  5079 // resuming the target. Used by the flat-profiler only
  5080 ExtendedPC os::get_thread_pc(Thread* thread) {
  5081   // Make sure that it is called by the watcher for the VMThread
  5082   assert(Thread::current()->is_Watcher_thread(), "Must be watcher");
  5083   assert(thread->is_VM_thread(), "Can only be called for VMThread");
  5085   PcFetcher fetcher(thread);
  5086   fetcher.run();
  5087   return fetcher.result();
  5090 int os::Linux::safe_cond_timedwait(pthread_cond_t *_cond, pthread_mutex_t *_mutex, const struct timespec *_abstime)
  5092    if (is_NPTL()) {
  5093       return pthread_cond_timedwait(_cond, _mutex, _abstime);
  5094    } else {
  5095       // 6292965: LinuxThreads pthread_cond_timedwait() resets FPU control
  5096       // word back to default 64bit precision if condvar is signaled. Java
  5097       // wants 53bit precision.  Save and restore current value.
  5098       int fpu = get_fpu_control_word();
  5099       int status = pthread_cond_timedwait(_cond, _mutex, _abstime);
  5100       set_fpu_control_word(fpu);
  5101       return status;
  5105 ////////////////////////////////////////////////////////////////////////////////
  5106 // debug support
  5108 bool os::find(address addr, outputStream* st) {
  5109   Dl_info dlinfo;
  5110   memset(&dlinfo, 0, sizeof(dlinfo));
  5111   if (dladdr(addr, &dlinfo) != 0) {
  5112     st->print(PTR_FORMAT ": ", addr);
  5113     if (dlinfo.dli_sname != NULL && dlinfo.dli_saddr != NULL) {
  5114       st->print("%s+%#x", dlinfo.dli_sname,
  5115                  addr - (intptr_t)dlinfo.dli_saddr);
  5116     } else if (dlinfo.dli_fbase != NULL) {
  5117       st->print("<offset %#x>", addr - (intptr_t)dlinfo.dli_fbase);
  5118     } else {
  5119       st->print("<absolute address>");
  5121     if (dlinfo.dli_fname != NULL) {
  5122       st->print(" in %s", dlinfo.dli_fname);
  5124     if (dlinfo.dli_fbase != NULL) {
  5125       st->print(" at " PTR_FORMAT, dlinfo.dli_fbase);
  5127     st->cr();
  5129     if (Verbose) {
  5130       // decode some bytes around the PC
  5131       address begin = clamp_address_in_page(addr-40, addr, os::vm_page_size());
  5132       address end   = clamp_address_in_page(addr+40, addr, os::vm_page_size());
  5133       address       lowest = (address) dlinfo.dli_sname;
  5134       if (!lowest)  lowest = (address) dlinfo.dli_fbase;
  5135       if (begin < lowest)  begin = lowest;
  5136       Dl_info dlinfo2;
  5137       if (dladdr(end, &dlinfo2) != 0 && dlinfo2.dli_saddr != dlinfo.dli_saddr
  5138           && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin)
  5139         end = (address) dlinfo2.dli_saddr;
  5140       Disassembler::decode(begin, end, st);
  5142     return true;
  5144   return false;
  5147 ////////////////////////////////////////////////////////////////////////////////
  5148 // misc
  5150 // This does not do anything on Linux. This is basically a hook for being
  5151 // able to use structured exception handling (thread-local exception filters)
  5152 // on, e.g., Win32.
  5153 void
  5154 os::os_exception_wrapper(java_call_t f, JavaValue* value, methodHandle* method,
  5155                          JavaCallArguments* args, Thread* thread) {
  5156   f(value, method, args, thread);
  5159 void os::print_statistics() {
  5162 int os::message_box(const char* title, const char* message) {
  5163   int i;
  5164   fdStream err(defaultStream::error_fd());
  5165   for (i = 0; i < 78; i++) err.print_raw("=");
  5166   err.cr();
  5167   err.print_raw_cr(title);
  5168   for (i = 0; i < 78; i++) err.print_raw("-");
  5169   err.cr();
  5170   err.print_raw_cr(message);
  5171   for (i = 0; i < 78; i++) err.print_raw("=");
  5172   err.cr();
  5174   char buf[16];
  5175   // Prevent process from exiting upon "read error" without consuming all CPU
  5176   while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
  5178   return buf[0] == 'y' || buf[0] == 'Y';
  5181 int os::stat(const char *path, struct stat *sbuf) {
  5182   char pathbuf[MAX_PATH];
  5183   if (strlen(path) > MAX_PATH - 1) {
  5184     errno = ENAMETOOLONG;
  5185     return -1;
  5187   os::native_path(strcpy(pathbuf, path));
  5188   return ::stat(pathbuf, sbuf);
  5191 bool os::check_heap(bool force) {
  5192   return true;
  5195 int local_vsnprintf(char* buf, size_t count, const char* format, va_list args) {
  5196   return ::vsnprintf(buf, count, format, args);
  5199 // Is a (classpath) directory empty?
  5200 bool os::dir_is_empty(const char* path) {
  5201   DIR *dir = NULL;
  5202   struct dirent *ptr;
  5204   dir = opendir(path);
  5205   if (dir == NULL) return true;
  5207   /* Scan the directory */
  5208   bool result = true;
  5209   char buf[sizeof(struct dirent) + MAX_PATH];
  5210   while (result && (ptr = ::readdir(dir)) != NULL) {
  5211     if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
  5212       result = false;
  5215   closedir(dir);
  5216   return result;
  5219 // This code originates from JDK's sysOpen and open64_w
  5220 // from src/solaris/hpi/src/system_md.c
  5222 #ifndef O_DELETE
  5223 #define O_DELETE 0x10000
  5224 #endif
  5226 // Open a file. Unlink the file immediately after open returns
  5227 // if the specified oflag has the O_DELETE flag set.
  5228 // O_DELETE is used only in j2se/src/share/native/java/util/zip/ZipFile.c
  5230 int os::open(const char *path, int oflag, int mode) {
  5232   if (strlen(path) > MAX_PATH - 1) {
  5233     errno = ENAMETOOLONG;
  5234     return -1;
  5236   int fd;
  5237   int o_delete = (oflag & O_DELETE);
  5238   oflag = oflag & ~O_DELETE;
  5240   fd = ::open64(path, oflag, mode);
  5241   if (fd == -1) return -1;
  5243   //If the open succeeded, the file might still be a directory
  5245     struct stat64 buf64;
  5246     int ret = ::fstat64(fd, &buf64);
  5247     int st_mode = buf64.st_mode;
  5249     if (ret != -1) {
  5250       if ((st_mode & S_IFMT) == S_IFDIR) {
  5251         errno = EISDIR;
  5252         ::close(fd);
  5253         return -1;
  5255     } else {
  5256       ::close(fd);
  5257       return -1;
  5261     /*
  5262      * All file descriptors that are opened in the JVM and not
  5263      * specifically destined for a subprocess should have the
  5264      * close-on-exec flag set.  If we don't set it, then careless 3rd
  5265      * party native code might fork and exec without closing all
  5266      * appropriate file descriptors (e.g. as we do in closeDescriptors in
  5267      * UNIXProcess.c), and this in turn might:
  5269      * - cause end-of-file to fail to be detected on some file
  5270      *   descriptors, resulting in mysterious hangs, or
  5272      * - might cause an fopen in the subprocess to fail on a system
  5273      *   suffering from bug 1085341.
  5275      * (Yes, the default setting of the close-on-exec flag is a Unix
  5276      * design flaw)
  5278      * See:
  5279      * 1085341: 32-bit stdio routines should support file descriptors >255
  5280      * 4843136: (process) pipe file descriptor from Runtime.exec not being closed
  5281      * 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
  5282      */
  5283 #ifdef FD_CLOEXEC
  5285         int flags = ::fcntl(fd, F_GETFD);
  5286         if (flags != -1)
  5287             ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
  5289 #endif
  5291   if (o_delete != 0) {
  5292     ::unlink(path);
  5294   return fd;
  5298 // create binary file, rewriting existing file if required
  5299 int os::create_binary_file(const char* path, bool rewrite_existing) {
  5300   int oflags = O_WRONLY | O_CREAT;
  5301   if (!rewrite_existing) {
  5302     oflags |= O_EXCL;
  5304   return ::open64(path, oflags, S_IREAD | S_IWRITE);
  5307 // return current position of file pointer
  5308 jlong os::current_file_offset(int fd) {
  5309   return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
  5312 // move file pointer to the specified offset
  5313 jlong os::seek_to_file_offset(int fd, jlong offset) {
  5314   return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
  5317 // This code originates from JDK's sysAvailable
  5318 // from src/solaris/hpi/src/native_threads/src/sys_api_td.c
  5320 int os::available(int fd, jlong *bytes) {
  5321   jlong cur, end;
  5322   int mode;
  5323   struct stat64 buf64;
  5325   if (::fstat64(fd, &buf64) >= 0) {
  5326     mode = buf64.st_mode;
  5327     if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
  5328       /*
  5329       * XXX: is the following call interruptible? If so, this might
  5330       * need to go through the INTERRUPT_IO() wrapper as for other
  5331       * blocking, interruptible calls in this file.
  5332       */
  5333       int n;
  5334       if (::ioctl(fd, FIONREAD, &n) >= 0) {
  5335         *bytes = n;
  5336         return 1;
  5340   if ((cur = ::lseek64(fd, 0L, SEEK_CUR)) == -1) {
  5341     return 0;
  5342   } else if ((end = ::lseek64(fd, 0L, SEEK_END)) == -1) {
  5343     return 0;
  5344   } else if (::lseek64(fd, cur, SEEK_SET) == -1) {
  5345     return 0;
  5347   *bytes = end - cur;
  5348   return 1;
  5351 int os::socket_available(int fd, jint *pbytes) {
  5352   // Linux doc says EINTR not returned, unlike Solaris
  5353   int ret = ::ioctl(fd, FIONREAD, pbytes);
  5355   //%% note ioctl can return 0 when successful, JVM_SocketAvailable
  5356   // is expected to return 0 on failure and 1 on success to the jdk.
  5357   return (ret < 0) ? 0 : 1;
  5360 // Map a block of memory.
  5361 char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
  5362                      char *addr, size_t bytes, bool read_only,
  5363                      bool allow_exec) {
  5364   int prot;
  5365   int flags = MAP_PRIVATE;
  5367   if (read_only) {
  5368     prot = PROT_READ;
  5369   } else {
  5370     prot = PROT_READ | PROT_WRITE;
  5373   if (allow_exec) {
  5374     prot |= PROT_EXEC;
  5377   if (addr != NULL) {
  5378     flags |= MAP_FIXED;
  5381   char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
  5382                                      fd, file_offset);
  5383   if (mapped_address == MAP_FAILED) {
  5384     return NULL;
  5386   return mapped_address;
  5390 // Remap a block of memory.
  5391 char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
  5392                        char *addr, size_t bytes, bool read_only,
  5393                        bool allow_exec) {
  5394   // same as map_memory() on this OS
  5395   return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
  5396                         allow_exec);
  5400 // Unmap a block of memory.
  5401 bool os::pd_unmap_memory(char* addr, size_t bytes) {
  5402   return munmap(addr, bytes) == 0;
  5405 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time);
  5407 static clockid_t thread_cpu_clockid(Thread* thread) {
  5408   pthread_t tid = thread->osthread()->pthread_id();
  5409   clockid_t clockid;
  5411   // Get thread clockid
  5412   int rc = os::Linux::pthread_getcpuclockid(tid, &clockid);
  5413   assert(rc == 0, "pthread_getcpuclockid is expected to return 0 code");
  5414   return clockid;
  5417 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
  5418 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
  5419 // of a thread.
  5420 //
  5421 // current_thread_cpu_time() and thread_cpu_time(Thread*) returns
  5422 // the fast estimate available on the platform.
  5424 jlong os::current_thread_cpu_time() {
  5425   if (os::Linux::supports_fast_thread_cpu_time()) {
  5426     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
  5427   } else {
  5428     // return user + sys since the cost is the same
  5429     return slow_thread_cpu_time(Thread::current(), true /* user + sys */);
  5433 jlong os::thread_cpu_time(Thread* thread) {
  5434   // consistent with what current_thread_cpu_time() returns
  5435   if (os::Linux::supports_fast_thread_cpu_time()) {
  5436     return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
  5437   } else {
  5438     return slow_thread_cpu_time(thread, true /* user + sys */);
  5442 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
  5443   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
  5444     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
  5445   } else {
  5446     return slow_thread_cpu_time(Thread::current(), user_sys_cpu_time);
  5450 jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
  5451   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
  5452     return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
  5453   } else {
  5454     return slow_thread_cpu_time(thread, user_sys_cpu_time);
  5458 //
  5459 //  -1 on error.
  5460 //
  5462 PRAGMA_DIAG_PUSH
  5463 PRAGMA_FORMAT_NONLITERAL_IGNORED
  5464 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
  5465   static bool proc_task_unchecked = true;
  5466   static const char *proc_stat_path = "/proc/%d/stat";
  5467   pid_t  tid = thread->osthread()->thread_id();
  5468   char *s;
  5469   char stat[2048];
  5470   int statlen;
  5471   char proc_name[64];
  5472   int count;
  5473   long sys_time, user_time;
  5474   char cdummy;
  5475   int idummy;
  5476   long ldummy;
  5477   FILE *fp;
  5479   // The /proc/<tid>/stat aggregates per-process usage on
  5480   // new Linux kernels 2.6+ where NPTL is supported.
  5481   // The /proc/self/task/<tid>/stat still has the per-thread usage.
  5482   // See bug 6328462.
  5483   // There possibly can be cases where there is no directory
  5484   // /proc/self/task, so we check its availability.
  5485   if (proc_task_unchecked && os::Linux::is_NPTL()) {
  5486     // This is executed only once
  5487     proc_task_unchecked = false;
  5488     fp = fopen("/proc/self/task", "r");
  5489     if (fp != NULL) {
  5490       proc_stat_path = "/proc/self/task/%d/stat";
  5491       fclose(fp);
  5495   sprintf(proc_name, proc_stat_path, tid);
  5496   fp = fopen(proc_name, "r");
  5497   if ( fp == NULL ) return -1;
  5498   statlen = fread(stat, 1, 2047, fp);
  5499   stat[statlen] = '\0';
  5500   fclose(fp);
  5502   // Skip pid and the command string. Note that we could be dealing with
  5503   // weird command names, e.g. user could decide to rename java launcher
  5504   // to "java 1.4.2 :)", then the stat file would look like
  5505   //                1234 (java 1.4.2 :)) R ... ...
  5506   // We don't really need to know the command string, just find the last
  5507   // occurrence of ")" and then start parsing from there. See bug 4726580.
  5508   s = strrchr(stat, ')');
  5509   if (s == NULL ) return -1;
  5511   // Skip blank chars
  5512   do s++; while (isspace(*s));
  5514   count = sscanf(s,"%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu",
  5515                  &cdummy, &idummy, &idummy, &idummy, &idummy, &idummy,
  5516                  &ldummy, &ldummy, &ldummy, &ldummy, &ldummy,
  5517                  &user_time, &sys_time);
  5518   if ( count != 13 ) return -1;
  5519   if (user_sys_cpu_time) {
  5520     return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
  5521   } else {
  5522     return (jlong)user_time * (1000000000 / clock_tics_per_sec);
  5525 PRAGMA_DIAG_POP
  5527 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
  5528   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
  5529   info_ptr->may_skip_backward = false;     // elapsed time not wall time
  5530   info_ptr->may_skip_forward = false;      // elapsed time not wall time
  5531   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
  5534 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
  5535   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
  5536   info_ptr->may_skip_backward = false;     // elapsed time not wall time
  5537   info_ptr->may_skip_forward = false;      // elapsed time not wall time
  5538   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
  5541 bool os::is_thread_cpu_time_supported() {
  5542   return true;
  5545 // System loadavg support.  Returns -1 if load average cannot be obtained.
  5546 // Linux doesn't yet have a (official) notion of processor sets,
  5547 // so just return the system wide load average.
  5548 int os::loadavg(double loadavg[], int nelem) {
  5549   return ::getloadavg(loadavg, nelem);
  5552 void os::pause() {
  5553   char filename[MAX_PATH];
  5554   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
  5555     jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
  5556   } else {
  5557     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
  5560   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
  5561   if (fd != -1) {
  5562     struct stat buf;
  5563     ::close(fd);
  5564     while (::stat(filename, &buf) == 0) {
  5565       (void)::poll(NULL, 0, 100);
  5567   } else {
  5568     jio_fprintf(stderr,
  5569       "Could not open pause file '%s', continuing immediately.\n", filename);
  5574 // Refer to the comments in os_solaris.cpp park-unpark.
  5575 //
  5576 // Beware -- Some versions of NPTL embody a flaw where pthread_cond_timedwait() can
  5577 // hang indefinitely.  For instance NPTL 0.60 on 2.4.21-4ELsmp is vulnerable.
  5578 // For specifics regarding the bug see GLIBC BUGID 261237 :
  5579 //    http://www.mail-archive.com/debian-glibc@lists.debian.org/msg10837.html.
  5580 // Briefly, pthread_cond_timedwait() calls with an expiry time that's not in the future
  5581 // will either hang or corrupt the condvar, resulting in subsequent hangs if the condvar
  5582 // is used.  (The simple C test-case provided in the GLIBC bug report manifests the
  5583 // hang).  The JVM is vulernable via sleep(), Object.wait(timo), LockSupport.parkNanos()
  5584 // and monitorenter when we're using 1-0 locking.  All those operations may result in
  5585 // calls to pthread_cond_timedwait().  Using LD_ASSUME_KERNEL to use an older version
  5586 // of libpthread avoids the problem, but isn't practical.
  5587 //
  5588 // Possible remedies:
  5589 //
  5590 // 1.   Establish a minimum relative wait time.  50 to 100 msecs seems to work.
  5591 //      This is palliative and probabilistic, however.  If the thread is preempted
  5592 //      between the call to compute_abstime() and pthread_cond_timedwait(), more
  5593 //      than the minimum period may have passed, and the abstime may be stale (in the
  5594 //      past) resultin in a hang.   Using this technique reduces the odds of a hang
  5595 //      but the JVM is still vulnerable, particularly on heavily loaded systems.
  5596 //
  5597 // 2.   Modify park-unpark to use per-thread (per ParkEvent) pipe-pairs instead
  5598 //      of the usual flag-condvar-mutex idiom.  The write side of the pipe is set
  5599 //      NDELAY. unpark() reduces to write(), park() reduces to read() and park(timo)
  5600 //      reduces to poll()+read().  This works well, but consumes 2 FDs per extant
  5601 //      thread.
  5602 //
  5603 // 3.   Embargo pthread_cond_timedwait() and implement a native "chron" thread
  5604 //      that manages timeouts.  We'd emulate pthread_cond_timedwait() by enqueuing
  5605 //      a timeout request to the chron thread and then blocking via pthread_cond_wait().
  5606 //      This also works well.  In fact it avoids kernel-level scalability impediments
  5607 //      on certain platforms that don't handle lots of active pthread_cond_timedwait()
  5608 //      timers in a graceful fashion.
  5609 //
  5610 // 4.   When the abstime value is in the past it appears that control returns
  5611 //      correctly from pthread_cond_timedwait(), but the condvar is left corrupt.
  5612 //      Subsequent timedwait/wait calls may hang indefinitely.  Given that, we
  5613 //      can avoid the problem by reinitializing the condvar -- by cond_destroy()
  5614 //      followed by cond_init() -- after all calls to pthread_cond_timedwait().
  5615 //      It may be possible to avoid reinitialization by checking the return
  5616 //      value from pthread_cond_timedwait().  In addition to reinitializing the
  5617 //      condvar we must establish the invariant that cond_signal() is only called
  5618 //      within critical sections protected by the adjunct mutex.  This prevents
  5619 //      cond_signal() from "seeing" a condvar that's in the midst of being
  5620 //      reinitialized or that is corrupt.  Sadly, this invariant obviates the
  5621 //      desirable signal-after-unlock optimization that avoids futile context switching.
  5622 //
  5623 //      I'm also concerned that some versions of NTPL might allocate an auxilliary
  5624 //      structure when a condvar is used or initialized.  cond_destroy()  would
  5625 //      release the helper structure.  Our reinitialize-after-timedwait fix
  5626 //      put excessive stress on malloc/free and locks protecting the c-heap.
  5627 //
  5628 // We currently use (4).  See the WorkAroundNTPLTimedWaitHang flag.
  5629 // It may be possible to refine (4) by checking the kernel and NTPL verisons
  5630 // and only enabling the work-around for vulnerable environments.
  5632 // utility to compute the abstime argument to timedwait:
  5633 // millis is the relative timeout time
  5634 // abstime will be the absolute timeout time
  5635 // TODO: replace compute_abstime() with unpackTime()
  5637 static struct timespec* compute_abstime(timespec* abstime, jlong millis) {
  5638   if (millis < 0)  millis = 0;
  5640   jlong seconds = millis / 1000;
  5641   millis %= 1000;
  5642   if (seconds > 50000000) { // see man cond_timedwait(3T)
  5643     seconds = 50000000;
  5646   if (os::Linux::supports_monotonic_clock()) {
  5647     struct timespec now;
  5648     int status = os::Linux::clock_gettime(CLOCK_MONOTONIC, &now);
  5649     assert_status(status == 0, status, "clock_gettime");
  5650     abstime->tv_sec = now.tv_sec  + seconds;
  5651     long nanos = now.tv_nsec + millis * NANOSECS_PER_MILLISEC;
  5652     if (nanos >= NANOSECS_PER_SEC) {
  5653       abstime->tv_sec += 1;
  5654       nanos -= NANOSECS_PER_SEC;
  5656     abstime->tv_nsec = nanos;
  5657   } else {
  5658     struct timeval now;
  5659     int status = gettimeofday(&now, NULL);
  5660     assert(status == 0, "gettimeofday");
  5661     abstime->tv_sec = now.tv_sec  + seconds;
  5662     long usec = now.tv_usec + millis * 1000;
  5663     if (usec >= 1000000) {
  5664       abstime->tv_sec += 1;
  5665       usec -= 1000000;
  5667     abstime->tv_nsec = usec * 1000;
  5669   return abstime;
  5673 // Test-and-clear _Event, always leaves _Event set to 0, returns immediately.
  5674 // Conceptually TryPark() should be equivalent to park(0).
  5676 int os::PlatformEvent::TryPark() {
  5677   for (;;) {
  5678     const int v = _Event ;
  5679     guarantee ((v == 0) || (v == 1), "invariant") ;
  5680     if (Atomic::cmpxchg (0, &_Event, v) == v) return v  ;
  5684 void os::PlatformEvent::park() {       // AKA "down()"
  5685   // Invariant: Only the thread associated with the Event/PlatformEvent
  5686   // may call park().
  5687   // TODO: assert that _Assoc != NULL or _Assoc == Self
  5688   int v ;
  5689   for (;;) {
  5690       v = _Event ;
  5691       if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
  5693   guarantee (v >= 0, "invariant") ;
  5694   if (v == 0) {
  5695      // Do this the hard way by blocking ...
  5696      int status = pthread_mutex_lock(_mutex);
  5697      assert_status(status == 0, status, "mutex_lock");
  5698      guarantee (_nParked == 0, "invariant") ;
  5699      ++ _nParked ;
  5700      while (_Event < 0) {
  5701         status = pthread_cond_wait(_cond, _mutex);
  5702         // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
  5703         // Treat this the same as if the wait was interrupted
  5704         if (status == ETIME) { status = EINTR; }
  5705         assert_status(status == 0 || status == EINTR, status, "cond_wait");
  5707      -- _nParked ;
  5709     _Event = 0 ;
  5710      status = pthread_mutex_unlock(_mutex);
  5711      assert_status(status == 0, status, "mutex_unlock");
  5712     // Paranoia to ensure our locked and lock-free paths interact
  5713     // correctly with each other.
  5714     OrderAccess::fence();
  5716   guarantee (_Event >= 0, "invariant") ;
  5719 int os::PlatformEvent::park(jlong millis) {
  5720   guarantee (_nParked == 0, "invariant") ;
  5722   int v ;
  5723   for (;;) {
  5724       v = _Event ;
  5725       if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
  5727   guarantee (v >= 0, "invariant") ;
  5728   if (v != 0) return OS_OK ;
  5730   // We do this the hard way, by blocking the thread.
  5731   // Consider enforcing a minimum timeout value.
  5732   struct timespec abst;
  5733   compute_abstime(&abst, millis);
  5735   int ret = OS_TIMEOUT;
  5736   int status = pthread_mutex_lock(_mutex);
  5737   assert_status(status == 0, status, "mutex_lock");
  5738   guarantee (_nParked == 0, "invariant") ;
  5739   ++_nParked ;
  5741   // Object.wait(timo) will return because of
  5742   // (a) notification
  5743   // (b) timeout
  5744   // (c) thread.interrupt
  5745   //
  5746   // Thread.interrupt and object.notify{All} both call Event::set.
  5747   // That is, we treat thread.interrupt as a special case of notification.
  5748   // The underlying Solaris implementation, cond_timedwait, admits
  5749   // spurious/premature wakeups, but the JLS/JVM spec prevents the
  5750   // JVM from making those visible to Java code.  As such, we must
  5751   // filter out spurious wakeups.  We assume all ETIME returns are valid.
  5752   //
  5753   // TODO: properly differentiate simultaneous notify+interrupt.
  5754   // In that case, we should propagate the notify to another waiter.
  5756   while (_Event < 0) {
  5757     status = os::Linux::safe_cond_timedwait(_cond, _mutex, &abst);
  5758     if (status != 0 && WorkAroundNPTLTimedWaitHang) {
  5759       pthread_cond_destroy (_cond);
  5760       pthread_cond_init (_cond, os::Linux::condAttr()) ;
  5762     assert_status(status == 0 || status == EINTR ||
  5763                   status == ETIME || status == ETIMEDOUT,
  5764                   status, "cond_timedwait");
  5765     if (!FilterSpuriousWakeups) break ;                 // previous semantics
  5766     if (status == ETIME || status == ETIMEDOUT) break ;
  5767     // We consume and ignore EINTR and spurious wakeups.
  5769   --_nParked ;
  5770   if (_Event >= 0) {
  5771      ret = OS_OK;
  5773   _Event = 0 ;
  5774   status = pthread_mutex_unlock(_mutex);
  5775   assert_status(status == 0, status, "mutex_unlock");
  5776   assert (_nParked == 0, "invariant") ;
  5777   // Paranoia to ensure our locked and lock-free paths interact
  5778   // correctly with each other.
  5779   OrderAccess::fence();
  5780   return ret;
  5783 void os::PlatformEvent::unpark() {
  5784   // Transitions for _Event:
  5785   //    0 :=> 1
  5786   //    1 :=> 1
  5787   //   -1 :=> either 0 or 1; must signal target thread
  5788   //          That is, we can safely transition _Event from -1 to either
  5789   //          0 or 1. Forcing 1 is slightly more efficient for back-to-back
  5790   //          unpark() calls.
  5791   // See also: "Semaphores in Plan 9" by Mullender & Cox
  5792   //
  5793   // Note: Forcing a transition from "-1" to "1" on an unpark() means
  5794   // that it will take two back-to-back park() calls for the owning
  5795   // thread to block. This has the benefit of forcing a spurious return
  5796   // from the first park() call after an unpark() call which will help
  5797   // shake out uses of park() and unpark() without condition variables.
  5799   if (Atomic::xchg(1, &_Event) >= 0) return;
  5801   // Wait for the thread associated with the event to vacate
  5802   int status = pthread_mutex_lock(_mutex);
  5803   assert_status(status == 0, status, "mutex_lock");
  5804   int AnyWaiters = _nParked;
  5805   assert(AnyWaiters == 0 || AnyWaiters == 1, "invariant");
  5806   if (AnyWaiters != 0 && WorkAroundNPTLTimedWaitHang) {
  5807     AnyWaiters = 0;
  5808     pthread_cond_signal(_cond);
  5810   status = pthread_mutex_unlock(_mutex);
  5811   assert_status(status == 0, status, "mutex_unlock");
  5812   if (AnyWaiters != 0) {
  5813     status = pthread_cond_signal(_cond);
  5814     assert_status(status == 0, status, "cond_signal");
  5817   // Note that we signal() _after dropping the lock for "immortal" Events.
  5818   // This is safe and avoids a common class of  futile wakeups.  In rare
  5819   // circumstances this can cause a thread to return prematurely from
  5820   // cond_{timed}wait() but the spurious wakeup is benign and the victim will
  5821   // simply re-test the condition and re-park itself.
  5825 // JSR166
  5826 // -------------------------------------------------------
  5828 /*
  5829  * The solaris and linux implementations of park/unpark are fairly
  5830  * conservative for now, but can be improved. They currently use a
  5831  * mutex/condvar pair, plus a a count.
  5832  * Park decrements count if > 0, else does a condvar wait.  Unpark
  5833  * sets count to 1 and signals condvar.  Only one thread ever waits
  5834  * on the condvar. Contention seen when trying to park implies that someone
  5835  * is unparking you, so don't wait. And spurious returns are fine, so there
  5836  * is no need to track notifications.
  5837  */
  5839 /*
  5840  * This code is common to linux and solaris and will be moved to a
  5841  * common place in dolphin.
  5843  * The passed in time value is either a relative time in nanoseconds
  5844  * or an absolute time in milliseconds. Either way it has to be unpacked
  5845  * into suitable seconds and nanoseconds components and stored in the
  5846  * given timespec structure.
  5847  * Given time is a 64-bit value and the time_t used in the timespec is only
  5848  * a signed-32-bit value (except on 64-bit Linux) we have to watch for
  5849  * overflow if times way in the future are given. Further on Solaris versions
  5850  * prior to 10 there is a restriction (see cond_timedwait) that the specified
  5851  * number of seconds, in abstime, is less than current_time  + 100,000,000.
  5852  * As it will be 28 years before "now + 100000000" will overflow we can
  5853  * ignore overflow and just impose a hard-limit on seconds using the value
  5854  * of "now + 100,000,000". This places a limit on the timeout of about 3.17
  5855  * years from "now".
  5856  */
  5858 static void unpackTime(timespec* absTime, bool isAbsolute, jlong time) {
  5859   assert (time > 0, "convertTime");
  5860   time_t max_secs = 0;
  5862   if (!os::Linux::supports_monotonic_clock() || isAbsolute) {
  5863     struct timeval now;
  5864     int status = gettimeofday(&now, NULL);
  5865     assert(status == 0, "gettimeofday");
  5867     max_secs = now.tv_sec + MAX_SECS;
  5869     if (isAbsolute) {
  5870       jlong secs = time / 1000;
  5871       if (secs > max_secs) {
  5872         absTime->tv_sec = max_secs;
  5873       } else {
  5874         absTime->tv_sec = secs;
  5876       absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
  5877     } else {
  5878       jlong secs = time / NANOSECS_PER_SEC;
  5879       if (secs >= MAX_SECS) {
  5880         absTime->tv_sec = max_secs;
  5881         absTime->tv_nsec = 0;
  5882       } else {
  5883         absTime->tv_sec = now.tv_sec + secs;
  5884         absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
  5885         if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
  5886           absTime->tv_nsec -= NANOSECS_PER_SEC;
  5887           ++absTime->tv_sec; // note: this must be <= max_secs
  5891   } else {
  5892     // must be relative using monotonic clock
  5893     struct timespec now;
  5894     int status = os::Linux::clock_gettime(CLOCK_MONOTONIC, &now);
  5895     assert_status(status == 0, status, "clock_gettime");
  5896     max_secs = now.tv_sec + MAX_SECS;
  5897     jlong secs = time / NANOSECS_PER_SEC;
  5898     if (secs >= MAX_SECS) {
  5899       absTime->tv_sec = max_secs;
  5900       absTime->tv_nsec = 0;
  5901     } else {
  5902       absTime->tv_sec = now.tv_sec + secs;
  5903       absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_nsec;
  5904       if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
  5905         absTime->tv_nsec -= NANOSECS_PER_SEC;
  5906         ++absTime->tv_sec; // note: this must be <= max_secs
  5910   assert(absTime->tv_sec >= 0, "tv_sec < 0");
  5911   assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
  5912   assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
  5913   assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
  5916 void Parker::park(bool isAbsolute, jlong time) {
  5917   // Ideally we'd do something useful while spinning, such
  5918   // as calling unpackTime().
  5920   // Optional fast-path check:
  5921   // Return immediately if a permit is available.
  5922   // We depend on Atomic::xchg() having full barrier semantics
  5923   // since we are doing a lock-free update to _counter.
  5924   if (Atomic::xchg(0, &_counter) > 0) return;
  5926   Thread* thread = Thread::current();
  5927   assert(thread->is_Java_thread(), "Must be JavaThread");
  5928   JavaThread *jt = (JavaThread *)thread;
  5930   // Optional optimization -- avoid state transitions if there's an interrupt pending.
  5931   // Check interrupt before trying to wait
  5932   if (Thread::is_interrupted(thread, false)) {
  5933     return;
  5936   // Next, demultiplex/decode time arguments
  5937   timespec absTime;
  5938   if (time < 0 || (isAbsolute && time == 0) ) { // don't wait at all
  5939     return;
  5941   if (time > 0) {
  5942     unpackTime(&absTime, isAbsolute, time);
  5946   // Enter safepoint region
  5947   // Beware of deadlocks such as 6317397.
  5948   // The per-thread Parker:: mutex is a classic leaf-lock.
  5949   // In particular a thread must never block on the Threads_lock while
  5950   // holding the Parker:: mutex.  If safepoints are pending both the
  5951   // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
  5952   ThreadBlockInVM tbivm(jt);
  5954   // Don't wait if cannot get lock since interference arises from
  5955   // unblocking.  Also. check interrupt before trying wait
  5956   if (Thread::is_interrupted(thread, false) || pthread_mutex_trylock(_mutex) != 0) {
  5957     return;
  5960   int status ;
  5961   if (_counter > 0)  { // no wait needed
  5962     _counter = 0;
  5963     status = pthread_mutex_unlock(_mutex);
  5964     assert (status == 0, "invariant") ;
  5965     // Paranoia to ensure our locked and lock-free paths interact
  5966     // correctly with each other and Java-level accesses.
  5967     OrderAccess::fence();
  5968     return;
  5971 #ifdef ASSERT
  5972   // Don't catch signals while blocked; let the running threads have the signals.
  5973   // (This allows a debugger to break into the running thread.)
  5974   sigset_t oldsigs;
  5975   sigset_t* allowdebug_blocked = os::Linux::allowdebug_blocked_signals();
  5976   pthread_sigmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
  5977 #endif
  5979   OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
  5980   jt->set_suspend_equivalent();
  5981   // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
  5983   assert(_cur_index == -1, "invariant");
  5984   if (time == 0) {
  5985     _cur_index = REL_INDEX; // arbitrary choice when not timed
  5986     status = pthread_cond_wait (&_cond[_cur_index], _mutex) ;
  5987   } else {
  5988     _cur_index = isAbsolute ? ABS_INDEX : REL_INDEX;
  5989     status = os::Linux::safe_cond_timedwait (&_cond[_cur_index], _mutex, &absTime) ;
  5990     if (status != 0 && WorkAroundNPTLTimedWaitHang) {
  5991       pthread_cond_destroy (&_cond[_cur_index]) ;
  5992       pthread_cond_init    (&_cond[_cur_index], isAbsolute ? NULL : os::Linux::condAttr());
  5995   _cur_index = -1;
  5996   assert_status(status == 0 || status == EINTR ||
  5997                 status == ETIME || status == ETIMEDOUT,
  5998                 status, "cond_timedwait");
  6000 #ifdef ASSERT
  6001   pthread_sigmask(SIG_SETMASK, &oldsigs, NULL);
  6002 #endif
  6004   _counter = 0 ;
  6005   status = pthread_mutex_unlock(_mutex) ;
  6006   assert_status(status == 0, status, "invariant") ;
  6007   // Paranoia to ensure our locked and lock-free paths interact
  6008   // correctly with each other and Java-level accesses.
  6009   OrderAccess::fence();
  6011   // If externally suspended while waiting, re-suspend
  6012   if (jt->handle_special_suspend_equivalent_condition()) {
  6013     jt->java_suspend_self();
  6017 void Parker::unpark() {
  6018   int s, status ;
  6019   status = pthread_mutex_lock(_mutex);
  6020   assert (status == 0, "invariant") ;
  6021   s = _counter;
  6022   _counter = 1;
  6023   if (s < 1) {
  6024     // thread might be parked
  6025     if (_cur_index != -1) {
  6026       // thread is definitely parked
  6027       if (WorkAroundNPTLTimedWaitHang) {
  6028         status = pthread_cond_signal (&_cond[_cur_index]);
  6029         assert (status == 0, "invariant");
  6030         status = pthread_mutex_unlock(_mutex);
  6031         assert (status == 0, "invariant");
  6032       } else {
  6033         // must capture correct index before unlocking
  6034         int index = _cur_index;
  6035         status = pthread_mutex_unlock(_mutex);
  6036         assert (status == 0, "invariant");
  6037         status = pthread_cond_signal (&_cond[index]);
  6038         assert (status == 0, "invariant");
  6040     } else {
  6041       pthread_mutex_unlock(_mutex);
  6042       assert (status == 0, "invariant") ;
  6044   } else {
  6045     pthread_mutex_unlock(_mutex);
  6046     assert (status == 0, "invariant") ;
  6051 extern char** environ;
  6053 // Run the specified command in a separate process. Return its exit value,
  6054 // or -1 on failure (e.g. can't fork a new process).
  6055 // Unlike system(), this function can be called from signal handler. It
  6056 // doesn't block SIGINT et al.
  6057 int os::fork_and_exec(char* cmd) {
  6058   const char * argv[4] = {"sh", "-c", cmd, NULL};
  6060   pid_t pid = fork();
  6062   if (pid < 0) {
  6063     // fork failed
  6064     return -1;
  6066   } else if (pid == 0) {
  6067     // child process
  6069     execve("/bin/sh", (char* const*)argv, environ);
  6071     // execve failed
  6072     _exit(-1);
  6074   } else  {
  6075     // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
  6076     // care about the actual exit code, for now.
  6078     int status;
  6080     // Wait for the child process to exit.  This returns immediately if
  6081     // the child has already exited. */
  6082     while (waitpid(pid, &status, 0) < 0) {
  6083         switch (errno) {
  6084         case ECHILD: return 0;
  6085         case EINTR: break;
  6086         default: return -1;
  6090     if (WIFEXITED(status)) {
  6091        // The child exited normally; get its exit code.
  6092        return WEXITSTATUS(status);
  6093     } else if (WIFSIGNALED(status)) {
  6094        // The child exited because of a signal
  6095        // The best value to return is 0x80 + signal number,
  6096        // because that is what all Unix shells do, and because
  6097        // it allows callers to distinguish between process exit and
  6098        // process death by signal.
  6099        return 0x80 + WTERMSIG(status);
  6100     } else {
  6101        // Unknown exit code; pass it through
  6102        return status;
  6107 // is_headless_jre()
  6108 //
  6109 // Test for the existence of xawt/libmawt.so or libawt_xawt.so
  6110 // in order to report if we are running in a headless jre
  6111 //
  6112 // Since JDK8 xawt/libmawt.so was moved into the same directory
  6113 // as libawt.so, and renamed libawt_xawt.so
  6114 //
  6115 bool os::is_headless_jre() {
  6116     struct stat statbuf;
  6117     char buf[MAXPATHLEN];
  6118     char libmawtpath[MAXPATHLEN];
  6119     const char *xawtstr  = "/xawt/libmawt.so";
  6120     const char *new_xawtstr = "/libawt_xawt.so";
  6121     char *p;
  6123     // Get path to libjvm.so
  6124     os::jvm_path(buf, sizeof(buf));
  6126     // Get rid of libjvm.so
  6127     p = strrchr(buf, '/');
  6128     if (p == NULL) return false;
  6129     else *p = '\0';
  6131     // Get rid of client or server
  6132     p = strrchr(buf, '/');
  6133     if (p == NULL) return false;
  6134     else *p = '\0';
  6136     // check xawt/libmawt.so
  6137     strcpy(libmawtpath, buf);
  6138     strcat(libmawtpath, xawtstr);
  6139     if (::stat(libmawtpath, &statbuf) == 0) return false;
  6141     // check libawt_xawt.so
  6142     strcpy(libmawtpath, buf);
  6143     strcat(libmawtpath, new_xawtstr);
  6144     if (::stat(libmawtpath, &statbuf) == 0) return false;
  6146     return true;
  6149 // Get the default path to the core file
  6150 // Returns the length of the string
  6151 int os::get_core_path(char* buffer, size_t bufferSize) {
  6152   const char* p = get_current_directory(buffer, bufferSize);
  6154   if (p == NULL) {
  6155     assert(p != NULL, "failed to get current directory");
  6156     return 0;
  6159   return strlen(buffer);
  6162 /////////////// Unit tests ///////////////
  6164 #ifndef PRODUCT
  6166 #define test_log(...) \
  6167   do {\
  6168     if (VerboseInternalVMTests) { \
  6169       tty->print_cr(__VA_ARGS__); \
  6170       tty->flush(); \
  6171     }\
  6172   } while (false)
  6174 class TestReserveMemorySpecial : AllStatic {
  6175  public:
  6176   static void small_page_write(void* addr, size_t size) {
  6177     size_t page_size = os::vm_page_size();
  6179     char* end = (char*)addr + size;
  6180     for (char* p = (char*)addr; p < end; p += page_size) {
  6181       *p = 1;
  6185   static void test_reserve_memory_special_huge_tlbfs_only(size_t size) {
  6186     if (!UseHugeTLBFS) {
  6187       return;
  6190     test_log("test_reserve_memory_special_huge_tlbfs_only(" SIZE_FORMAT ")", size);
  6192     char* addr = os::Linux::reserve_memory_special_huge_tlbfs_only(size, NULL, false);
  6194     if (addr != NULL) {
  6195       small_page_write(addr, size);
  6197       os::Linux::release_memory_special_huge_tlbfs(addr, size);
  6201   static void test_reserve_memory_special_huge_tlbfs_only() {
  6202     if (!UseHugeTLBFS) {
  6203       return;
  6206     size_t lp = os::large_page_size();
  6208     for (size_t size = lp; size <= lp * 10; size += lp) {
  6209       test_reserve_memory_special_huge_tlbfs_only(size);
  6213   static void test_reserve_memory_special_huge_tlbfs_mixed() {
  6214     size_t lp = os::large_page_size();
  6215     size_t ag = os::vm_allocation_granularity();
  6217     // sizes to test
  6218     const size_t sizes[] = {
  6219       lp, lp + ag, lp + lp / 2, lp * 2,
  6220       lp * 2 + ag, lp * 2 - ag, lp * 2 + lp / 2,
  6221       lp * 10, lp * 10 + lp / 2
  6222     };
  6223     const int num_sizes = sizeof(sizes) / sizeof(size_t);
  6225     // For each size/alignment combination, we test three scenarios:
  6226     // 1) with req_addr == NULL
  6227     // 2) with a non-null req_addr at which we expect to successfully allocate
  6228     // 3) with a non-null req_addr which contains a pre-existing mapping, at which we
  6229     //    expect the allocation to either fail or to ignore req_addr
  6231     // Pre-allocate two areas; they shall be as large as the largest allocation
  6232     //  and aligned to the largest alignment we will be testing.
  6233     const size_t mapping_size = sizes[num_sizes - 1] * 2;
  6234     char* const mapping1 = (char*) ::mmap(NULL, mapping_size,
  6235       PROT_NONE, MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
  6236       -1, 0);
  6237     assert(mapping1 != MAP_FAILED, "should work");
  6239     char* const mapping2 = (char*) ::mmap(NULL, mapping_size,
  6240       PROT_NONE, MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
  6241       -1, 0);
  6242     assert(mapping2 != MAP_FAILED, "should work");
  6244     // Unmap the first mapping, but leave the second mapping intact: the first
  6245     // mapping will serve as a value for a "good" req_addr (case 2). The second
  6246     // mapping, still intact, as "bad" req_addr (case 3).
  6247     ::munmap(mapping1, mapping_size);
  6249     // Case 1
  6250     test_log("%s, req_addr NULL:", __FUNCTION__);
  6251     test_log("size            align           result");
  6253     for (int i = 0; i < num_sizes; i++) {
  6254       const size_t size = sizes[i];
  6255       for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
  6256         char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, NULL, false);
  6257         test_log(SIZE_FORMAT_HEX " " SIZE_FORMAT_HEX " ->  " PTR_FORMAT " %s",
  6258             size, alignment, p, (p != NULL ? "" : "(failed)"));
  6259         if (p != NULL) {
  6260           assert(is_ptr_aligned(p, alignment), "must be");
  6261           small_page_write(p, size);
  6262           os::Linux::release_memory_special_huge_tlbfs(p, size);
  6267     // Case 2
  6268     test_log("%s, req_addr non-NULL:", __FUNCTION__);
  6269     test_log("size            align           req_addr         result");
  6271     for (int i = 0; i < num_sizes; i++) {
  6272       const size_t size = sizes[i];
  6273       for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
  6274         char* const req_addr = (char*) align_ptr_up(mapping1, alignment);
  6275         char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, req_addr, false);
  6276         test_log(SIZE_FORMAT_HEX " " SIZE_FORMAT_HEX " " PTR_FORMAT " ->  " PTR_FORMAT " %s",
  6277             size, alignment, req_addr, p,
  6278             ((p != NULL ? (p == req_addr ? "(exact match)" : "") : "(failed)")));
  6279         if (p != NULL) {
  6280           assert(p == req_addr, "must be");
  6281           small_page_write(p, size);
  6282           os::Linux::release_memory_special_huge_tlbfs(p, size);
  6287     // Case 3
  6288     test_log("%s, req_addr non-NULL with preexisting mapping:", __FUNCTION__);
  6289     test_log("size            align           req_addr         result");
  6291     for (int i = 0; i < num_sizes; i++) {
  6292       const size_t size = sizes[i];
  6293       for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
  6294         char* const req_addr = (char*) align_ptr_up(mapping2, alignment);
  6295         char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, req_addr, false);
  6296         test_log(SIZE_FORMAT_HEX " " SIZE_FORMAT_HEX " " PTR_FORMAT " ->  " PTR_FORMAT " %s",
  6297             size, alignment, req_addr, p,
  6298             ((p != NULL ? "" : "(failed)")));
  6299         // as the area around req_addr contains already existing mappings, the API should always
  6300         // return NULL (as per contract, it cannot return another address)
  6301         assert(p == NULL, "must be");
  6305     ::munmap(mapping2, mapping_size);
  6309   static void test_reserve_memory_special_huge_tlbfs() {
  6310     if (!UseHugeTLBFS) {
  6311       return;
  6314     test_reserve_memory_special_huge_tlbfs_only();
  6315     test_reserve_memory_special_huge_tlbfs_mixed();
  6318   static void test_reserve_memory_special_shm(size_t size, size_t alignment) {
  6319     if (!UseSHM) {
  6320       return;
  6323     test_log("test_reserve_memory_special_shm(" SIZE_FORMAT ", " SIZE_FORMAT ")", size, alignment);
  6325     char* addr = os::Linux::reserve_memory_special_shm(size, alignment, NULL, false);
  6327     if (addr != NULL) {
  6328       assert(is_ptr_aligned(addr, alignment), "Check");
  6329       assert(is_ptr_aligned(addr, os::large_page_size()), "Check");
  6331       small_page_write(addr, size);
  6333       os::Linux::release_memory_special_shm(addr, size);
  6337   static void test_reserve_memory_special_shm() {
  6338     size_t lp = os::large_page_size();
  6339     size_t ag = os::vm_allocation_granularity();
  6341     for (size_t size = ag; size < lp * 3; size += ag) {
  6342       for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
  6343         test_reserve_memory_special_shm(size, alignment);
  6348   static void test() {
  6349     test_reserve_memory_special_huge_tlbfs();
  6350     test_reserve_memory_special_shm();
  6352 };
  6354 void TestReserveMemorySpecial_test() {
  6355   TestReserveMemorySpecial::test();
  6358 #endif

mercurial