src/share/vm/opto/library_call.cpp

Thu, 29 Jan 2015 10:25:59 -0800

author
vlivanov
date
Thu, 29 Jan 2015 10:25:59 -0800
changeset 7789
eb8b5cc64669
parent 7341
e7b3d177adda
child 7790
d9593687713d
permissions
-rw-r--r--

8063137: Never-taken branches should be pruned when GWT LambdaForms are shared
Reviewed-by: jrose, kvn

     1 /*
     2  * Copyright (c) 1999, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "classfile/systemDictionary.hpp"
    27 #include "classfile/vmSymbols.hpp"
    28 #include "compiler/compileBroker.hpp"
    29 #include "compiler/compileLog.hpp"
    30 #include "oops/objArrayKlass.hpp"
    31 #include "opto/addnode.hpp"
    32 #include "opto/callGenerator.hpp"
    33 #include "opto/cfgnode.hpp"
    34 #include "opto/connode.hpp"
    35 #include "opto/idealKit.hpp"
    36 #include "opto/mathexactnode.hpp"
    37 #include "opto/mulnode.hpp"
    38 #include "opto/parse.hpp"
    39 #include "opto/runtime.hpp"
    40 #include "opto/subnode.hpp"
    41 #include "prims/nativeLookup.hpp"
    42 #include "runtime/sharedRuntime.hpp"
    43 #include "trace/traceMacros.hpp"
    45 class LibraryIntrinsic : public InlineCallGenerator {
    46   // Extend the set of intrinsics known to the runtime:
    47  public:
    48  private:
    49   bool             _is_virtual;
    50   bool             _does_virtual_dispatch;
    51   int8_t           _predicates_count;  // Intrinsic is predicated by several conditions
    52   int8_t           _last_predicate; // Last generated predicate
    53   vmIntrinsics::ID _intrinsic_id;
    55  public:
    56   LibraryIntrinsic(ciMethod* m, bool is_virtual, int predicates_count, bool does_virtual_dispatch, vmIntrinsics::ID id)
    57     : InlineCallGenerator(m),
    58       _is_virtual(is_virtual),
    59       _does_virtual_dispatch(does_virtual_dispatch),
    60       _predicates_count((int8_t)predicates_count),
    61       _last_predicate((int8_t)-1),
    62       _intrinsic_id(id)
    63   {
    64   }
    65   virtual bool is_intrinsic() const { return true; }
    66   virtual bool is_virtual()   const { return _is_virtual; }
    67   virtual bool is_predicated() const { return _predicates_count > 0; }
    68   virtual int  predicates_count() const { return _predicates_count; }
    69   virtual bool does_virtual_dispatch()   const { return _does_virtual_dispatch; }
    70   virtual JVMState* generate(JVMState* jvms);
    71   virtual Node* generate_predicate(JVMState* jvms, int predicate);
    72   vmIntrinsics::ID intrinsic_id() const { return _intrinsic_id; }
    73 };
    76 // Local helper class for LibraryIntrinsic:
    77 class LibraryCallKit : public GraphKit {
    78  private:
    79   LibraryIntrinsic* _intrinsic;     // the library intrinsic being called
    80   Node*             _result;        // the result node, if any
    81   int               _reexecute_sp;  // the stack pointer when bytecode needs to be reexecuted
    83   const TypeOopPtr* sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type, bool is_native_ptr = false);
    85  public:
    86   LibraryCallKit(JVMState* jvms, LibraryIntrinsic* intrinsic)
    87     : GraphKit(jvms),
    88       _intrinsic(intrinsic),
    89       _result(NULL)
    90   {
    91     // Check if this is a root compile.  In that case we don't have a caller.
    92     if (!jvms->has_method()) {
    93       _reexecute_sp = sp();
    94     } else {
    95       // Find out how many arguments the interpreter needs when deoptimizing
    96       // and save the stack pointer value so it can used by uncommon_trap.
    97       // We find the argument count by looking at the declared signature.
    98       bool ignored_will_link;
    99       ciSignature* declared_signature = NULL;
   100       ciMethod* ignored_callee = caller()->get_method_at_bci(bci(), ignored_will_link, &declared_signature);
   101       const int nargs = declared_signature->arg_size_for_bc(caller()->java_code_at_bci(bci()));
   102       _reexecute_sp = sp() + nargs;  // "push" arguments back on stack
   103     }
   104   }
   106   virtual LibraryCallKit* is_LibraryCallKit() const { return (LibraryCallKit*)this; }
   108   ciMethod*         caller()    const    { return jvms()->method(); }
   109   int               bci()       const    { return jvms()->bci(); }
   110   LibraryIntrinsic* intrinsic() const    { return _intrinsic; }
   111   vmIntrinsics::ID  intrinsic_id() const { return _intrinsic->intrinsic_id(); }
   112   ciMethod*         callee()    const    { return _intrinsic->method(); }
   114   bool  try_to_inline(int predicate);
   115   Node* try_to_predicate(int predicate);
   117   void push_result() {
   118     // Push the result onto the stack.
   119     if (!stopped() && result() != NULL) {
   120       BasicType bt = result()->bottom_type()->basic_type();
   121       push_node(bt, result());
   122     }
   123   }
   125  private:
   126   void fatal_unexpected_iid(vmIntrinsics::ID iid) {
   127     fatal(err_msg_res("unexpected intrinsic %d: %s", iid, vmIntrinsics::name_at(iid)));
   128   }
   130   void  set_result(Node* n) { assert(_result == NULL, "only set once"); _result = n; }
   131   void  set_result(RegionNode* region, PhiNode* value);
   132   Node*     result() { return _result; }
   134   virtual int reexecute_sp() { return _reexecute_sp; }
   136   // Helper functions to inline natives
   137   Node* generate_guard(Node* test, RegionNode* region, float true_prob);
   138   Node* generate_slow_guard(Node* test, RegionNode* region);
   139   Node* generate_fair_guard(Node* test, RegionNode* region);
   140   Node* generate_negative_guard(Node* index, RegionNode* region,
   141                                 // resulting CastII of index:
   142                                 Node* *pos_index = NULL);
   143   Node* generate_nonpositive_guard(Node* index, bool never_negative,
   144                                    // resulting CastII of index:
   145                                    Node* *pos_index = NULL);
   146   Node* generate_limit_guard(Node* offset, Node* subseq_length,
   147                              Node* array_length,
   148                              RegionNode* region);
   149   Node* generate_current_thread(Node* &tls_output);
   150   address basictype2arraycopy(BasicType t, Node *src_offset, Node *dest_offset,
   151                               bool disjoint_bases, const char* &name, bool dest_uninitialized);
   152   Node* load_mirror_from_klass(Node* klass);
   153   Node* load_klass_from_mirror_common(Node* mirror, bool never_see_null,
   154                                       RegionNode* region, int null_path,
   155                                       int offset);
   156   Node* load_klass_from_mirror(Node* mirror, bool never_see_null,
   157                                RegionNode* region, int null_path) {
   158     int offset = java_lang_Class::klass_offset_in_bytes();
   159     return load_klass_from_mirror_common(mirror, never_see_null,
   160                                          region, null_path,
   161                                          offset);
   162   }
   163   Node* load_array_klass_from_mirror(Node* mirror, bool never_see_null,
   164                                      RegionNode* region, int null_path) {
   165     int offset = java_lang_Class::array_klass_offset_in_bytes();
   166     return load_klass_from_mirror_common(mirror, never_see_null,
   167                                          region, null_path,
   168                                          offset);
   169   }
   170   Node* generate_access_flags_guard(Node* kls,
   171                                     int modifier_mask, int modifier_bits,
   172                                     RegionNode* region);
   173   Node* generate_interface_guard(Node* kls, RegionNode* region);
   174   Node* generate_array_guard(Node* kls, RegionNode* region) {
   175     return generate_array_guard_common(kls, region, false, false);
   176   }
   177   Node* generate_non_array_guard(Node* kls, RegionNode* region) {
   178     return generate_array_guard_common(kls, region, false, true);
   179   }
   180   Node* generate_objArray_guard(Node* kls, RegionNode* region) {
   181     return generate_array_guard_common(kls, region, true, false);
   182   }
   183   Node* generate_non_objArray_guard(Node* kls, RegionNode* region) {
   184     return generate_array_guard_common(kls, region, true, true);
   185   }
   186   Node* generate_array_guard_common(Node* kls, RegionNode* region,
   187                                     bool obj_array, bool not_array);
   188   Node* generate_virtual_guard(Node* obj_klass, RegionNode* slow_region);
   189   CallJavaNode* generate_method_call(vmIntrinsics::ID method_id,
   190                                      bool is_virtual = false, bool is_static = false);
   191   CallJavaNode* generate_method_call_static(vmIntrinsics::ID method_id) {
   192     return generate_method_call(method_id, false, true);
   193   }
   194   CallJavaNode* generate_method_call_virtual(vmIntrinsics::ID method_id) {
   195     return generate_method_call(method_id, true, false);
   196   }
   197   Node * load_field_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString, bool is_exact, bool is_static);
   199   Node* make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2);
   200   Node* make_string_method_node(int opcode, Node* str1, Node* str2);
   201   bool inline_string_compareTo();
   202   bool inline_string_indexOf();
   203   Node* string_indexOf(Node* string_object, ciTypeArray* target_array, jint offset, jint cache_i, jint md2_i);
   204   bool inline_string_equals();
   205   Node* round_double_node(Node* n);
   206   bool runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName);
   207   bool inline_math_native(vmIntrinsics::ID id);
   208   bool inline_trig(vmIntrinsics::ID id);
   209   bool inline_math(vmIntrinsics::ID id);
   210   template <typename OverflowOp>
   211   bool inline_math_overflow(Node* arg1, Node* arg2);
   212   void inline_math_mathExact(Node* math, Node* test);
   213   bool inline_math_addExactI(bool is_increment);
   214   bool inline_math_addExactL(bool is_increment);
   215   bool inline_math_multiplyExactI();
   216   bool inline_math_multiplyExactL();
   217   bool inline_math_negateExactI();
   218   bool inline_math_negateExactL();
   219   bool inline_math_subtractExactI(bool is_decrement);
   220   bool inline_math_subtractExactL(bool is_decrement);
   221   bool inline_exp();
   222   bool inline_pow();
   223   Node* finish_pow_exp(Node* result, Node* x, Node* y, const TypeFunc* call_type, address funcAddr, const char* funcName);
   224   bool inline_min_max(vmIntrinsics::ID id);
   225   Node* generate_min_max(vmIntrinsics::ID id, Node* x, Node* y);
   226   // This returns Type::AnyPtr, RawPtr, or OopPtr.
   227   int classify_unsafe_addr(Node* &base, Node* &offset);
   228   Node* make_unsafe_address(Node* base, Node* offset);
   229   // Helper for inline_unsafe_access.
   230   // Generates the guards that check whether the result of
   231   // Unsafe.getObject should be recorded in an SATB log buffer.
   232   void insert_pre_barrier(Node* base_oop, Node* offset, Node* pre_val, bool need_mem_bar);
   233   bool inline_unsafe_access(bool is_native_ptr, bool is_store, BasicType type, bool is_volatile);
   234   bool inline_unsafe_prefetch(bool is_native_ptr, bool is_store, bool is_static);
   235   static bool klass_needs_init_guard(Node* kls);
   236   bool inline_unsafe_allocate();
   237   bool inline_unsafe_copyMemory();
   238   bool inline_native_currentThread();
   239 #ifdef TRACE_HAVE_INTRINSICS
   240   bool inline_native_classID();
   241   bool inline_native_threadID();
   242 #endif
   243   bool inline_native_time_funcs(address method, const char* funcName);
   244   bool inline_native_isInterrupted();
   245   bool inline_native_Class_query(vmIntrinsics::ID id);
   246   bool inline_native_subtype_check();
   248   bool inline_native_newArray();
   249   bool inline_native_getLength();
   250   bool inline_array_copyOf(bool is_copyOfRange);
   251   bool inline_array_equals();
   252   void copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array, bool card_mark);
   253   bool inline_native_clone(bool is_virtual);
   254   bool inline_native_Reflection_getCallerClass();
   255   // Helper function for inlining native object hash method
   256   bool inline_native_hashcode(bool is_virtual, bool is_static);
   257   bool inline_native_getClass();
   259   // Helper functions for inlining arraycopy
   260   bool inline_arraycopy();
   261   void generate_arraycopy(const TypePtr* adr_type,
   262                           BasicType basic_elem_type,
   263                           Node* src,  Node* src_offset,
   264                           Node* dest, Node* dest_offset,
   265                           Node* copy_length,
   266                           bool disjoint_bases = false,
   267                           bool length_never_negative = false,
   268                           RegionNode* slow_region = NULL);
   269   AllocateArrayNode* tightly_coupled_allocation(Node* ptr,
   270                                                 RegionNode* slow_region);
   271   void generate_clear_array(const TypePtr* adr_type,
   272                             Node* dest,
   273                             BasicType basic_elem_type,
   274                             Node* slice_off,
   275                             Node* slice_len,
   276                             Node* slice_end);
   277   bool generate_block_arraycopy(const TypePtr* adr_type,
   278                                 BasicType basic_elem_type,
   279                                 AllocateNode* alloc,
   280                                 Node* src,  Node* src_offset,
   281                                 Node* dest, Node* dest_offset,
   282                                 Node* dest_size, bool dest_uninitialized);
   283   void generate_slow_arraycopy(const TypePtr* adr_type,
   284                                Node* src,  Node* src_offset,
   285                                Node* dest, Node* dest_offset,
   286                                Node* copy_length, bool dest_uninitialized);
   287   Node* generate_checkcast_arraycopy(const TypePtr* adr_type,
   288                                      Node* dest_elem_klass,
   289                                      Node* src,  Node* src_offset,
   290                                      Node* dest, Node* dest_offset,
   291                                      Node* copy_length, bool dest_uninitialized);
   292   Node* generate_generic_arraycopy(const TypePtr* adr_type,
   293                                    Node* src,  Node* src_offset,
   294                                    Node* dest, Node* dest_offset,
   295                                    Node* copy_length, bool dest_uninitialized);
   296   void generate_unchecked_arraycopy(const TypePtr* adr_type,
   297                                     BasicType basic_elem_type,
   298                                     bool disjoint_bases,
   299                                     Node* src,  Node* src_offset,
   300                                     Node* dest, Node* dest_offset,
   301                                     Node* copy_length, bool dest_uninitialized);
   302   typedef enum { LS_xadd, LS_xchg, LS_cmpxchg } LoadStoreKind;
   303   bool inline_unsafe_load_store(BasicType type,  LoadStoreKind kind);
   304   bool inline_unsafe_ordered_store(BasicType type);
   305   bool inline_unsafe_fence(vmIntrinsics::ID id);
   306   bool inline_fp_conversions(vmIntrinsics::ID id);
   307   bool inline_number_methods(vmIntrinsics::ID id);
   308   bool inline_reference_get();
   309   bool inline_aescrypt_Block(vmIntrinsics::ID id);
   310   bool inline_cipherBlockChaining_AESCrypt(vmIntrinsics::ID id);
   311   Node* inline_cipherBlockChaining_AESCrypt_predicate(bool decrypting);
   312   Node* get_key_start_from_aescrypt_object(Node* aescrypt_object);
   313   Node* get_original_key_start_from_aescrypt_object(Node* aescrypt_object);
   314   bool inline_sha_implCompress(vmIntrinsics::ID id);
   315   bool inline_digestBase_implCompressMB(int predicate);
   316   bool inline_sha_implCompressMB(Node* digestBaseObj, ciInstanceKlass* instklass_SHA,
   317                                  bool long_state, address stubAddr, const char *stubName,
   318                                  Node* src_start, Node* ofs, Node* limit);
   319   Node* get_state_from_sha_object(Node *sha_object);
   320   Node* get_state_from_sha5_object(Node *sha_object);
   321   Node* inline_digestBase_implCompressMB_predicate(int predicate);
   322   bool inline_encodeISOArray();
   323   bool inline_updateCRC32();
   324   bool inline_updateBytesCRC32();
   325   bool inline_updateByteBufferCRC32();
   326   bool inline_multiplyToLen();
   328   bool inline_profileBoolean();
   329 };
   332 //---------------------------make_vm_intrinsic----------------------------
   333 CallGenerator* Compile::make_vm_intrinsic(ciMethod* m, bool is_virtual) {
   334   vmIntrinsics::ID id = m->intrinsic_id();
   335   assert(id != vmIntrinsics::_none, "must be a VM intrinsic");
   337   ccstr disable_intr = NULL;
   339   if ((DisableIntrinsic[0] != '\0'
   340        && strstr(DisableIntrinsic, vmIntrinsics::name_at(id)) != NULL) ||
   341       (method_has_option_value("DisableIntrinsic", disable_intr)
   342        && strstr(disable_intr, vmIntrinsics::name_at(id)) != NULL)) {
   343     // disabled by a user request on the command line:
   344     // example: -XX:DisableIntrinsic=_hashCode,_getClass
   345     return NULL;
   346   }
   348   if (!m->is_loaded()) {
   349     // do not attempt to inline unloaded methods
   350     return NULL;
   351   }
   353   // Only a few intrinsics implement a virtual dispatch.
   354   // They are expensive calls which are also frequently overridden.
   355   if (is_virtual) {
   356     switch (id) {
   357     case vmIntrinsics::_hashCode:
   358     case vmIntrinsics::_clone:
   359       // OK, Object.hashCode and Object.clone intrinsics come in both flavors
   360       break;
   361     default:
   362       return NULL;
   363     }
   364   }
   366   // -XX:-InlineNatives disables nearly all intrinsics:
   367   if (!InlineNatives) {
   368     switch (id) {
   369     case vmIntrinsics::_indexOf:
   370     case vmIntrinsics::_compareTo:
   371     case vmIntrinsics::_equals:
   372     case vmIntrinsics::_equalsC:
   373     case vmIntrinsics::_getAndAddInt:
   374     case vmIntrinsics::_getAndAddLong:
   375     case vmIntrinsics::_getAndSetInt:
   376     case vmIntrinsics::_getAndSetLong:
   377     case vmIntrinsics::_getAndSetObject:
   378     case vmIntrinsics::_loadFence:
   379     case vmIntrinsics::_storeFence:
   380     case vmIntrinsics::_fullFence:
   381       break;  // InlineNatives does not control String.compareTo
   382     case vmIntrinsics::_Reference_get:
   383       break;  // InlineNatives does not control Reference.get
   384     default:
   385       return NULL;
   386     }
   387   }
   389   int predicates = 0;
   390   bool does_virtual_dispatch = false;
   392   switch (id) {
   393   case vmIntrinsics::_compareTo:
   394     if (!SpecialStringCompareTo)  return NULL;
   395     if (!Matcher::match_rule_supported(Op_StrComp))  return NULL;
   396     break;
   397   case vmIntrinsics::_indexOf:
   398     if (!SpecialStringIndexOf)  return NULL;
   399     break;
   400   case vmIntrinsics::_equals:
   401     if (!SpecialStringEquals)  return NULL;
   402     if (!Matcher::match_rule_supported(Op_StrEquals))  return NULL;
   403     break;
   404   case vmIntrinsics::_equalsC:
   405     if (!SpecialArraysEquals)  return NULL;
   406     if (!Matcher::match_rule_supported(Op_AryEq))  return NULL;
   407     break;
   408   case vmIntrinsics::_arraycopy:
   409     if (!InlineArrayCopy)  return NULL;
   410     break;
   411   case vmIntrinsics::_copyMemory:
   412     if (StubRoutines::unsafe_arraycopy() == NULL)  return NULL;
   413     if (!InlineArrayCopy)  return NULL;
   414     break;
   415   case vmIntrinsics::_hashCode:
   416     if (!InlineObjectHash)  return NULL;
   417     does_virtual_dispatch = true;
   418     break;
   419   case vmIntrinsics::_clone:
   420     does_virtual_dispatch = true;
   421   case vmIntrinsics::_copyOf:
   422   case vmIntrinsics::_copyOfRange:
   423     if (!InlineObjectCopy)  return NULL;
   424     // These also use the arraycopy intrinsic mechanism:
   425     if (!InlineArrayCopy)  return NULL;
   426     break;
   427   case vmIntrinsics::_encodeISOArray:
   428     if (!SpecialEncodeISOArray)  return NULL;
   429     if (!Matcher::match_rule_supported(Op_EncodeISOArray))  return NULL;
   430     break;
   431   case vmIntrinsics::_checkIndex:
   432     // We do not intrinsify this.  The optimizer does fine with it.
   433     return NULL;
   435   case vmIntrinsics::_getCallerClass:
   436     if (!UseNewReflection)  return NULL;
   437     if (!InlineReflectionGetCallerClass)  return NULL;
   438     if (SystemDictionary::reflect_CallerSensitive_klass() == NULL)  return NULL;
   439     break;
   441   case vmIntrinsics::_bitCount_i:
   442     if (!Matcher::match_rule_supported(Op_PopCountI)) return NULL;
   443     break;
   445   case vmIntrinsics::_bitCount_l:
   446     if (!Matcher::match_rule_supported(Op_PopCountL)) return NULL;
   447     break;
   449   case vmIntrinsics::_numberOfLeadingZeros_i:
   450     if (!Matcher::match_rule_supported(Op_CountLeadingZerosI)) return NULL;
   451     break;
   453   case vmIntrinsics::_numberOfLeadingZeros_l:
   454     if (!Matcher::match_rule_supported(Op_CountLeadingZerosL)) return NULL;
   455     break;
   457   case vmIntrinsics::_numberOfTrailingZeros_i:
   458     if (!Matcher::match_rule_supported(Op_CountTrailingZerosI)) return NULL;
   459     break;
   461   case vmIntrinsics::_numberOfTrailingZeros_l:
   462     if (!Matcher::match_rule_supported(Op_CountTrailingZerosL)) return NULL;
   463     break;
   465   case vmIntrinsics::_reverseBytes_c:
   466     if (!Matcher::match_rule_supported(Op_ReverseBytesUS)) return NULL;
   467     break;
   468   case vmIntrinsics::_reverseBytes_s:
   469     if (!Matcher::match_rule_supported(Op_ReverseBytesS))  return NULL;
   470     break;
   471   case vmIntrinsics::_reverseBytes_i:
   472     if (!Matcher::match_rule_supported(Op_ReverseBytesI))  return NULL;
   473     break;
   474   case vmIntrinsics::_reverseBytes_l:
   475     if (!Matcher::match_rule_supported(Op_ReverseBytesL))  return NULL;
   476     break;
   478   case vmIntrinsics::_Reference_get:
   479     // Use the intrinsic version of Reference.get() so that the value in
   480     // the referent field can be registered by the G1 pre-barrier code.
   481     // Also add memory barrier to prevent commoning reads from this field
   482     // across safepoint since GC can change it value.
   483     break;
   485   case vmIntrinsics::_compareAndSwapObject:
   486 #ifdef _LP64
   487     if (!UseCompressedOops && !Matcher::match_rule_supported(Op_CompareAndSwapP)) return NULL;
   488 #endif
   489     break;
   491   case vmIntrinsics::_compareAndSwapLong:
   492     if (!Matcher::match_rule_supported(Op_CompareAndSwapL)) return NULL;
   493     break;
   495   case vmIntrinsics::_getAndAddInt:
   496     if (!Matcher::match_rule_supported(Op_GetAndAddI)) return NULL;
   497     break;
   499   case vmIntrinsics::_getAndAddLong:
   500     if (!Matcher::match_rule_supported(Op_GetAndAddL)) return NULL;
   501     break;
   503   case vmIntrinsics::_getAndSetInt:
   504     if (!Matcher::match_rule_supported(Op_GetAndSetI)) return NULL;
   505     break;
   507   case vmIntrinsics::_getAndSetLong:
   508     if (!Matcher::match_rule_supported(Op_GetAndSetL)) return NULL;
   509     break;
   511   case vmIntrinsics::_getAndSetObject:
   512 #ifdef _LP64
   513     if (!UseCompressedOops && !Matcher::match_rule_supported(Op_GetAndSetP)) return NULL;
   514     if (UseCompressedOops && !Matcher::match_rule_supported(Op_GetAndSetN)) return NULL;
   515     break;
   516 #else
   517     if (!Matcher::match_rule_supported(Op_GetAndSetP)) return NULL;
   518     break;
   519 #endif
   521   case vmIntrinsics::_aescrypt_encryptBlock:
   522   case vmIntrinsics::_aescrypt_decryptBlock:
   523     if (!UseAESIntrinsics) return NULL;
   524     break;
   526   case vmIntrinsics::_multiplyToLen:
   527     if (!UseMultiplyToLenIntrinsic) return NULL;
   528     break;
   530   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
   531   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
   532     if (!UseAESIntrinsics) return NULL;
   533     // these two require the predicated logic
   534     predicates = 1;
   535     break;
   537   case vmIntrinsics::_sha_implCompress:
   538     if (!UseSHA1Intrinsics) return NULL;
   539     break;
   541   case vmIntrinsics::_sha2_implCompress:
   542     if (!UseSHA256Intrinsics) return NULL;
   543     break;
   545   case vmIntrinsics::_sha5_implCompress:
   546     if (!UseSHA512Intrinsics) return NULL;
   547     break;
   549   case vmIntrinsics::_digestBase_implCompressMB:
   550     if (!(UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics)) return NULL;
   551     predicates = 3;
   552     break;
   554   case vmIntrinsics::_updateCRC32:
   555   case vmIntrinsics::_updateBytesCRC32:
   556   case vmIntrinsics::_updateByteBufferCRC32:
   557     if (!UseCRC32Intrinsics) return NULL;
   558     break;
   560   case vmIntrinsics::_incrementExactI:
   561   case vmIntrinsics::_addExactI:
   562     if (!Matcher::match_rule_supported(Op_OverflowAddI) || !UseMathExactIntrinsics) return NULL;
   563     break;
   564   case vmIntrinsics::_incrementExactL:
   565   case vmIntrinsics::_addExactL:
   566     if (!Matcher::match_rule_supported(Op_OverflowAddL) || !UseMathExactIntrinsics) return NULL;
   567     break;
   568   case vmIntrinsics::_decrementExactI:
   569   case vmIntrinsics::_subtractExactI:
   570     if (!Matcher::match_rule_supported(Op_OverflowSubI) || !UseMathExactIntrinsics) return NULL;
   571     break;
   572   case vmIntrinsics::_decrementExactL:
   573   case vmIntrinsics::_subtractExactL:
   574     if (!Matcher::match_rule_supported(Op_OverflowSubL) || !UseMathExactIntrinsics) return NULL;
   575     break;
   576   case vmIntrinsics::_negateExactI:
   577     if (!Matcher::match_rule_supported(Op_OverflowSubI) || !UseMathExactIntrinsics) return NULL;
   578     break;
   579   case vmIntrinsics::_negateExactL:
   580     if (!Matcher::match_rule_supported(Op_OverflowSubL) || !UseMathExactIntrinsics) return NULL;
   581     break;
   582   case vmIntrinsics::_multiplyExactI:
   583     if (!Matcher::match_rule_supported(Op_OverflowMulI) || !UseMathExactIntrinsics) return NULL;
   584     break;
   585   case vmIntrinsics::_multiplyExactL:
   586     if (!Matcher::match_rule_supported(Op_OverflowMulL) || !UseMathExactIntrinsics) return NULL;
   587     break;
   589  default:
   590     assert(id <= vmIntrinsics::LAST_COMPILER_INLINE, "caller responsibility");
   591     assert(id != vmIntrinsics::_Object_init && id != vmIntrinsics::_invoke, "enum out of order?");
   592     break;
   593   }
   595   // -XX:-InlineClassNatives disables natives from the Class class.
   596   // The flag applies to all reflective calls, notably Array.newArray
   597   // (visible to Java programmers as Array.newInstance).
   598   if (m->holder()->name() == ciSymbol::java_lang_Class() ||
   599       m->holder()->name() == ciSymbol::java_lang_reflect_Array()) {
   600     if (!InlineClassNatives)  return NULL;
   601   }
   603   // -XX:-InlineThreadNatives disables natives from the Thread class.
   604   if (m->holder()->name() == ciSymbol::java_lang_Thread()) {
   605     if (!InlineThreadNatives)  return NULL;
   606   }
   608   // -XX:-InlineMathNatives disables natives from the Math,Float and Double classes.
   609   if (m->holder()->name() == ciSymbol::java_lang_Math() ||
   610       m->holder()->name() == ciSymbol::java_lang_Float() ||
   611       m->holder()->name() == ciSymbol::java_lang_Double()) {
   612     if (!InlineMathNatives)  return NULL;
   613   }
   615   // -XX:-InlineUnsafeOps disables natives from the Unsafe class.
   616   if (m->holder()->name() == ciSymbol::sun_misc_Unsafe()) {
   617     if (!InlineUnsafeOps)  return NULL;
   618   }
   620   return new LibraryIntrinsic(m, is_virtual, predicates, does_virtual_dispatch, (vmIntrinsics::ID) id);
   621 }
   623 //----------------------register_library_intrinsics-----------------------
   624 // Initialize this file's data structures, for each Compile instance.
   625 void Compile::register_library_intrinsics() {
   626   // Nothing to do here.
   627 }
   629 JVMState* LibraryIntrinsic::generate(JVMState* jvms) {
   630   LibraryCallKit kit(jvms, this);
   631   Compile* C = kit.C;
   632   int nodes = C->unique();
   633 #ifndef PRODUCT
   634   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
   635     char buf[1000];
   636     const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
   637     tty->print_cr("Intrinsic %s", str);
   638   }
   639 #endif
   640   ciMethod* callee = kit.callee();
   641   const int bci    = kit.bci();
   643   // Try to inline the intrinsic.
   644   if (kit.try_to_inline(_last_predicate)) {
   645     if (C->print_intrinsics() || C->print_inlining()) {
   646       C->print_inlining(callee, jvms->depth() - 1, bci, is_virtual() ? "(intrinsic, virtual)" : "(intrinsic)");
   647     }
   648     C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
   649     if (C->log()) {
   650       C->log()->elem("intrinsic id='%s'%s nodes='%d'",
   651                      vmIntrinsics::name_at(intrinsic_id()),
   652                      (is_virtual() ? " virtual='1'" : ""),
   653                      C->unique() - nodes);
   654     }
   655     // Push the result from the inlined method onto the stack.
   656     kit.push_result();
   657     return kit.transfer_exceptions_into_jvms();
   658   }
   660   // The intrinsic bailed out
   661   if (C->print_intrinsics() || C->print_inlining()) {
   662     if (jvms->has_method()) {
   663       // Not a root compile.
   664       const char* msg = is_virtual() ? "failed to inline (intrinsic, virtual)" : "failed to inline (intrinsic)";
   665       C->print_inlining(callee, jvms->depth() - 1, bci, msg);
   666     } else {
   667       // Root compile
   668       tty->print("Did not generate intrinsic %s%s at bci:%d in",
   669                vmIntrinsics::name_at(intrinsic_id()),
   670                (is_virtual() ? " (virtual)" : ""), bci);
   671     }
   672   }
   673   C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
   674   return NULL;
   675 }
   677 Node* LibraryIntrinsic::generate_predicate(JVMState* jvms, int predicate) {
   678   LibraryCallKit kit(jvms, this);
   679   Compile* C = kit.C;
   680   int nodes = C->unique();
   681   _last_predicate = predicate;
   682 #ifndef PRODUCT
   683   assert(is_predicated() && predicate < predicates_count(), "sanity");
   684   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
   685     char buf[1000];
   686     const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
   687     tty->print_cr("Predicate for intrinsic %s", str);
   688   }
   689 #endif
   690   ciMethod* callee = kit.callee();
   691   const int bci    = kit.bci();
   693   Node* slow_ctl = kit.try_to_predicate(predicate);
   694   if (!kit.failing()) {
   695     if (C->print_intrinsics() || C->print_inlining()) {
   696       C->print_inlining(callee, jvms->depth() - 1, bci, is_virtual() ? "(intrinsic, virtual, predicate)" : "(intrinsic, predicate)");
   697     }
   698     C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
   699     if (C->log()) {
   700       C->log()->elem("predicate_intrinsic id='%s'%s nodes='%d'",
   701                      vmIntrinsics::name_at(intrinsic_id()),
   702                      (is_virtual() ? " virtual='1'" : ""),
   703                      C->unique() - nodes);
   704     }
   705     return slow_ctl; // Could be NULL if the check folds.
   706   }
   708   // The intrinsic bailed out
   709   if (C->print_intrinsics() || C->print_inlining()) {
   710     if (jvms->has_method()) {
   711       // Not a root compile.
   712       const char* msg = "failed to generate predicate for intrinsic";
   713       C->print_inlining(kit.callee(), jvms->depth() - 1, bci, msg);
   714     } else {
   715       // Root compile
   716       C->print_inlining_stream()->print("Did not generate predicate for intrinsic %s%s at bci:%d in",
   717                                         vmIntrinsics::name_at(intrinsic_id()),
   718                                         (is_virtual() ? " (virtual)" : ""), bci);
   719     }
   720   }
   721   C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
   722   return NULL;
   723 }
   725 bool LibraryCallKit::try_to_inline(int predicate) {
   726   // Handle symbolic names for otherwise undistinguished boolean switches:
   727   const bool is_store       = true;
   728   const bool is_native_ptr  = true;
   729   const bool is_static      = true;
   730   const bool is_volatile    = true;
   732   if (!jvms()->has_method()) {
   733     // Root JVMState has a null method.
   734     assert(map()->memory()->Opcode() == Op_Parm, "");
   735     // Insert the memory aliasing node
   736     set_all_memory(reset_memory());
   737   }
   738   assert(merged_memory(), "");
   741   switch (intrinsic_id()) {
   742   case vmIntrinsics::_hashCode:                 return inline_native_hashcode(intrinsic()->is_virtual(), !is_static);
   743   case vmIntrinsics::_identityHashCode:         return inline_native_hashcode(/*!virtual*/ false,         is_static);
   744   case vmIntrinsics::_getClass:                 return inline_native_getClass();
   746   case vmIntrinsics::_dsin:
   747   case vmIntrinsics::_dcos:
   748   case vmIntrinsics::_dtan:
   749   case vmIntrinsics::_dabs:
   750   case vmIntrinsics::_datan2:
   751   case vmIntrinsics::_dsqrt:
   752   case vmIntrinsics::_dexp:
   753   case vmIntrinsics::_dlog:
   754   case vmIntrinsics::_dlog10:
   755   case vmIntrinsics::_dpow:                     return inline_math_native(intrinsic_id());
   757   case vmIntrinsics::_min:
   758   case vmIntrinsics::_max:                      return inline_min_max(intrinsic_id());
   760   case vmIntrinsics::_addExactI:                return inline_math_addExactI(false /* add */);
   761   case vmIntrinsics::_addExactL:                return inline_math_addExactL(false /* add */);
   762   case vmIntrinsics::_decrementExactI:          return inline_math_subtractExactI(true /* decrement */);
   763   case vmIntrinsics::_decrementExactL:          return inline_math_subtractExactL(true /* decrement */);
   764   case vmIntrinsics::_incrementExactI:          return inline_math_addExactI(true /* increment */);
   765   case vmIntrinsics::_incrementExactL:          return inline_math_addExactL(true /* increment */);
   766   case vmIntrinsics::_multiplyExactI:           return inline_math_multiplyExactI();
   767   case vmIntrinsics::_multiplyExactL:           return inline_math_multiplyExactL();
   768   case vmIntrinsics::_negateExactI:             return inline_math_negateExactI();
   769   case vmIntrinsics::_negateExactL:             return inline_math_negateExactL();
   770   case vmIntrinsics::_subtractExactI:           return inline_math_subtractExactI(false /* subtract */);
   771   case vmIntrinsics::_subtractExactL:           return inline_math_subtractExactL(false /* subtract */);
   773   case vmIntrinsics::_arraycopy:                return inline_arraycopy();
   775   case vmIntrinsics::_compareTo:                return inline_string_compareTo();
   776   case vmIntrinsics::_indexOf:                  return inline_string_indexOf();
   777   case vmIntrinsics::_equals:                   return inline_string_equals();
   779   case vmIntrinsics::_getObject:                return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT,  !is_volatile);
   780   case vmIntrinsics::_getBoolean:               return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN, !is_volatile);
   781   case vmIntrinsics::_getByte:                  return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE,    !is_volatile);
   782   case vmIntrinsics::_getShort:                 return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT,   !is_volatile);
   783   case vmIntrinsics::_getChar:                  return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR,    !is_volatile);
   784   case vmIntrinsics::_getInt:                   return inline_unsafe_access(!is_native_ptr, !is_store, T_INT,     !is_volatile);
   785   case vmIntrinsics::_getLong:                  return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG,    !is_volatile);
   786   case vmIntrinsics::_getFloat:                 return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT,   !is_volatile);
   787   case vmIntrinsics::_getDouble:                return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE,  !is_volatile);
   789   case vmIntrinsics::_putObject:                return inline_unsafe_access(!is_native_ptr,  is_store, T_OBJECT,  !is_volatile);
   790   case vmIntrinsics::_putBoolean:               return inline_unsafe_access(!is_native_ptr,  is_store, T_BOOLEAN, !is_volatile);
   791   case vmIntrinsics::_putByte:                  return inline_unsafe_access(!is_native_ptr,  is_store, T_BYTE,    !is_volatile);
   792   case vmIntrinsics::_putShort:                 return inline_unsafe_access(!is_native_ptr,  is_store, T_SHORT,   !is_volatile);
   793   case vmIntrinsics::_putChar:                  return inline_unsafe_access(!is_native_ptr,  is_store, T_CHAR,    !is_volatile);
   794   case vmIntrinsics::_putInt:                   return inline_unsafe_access(!is_native_ptr,  is_store, T_INT,     !is_volatile);
   795   case vmIntrinsics::_putLong:                  return inline_unsafe_access(!is_native_ptr,  is_store, T_LONG,    !is_volatile);
   796   case vmIntrinsics::_putFloat:                 return inline_unsafe_access(!is_native_ptr,  is_store, T_FLOAT,   !is_volatile);
   797   case vmIntrinsics::_putDouble:                return inline_unsafe_access(!is_native_ptr,  is_store, T_DOUBLE,  !is_volatile);
   799   case vmIntrinsics::_getByte_raw:              return inline_unsafe_access( is_native_ptr, !is_store, T_BYTE,    !is_volatile);
   800   case vmIntrinsics::_getShort_raw:             return inline_unsafe_access( is_native_ptr, !is_store, T_SHORT,   !is_volatile);
   801   case vmIntrinsics::_getChar_raw:              return inline_unsafe_access( is_native_ptr, !is_store, T_CHAR,    !is_volatile);
   802   case vmIntrinsics::_getInt_raw:               return inline_unsafe_access( is_native_ptr, !is_store, T_INT,     !is_volatile);
   803   case vmIntrinsics::_getLong_raw:              return inline_unsafe_access( is_native_ptr, !is_store, T_LONG,    !is_volatile);
   804   case vmIntrinsics::_getFloat_raw:             return inline_unsafe_access( is_native_ptr, !is_store, T_FLOAT,   !is_volatile);
   805   case vmIntrinsics::_getDouble_raw:            return inline_unsafe_access( is_native_ptr, !is_store, T_DOUBLE,  !is_volatile);
   806   case vmIntrinsics::_getAddress_raw:           return inline_unsafe_access( is_native_ptr, !is_store, T_ADDRESS, !is_volatile);
   808   case vmIntrinsics::_putByte_raw:              return inline_unsafe_access( is_native_ptr,  is_store, T_BYTE,    !is_volatile);
   809   case vmIntrinsics::_putShort_raw:             return inline_unsafe_access( is_native_ptr,  is_store, T_SHORT,   !is_volatile);
   810   case vmIntrinsics::_putChar_raw:              return inline_unsafe_access( is_native_ptr,  is_store, T_CHAR,    !is_volatile);
   811   case vmIntrinsics::_putInt_raw:               return inline_unsafe_access( is_native_ptr,  is_store, T_INT,     !is_volatile);
   812   case vmIntrinsics::_putLong_raw:              return inline_unsafe_access( is_native_ptr,  is_store, T_LONG,    !is_volatile);
   813   case vmIntrinsics::_putFloat_raw:             return inline_unsafe_access( is_native_ptr,  is_store, T_FLOAT,   !is_volatile);
   814   case vmIntrinsics::_putDouble_raw:            return inline_unsafe_access( is_native_ptr,  is_store, T_DOUBLE,  !is_volatile);
   815   case vmIntrinsics::_putAddress_raw:           return inline_unsafe_access( is_native_ptr,  is_store, T_ADDRESS, !is_volatile);
   817   case vmIntrinsics::_getObjectVolatile:        return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT,   is_volatile);
   818   case vmIntrinsics::_getBooleanVolatile:       return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN,  is_volatile);
   819   case vmIntrinsics::_getByteVolatile:          return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE,     is_volatile);
   820   case vmIntrinsics::_getShortVolatile:         return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT,    is_volatile);
   821   case vmIntrinsics::_getCharVolatile:          return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR,     is_volatile);
   822   case vmIntrinsics::_getIntVolatile:           return inline_unsafe_access(!is_native_ptr, !is_store, T_INT,      is_volatile);
   823   case vmIntrinsics::_getLongVolatile:          return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG,     is_volatile);
   824   case vmIntrinsics::_getFloatVolatile:         return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT,    is_volatile);
   825   case vmIntrinsics::_getDoubleVolatile:        return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE,   is_volatile);
   827   case vmIntrinsics::_putObjectVolatile:        return inline_unsafe_access(!is_native_ptr,  is_store, T_OBJECT,   is_volatile);
   828   case vmIntrinsics::_putBooleanVolatile:       return inline_unsafe_access(!is_native_ptr,  is_store, T_BOOLEAN,  is_volatile);
   829   case vmIntrinsics::_putByteVolatile:          return inline_unsafe_access(!is_native_ptr,  is_store, T_BYTE,     is_volatile);
   830   case vmIntrinsics::_putShortVolatile:         return inline_unsafe_access(!is_native_ptr,  is_store, T_SHORT,    is_volatile);
   831   case vmIntrinsics::_putCharVolatile:          return inline_unsafe_access(!is_native_ptr,  is_store, T_CHAR,     is_volatile);
   832   case vmIntrinsics::_putIntVolatile:           return inline_unsafe_access(!is_native_ptr,  is_store, T_INT,      is_volatile);
   833   case vmIntrinsics::_putLongVolatile:          return inline_unsafe_access(!is_native_ptr,  is_store, T_LONG,     is_volatile);
   834   case vmIntrinsics::_putFloatVolatile:         return inline_unsafe_access(!is_native_ptr,  is_store, T_FLOAT,    is_volatile);
   835   case vmIntrinsics::_putDoubleVolatile:        return inline_unsafe_access(!is_native_ptr,  is_store, T_DOUBLE,   is_volatile);
   837   case vmIntrinsics::_prefetchRead:             return inline_unsafe_prefetch(!is_native_ptr, !is_store, !is_static);
   838   case vmIntrinsics::_prefetchWrite:            return inline_unsafe_prefetch(!is_native_ptr,  is_store, !is_static);
   839   case vmIntrinsics::_prefetchReadStatic:       return inline_unsafe_prefetch(!is_native_ptr, !is_store,  is_static);
   840   case vmIntrinsics::_prefetchWriteStatic:      return inline_unsafe_prefetch(!is_native_ptr,  is_store,  is_static);
   842   case vmIntrinsics::_compareAndSwapObject:     return inline_unsafe_load_store(T_OBJECT, LS_cmpxchg);
   843   case vmIntrinsics::_compareAndSwapInt:        return inline_unsafe_load_store(T_INT,    LS_cmpxchg);
   844   case vmIntrinsics::_compareAndSwapLong:       return inline_unsafe_load_store(T_LONG,   LS_cmpxchg);
   846   case vmIntrinsics::_putOrderedObject:         return inline_unsafe_ordered_store(T_OBJECT);
   847   case vmIntrinsics::_putOrderedInt:            return inline_unsafe_ordered_store(T_INT);
   848   case vmIntrinsics::_putOrderedLong:           return inline_unsafe_ordered_store(T_LONG);
   850   case vmIntrinsics::_getAndAddInt:             return inline_unsafe_load_store(T_INT,    LS_xadd);
   851   case vmIntrinsics::_getAndAddLong:            return inline_unsafe_load_store(T_LONG,   LS_xadd);
   852   case vmIntrinsics::_getAndSetInt:             return inline_unsafe_load_store(T_INT,    LS_xchg);
   853   case vmIntrinsics::_getAndSetLong:            return inline_unsafe_load_store(T_LONG,   LS_xchg);
   854   case vmIntrinsics::_getAndSetObject:          return inline_unsafe_load_store(T_OBJECT, LS_xchg);
   856   case vmIntrinsics::_loadFence:
   857   case vmIntrinsics::_storeFence:
   858   case vmIntrinsics::_fullFence:                return inline_unsafe_fence(intrinsic_id());
   860   case vmIntrinsics::_currentThread:            return inline_native_currentThread();
   861   case vmIntrinsics::_isInterrupted:            return inline_native_isInterrupted();
   863 #ifdef TRACE_HAVE_INTRINSICS
   864   case vmIntrinsics::_classID:                  return inline_native_classID();
   865   case vmIntrinsics::_threadID:                 return inline_native_threadID();
   866   case vmIntrinsics::_counterTime:              return inline_native_time_funcs(CAST_FROM_FN_PTR(address, TRACE_TIME_METHOD), "counterTime");
   867 #endif
   868   case vmIntrinsics::_currentTimeMillis:        return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeMillis), "currentTimeMillis");
   869   case vmIntrinsics::_nanoTime:                 return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeNanos), "nanoTime");
   870   case vmIntrinsics::_allocateInstance:         return inline_unsafe_allocate();
   871   case vmIntrinsics::_copyMemory:               return inline_unsafe_copyMemory();
   872   case vmIntrinsics::_newArray:                 return inline_native_newArray();
   873   case vmIntrinsics::_getLength:                return inline_native_getLength();
   874   case vmIntrinsics::_copyOf:                   return inline_array_copyOf(false);
   875   case vmIntrinsics::_copyOfRange:              return inline_array_copyOf(true);
   876   case vmIntrinsics::_equalsC:                  return inline_array_equals();
   877   case vmIntrinsics::_clone:                    return inline_native_clone(intrinsic()->is_virtual());
   879   case vmIntrinsics::_isAssignableFrom:         return inline_native_subtype_check();
   881   case vmIntrinsics::_isInstance:
   882   case vmIntrinsics::_getModifiers:
   883   case vmIntrinsics::_isInterface:
   884   case vmIntrinsics::_isArray:
   885   case vmIntrinsics::_isPrimitive:
   886   case vmIntrinsics::_getSuperclass:
   887   case vmIntrinsics::_getComponentType:
   888   case vmIntrinsics::_getClassAccessFlags:      return inline_native_Class_query(intrinsic_id());
   890   case vmIntrinsics::_floatToRawIntBits:
   891   case vmIntrinsics::_floatToIntBits:
   892   case vmIntrinsics::_intBitsToFloat:
   893   case vmIntrinsics::_doubleToRawLongBits:
   894   case vmIntrinsics::_doubleToLongBits:
   895   case vmIntrinsics::_longBitsToDouble:         return inline_fp_conversions(intrinsic_id());
   897   case vmIntrinsics::_numberOfLeadingZeros_i:
   898   case vmIntrinsics::_numberOfLeadingZeros_l:
   899   case vmIntrinsics::_numberOfTrailingZeros_i:
   900   case vmIntrinsics::_numberOfTrailingZeros_l:
   901   case vmIntrinsics::_bitCount_i:
   902   case vmIntrinsics::_bitCount_l:
   903   case vmIntrinsics::_reverseBytes_i:
   904   case vmIntrinsics::_reverseBytes_l:
   905   case vmIntrinsics::_reverseBytes_s:
   906   case vmIntrinsics::_reverseBytes_c:           return inline_number_methods(intrinsic_id());
   908   case vmIntrinsics::_getCallerClass:           return inline_native_Reflection_getCallerClass();
   910   case vmIntrinsics::_Reference_get:            return inline_reference_get();
   912   case vmIntrinsics::_aescrypt_encryptBlock:
   913   case vmIntrinsics::_aescrypt_decryptBlock:    return inline_aescrypt_Block(intrinsic_id());
   915   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
   916   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
   917     return inline_cipherBlockChaining_AESCrypt(intrinsic_id());
   919   case vmIntrinsics::_sha_implCompress:
   920   case vmIntrinsics::_sha2_implCompress:
   921   case vmIntrinsics::_sha5_implCompress:
   922     return inline_sha_implCompress(intrinsic_id());
   924   case vmIntrinsics::_digestBase_implCompressMB:
   925     return inline_digestBase_implCompressMB(predicate);
   927   case vmIntrinsics::_multiplyToLen:
   928     return inline_multiplyToLen();
   930   case vmIntrinsics::_encodeISOArray:
   931     return inline_encodeISOArray();
   933   case vmIntrinsics::_updateCRC32:
   934     return inline_updateCRC32();
   935   case vmIntrinsics::_updateBytesCRC32:
   936     return inline_updateBytesCRC32();
   937   case vmIntrinsics::_updateByteBufferCRC32:
   938     return inline_updateByteBufferCRC32();
   940   case vmIntrinsics::_profileBoolean:
   941     return inline_profileBoolean();
   943   default:
   944     // If you get here, it may be that someone has added a new intrinsic
   945     // to the list in vmSymbols.hpp without implementing it here.
   946 #ifndef PRODUCT
   947     if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
   948       tty->print_cr("*** Warning: Unimplemented intrinsic %s(%d)",
   949                     vmIntrinsics::name_at(intrinsic_id()), intrinsic_id());
   950     }
   951 #endif
   952     return false;
   953   }
   954 }
   956 Node* LibraryCallKit::try_to_predicate(int predicate) {
   957   if (!jvms()->has_method()) {
   958     // Root JVMState has a null method.
   959     assert(map()->memory()->Opcode() == Op_Parm, "");
   960     // Insert the memory aliasing node
   961     set_all_memory(reset_memory());
   962   }
   963   assert(merged_memory(), "");
   965   switch (intrinsic_id()) {
   966   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
   967     return inline_cipherBlockChaining_AESCrypt_predicate(false);
   968   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
   969     return inline_cipherBlockChaining_AESCrypt_predicate(true);
   970   case vmIntrinsics::_digestBase_implCompressMB:
   971     return inline_digestBase_implCompressMB_predicate(predicate);
   973   default:
   974     // If you get here, it may be that someone has added a new intrinsic
   975     // to the list in vmSymbols.hpp without implementing it here.
   976 #ifndef PRODUCT
   977     if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
   978       tty->print_cr("*** Warning: Unimplemented predicate for intrinsic %s(%d)",
   979                     vmIntrinsics::name_at(intrinsic_id()), intrinsic_id());
   980     }
   981 #endif
   982     Node* slow_ctl = control();
   983     set_control(top()); // No fast path instrinsic
   984     return slow_ctl;
   985   }
   986 }
   988 //------------------------------set_result-------------------------------
   989 // Helper function for finishing intrinsics.
   990 void LibraryCallKit::set_result(RegionNode* region, PhiNode* value) {
   991   record_for_igvn(region);
   992   set_control(_gvn.transform(region));
   993   set_result( _gvn.transform(value));
   994   assert(value->type()->basic_type() == result()->bottom_type()->basic_type(), "sanity");
   995 }
   997 //------------------------------generate_guard---------------------------
   998 // Helper function for generating guarded fast-slow graph structures.
   999 // The given 'test', if true, guards a slow path.  If the test fails
  1000 // then a fast path can be taken.  (We generally hope it fails.)
  1001 // In all cases, GraphKit::control() is updated to the fast path.
  1002 // The returned value represents the control for the slow path.
  1003 // The return value is never 'top'; it is either a valid control
  1004 // or NULL if it is obvious that the slow path can never be taken.
  1005 // Also, if region and the slow control are not NULL, the slow edge
  1006 // is appended to the region.
  1007 Node* LibraryCallKit::generate_guard(Node* test, RegionNode* region, float true_prob) {
  1008   if (stopped()) {
  1009     // Already short circuited.
  1010     return NULL;
  1013   // Build an if node and its projections.
  1014   // If test is true we take the slow path, which we assume is uncommon.
  1015   if (_gvn.type(test) == TypeInt::ZERO) {
  1016     // The slow branch is never taken.  No need to build this guard.
  1017     return NULL;
  1020   IfNode* iff = create_and_map_if(control(), test, true_prob, COUNT_UNKNOWN);
  1022   Node* if_slow = _gvn.transform(new (C) IfTrueNode(iff));
  1023   if (if_slow == top()) {
  1024     // The slow branch is never taken.  No need to build this guard.
  1025     return NULL;
  1028   if (region != NULL)
  1029     region->add_req(if_slow);
  1031   Node* if_fast = _gvn.transform(new (C) IfFalseNode(iff));
  1032   set_control(if_fast);
  1034   return if_slow;
  1037 inline Node* LibraryCallKit::generate_slow_guard(Node* test, RegionNode* region) {
  1038   return generate_guard(test, region, PROB_UNLIKELY_MAG(3));
  1040 inline Node* LibraryCallKit::generate_fair_guard(Node* test, RegionNode* region) {
  1041   return generate_guard(test, region, PROB_FAIR);
  1044 inline Node* LibraryCallKit::generate_negative_guard(Node* index, RegionNode* region,
  1045                                                      Node* *pos_index) {
  1046   if (stopped())
  1047     return NULL;                // already stopped
  1048   if (_gvn.type(index)->higher_equal(TypeInt::POS)) // [0,maxint]
  1049     return NULL;                // index is already adequately typed
  1050   Node* cmp_lt = _gvn.transform(new (C) CmpINode(index, intcon(0)));
  1051   Node* bol_lt = _gvn.transform(new (C) BoolNode(cmp_lt, BoolTest::lt));
  1052   Node* is_neg = generate_guard(bol_lt, region, PROB_MIN);
  1053   if (is_neg != NULL && pos_index != NULL) {
  1054     // Emulate effect of Parse::adjust_map_after_if.
  1055     Node* ccast = new (C) CastIINode(index, TypeInt::POS);
  1056     ccast->set_req(0, control());
  1057     (*pos_index) = _gvn.transform(ccast);
  1059   return is_neg;
  1062 inline Node* LibraryCallKit::generate_nonpositive_guard(Node* index, bool never_negative,
  1063                                                         Node* *pos_index) {
  1064   if (stopped())
  1065     return NULL;                // already stopped
  1066   if (_gvn.type(index)->higher_equal(TypeInt::POS1)) // [1,maxint]
  1067     return NULL;                // index is already adequately typed
  1068   Node* cmp_le = _gvn.transform(new (C) CmpINode(index, intcon(0)));
  1069   BoolTest::mask le_or_eq = (never_negative ? BoolTest::eq : BoolTest::le);
  1070   Node* bol_le = _gvn.transform(new (C) BoolNode(cmp_le, le_or_eq));
  1071   Node* is_notp = generate_guard(bol_le, NULL, PROB_MIN);
  1072   if (is_notp != NULL && pos_index != NULL) {
  1073     // Emulate effect of Parse::adjust_map_after_if.
  1074     Node* ccast = new (C) CastIINode(index, TypeInt::POS1);
  1075     ccast->set_req(0, control());
  1076     (*pos_index) = _gvn.transform(ccast);
  1078   return is_notp;
  1081 // Make sure that 'position' is a valid limit index, in [0..length].
  1082 // There are two equivalent plans for checking this:
  1083 //   A. (offset + copyLength)  unsigned<=  arrayLength
  1084 //   B. offset  <=  (arrayLength - copyLength)
  1085 // We require that all of the values above, except for the sum and
  1086 // difference, are already known to be non-negative.
  1087 // Plan A is robust in the face of overflow, if offset and copyLength
  1088 // are both hugely positive.
  1089 //
  1090 // Plan B is less direct and intuitive, but it does not overflow at
  1091 // all, since the difference of two non-negatives is always
  1092 // representable.  Whenever Java methods must perform the equivalent
  1093 // check they generally use Plan B instead of Plan A.
  1094 // For the moment we use Plan A.
  1095 inline Node* LibraryCallKit::generate_limit_guard(Node* offset,
  1096                                                   Node* subseq_length,
  1097                                                   Node* array_length,
  1098                                                   RegionNode* region) {
  1099   if (stopped())
  1100     return NULL;                // already stopped
  1101   bool zero_offset = _gvn.type(offset) == TypeInt::ZERO;
  1102   if (zero_offset && subseq_length->eqv_uncast(array_length))
  1103     return NULL;                // common case of whole-array copy
  1104   Node* last = subseq_length;
  1105   if (!zero_offset)             // last += offset
  1106     last = _gvn.transform(new (C) AddINode(last, offset));
  1107   Node* cmp_lt = _gvn.transform(new (C) CmpUNode(array_length, last));
  1108   Node* bol_lt = _gvn.transform(new (C) BoolNode(cmp_lt, BoolTest::lt));
  1109   Node* is_over = generate_guard(bol_lt, region, PROB_MIN);
  1110   return is_over;
  1114 //--------------------------generate_current_thread--------------------
  1115 Node* LibraryCallKit::generate_current_thread(Node* &tls_output) {
  1116   ciKlass*    thread_klass = env()->Thread_klass();
  1117   const Type* thread_type  = TypeOopPtr::make_from_klass(thread_klass)->cast_to_ptr_type(TypePtr::NotNull);
  1118   Node* thread = _gvn.transform(new (C) ThreadLocalNode());
  1119   Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::threadObj_offset()));
  1120   Node* threadObj = make_load(NULL, p, thread_type, T_OBJECT, MemNode::unordered);
  1121   tls_output = thread;
  1122   return threadObj;
  1126 //------------------------------make_string_method_node------------------------
  1127 // Helper method for String intrinsic functions. This version is called
  1128 // with str1 and str2 pointing to String object nodes.
  1129 //
  1130 Node* LibraryCallKit::make_string_method_node(int opcode, Node* str1, Node* str2) {
  1131   Node* no_ctrl = NULL;
  1133   // Get start addr of string
  1134   Node* str1_value   = load_String_value(no_ctrl, str1);
  1135   Node* str1_offset  = load_String_offset(no_ctrl, str1);
  1136   Node* str1_start   = array_element_address(str1_value, str1_offset, T_CHAR);
  1138   // Get length of string 1
  1139   Node* str1_len  = load_String_length(no_ctrl, str1);
  1141   Node* str2_value   = load_String_value(no_ctrl, str2);
  1142   Node* str2_offset  = load_String_offset(no_ctrl, str2);
  1143   Node* str2_start   = array_element_address(str2_value, str2_offset, T_CHAR);
  1145   Node* str2_len = NULL;
  1146   Node* result = NULL;
  1148   switch (opcode) {
  1149   case Op_StrIndexOf:
  1150     // Get length of string 2
  1151     str2_len = load_String_length(no_ctrl, str2);
  1153     result = new (C) StrIndexOfNode(control(), memory(TypeAryPtr::CHARS),
  1154                                  str1_start, str1_len, str2_start, str2_len);
  1155     break;
  1156   case Op_StrComp:
  1157     // Get length of string 2
  1158     str2_len = load_String_length(no_ctrl, str2);
  1160     result = new (C) StrCompNode(control(), memory(TypeAryPtr::CHARS),
  1161                                  str1_start, str1_len, str2_start, str2_len);
  1162     break;
  1163   case Op_StrEquals:
  1164     result = new (C) StrEqualsNode(control(), memory(TypeAryPtr::CHARS),
  1165                                str1_start, str2_start, str1_len);
  1166     break;
  1167   default:
  1168     ShouldNotReachHere();
  1169     return NULL;
  1172   // All these intrinsics have checks.
  1173   C->set_has_split_ifs(true); // Has chance for split-if optimization
  1175   return _gvn.transform(result);
  1178 // Helper method for String intrinsic functions. This version is called
  1179 // with str1 and str2 pointing to char[] nodes, with cnt1 and cnt2 pointing
  1180 // to Int nodes containing the lenghts of str1 and str2.
  1181 //
  1182 Node* LibraryCallKit::make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2) {
  1183   Node* result = NULL;
  1184   switch (opcode) {
  1185   case Op_StrIndexOf:
  1186     result = new (C) StrIndexOfNode(control(), memory(TypeAryPtr::CHARS),
  1187                                  str1_start, cnt1, str2_start, cnt2);
  1188     break;
  1189   case Op_StrComp:
  1190     result = new (C) StrCompNode(control(), memory(TypeAryPtr::CHARS),
  1191                                  str1_start, cnt1, str2_start, cnt2);
  1192     break;
  1193   case Op_StrEquals:
  1194     result = new (C) StrEqualsNode(control(), memory(TypeAryPtr::CHARS),
  1195                                  str1_start, str2_start, cnt1);
  1196     break;
  1197   default:
  1198     ShouldNotReachHere();
  1199     return NULL;
  1202   // All these intrinsics have checks.
  1203   C->set_has_split_ifs(true); // Has chance for split-if optimization
  1205   return _gvn.transform(result);
  1208 //------------------------------inline_string_compareTo------------------------
  1209 // public int java.lang.String.compareTo(String anotherString);
  1210 bool LibraryCallKit::inline_string_compareTo() {
  1211   Node* receiver = null_check(argument(0));
  1212   Node* arg      = null_check(argument(1));
  1213   if (stopped()) {
  1214     return true;
  1216   set_result(make_string_method_node(Op_StrComp, receiver, arg));
  1217   return true;
  1220 //------------------------------inline_string_equals------------------------
  1221 bool LibraryCallKit::inline_string_equals() {
  1222   Node* receiver = null_check_receiver();
  1223   // NOTE: Do not null check argument for String.equals() because spec
  1224   // allows to specify NULL as argument.
  1225   Node* argument = this->argument(1);
  1226   if (stopped()) {
  1227     return true;
  1230   // paths (plus control) merge
  1231   RegionNode* region = new (C) RegionNode(5);
  1232   Node* phi = new (C) PhiNode(region, TypeInt::BOOL);
  1234   // does source == target string?
  1235   Node* cmp = _gvn.transform(new (C) CmpPNode(receiver, argument));
  1236   Node* bol = _gvn.transform(new (C) BoolNode(cmp, BoolTest::eq));
  1238   Node* if_eq = generate_slow_guard(bol, NULL);
  1239   if (if_eq != NULL) {
  1240     // receiver == argument
  1241     phi->init_req(2, intcon(1));
  1242     region->init_req(2, if_eq);
  1245   // get String klass for instanceOf
  1246   ciInstanceKlass* klass = env()->String_klass();
  1248   if (!stopped()) {
  1249     Node* inst = gen_instanceof(argument, makecon(TypeKlassPtr::make(klass)));
  1250     Node* cmp  = _gvn.transform(new (C) CmpINode(inst, intcon(1)));
  1251     Node* bol  = _gvn.transform(new (C) BoolNode(cmp, BoolTest::ne));
  1253     Node* inst_false = generate_guard(bol, NULL, PROB_MIN);
  1254     //instanceOf == true, fallthrough
  1256     if (inst_false != NULL) {
  1257       phi->init_req(3, intcon(0));
  1258       region->init_req(3, inst_false);
  1262   if (!stopped()) {
  1263     const TypeOopPtr* string_type = TypeOopPtr::make_from_klass(klass);
  1265     // Properly cast the argument to String
  1266     argument = _gvn.transform(new (C) CheckCastPPNode(control(), argument, string_type));
  1267     // This path is taken only when argument's type is String:NotNull.
  1268     argument = cast_not_null(argument, false);
  1270     Node* no_ctrl = NULL;
  1272     // Get start addr of receiver
  1273     Node* receiver_val    = load_String_value(no_ctrl, receiver);
  1274     Node* receiver_offset = load_String_offset(no_ctrl, receiver);
  1275     Node* receiver_start = array_element_address(receiver_val, receiver_offset, T_CHAR);
  1277     // Get length of receiver
  1278     Node* receiver_cnt  = load_String_length(no_ctrl, receiver);
  1280     // Get start addr of argument
  1281     Node* argument_val    = load_String_value(no_ctrl, argument);
  1282     Node* argument_offset = load_String_offset(no_ctrl, argument);
  1283     Node* argument_start = array_element_address(argument_val, argument_offset, T_CHAR);
  1285     // Get length of argument
  1286     Node* argument_cnt  = load_String_length(no_ctrl, argument);
  1288     // Check for receiver count != argument count
  1289     Node* cmp = _gvn.transform(new(C) CmpINode(receiver_cnt, argument_cnt));
  1290     Node* bol = _gvn.transform(new(C) BoolNode(cmp, BoolTest::ne));
  1291     Node* if_ne = generate_slow_guard(bol, NULL);
  1292     if (if_ne != NULL) {
  1293       phi->init_req(4, intcon(0));
  1294       region->init_req(4, if_ne);
  1297     // Check for count == 0 is done by assembler code for StrEquals.
  1299     if (!stopped()) {
  1300       Node* equals = make_string_method_node(Op_StrEquals, receiver_start, receiver_cnt, argument_start, argument_cnt);
  1301       phi->init_req(1, equals);
  1302       region->init_req(1, control());
  1306   // post merge
  1307   set_control(_gvn.transform(region));
  1308   record_for_igvn(region);
  1310   set_result(_gvn.transform(phi));
  1311   return true;
  1314 //------------------------------inline_array_equals----------------------------
  1315 bool LibraryCallKit::inline_array_equals() {
  1316   Node* arg1 = argument(0);
  1317   Node* arg2 = argument(1);
  1318   set_result(_gvn.transform(new (C) AryEqNode(control(), memory(TypeAryPtr::CHARS), arg1, arg2)));
  1319   return true;
  1322 // Java version of String.indexOf(constant string)
  1323 // class StringDecl {
  1324 //   StringDecl(char[] ca) {
  1325 //     offset = 0;
  1326 //     count = ca.length;
  1327 //     value = ca;
  1328 //   }
  1329 //   int offset;
  1330 //   int count;
  1331 //   char[] value;
  1332 // }
  1333 //
  1334 // static int string_indexOf_J(StringDecl string_object, char[] target_object,
  1335 //                             int targetOffset, int cache_i, int md2) {
  1336 //   int cache = cache_i;
  1337 //   int sourceOffset = string_object.offset;
  1338 //   int sourceCount = string_object.count;
  1339 //   int targetCount = target_object.length;
  1340 //
  1341 //   int targetCountLess1 = targetCount - 1;
  1342 //   int sourceEnd = sourceOffset + sourceCount - targetCountLess1;
  1343 //
  1344 //   char[] source = string_object.value;
  1345 //   char[] target = target_object;
  1346 //   int lastChar = target[targetCountLess1];
  1347 //
  1348 //  outer_loop:
  1349 //   for (int i = sourceOffset; i < sourceEnd; ) {
  1350 //     int src = source[i + targetCountLess1];
  1351 //     if (src == lastChar) {
  1352 //       // With random strings and a 4-character alphabet,
  1353 //       // reverse matching at this point sets up 0.8% fewer
  1354 //       // frames, but (paradoxically) makes 0.3% more probes.
  1355 //       // Since those probes are nearer the lastChar probe,
  1356 //       // there is may be a net D$ win with reverse matching.
  1357 //       // But, reversing loop inhibits unroll of inner loop
  1358 //       // for unknown reason.  So, does running outer loop from
  1359 //       // (sourceOffset - targetCountLess1) to (sourceOffset + sourceCount)
  1360 //       for (int j = 0; j < targetCountLess1; j++) {
  1361 //         if (target[targetOffset + j] != source[i+j]) {
  1362 //           if ((cache & (1 << source[i+j])) == 0) {
  1363 //             if (md2 < j+1) {
  1364 //               i += j+1;
  1365 //               continue outer_loop;
  1366 //             }
  1367 //           }
  1368 //           i += md2;
  1369 //           continue outer_loop;
  1370 //         }
  1371 //       }
  1372 //       return i - sourceOffset;
  1373 //     }
  1374 //     if ((cache & (1 << src)) == 0) {
  1375 //       i += targetCountLess1;
  1376 //     } // using "i += targetCount;" and an "else i++;" causes a jump to jump.
  1377 //     i++;
  1378 //   }
  1379 //   return -1;
  1380 // }
  1382 //------------------------------string_indexOf------------------------
  1383 Node* LibraryCallKit::string_indexOf(Node* string_object, ciTypeArray* target_array, jint targetOffset_i,
  1384                                      jint cache_i, jint md2_i) {
  1386   Node* no_ctrl  = NULL;
  1387   float likely   = PROB_LIKELY(0.9);
  1388   float unlikely = PROB_UNLIKELY(0.9);
  1390   const int nargs = 0; // no arguments to push back for uncommon trap in predicate
  1392   Node* source        = load_String_value(no_ctrl, string_object);
  1393   Node* sourceOffset  = load_String_offset(no_ctrl, string_object);
  1394   Node* sourceCount   = load_String_length(no_ctrl, string_object);
  1396   Node* target = _gvn.transform( makecon(TypeOopPtr::make_from_constant(target_array, true)));
  1397   jint target_length = target_array->length();
  1398   const TypeAry* target_array_type = TypeAry::make(TypeInt::CHAR, TypeInt::make(0, target_length, Type::WidenMin));
  1399   const TypeAryPtr* target_type = TypeAryPtr::make(TypePtr::BotPTR, target_array_type, target_array->klass(), true, Type::OffsetBot);
  1401   // String.value field is known to be @Stable.
  1402   if (UseImplicitStableValues) {
  1403     target = cast_array_to_stable(target, target_type);
  1406   IdealKit kit(this, false, true);
  1407 #define __ kit.
  1408   Node* zero             = __ ConI(0);
  1409   Node* one              = __ ConI(1);
  1410   Node* cache            = __ ConI(cache_i);
  1411   Node* md2              = __ ConI(md2_i);
  1412   Node* lastChar         = __ ConI(target_array->char_at(target_length - 1));
  1413   Node* targetCount      = __ ConI(target_length);
  1414   Node* targetCountLess1 = __ ConI(target_length - 1);
  1415   Node* targetOffset     = __ ConI(targetOffset_i);
  1416   Node* sourceEnd        = __ SubI(__ AddI(sourceOffset, sourceCount), targetCountLess1);
  1418   IdealVariable rtn(kit), i(kit), j(kit); __ declarations_done();
  1419   Node* outer_loop = __ make_label(2 /* goto */);
  1420   Node* return_    = __ make_label(1);
  1422   __ set(rtn,__ ConI(-1));
  1423   __ loop(this, nargs, i, sourceOffset, BoolTest::lt, sourceEnd); {
  1424        Node* i2  = __ AddI(__ value(i), targetCountLess1);
  1425        // pin to prohibit loading of "next iteration" value which may SEGV (rare)
  1426        Node* src = load_array_element(__ ctrl(), source, i2, TypeAryPtr::CHARS);
  1427        __ if_then(src, BoolTest::eq, lastChar, unlikely); {
  1428          __ loop(this, nargs, j, zero, BoolTest::lt, targetCountLess1); {
  1429               Node* tpj = __ AddI(targetOffset, __ value(j));
  1430               Node* targ = load_array_element(no_ctrl, target, tpj, target_type);
  1431               Node* ipj  = __ AddI(__ value(i), __ value(j));
  1432               Node* src2 = load_array_element(no_ctrl, source, ipj, TypeAryPtr::CHARS);
  1433               __ if_then(targ, BoolTest::ne, src2); {
  1434                 __ if_then(__ AndI(cache, __ LShiftI(one, src2)), BoolTest::eq, zero); {
  1435                   __ if_then(md2, BoolTest::lt, __ AddI(__ value(j), one)); {
  1436                     __ increment(i, __ AddI(__ value(j), one));
  1437                     __ goto_(outer_loop);
  1438                   } __ end_if(); __ dead(j);
  1439                 }__ end_if(); __ dead(j);
  1440                 __ increment(i, md2);
  1441                 __ goto_(outer_loop);
  1442               }__ end_if();
  1443               __ increment(j, one);
  1444          }__ end_loop(); __ dead(j);
  1445          __ set(rtn, __ SubI(__ value(i), sourceOffset)); __ dead(i);
  1446          __ goto_(return_);
  1447        }__ end_if();
  1448        __ if_then(__ AndI(cache, __ LShiftI(one, src)), BoolTest::eq, zero, likely); {
  1449          __ increment(i, targetCountLess1);
  1450        }__ end_if();
  1451        __ increment(i, one);
  1452        __ bind(outer_loop);
  1453   }__ end_loop(); __ dead(i);
  1454   __ bind(return_);
  1456   // Final sync IdealKit and GraphKit.
  1457   final_sync(kit);
  1458   Node* result = __ value(rtn);
  1459 #undef __
  1460   C->set_has_loops(true);
  1461   return result;
  1464 //------------------------------inline_string_indexOf------------------------
  1465 bool LibraryCallKit::inline_string_indexOf() {
  1466   Node* receiver = argument(0);
  1467   Node* arg      = argument(1);
  1469   Node* result;
  1470   // Disable the use of pcmpestri until it can be guaranteed that
  1471   // the load doesn't cross into the uncommited space.
  1472   if (Matcher::has_match_rule(Op_StrIndexOf) &&
  1473       UseSSE42Intrinsics) {
  1474     // Generate SSE4.2 version of indexOf
  1475     // We currently only have match rules that use SSE4.2
  1477     receiver = null_check(receiver);
  1478     arg      = null_check(arg);
  1479     if (stopped()) {
  1480       return true;
  1483     ciInstanceKlass* str_klass = env()->String_klass();
  1484     const TypeOopPtr* string_type = TypeOopPtr::make_from_klass(str_klass);
  1486     // Make the merge point
  1487     RegionNode* result_rgn = new (C) RegionNode(4);
  1488     Node*       result_phi = new (C) PhiNode(result_rgn, TypeInt::INT);
  1489     Node* no_ctrl  = NULL;
  1491     // Get start addr of source string
  1492     Node* source = load_String_value(no_ctrl, receiver);
  1493     Node* source_offset = load_String_offset(no_ctrl, receiver);
  1494     Node* source_start = array_element_address(source, source_offset, T_CHAR);
  1496     // Get length of source string
  1497     Node* source_cnt  = load_String_length(no_ctrl, receiver);
  1499     // Get start addr of substring
  1500     Node* substr = load_String_value(no_ctrl, arg);
  1501     Node* substr_offset = load_String_offset(no_ctrl, arg);
  1502     Node* substr_start = array_element_address(substr, substr_offset, T_CHAR);
  1504     // Get length of source string
  1505     Node* substr_cnt  = load_String_length(no_ctrl, arg);
  1507     // Check for substr count > string count
  1508     Node* cmp = _gvn.transform(new(C) CmpINode(substr_cnt, source_cnt));
  1509     Node* bol = _gvn.transform(new(C) BoolNode(cmp, BoolTest::gt));
  1510     Node* if_gt = generate_slow_guard(bol, NULL);
  1511     if (if_gt != NULL) {
  1512       result_phi->init_req(2, intcon(-1));
  1513       result_rgn->init_req(2, if_gt);
  1516     if (!stopped()) {
  1517       // Check for substr count == 0
  1518       cmp = _gvn.transform(new(C) CmpINode(substr_cnt, intcon(0)));
  1519       bol = _gvn.transform(new(C) BoolNode(cmp, BoolTest::eq));
  1520       Node* if_zero = generate_slow_guard(bol, NULL);
  1521       if (if_zero != NULL) {
  1522         result_phi->init_req(3, intcon(0));
  1523         result_rgn->init_req(3, if_zero);
  1527     if (!stopped()) {
  1528       result = make_string_method_node(Op_StrIndexOf, source_start, source_cnt, substr_start, substr_cnt);
  1529       result_phi->init_req(1, result);
  1530       result_rgn->init_req(1, control());
  1532     set_control(_gvn.transform(result_rgn));
  1533     record_for_igvn(result_rgn);
  1534     result = _gvn.transform(result_phi);
  1536   } else { // Use LibraryCallKit::string_indexOf
  1537     // don't intrinsify if argument isn't a constant string.
  1538     if (!arg->is_Con()) {
  1539      return false;
  1541     const TypeOopPtr* str_type = _gvn.type(arg)->isa_oopptr();
  1542     if (str_type == NULL) {
  1543       return false;
  1545     ciInstanceKlass* klass = env()->String_klass();
  1546     ciObject* str_const = str_type->const_oop();
  1547     if (str_const == NULL || str_const->klass() != klass) {
  1548       return false;
  1550     ciInstance* str = str_const->as_instance();
  1551     assert(str != NULL, "must be instance");
  1553     ciObject* v = str->field_value_by_offset(java_lang_String::value_offset_in_bytes()).as_object();
  1554     ciTypeArray* pat = v->as_type_array(); // pattern (argument) character array
  1556     int o;
  1557     int c;
  1558     if (java_lang_String::has_offset_field()) {
  1559       o = str->field_value_by_offset(java_lang_String::offset_offset_in_bytes()).as_int();
  1560       c = str->field_value_by_offset(java_lang_String::count_offset_in_bytes()).as_int();
  1561     } else {
  1562       o = 0;
  1563       c = pat->length();
  1566     // constant strings have no offset and count == length which
  1567     // simplifies the resulting code somewhat so lets optimize for that.
  1568     if (o != 0 || c != pat->length()) {
  1569      return false;
  1572     receiver = null_check(receiver, T_OBJECT);
  1573     // NOTE: No null check on the argument is needed since it's a constant String oop.
  1574     if (stopped()) {
  1575       return true;
  1578     // The null string as a pattern always returns 0 (match at beginning of string)
  1579     if (c == 0) {
  1580       set_result(intcon(0));
  1581       return true;
  1584     // Generate default indexOf
  1585     jchar lastChar = pat->char_at(o + (c - 1));
  1586     int cache = 0;
  1587     int i;
  1588     for (i = 0; i < c - 1; i++) {
  1589       assert(i < pat->length(), "out of range");
  1590       cache |= (1 << (pat->char_at(o + i) & (sizeof(cache) * BitsPerByte - 1)));
  1593     int md2 = c;
  1594     for (i = 0; i < c - 1; i++) {
  1595       assert(i < pat->length(), "out of range");
  1596       if (pat->char_at(o + i) == lastChar) {
  1597         md2 = (c - 1) - i;
  1601     result = string_indexOf(receiver, pat, o, cache, md2);
  1603   set_result(result);
  1604   return true;
  1607 //--------------------------round_double_node--------------------------------
  1608 // Round a double node if necessary.
  1609 Node* LibraryCallKit::round_double_node(Node* n) {
  1610   if (Matcher::strict_fp_requires_explicit_rounding && UseSSE <= 1)
  1611     n = _gvn.transform(new (C) RoundDoubleNode(0, n));
  1612   return n;
  1615 //------------------------------inline_math-----------------------------------
  1616 // public static double Math.abs(double)
  1617 // public static double Math.sqrt(double)
  1618 // public static double Math.log(double)
  1619 // public static double Math.log10(double)
  1620 bool LibraryCallKit::inline_math(vmIntrinsics::ID id) {
  1621   Node* arg = round_double_node(argument(0));
  1622   Node* n;
  1623   switch (id) {
  1624   case vmIntrinsics::_dabs:   n = new (C) AbsDNode(                arg);  break;
  1625   case vmIntrinsics::_dsqrt:  n = new (C) SqrtDNode(C, control(),  arg);  break;
  1626   case vmIntrinsics::_dlog:   n = new (C) LogDNode(C, control(),   arg);  break;
  1627   case vmIntrinsics::_dlog10: n = new (C) Log10DNode(C, control(), arg);  break;
  1628   default:  fatal_unexpected_iid(id);  break;
  1630   set_result(_gvn.transform(n));
  1631   return true;
  1634 //------------------------------inline_trig----------------------------------
  1635 // Inline sin/cos/tan instructions, if possible.  If rounding is required, do
  1636 // argument reduction which will turn into a fast/slow diamond.
  1637 bool LibraryCallKit::inline_trig(vmIntrinsics::ID id) {
  1638   Node* arg = round_double_node(argument(0));
  1639   Node* n = NULL;
  1641   switch (id) {
  1642   case vmIntrinsics::_dsin:  n = new (C) SinDNode(C, control(), arg);  break;
  1643   case vmIntrinsics::_dcos:  n = new (C) CosDNode(C, control(), arg);  break;
  1644   case vmIntrinsics::_dtan:  n = new (C) TanDNode(C, control(), arg);  break;
  1645   default:  fatal_unexpected_iid(id);  break;
  1647   n = _gvn.transform(n);
  1649   // Rounding required?  Check for argument reduction!
  1650   if (Matcher::strict_fp_requires_explicit_rounding) {
  1651     static const double     pi_4 =  0.7853981633974483;
  1652     static const double neg_pi_4 = -0.7853981633974483;
  1653     // pi/2 in 80-bit extended precision
  1654     // static const unsigned char pi_2_bits_x[] = {0x35,0xc2,0x68,0x21,0xa2,0xda,0x0f,0xc9,0xff,0x3f,0x00,0x00,0x00,0x00,0x00,0x00};
  1655     // -pi/2 in 80-bit extended precision
  1656     // static const unsigned char neg_pi_2_bits_x[] = {0x35,0xc2,0x68,0x21,0xa2,0xda,0x0f,0xc9,0xff,0xbf,0x00,0x00,0x00,0x00,0x00,0x00};
  1657     // Cutoff value for using this argument reduction technique
  1658     //static const double    pi_2_minus_epsilon =  1.564660403643354;
  1659     //static const double neg_pi_2_plus_epsilon = -1.564660403643354;
  1661     // Pseudocode for sin:
  1662     // if (x <= Math.PI / 4.0) {
  1663     //   if (x >= -Math.PI / 4.0) return  fsin(x);
  1664     //   if (x >= -Math.PI / 2.0) return -fcos(x + Math.PI / 2.0);
  1665     // } else {
  1666     //   if (x <=  Math.PI / 2.0) return  fcos(x - Math.PI / 2.0);
  1667     // }
  1668     // return StrictMath.sin(x);
  1670     // Pseudocode for cos:
  1671     // if (x <= Math.PI / 4.0) {
  1672     //   if (x >= -Math.PI / 4.0) return  fcos(x);
  1673     //   if (x >= -Math.PI / 2.0) return  fsin(x + Math.PI / 2.0);
  1674     // } else {
  1675     //   if (x <=  Math.PI / 2.0) return -fsin(x - Math.PI / 2.0);
  1676     // }
  1677     // return StrictMath.cos(x);
  1679     // Actually, sticking in an 80-bit Intel value into C2 will be tough; it
  1680     // requires a special machine instruction to load it.  Instead we'll try
  1681     // the 'easy' case.  If we really need the extra range +/- PI/2 we'll
  1682     // probably do the math inside the SIN encoding.
  1684     // Make the merge point
  1685     RegionNode* r = new (C) RegionNode(3);
  1686     Node* phi = new (C) PhiNode(r, Type::DOUBLE);
  1688     // Flatten arg so we need only 1 test
  1689     Node *abs = _gvn.transform(new (C) AbsDNode(arg));
  1690     // Node for PI/4 constant
  1691     Node *pi4 = makecon(TypeD::make(pi_4));
  1692     // Check PI/4 : abs(arg)
  1693     Node *cmp = _gvn.transform(new (C) CmpDNode(pi4,abs));
  1694     // Check: If PI/4 < abs(arg) then go slow
  1695     Node *bol = _gvn.transform(new (C) BoolNode( cmp, BoolTest::lt ));
  1696     // Branch either way
  1697     IfNode *iff = create_and_xform_if(control(),bol, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
  1698     set_control(opt_iff(r,iff));
  1700     // Set fast path result
  1701     phi->init_req(2, n);
  1703     // Slow path - non-blocking leaf call
  1704     Node* call = NULL;
  1705     switch (id) {
  1706     case vmIntrinsics::_dsin:
  1707       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
  1708                                CAST_FROM_FN_PTR(address, SharedRuntime::dsin),
  1709                                "Sin", NULL, arg, top());
  1710       break;
  1711     case vmIntrinsics::_dcos:
  1712       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
  1713                                CAST_FROM_FN_PTR(address, SharedRuntime::dcos),
  1714                                "Cos", NULL, arg, top());
  1715       break;
  1716     case vmIntrinsics::_dtan:
  1717       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
  1718                                CAST_FROM_FN_PTR(address, SharedRuntime::dtan),
  1719                                "Tan", NULL, arg, top());
  1720       break;
  1722     assert(control()->in(0) == call, "");
  1723     Node* slow_result = _gvn.transform(new (C) ProjNode(call, TypeFunc::Parms));
  1724     r->init_req(1, control());
  1725     phi->init_req(1, slow_result);
  1727     // Post-merge
  1728     set_control(_gvn.transform(r));
  1729     record_for_igvn(r);
  1730     n = _gvn.transform(phi);
  1732     C->set_has_split_ifs(true); // Has chance for split-if optimization
  1734   set_result(n);
  1735   return true;
  1738 Node* LibraryCallKit::finish_pow_exp(Node* result, Node* x, Node* y, const TypeFunc* call_type, address funcAddr, const char* funcName) {
  1739   //-------------------
  1740   //result=(result.isNaN())? funcAddr():result;
  1741   // Check: If isNaN() by checking result!=result? then either trap
  1742   // or go to runtime
  1743   Node* cmpisnan = _gvn.transform(new (C) CmpDNode(result, result));
  1744   // Build the boolean node
  1745   Node* bolisnum = _gvn.transform(new (C) BoolNode(cmpisnan, BoolTest::eq));
  1747   if (!too_many_traps(Deoptimization::Reason_intrinsic)) {
  1748     { BuildCutout unless(this, bolisnum, PROB_STATIC_FREQUENT);
  1749       // The pow or exp intrinsic returned a NaN, which requires a call
  1750       // to the runtime.  Recompile with the runtime call.
  1751       uncommon_trap(Deoptimization::Reason_intrinsic,
  1752                     Deoptimization::Action_make_not_entrant);
  1754     return result;
  1755   } else {
  1756     // If this inlining ever returned NaN in the past, we compile a call
  1757     // to the runtime to properly handle corner cases
  1759     IfNode* iff = create_and_xform_if(control(), bolisnum, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
  1760     Node* if_slow = _gvn.transform(new (C) IfFalseNode(iff));
  1761     Node* if_fast = _gvn.transform(new (C) IfTrueNode(iff));
  1763     if (!if_slow->is_top()) {
  1764       RegionNode* result_region = new (C) RegionNode(3);
  1765       PhiNode*    result_val = new (C) PhiNode(result_region, Type::DOUBLE);
  1767       result_region->init_req(1, if_fast);
  1768       result_val->init_req(1, result);
  1770       set_control(if_slow);
  1772       const TypePtr* no_memory_effects = NULL;
  1773       Node* rt = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName,
  1774                                    no_memory_effects,
  1775                                    x, top(), y, y ? top() : NULL);
  1776       Node* value = _gvn.transform(new (C) ProjNode(rt, TypeFunc::Parms+0));
  1777 #ifdef ASSERT
  1778       Node* value_top = _gvn.transform(new (C) ProjNode(rt, TypeFunc::Parms+1));
  1779       assert(value_top == top(), "second value must be top");
  1780 #endif
  1782       result_region->init_req(2, control());
  1783       result_val->init_req(2, value);
  1784       set_control(_gvn.transform(result_region));
  1785       return _gvn.transform(result_val);
  1786     } else {
  1787       return result;
  1792 //------------------------------inline_exp-------------------------------------
  1793 // Inline exp instructions, if possible.  The Intel hardware only misses
  1794 // really odd corner cases (+/- Infinity).  Just uncommon-trap them.
  1795 bool LibraryCallKit::inline_exp() {
  1796   Node* arg = round_double_node(argument(0));
  1797   Node* n   = _gvn.transform(new (C) ExpDNode(C, control(), arg));
  1799   n = finish_pow_exp(n, arg, NULL, OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dexp), "EXP");
  1800   set_result(n);
  1802   C->set_has_split_ifs(true); // Has chance for split-if optimization
  1803   return true;
  1806 //------------------------------inline_pow-------------------------------------
  1807 // Inline power instructions, if possible.
  1808 bool LibraryCallKit::inline_pow() {
  1809   // Pseudocode for pow
  1810   // if (y == 2) {
  1811   //   return x * x;
  1812   // } else {
  1813   //   if (x <= 0.0) {
  1814   //     long longy = (long)y;
  1815   //     if ((double)longy == y) { // if y is long
  1816   //       if (y + 1 == y) longy = 0; // huge number: even
  1817   //       result = ((1&longy) == 0)?-DPow(abs(x), y):DPow(abs(x), y);
  1818   //     } else {
  1819   //       result = NaN;
  1820   //     }
  1821   //   } else {
  1822   //     result = DPow(x,y);
  1823   //   }
  1824   //   if (result != result)?  {
  1825   //     result = uncommon_trap() or runtime_call();
  1826   //   }
  1827   //   return result;
  1828   // }
  1830   Node* x = round_double_node(argument(0));
  1831   Node* y = round_double_node(argument(2));
  1833   Node* result = NULL;
  1835   Node*   const_two_node = makecon(TypeD::make(2.0));
  1836   Node*   cmp_node       = _gvn.transform(new (C) CmpDNode(y, const_two_node));
  1837   Node*   bool_node      = _gvn.transform(new (C) BoolNode(cmp_node, BoolTest::eq));
  1838   IfNode* if_node        = create_and_xform_if(control(), bool_node, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
  1839   Node*   if_true        = _gvn.transform(new (C) IfTrueNode(if_node));
  1840   Node*   if_false       = _gvn.transform(new (C) IfFalseNode(if_node));
  1842   RegionNode* region_node = new (C) RegionNode(3);
  1843   region_node->init_req(1, if_true);
  1845   Node* phi_node = new (C) PhiNode(region_node, Type::DOUBLE);
  1846   // special case for x^y where y == 2, we can convert it to x * x
  1847   phi_node->init_req(1, _gvn.transform(new (C) MulDNode(x, x)));
  1849   // set control to if_false since we will now process the false branch
  1850   set_control(if_false);
  1852   if (!too_many_traps(Deoptimization::Reason_intrinsic)) {
  1853     // Short form: skip the fancy tests and just check for NaN result.
  1854     result = _gvn.transform(new (C) PowDNode(C, control(), x, y));
  1855   } else {
  1856     // If this inlining ever returned NaN in the past, include all
  1857     // checks + call to the runtime.
  1859     // Set the merge point for If node with condition of (x <= 0.0)
  1860     // There are four possible paths to region node and phi node
  1861     RegionNode *r = new (C) RegionNode(4);
  1862     Node *phi = new (C) PhiNode(r, Type::DOUBLE);
  1864     // Build the first if node: if (x <= 0.0)
  1865     // Node for 0 constant
  1866     Node *zeronode = makecon(TypeD::ZERO);
  1867     // Check x:0
  1868     Node *cmp = _gvn.transform(new (C) CmpDNode(x, zeronode));
  1869     // Check: If (x<=0) then go complex path
  1870     Node *bol1 = _gvn.transform(new (C) BoolNode( cmp, BoolTest::le ));
  1871     // Branch either way
  1872     IfNode *if1 = create_and_xform_if(control(),bol1, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
  1873     // Fast path taken; set region slot 3
  1874     Node *fast_taken = _gvn.transform(new (C) IfFalseNode(if1));
  1875     r->init_req(3,fast_taken); // Capture fast-control
  1877     // Fast path not-taken, i.e. slow path
  1878     Node *complex_path = _gvn.transform(new (C) IfTrueNode(if1));
  1880     // Set fast path result
  1881     Node *fast_result = _gvn.transform(new (C) PowDNode(C, control(), x, y));
  1882     phi->init_req(3, fast_result);
  1884     // Complex path
  1885     // Build the second if node (if y is long)
  1886     // Node for (long)y
  1887     Node *longy = _gvn.transform(new (C) ConvD2LNode(y));
  1888     // Node for (double)((long) y)
  1889     Node *doublelongy= _gvn.transform(new (C) ConvL2DNode(longy));
  1890     // Check (double)((long) y) : y
  1891     Node *cmplongy= _gvn.transform(new (C) CmpDNode(doublelongy, y));
  1892     // Check if (y isn't long) then go to slow path
  1894     Node *bol2 = _gvn.transform(new (C) BoolNode( cmplongy, BoolTest::ne ));
  1895     // Branch either way
  1896     IfNode *if2 = create_and_xform_if(complex_path,bol2, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
  1897     Node* ylong_path = _gvn.transform(new (C) IfFalseNode(if2));
  1899     Node *slow_path = _gvn.transform(new (C) IfTrueNode(if2));
  1901     // Calculate DPow(abs(x), y)*(1 & (long)y)
  1902     // Node for constant 1
  1903     Node *conone = longcon(1);
  1904     // 1& (long)y
  1905     Node *signnode= _gvn.transform(new (C) AndLNode(conone, longy));
  1907     // A huge number is always even. Detect a huge number by checking
  1908     // if y + 1 == y and set integer to be tested for parity to 0.
  1909     // Required for corner case:
  1910     // (long)9.223372036854776E18 = max_jlong
  1911     // (double)(long)9.223372036854776E18 = 9.223372036854776E18
  1912     // max_jlong is odd but 9.223372036854776E18 is even
  1913     Node* yplus1 = _gvn.transform(new (C) AddDNode(y, makecon(TypeD::make(1))));
  1914     Node *cmpyplus1= _gvn.transform(new (C) CmpDNode(yplus1, y));
  1915     Node *bolyplus1 = _gvn.transform(new (C) BoolNode( cmpyplus1, BoolTest::eq ));
  1916     Node* correctedsign = NULL;
  1917     if (ConditionalMoveLimit != 0) {
  1918       correctedsign = _gvn.transform( CMoveNode::make(C, NULL, bolyplus1, signnode, longcon(0), TypeLong::LONG));
  1919     } else {
  1920       IfNode *ifyplus1 = create_and_xform_if(ylong_path,bolyplus1, PROB_FAIR, COUNT_UNKNOWN);
  1921       RegionNode *r = new (C) RegionNode(3);
  1922       Node *phi = new (C) PhiNode(r, TypeLong::LONG);
  1923       r->init_req(1, _gvn.transform(new (C) IfFalseNode(ifyplus1)));
  1924       r->init_req(2, _gvn.transform(new (C) IfTrueNode(ifyplus1)));
  1925       phi->init_req(1, signnode);
  1926       phi->init_req(2, longcon(0));
  1927       correctedsign = _gvn.transform(phi);
  1928       ylong_path = _gvn.transform(r);
  1929       record_for_igvn(r);
  1932     // zero node
  1933     Node *conzero = longcon(0);
  1934     // Check (1&(long)y)==0?
  1935     Node *cmpeq1 = _gvn.transform(new (C) CmpLNode(correctedsign, conzero));
  1936     // Check if (1&(long)y)!=0?, if so the result is negative
  1937     Node *bol3 = _gvn.transform(new (C) BoolNode( cmpeq1, BoolTest::ne ));
  1938     // abs(x)
  1939     Node *absx=_gvn.transform(new (C) AbsDNode(x));
  1940     // abs(x)^y
  1941     Node *absxpowy = _gvn.transform(new (C) PowDNode(C, control(), absx, y));
  1942     // -abs(x)^y
  1943     Node *negabsxpowy = _gvn.transform(new (C) NegDNode (absxpowy));
  1944     // (1&(long)y)==1?-DPow(abs(x), y):DPow(abs(x), y)
  1945     Node *signresult = NULL;
  1946     if (ConditionalMoveLimit != 0) {
  1947       signresult = _gvn.transform( CMoveNode::make(C, NULL, bol3, absxpowy, negabsxpowy, Type::DOUBLE));
  1948     } else {
  1949       IfNode *ifyeven = create_and_xform_if(ylong_path,bol3, PROB_FAIR, COUNT_UNKNOWN);
  1950       RegionNode *r = new (C) RegionNode(3);
  1951       Node *phi = new (C) PhiNode(r, Type::DOUBLE);
  1952       r->init_req(1, _gvn.transform(new (C) IfFalseNode(ifyeven)));
  1953       r->init_req(2, _gvn.transform(new (C) IfTrueNode(ifyeven)));
  1954       phi->init_req(1, absxpowy);
  1955       phi->init_req(2, negabsxpowy);
  1956       signresult = _gvn.transform(phi);
  1957       ylong_path = _gvn.transform(r);
  1958       record_for_igvn(r);
  1960     // Set complex path fast result
  1961     r->init_req(2, ylong_path);
  1962     phi->init_req(2, signresult);
  1964     static const jlong nan_bits = CONST64(0x7ff8000000000000);
  1965     Node *slow_result = makecon(TypeD::make(*(double*)&nan_bits)); // return NaN
  1966     r->init_req(1,slow_path);
  1967     phi->init_req(1,slow_result);
  1969     // Post merge
  1970     set_control(_gvn.transform(r));
  1971     record_for_igvn(r);
  1972     result = _gvn.transform(phi);
  1975   result = finish_pow_exp(result, x, y, OptoRuntime::Math_DD_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dpow), "POW");
  1977   // control from finish_pow_exp is now input to the region node
  1978   region_node->set_req(2, control());
  1979   // the result from finish_pow_exp is now input to the phi node
  1980   phi_node->init_req(2, result);
  1981   set_control(_gvn.transform(region_node));
  1982   record_for_igvn(region_node);
  1983   set_result(_gvn.transform(phi_node));
  1985   C->set_has_split_ifs(true); // Has chance for split-if optimization
  1986   return true;
  1989 //------------------------------runtime_math-----------------------------
  1990 bool LibraryCallKit::runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName) {
  1991   assert(call_type == OptoRuntime::Math_DD_D_Type() || call_type == OptoRuntime::Math_D_D_Type(),
  1992          "must be (DD)D or (D)D type");
  1994   // Inputs
  1995   Node* a = round_double_node(argument(0));
  1996   Node* b = (call_type == OptoRuntime::Math_DD_D_Type()) ? round_double_node(argument(2)) : NULL;
  1998   const TypePtr* no_memory_effects = NULL;
  1999   Node* trig = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName,
  2000                                  no_memory_effects,
  2001                                  a, top(), b, b ? top() : NULL);
  2002   Node* value = _gvn.transform(new (C) ProjNode(trig, TypeFunc::Parms+0));
  2003 #ifdef ASSERT
  2004   Node* value_top = _gvn.transform(new (C) ProjNode(trig, TypeFunc::Parms+1));
  2005   assert(value_top == top(), "second value must be top");
  2006 #endif
  2008   set_result(value);
  2009   return true;
  2012 //------------------------------inline_math_native-----------------------------
  2013 bool LibraryCallKit::inline_math_native(vmIntrinsics::ID id) {
  2014 #define FN_PTR(f) CAST_FROM_FN_PTR(address, f)
  2015   switch (id) {
  2016     // These intrinsics are not properly supported on all hardware
  2017   case vmIntrinsics::_dcos:   return Matcher::has_match_rule(Op_CosD)   ? inline_trig(id) :
  2018     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dcos),   "COS");
  2019   case vmIntrinsics::_dsin:   return Matcher::has_match_rule(Op_SinD)   ? inline_trig(id) :
  2020     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dsin),   "SIN");
  2021   case vmIntrinsics::_dtan:   return Matcher::has_match_rule(Op_TanD)   ? inline_trig(id) :
  2022     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dtan),   "TAN");
  2024   case vmIntrinsics::_dlog:   return Matcher::has_match_rule(Op_LogD)   ? inline_math(id) :
  2025     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dlog),   "LOG");
  2026   case vmIntrinsics::_dlog10: return Matcher::has_match_rule(Op_Log10D) ? inline_math(id) :
  2027     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dlog10), "LOG10");
  2029     // These intrinsics are supported on all hardware
  2030   case vmIntrinsics::_dsqrt:  return Matcher::match_rule_supported(Op_SqrtD) ? inline_math(id) : false;
  2031   case vmIntrinsics::_dabs:   return Matcher::has_match_rule(Op_AbsD)   ? inline_math(id) : false;
  2033   case vmIntrinsics::_dexp:   return Matcher::has_match_rule(Op_ExpD)   ? inline_exp()    :
  2034     runtime_math(OptoRuntime::Math_D_D_Type(),  FN_PTR(SharedRuntime::dexp),  "EXP");
  2035   case vmIntrinsics::_dpow:   return Matcher::has_match_rule(Op_PowD)   ? inline_pow()    :
  2036     runtime_math(OptoRuntime::Math_DD_D_Type(), FN_PTR(SharedRuntime::dpow),  "POW");
  2037 #undef FN_PTR
  2039    // These intrinsics are not yet correctly implemented
  2040   case vmIntrinsics::_datan2:
  2041     return false;
  2043   default:
  2044     fatal_unexpected_iid(id);
  2045     return false;
  2049 static bool is_simple_name(Node* n) {
  2050   return (n->req() == 1         // constant
  2051           || (n->is_Type() && n->as_Type()->type()->singleton())
  2052           || n->is_Proj()       // parameter or return value
  2053           || n->is_Phi()        // local of some sort
  2054           );
  2057 //----------------------------inline_min_max-----------------------------------
  2058 bool LibraryCallKit::inline_min_max(vmIntrinsics::ID id) {
  2059   set_result(generate_min_max(id, argument(0), argument(1)));
  2060   return true;
  2063 void LibraryCallKit::inline_math_mathExact(Node* math, Node *test) {
  2064   Node* bol = _gvn.transform( new (C) BoolNode(test, BoolTest::overflow) );
  2065   IfNode* check = create_and_map_if(control(), bol, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN);
  2066   Node* fast_path = _gvn.transform( new (C) IfFalseNode(check));
  2067   Node* slow_path = _gvn.transform( new (C) IfTrueNode(check) );
  2070     PreserveJVMState pjvms(this);
  2071     PreserveReexecuteState preexecs(this);
  2072     jvms()->set_should_reexecute(true);
  2074     set_control(slow_path);
  2075     set_i_o(i_o());
  2077     uncommon_trap(Deoptimization::Reason_intrinsic,
  2078                   Deoptimization::Action_none);
  2081   set_control(fast_path);
  2082   set_result(math);
  2085 template <typename OverflowOp>
  2086 bool LibraryCallKit::inline_math_overflow(Node* arg1, Node* arg2) {
  2087   typedef typename OverflowOp::MathOp MathOp;
  2089   MathOp* mathOp = new(C) MathOp(arg1, arg2);
  2090   Node* operation = _gvn.transform( mathOp );
  2091   Node* ofcheck = _gvn.transform( new(C) OverflowOp(arg1, arg2) );
  2092   inline_math_mathExact(operation, ofcheck);
  2093   return true;
  2096 bool LibraryCallKit::inline_math_addExactI(bool is_increment) {
  2097   return inline_math_overflow<OverflowAddINode>(argument(0), is_increment ? intcon(1) : argument(1));
  2100 bool LibraryCallKit::inline_math_addExactL(bool is_increment) {
  2101   return inline_math_overflow<OverflowAddLNode>(argument(0), is_increment ? longcon(1) : argument(2));
  2104 bool LibraryCallKit::inline_math_subtractExactI(bool is_decrement) {
  2105   return inline_math_overflow<OverflowSubINode>(argument(0), is_decrement ? intcon(1) : argument(1));
  2108 bool LibraryCallKit::inline_math_subtractExactL(bool is_decrement) {
  2109   return inline_math_overflow<OverflowSubLNode>(argument(0), is_decrement ? longcon(1) : argument(2));
  2112 bool LibraryCallKit::inline_math_negateExactI() {
  2113   return inline_math_overflow<OverflowSubINode>(intcon(0), argument(0));
  2116 bool LibraryCallKit::inline_math_negateExactL() {
  2117   return inline_math_overflow<OverflowSubLNode>(longcon(0), argument(0));
  2120 bool LibraryCallKit::inline_math_multiplyExactI() {
  2121   return inline_math_overflow<OverflowMulINode>(argument(0), argument(1));
  2124 bool LibraryCallKit::inline_math_multiplyExactL() {
  2125   return inline_math_overflow<OverflowMulLNode>(argument(0), argument(2));
  2128 Node*
  2129 LibraryCallKit::generate_min_max(vmIntrinsics::ID id, Node* x0, Node* y0) {
  2130   // These are the candidate return value:
  2131   Node* xvalue = x0;
  2132   Node* yvalue = y0;
  2134   if (xvalue == yvalue) {
  2135     return xvalue;
  2138   bool want_max = (id == vmIntrinsics::_max);
  2140   const TypeInt* txvalue = _gvn.type(xvalue)->isa_int();
  2141   const TypeInt* tyvalue = _gvn.type(yvalue)->isa_int();
  2142   if (txvalue == NULL || tyvalue == NULL)  return top();
  2143   // This is not really necessary, but it is consistent with a
  2144   // hypothetical MaxINode::Value method:
  2145   int widen = MAX2(txvalue->_widen, tyvalue->_widen);
  2147   // %%% This folding logic should (ideally) be in a different place.
  2148   // Some should be inside IfNode, and there to be a more reliable
  2149   // transformation of ?: style patterns into cmoves.  We also want
  2150   // more powerful optimizations around cmove and min/max.
  2152   // Try to find a dominating comparison of these guys.
  2153   // It can simplify the index computation for Arrays.copyOf
  2154   // and similar uses of System.arraycopy.
  2155   // First, compute the normalized version of CmpI(x, y).
  2156   int   cmp_op = Op_CmpI;
  2157   Node* xkey = xvalue;
  2158   Node* ykey = yvalue;
  2159   Node* ideal_cmpxy = _gvn.transform(new(C) CmpINode(xkey, ykey));
  2160   if (ideal_cmpxy->is_Cmp()) {
  2161     // E.g., if we have CmpI(length - offset, count),
  2162     // it might idealize to CmpI(length, count + offset)
  2163     cmp_op = ideal_cmpxy->Opcode();
  2164     xkey = ideal_cmpxy->in(1);
  2165     ykey = ideal_cmpxy->in(2);
  2168   // Start by locating any relevant comparisons.
  2169   Node* start_from = (xkey->outcnt() < ykey->outcnt()) ? xkey : ykey;
  2170   Node* cmpxy = NULL;
  2171   Node* cmpyx = NULL;
  2172   for (DUIterator_Fast kmax, k = start_from->fast_outs(kmax); k < kmax; k++) {
  2173     Node* cmp = start_from->fast_out(k);
  2174     if (cmp->outcnt() > 0 &&            // must have prior uses
  2175         cmp->in(0) == NULL &&           // must be context-independent
  2176         cmp->Opcode() == cmp_op) {      // right kind of compare
  2177       if (cmp->in(1) == xkey && cmp->in(2) == ykey)  cmpxy = cmp;
  2178       if (cmp->in(1) == ykey && cmp->in(2) == xkey)  cmpyx = cmp;
  2182   const int NCMPS = 2;
  2183   Node* cmps[NCMPS] = { cmpxy, cmpyx };
  2184   int cmpn;
  2185   for (cmpn = 0; cmpn < NCMPS; cmpn++) {
  2186     if (cmps[cmpn] != NULL)  break;     // find a result
  2188   if (cmpn < NCMPS) {
  2189     // Look for a dominating test that tells us the min and max.
  2190     int depth = 0;                // Limit search depth for speed
  2191     Node* dom = control();
  2192     for (; dom != NULL; dom = IfNode::up_one_dom(dom, true)) {
  2193       if (++depth >= 100)  break;
  2194       Node* ifproj = dom;
  2195       if (!ifproj->is_Proj())  continue;
  2196       Node* iff = ifproj->in(0);
  2197       if (!iff->is_If())  continue;
  2198       Node* bol = iff->in(1);
  2199       if (!bol->is_Bool())  continue;
  2200       Node* cmp = bol->in(1);
  2201       if (cmp == NULL)  continue;
  2202       for (cmpn = 0; cmpn < NCMPS; cmpn++)
  2203         if (cmps[cmpn] == cmp)  break;
  2204       if (cmpn == NCMPS)  continue;
  2205       BoolTest::mask btest = bol->as_Bool()->_test._test;
  2206       if (ifproj->is_IfFalse())  btest = BoolTest(btest).negate();
  2207       if (cmp->in(1) == ykey)    btest = BoolTest(btest).commute();
  2208       // At this point, we know that 'x btest y' is true.
  2209       switch (btest) {
  2210       case BoolTest::eq:
  2211         // They are proven equal, so we can collapse the min/max.
  2212         // Either value is the answer.  Choose the simpler.
  2213         if (is_simple_name(yvalue) && !is_simple_name(xvalue))
  2214           return yvalue;
  2215         return xvalue;
  2216       case BoolTest::lt:          // x < y
  2217       case BoolTest::le:          // x <= y
  2218         return (want_max ? yvalue : xvalue);
  2219       case BoolTest::gt:          // x > y
  2220       case BoolTest::ge:          // x >= y
  2221         return (want_max ? xvalue : yvalue);
  2226   // We failed to find a dominating test.
  2227   // Let's pick a test that might GVN with prior tests.
  2228   Node*          best_bol   = NULL;
  2229   BoolTest::mask best_btest = BoolTest::illegal;
  2230   for (cmpn = 0; cmpn < NCMPS; cmpn++) {
  2231     Node* cmp = cmps[cmpn];
  2232     if (cmp == NULL)  continue;
  2233     for (DUIterator_Fast jmax, j = cmp->fast_outs(jmax); j < jmax; j++) {
  2234       Node* bol = cmp->fast_out(j);
  2235       if (!bol->is_Bool())  continue;
  2236       BoolTest::mask btest = bol->as_Bool()->_test._test;
  2237       if (btest == BoolTest::eq || btest == BoolTest::ne)  continue;
  2238       if (cmp->in(1) == ykey)   btest = BoolTest(btest).commute();
  2239       if (bol->outcnt() > (best_bol == NULL ? 0 : best_bol->outcnt())) {
  2240         best_bol   = bol->as_Bool();
  2241         best_btest = btest;
  2246   Node* answer_if_true  = NULL;
  2247   Node* answer_if_false = NULL;
  2248   switch (best_btest) {
  2249   default:
  2250     if (cmpxy == NULL)
  2251       cmpxy = ideal_cmpxy;
  2252     best_bol = _gvn.transform(new(C) BoolNode(cmpxy, BoolTest::lt));
  2253     // and fall through:
  2254   case BoolTest::lt:          // x < y
  2255   case BoolTest::le:          // x <= y
  2256     answer_if_true  = (want_max ? yvalue : xvalue);
  2257     answer_if_false = (want_max ? xvalue : yvalue);
  2258     break;
  2259   case BoolTest::gt:          // x > y
  2260   case BoolTest::ge:          // x >= y
  2261     answer_if_true  = (want_max ? xvalue : yvalue);
  2262     answer_if_false = (want_max ? yvalue : xvalue);
  2263     break;
  2266   jint hi, lo;
  2267   if (want_max) {
  2268     // We can sharpen the minimum.
  2269     hi = MAX2(txvalue->_hi, tyvalue->_hi);
  2270     lo = MAX2(txvalue->_lo, tyvalue->_lo);
  2271   } else {
  2272     // We can sharpen the maximum.
  2273     hi = MIN2(txvalue->_hi, tyvalue->_hi);
  2274     lo = MIN2(txvalue->_lo, tyvalue->_lo);
  2277   // Use a flow-free graph structure, to avoid creating excess control edges
  2278   // which could hinder other optimizations.
  2279   // Since Math.min/max is often used with arraycopy, we want
  2280   // tightly_coupled_allocation to be able to see beyond min/max expressions.
  2281   Node* cmov = CMoveNode::make(C, NULL, best_bol,
  2282                                answer_if_false, answer_if_true,
  2283                                TypeInt::make(lo, hi, widen));
  2285   return _gvn.transform(cmov);
  2287   /*
  2288   // This is not as desirable as it may seem, since Min and Max
  2289   // nodes do not have a full set of optimizations.
  2290   // And they would interfere, anyway, with 'if' optimizations
  2291   // and with CMoveI canonical forms.
  2292   switch (id) {
  2293   case vmIntrinsics::_min:
  2294     result_val = _gvn.transform(new (C, 3) MinINode(x,y)); break;
  2295   case vmIntrinsics::_max:
  2296     result_val = _gvn.transform(new (C, 3) MaxINode(x,y)); break;
  2297   default:
  2298     ShouldNotReachHere();
  2300   */
  2303 inline int
  2304 LibraryCallKit::classify_unsafe_addr(Node* &base, Node* &offset) {
  2305   const TypePtr* base_type = TypePtr::NULL_PTR;
  2306   if (base != NULL)  base_type = _gvn.type(base)->isa_ptr();
  2307   if (base_type == NULL) {
  2308     // Unknown type.
  2309     return Type::AnyPtr;
  2310   } else if (base_type == TypePtr::NULL_PTR) {
  2311     // Since this is a NULL+long form, we have to switch to a rawptr.
  2312     base   = _gvn.transform(new (C) CastX2PNode(offset));
  2313     offset = MakeConX(0);
  2314     return Type::RawPtr;
  2315   } else if (base_type->base() == Type::RawPtr) {
  2316     return Type::RawPtr;
  2317   } else if (base_type->isa_oopptr()) {
  2318     // Base is never null => always a heap address.
  2319     if (base_type->ptr() == TypePtr::NotNull) {
  2320       return Type::OopPtr;
  2322     // Offset is small => always a heap address.
  2323     const TypeX* offset_type = _gvn.type(offset)->isa_intptr_t();
  2324     if (offset_type != NULL &&
  2325         base_type->offset() == 0 &&     // (should always be?)
  2326         offset_type->_lo >= 0 &&
  2327         !MacroAssembler::needs_explicit_null_check(offset_type->_hi)) {
  2328       return Type::OopPtr;
  2330     // Otherwise, it might either be oop+off or NULL+addr.
  2331     return Type::AnyPtr;
  2332   } else {
  2333     // No information:
  2334     return Type::AnyPtr;
  2338 inline Node* LibraryCallKit::make_unsafe_address(Node* base, Node* offset) {
  2339   int kind = classify_unsafe_addr(base, offset);
  2340   if (kind == Type::RawPtr) {
  2341     return basic_plus_adr(top(), base, offset);
  2342   } else {
  2343     return basic_plus_adr(base, offset);
  2347 //--------------------------inline_number_methods-----------------------------
  2348 // inline int     Integer.numberOfLeadingZeros(int)
  2349 // inline int        Long.numberOfLeadingZeros(long)
  2350 //
  2351 // inline int     Integer.numberOfTrailingZeros(int)
  2352 // inline int        Long.numberOfTrailingZeros(long)
  2353 //
  2354 // inline int     Integer.bitCount(int)
  2355 // inline int        Long.bitCount(long)
  2356 //
  2357 // inline char  Character.reverseBytes(char)
  2358 // inline short     Short.reverseBytes(short)
  2359 // inline int     Integer.reverseBytes(int)
  2360 // inline long       Long.reverseBytes(long)
  2361 bool LibraryCallKit::inline_number_methods(vmIntrinsics::ID id) {
  2362   Node* arg = argument(0);
  2363   Node* n;
  2364   switch (id) {
  2365   case vmIntrinsics::_numberOfLeadingZeros_i:   n = new (C) CountLeadingZerosINode( arg);  break;
  2366   case vmIntrinsics::_numberOfLeadingZeros_l:   n = new (C) CountLeadingZerosLNode( arg);  break;
  2367   case vmIntrinsics::_numberOfTrailingZeros_i:  n = new (C) CountTrailingZerosINode(arg);  break;
  2368   case vmIntrinsics::_numberOfTrailingZeros_l:  n = new (C) CountTrailingZerosLNode(arg);  break;
  2369   case vmIntrinsics::_bitCount_i:               n = new (C) PopCountINode(          arg);  break;
  2370   case vmIntrinsics::_bitCount_l:               n = new (C) PopCountLNode(          arg);  break;
  2371   case vmIntrinsics::_reverseBytes_c:           n = new (C) ReverseBytesUSNode(0,   arg);  break;
  2372   case vmIntrinsics::_reverseBytes_s:           n = new (C) ReverseBytesSNode( 0,   arg);  break;
  2373   case vmIntrinsics::_reverseBytes_i:           n = new (C) ReverseBytesINode( 0,   arg);  break;
  2374   case vmIntrinsics::_reverseBytes_l:           n = new (C) ReverseBytesLNode( 0,   arg);  break;
  2375   default:  fatal_unexpected_iid(id);  break;
  2377   set_result(_gvn.transform(n));
  2378   return true;
  2381 //----------------------------inline_unsafe_access----------------------------
  2383 const static BasicType T_ADDRESS_HOLDER = T_LONG;
  2385 // Helper that guards and inserts a pre-barrier.
  2386 void LibraryCallKit::insert_pre_barrier(Node* base_oop, Node* offset,
  2387                                         Node* pre_val, bool need_mem_bar) {
  2388   // We could be accessing the referent field of a reference object. If so, when G1
  2389   // is enabled, we need to log the value in the referent field in an SATB buffer.
  2390   // This routine performs some compile time filters and generates suitable
  2391   // runtime filters that guard the pre-barrier code.
  2392   // Also add memory barrier for non volatile load from the referent field
  2393   // to prevent commoning of loads across safepoint.
  2394   if (!UseG1GC && !need_mem_bar)
  2395     return;
  2397   // Some compile time checks.
  2399   // If offset is a constant, is it java_lang_ref_Reference::_reference_offset?
  2400   const TypeX* otype = offset->find_intptr_t_type();
  2401   if (otype != NULL && otype->is_con() &&
  2402       otype->get_con() != java_lang_ref_Reference::referent_offset) {
  2403     // Constant offset but not the reference_offset so just return
  2404     return;
  2407   // We only need to generate the runtime guards for instances.
  2408   const TypeOopPtr* btype = base_oop->bottom_type()->isa_oopptr();
  2409   if (btype != NULL) {
  2410     if (btype->isa_aryptr()) {
  2411       // Array type so nothing to do
  2412       return;
  2415     const TypeInstPtr* itype = btype->isa_instptr();
  2416     if (itype != NULL) {
  2417       // Can the klass of base_oop be statically determined to be
  2418       // _not_ a sub-class of Reference and _not_ Object?
  2419       ciKlass* klass = itype->klass();
  2420       if ( klass->is_loaded() &&
  2421           !klass->is_subtype_of(env()->Reference_klass()) &&
  2422           !env()->Object_klass()->is_subtype_of(klass)) {
  2423         return;
  2428   // The compile time filters did not reject base_oop/offset so
  2429   // we need to generate the following runtime filters
  2430   //
  2431   // if (offset == java_lang_ref_Reference::_reference_offset) {
  2432   //   if (instance_of(base, java.lang.ref.Reference)) {
  2433   //     pre_barrier(_, pre_val, ...);
  2434   //   }
  2435   // }
  2437   float likely   = PROB_LIKELY(  0.999);
  2438   float unlikely = PROB_UNLIKELY(0.999);
  2440   IdealKit ideal(this);
  2441 #define __ ideal.
  2443   Node* referent_off = __ ConX(java_lang_ref_Reference::referent_offset);
  2445   __ if_then(offset, BoolTest::eq, referent_off, unlikely); {
  2446       // Update graphKit memory and control from IdealKit.
  2447       sync_kit(ideal);
  2449       Node* ref_klass_con = makecon(TypeKlassPtr::make(env()->Reference_klass()));
  2450       Node* is_instof = gen_instanceof(base_oop, ref_klass_con);
  2452       // Update IdealKit memory and control from graphKit.
  2453       __ sync_kit(this);
  2455       Node* one = __ ConI(1);
  2456       // is_instof == 0 if base_oop == NULL
  2457       __ if_then(is_instof, BoolTest::eq, one, unlikely); {
  2459         // Update graphKit from IdeakKit.
  2460         sync_kit(ideal);
  2462         // Use the pre-barrier to record the value in the referent field
  2463         pre_barrier(false /* do_load */,
  2464                     __ ctrl(),
  2465                     NULL /* obj */, NULL /* adr */, max_juint /* alias_idx */, NULL /* val */, NULL /* val_type */,
  2466                     pre_val /* pre_val */,
  2467                     T_OBJECT);
  2468         if (need_mem_bar) {
  2469           // Add memory barrier to prevent commoning reads from this field
  2470           // across safepoint since GC can change its value.
  2471           insert_mem_bar(Op_MemBarCPUOrder);
  2473         // Update IdealKit from graphKit.
  2474         __ sync_kit(this);
  2476       } __ end_if(); // _ref_type != ref_none
  2477   } __ end_if(); // offset == referent_offset
  2479   // Final sync IdealKit and GraphKit.
  2480   final_sync(ideal);
  2481 #undef __
  2485 // Interpret Unsafe.fieldOffset cookies correctly:
  2486 extern jlong Unsafe_field_offset_to_byte_offset(jlong field_offset);
  2488 const TypeOopPtr* LibraryCallKit::sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type, bool is_native_ptr) {
  2489   // Attempt to infer a sharper value type from the offset and base type.
  2490   ciKlass* sharpened_klass = NULL;
  2492   // See if it is an instance field, with an object type.
  2493   if (alias_type->field() != NULL) {
  2494     assert(!is_native_ptr, "native pointer op cannot use a java address");
  2495     if (alias_type->field()->type()->is_klass()) {
  2496       sharpened_klass = alias_type->field()->type()->as_klass();
  2500   // See if it is a narrow oop array.
  2501   if (adr_type->isa_aryptr()) {
  2502     if (adr_type->offset() >= objArrayOopDesc::base_offset_in_bytes()) {
  2503       const TypeOopPtr *elem_type = adr_type->is_aryptr()->elem()->isa_oopptr();
  2504       if (elem_type != NULL) {
  2505         sharpened_klass = elem_type->klass();
  2510   // The sharpened class might be unloaded if there is no class loader
  2511   // contraint in place.
  2512   if (sharpened_klass != NULL && sharpened_klass->is_loaded()) {
  2513     const TypeOopPtr* tjp = TypeOopPtr::make_from_klass(sharpened_klass);
  2515 #ifndef PRODUCT
  2516     if (C->print_intrinsics() || C->print_inlining()) {
  2517       tty->print("  from base type: ");  adr_type->dump();
  2518       tty->print("  sharpened value: ");  tjp->dump();
  2520 #endif
  2521     // Sharpen the value type.
  2522     return tjp;
  2524   return NULL;
  2527 bool LibraryCallKit::inline_unsafe_access(bool is_native_ptr, bool is_store, BasicType type, bool is_volatile) {
  2528   if (callee()->is_static())  return false;  // caller must have the capability!
  2530 #ifndef PRODUCT
  2532     ResourceMark rm;
  2533     // Check the signatures.
  2534     ciSignature* sig = callee()->signature();
  2535 #ifdef ASSERT
  2536     if (!is_store) {
  2537       // Object getObject(Object base, int/long offset), etc.
  2538       BasicType rtype = sig->return_type()->basic_type();
  2539       if (rtype == T_ADDRESS_HOLDER && callee()->name() == ciSymbol::getAddress_name())
  2540           rtype = T_ADDRESS;  // it is really a C void*
  2541       assert(rtype == type, "getter must return the expected value");
  2542       if (!is_native_ptr) {
  2543         assert(sig->count() == 2, "oop getter has 2 arguments");
  2544         assert(sig->type_at(0)->basic_type() == T_OBJECT, "getter base is object");
  2545         assert(sig->type_at(1)->basic_type() == T_LONG, "getter offset is correct");
  2546       } else {
  2547         assert(sig->count() == 1, "native getter has 1 argument");
  2548         assert(sig->type_at(0)->basic_type() == T_LONG, "getter base is long");
  2550     } else {
  2551       // void putObject(Object base, int/long offset, Object x), etc.
  2552       assert(sig->return_type()->basic_type() == T_VOID, "putter must not return a value");
  2553       if (!is_native_ptr) {
  2554         assert(sig->count() == 3, "oop putter has 3 arguments");
  2555         assert(sig->type_at(0)->basic_type() == T_OBJECT, "putter base is object");
  2556         assert(sig->type_at(1)->basic_type() == T_LONG, "putter offset is correct");
  2557       } else {
  2558         assert(sig->count() == 2, "native putter has 2 arguments");
  2559         assert(sig->type_at(0)->basic_type() == T_LONG, "putter base is long");
  2561       BasicType vtype = sig->type_at(sig->count()-1)->basic_type();
  2562       if (vtype == T_ADDRESS_HOLDER && callee()->name() == ciSymbol::putAddress_name())
  2563         vtype = T_ADDRESS;  // it is really a C void*
  2564       assert(vtype == type, "putter must accept the expected value");
  2566 #endif // ASSERT
  2568 #endif //PRODUCT
  2570   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
  2572   Node* receiver = argument(0);  // type: oop
  2574   // Build address expression.  See the code in inline_unsafe_prefetch.
  2575   Node* adr;
  2576   Node* heap_base_oop = top();
  2577   Node* offset = top();
  2578   Node* val;
  2580   if (!is_native_ptr) {
  2581     // The base is either a Java object or a value produced by Unsafe.staticFieldBase
  2582     Node* base = argument(1);  // type: oop
  2583     // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
  2584     offset = argument(2);  // type: long
  2585     // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
  2586     // to be plain byte offsets, which are also the same as those accepted
  2587     // by oopDesc::field_base.
  2588     assert(Unsafe_field_offset_to_byte_offset(11) == 11,
  2589            "fieldOffset must be byte-scaled");
  2590     // 32-bit machines ignore the high half!
  2591     offset = ConvL2X(offset);
  2592     adr = make_unsafe_address(base, offset);
  2593     heap_base_oop = base;
  2594     val = is_store ? argument(4) : NULL;
  2595   } else {
  2596     Node* ptr = argument(1);  // type: long
  2597     ptr = ConvL2X(ptr);  // adjust Java long to machine word
  2598     adr = make_unsafe_address(NULL, ptr);
  2599     val = is_store ? argument(3) : NULL;
  2602   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
  2604   // First guess at the value type.
  2605   const Type *value_type = Type::get_const_basic_type(type);
  2607   // Try to categorize the address.  If it comes up as TypeJavaPtr::BOTTOM,
  2608   // there was not enough information to nail it down.
  2609   Compile::AliasType* alias_type = C->alias_type(adr_type);
  2610   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
  2612   // We will need memory barriers unless we can determine a unique
  2613   // alias category for this reference.  (Note:  If for some reason
  2614   // the barriers get omitted and the unsafe reference begins to "pollute"
  2615   // the alias analysis of the rest of the graph, either Compile::can_alias
  2616   // or Compile::must_alias will throw a diagnostic assert.)
  2617   bool need_mem_bar = (alias_type->adr_type() == TypeOopPtr::BOTTOM);
  2619   // If we are reading the value of the referent field of a Reference
  2620   // object (either by using Unsafe directly or through reflection)
  2621   // then, if G1 is enabled, we need to record the referent in an
  2622   // SATB log buffer using the pre-barrier mechanism.
  2623   // Also we need to add memory barrier to prevent commoning reads
  2624   // from this field across safepoint since GC can change its value.
  2625   bool need_read_barrier = !is_native_ptr && !is_store &&
  2626                            offset != top() && heap_base_oop != top();
  2628   if (!is_store && type == T_OBJECT) {
  2629     const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type, is_native_ptr);
  2630     if (tjp != NULL) {
  2631       value_type = tjp;
  2635   receiver = null_check(receiver);
  2636   if (stopped()) {
  2637     return true;
  2639   // Heap pointers get a null-check from the interpreter,
  2640   // as a courtesy.  However, this is not guaranteed by Unsafe,
  2641   // and it is not possible to fully distinguish unintended nulls
  2642   // from intended ones in this API.
  2644   if (is_volatile) {
  2645     // We need to emit leading and trailing CPU membars (see below) in
  2646     // addition to memory membars when is_volatile. This is a little
  2647     // too strong, but avoids the need to insert per-alias-type
  2648     // volatile membars (for stores; compare Parse::do_put_xxx), which
  2649     // we cannot do effectively here because we probably only have a
  2650     // rough approximation of type.
  2651     need_mem_bar = true;
  2652     // For Stores, place a memory ordering barrier now.
  2653     if (is_store) {
  2654       insert_mem_bar(Op_MemBarRelease);
  2655     } else {
  2656       if (support_IRIW_for_not_multiple_copy_atomic_cpu) {
  2657         insert_mem_bar(Op_MemBarVolatile);
  2662   // Memory barrier to prevent normal and 'unsafe' accesses from
  2663   // bypassing each other.  Happens after null checks, so the
  2664   // exception paths do not take memory state from the memory barrier,
  2665   // so there's no problems making a strong assert about mixing users
  2666   // of safe & unsafe memory.  Otherwise fails in a CTW of rt.jar
  2667   // around 5701, class sun/reflect/UnsafeBooleanFieldAccessorImpl.
  2668   if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
  2670   if (!is_store) {
  2671     MemNode::MemOrd mo = is_volatile ? MemNode::acquire : MemNode::unordered;
  2672     Node* p = make_load(control(), adr, value_type, type, adr_type, mo, is_volatile);
  2673     // load value
  2674     switch (type) {
  2675     case T_BOOLEAN:
  2676     case T_CHAR:
  2677     case T_BYTE:
  2678     case T_SHORT:
  2679     case T_INT:
  2680     case T_LONG:
  2681     case T_FLOAT:
  2682     case T_DOUBLE:
  2683       break;
  2684     case T_OBJECT:
  2685       if (need_read_barrier) {
  2686         insert_pre_barrier(heap_base_oop, offset, p, !(is_volatile || need_mem_bar));
  2688       break;
  2689     case T_ADDRESS:
  2690       // Cast to an int type.
  2691       p = _gvn.transform(new (C) CastP2XNode(NULL, p));
  2692       p = ConvX2UL(p);
  2693       break;
  2694     default:
  2695       fatal(err_msg_res("unexpected type %d: %s", type, type2name(type)));
  2696       break;
  2698     // The load node has the control of the preceding MemBarCPUOrder.  All
  2699     // following nodes will have the control of the MemBarCPUOrder inserted at
  2700     // the end of this method.  So, pushing the load onto the stack at a later
  2701     // point is fine.
  2702     set_result(p);
  2703   } else {
  2704     // place effect of store into memory
  2705     switch (type) {
  2706     case T_DOUBLE:
  2707       val = dstore_rounding(val);
  2708       break;
  2709     case T_ADDRESS:
  2710       // Repackage the long as a pointer.
  2711       val = ConvL2X(val);
  2712       val = _gvn.transform(new (C) CastX2PNode(val));
  2713       break;
  2716     MemNode::MemOrd mo = is_volatile ? MemNode::release : MemNode::unordered;
  2717     if (type != T_OBJECT ) {
  2718       (void) store_to_memory(control(), adr, val, type, adr_type, mo, is_volatile);
  2719     } else {
  2720       // Possibly an oop being stored to Java heap or native memory
  2721       if (!TypePtr::NULL_PTR->higher_equal(_gvn.type(heap_base_oop))) {
  2722         // oop to Java heap.
  2723         (void) store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, type, mo);
  2724       } else {
  2725         // We can't tell at compile time if we are storing in the Java heap or outside
  2726         // of it. So we need to emit code to conditionally do the proper type of
  2727         // store.
  2729         IdealKit ideal(this);
  2730 #define __ ideal.
  2731         // QQQ who knows what probability is here??
  2732         __ if_then(heap_base_oop, BoolTest::ne, null(), PROB_UNLIKELY(0.999)); {
  2733           // Sync IdealKit and graphKit.
  2734           sync_kit(ideal);
  2735           Node* st = store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, type, mo);
  2736           // Update IdealKit memory.
  2737           __ sync_kit(this);
  2738         } __ else_(); {
  2739           __ store(__ ctrl(), adr, val, type, alias_type->index(), mo, is_volatile);
  2740         } __ end_if();
  2741         // Final sync IdealKit and GraphKit.
  2742         final_sync(ideal);
  2743 #undef __
  2748   if (is_volatile) {
  2749     if (!is_store) {
  2750       insert_mem_bar(Op_MemBarAcquire);
  2751     } else {
  2752       if (!support_IRIW_for_not_multiple_copy_atomic_cpu) {
  2753         insert_mem_bar(Op_MemBarVolatile);
  2758   if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
  2760   return true;
  2763 //----------------------------inline_unsafe_prefetch----------------------------
  2765 bool LibraryCallKit::inline_unsafe_prefetch(bool is_native_ptr, bool is_store, bool is_static) {
  2766 #ifndef PRODUCT
  2768     ResourceMark rm;
  2769     // Check the signatures.
  2770     ciSignature* sig = callee()->signature();
  2771 #ifdef ASSERT
  2772     // Object getObject(Object base, int/long offset), etc.
  2773     BasicType rtype = sig->return_type()->basic_type();
  2774     if (!is_native_ptr) {
  2775       assert(sig->count() == 2, "oop prefetch has 2 arguments");
  2776       assert(sig->type_at(0)->basic_type() == T_OBJECT, "prefetch base is object");
  2777       assert(sig->type_at(1)->basic_type() == T_LONG, "prefetcha offset is correct");
  2778     } else {
  2779       assert(sig->count() == 1, "native prefetch has 1 argument");
  2780       assert(sig->type_at(0)->basic_type() == T_LONG, "prefetch base is long");
  2782 #endif // ASSERT
  2784 #endif // !PRODUCT
  2786   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
  2788   const int idx = is_static ? 0 : 1;
  2789   if (!is_static) {
  2790     null_check_receiver();
  2791     if (stopped()) {
  2792       return true;
  2796   // Build address expression.  See the code in inline_unsafe_access.
  2797   Node *adr;
  2798   if (!is_native_ptr) {
  2799     // The base is either a Java object or a value produced by Unsafe.staticFieldBase
  2800     Node* base   = argument(idx + 0);  // type: oop
  2801     // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
  2802     Node* offset = argument(idx + 1);  // type: long
  2803     // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
  2804     // to be plain byte offsets, which are also the same as those accepted
  2805     // by oopDesc::field_base.
  2806     assert(Unsafe_field_offset_to_byte_offset(11) == 11,
  2807            "fieldOffset must be byte-scaled");
  2808     // 32-bit machines ignore the high half!
  2809     offset = ConvL2X(offset);
  2810     adr = make_unsafe_address(base, offset);
  2811   } else {
  2812     Node* ptr = argument(idx + 0);  // type: long
  2813     ptr = ConvL2X(ptr);  // adjust Java long to machine word
  2814     adr = make_unsafe_address(NULL, ptr);
  2817   // Generate the read or write prefetch
  2818   Node *prefetch;
  2819   if (is_store) {
  2820     prefetch = new (C) PrefetchWriteNode(i_o(), adr);
  2821   } else {
  2822     prefetch = new (C) PrefetchReadNode(i_o(), adr);
  2824   prefetch->init_req(0, control());
  2825   set_i_o(_gvn.transform(prefetch));
  2827   return true;
  2830 //----------------------------inline_unsafe_load_store----------------------------
  2831 // This method serves a couple of different customers (depending on LoadStoreKind):
  2832 //
  2833 // LS_cmpxchg:
  2834 //   public final native boolean compareAndSwapObject(Object o, long offset, Object expected, Object x);
  2835 //   public final native boolean compareAndSwapInt(   Object o, long offset, int    expected, int    x);
  2836 //   public final native boolean compareAndSwapLong(  Object o, long offset, long   expected, long   x);
  2837 //
  2838 // LS_xadd:
  2839 //   public int  getAndAddInt( Object o, long offset, int  delta)
  2840 //   public long getAndAddLong(Object o, long offset, long delta)
  2841 //
  2842 // LS_xchg:
  2843 //   int    getAndSet(Object o, long offset, int    newValue)
  2844 //   long   getAndSet(Object o, long offset, long   newValue)
  2845 //   Object getAndSet(Object o, long offset, Object newValue)
  2846 //
  2847 bool LibraryCallKit::inline_unsafe_load_store(BasicType type, LoadStoreKind kind) {
  2848   // This basic scheme here is the same as inline_unsafe_access, but
  2849   // differs in enough details that combining them would make the code
  2850   // overly confusing.  (This is a true fact! I originally combined
  2851   // them, but even I was confused by it!) As much code/comments as
  2852   // possible are retained from inline_unsafe_access though to make
  2853   // the correspondences clearer. - dl
  2855   if (callee()->is_static())  return false;  // caller must have the capability!
  2857 #ifndef PRODUCT
  2858   BasicType rtype;
  2860     ResourceMark rm;
  2861     // Check the signatures.
  2862     ciSignature* sig = callee()->signature();
  2863     rtype = sig->return_type()->basic_type();
  2864     if (kind == LS_xadd || kind == LS_xchg) {
  2865       // Check the signatures.
  2866 #ifdef ASSERT
  2867       assert(rtype == type, "get and set must return the expected type");
  2868       assert(sig->count() == 3, "get and set has 3 arguments");
  2869       assert(sig->type_at(0)->basic_type() == T_OBJECT, "get and set base is object");
  2870       assert(sig->type_at(1)->basic_type() == T_LONG, "get and set offset is long");
  2871       assert(sig->type_at(2)->basic_type() == type, "get and set must take expected type as new value/delta");
  2872 #endif // ASSERT
  2873     } else if (kind == LS_cmpxchg) {
  2874       // Check the signatures.
  2875 #ifdef ASSERT
  2876       assert(rtype == T_BOOLEAN, "CAS must return boolean");
  2877       assert(sig->count() == 4, "CAS has 4 arguments");
  2878       assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object");
  2879       assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long");
  2880 #endif // ASSERT
  2881     } else {
  2882       ShouldNotReachHere();
  2885 #endif //PRODUCT
  2887   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
  2889   // Get arguments:
  2890   Node* receiver = NULL;
  2891   Node* base     = NULL;
  2892   Node* offset   = NULL;
  2893   Node* oldval   = NULL;
  2894   Node* newval   = NULL;
  2895   if (kind == LS_cmpxchg) {
  2896     const bool two_slot_type = type2size[type] == 2;
  2897     receiver = argument(0);  // type: oop
  2898     base     = argument(1);  // type: oop
  2899     offset   = argument(2);  // type: long
  2900     oldval   = argument(4);  // type: oop, int, or long
  2901     newval   = argument(two_slot_type ? 6 : 5);  // type: oop, int, or long
  2902   } else if (kind == LS_xadd || kind == LS_xchg){
  2903     receiver = argument(0);  // type: oop
  2904     base     = argument(1);  // type: oop
  2905     offset   = argument(2);  // type: long
  2906     oldval   = NULL;
  2907     newval   = argument(4);  // type: oop, int, or long
  2910   // Null check receiver.
  2911   receiver = null_check(receiver);
  2912   if (stopped()) {
  2913     return true;
  2916   // Build field offset expression.
  2917   // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
  2918   // to be plain byte offsets, which are also the same as those accepted
  2919   // by oopDesc::field_base.
  2920   assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
  2921   // 32-bit machines ignore the high half of long offsets
  2922   offset = ConvL2X(offset);
  2923   Node* adr = make_unsafe_address(base, offset);
  2924   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
  2926   // For CAS, unlike inline_unsafe_access, there seems no point in
  2927   // trying to refine types. Just use the coarse types here.
  2928   const Type *value_type = Type::get_const_basic_type(type);
  2929   Compile::AliasType* alias_type = C->alias_type(adr_type);
  2930   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
  2932   if (kind == LS_xchg && type == T_OBJECT) {
  2933     const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type);
  2934     if (tjp != NULL) {
  2935       value_type = tjp;
  2939   int alias_idx = C->get_alias_index(adr_type);
  2941   // Memory-model-wise, a LoadStore acts like a little synchronized
  2942   // block, so needs barriers on each side.  These don't translate
  2943   // into actual barriers on most machines, but we still need rest of
  2944   // compiler to respect ordering.
  2946   insert_mem_bar(Op_MemBarRelease);
  2947   insert_mem_bar(Op_MemBarCPUOrder);
  2949   // 4984716: MemBars must be inserted before this
  2950   //          memory node in order to avoid a false
  2951   //          dependency which will confuse the scheduler.
  2952   Node *mem = memory(alias_idx);
  2954   // For now, we handle only those cases that actually exist: ints,
  2955   // longs, and Object. Adding others should be straightforward.
  2956   Node* load_store;
  2957   switch(type) {
  2958   case T_INT:
  2959     if (kind == LS_xadd) {
  2960       load_store = _gvn.transform(new (C) GetAndAddINode(control(), mem, adr, newval, adr_type));
  2961     } else if (kind == LS_xchg) {
  2962       load_store = _gvn.transform(new (C) GetAndSetINode(control(), mem, adr, newval, adr_type));
  2963     } else if (kind == LS_cmpxchg) {
  2964       load_store = _gvn.transform(new (C) CompareAndSwapINode(control(), mem, adr, newval, oldval));
  2965     } else {
  2966       ShouldNotReachHere();
  2968     break;
  2969   case T_LONG:
  2970     if (kind == LS_xadd) {
  2971       load_store = _gvn.transform(new (C) GetAndAddLNode(control(), mem, adr, newval, adr_type));
  2972     } else if (kind == LS_xchg) {
  2973       load_store = _gvn.transform(new (C) GetAndSetLNode(control(), mem, adr, newval, adr_type));
  2974     } else if (kind == LS_cmpxchg) {
  2975       load_store = _gvn.transform(new (C) CompareAndSwapLNode(control(), mem, adr, newval, oldval));
  2976     } else {
  2977       ShouldNotReachHere();
  2979     break;
  2980   case T_OBJECT:
  2981     // Transformation of a value which could be NULL pointer (CastPP #NULL)
  2982     // could be delayed during Parse (for example, in adjust_map_after_if()).
  2983     // Execute transformation here to avoid barrier generation in such case.
  2984     if (_gvn.type(newval) == TypePtr::NULL_PTR)
  2985       newval = _gvn.makecon(TypePtr::NULL_PTR);
  2987     // Reference stores need a store barrier.
  2988     if (kind == LS_xchg) {
  2989       // If pre-barrier must execute before the oop store, old value will require do_load here.
  2990       if (!can_move_pre_barrier()) {
  2991         pre_barrier(true /* do_load*/,
  2992                     control(), base, adr, alias_idx, newval, value_type->make_oopptr(),
  2993                     NULL /* pre_val*/,
  2994                     T_OBJECT);
  2995       } // Else move pre_barrier to use load_store value, see below.
  2996     } else if (kind == LS_cmpxchg) {
  2997       // Same as for newval above:
  2998       if (_gvn.type(oldval) == TypePtr::NULL_PTR) {
  2999         oldval = _gvn.makecon(TypePtr::NULL_PTR);
  3001       // The only known value which might get overwritten is oldval.
  3002       pre_barrier(false /* do_load */,
  3003                   control(), NULL, NULL, max_juint, NULL, NULL,
  3004                   oldval /* pre_val */,
  3005                   T_OBJECT);
  3006     } else {
  3007       ShouldNotReachHere();
  3010 #ifdef _LP64
  3011     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
  3012       Node *newval_enc = _gvn.transform(new (C) EncodePNode(newval, newval->bottom_type()->make_narrowoop()));
  3013       if (kind == LS_xchg) {
  3014         load_store = _gvn.transform(new (C) GetAndSetNNode(control(), mem, adr,
  3015                                                            newval_enc, adr_type, value_type->make_narrowoop()));
  3016       } else {
  3017         assert(kind == LS_cmpxchg, "wrong LoadStore operation");
  3018         Node *oldval_enc = _gvn.transform(new (C) EncodePNode(oldval, oldval->bottom_type()->make_narrowoop()));
  3019         load_store = _gvn.transform(new (C) CompareAndSwapNNode(control(), mem, adr,
  3020                                                                 newval_enc, oldval_enc));
  3022     } else
  3023 #endif
  3025       if (kind == LS_xchg) {
  3026         load_store = _gvn.transform(new (C) GetAndSetPNode(control(), mem, adr, newval, adr_type, value_type->is_oopptr()));
  3027       } else {
  3028         assert(kind == LS_cmpxchg, "wrong LoadStore operation");
  3029         load_store = _gvn.transform(new (C) CompareAndSwapPNode(control(), mem, adr, newval, oldval));
  3032     post_barrier(control(), load_store, base, adr, alias_idx, newval, T_OBJECT, true);
  3033     break;
  3034   default:
  3035     fatal(err_msg_res("unexpected type %d: %s", type, type2name(type)));
  3036     break;
  3039   // SCMemProjNodes represent the memory state of a LoadStore. Their
  3040   // main role is to prevent LoadStore nodes from being optimized away
  3041   // when their results aren't used.
  3042   Node* proj = _gvn.transform(new (C) SCMemProjNode(load_store));
  3043   set_memory(proj, alias_idx);
  3045   if (type == T_OBJECT && kind == LS_xchg) {
  3046 #ifdef _LP64
  3047     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
  3048       load_store = _gvn.transform(new (C) DecodeNNode(load_store, load_store->get_ptr_type()));
  3050 #endif
  3051     if (can_move_pre_barrier()) {
  3052       // Don't need to load pre_val. The old value is returned by load_store.
  3053       // The pre_barrier can execute after the xchg as long as no safepoint
  3054       // gets inserted between them.
  3055       pre_barrier(false /* do_load */,
  3056                   control(), NULL, NULL, max_juint, NULL, NULL,
  3057                   load_store /* pre_val */,
  3058                   T_OBJECT);
  3062   // Add the trailing membar surrounding the access
  3063   insert_mem_bar(Op_MemBarCPUOrder);
  3064   insert_mem_bar(Op_MemBarAcquire);
  3066   assert(type2size[load_store->bottom_type()->basic_type()] == type2size[rtype], "result type should match");
  3067   set_result(load_store);
  3068   return true;
  3071 //----------------------------inline_unsafe_ordered_store----------------------
  3072 // public native void sun.misc.Unsafe.putOrderedObject(Object o, long offset, Object x);
  3073 // public native void sun.misc.Unsafe.putOrderedInt(Object o, long offset, int x);
  3074 // public native void sun.misc.Unsafe.putOrderedLong(Object o, long offset, long x);
  3075 bool LibraryCallKit::inline_unsafe_ordered_store(BasicType type) {
  3076   // This is another variant of inline_unsafe_access, differing in
  3077   // that it always issues store-store ("release") barrier and ensures
  3078   // store-atomicity (which only matters for "long").
  3080   if (callee()->is_static())  return false;  // caller must have the capability!
  3082 #ifndef PRODUCT
  3084     ResourceMark rm;
  3085     // Check the signatures.
  3086     ciSignature* sig = callee()->signature();
  3087 #ifdef ASSERT
  3088     BasicType rtype = sig->return_type()->basic_type();
  3089     assert(rtype == T_VOID, "must return void");
  3090     assert(sig->count() == 3, "has 3 arguments");
  3091     assert(sig->type_at(0)->basic_type() == T_OBJECT, "base is object");
  3092     assert(sig->type_at(1)->basic_type() == T_LONG, "offset is long");
  3093 #endif // ASSERT
  3095 #endif //PRODUCT
  3097   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
  3099   // Get arguments:
  3100   Node* receiver = argument(0);  // type: oop
  3101   Node* base     = argument(1);  // type: oop
  3102   Node* offset   = argument(2);  // type: long
  3103   Node* val      = argument(4);  // type: oop, int, or long
  3105   // Null check receiver.
  3106   receiver = null_check(receiver);
  3107   if (stopped()) {
  3108     return true;
  3111   // Build field offset expression.
  3112   assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
  3113   // 32-bit machines ignore the high half of long offsets
  3114   offset = ConvL2X(offset);
  3115   Node* adr = make_unsafe_address(base, offset);
  3116   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
  3117   const Type *value_type = Type::get_const_basic_type(type);
  3118   Compile::AliasType* alias_type = C->alias_type(adr_type);
  3120   insert_mem_bar(Op_MemBarRelease);
  3121   insert_mem_bar(Op_MemBarCPUOrder);
  3122   // Ensure that the store is atomic for longs:
  3123   const bool require_atomic_access = true;
  3124   Node* store;
  3125   if (type == T_OBJECT) // reference stores need a store barrier.
  3126     store = store_oop_to_unknown(control(), base, adr, adr_type, val, type, MemNode::release);
  3127   else {
  3128     store = store_to_memory(control(), adr, val, type, adr_type, MemNode::release, require_atomic_access);
  3130   insert_mem_bar(Op_MemBarCPUOrder);
  3131   return true;
  3134 bool LibraryCallKit::inline_unsafe_fence(vmIntrinsics::ID id) {
  3135   // Regardless of form, don't allow previous ld/st to move down,
  3136   // then issue acquire, release, or volatile mem_bar.
  3137   insert_mem_bar(Op_MemBarCPUOrder);
  3138   switch(id) {
  3139     case vmIntrinsics::_loadFence:
  3140       insert_mem_bar(Op_LoadFence);
  3141       return true;
  3142     case vmIntrinsics::_storeFence:
  3143       insert_mem_bar(Op_StoreFence);
  3144       return true;
  3145     case vmIntrinsics::_fullFence:
  3146       insert_mem_bar(Op_MemBarVolatile);
  3147       return true;
  3148     default:
  3149       fatal_unexpected_iid(id);
  3150       return false;
  3154 bool LibraryCallKit::klass_needs_init_guard(Node* kls) {
  3155   if (!kls->is_Con()) {
  3156     return true;
  3158   const TypeKlassPtr* klsptr = kls->bottom_type()->isa_klassptr();
  3159   if (klsptr == NULL) {
  3160     return true;
  3162   ciInstanceKlass* ik = klsptr->klass()->as_instance_klass();
  3163   // don't need a guard for a klass that is already initialized
  3164   return !ik->is_initialized();
  3167 //----------------------------inline_unsafe_allocate---------------------------
  3168 // public native Object sun.misc.Unsafe.allocateInstance(Class<?> cls);
  3169 bool LibraryCallKit::inline_unsafe_allocate() {
  3170   if (callee()->is_static())  return false;  // caller must have the capability!
  3172   null_check_receiver();  // null-check, then ignore
  3173   Node* cls = null_check(argument(1));
  3174   if (stopped())  return true;
  3176   Node* kls = load_klass_from_mirror(cls, false, NULL, 0);
  3177   kls = null_check(kls);
  3178   if (stopped())  return true;  // argument was like int.class
  3180   Node* test = NULL;
  3181   if (LibraryCallKit::klass_needs_init_guard(kls)) {
  3182     // Note:  The argument might still be an illegal value like
  3183     // Serializable.class or Object[].class.   The runtime will handle it.
  3184     // But we must make an explicit check for initialization.
  3185     Node* insp = basic_plus_adr(kls, in_bytes(InstanceKlass::init_state_offset()));
  3186     // Use T_BOOLEAN for InstanceKlass::_init_state so the compiler
  3187     // can generate code to load it as unsigned byte.
  3188     Node* inst = make_load(NULL, insp, TypeInt::UBYTE, T_BOOLEAN, MemNode::unordered);
  3189     Node* bits = intcon(InstanceKlass::fully_initialized);
  3190     test = _gvn.transform(new (C) SubINode(inst, bits));
  3191     // The 'test' is non-zero if we need to take a slow path.
  3194   Node* obj = new_instance(kls, test);
  3195   set_result(obj);
  3196   return true;
  3199 #ifdef TRACE_HAVE_INTRINSICS
  3200 /*
  3201  * oop -> myklass
  3202  * myklass->trace_id |= USED
  3203  * return myklass->trace_id & ~0x3
  3204  */
  3205 bool LibraryCallKit::inline_native_classID() {
  3206   null_check_receiver();  // null-check, then ignore
  3207   Node* cls = null_check(argument(1), T_OBJECT);
  3208   Node* kls = load_klass_from_mirror(cls, false, NULL, 0);
  3209   kls = null_check(kls, T_OBJECT);
  3210   ByteSize offset = TRACE_ID_OFFSET;
  3211   Node* insp = basic_plus_adr(kls, in_bytes(offset));
  3212   Node* tvalue = make_load(NULL, insp, TypeLong::LONG, T_LONG, MemNode::unordered);
  3213   Node* bits = longcon(~0x03l); // ignore bit 0 & 1
  3214   Node* andl = _gvn.transform(new (C) AndLNode(tvalue, bits));
  3215   Node* clsused = longcon(0x01l); // set the class bit
  3216   Node* orl = _gvn.transform(new (C) OrLNode(tvalue, clsused));
  3218   const TypePtr *adr_type = _gvn.type(insp)->isa_ptr();
  3219   store_to_memory(control(), insp, orl, T_LONG, adr_type, MemNode::unordered);
  3220   set_result(andl);
  3221   return true;
  3224 bool LibraryCallKit::inline_native_threadID() {
  3225   Node* tls_ptr = NULL;
  3226   Node* cur_thr = generate_current_thread(tls_ptr);
  3227   Node* p = basic_plus_adr(top()/*!oop*/, tls_ptr, in_bytes(JavaThread::osthread_offset()));
  3228   Node* osthread = make_load(NULL, p, TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered);
  3229   p = basic_plus_adr(top()/*!oop*/, osthread, in_bytes(OSThread::thread_id_offset()));
  3231   Node* threadid = NULL;
  3232   size_t thread_id_size = OSThread::thread_id_size();
  3233   if (thread_id_size == (size_t) BytesPerLong) {
  3234     threadid = ConvL2I(make_load(control(), p, TypeLong::LONG, T_LONG, MemNode::unordered));
  3235   } else if (thread_id_size == (size_t) BytesPerInt) {
  3236     threadid = make_load(control(), p, TypeInt::INT, T_INT, MemNode::unordered);
  3237   } else {
  3238     ShouldNotReachHere();
  3240   set_result(threadid);
  3241   return true;
  3243 #endif
  3245 //------------------------inline_native_time_funcs--------------
  3246 // inline code for System.currentTimeMillis() and System.nanoTime()
  3247 // these have the same type and signature
  3248 bool LibraryCallKit::inline_native_time_funcs(address funcAddr, const char* funcName) {
  3249   const TypeFunc* tf = OptoRuntime::void_long_Type();
  3250   const TypePtr* no_memory_effects = NULL;
  3251   Node* time = make_runtime_call(RC_LEAF, tf, funcAddr, funcName, no_memory_effects);
  3252   Node* value = _gvn.transform(new (C) ProjNode(time, TypeFunc::Parms+0));
  3253 #ifdef ASSERT
  3254   Node* value_top = _gvn.transform(new (C) ProjNode(time, TypeFunc::Parms+1));
  3255   assert(value_top == top(), "second value must be top");
  3256 #endif
  3257   set_result(value);
  3258   return true;
  3261 //------------------------inline_native_currentThread------------------
  3262 bool LibraryCallKit::inline_native_currentThread() {
  3263   Node* junk = NULL;
  3264   set_result(generate_current_thread(junk));
  3265   return true;
  3268 //------------------------inline_native_isInterrupted------------------
  3269 // private native boolean java.lang.Thread.isInterrupted(boolean ClearInterrupted);
  3270 bool LibraryCallKit::inline_native_isInterrupted() {
  3271   // Add a fast path to t.isInterrupted(clear_int):
  3272   //   (t == Thread.current() &&
  3273   //    (!TLS._osthread._interrupted || WINDOWS_ONLY(false) NOT_WINDOWS(!clear_int)))
  3274   //   ? TLS._osthread._interrupted : /*slow path:*/ t.isInterrupted(clear_int)
  3275   // So, in the common case that the interrupt bit is false,
  3276   // we avoid making a call into the VM.  Even if the interrupt bit
  3277   // is true, if the clear_int argument is false, we avoid the VM call.
  3278   // However, if the receiver is not currentThread, we must call the VM,
  3279   // because there must be some locking done around the operation.
  3281   // We only go to the fast case code if we pass two guards.
  3282   // Paths which do not pass are accumulated in the slow_region.
  3284   enum {
  3285     no_int_result_path   = 1, // t == Thread.current() && !TLS._osthread._interrupted
  3286     no_clear_result_path = 2, // t == Thread.current() &&  TLS._osthread._interrupted && !clear_int
  3287     slow_result_path     = 3, // slow path: t.isInterrupted(clear_int)
  3288     PATH_LIMIT
  3289   };
  3291   // Ensure that it's not possible to move the load of TLS._osthread._interrupted flag
  3292   // out of the function.
  3293   insert_mem_bar(Op_MemBarCPUOrder);
  3295   RegionNode* result_rgn = new (C) RegionNode(PATH_LIMIT);
  3296   PhiNode*    result_val = new (C) PhiNode(result_rgn, TypeInt::BOOL);
  3298   RegionNode* slow_region = new (C) RegionNode(1);
  3299   record_for_igvn(slow_region);
  3301   // (a) Receiving thread must be the current thread.
  3302   Node* rec_thr = argument(0);
  3303   Node* tls_ptr = NULL;
  3304   Node* cur_thr = generate_current_thread(tls_ptr);
  3305   Node* cmp_thr = _gvn.transform(new (C) CmpPNode(cur_thr, rec_thr));
  3306   Node* bol_thr = _gvn.transform(new (C) BoolNode(cmp_thr, BoolTest::ne));
  3308   generate_slow_guard(bol_thr, slow_region);
  3310   // (b) Interrupt bit on TLS must be false.
  3311   Node* p = basic_plus_adr(top()/*!oop*/, tls_ptr, in_bytes(JavaThread::osthread_offset()));
  3312   Node* osthread = make_load(NULL, p, TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered);
  3313   p = basic_plus_adr(top()/*!oop*/, osthread, in_bytes(OSThread::interrupted_offset()));
  3315   // Set the control input on the field _interrupted read to prevent it floating up.
  3316   Node* int_bit = make_load(control(), p, TypeInt::BOOL, T_INT, MemNode::unordered);
  3317   Node* cmp_bit = _gvn.transform(new (C) CmpINode(int_bit, intcon(0)));
  3318   Node* bol_bit = _gvn.transform(new (C) BoolNode(cmp_bit, BoolTest::ne));
  3320   IfNode* iff_bit = create_and_map_if(control(), bol_bit, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN);
  3322   // First fast path:  if (!TLS._interrupted) return false;
  3323   Node* false_bit = _gvn.transform(new (C) IfFalseNode(iff_bit));
  3324   result_rgn->init_req(no_int_result_path, false_bit);
  3325   result_val->init_req(no_int_result_path, intcon(0));
  3327   // drop through to next case
  3328   set_control( _gvn.transform(new (C) IfTrueNode(iff_bit)));
  3330 #ifndef TARGET_OS_FAMILY_windows
  3331   // (c) Or, if interrupt bit is set and clear_int is false, use 2nd fast path.
  3332   Node* clr_arg = argument(1);
  3333   Node* cmp_arg = _gvn.transform(new (C) CmpINode(clr_arg, intcon(0)));
  3334   Node* bol_arg = _gvn.transform(new (C) BoolNode(cmp_arg, BoolTest::ne));
  3335   IfNode* iff_arg = create_and_map_if(control(), bol_arg, PROB_FAIR, COUNT_UNKNOWN);
  3337   // Second fast path:  ... else if (!clear_int) return true;
  3338   Node* false_arg = _gvn.transform(new (C) IfFalseNode(iff_arg));
  3339   result_rgn->init_req(no_clear_result_path, false_arg);
  3340   result_val->init_req(no_clear_result_path, intcon(1));
  3342   // drop through to next case
  3343   set_control( _gvn.transform(new (C) IfTrueNode(iff_arg)));
  3344 #else
  3345   // To return true on Windows you must read the _interrupted field
  3346   // and check the the event state i.e. take the slow path.
  3347 #endif // TARGET_OS_FAMILY_windows
  3349   // (d) Otherwise, go to the slow path.
  3350   slow_region->add_req(control());
  3351   set_control( _gvn.transform(slow_region));
  3353   if (stopped()) {
  3354     // There is no slow path.
  3355     result_rgn->init_req(slow_result_path, top());
  3356     result_val->init_req(slow_result_path, top());
  3357   } else {
  3358     // non-virtual because it is a private non-static
  3359     CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_isInterrupted);
  3361     Node* slow_val = set_results_for_java_call(slow_call);
  3362     // this->control() comes from set_results_for_java_call
  3364     Node* fast_io  = slow_call->in(TypeFunc::I_O);
  3365     Node* fast_mem = slow_call->in(TypeFunc::Memory);
  3367     // These two phis are pre-filled with copies of of the fast IO and Memory
  3368     PhiNode* result_mem  = PhiNode::make(result_rgn, fast_mem, Type::MEMORY, TypePtr::BOTTOM);
  3369     PhiNode* result_io   = PhiNode::make(result_rgn, fast_io,  Type::ABIO);
  3371     result_rgn->init_req(slow_result_path, control());
  3372     result_io ->init_req(slow_result_path, i_o());
  3373     result_mem->init_req(slow_result_path, reset_memory());
  3374     result_val->init_req(slow_result_path, slow_val);
  3376     set_all_memory(_gvn.transform(result_mem));
  3377     set_i_o(       _gvn.transform(result_io));
  3380   C->set_has_split_ifs(true); // Has chance for split-if optimization
  3381   set_result(result_rgn, result_val);
  3382   return true;
  3385 //---------------------------load_mirror_from_klass----------------------------
  3386 // Given a klass oop, load its java mirror (a java.lang.Class oop).
  3387 Node* LibraryCallKit::load_mirror_from_klass(Node* klass) {
  3388   Node* p = basic_plus_adr(klass, in_bytes(Klass::java_mirror_offset()));
  3389   return make_load(NULL, p, TypeInstPtr::MIRROR, T_OBJECT, MemNode::unordered);
  3392 //-----------------------load_klass_from_mirror_common-------------------------
  3393 // Given a java mirror (a java.lang.Class oop), load its corresponding klass oop.
  3394 // Test the klass oop for null (signifying a primitive Class like Integer.TYPE),
  3395 // and branch to the given path on the region.
  3396 // If never_see_null, take an uncommon trap on null, so we can optimistically
  3397 // compile for the non-null case.
  3398 // If the region is NULL, force never_see_null = true.
  3399 Node* LibraryCallKit::load_klass_from_mirror_common(Node* mirror,
  3400                                                     bool never_see_null,
  3401                                                     RegionNode* region,
  3402                                                     int null_path,
  3403                                                     int offset) {
  3404   if (region == NULL)  never_see_null = true;
  3405   Node* p = basic_plus_adr(mirror, offset);
  3406   const TypeKlassPtr*  kls_type = TypeKlassPtr::OBJECT_OR_NULL;
  3407   Node* kls = _gvn.transform(LoadKlassNode::make(_gvn, NULL, immutable_memory(), p, TypeRawPtr::BOTTOM, kls_type));
  3408   Node* null_ctl = top();
  3409   kls = null_check_oop(kls, &null_ctl, never_see_null);
  3410   if (region != NULL) {
  3411     // Set region->in(null_path) if the mirror is a primitive (e.g, int.class).
  3412     region->init_req(null_path, null_ctl);
  3413   } else {
  3414     assert(null_ctl == top(), "no loose ends");
  3416   return kls;
  3419 //--------------------(inline_native_Class_query helpers)---------------------
  3420 // Use this for JVM_ACC_INTERFACE, JVM_ACC_IS_CLONEABLE, JVM_ACC_HAS_FINALIZER.
  3421 // Fall through if (mods & mask) == bits, take the guard otherwise.
  3422 Node* LibraryCallKit::generate_access_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region) {
  3423   // Branch around if the given klass has the given modifier bit set.
  3424   // Like generate_guard, adds a new path onto the region.
  3425   Node* modp = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset()));
  3426   Node* mods = make_load(NULL, modp, TypeInt::INT, T_INT, MemNode::unordered);
  3427   Node* mask = intcon(modifier_mask);
  3428   Node* bits = intcon(modifier_bits);
  3429   Node* mbit = _gvn.transform(new (C) AndINode(mods, mask));
  3430   Node* cmp  = _gvn.transform(new (C) CmpINode(mbit, bits));
  3431   Node* bol  = _gvn.transform(new (C) BoolNode(cmp, BoolTest::ne));
  3432   return generate_fair_guard(bol, region);
  3434 Node* LibraryCallKit::generate_interface_guard(Node* kls, RegionNode* region) {
  3435   return generate_access_flags_guard(kls, JVM_ACC_INTERFACE, 0, region);
  3438 //-------------------------inline_native_Class_query-------------------
  3439 bool LibraryCallKit::inline_native_Class_query(vmIntrinsics::ID id) {
  3440   const Type* return_type = TypeInt::BOOL;
  3441   Node* prim_return_value = top();  // what happens if it's a primitive class?
  3442   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
  3443   bool expect_prim = false;     // most of these guys expect to work on refs
  3445   enum { _normal_path = 1, _prim_path = 2, PATH_LIMIT };
  3447   Node* mirror = argument(0);
  3448   Node* obj    = top();
  3450   switch (id) {
  3451   case vmIntrinsics::_isInstance:
  3452     // nothing is an instance of a primitive type
  3453     prim_return_value = intcon(0);
  3454     obj = argument(1);
  3455     break;
  3456   case vmIntrinsics::_getModifiers:
  3457     prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
  3458     assert(is_power_of_2((int)JVM_ACC_WRITTEN_FLAGS+1), "change next line");
  3459     return_type = TypeInt::make(0, JVM_ACC_WRITTEN_FLAGS, Type::WidenMin);
  3460     break;
  3461   case vmIntrinsics::_isInterface:
  3462     prim_return_value = intcon(0);
  3463     break;
  3464   case vmIntrinsics::_isArray:
  3465     prim_return_value = intcon(0);
  3466     expect_prim = true;  // cf. ObjectStreamClass.getClassSignature
  3467     break;
  3468   case vmIntrinsics::_isPrimitive:
  3469     prim_return_value = intcon(1);
  3470     expect_prim = true;  // obviously
  3471     break;
  3472   case vmIntrinsics::_getSuperclass:
  3473     prim_return_value = null();
  3474     return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR);
  3475     break;
  3476   case vmIntrinsics::_getComponentType:
  3477     prim_return_value = null();
  3478     return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR);
  3479     break;
  3480   case vmIntrinsics::_getClassAccessFlags:
  3481     prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
  3482     return_type = TypeInt::INT;  // not bool!  6297094
  3483     break;
  3484   default:
  3485     fatal_unexpected_iid(id);
  3486     break;
  3489   const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr();
  3490   if (mirror_con == NULL)  return false;  // cannot happen?
  3492 #ifndef PRODUCT
  3493   if (C->print_intrinsics() || C->print_inlining()) {
  3494     ciType* k = mirror_con->java_mirror_type();
  3495     if (k) {
  3496       tty->print("Inlining %s on constant Class ", vmIntrinsics::name_at(intrinsic_id()));
  3497       k->print_name();
  3498       tty->cr();
  3501 #endif
  3503   // Null-check the mirror, and the mirror's klass ptr (in case it is a primitive).
  3504   RegionNode* region = new (C) RegionNode(PATH_LIMIT);
  3505   record_for_igvn(region);
  3506   PhiNode* phi = new (C) PhiNode(region, return_type);
  3508   // The mirror will never be null of Reflection.getClassAccessFlags, however
  3509   // it may be null for Class.isInstance or Class.getModifiers. Throw a NPE
  3510   // if it is. See bug 4774291.
  3512   // For Reflection.getClassAccessFlags(), the null check occurs in
  3513   // the wrong place; see inline_unsafe_access(), above, for a similar
  3514   // situation.
  3515   mirror = null_check(mirror);
  3516   // If mirror or obj is dead, only null-path is taken.
  3517   if (stopped())  return true;
  3519   if (expect_prim)  never_see_null = false;  // expect nulls (meaning prims)
  3521   // Now load the mirror's klass metaobject, and null-check it.
  3522   // Side-effects region with the control path if the klass is null.
  3523   Node* kls = load_klass_from_mirror(mirror, never_see_null, region, _prim_path);
  3524   // If kls is null, we have a primitive mirror.
  3525   phi->init_req(_prim_path, prim_return_value);
  3526   if (stopped()) { set_result(region, phi); return true; }
  3527   bool safe_for_replace = (region->in(_prim_path) == top());
  3529   Node* p;  // handy temp
  3530   Node* null_ctl;
  3532   // Now that we have the non-null klass, we can perform the real query.
  3533   // For constant classes, the query will constant-fold in LoadNode::Value.
  3534   Node* query_value = top();
  3535   switch (id) {
  3536   case vmIntrinsics::_isInstance:
  3537     // nothing is an instance of a primitive type
  3538     query_value = gen_instanceof(obj, kls, safe_for_replace);
  3539     break;
  3541   case vmIntrinsics::_getModifiers:
  3542     p = basic_plus_adr(kls, in_bytes(Klass::modifier_flags_offset()));
  3543     query_value = make_load(NULL, p, TypeInt::INT, T_INT, MemNode::unordered);
  3544     break;
  3546   case vmIntrinsics::_isInterface:
  3547     // (To verify this code sequence, check the asserts in JVM_IsInterface.)
  3548     if (generate_interface_guard(kls, region) != NULL)
  3549       // A guard was added.  If the guard is taken, it was an interface.
  3550       phi->add_req(intcon(1));
  3551     // If we fall through, it's a plain class.
  3552     query_value = intcon(0);
  3553     break;
  3555   case vmIntrinsics::_isArray:
  3556     // (To verify this code sequence, check the asserts in JVM_IsArrayClass.)
  3557     if (generate_array_guard(kls, region) != NULL)
  3558       // A guard was added.  If the guard is taken, it was an array.
  3559       phi->add_req(intcon(1));
  3560     // If we fall through, it's a plain class.
  3561     query_value = intcon(0);
  3562     break;
  3564   case vmIntrinsics::_isPrimitive:
  3565     query_value = intcon(0); // "normal" path produces false
  3566     break;
  3568   case vmIntrinsics::_getSuperclass:
  3569     // The rules here are somewhat unfortunate, but we can still do better
  3570     // with random logic than with a JNI call.
  3571     // Interfaces store null or Object as _super, but must report null.
  3572     // Arrays store an intermediate super as _super, but must report Object.
  3573     // Other types can report the actual _super.
  3574     // (To verify this code sequence, check the asserts in JVM_IsInterface.)
  3575     if (generate_interface_guard(kls, region) != NULL)
  3576       // A guard was added.  If the guard is taken, it was an interface.
  3577       phi->add_req(null());
  3578     if (generate_array_guard(kls, region) != NULL)
  3579       // A guard was added.  If the guard is taken, it was an array.
  3580       phi->add_req(makecon(TypeInstPtr::make(env()->Object_klass()->java_mirror())));
  3581     // If we fall through, it's a plain class.  Get its _super.
  3582     p = basic_plus_adr(kls, in_bytes(Klass::super_offset()));
  3583     kls = _gvn.transform(LoadKlassNode::make(_gvn, NULL, immutable_memory(), p, TypeRawPtr::BOTTOM, TypeKlassPtr::OBJECT_OR_NULL));
  3584     null_ctl = top();
  3585     kls = null_check_oop(kls, &null_ctl);
  3586     if (null_ctl != top()) {
  3587       // If the guard is taken, Object.superClass is null (both klass and mirror).
  3588       region->add_req(null_ctl);
  3589       phi   ->add_req(null());
  3591     if (!stopped()) {
  3592       query_value = load_mirror_from_klass(kls);
  3594     break;
  3596   case vmIntrinsics::_getComponentType:
  3597     if (generate_array_guard(kls, region) != NULL) {
  3598       // Be sure to pin the oop load to the guard edge just created:
  3599       Node* is_array_ctrl = region->in(region->req()-1);
  3600       Node* cma = basic_plus_adr(kls, in_bytes(ArrayKlass::component_mirror_offset()));
  3601       Node* cmo = make_load(is_array_ctrl, cma, TypeInstPtr::MIRROR, T_OBJECT, MemNode::unordered);
  3602       phi->add_req(cmo);
  3604     query_value = null();  // non-array case is null
  3605     break;
  3607   case vmIntrinsics::_getClassAccessFlags:
  3608     p = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset()));
  3609     query_value = make_load(NULL, p, TypeInt::INT, T_INT, MemNode::unordered);
  3610     break;
  3612   default:
  3613     fatal_unexpected_iid(id);
  3614     break;
  3617   // Fall-through is the normal case of a query to a real class.
  3618   phi->init_req(1, query_value);
  3619   region->init_req(1, control());
  3621   C->set_has_split_ifs(true); // Has chance for split-if optimization
  3622   set_result(region, phi);
  3623   return true;
  3626 //--------------------------inline_native_subtype_check------------------------
  3627 // This intrinsic takes the JNI calls out of the heart of
  3628 // UnsafeFieldAccessorImpl.set, which improves Field.set, readObject, etc.
  3629 bool LibraryCallKit::inline_native_subtype_check() {
  3630   // Pull both arguments off the stack.
  3631   Node* args[2];                // two java.lang.Class mirrors: superc, subc
  3632   args[0] = argument(0);
  3633   args[1] = argument(1);
  3634   Node* klasses[2];             // corresponding Klasses: superk, subk
  3635   klasses[0] = klasses[1] = top();
  3637   enum {
  3638     // A full decision tree on {superc is prim, subc is prim}:
  3639     _prim_0_path = 1,           // {P,N} => false
  3640                                 // {P,P} & superc!=subc => false
  3641     _prim_same_path,            // {P,P} & superc==subc => true
  3642     _prim_1_path,               // {N,P} => false
  3643     _ref_subtype_path,          // {N,N} & subtype check wins => true
  3644     _both_ref_path,             // {N,N} & subtype check loses => false
  3645     PATH_LIMIT
  3646   };
  3648   RegionNode* region = new (C) RegionNode(PATH_LIMIT);
  3649   Node*       phi    = new (C) PhiNode(region, TypeInt::BOOL);
  3650   record_for_igvn(region);
  3652   const TypePtr* adr_type = TypeRawPtr::BOTTOM;   // memory type of loads
  3653   const TypeKlassPtr* kls_type = TypeKlassPtr::OBJECT_OR_NULL;
  3654   int class_klass_offset = java_lang_Class::klass_offset_in_bytes();
  3656   // First null-check both mirrors and load each mirror's klass metaobject.
  3657   int which_arg;
  3658   for (which_arg = 0; which_arg <= 1; which_arg++) {
  3659     Node* arg = args[which_arg];
  3660     arg = null_check(arg);
  3661     if (stopped())  break;
  3662     args[which_arg] = arg;
  3664     Node* p = basic_plus_adr(arg, class_klass_offset);
  3665     Node* kls = LoadKlassNode::make(_gvn, NULL, immutable_memory(), p, adr_type, kls_type);
  3666     klasses[which_arg] = _gvn.transform(kls);
  3669   // Having loaded both klasses, test each for null.
  3670   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
  3671   for (which_arg = 0; which_arg <= 1; which_arg++) {
  3672     Node* kls = klasses[which_arg];
  3673     Node* null_ctl = top();
  3674     kls = null_check_oop(kls, &null_ctl, never_see_null);
  3675     int prim_path = (which_arg == 0 ? _prim_0_path : _prim_1_path);
  3676     region->init_req(prim_path, null_ctl);
  3677     if (stopped())  break;
  3678     klasses[which_arg] = kls;
  3681   if (!stopped()) {
  3682     // now we have two reference types, in klasses[0..1]
  3683     Node* subk   = klasses[1];  // the argument to isAssignableFrom
  3684     Node* superk = klasses[0];  // the receiver
  3685     region->set_req(_both_ref_path, gen_subtype_check(subk, superk));
  3686     // now we have a successful reference subtype check
  3687     region->set_req(_ref_subtype_path, control());
  3690   // If both operands are primitive (both klasses null), then
  3691   // we must return true when they are identical primitives.
  3692   // It is convenient to test this after the first null klass check.
  3693   set_control(region->in(_prim_0_path)); // go back to first null check
  3694   if (!stopped()) {
  3695     // Since superc is primitive, make a guard for the superc==subc case.
  3696     Node* cmp_eq = _gvn.transform(new (C) CmpPNode(args[0], args[1]));
  3697     Node* bol_eq = _gvn.transform(new (C) BoolNode(cmp_eq, BoolTest::eq));
  3698     generate_guard(bol_eq, region, PROB_FAIR);
  3699     if (region->req() == PATH_LIMIT+1) {
  3700       // A guard was added.  If the added guard is taken, superc==subc.
  3701       region->swap_edges(PATH_LIMIT, _prim_same_path);
  3702       region->del_req(PATH_LIMIT);
  3704     region->set_req(_prim_0_path, control()); // Not equal after all.
  3707   // these are the only paths that produce 'true':
  3708   phi->set_req(_prim_same_path,   intcon(1));
  3709   phi->set_req(_ref_subtype_path, intcon(1));
  3711   // pull together the cases:
  3712   assert(region->req() == PATH_LIMIT, "sane region");
  3713   for (uint i = 1; i < region->req(); i++) {
  3714     Node* ctl = region->in(i);
  3715     if (ctl == NULL || ctl == top()) {
  3716       region->set_req(i, top());
  3717       phi   ->set_req(i, top());
  3718     } else if (phi->in(i) == NULL) {
  3719       phi->set_req(i, intcon(0)); // all other paths produce 'false'
  3723   set_control(_gvn.transform(region));
  3724   set_result(_gvn.transform(phi));
  3725   return true;
  3728 //---------------------generate_array_guard_common------------------------
  3729 Node* LibraryCallKit::generate_array_guard_common(Node* kls, RegionNode* region,
  3730                                                   bool obj_array, bool not_array) {
  3731   // If obj_array/non_array==false/false:
  3732   // Branch around if the given klass is in fact an array (either obj or prim).
  3733   // If obj_array/non_array==false/true:
  3734   // Branch around if the given klass is not an array klass of any kind.
  3735   // If obj_array/non_array==true/true:
  3736   // Branch around if the kls is not an oop array (kls is int[], String, etc.)
  3737   // If obj_array/non_array==true/false:
  3738   // Branch around if the kls is an oop array (Object[] or subtype)
  3739   //
  3740   // Like generate_guard, adds a new path onto the region.
  3741   jint  layout_con = 0;
  3742   Node* layout_val = get_layout_helper(kls, layout_con);
  3743   if (layout_val == NULL) {
  3744     bool query = (obj_array
  3745                   ? Klass::layout_helper_is_objArray(layout_con)
  3746                   : Klass::layout_helper_is_array(layout_con));
  3747     if (query == not_array) {
  3748       return NULL;                       // never a branch
  3749     } else {                             // always a branch
  3750       Node* always_branch = control();
  3751       if (region != NULL)
  3752         region->add_req(always_branch);
  3753       set_control(top());
  3754       return always_branch;
  3757   // Now test the correct condition.
  3758   jint  nval = (obj_array
  3759                 ? ((jint)Klass::_lh_array_tag_type_value
  3760                    <<    Klass::_lh_array_tag_shift)
  3761                 : Klass::_lh_neutral_value);
  3762   Node* cmp = _gvn.transform(new(C) CmpINode(layout_val, intcon(nval)));
  3763   BoolTest::mask btest = BoolTest::lt;  // correct for testing is_[obj]array
  3764   // invert the test if we are looking for a non-array
  3765   if (not_array)  btest = BoolTest(btest).negate();
  3766   Node* bol = _gvn.transform(new(C) BoolNode(cmp, btest));
  3767   return generate_fair_guard(bol, region);
  3771 //-----------------------inline_native_newArray--------------------------
  3772 // private static native Object java.lang.reflect.newArray(Class<?> componentType, int length);
  3773 bool LibraryCallKit::inline_native_newArray() {
  3774   Node* mirror    = argument(0);
  3775   Node* count_val = argument(1);
  3777   mirror = null_check(mirror);
  3778   // If mirror or obj is dead, only null-path is taken.
  3779   if (stopped())  return true;
  3781   enum { _normal_path = 1, _slow_path = 2, PATH_LIMIT };
  3782   RegionNode* result_reg = new(C) RegionNode(PATH_LIMIT);
  3783   PhiNode*    result_val = new(C) PhiNode(result_reg,
  3784                                           TypeInstPtr::NOTNULL);
  3785   PhiNode*    result_io  = new(C) PhiNode(result_reg, Type::ABIO);
  3786   PhiNode*    result_mem = new(C) PhiNode(result_reg, Type::MEMORY,
  3787                                           TypePtr::BOTTOM);
  3789   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
  3790   Node* klass_node = load_array_klass_from_mirror(mirror, never_see_null,
  3791                                                   result_reg, _slow_path);
  3792   Node* normal_ctl   = control();
  3793   Node* no_array_ctl = result_reg->in(_slow_path);
  3795   // Generate code for the slow case.  We make a call to newArray().
  3796   set_control(no_array_ctl);
  3797   if (!stopped()) {
  3798     // Either the input type is void.class, or else the
  3799     // array klass has not yet been cached.  Either the
  3800     // ensuing call will throw an exception, or else it
  3801     // will cache the array klass for next time.
  3802     PreserveJVMState pjvms(this);
  3803     CallJavaNode* slow_call = generate_method_call_static(vmIntrinsics::_newArray);
  3804     Node* slow_result = set_results_for_java_call(slow_call);
  3805     // this->control() comes from set_results_for_java_call
  3806     result_reg->set_req(_slow_path, control());
  3807     result_val->set_req(_slow_path, slow_result);
  3808     result_io ->set_req(_slow_path, i_o());
  3809     result_mem->set_req(_slow_path, reset_memory());
  3812   set_control(normal_ctl);
  3813   if (!stopped()) {
  3814     // Normal case:  The array type has been cached in the java.lang.Class.
  3815     // The following call works fine even if the array type is polymorphic.
  3816     // It could be a dynamic mix of int[], boolean[], Object[], etc.
  3817     Node* obj = new_array(klass_node, count_val, 0);  // no arguments to push
  3818     result_reg->init_req(_normal_path, control());
  3819     result_val->init_req(_normal_path, obj);
  3820     result_io ->init_req(_normal_path, i_o());
  3821     result_mem->init_req(_normal_path, reset_memory());
  3824   // Return the combined state.
  3825   set_i_o(        _gvn.transform(result_io)  );
  3826   set_all_memory( _gvn.transform(result_mem));
  3828   C->set_has_split_ifs(true); // Has chance for split-if optimization
  3829   set_result(result_reg, result_val);
  3830   return true;
  3833 //----------------------inline_native_getLength--------------------------
  3834 // public static native int java.lang.reflect.Array.getLength(Object array);
  3835 bool LibraryCallKit::inline_native_getLength() {
  3836   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
  3838   Node* array = null_check(argument(0));
  3839   // If array is dead, only null-path is taken.
  3840   if (stopped())  return true;
  3842   // Deoptimize if it is a non-array.
  3843   Node* non_array = generate_non_array_guard(load_object_klass(array), NULL);
  3845   if (non_array != NULL) {
  3846     PreserveJVMState pjvms(this);
  3847     set_control(non_array);
  3848     uncommon_trap(Deoptimization::Reason_intrinsic,
  3849                   Deoptimization::Action_maybe_recompile);
  3852   // If control is dead, only non-array-path is taken.
  3853   if (stopped())  return true;
  3855   // The works fine even if the array type is polymorphic.
  3856   // It could be a dynamic mix of int[], boolean[], Object[], etc.
  3857   Node* result = load_array_length(array);
  3859   C->set_has_split_ifs(true);  // Has chance for split-if optimization
  3860   set_result(result);
  3861   return true;
  3864 //------------------------inline_array_copyOf----------------------------
  3865 // public static <T,U> T[] java.util.Arrays.copyOf(     U[] original, int newLength,         Class<? extends T[]> newType);
  3866 // public static <T,U> T[] java.util.Arrays.copyOfRange(U[] original, int from,      int to, Class<? extends T[]> newType);
  3867 bool LibraryCallKit::inline_array_copyOf(bool is_copyOfRange) {
  3868   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
  3870   // Get the arguments.
  3871   Node* original          = argument(0);
  3872   Node* start             = is_copyOfRange? argument(1): intcon(0);
  3873   Node* end               = is_copyOfRange? argument(2): argument(1);
  3874   Node* array_type_mirror = is_copyOfRange? argument(3): argument(2);
  3876   Node* newcopy;
  3878   // Set the original stack and the reexecute bit for the interpreter to reexecute
  3879   // the bytecode that invokes Arrays.copyOf if deoptimization happens.
  3880   { PreserveReexecuteState preexecs(this);
  3881     jvms()->set_should_reexecute(true);
  3883     array_type_mirror = null_check(array_type_mirror);
  3884     original          = null_check(original);
  3886     // Check if a null path was taken unconditionally.
  3887     if (stopped())  return true;
  3889     Node* orig_length = load_array_length(original);
  3891     Node* klass_node = load_klass_from_mirror(array_type_mirror, false, NULL, 0);
  3892     klass_node = null_check(klass_node);
  3894     RegionNode* bailout = new (C) RegionNode(1);
  3895     record_for_igvn(bailout);
  3897     // Despite the generic type of Arrays.copyOf, the mirror might be int, int[], etc.
  3898     // Bail out if that is so.
  3899     Node* not_objArray = generate_non_objArray_guard(klass_node, bailout);
  3900     if (not_objArray != NULL) {
  3901       // Improve the klass node's type from the new optimistic assumption:
  3902       ciKlass* ak = ciArrayKlass::make(env()->Object_klass());
  3903       const Type* akls = TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/);
  3904       Node* cast = new (C) CastPPNode(klass_node, akls);
  3905       cast->init_req(0, control());
  3906       klass_node = _gvn.transform(cast);
  3909     // Bail out if either start or end is negative.
  3910     generate_negative_guard(start, bailout, &start);
  3911     generate_negative_guard(end,   bailout, &end);
  3913     Node* length = end;
  3914     if (_gvn.type(start) != TypeInt::ZERO) {
  3915       length = _gvn.transform(new (C) SubINode(end, start));
  3918     // Bail out if length is negative.
  3919     // Without this the new_array would throw
  3920     // NegativeArraySizeException but IllegalArgumentException is what
  3921     // should be thrown
  3922     generate_negative_guard(length, bailout, &length);
  3924     if (bailout->req() > 1) {
  3925       PreserveJVMState pjvms(this);
  3926       set_control(_gvn.transform(bailout));
  3927       uncommon_trap(Deoptimization::Reason_intrinsic,
  3928                     Deoptimization::Action_maybe_recompile);
  3931     if (!stopped()) {
  3932       // How many elements will we copy from the original?
  3933       // The answer is MinI(orig_length - start, length).
  3934       Node* orig_tail = _gvn.transform(new (C) SubINode(orig_length, start));
  3935       Node* moved = generate_min_max(vmIntrinsics::_min, orig_tail, length);
  3937       newcopy = new_array(klass_node, length, 0);  // no argments to push
  3939       // Generate a direct call to the right arraycopy function(s).
  3940       // We know the copy is disjoint but we might not know if the
  3941       // oop stores need checking.
  3942       // Extreme case:  Arrays.copyOf((Integer[])x, 10, String[].class).
  3943       // This will fail a store-check if x contains any non-nulls.
  3944       bool disjoint_bases = true;
  3945       // if start > orig_length then the length of the copy may be
  3946       // negative.
  3947       bool length_never_negative = !is_copyOfRange;
  3948       generate_arraycopy(TypeAryPtr::OOPS, T_OBJECT,
  3949                          original, start, newcopy, intcon(0), moved,
  3950                          disjoint_bases, length_never_negative);
  3952   } // original reexecute is set back here
  3954   C->set_has_split_ifs(true); // Has chance for split-if optimization
  3955   if (!stopped()) {
  3956     set_result(newcopy);
  3958   return true;
  3962 //----------------------generate_virtual_guard---------------------------
  3963 // Helper for hashCode and clone.  Peeks inside the vtable to avoid a call.
  3964 Node* LibraryCallKit::generate_virtual_guard(Node* obj_klass,
  3965                                              RegionNode* slow_region) {
  3966   ciMethod* method = callee();
  3967   int vtable_index = method->vtable_index();
  3968   assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index,
  3969          err_msg_res("bad index %d", vtable_index));
  3970   // Get the Method* out of the appropriate vtable entry.
  3971   int entry_offset  = (InstanceKlass::vtable_start_offset() +
  3972                      vtable_index*vtableEntry::size()) * wordSize +
  3973                      vtableEntry::method_offset_in_bytes();
  3974   Node* entry_addr  = basic_plus_adr(obj_klass, entry_offset);
  3975   Node* target_call = make_load(NULL, entry_addr, TypePtr::NOTNULL, T_ADDRESS, MemNode::unordered);
  3977   // Compare the target method with the expected method (e.g., Object.hashCode).
  3978   const TypePtr* native_call_addr = TypeMetadataPtr::make(method);
  3980   Node* native_call = makecon(native_call_addr);
  3981   Node* chk_native  = _gvn.transform(new(C) CmpPNode(target_call, native_call));
  3982   Node* test_native = _gvn.transform(new(C) BoolNode(chk_native, BoolTest::ne));
  3984   return generate_slow_guard(test_native, slow_region);
  3987 //-----------------------generate_method_call----------------------------
  3988 // Use generate_method_call to make a slow-call to the real
  3989 // method if the fast path fails.  An alternative would be to
  3990 // use a stub like OptoRuntime::slow_arraycopy_Java.
  3991 // This only works for expanding the current library call,
  3992 // not another intrinsic.  (E.g., don't use this for making an
  3993 // arraycopy call inside of the copyOf intrinsic.)
  3994 CallJavaNode*
  3995 LibraryCallKit::generate_method_call(vmIntrinsics::ID method_id, bool is_virtual, bool is_static) {
  3996   // When compiling the intrinsic method itself, do not use this technique.
  3997   guarantee(callee() != C->method(), "cannot make slow-call to self");
  3999   ciMethod* method = callee();
  4000   // ensure the JVMS we have will be correct for this call
  4001   guarantee(method_id == method->intrinsic_id(), "must match");
  4003   const TypeFunc* tf = TypeFunc::make(method);
  4004   CallJavaNode* slow_call;
  4005   if (is_static) {
  4006     assert(!is_virtual, "");
  4007     slow_call = new(C) CallStaticJavaNode(C, tf,
  4008                            SharedRuntime::get_resolve_static_call_stub(),
  4009                            method, bci());
  4010   } else if (is_virtual) {
  4011     null_check_receiver();
  4012     int vtable_index = Method::invalid_vtable_index;
  4013     if (UseInlineCaches) {
  4014       // Suppress the vtable call
  4015     } else {
  4016       // hashCode and clone are not a miranda methods,
  4017       // so the vtable index is fixed.
  4018       // No need to use the linkResolver to get it.
  4019        vtable_index = method->vtable_index();
  4020        assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index,
  4021               err_msg_res("bad index %d", vtable_index));
  4023     slow_call = new(C) CallDynamicJavaNode(tf,
  4024                           SharedRuntime::get_resolve_virtual_call_stub(),
  4025                           method, vtable_index, bci());
  4026   } else {  // neither virtual nor static:  opt_virtual
  4027     null_check_receiver();
  4028     slow_call = new(C) CallStaticJavaNode(C, tf,
  4029                                 SharedRuntime::get_resolve_opt_virtual_call_stub(),
  4030                                 method, bci());
  4031     slow_call->set_optimized_virtual(true);
  4033   set_arguments_for_java_call(slow_call);
  4034   set_edges_for_java_call(slow_call);
  4035   return slow_call;
  4039 /**
  4040  * Build special case code for calls to hashCode on an object. This call may
  4041  * be virtual (invokevirtual) or bound (invokespecial). For each case we generate
  4042  * slightly different code.
  4043  */
  4044 bool LibraryCallKit::inline_native_hashcode(bool is_virtual, bool is_static) {
  4045   assert(is_static == callee()->is_static(), "correct intrinsic selection");
  4046   assert(!(is_virtual && is_static), "either virtual, special, or static");
  4048   enum { _slow_path = 1, _fast_path, _null_path, PATH_LIMIT };
  4050   RegionNode* result_reg = new(C) RegionNode(PATH_LIMIT);
  4051   PhiNode*    result_val = new(C) PhiNode(result_reg, TypeInt::INT);
  4052   PhiNode*    result_io  = new(C) PhiNode(result_reg, Type::ABIO);
  4053   PhiNode*    result_mem = new(C) PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM);
  4054   Node* obj = NULL;
  4055   if (!is_static) {
  4056     // Check for hashing null object
  4057     obj = null_check_receiver();
  4058     if (stopped())  return true;        // unconditionally null
  4059     result_reg->init_req(_null_path, top());
  4060     result_val->init_req(_null_path, top());
  4061   } else {
  4062     // Do a null check, and return zero if null.
  4063     // System.identityHashCode(null) == 0
  4064     obj = argument(0);
  4065     Node* null_ctl = top();
  4066     obj = null_check_oop(obj, &null_ctl);
  4067     result_reg->init_req(_null_path, null_ctl);
  4068     result_val->init_req(_null_path, _gvn.intcon(0));
  4071   // Unconditionally null?  Then return right away.
  4072   if (stopped()) {
  4073     set_control( result_reg->in(_null_path));
  4074     if (!stopped())
  4075       set_result(result_val->in(_null_path));
  4076     return true;
  4079   // We only go to the fast case code if we pass a number of guards.  The
  4080   // paths which do not pass are accumulated in the slow_region.
  4081   RegionNode* slow_region = new (C) RegionNode(1);
  4082   record_for_igvn(slow_region);
  4084   // If this is a virtual call, we generate a funny guard.  We pull out
  4085   // the vtable entry corresponding to hashCode() from the target object.
  4086   // If the target method which we are calling happens to be the native
  4087   // Object hashCode() method, we pass the guard.  We do not need this
  4088   // guard for non-virtual calls -- the caller is known to be the native
  4089   // Object hashCode().
  4090   if (is_virtual) {
  4091     // After null check, get the object's klass.
  4092     Node* obj_klass = load_object_klass(obj);
  4093     generate_virtual_guard(obj_klass, slow_region);
  4096   // Get the header out of the object, use LoadMarkNode when available
  4097   Node* header_addr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes());
  4098   // The control of the load must be NULL. Otherwise, the load can move before
  4099   // the null check after castPP removal.
  4100   Node* no_ctrl = NULL;
  4101   Node* header = make_load(no_ctrl, header_addr, TypeX_X, TypeX_X->basic_type(), MemNode::unordered);
  4103   // Test the header to see if it is unlocked.
  4104   Node* lock_mask      = _gvn.MakeConX(markOopDesc::biased_lock_mask_in_place);
  4105   Node* lmasked_header = _gvn.transform(new (C) AndXNode(header, lock_mask));
  4106   Node* unlocked_val   = _gvn.MakeConX(markOopDesc::unlocked_value);
  4107   Node* chk_unlocked   = _gvn.transform(new (C) CmpXNode( lmasked_header, unlocked_val));
  4108   Node* test_unlocked  = _gvn.transform(new (C) BoolNode( chk_unlocked, BoolTest::ne));
  4110   generate_slow_guard(test_unlocked, slow_region);
  4112   // Get the hash value and check to see that it has been properly assigned.
  4113   // We depend on hash_mask being at most 32 bits and avoid the use of
  4114   // hash_mask_in_place because it could be larger than 32 bits in a 64-bit
  4115   // vm: see markOop.hpp.
  4116   Node* hash_mask      = _gvn.intcon(markOopDesc::hash_mask);
  4117   Node* hash_shift     = _gvn.intcon(markOopDesc::hash_shift);
  4118   Node* hshifted_header= _gvn.transform(new (C) URShiftXNode(header, hash_shift));
  4119   // This hack lets the hash bits live anywhere in the mark object now, as long
  4120   // as the shift drops the relevant bits into the low 32 bits.  Note that
  4121   // Java spec says that HashCode is an int so there's no point in capturing
  4122   // an 'X'-sized hashcode (32 in 32-bit build or 64 in 64-bit build).
  4123   hshifted_header      = ConvX2I(hshifted_header);
  4124   Node* hash_val       = _gvn.transform(new (C) AndINode(hshifted_header, hash_mask));
  4126   Node* no_hash_val    = _gvn.intcon(markOopDesc::no_hash);
  4127   Node* chk_assigned   = _gvn.transform(new (C) CmpINode( hash_val, no_hash_val));
  4128   Node* test_assigned  = _gvn.transform(new (C) BoolNode( chk_assigned, BoolTest::eq));
  4130   generate_slow_guard(test_assigned, slow_region);
  4132   Node* init_mem = reset_memory();
  4133   // fill in the rest of the null path:
  4134   result_io ->init_req(_null_path, i_o());
  4135   result_mem->init_req(_null_path, init_mem);
  4137   result_val->init_req(_fast_path, hash_val);
  4138   result_reg->init_req(_fast_path, control());
  4139   result_io ->init_req(_fast_path, i_o());
  4140   result_mem->init_req(_fast_path, init_mem);
  4142   // Generate code for the slow case.  We make a call to hashCode().
  4143   set_control(_gvn.transform(slow_region));
  4144   if (!stopped()) {
  4145     // No need for PreserveJVMState, because we're using up the present state.
  4146     set_all_memory(init_mem);
  4147     vmIntrinsics::ID hashCode_id = is_static ? vmIntrinsics::_identityHashCode : vmIntrinsics::_hashCode;
  4148     CallJavaNode* slow_call = generate_method_call(hashCode_id, is_virtual, is_static);
  4149     Node* slow_result = set_results_for_java_call(slow_call);
  4150     // this->control() comes from set_results_for_java_call
  4151     result_reg->init_req(_slow_path, control());
  4152     result_val->init_req(_slow_path, slow_result);
  4153     result_io  ->set_req(_slow_path, i_o());
  4154     result_mem ->set_req(_slow_path, reset_memory());
  4157   // Return the combined state.
  4158   set_i_o(        _gvn.transform(result_io)  );
  4159   set_all_memory( _gvn.transform(result_mem));
  4161   set_result(result_reg, result_val);
  4162   return true;
  4165 //---------------------------inline_native_getClass----------------------------
  4166 // public final native Class<?> java.lang.Object.getClass();
  4167 //
  4168 // Build special case code for calls to getClass on an object.
  4169 bool LibraryCallKit::inline_native_getClass() {
  4170   Node* obj = null_check_receiver();
  4171   if (stopped())  return true;
  4172   set_result(load_mirror_from_klass(load_object_klass(obj)));
  4173   return true;
  4176 //-----------------inline_native_Reflection_getCallerClass---------------------
  4177 // public static native Class<?> sun.reflect.Reflection.getCallerClass();
  4178 //
  4179 // In the presence of deep enough inlining, getCallerClass() becomes a no-op.
  4180 //
  4181 // NOTE: This code must perform the same logic as JVM_GetCallerClass
  4182 // in that it must skip particular security frames and checks for
  4183 // caller sensitive methods.
  4184 bool LibraryCallKit::inline_native_Reflection_getCallerClass() {
  4185 #ifndef PRODUCT
  4186   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
  4187     tty->print_cr("Attempting to inline sun.reflect.Reflection.getCallerClass");
  4189 #endif
  4191   if (!jvms()->has_method()) {
  4192 #ifndef PRODUCT
  4193     if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
  4194       tty->print_cr("  Bailing out because intrinsic was inlined at top level");
  4196 #endif
  4197     return false;
  4200   // Walk back up the JVM state to find the caller at the required
  4201   // depth.
  4202   JVMState* caller_jvms = jvms();
  4204   // Cf. JVM_GetCallerClass
  4205   // NOTE: Start the loop at depth 1 because the current JVM state does
  4206   // not include the Reflection.getCallerClass() frame.
  4207   for (int n = 1; caller_jvms != NULL; caller_jvms = caller_jvms->caller(), n++) {
  4208     ciMethod* m = caller_jvms->method();
  4209     switch (n) {
  4210     case 0:
  4211       fatal("current JVM state does not include the Reflection.getCallerClass frame");
  4212       break;
  4213     case 1:
  4214       // Frame 0 and 1 must be caller sensitive (see JVM_GetCallerClass).
  4215       if (!m->caller_sensitive()) {
  4216 #ifndef PRODUCT
  4217         if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
  4218           tty->print_cr("  Bailing out: CallerSensitive annotation expected at frame %d", n);
  4220 #endif
  4221         return false;  // bail-out; let JVM_GetCallerClass do the work
  4223       break;
  4224     default:
  4225       if (!m->is_ignored_by_security_stack_walk()) {
  4226         // We have reached the desired frame; return the holder class.
  4227         // Acquire method holder as java.lang.Class and push as constant.
  4228         ciInstanceKlass* caller_klass = caller_jvms->method()->holder();
  4229         ciInstance* caller_mirror = caller_klass->java_mirror();
  4230         set_result(makecon(TypeInstPtr::make(caller_mirror)));
  4232 #ifndef PRODUCT
  4233         if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
  4234           tty->print_cr("  Succeeded: caller = %d) %s.%s, JVMS depth = %d", n, caller_klass->name()->as_utf8(), caller_jvms->method()->name()->as_utf8(), jvms()->depth());
  4235           tty->print_cr("  JVM state at this point:");
  4236           for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) {
  4237             ciMethod* m = jvms()->of_depth(i)->method();
  4238             tty->print_cr("   %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8());
  4241 #endif
  4242         return true;
  4244       break;
  4248 #ifndef PRODUCT
  4249   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
  4250     tty->print_cr("  Bailing out because caller depth exceeded inlining depth = %d", jvms()->depth());
  4251     tty->print_cr("  JVM state at this point:");
  4252     for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) {
  4253       ciMethod* m = jvms()->of_depth(i)->method();
  4254       tty->print_cr("   %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8());
  4257 #endif
  4259   return false;  // bail-out; let JVM_GetCallerClass do the work
  4262 bool LibraryCallKit::inline_fp_conversions(vmIntrinsics::ID id) {
  4263   Node* arg = argument(0);
  4264   Node* result;
  4266   switch (id) {
  4267   case vmIntrinsics::_floatToRawIntBits:    result = new (C) MoveF2INode(arg);  break;
  4268   case vmIntrinsics::_intBitsToFloat:       result = new (C) MoveI2FNode(arg);  break;
  4269   case vmIntrinsics::_doubleToRawLongBits:  result = new (C) MoveD2LNode(arg);  break;
  4270   case vmIntrinsics::_longBitsToDouble:     result = new (C) MoveL2DNode(arg);  break;
  4272   case vmIntrinsics::_doubleToLongBits: {
  4273     // two paths (plus control) merge in a wood
  4274     RegionNode *r = new (C) RegionNode(3);
  4275     Node *phi = new (C) PhiNode(r, TypeLong::LONG);
  4277     Node *cmpisnan = _gvn.transform(new (C) CmpDNode(arg, arg));
  4278     // Build the boolean node
  4279     Node *bolisnan = _gvn.transform(new (C) BoolNode(cmpisnan, BoolTest::ne));
  4281     // Branch either way.
  4282     // NaN case is less traveled, which makes all the difference.
  4283     IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
  4284     Node *opt_isnan = _gvn.transform(ifisnan);
  4285     assert( opt_isnan->is_If(), "Expect an IfNode");
  4286     IfNode *opt_ifisnan = (IfNode*)opt_isnan;
  4287     Node *iftrue = _gvn.transform(new (C) IfTrueNode(opt_ifisnan));
  4289     set_control(iftrue);
  4291     static const jlong nan_bits = CONST64(0x7ff8000000000000);
  4292     Node *slow_result = longcon(nan_bits); // return NaN
  4293     phi->init_req(1, _gvn.transform( slow_result ));
  4294     r->init_req(1, iftrue);
  4296     // Else fall through
  4297     Node *iffalse = _gvn.transform(new (C) IfFalseNode(opt_ifisnan));
  4298     set_control(iffalse);
  4300     phi->init_req(2, _gvn.transform(new (C) MoveD2LNode(arg)));
  4301     r->init_req(2, iffalse);
  4303     // Post merge
  4304     set_control(_gvn.transform(r));
  4305     record_for_igvn(r);
  4307     C->set_has_split_ifs(true); // Has chance for split-if optimization
  4308     result = phi;
  4309     assert(result->bottom_type()->isa_long(), "must be");
  4310     break;
  4313   case vmIntrinsics::_floatToIntBits: {
  4314     // two paths (plus control) merge in a wood
  4315     RegionNode *r = new (C) RegionNode(3);
  4316     Node *phi = new (C) PhiNode(r, TypeInt::INT);
  4318     Node *cmpisnan = _gvn.transform(new (C) CmpFNode(arg, arg));
  4319     // Build the boolean node
  4320     Node *bolisnan = _gvn.transform(new (C) BoolNode(cmpisnan, BoolTest::ne));
  4322     // Branch either way.
  4323     // NaN case is less traveled, which makes all the difference.
  4324     IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
  4325     Node *opt_isnan = _gvn.transform(ifisnan);
  4326     assert( opt_isnan->is_If(), "Expect an IfNode");
  4327     IfNode *opt_ifisnan = (IfNode*)opt_isnan;
  4328     Node *iftrue = _gvn.transform(new (C) IfTrueNode(opt_ifisnan));
  4330     set_control(iftrue);
  4332     static const jint nan_bits = 0x7fc00000;
  4333     Node *slow_result = makecon(TypeInt::make(nan_bits)); // return NaN
  4334     phi->init_req(1, _gvn.transform( slow_result ));
  4335     r->init_req(1, iftrue);
  4337     // Else fall through
  4338     Node *iffalse = _gvn.transform(new (C) IfFalseNode(opt_ifisnan));
  4339     set_control(iffalse);
  4341     phi->init_req(2, _gvn.transform(new (C) MoveF2INode(arg)));
  4342     r->init_req(2, iffalse);
  4344     // Post merge
  4345     set_control(_gvn.transform(r));
  4346     record_for_igvn(r);
  4348     C->set_has_split_ifs(true); // Has chance for split-if optimization
  4349     result = phi;
  4350     assert(result->bottom_type()->isa_int(), "must be");
  4351     break;
  4354   default:
  4355     fatal_unexpected_iid(id);
  4356     break;
  4358   set_result(_gvn.transform(result));
  4359   return true;
  4362 #ifdef _LP64
  4363 #define XTOP ,top() /*additional argument*/
  4364 #else  //_LP64
  4365 #define XTOP        /*no additional argument*/
  4366 #endif //_LP64
  4368 //----------------------inline_unsafe_copyMemory-------------------------
  4369 // public native void sun.misc.Unsafe.copyMemory(Object srcBase, long srcOffset, Object destBase, long destOffset, long bytes);
  4370 bool LibraryCallKit::inline_unsafe_copyMemory() {
  4371   if (callee()->is_static())  return false;  // caller must have the capability!
  4372   null_check_receiver();  // null-check receiver
  4373   if (stopped())  return true;
  4375   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
  4377   Node* src_ptr =         argument(1);   // type: oop
  4378   Node* src_off = ConvL2X(argument(2));  // type: long
  4379   Node* dst_ptr =         argument(4);   // type: oop
  4380   Node* dst_off = ConvL2X(argument(5));  // type: long
  4381   Node* size    = ConvL2X(argument(7));  // type: long
  4383   assert(Unsafe_field_offset_to_byte_offset(11) == 11,
  4384          "fieldOffset must be byte-scaled");
  4386   Node* src = make_unsafe_address(src_ptr, src_off);
  4387   Node* dst = make_unsafe_address(dst_ptr, dst_off);
  4389   // Conservatively insert a memory barrier on all memory slices.
  4390   // Do not let writes of the copy source or destination float below the copy.
  4391   insert_mem_bar(Op_MemBarCPUOrder);
  4393   // Call it.  Note that the length argument is not scaled.
  4394   make_runtime_call(RC_LEAF|RC_NO_FP,
  4395                     OptoRuntime::fast_arraycopy_Type(),
  4396                     StubRoutines::unsafe_arraycopy(),
  4397                     "unsafe_arraycopy",
  4398                     TypeRawPtr::BOTTOM,
  4399                     src, dst, size XTOP);
  4401   // Do not let reads of the copy destination float above the copy.
  4402   insert_mem_bar(Op_MemBarCPUOrder);
  4404   return true;
  4407 //------------------------clone_coping-----------------------------------
  4408 // Helper function for inline_native_clone.
  4409 void LibraryCallKit::copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array, bool card_mark) {
  4410   assert(obj_size != NULL, "");
  4411   Node* raw_obj = alloc_obj->in(1);
  4412   assert(alloc_obj->is_CheckCastPP() && raw_obj->is_Proj() && raw_obj->in(0)->is_Allocate(), "");
  4414   AllocateNode* alloc = NULL;
  4415   if (ReduceBulkZeroing) {
  4416     // We will be completely responsible for initializing this object -
  4417     // mark Initialize node as complete.
  4418     alloc = AllocateNode::Ideal_allocation(alloc_obj, &_gvn);
  4419     // The object was just allocated - there should be no any stores!
  4420     guarantee(alloc != NULL && alloc->maybe_set_complete(&_gvn), "");
  4421     // Mark as complete_with_arraycopy so that on AllocateNode
  4422     // expansion, we know this AllocateNode is initialized by an array
  4423     // copy and a StoreStore barrier exists after the array copy.
  4424     alloc->initialization()->set_complete_with_arraycopy();
  4427   // Copy the fastest available way.
  4428   // TODO: generate fields copies for small objects instead.
  4429   Node* src  = obj;
  4430   Node* dest = alloc_obj;
  4431   Node* size = _gvn.transform(obj_size);
  4433   // Exclude the header but include array length to copy by 8 bytes words.
  4434   // Can't use base_offset_in_bytes(bt) since basic type is unknown.
  4435   int base_off = is_array ? arrayOopDesc::length_offset_in_bytes() :
  4436                             instanceOopDesc::base_offset_in_bytes();
  4437   // base_off:
  4438   // 8  - 32-bit VM
  4439   // 12 - 64-bit VM, compressed klass
  4440   // 16 - 64-bit VM, normal klass
  4441   if (base_off % BytesPerLong != 0) {
  4442     assert(UseCompressedClassPointers, "");
  4443     if (is_array) {
  4444       // Exclude length to copy by 8 bytes words.
  4445       base_off += sizeof(int);
  4446     } else {
  4447       // Include klass to copy by 8 bytes words.
  4448       base_off = instanceOopDesc::klass_offset_in_bytes();
  4450     assert(base_off % BytesPerLong == 0, "expect 8 bytes alignment");
  4452   src  = basic_plus_adr(src,  base_off);
  4453   dest = basic_plus_adr(dest, base_off);
  4455   // Compute the length also, if needed:
  4456   Node* countx = size;
  4457   countx = _gvn.transform(new (C) SubXNode(countx, MakeConX(base_off)));
  4458   countx = _gvn.transform(new (C) URShiftXNode(countx, intcon(LogBytesPerLong) ));
  4460   const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
  4461   bool disjoint_bases = true;
  4462   generate_unchecked_arraycopy(raw_adr_type, T_LONG, disjoint_bases,
  4463                                src, NULL, dest, NULL, countx,
  4464                                /*dest_uninitialized*/true);
  4466   // If necessary, emit some card marks afterwards.  (Non-arrays only.)
  4467   if (card_mark) {
  4468     assert(!is_array, "");
  4469     // Put in store barrier for any and all oops we are sticking
  4470     // into this object.  (We could avoid this if we could prove
  4471     // that the object type contains no oop fields at all.)
  4472     Node* no_particular_value = NULL;
  4473     Node* no_particular_field = NULL;
  4474     int raw_adr_idx = Compile::AliasIdxRaw;
  4475     post_barrier(control(),
  4476                  memory(raw_adr_type),
  4477                  alloc_obj,
  4478                  no_particular_field,
  4479                  raw_adr_idx,
  4480                  no_particular_value,
  4481                  T_OBJECT,
  4482                  false);
  4485   // Do not let reads from the cloned object float above the arraycopy.
  4486   if (alloc != NULL) {
  4487     // Do not let stores that initialize this object be reordered with
  4488     // a subsequent store that would make this object accessible by
  4489     // other threads.
  4490     // Record what AllocateNode this StoreStore protects so that
  4491     // escape analysis can go from the MemBarStoreStoreNode to the
  4492     // AllocateNode and eliminate the MemBarStoreStoreNode if possible
  4493     // based on the escape status of the AllocateNode.
  4494     insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out(AllocateNode::RawAddress));
  4495   } else {
  4496     insert_mem_bar(Op_MemBarCPUOrder);
  4500 //------------------------inline_native_clone----------------------------
  4501 // protected native Object java.lang.Object.clone();
  4502 //
  4503 // Here are the simple edge cases:
  4504 //  null receiver => normal trap
  4505 //  virtual and clone was overridden => slow path to out-of-line clone
  4506 //  not cloneable or finalizer => slow path to out-of-line Object.clone
  4507 //
  4508 // The general case has two steps, allocation and copying.
  4509 // Allocation has two cases, and uses GraphKit::new_instance or new_array.
  4510 //
  4511 // Copying also has two cases, oop arrays and everything else.
  4512 // Oop arrays use arrayof_oop_arraycopy (same as System.arraycopy).
  4513 // Everything else uses the tight inline loop supplied by CopyArrayNode.
  4514 //
  4515 // These steps fold up nicely if and when the cloned object's klass
  4516 // can be sharply typed as an object array, a type array, or an instance.
  4517 //
  4518 bool LibraryCallKit::inline_native_clone(bool is_virtual) {
  4519   PhiNode* result_val;
  4521   // Set the reexecute bit for the interpreter to reexecute
  4522   // the bytecode that invokes Object.clone if deoptimization happens.
  4523   { PreserveReexecuteState preexecs(this);
  4524     jvms()->set_should_reexecute(true);
  4526     Node* obj = null_check_receiver();
  4527     if (stopped())  return true;
  4529     Node* obj_klass = load_object_klass(obj);
  4530     const TypeKlassPtr* tklass = _gvn.type(obj_klass)->isa_klassptr();
  4531     const TypeOopPtr*   toop   = ((tklass != NULL)
  4532                                 ? tklass->as_instance_type()
  4533                                 : TypeInstPtr::NOTNULL);
  4535     // Conservatively insert a memory barrier on all memory slices.
  4536     // Do not let writes into the original float below the clone.
  4537     insert_mem_bar(Op_MemBarCPUOrder);
  4539     // paths into result_reg:
  4540     enum {
  4541       _slow_path = 1,     // out-of-line call to clone method (virtual or not)
  4542       _objArray_path,     // plain array allocation, plus arrayof_oop_arraycopy
  4543       _array_path,        // plain array allocation, plus arrayof_long_arraycopy
  4544       _instance_path,     // plain instance allocation, plus arrayof_long_arraycopy
  4545       PATH_LIMIT
  4546     };
  4547     RegionNode* result_reg = new(C) RegionNode(PATH_LIMIT);
  4548     result_val             = new(C) PhiNode(result_reg,
  4549                                             TypeInstPtr::NOTNULL);
  4550     PhiNode*    result_i_o = new(C) PhiNode(result_reg, Type::ABIO);
  4551     PhiNode*    result_mem = new(C) PhiNode(result_reg, Type::MEMORY,
  4552                                             TypePtr::BOTTOM);
  4553     record_for_igvn(result_reg);
  4555     const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
  4556     int raw_adr_idx = Compile::AliasIdxRaw;
  4558     Node* array_ctl = generate_array_guard(obj_klass, (RegionNode*)NULL);
  4559     if (array_ctl != NULL) {
  4560       // It's an array.
  4561       PreserveJVMState pjvms(this);
  4562       set_control(array_ctl);
  4563       Node* obj_length = load_array_length(obj);
  4564       Node* obj_size  = NULL;
  4565       Node* alloc_obj = new_array(obj_klass, obj_length, 0, &obj_size);  // no arguments to push
  4567       if (!use_ReduceInitialCardMarks()) {
  4568         // If it is an oop array, it requires very special treatment,
  4569         // because card marking is required on each card of the array.
  4570         Node* is_obja = generate_objArray_guard(obj_klass, (RegionNode*)NULL);
  4571         if (is_obja != NULL) {
  4572           PreserveJVMState pjvms2(this);
  4573           set_control(is_obja);
  4574           // Generate a direct call to the right arraycopy function(s).
  4575           bool disjoint_bases = true;
  4576           bool length_never_negative = true;
  4577           generate_arraycopy(TypeAryPtr::OOPS, T_OBJECT,
  4578                              obj, intcon(0), alloc_obj, intcon(0),
  4579                              obj_length,
  4580                              disjoint_bases, length_never_negative);
  4581           result_reg->init_req(_objArray_path, control());
  4582           result_val->init_req(_objArray_path, alloc_obj);
  4583           result_i_o ->set_req(_objArray_path, i_o());
  4584           result_mem ->set_req(_objArray_path, reset_memory());
  4587       // Otherwise, there are no card marks to worry about.
  4588       // (We can dispense with card marks if we know the allocation
  4589       //  comes out of eden (TLAB)...  In fact, ReduceInitialCardMarks
  4590       //  causes the non-eden paths to take compensating steps to
  4591       //  simulate a fresh allocation, so that no further
  4592       //  card marks are required in compiled code to initialize
  4593       //  the object.)
  4595       if (!stopped()) {
  4596         copy_to_clone(obj, alloc_obj, obj_size, true, false);
  4598         // Present the results of the copy.
  4599         result_reg->init_req(_array_path, control());
  4600         result_val->init_req(_array_path, alloc_obj);
  4601         result_i_o ->set_req(_array_path, i_o());
  4602         result_mem ->set_req(_array_path, reset_memory());
  4606     // We only go to the instance fast case code if we pass a number of guards.
  4607     // The paths which do not pass are accumulated in the slow_region.
  4608     RegionNode* slow_region = new (C) RegionNode(1);
  4609     record_for_igvn(slow_region);
  4610     if (!stopped()) {
  4611       // It's an instance (we did array above).  Make the slow-path tests.
  4612       // If this is a virtual call, we generate a funny guard.  We grab
  4613       // the vtable entry corresponding to clone() from the target object.
  4614       // If the target method which we are calling happens to be the
  4615       // Object clone() method, we pass the guard.  We do not need this
  4616       // guard for non-virtual calls; the caller is known to be the native
  4617       // Object clone().
  4618       if (is_virtual) {
  4619         generate_virtual_guard(obj_klass, slow_region);
  4622       // The object must be cloneable and must not have a finalizer.
  4623       // Both of these conditions may be checked in a single test.
  4624       // We could optimize the cloneable test further, but we don't care.
  4625       generate_access_flags_guard(obj_klass,
  4626                                   // Test both conditions:
  4627                                   JVM_ACC_IS_CLONEABLE | JVM_ACC_HAS_FINALIZER,
  4628                                   // Must be cloneable but not finalizer:
  4629                                   JVM_ACC_IS_CLONEABLE,
  4630                                   slow_region);
  4633     if (!stopped()) {
  4634       // It's an instance, and it passed the slow-path tests.
  4635       PreserveJVMState pjvms(this);
  4636       Node* obj_size  = NULL;
  4637       // Need to deoptimize on exception from allocation since Object.clone intrinsic
  4638       // is reexecuted if deoptimization occurs and there could be problems when merging
  4639       // exception state between multiple Object.clone versions (reexecute=true vs reexecute=false).
  4640       Node* alloc_obj = new_instance(obj_klass, NULL, &obj_size, /*deoptimize_on_exception=*/true);
  4642       copy_to_clone(obj, alloc_obj, obj_size, false, !use_ReduceInitialCardMarks());
  4644       // Present the results of the slow call.
  4645       result_reg->init_req(_instance_path, control());
  4646       result_val->init_req(_instance_path, alloc_obj);
  4647       result_i_o ->set_req(_instance_path, i_o());
  4648       result_mem ->set_req(_instance_path, reset_memory());
  4651     // Generate code for the slow case.  We make a call to clone().
  4652     set_control(_gvn.transform(slow_region));
  4653     if (!stopped()) {
  4654       PreserveJVMState pjvms(this);
  4655       CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_clone, is_virtual);
  4656       Node* slow_result = set_results_for_java_call(slow_call);
  4657       // this->control() comes from set_results_for_java_call
  4658       result_reg->init_req(_slow_path, control());
  4659       result_val->init_req(_slow_path, slow_result);
  4660       result_i_o ->set_req(_slow_path, i_o());
  4661       result_mem ->set_req(_slow_path, reset_memory());
  4664     // Return the combined state.
  4665     set_control(    _gvn.transform(result_reg));
  4666     set_i_o(        _gvn.transform(result_i_o));
  4667     set_all_memory( _gvn.transform(result_mem));
  4668   } // original reexecute is set back here
  4670   set_result(_gvn.transform(result_val));
  4671   return true;
  4674 //------------------------------basictype2arraycopy----------------------------
  4675 address LibraryCallKit::basictype2arraycopy(BasicType t,
  4676                                             Node* src_offset,
  4677                                             Node* dest_offset,
  4678                                             bool disjoint_bases,
  4679                                             const char* &name,
  4680                                             bool dest_uninitialized) {
  4681   const TypeInt* src_offset_inttype  = gvn().find_int_type(src_offset);;
  4682   const TypeInt* dest_offset_inttype = gvn().find_int_type(dest_offset);;
  4684   bool aligned = false;
  4685   bool disjoint = disjoint_bases;
  4687   // if the offsets are the same, we can treat the memory regions as
  4688   // disjoint, because either the memory regions are in different arrays,
  4689   // or they are identical (which we can treat as disjoint.)  We can also
  4690   // treat a copy with a destination index  less that the source index
  4691   // as disjoint since a low->high copy will work correctly in this case.
  4692   if (src_offset_inttype != NULL && src_offset_inttype->is_con() &&
  4693       dest_offset_inttype != NULL && dest_offset_inttype->is_con()) {
  4694     // both indices are constants
  4695     int s_offs = src_offset_inttype->get_con();
  4696     int d_offs = dest_offset_inttype->get_con();
  4697     int element_size = type2aelembytes(t);
  4698     aligned = ((arrayOopDesc::base_offset_in_bytes(t) + s_offs * element_size) % HeapWordSize == 0) &&
  4699               ((arrayOopDesc::base_offset_in_bytes(t) + d_offs * element_size) % HeapWordSize == 0);
  4700     if (s_offs >= d_offs)  disjoint = true;
  4701   } else if (src_offset == dest_offset && src_offset != NULL) {
  4702     // This can occur if the offsets are identical non-constants.
  4703     disjoint = true;
  4706   return StubRoutines::select_arraycopy_function(t, aligned, disjoint, name, dest_uninitialized);
  4710 //------------------------------inline_arraycopy-----------------------
  4711 // public static native void java.lang.System.arraycopy(Object src,  int  srcPos,
  4712 //                                                      Object dest, int destPos,
  4713 //                                                      int length);
  4714 bool LibraryCallKit::inline_arraycopy() {
  4715   // Get the arguments.
  4716   Node* src         = argument(0);  // type: oop
  4717   Node* src_offset  = argument(1);  // type: int
  4718   Node* dest        = argument(2);  // type: oop
  4719   Node* dest_offset = argument(3);  // type: int
  4720   Node* length      = argument(4);  // type: int
  4722   // Compile time checks.  If any of these checks cannot be verified at compile time,
  4723   // we do not make a fast path for this call.  Instead, we let the call remain as it
  4724   // is.  The checks we choose to mandate at compile time are:
  4725   //
  4726   // (1) src and dest are arrays.
  4727   const Type* src_type  = src->Value(&_gvn);
  4728   const Type* dest_type = dest->Value(&_gvn);
  4729   const TypeAryPtr* top_src  = src_type->isa_aryptr();
  4730   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
  4732   // Do we have the type of src?
  4733   bool has_src = (top_src != NULL && top_src->klass() != NULL);
  4734   // Do we have the type of dest?
  4735   bool has_dest = (top_dest != NULL && top_dest->klass() != NULL);
  4736   // Is the type for src from speculation?
  4737   bool src_spec = false;
  4738   // Is the type for dest from speculation?
  4739   bool dest_spec = false;
  4741   if (!has_src || !has_dest) {
  4742     // We don't have sufficient type information, let's see if
  4743     // speculative types can help. We need to have types for both src
  4744     // and dest so that it pays off.
  4746     // Do we already have or could we have type information for src
  4747     bool could_have_src = has_src;
  4748     // Do we already have or could we have type information for dest
  4749     bool could_have_dest = has_dest;
  4751     ciKlass* src_k = NULL;
  4752     if (!has_src) {
  4753       src_k = src_type->speculative_type();
  4754       if (src_k != NULL && src_k->is_array_klass()) {
  4755         could_have_src = true;
  4759     ciKlass* dest_k = NULL;
  4760     if (!has_dest) {
  4761       dest_k = dest_type->speculative_type();
  4762       if (dest_k != NULL && dest_k->is_array_klass()) {
  4763         could_have_dest = true;
  4767     if (could_have_src && could_have_dest) {
  4768       // This is going to pay off so emit the required guards
  4769       if (!has_src) {
  4770         src = maybe_cast_profiled_obj(src, src_k);
  4771         src_type  = _gvn.type(src);
  4772         top_src  = src_type->isa_aryptr();
  4773         has_src = (top_src != NULL && top_src->klass() != NULL);
  4774         src_spec = true;
  4776       if (!has_dest) {
  4777         dest = maybe_cast_profiled_obj(dest, dest_k);
  4778         dest_type  = _gvn.type(dest);
  4779         top_dest  = dest_type->isa_aryptr();
  4780         has_dest = (top_dest != NULL && top_dest->klass() != NULL);
  4781         dest_spec = true;
  4786   if (!has_src || !has_dest) {
  4787     // Conservatively insert a memory barrier on all memory slices.
  4788     // Do not let writes into the source float below the arraycopy.
  4789     insert_mem_bar(Op_MemBarCPUOrder);
  4791     // Call StubRoutines::generic_arraycopy stub.
  4792     generate_arraycopy(TypeRawPtr::BOTTOM, T_CONFLICT,
  4793                        src, src_offset, dest, dest_offset, length);
  4795     // Do not let reads from the destination float above the arraycopy.
  4796     // Since we cannot type the arrays, we don't know which slices
  4797     // might be affected.  We could restrict this barrier only to those
  4798     // memory slices which pertain to array elements--but don't bother.
  4799     if (!InsertMemBarAfterArraycopy)
  4800       // (If InsertMemBarAfterArraycopy, there is already one in place.)
  4801       insert_mem_bar(Op_MemBarCPUOrder);
  4802     return true;
  4805   // (2) src and dest arrays must have elements of the same BasicType
  4806   // Figure out the size and type of the elements we will be copying.
  4807   BasicType src_elem  =  top_src->klass()->as_array_klass()->element_type()->basic_type();
  4808   BasicType dest_elem = top_dest->klass()->as_array_klass()->element_type()->basic_type();
  4809   if (src_elem  == T_ARRAY)  src_elem  = T_OBJECT;
  4810   if (dest_elem == T_ARRAY)  dest_elem = T_OBJECT;
  4812   if (src_elem != dest_elem || dest_elem == T_VOID) {
  4813     // The component types are not the same or are not recognized.  Punt.
  4814     // (But, avoid the native method wrapper to JVM_ArrayCopy.)
  4815     generate_slow_arraycopy(TypePtr::BOTTOM,
  4816                             src, src_offset, dest, dest_offset, length,
  4817                             /*dest_uninitialized*/false);
  4818     return true;
  4821   if (src_elem == T_OBJECT) {
  4822     // If both arrays are object arrays then having the exact types
  4823     // for both will remove the need for a subtype check at runtime
  4824     // before the call and may make it possible to pick a faster copy
  4825     // routine (without a subtype check on every element)
  4826     // Do we have the exact type of src?
  4827     bool could_have_src = src_spec;
  4828     // Do we have the exact type of dest?
  4829     bool could_have_dest = dest_spec;
  4830     ciKlass* src_k = top_src->klass();
  4831     ciKlass* dest_k = top_dest->klass();
  4832     if (!src_spec) {
  4833       src_k = src_type->speculative_type();
  4834       if (src_k != NULL && src_k->is_array_klass()) {
  4835           could_have_src = true;
  4838     if (!dest_spec) {
  4839       dest_k = dest_type->speculative_type();
  4840       if (dest_k != NULL && dest_k->is_array_klass()) {
  4841         could_have_dest = true;
  4844     if (could_have_src && could_have_dest) {
  4845       // If we can have both exact types, emit the missing guards
  4846       if (could_have_src && !src_spec) {
  4847         src = maybe_cast_profiled_obj(src, src_k);
  4849       if (could_have_dest && !dest_spec) {
  4850         dest = maybe_cast_profiled_obj(dest, dest_k);
  4855   //---------------------------------------------------------------------------
  4856   // We will make a fast path for this call to arraycopy.
  4858   // We have the following tests left to perform:
  4859   //
  4860   // (3) src and dest must not be null.
  4861   // (4) src_offset must not be negative.
  4862   // (5) dest_offset must not be negative.
  4863   // (6) length must not be negative.
  4864   // (7) src_offset + length must not exceed length of src.
  4865   // (8) dest_offset + length must not exceed length of dest.
  4866   // (9) each element of an oop array must be assignable
  4868   RegionNode* slow_region = new (C) RegionNode(1);
  4869   record_for_igvn(slow_region);
  4871   // (3) operands must not be null
  4872   // We currently perform our null checks with the null_check routine.
  4873   // This means that the null exceptions will be reported in the caller
  4874   // rather than (correctly) reported inside of the native arraycopy call.
  4875   // This should be corrected, given time.  We do our null check with the
  4876   // stack pointer restored.
  4877   src  = null_check(src,  T_ARRAY);
  4878   dest = null_check(dest, T_ARRAY);
  4880   // (4) src_offset must not be negative.
  4881   generate_negative_guard(src_offset, slow_region);
  4883   // (5) dest_offset must not be negative.
  4884   generate_negative_guard(dest_offset, slow_region);
  4886   // (6) length must not be negative (moved to generate_arraycopy()).
  4887   // generate_negative_guard(length, slow_region);
  4889   // (7) src_offset + length must not exceed length of src.
  4890   generate_limit_guard(src_offset, length,
  4891                        load_array_length(src),
  4892                        slow_region);
  4894   // (8) dest_offset + length must not exceed length of dest.
  4895   generate_limit_guard(dest_offset, length,
  4896                        load_array_length(dest),
  4897                        slow_region);
  4899   // (9) each element of an oop array must be assignable
  4900   // The generate_arraycopy subroutine checks this.
  4902   // This is where the memory effects are placed:
  4903   const TypePtr* adr_type = TypeAryPtr::get_array_body_type(dest_elem);
  4904   generate_arraycopy(adr_type, dest_elem,
  4905                      src, src_offset, dest, dest_offset, length,
  4906                      false, false, slow_region);
  4908   return true;
  4911 //-----------------------------generate_arraycopy----------------------
  4912 // Generate an optimized call to arraycopy.
  4913 // Caller must guard against non-arrays.
  4914 // Caller must determine a common array basic-type for both arrays.
  4915 // Caller must validate offsets against array bounds.
  4916 // The slow_region has already collected guard failure paths
  4917 // (such as out of bounds length or non-conformable array types).
  4918 // The generated code has this shape, in general:
  4919 //
  4920 //     if (length == 0)  return   // via zero_path
  4921 //     slowval = -1
  4922 //     if (types unknown) {
  4923 //       slowval = call generic copy loop
  4924 //       if (slowval == 0)  return  // via checked_path
  4925 //     } else if (indexes in bounds) {
  4926 //       if ((is object array) && !(array type check)) {
  4927 //         slowval = call checked copy loop
  4928 //         if (slowval == 0)  return  // via checked_path
  4929 //       } else {
  4930 //         call bulk copy loop
  4931 //         return  // via fast_path
  4932 //       }
  4933 //     }
  4934 //     // adjust params for remaining work:
  4935 //     if (slowval != -1) {
  4936 //       n = -1^slowval; src_offset += n; dest_offset += n; length -= n
  4937 //     }
  4938 //   slow_region:
  4939 //     call slow arraycopy(src, src_offset, dest, dest_offset, length)
  4940 //     return  // via slow_call_path
  4941 //
  4942 // This routine is used from several intrinsics:  System.arraycopy,
  4943 // Object.clone (the array subcase), and Arrays.copyOf[Range].
  4944 //
  4945 void
  4946 LibraryCallKit::generate_arraycopy(const TypePtr* adr_type,
  4947                                    BasicType basic_elem_type,
  4948                                    Node* src,  Node* src_offset,
  4949                                    Node* dest, Node* dest_offset,
  4950                                    Node* copy_length,
  4951                                    bool disjoint_bases,
  4952                                    bool length_never_negative,
  4953                                    RegionNode* slow_region) {
  4955   if (slow_region == NULL) {
  4956     slow_region = new(C) RegionNode(1);
  4957     record_for_igvn(slow_region);
  4960   Node* original_dest      = dest;
  4961   AllocateArrayNode* alloc = NULL;  // used for zeroing, if needed
  4962   bool  dest_uninitialized = false;
  4964   // See if this is the initialization of a newly-allocated array.
  4965   // If so, we will take responsibility here for initializing it to zero.
  4966   // (Note:  Because tightly_coupled_allocation performs checks on the
  4967   // out-edges of the dest, we need to avoid making derived pointers
  4968   // from it until we have checked its uses.)
  4969   if (ReduceBulkZeroing
  4970       && !ZeroTLAB              // pointless if already zeroed
  4971       && basic_elem_type != T_CONFLICT // avoid corner case
  4972       && !src->eqv_uncast(dest)
  4973       && ((alloc = tightly_coupled_allocation(dest, slow_region))
  4974           != NULL)
  4975       && _gvn.find_int_con(alloc->in(AllocateNode::ALength), 1) > 0
  4976       && alloc->maybe_set_complete(&_gvn)) {
  4977     // "You break it, you buy it."
  4978     InitializeNode* init = alloc->initialization();
  4979     assert(init->is_complete(), "we just did this");
  4980     init->set_complete_with_arraycopy();
  4981     assert(dest->is_CheckCastPP(), "sanity");
  4982     assert(dest->in(0)->in(0) == init, "dest pinned");
  4983     adr_type = TypeRawPtr::BOTTOM;  // all initializations are into raw memory
  4984     // From this point on, every exit path is responsible for
  4985     // initializing any non-copied parts of the object to zero.
  4986     // Also, if this flag is set we make sure that arraycopy interacts properly
  4987     // with G1, eliding pre-barriers. See CR 6627983.
  4988     dest_uninitialized = true;
  4989   } else {
  4990     // No zeroing elimination here.
  4991     alloc             = NULL;
  4992     //original_dest   = dest;
  4993     //dest_uninitialized = false;
  4996   // Results are placed here:
  4997   enum { fast_path        = 1,  // normal void-returning assembly stub
  4998          checked_path     = 2,  // special assembly stub with cleanup
  4999          slow_call_path   = 3,  // something went wrong; call the VM
  5000          zero_path        = 4,  // bypass when length of copy is zero
  5001          bcopy_path       = 5,  // copy primitive array by 64-bit blocks
  5002          PATH_LIMIT       = 6
  5003   };
  5004   RegionNode* result_region = new(C) RegionNode(PATH_LIMIT);
  5005   PhiNode*    result_i_o    = new(C) PhiNode(result_region, Type::ABIO);
  5006   PhiNode*    result_memory = new(C) PhiNode(result_region, Type::MEMORY, adr_type);
  5007   record_for_igvn(result_region);
  5008   _gvn.set_type_bottom(result_i_o);
  5009   _gvn.set_type_bottom(result_memory);
  5010   assert(adr_type != TypePtr::BOTTOM, "must be RawMem or a T[] slice");
  5012   // The slow_control path:
  5013   Node* slow_control;
  5014   Node* slow_i_o = i_o();
  5015   Node* slow_mem = memory(adr_type);
  5016   debug_only(slow_control = (Node*) badAddress);
  5018   // Checked control path:
  5019   Node* checked_control = top();
  5020   Node* checked_mem     = NULL;
  5021   Node* checked_i_o     = NULL;
  5022   Node* checked_value   = NULL;
  5024   if (basic_elem_type == T_CONFLICT) {
  5025     assert(!dest_uninitialized, "");
  5026     Node* cv = generate_generic_arraycopy(adr_type,
  5027                                           src, src_offset, dest, dest_offset,
  5028                                           copy_length, dest_uninitialized);
  5029     if (cv == NULL)  cv = intcon(-1);  // failure (no stub available)
  5030     checked_control = control();
  5031     checked_i_o     = i_o();
  5032     checked_mem     = memory(adr_type);
  5033     checked_value   = cv;
  5034     set_control(top());         // no fast path
  5037   Node* not_pos = generate_nonpositive_guard(copy_length, length_never_negative);
  5038   if (not_pos != NULL) {
  5039     PreserveJVMState pjvms(this);
  5040     set_control(not_pos);
  5042     // (6) length must not be negative.
  5043     if (!length_never_negative) {
  5044       generate_negative_guard(copy_length, slow_region);
  5047     // copy_length is 0.
  5048     if (!stopped() && dest_uninitialized) {
  5049       Node* dest_length = alloc->in(AllocateNode::ALength);
  5050       if (copy_length->eqv_uncast(dest_length)
  5051           || _gvn.find_int_con(dest_length, 1) <= 0) {
  5052         // There is no zeroing to do. No need for a secondary raw memory barrier.
  5053       } else {
  5054         // Clear the whole thing since there are no source elements to copy.
  5055         generate_clear_array(adr_type, dest, basic_elem_type,
  5056                              intcon(0), NULL,
  5057                              alloc->in(AllocateNode::AllocSize));
  5058         // Use a secondary InitializeNode as raw memory barrier.
  5059         // Currently it is needed only on this path since other
  5060         // paths have stub or runtime calls as raw memory barriers.
  5061         InitializeNode* init = insert_mem_bar_volatile(Op_Initialize,
  5062                                                        Compile::AliasIdxRaw,
  5063                                                        top())->as_Initialize();
  5064         init->set_complete(&_gvn);  // (there is no corresponding AllocateNode)
  5068     // Present the results of the fast call.
  5069     result_region->init_req(zero_path, control());
  5070     result_i_o   ->init_req(zero_path, i_o());
  5071     result_memory->init_req(zero_path, memory(adr_type));
  5074   if (!stopped() && dest_uninitialized) {
  5075     // We have to initialize the *uncopied* part of the array to zero.
  5076     // The copy destination is the slice dest[off..off+len].  The other slices
  5077     // are dest_head = dest[0..off] and dest_tail = dest[off+len..dest.length].
  5078     Node* dest_size   = alloc->in(AllocateNode::AllocSize);
  5079     Node* dest_length = alloc->in(AllocateNode::ALength);
  5080     Node* dest_tail   = _gvn.transform(new(C) AddINode(dest_offset,
  5081                                                           copy_length));
  5083     // If there is a head section that needs zeroing, do it now.
  5084     if (find_int_con(dest_offset, -1) != 0) {
  5085       generate_clear_array(adr_type, dest, basic_elem_type,
  5086                            intcon(0), dest_offset,
  5087                            NULL);
  5090     // Next, perform a dynamic check on the tail length.
  5091     // It is often zero, and we can win big if we prove this.
  5092     // There are two wins:  Avoid generating the ClearArray
  5093     // with its attendant messy index arithmetic, and upgrade
  5094     // the copy to a more hardware-friendly word size of 64 bits.
  5095     Node* tail_ctl = NULL;
  5096     if (!stopped() && !dest_tail->eqv_uncast(dest_length)) {
  5097       Node* cmp_lt   = _gvn.transform(new(C) CmpINode(dest_tail, dest_length));
  5098       Node* bol_lt   = _gvn.transform(new(C) BoolNode(cmp_lt, BoolTest::lt));
  5099       tail_ctl = generate_slow_guard(bol_lt, NULL);
  5100       assert(tail_ctl != NULL || !stopped(), "must be an outcome");
  5103     // At this point, let's assume there is no tail.
  5104     if (!stopped() && alloc != NULL && basic_elem_type != T_OBJECT) {
  5105       // There is no tail.  Try an upgrade to a 64-bit copy.
  5106       bool didit = false;
  5107       { PreserveJVMState pjvms(this);
  5108         didit = generate_block_arraycopy(adr_type, basic_elem_type, alloc,
  5109                                          src, src_offset, dest, dest_offset,
  5110                                          dest_size, dest_uninitialized);
  5111         if (didit) {
  5112           // Present the results of the block-copying fast call.
  5113           result_region->init_req(bcopy_path, control());
  5114           result_i_o   ->init_req(bcopy_path, i_o());
  5115           result_memory->init_req(bcopy_path, memory(adr_type));
  5118       if (didit)
  5119         set_control(top());     // no regular fast path
  5122     // Clear the tail, if any.
  5123     if (tail_ctl != NULL) {
  5124       Node* notail_ctl = stopped() ? NULL : control();
  5125       set_control(tail_ctl);
  5126       if (notail_ctl == NULL) {
  5127         generate_clear_array(adr_type, dest, basic_elem_type,
  5128                              dest_tail, NULL,
  5129                              dest_size);
  5130       } else {
  5131         // Make a local merge.
  5132         Node* done_ctl = new(C) RegionNode(3);
  5133         Node* done_mem = new(C) PhiNode(done_ctl, Type::MEMORY, adr_type);
  5134         done_ctl->init_req(1, notail_ctl);
  5135         done_mem->init_req(1, memory(adr_type));
  5136         generate_clear_array(adr_type, dest, basic_elem_type,
  5137                              dest_tail, NULL,
  5138                              dest_size);
  5139         done_ctl->init_req(2, control());
  5140         done_mem->init_req(2, memory(adr_type));
  5141         set_control( _gvn.transform(done_ctl));
  5142         set_memory(  _gvn.transform(done_mem), adr_type );
  5147   BasicType copy_type = basic_elem_type;
  5148   assert(basic_elem_type != T_ARRAY, "caller must fix this");
  5149   if (!stopped() && copy_type == T_OBJECT) {
  5150     // If src and dest have compatible element types, we can copy bits.
  5151     // Types S[] and D[] are compatible if D is a supertype of S.
  5152     //
  5153     // If they are not, we will use checked_oop_disjoint_arraycopy,
  5154     // which performs a fast optimistic per-oop check, and backs off
  5155     // further to JVM_ArrayCopy on the first per-oop check that fails.
  5156     // (Actually, we don't move raw bits only; the GC requires card marks.)
  5158     // Get the Klass* for both src and dest
  5159     Node* src_klass  = load_object_klass(src);
  5160     Node* dest_klass = load_object_klass(dest);
  5162     // Generate the subtype check.
  5163     // This might fold up statically, or then again it might not.
  5164     //
  5165     // Non-static example:  Copying List<String>.elements to a new String[].
  5166     // The backing store for a List<String> is always an Object[],
  5167     // but its elements are always type String, if the generic types
  5168     // are correct at the source level.
  5169     //
  5170     // Test S[] against D[], not S against D, because (probably)
  5171     // the secondary supertype cache is less busy for S[] than S.
  5172     // This usually only matters when D is an interface.
  5173     Node* not_subtype_ctrl = gen_subtype_check(src_klass, dest_klass);
  5174     // Plug failing path into checked_oop_disjoint_arraycopy
  5175     if (not_subtype_ctrl != top()) {
  5176       PreserveJVMState pjvms(this);
  5177       set_control(not_subtype_ctrl);
  5178       // (At this point we can assume disjoint_bases, since types differ.)
  5179       int ek_offset = in_bytes(ObjArrayKlass::element_klass_offset());
  5180       Node* p1 = basic_plus_adr(dest_klass, ek_offset);
  5181       Node* n1 = LoadKlassNode::make(_gvn, NULL, immutable_memory(), p1, TypeRawPtr::BOTTOM);
  5182       Node* dest_elem_klass = _gvn.transform(n1);
  5183       Node* cv = generate_checkcast_arraycopy(adr_type,
  5184                                               dest_elem_klass,
  5185                                               src, src_offset, dest, dest_offset,
  5186                                               ConvI2X(copy_length), dest_uninitialized);
  5187       if (cv == NULL)  cv = intcon(-1);  // failure (no stub available)
  5188       checked_control = control();
  5189       checked_i_o     = i_o();
  5190       checked_mem     = memory(adr_type);
  5191       checked_value   = cv;
  5193     // At this point we know we do not need type checks on oop stores.
  5195     // Let's see if we need card marks:
  5196     if (alloc != NULL && use_ReduceInitialCardMarks()) {
  5197       // If we do not need card marks, copy using the jint or jlong stub.
  5198       copy_type = LP64_ONLY(UseCompressedOops ? T_INT : T_LONG) NOT_LP64(T_INT);
  5199       assert(type2aelembytes(basic_elem_type) == type2aelembytes(copy_type),
  5200              "sizes agree");
  5204   if (!stopped()) {
  5205     // Generate the fast path, if possible.
  5206     PreserveJVMState pjvms(this);
  5207     generate_unchecked_arraycopy(adr_type, copy_type, disjoint_bases,
  5208                                  src, src_offset, dest, dest_offset,
  5209                                  ConvI2X(copy_length), dest_uninitialized);
  5211     // Present the results of the fast call.
  5212     result_region->init_req(fast_path, control());
  5213     result_i_o   ->init_req(fast_path, i_o());
  5214     result_memory->init_req(fast_path, memory(adr_type));
  5217   // Here are all the slow paths up to this point, in one bundle:
  5218   slow_control = top();
  5219   if (slow_region != NULL)
  5220     slow_control = _gvn.transform(slow_region);
  5221   DEBUG_ONLY(slow_region = (RegionNode*)badAddress);
  5223   set_control(checked_control);
  5224   if (!stopped()) {
  5225     // Clean up after the checked call.
  5226     // The returned value is either 0 or -1^K,
  5227     // where K = number of partially transferred array elements.
  5228     Node* cmp = _gvn.transform(new(C) CmpINode(checked_value, intcon(0)));
  5229     Node* bol = _gvn.transform(new(C) BoolNode(cmp, BoolTest::eq));
  5230     IfNode* iff = create_and_map_if(control(), bol, PROB_MAX, COUNT_UNKNOWN);
  5232     // If it is 0, we are done, so transfer to the end.
  5233     Node* checks_done = _gvn.transform(new(C) IfTrueNode(iff));
  5234     result_region->init_req(checked_path, checks_done);
  5235     result_i_o   ->init_req(checked_path, checked_i_o);
  5236     result_memory->init_req(checked_path, checked_mem);
  5238     // If it is not zero, merge into the slow call.
  5239     set_control( _gvn.transform(new(C) IfFalseNode(iff) ));
  5240     RegionNode* slow_reg2 = new(C) RegionNode(3);
  5241     PhiNode*    slow_i_o2 = new(C) PhiNode(slow_reg2, Type::ABIO);
  5242     PhiNode*    slow_mem2 = new(C) PhiNode(slow_reg2, Type::MEMORY, adr_type);
  5243     record_for_igvn(slow_reg2);
  5244     slow_reg2  ->init_req(1, slow_control);
  5245     slow_i_o2  ->init_req(1, slow_i_o);
  5246     slow_mem2  ->init_req(1, slow_mem);
  5247     slow_reg2  ->init_req(2, control());
  5248     slow_i_o2  ->init_req(2, checked_i_o);
  5249     slow_mem2  ->init_req(2, checked_mem);
  5251     slow_control = _gvn.transform(slow_reg2);
  5252     slow_i_o     = _gvn.transform(slow_i_o2);
  5253     slow_mem     = _gvn.transform(slow_mem2);
  5255     if (alloc != NULL) {
  5256       // We'll restart from the very beginning, after zeroing the whole thing.
  5257       // This can cause double writes, but that's OK since dest is brand new.
  5258       // So we ignore the low 31 bits of the value returned from the stub.
  5259     } else {
  5260       // We must continue the copy exactly where it failed, or else
  5261       // another thread might see the wrong number of writes to dest.
  5262       Node* checked_offset = _gvn.transform(new(C) XorINode(checked_value, intcon(-1)));
  5263       Node* slow_offset    = new(C) PhiNode(slow_reg2, TypeInt::INT);
  5264       slow_offset->init_req(1, intcon(0));
  5265       slow_offset->init_req(2, checked_offset);
  5266       slow_offset  = _gvn.transform(slow_offset);
  5268       // Adjust the arguments by the conditionally incoming offset.
  5269       Node* src_off_plus  = _gvn.transform(new(C) AddINode(src_offset,  slow_offset));
  5270       Node* dest_off_plus = _gvn.transform(new(C) AddINode(dest_offset, slow_offset));
  5271       Node* length_minus  = _gvn.transform(new(C) SubINode(copy_length, slow_offset));
  5273       // Tweak the node variables to adjust the code produced below:
  5274       src_offset  = src_off_plus;
  5275       dest_offset = dest_off_plus;
  5276       copy_length = length_minus;
  5280   set_control(slow_control);
  5281   if (!stopped()) {
  5282     // Generate the slow path, if needed.
  5283     PreserveJVMState pjvms(this);   // replace_in_map may trash the map
  5285     set_memory(slow_mem, adr_type);
  5286     set_i_o(slow_i_o);
  5288     if (dest_uninitialized) {
  5289       generate_clear_array(adr_type, dest, basic_elem_type,
  5290                            intcon(0), NULL,
  5291                            alloc->in(AllocateNode::AllocSize));
  5294     generate_slow_arraycopy(adr_type,
  5295                             src, src_offset, dest, dest_offset,
  5296                             copy_length, /*dest_uninitialized*/false);
  5298     result_region->init_req(slow_call_path, control());
  5299     result_i_o   ->init_req(slow_call_path, i_o());
  5300     result_memory->init_req(slow_call_path, memory(adr_type));
  5303   // Remove unused edges.
  5304   for (uint i = 1; i < result_region->req(); i++) {
  5305     if (result_region->in(i) == NULL)
  5306       result_region->init_req(i, top());
  5309   // Finished; return the combined state.
  5310   set_control( _gvn.transform(result_region));
  5311   set_i_o(     _gvn.transform(result_i_o)    );
  5312   set_memory(  _gvn.transform(result_memory), adr_type );
  5314   // The memory edges above are precise in order to model effects around
  5315   // array copies accurately to allow value numbering of field loads around
  5316   // arraycopy.  Such field loads, both before and after, are common in Java
  5317   // collections and similar classes involving header/array data structures.
  5318   //
  5319   // But with low number of register or when some registers are used or killed
  5320   // by arraycopy calls it causes registers spilling on stack. See 6544710.
  5321   // The next memory barrier is added to avoid it. If the arraycopy can be
  5322   // optimized away (which it can, sometimes) then we can manually remove
  5323   // the membar also.
  5324   //
  5325   // Do not let reads from the cloned object float above the arraycopy.
  5326   if (alloc != NULL) {
  5327     // Do not let stores that initialize this object be reordered with
  5328     // a subsequent store that would make this object accessible by
  5329     // other threads.
  5330     // Record what AllocateNode this StoreStore protects so that
  5331     // escape analysis can go from the MemBarStoreStoreNode to the
  5332     // AllocateNode and eliminate the MemBarStoreStoreNode if possible
  5333     // based on the escape status of the AllocateNode.
  5334     insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out(AllocateNode::RawAddress));
  5335   } else if (InsertMemBarAfterArraycopy)
  5336     insert_mem_bar(Op_MemBarCPUOrder);
  5340 // Helper function which determines if an arraycopy immediately follows
  5341 // an allocation, with no intervening tests or other escapes for the object.
  5342 AllocateArrayNode*
  5343 LibraryCallKit::tightly_coupled_allocation(Node* ptr,
  5344                                            RegionNode* slow_region) {
  5345   if (stopped())             return NULL;  // no fast path
  5346   if (C->AliasLevel() == 0)  return NULL;  // no MergeMems around
  5348   AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(ptr, &_gvn);
  5349   if (alloc == NULL)  return NULL;
  5351   Node* rawmem = memory(Compile::AliasIdxRaw);
  5352   // Is the allocation's memory state untouched?
  5353   if (!(rawmem->is_Proj() && rawmem->in(0)->is_Initialize())) {
  5354     // Bail out if there have been raw-memory effects since the allocation.
  5355     // (Example:  There might have been a call or safepoint.)
  5356     return NULL;
  5358   rawmem = rawmem->in(0)->as_Initialize()->memory(Compile::AliasIdxRaw);
  5359   if (!(rawmem->is_Proj() && rawmem->in(0) == alloc)) {
  5360     return NULL;
  5363   // There must be no unexpected observers of this allocation.
  5364   for (DUIterator_Fast imax, i = ptr->fast_outs(imax); i < imax; i++) {
  5365     Node* obs = ptr->fast_out(i);
  5366     if (obs != this->map()) {
  5367       return NULL;
  5371   // This arraycopy must unconditionally follow the allocation of the ptr.
  5372   Node* alloc_ctl = ptr->in(0);
  5373   assert(just_allocated_object(alloc_ctl) == ptr, "most recent allo");
  5375   Node* ctl = control();
  5376   while (ctl != alloc_ctl) {
  5377     // There may be guards which feed into the slow_region.
  5378     // Any other control flow means that we might not get a chance
  5379     // to finish initializing the allocated object.
  5380     if ((ctl->is_IfFalse() || ctl->is_IfTrue()) && ctl->in(0)->is_If()) {
  5381       IfNode* iff = ctl->in(0)->as_If();
  5382       Node* not_ctl = iff->proj_out(1 - ctl->as_Proj()->_con);
  5383       assert(not_ctl != NULL && not_ctl != ctl, "found alternate");
  5384       if (slow_region != NULL && slow_region->find_edge(not_ctl) >= 1) {
  5385         ctl = iff->in(0);       // This test feeds the known slow_region.
  5386         continue;
  5388       // One more try:  Various low-level checks bottom out in
  5389       // uncommon traps.  If the debug-info of the trap omits
  5390       // any reference to the allocation, as we've already
  5391       // observed, then there can be no objection to the trap.
  5392       bool found_trap = false;
  5393       for (DUIterator_Fast jmax, j = not_ctl->fast_outs(jmax); j < jmax; j++) {
  5394         Node* obs = not_ctl->fast_out(j);
  5395         if (obs->in(0) == not_ctl && obs->is_Call() &&
  5396             (obs->as_Call()->entry_point() == SharedRuntime::uncommon_trap_blob()->entry_point())) {
  5397           found_trap = true; break;
  5400       if (found_trap) {
  5401         ctl = iff->in(0);       // This test feeds a harmless uncommon trap.
  5402         continue;
  5405     return NULL;
  5408   // If we get this far, we have an allocation which immediately
  5409   // precedes the arraycopy, and we can take over zeroing the new object.
  5410   // The arraycopy will finish the initialization, and provide
  5411   // a new control state to which we will anchor the destination pointer.
  5413   return alloc;
  5416 // Helper for initialization of arrays, creating a ClearArray.
  5417 // It writes zero bits in [start..end), within the body of an array object.
  5418 // The memory effects are all chained onto the 'adr_type' alias category.
  5419 //
  5420 // Since the object is otherwise uninitialized, we are free
  5421 // to put a little "slop" around the edges of the cleared area,
  5422 // as long as it does not go back into the array's header,
  5423 // or beyond the array end within the heap.
  5424 //
  5425 // The lower edge can be rounded down to the nearest jint and the
  5426 // upper edge can be rounded up to the nearest MinObjAlignmentInBytes.
  5427 //
  5428 // Arguments:
  5429 //   adr_type           memory slice where writes are generated
  5430 //   dest               oop of the destination array
  5431 //   basic_elem_type    element type of the destination
  5432 //   slice_idx          array index of first element to store
  5433 //   slice_len          number of elements to store (or NULL)
  5434 //   dest_size          total size in bytes of the array object
  5435 //
  5436 // Exactly one of slice_len or dest_size must be non-NULL.
  5437 // If dest_size is non-NULL, zeroing extends to the end of the object.
  5438 // If slice_len is non-NULL, the slice_idx value must be a constant.
  5439 void
  5440 LibraryCallKit::generate_clear_array(const TypePtr* adr_type,
  5441                                      Node* dest,
  5442                                      BasicType basic_elem_type,
  5443                                      Node* slice_idx,
  5444                                      Node* slice_len,
  5445                                      Node* dest_size) {
  5446   // one or the other but not both of slice_len and dest_size:
  5447   assert((slice_len != NULL? 1: 0) + (dest_size != NULL? 1: 0) == 1, "");
  5448   if (slice_len == NULL)  slice_len = top();
  5449   if (dest_size == NULL)  dest_size = top();
  5451   // operate on this memory slice:
  5452   Node* mem = memory(adr_type); // memory slice to operate on
  5454   // scaling and rounding of indexes:
  5455   int scale = exact_log2(type2aelembytes(basic_elem_type));
  5456   int abase = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
  5457   int clear_low = (-1 << scale) & (BytesPerInt  - 1);
  5458   int bump_bit  = (-1 << scale) & BytesPerInt;
  5460   // determine constant starts and ends
  5461   const intptr_t BIG_NEG = -128;
  5462   assert(BIG_NEG + 2*abase < 0, "neg enough");
  5463   intptr_t slice_idx_con = (intptr_t) find_int_con(slice_idx, BIG_NEG);
  5464   intptr_t slice_len_con = (intptr_t) find_int_con(slice_len, BIG_NEG);
  5465   if (slice_len_con == 0) {
  5466     return;                     // nothing to do here
  5468   intptr_t start_con = (abase + (slice_idx_con << scale)) & ~clear_low;
  5469   intptr_t end_con   = find_intptr_t_con(dest_size, -1);
  5470   if (slice_idx_con >= 0 && slice_len_con >= 0) {
  5471     assert(end_con < 0, "not two cons");
  5472     end_con = round_to(abase + ((slice_idx_con + slice_len_con) << scale),
  5473                        BytesPerLong);
  5476   if (start_con >= 0 && end_con >= 0) {
  5477     // Constant start and end.  Simple.
  5478     mem = ClearArrayNode::clear_memory(control(), mem, dest,
  5479                                        start_con, end_con, &_gvn);
  5480   } else if (start_con >= 0 && dest_size != top()) {
  5481     // Constant start, pre-rounded end after the tail of the array.
  5482     Node* end = dest_size;
  5483     mem = ClearArrayNode::clear_memory(control(), mem, dest,
  5484                                        start_con, end, &_gvn);
  5485   } else if (start_con >= 0 && slice_len != top()) {
  5486     // Constant start, non-constant end.  End needs rounding up.
  5487     // End offset = round_up(abase + ((slice_idx_con + slice_len) << scale), 8)
  5488     intptr_t end_base  = abase + (slice_idx_con << scale);
  5489     int      end_round = (-1 << scale) & (BytesPerLong  - 1);
  5490     Node*    end       = ConvI2X(slice_len);
  5491     if (scale != 0)
  5492       end = _gvn.transform(new(C) LShiftXNode(end, intcon(scale) ));
  5493     end_base += end_round;
  5494     end = _gvn.transform(new(C) AddXNode(end, MakeConX(end_base)));
  5495     end = _gvn.transform(new(C) AndXNode(end, MakeConX(~end_round)));
  5496     mem = ClearArrayNode::clear_memory(control(), mem, dest,
  5497                                        start_con, end, &_gvn);
  5498   } else if (start_con < 0 && dest_size != top()) {
  5499     // Non-constant start, pre-rounded end after the tail of the array.
  5500     // This is almost certainly a "round-to-end" operation.
  5501     Node* start = slice_idx;
  5502     start = ConvI2X(start);
  5503     if (scale != 0)
  5504       start = _gvn.transform(new(C) LShiftXNode( start, intcon(scale) ));
  5505     start = _gvn.transform(new(C) AddXNode(start, MakeConX(abase)));
  5506     if ((bump_bit | clear_low) != 0) {
  5507       int to_clear = (bump_bit | clear_low);
  5508       // Align up mod 8, then store a jint zero unconditionally
  5509       // just before the mod-8 boundary.
  5510       if (((abase + bump_bit) & ~to_clear) - bump_bit
  5511           < arrayOopDesc::length_offset_in_bytes() + BytesPerInt) {
  5512         bump_bit = 0;
  5513         assert((abase & to_clear) == 0, "array base must be long-aligned");
  5514       } else {
  5515         // Bump 'start' up to (or past) the next jint boundary:
  5516         start = _gvn.transform(new(C) AddXNode(start, MakeConX(bump_bit)));
  5517         assert((abase & clear_low) == 0, "array base must be int-aligned");
  5519       // Round bumped 'start' down to jlong boundary in body of array.
  5520       start = _gvn.transform(new(C) AndXNode(start, MakeConX(~to_clear)));
  5521       if (bump_bit != 0) {
  5522         // Store a zero to the immediately preceding jint:
  5523         Node* x1 = _gvn.transform(new(C) AddXNode(start, MakeConX(-bump_bit)));
  5524         Node* p1 = basic_plus_adr(dest, x1);
  5525         mem = StoreNode::make(_gvn, control(), mem, p1, adr_type, intcon(0), T_INT, MemNode::unordered);
  5526         mem = _gvn.transform(mem);
  5529     Node* end = dest_size; // pre-rounded
  5530     mem = ClearArrayNode::clear_memory(control(), mem, dest,
  5531                                        start, end, &_gvn);
  5532   } else {
  5533     // Non-constant start, unrounded non-constant end.
  5534     // (Nobody zeroes a random midsection of an array using this routine.)
  5535     ShouldNotReachHere();       // fix caller
  5538   // Done.
  5539   set_memory(mem, adr_type);
  5543 bool
  5544 LibraryCallKit::generate_block_arraycopy(const TypePtr* adr_type,
  5545                                          BasicType basic_elem_type,
  5546                                          AllocateNode* alloc,
  5547                                          Node* src,  Node* src_offset,
  5548                                          Node* dest, Node* dest_offset,
  5549                                          Node* dest_size, bool dest_uninitialized) {
  5550   // See if there is an advantage from block transfer.
  5551   int scale = exact_log2(type2aelembytes(basic_elem_type));
  5552   if (scale >= LogBytesPerLong)
  5553     return false;               // it is already a block transfer
  5555   // Look at the alignment of the starting offsets.
  5556   int abase = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
  5558   intptr_t src_off_con  = (intptr_t) find_int_con(src_offset, -1);
  5559   intptr_t dest_off_con = (intptr_t) find_int_con(dest_offset, -1);
  5560   if (src_off_con < 0 || dest_off_con < 0)
  5561     // At present, we can only understand constants.
  5562     return false;
  5564   intptr_t src_off  = abase + (src_off_con  << scale);
  5565   intptr_t dest_off = abase + (dest_off_con << scale);
  5567   if (((src_off | dest_off) & (BytesPerLong-1)) != 0) {
  5568     // Non-aligned; too bad.
  5569     // One more chance:  Pick off an initial 32-bit word.
  5570     // This is a common case, since abase can be odd mod 8.
  5571     if (((src_off | dest_off) & (BytesPerLong-1)) == BytesPerInt &&
  5572         ((src_off ^ dest_off) & (BytesPerLong-1)) == 0) {
  5573       Node* sptr = basic_plus_adr(src,  src_off);
  5574       Node* dptr = basic_plus_adr(dest, dest_off);
  5575       Node* sval = make_load(control(), sptr, TypeInt::INT, T_INT, adr_type, MemNode::unordered);
  5576       store_to_memory(control(), dptr, sval, T_INT, adr_type, MemNode::unordered);
  5577       src_off += BytesPerInt;
  5578       dest_off += BytesPerInt;
  5579     } else {
  5580       return false;
  5583   assert(src_off % BytesPerLong == 0, "");
  5584   assert(dest_off % BytesPerLong == 0, "");
  5586   // Do this copy by giant steps.
  5587   Node* sptr  = basic_plus_adr(src,  src_off);
  5588   Node* dptr  = basic_plus_adr(dest, dest_off);
  5589   Node* countx = dest_size;
  5590   countx = _gvn.transform(new (C) SubXNode(countx, MakeConX(dest_off)));
  5591   countx = _gvn.transform(new (C) URShiftXNode(countx, intcon(LogBytesPerLong)));
  5593   bool disjoint_bases = true;   // since alloc != NULL
  5594   generate_unchecked_arraycopy(adr_type, T_LONG, disjoint_bases,
  5595                                sptr, NULL, dptr, NULL, countx, dest_uninitialized);
  5597   return true;
  5601 // Helper function; generates code for the slow case.
  5602 // We make a call to a runtime method which emulates the native method,
  5603 // but without the native wrapper overhead.
  5604 void
  5605 LibraryCallKit::generate_slow_arraycopy(const TypePtr* adr_type,
  5606                                         Node* src,  Node* src_offset,
  5607                                         Node* dest, Node* dest_offset,
  5608                                         Node* copy_length, bool dest_uninitialized) {
  5609   assert(!dest_uninitialized, "Invariant");
  5610   Node* call = make_runtime_call(RC_NO_LEAF | RC_UNCOMMON,
  5611                                  OptoRuntime::slow_arraycopy_Type(),
  5612                                  OptoRuntime::slow_arraycopy_Java(),
  5613                                  "slow_arraycopy", adr_type,
  5614                                  src, src_offset, dest, dest_offset,
  5615                                  copy_length);
  5617   // Handle exceptions thrown by this fellow:
  5618   make_slow_call_ex(call, env()->Throwable_klass(), false);
  5621 // Helper function; generates code for cases requiring runtime checks.
  5622 Node*
  5623 LibraryCallKit::generate_checkcast_arraycopy(const TypePtr* adr_type,
  5624                                              Node* dest_elem_klass,
  5625                                              Node* src,  Node* src_offset,
  5626                                              Node* dest, Node* dest_offset,
  5627                                              Node* copy_length, bool dest_uninitialized) {
  5628   if (stopped())  return NULL;
  5630   address copyfunc_addr = StubRoutines::checkcast_arraycopy(dest_uninitialized);
  5631   if (copyfunc_addr == NULL) { // Stub was not generated, go slow path.
  5632     return NULL;
  5635   // Pick out the parameters required to perform a store-check
  5636   // for the target array.  This is an optimistic check.  It will
  5637   // look in each non-null element's class, at the desired klass's
  5638   // super_check_offset, for the desired klass.
  5639   int sco_offset = in_bytes(Klass::super_check_offset_offset());
  5640   Node* p3 = basic_plus_adr(dest_elem_klass, sco_offset);
  5641   Node* n3 = new(C) LoadINode(NULL, memory(p3), p3, _gvn.type(p3)->is_ptr(), TypeInt::INT, MemNode::unordered);
  5642   Node* check_offset = ConvI2X(_gvn.transform(n3));
  5643   Node* check_value  = dest_elem_klass;
  5645   Node* src_start  = array_element_address(src,  src_offset,  T_OBJECT);
  5646   Node* dest_start = array_element_address(dest, dest_offset, T_OBJECT);
  5648   // (We know the arrays are never conjoint, because their types differ.)
  5649   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
  5650                                  OptoRuntime::checkcast_arraycopy_Type(),
  5651                                  copyfunc_addr, "checkcast_arraycopy", adr_type,
  5652                                  // five arguments, of which two are
  5653                                  // intptr_t (jlong in LP64)
  5654                                  src_start, dest_start,
  5655                                  copy_length XTOP,
  5656                                  check_offset XTOP,
  5657                                  check_value);
  5659   return _gvn.transform(new (C) ProjNode(call, TypeFunc::Parms));
  5663 // Helper function; generates code for cases requiring runtime checks.
  5664 Node*
  5665 LibraryCallKit::generate_generic_arraycopy(const TypePtr* adr_type,
  5666                                            Node* src,  Node* src_offset,
  5667                                            Node* dest, Node* dest_offset,
  5668                                            Node* copy_length, bool dest_uninitialized) {
  5669   assert(!dest_uninitialized, "Invariant");
  5670   if (stopped())  return NULL;
  5671   address copyfunc_addr = StubRoutines::generic_arraycopy();
  5672   if (copyfunc_addr == NULL) { // Stub was not generated, go slow path.
  5673     return NULL;
  5676   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
  5677                     OptoRuntime::generic_arraycopy_Type(),
  5678                     copyfunc_addr, "generic_arraycopy", adr_type,
  5679                     src, src_offset, dest, dest_offset, copy_length);
  5681   return _gvn.transform(new (C) ProjNode(call, TypeFunc::Parms));
  5684 // Helper function; generates the fast out-of-line call to an arraycopy stub.
  5685 void
  5686 LibraryCallKit::generate_unchecked_arraycopy(const TypePtr* adr_type,
  5687                                              BasicType basic_elem_type,
  5688                                              bool disjoint_bases,
  5689                                              Node* src,  Node* src_offset,
  5690                                              Node* dest, Node* dest_offset,
  5691                                              Node* copy_length, bool dest_uninitialized) {
  5692   if (stopped())  return;               // nothing to do
  5694   Node* src_start  = src;
  5695   Node* dest_start = dest;
  5696   if (src_offset != NULL || dest_offset != NULL) {
  5697     assert(src_offset != NULL && dest_offset != NULL, "");
  5698     src_start  = array_element_address(src,  src_offset,  basic_elem_type);
  5699     dest_start = array_element_address(dest, dest_offset, basic_elem_type);
  5702   // Figure out which arraycopy runtime method to call.
  5703   const char* copyfunc_name = "arraycopy";
  5704   address     copyfunc_addr =
  5705       basictype2arraycopy(basic_elem_type, src_offset, dest_offset,
  5706                           disjoint_bases, copyfunc_name, dest_uninitialized);
  5708   // Call it.  Note that the count_ix value is not scaled to a byte-size.
  5709   make_runtime_call(RC_LEAF|RC_NO_FP,
  5710                     OptoRuntime::fast_arraycopy_Type(),
  5711                     copyfunc_addr, copyfunc_name, adr_type,
  5712                     src_start, dest_start, copy_length XTOP);
  5715 //-------------inline_encodeISOArray-----------------------------------
  5716 // encode char[] to byte[] in ISO_8859_1
  5717 bool LibraryCallKit::inline_encodeISOArray() {
  5718   assert(callee()->signature()->size() == 5, "encodeISOArray has 5 parameters");
  5719   // no receiver since it is static method
  5720   Node *src         = argument(0);
  5721   Node *src_offset  = argument(1);
  5722   Node *dst         = argument(2);
  5723   Node *dst_offset  = argument(3);
  5724   Node *length      = argument(4);
  5726   const Type* src_type = src->Value(&_gvn);
  5727   const Type* dst_type = dst->Value(&_gvn);
  5728   const TypeAryPtr* top_src = src_type->isa_aryptr();
  5729   const TypeAryPtr* top_dest = dst_type->isa_aryptr();
  5730   if (top_src  == NULL || top_src->klass()  == NULL ||
  5731       top_dest == NULL || top_dest->klass() == NULL) {
  5732     // failed array check
  5733     return false;
  5736   // Figure out the size and type of the elements we will be copying.
  5737   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
  5738   BasicType dst_elem = dst_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
  5739   if (src_elem != T_CHAR || dst_elem != T_BYTE) {
  5740     return false;
  5742   Node* src_start = array_element_address(src, src_offset, src_elem);
  5743   Node* dst_start = array_element_address(dst, dst_offset, dst_elem);
  5744   // 'src_start' points to src array + scaled offset
  5745   // 'dst_start' points to dst array + scaled offset
  5747   const TypeAryPtr* mtype = TypeAryPtr::BYTES;
  5748   Node* enc = new (C) EncodeISOArrayNode(control(), memory(mtype), src_start, dst_start, length);
  5749   enc = _gvn.transform(enc);
  5750   Node* res_mem = _gvn.transform(new (C) SCMemProjNode(enc));
  5751   set_memory(res_mem, mtype);
  5752   set_result(enc);
  5753   return true;
  5756 //-------------inline_multiplyToLen-----------------------------------
  5757 bool LibraryCallKit::inline_multiplyToLen() {
  5758   assert(UseMultiplyToLenIntrinsic, "not implementated on this platform");
  5760   address stubAddr = StubRoutines::multiplyToLen();
  5761   if (stubAddr == NULL) {
  5762     return false; // Intrinsic's stub is not implemented on this platform
  5764   const char* stubName = "multiplyToLen";
  5766   assert(callee()->signature()->size() == 5, "multiplyToLen has 5 parameters");
  5768   Node* x    = argument(1);
  5769   Node* xlen = argument(2);
  5770   Node* y    = argument(3);
  5771   Node* ylen = argument(4);
  5772   Node* z    = argument(5);
  5774   const Type* x_type = x->Value(&_gvn);
  5775   const Type* y_type = y->Value(&_gvn);
  5776   const TypeAryPtr* top_x = x_type->isa_aryptr();
  5777   const TypeAryPtr* top_y = y_type->isa_aryptr();
  5778   if (top_x  == NULL || top_x->klass()  == NULL ||
  5779       top_y == NULL || top_y->klass() == NULL) {
  5780     // failed array check
  5781     return false;
  5784   BasicType x_elem = x_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
  5785   BasicType y_elem = y_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
  5786   if (x_elem != T_INT || y_elem != T_INT) {
  5787     return false;
  5790   // Set the original stack and the reexecute bit for the interpreter to reexecute
  5791   // the bytecode that invokes BigInteger.multiplyToLen() if deoptimization happens
  5792   // on the return from z array allocation in runtime.
  5793   { PreserveReexecuteState preexecs(this);
  5794     jvms()->set_should_reexecute(true);
  5796     Node* x_start = array_element_address(x, intcon(0), x_elem);
  5797     Node* y_start = array_element_address(y, intcon(0), y_elem);
  5798     // 'x_start' points to x array + scaled xlen
  5799     // 'y_start' points to y array + scaled ylen
  5801     // Allocate the result array
  5802     Node* zlen = _gvn.transform(new(C) AddINode(xlen, ylen));
  5803     ciKlass* klass = ciTypeArrayKlass::make(T_INT);
  5804     Node* klass_node = makecon(TypeKlassPtr::make(klass));
  5806     IdealKit ideal(this);
  5808 #define __ ideal.
  5809      Node* one = __ ConI(1);
  5810      Node* zero = __ ConI(0);
  5811      IdealVariable need_alloc(ideal), z_alloc(ideal);  __ declarations_done();
  5812      __ set(need_alloc, zero);
  5813      __ set(z_alloc, z);
  5814      __ if_then(z, BoolTest::eq, null()); {
  5815        __ increment (need_alloc, one);
  5816      } __ else_(); {
  5817        // Update graphKit memory and control from IdealKit.
  5818        sync_kit(ideal);
  5819        Node* zlen_arg = load_array_length(z);
  5820        // Update IdealKit memory and control from graphKit.
  5821        __ sync_kit(this);
  5822        __ if_then(zlen_arg, BoolTest::lt, zlen); {
  5823          __ increment (need_alloc, one);
  5824        } __ end_if();
  5825      } __ end_if();
  5827      __ if_then(__ value(need_alloc), BoolTest::ne, zero); {
  5828        // Update graphKit memory and control from IdealKit.
  5829        sync_kit(ideal);
  5830        Node * narr = new_array(klass_node, zlen, 1);
  5831        // Update IdealKit memory and control from graphKit.
  5832        __ sync_kit(this);
  5833        __ set(z_alloc, narr);
  5834      } __ end_if();
  5836      sync_kit(ideal);
  5837      z = __ value(z_alloc);
  5838      // Can't use TypeAryPtr::INTS which uses Bottom offset.
  5839      _gvn.set_type(z, TypeOopPtr::make_from_klass(klass));
  5840      // Final sync IdealKit and GraphKit.
  5841      final_sync(ideal);
  5842 #undef __
  5844     Node* z_start = array_element_address(z, intcon(0), T_INT);
  5846     Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
  5847                                    OptoRuntime::multiplyToLen_Type(),
  5848                                    stubAddr, stubName, TypePtr::BOTTOM,
  5849                                    x_start, xlen, y_start, ylen, z_start, zlen);
  5850   } // original reexecute is set back here
  5852   C->set_has_split_ifs(true); // Has chance for split-if optimization
  5853   set_result(z);
  5854   return true;
  5858 /**
  5859  * Calculate CRC32 for byte.
  5860  * int java.util.zip.CRC32.update(int crc, int b)
  5861  */
  5862 bool LibraryCallKit::inline_updateCRC32() {
  5863   assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
  5864   assert(callee()->signature()->size() == 2, "update has 2 parameters");
  5865   // no receiver since it is static method
  5866   Node* crc  = argument(0); // type: int
  5867   Node* b    = argument(1); // type: int
  5869   /*
  5870    *    int c = ~ crc;
  5871    *    b = timesXtoThe32[(b ^ c) & 0xFF];
  5872    *    b = b ^ (c >>> 8);
  5873    *    crc = ~b;
  5874    */
  5876   Node* M1 = intcon(-1);
  5877   crc = _gvn.transform(new (C) XorINode(crc, M1));
  5878   Node* result = _gvn.transform(new (C) XorINode(crc, b));
  5879   result = _gvn.transform(new (C) AndINode(result, intcon(0xFF)));
  5881   Node* base = makecon(TypeRawPtr::make(StubRoutines::crc_table_addr()));
  5882   Node* offset = _gvn.transform(new (C) LShiftINode(result, intcon(0x2)));
  5883   Node* adr = basic_plus_adr(top(), base, ConvI2X(offset));
  5884   result = make_load(control(), adr, TypeInt::INT, T_INT, MemNode::unordered);
  5886   crc = _gvn.transform(new (C) URShiftINode(crc, intcon(8)));
  5887   result = _gvn.transform(new (C) XorINode(crc, result));
  5888   result = _gvn.transform(new (C) XorINode(result, M1));
  5889   set_result(result);
  5890   return true;
  5893 /**
  5894  * Calculate CRC32 for byte[] array.
  5895  * int java.util.zip.CRC32.updateBytes(int crc, byte[] buf, int off, int len)
  5896  */
  5897 bool LibraryCallKit::inline_updateBytesCRC32() {
  5898   assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
  5899   assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters");
  5900   // no receiver since it is static method
  5901   Node* crc     = argument(0); // type: int
  5902   Node* src     = argument(1); // type: oop
  5903   Node* offset  = argument(2); // type: int
  5904   Node* length  = argument(3); // type: int
  5906   const Type* src_type = src->Value(&_gvn);
  5907   const TypeAryPtr* top_src = src_type->isa_aryptr();
  5908   if (top_src  == NULL || top_src->klass()  == NULL) {
  5909     // failed array check
  5910     return false;
  5913   // Figure out the size and type of the elements we will be copying.
  5914   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
  5915   if (src_elem != T_BYTE) {
  5916     return false;
  5919   // 'src_start' points to src array + scaled offset
  5920   Node* src_start = array_element_address(src, offset, src_elem);
  5922   // We assume that range check is done by caller.
  5923   // TODO: generate range check (offset+length < src.length) in debug VM.
  5925   // Call the stub.
  5926   address stubAddr = StubRoutines::updateBytesCRC32();
  5927   const char *stubName = "updateBytesCRC32";
  5929   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(),
  5930                                  stubAddr, stubName, TypePtr::BOTTOM,
  5931                                  crc, src_start, length);
  5932   Node* result = _gvn.transform(new (C) ProjNode(call, TypeFunc::Parms));
  5933   set_result(result);
  5934   return true;
  5937 /**
  5938  * Calculate CRC32 for ByteBuffer.
  5939  * int java.util.zip.CRC32.updateByteBuffer(int crc, long buf, int off, int len)
  5940  */
  5941 bool LibraryCallKit::inline_updateByteBufferCRC32() {
  5942   assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
  5943   assert(callee()->signature()->size() == 5, "updateByteBuffer has 4 parameters and one is long");
  5944   // no receiver since it is static method
  5945   Node* crc     = argument(0); // type: int
  5946   Node* src     = argument(1); // type: long
  5947   Node* offset  = argument(3); // type: int
  5948   Node* length  = argument(4); // type: int
  5950   src = ConvL2X(src);  // adjust Java long to machine word
  5951   Node* base = _gvn.transform(new (C) CastX2PNode(src));
  5952   offset = ConvI2X(offset);
  5954   // 'src_start' points to src array + scaled offset
  5955   Node* src_start = basic_plus_adr(top(), base, offset);
  5957   // Call the stub.
  5958   address stubAddr = StubRoutines::updateBytesCRC32();
  5959   const char *stubName = "updateBytesCRC32";
  5961   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(),
  5962                                  stubAddr, stubName, TypePtr::BOTTOM,
  5963                                  crc, src_start, length);
  5964   Node* result = _gvn.transform(new (C) ProjNode(call, TypeFunc::Parms));
  5965   set_result(result);
  5966   return true;
  5969 //----------------------------inline_reference_get----------------------------
  5970 // public T java.lang.ref.Reference.get();
  5971 bool LibraryCallKit::inline_reference_get() {
  5972   const int referent_offset = java_lang_ref_Reference::referent_offset;
  5973   guarantee(referent_offset > 0, "should have already been set");
  5975   // Get the argument:
  5976   Node* reference_obj = null_check_receiver();
  5977   if (stopped()) return true;
  5979   Node* adr = basic_plus_adr(reference_obj, reference_obj, referent_offset);
  5981   ciInstanceKlass* klass = env()->Object_klass();
  5982   const TypeOopPtr* object_type = TypeOopPtr::make_from_klass(klass);
  5984   Node* no_ctrl = NULL;
  5985   Node* result = make_load(no_ctrl, adr, object_type, T_OBJECT, MemNode::unordered);
  5987   // Use the pre-barrier to record the value in the referent field
  5988   pre_barrier(false /* do_load */,
  5989               control(),
  5990               NULL /* obj */, NULL /* adr */, max_juint /* alias_idx */, NULL /* val */, NULL /* val_type */,
  5991               result /* pre_val */,
  5992               T_OBJECT);
  5994   // Add memory barrier to prevent commoning reads from this field
  5995   // across safepoint since GC can change its value.
  5996   insert_mem_bar(Op_MemBarCPUOrder);
  5998   set_result(result);
  5999   return true;
  6003 Node * LibraryCallKit::load_field_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString,
  6004                                               bool is_exact=true, bool is_static=false) {
  6006   const TypeInstPtr* tinst = _gvn.type(fromObj)->isa_instptr();
  6007   assert(tinst != NULL, "obj is null");
  6008   assert(tinst->klass()->is_loaded(), "obj is not loaded");
  6009   assert(!is_exact || tinst->klass_is_exact(), "klass not exact");
  6011   ciField* field = tinst->klass()->as_instance_klass()->get_field_by_name(ciSymbol::make(fieldName),
  6012                                                                           ciSymbol::make(fieldTypeString),
  6013                                                                           is_static);
  6014   if (field == NULL) return (Node *) NULL;
  6015   assert (field != NULL, "undefined field");
  6017   // Next code  copied from Parse::do_get_xxx():
  6019   // Compute address and memory type.
  6020   int offset  = field->offset_in_bytes();
  6021   bool is_vol = field->is_volatile();
  6022   ciType* field_klass = field->type();
  6023   assert(field_klass->is_loaded(), "should be loaded");
  6024   const TypePtr* adr_type = C->alias_type(field)->adr_type();
  6025   Node *adr = basic_plus_adr(fromObj, fromObj, offset);
  6026   BasicType bt = field->layout_type();
  6028   // Build the resultant type of the load
  6029   const Type *type;
  6030   if (bt == T_OBJECT) {
  6031     type = TypeOopPtr::make_from_klass(field_klass->as_klass());
  6032   } else {
  6033     type = Type::get_const_basic_type(bt);
  6036   if (support_IRIW_for_not_multiple_copy_atomic_cpu && is_vol) {
  6037     insert_mem_bar(Op_MemBarVolatile);   // StoreLoad barrier
  6039   // Build the load.
  6040   MemNode::MemOrd mo = is_vol ? MemNode::acquire : MemNode::unordered;
  6041   Node* loadedField = make_load(NULL, adr, type, bt, adr_type, mo, is_vol);
  6042   // If reference is volatile, prevent following memory ops from
  6043   // floating up past the volatile read.  Also prevents commoning
  6044   // another volatile read.
  6045   if (is_vol) {
  6046     // Memory barrier includes bogus read of value to force load BEFORE membar
  6047     insert_mem_bar(Op_MemBarAcquire, loadedField);
  6049   return loadedField;
  6053 //------------------------------inline_aescrypt_Block-----------------------
  6054 bool LibraryCallKit::inline_aescrypt_Block(vmIntrinsics::ID id) {
  6055   address stubAddr;
  6056   const char *stubName;
  6057   assert(UseAES, "need AES instruction support");
  6059   switch(id) {
  6060   case vmIntrinsics::_aescrypt_encryptBlock:
  6061     stubAddr = StubRoutines::aescrypt_encryptBlock();
  6062     stubName = "aescrypt_encryptBlock";
  6063     break;
  6064   case vmIntrinsics::_aescrypt_decryptBlock:
  6065     stubAddr = StubRoutines::aescrypt_decryptBlock();
  6066     stubName = "aescrypt_decryptBlock";
  6067     break;
  6069   if (stubAddr == NULL) return false;
  6071   Node* aescrypt_object = argument(0);
  6072   Node* src             = argument(1);
  6073   Node* src_offset      = argument(2);
  6074   Node* dest            = argument(3);
  6075   Node* dest_offset     = argument(4);
  6077   // (1) src and dest are arrays.
  6078   const Type* src_type = src->Value(&_gvn);
  6079   const Type* dest_type = dest->Value(&_gvn);
  6080   const TypeAryPtr* top_src = src_type->isa_aryptr();
  6081   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
  6082   assert (top_src  != NULL && top_src->klass()  != NULL &&  top_dest != NULL && top_dest->klass() != NULL, "args are strange");
  6084   // for the quick and dirty code we will skip all the checks.
  6085   // we are just trying to get the call to be generated.
  6086   Node* src_start  = src;
  6087   Node* dest_start = dest;
  6088   if (src_offset != NULL || dest_offset != NULL) {
  6089     assert(src_offset != NULL && dest_offset != NULL, "");
  6090     src_start  = array_element_address(src,  src_offset,  T_BYTE);
  6091     dest_start = array_element_address(dest, dest_offset, T_BYTE);
  6094   // now need to get the start of its expanded key array
  6095   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
  6096   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
  6097   if (k_start == NULL) return false;
  6099   if (Matcher::pass_original_key_for_aes()) {
  6100     // on SPARC we need to pass the original key since key expansion needs to happen in intrinsics due to
  6101     // compatibility issues between Java key expansion and SPARC crypto instructions
  6102     Node* original_k_start = get_original_key_start_from_aescrypt_object(aescrypt_object);
  6103     if (original_k_start == NULL) return false;
  6105     // Call the stub.
  6106     make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::aescrypt_block_Type(),
  6107                       stubAddr, stubName, TypePtr::BOTTOM,
  6108                       src_start, dest_start, k_start, original_k_start);
  6109   } else {
  6110     // Call the stub.
  6111     make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::aescrypt_block_Type(),
  6112                       stubAddr, stubName, TypePtr::BOTTOM,
  6113                       src_start, dest_start, k_start);
  6116   return true;
  6119 //------------------------------inline_cipherBlockChaining_AESCrypt-----------------------
  6120 bool LibraryCallKit::inline_cipherBlockChaining_AESCrypt(vmIntrinsics::ID id) {
  6121   address stubAddr;
  6122   const char *stubName;
  6124   assert(UseAES, "need AES instruction support");
  6126   switch(id) {
  6127   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
  6128     stubAddr = StubRoutines::cipherBlockChaining_encryptAESCrypt();
  6129     stubName = "cipherBlockChaining_encryptAESCrypt";
  6130     break;
  6131   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
  6132     stubAddr = StubRoutines::cipherBlockChaining_decryptAESCrypt();
  6133     stubName = "cipherBlockChaining_decryptAESCrypt";
  6134     break;
  6136   if (stubAddr == NULL) return false;
  6138   Node* cipherBlockChaining_object = argument(0);
  6139   Node* src                        = argument(1);
  6140   Node* src_offset                 = argument(2);
  6141   Node* len                        = argument(3);
  6142   Node* dest                       = argument(4);
  6143   Node* dest_offset                = argument(5);
  6145   // (1) src and dest are arrays.
  6146   const Type* src_type = src->Value(&_gvn);
  6147   const Type* dest_type = dest->Value(&_gvn);
  6148   const TypeAryPtr* top_src = src_type->isa_aryptr();
  6149   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
  6150   assert (top_src  != NULL && top_src->klass()  != NULL
  6151           &&  top_dest != NULL && top_dest->klass() != NULL, "args are strange");
  6153   // checks are the responsibility of the caller
  6154   Node* src_start  = src;
  6155   Node* dest_start = dest;
  6156   if (src_offset != NULL || dest_offset != NULL) {
  6157     assert(src_offset != NULL && dest_offset != NULL, "");
  6158     src_start  = array_element_address(src,  src_offset,  T_BYTE);
  6159     dest_start = array_element_address(dest, dest_offset, T_BYTE);
  6162   // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object
  6163   // (because of the predicated logic executed earlier).
  6164   // so we cast it here safely.
  6165   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
  6167   Node* embeddedCipherObj = load_field_from_object(cipherBlockChaining_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false);
  6168   if (embeddedCipherObj == NULL) return false;
  6170   // cast it to what we know it will be at runtime
  6171   const TypeInstPtr* tinst = _gvn.type(cipherBlockChaining_object)->isa_instptr();
  6172   assert(tinst != NULL, "CBC obj is null");
  6173   assert(tinst->klass()->is_loaded(), "CBC obj is not loaded");
  6174   ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
  6175   assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded");
  6177   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
  6178   const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt);
  6179   const TypeOopPtr* xtype = aklass->as_instance_type();
  6180   Node* aescrypt_object = new(C) CheckCastPPNode(control(), embeddedCipherObj, xtype);
  6181   aescrypt_object = _gvn.transform(aescrypt_object);
  6183   // we need to get the start of the aescrypt_object's expanded key array
  6184   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
  6185   if (k_start == NULL) return false;
  6187   // similarly, get the start address of the r vector
  6188   Node* objRvec = load_field_from_object(cipherBlockChaining_object, "r", "[B", /*is_exact*/ false);
  6189   if (objRvec == NULL) return false;
  6190   Node* r_start = array_element_address(objRvec, intcon(0), T_BYTE);
  6192   Node* cbcCrypt;
  6193   if (Matcher::pass_original_key_for_aes()) {
  6194     // on SPARC we need to pass the original key since key expansion needs to happen in intrinsics due to
  6195     // compatibility issues between Java key expansion and SPARC crypto instructions
  6196     Node* original_k_start = get_original_key_start_from_aescrypt_object(aescrypt_object);
  6197     if (original_k_start == NULL) return false;
  6199     // Call the stub, passing src_start, dest_start, k_start, r_start, src_len and original_k_start
  6200     cbcCrypt = make_runtime_call(RC_LEAF|RC_NO_FP,
  6201                                  OptoRuntime::cipherBlockChaining_aescrypt_Type(),
  6202                                  stubAddr, stubName, TypePtr::BOTTOM,
  6203                                  src_start, dest_start, k_start, r_start, len, original_k_start);
  6204   } else {
  6205     // Call the stub, passing src_start, dest_start, k_start, r_start and src_len
  6206     cbcCrypt = make_runtime_call(RC_LEAF|RC_NO_FP,
  6207                                  OptoRuntime::cipherBlockChaining_aescrypt_Type(),
  6208                                  stubAddr, stubName, TypePtr::BOTTOM,
  6209                                  src_start, dest_start, k_start, r_start, len);
  6212   // return cipher length (int)
  6213   Node* retvalue = _gvn.transform(new (C) ProjNode(cbcCrypt, TypeFunc::Parms));
  6214   set_result(retvalue);
  6215   return true;
  6218 //------------------------------get_key_start_from_aescrypt_object-----------------------
  6219 Node * LibraryCallKit::get_key_start_from_aescrypt_object(Node *aescrypt_object) {
  6220   Node* objAESCryptKey = load_field_from_object(aescrypt_object, "K", "[I", /*is_exact*/ false);
  6221   assert (objAESCryptKey != NULL, "wrong version of com.sun.crypto.provider.AESCrypt");
  6222   if (objAESCryptKey == NULL) return (Node *) NULL;
  6224   // now have the array, need to get the start address of the K array
  6225   Node* k_start = array_element_address(objAESCryptKey, intcon(0), T_INT);
  6226   return k_start;
  6229 //------------------------------get_original_key_start_from_aescrypt_object-----------------------
  6230 Node * LibraryCallKit::get_original_key_start_from_aescrypt_object(Node *aescrypt_object) {
  6231   Node* objAESCryptKey = load_field_from_object(aescrypt_object, "lastKey", "[B", /*is_exact*/ false);
  6232   assert (objAESCryptKey != NULL, "wrong version of com.sun.crypto.provider.AESCrypt");
  6233   if (objAESCryptKey == NULL) return (Node *) NULL;
  6235   // now have the array, need to get the start address of the lastKey array
  6236   Node* original_k_start = array_element_address(objAESCryptKey, intcon(0), T_BYTE);
  6237   return original_k_start;
  6240 //----------------------------inline_cipherBlockChaining_AESCrypt_predicate----------------------------
  6241 // Return node representing slow path of predicate check.
  6242 // the pseudo code we want to emulate with this predicate is:
  6243 // for encryption:
  6244 //    if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath
  6245 // for decryption:
  6246 //    if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath
  6247 //    note cipher==plain is more conservative than the original java code but that's OK
  6248 //
  6249 Node* LibraryCallKit::inline_cipherBlockChaining_AESCrypt_predicate(bool decrypting) {
  6250   // The receiver was checked for NULL already.
  6251   Node* objCBC = argument(0);
  6253   // Load embeddedCipher field of CipherBlockChaining object.
  6254   Node* embeddedCipherObj = load_field_from_object(objCBC, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false);
  6256   // get AESCrypt klass for instanceOf check
  6257   // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point
  6258   // will have same classloader as CipherBlockChaining object
  6259   const TypeInstPtr* tinst = _gvn.type(objCBC)->isa_instptr();
  6260   assert(tinst != NULL, "CBCobj is null");
  6261   assert(tinst->klass()->is_loaded(), "CBCobj is not loaded");
  6263   // we want to do an instanceof comparison against the AESCrypt class
  6264   ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
  6265   if (!klass_AESCrypt->is_loaded()) {
  6266     // if AESCrypt is not even loaded, we never take the intrinsic fast path
  6267     Node* ctrl = control();
  6268     set_control(top()); // no regular fast path
  6269     return ctrl;
  6271   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
  6273   Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt)));
  6274   Node* cmp_instof  = _gvn.transform(new (C) CmpINode(instof, intcon(1)));
  6275   Node* bool_instof  = _gvn.transform(new (C) BoolNode(cmp_instof, BoolTest::ne));
  6277   Node* instof_false = generate_guard(bool_instof, NULL, PROB_MIN);
  6279   // for encryption, we are done
  6280   if (!decrypting)
  6281     return instof_false;  // even if it is NULL
  6283   // for decryption, we need to add a further check to avoid
  6284   // taking the intrinsic path when cipher and plain are the same
  6285   // see the original java code for why.
  6286   RegionNode* region = new(C) RegionNode(3);
  6287   region->init_req(1, instof_false);
  6288   Node* src = argument(1);
  6289   Node* dest = argument(4);
  6290   Node* cmp_src_dest = _gvn.transform(new (C) CmpPNode(src, dest));
  6291   Node* bool_src_dest = _gvn.transform(new (C) BoolNode(cmp_src_dest, BoolTest::eq));
  6292   Node* src_dest_conjoint = generate_guard(bool_src_dest, NULL, PROB_MIN);
  6293   region->init_req(2, src_dest_conjoint);
  6295   record_for_igvn(region);
  6296   return _gvn.transform(region);
  6299 //------------------------------inline_sha_implCompress-----------------------
  6300 //
  6301 // Calculate SHA (i.e., SHA-1) for single-block byte[] array.
  6302 // void com.sun.security.provider.SHA.implCompress(byte[] buf, int ofs)
  6303 //
  6304 // Calculate SHA2 (i.e., SHA-244 or SHA-256) for single-block byte[] array.
  6305 // void com.sun.security.provider.SHA2.implCompress(byte[] buf, int ofs)
  6306 //
  6307 // Calculate SHA5 (i.e., SHA-384 or SHA-512) for single-block byte[] array.
  6308 // void com.sun.security.provider.SHA5.implCompress(byte[] buf, int ofs)
  6309 //
  6310 bool LibraryCallKit::inline_sha_implCompress(vmIntrinsics::ID id) {
  6311   assert(callee()->signature()->size() == 2, "sha_implCompress has 2 parameters");
  6313   Node* sha_obj = argument(0);
  6314   Node* src     = argument(1); // type oop
  6315   Node* ofs     = argument(2); // type int
  6317   const Type* src_type = src->Value(&_gvn);
  6318   const TypeAryPtr* top_src = src_type->isa_aryptr();
  6319   if (top_src  == NULL || top_src->klass()  == NULL) {
  6320     // failed array check
  6321     return false;
  6323   // Figure out the size and type of the elements we will be copying.
  6324   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
  6325   if (src_elem != T_BYTE) {
  6326     return false;
  6328   // 'src_start' points to src array + offset
  6329   Node* src_start = array_element_address(src, ofs, src_elem);
  6330   Node* state = NULL;
  6331   address stubAddr;
  6332   const char *stubName;
  6334   switch(id) {
  6335   case vmIntrinsics::_sha_implCompress:
  6336     assert(UseSHA1Intrinsics, "need SHA1 instruction support");
  6337     state = get_state_from_sha_object(sha_obj);
  6338     stubAddr = StubRoutines::sha1_implCompress();
  6339     stubName = "sha1_implCompress";
  6340     break;
  6341   case vmIntrinsics::_sha2_implCompress:
  6342     assert(UseSHA256Intrinsics, "need SHA256 instruction support");
  6343     state = get_state_from_sha_object(sha_obj);
  6344     stubAddr = StubRoutines::sha256_implCompress();
  6345     stubName = "sha256_implCompress";
  6346     break;
  6347   case vmIntrinsics::_sha5_implCompress:
  6348     assert(UseSHA512Intrinsics, "need SHA512 instruction support");
  6349     state = get_state_from_sha5_object(sha_obj);
  6350     stubAddr = StubRoutines::sha512_implCompress();
  6351     stubName = "sha512_implCompress";
  6352     break;
  6353   default:
  6354     fatal_unexpected_iid(id);
  6355     return false;
  6357   if (state == NULL) return false;
  6359   // Call the stub.
  6360   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::sha_implCompress_Type(),
  6361                                  stubAddr, stubName, TypePtr::BOTTOM,
  6362                                  src_start, state);
  6364   return true;
  6367 //------------------------------inline_digestBase_implCompressMB-----------------------
  6368 //
  6369 // Calculate SHA/SHA2/SHA5 for multi-block byte[] array.
  6370 // int com.sun.security.provider.DigestBase.implCompressMultiBlock(byte[] b, int ofs, int limit)
  6371 //
  6372 bool LibraryCallKit::inline_digestBase_implCompressMB(int predicate) {
  6373   assert(UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics,
  6374          "need SHA1/SHA256/SHA512 instruction support");
  6375   assert((uint)predicate < 3, "sanity");
  6376   assert(callee()->signature()->size() == 3, "digestBase_implCompressMB has 3 parameters");
  6378   Node* digestBase_obj = argument(0); // The receiver was checked for NULL already.
  6379   Node* src            = argument(1); // byte[] array
  6380   Node* ofs            = argument(2); // type int
  6381   Node* limit          = argument(3); // type int
  6383   const Type* src_type = src->Value(&_gvn);
  6384   const TypeAryPtr* top_src = src_type->isa_aryptr();
  6385   if (top_src  == NULL || top_src->klass()  == NULL) {
  6386     // failed array check
  6387     return false;
  6389   // Figure out the size and type of the elements we will be copying.
  6390   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
  6391   if (src_elem != T_BYTE) {
  6392     return false;
  6394   // 'src_start' points to src array + offset
  6395   Node* src_start = array_element_address(src, ofs, src_elem);
  6397   const char* klass_SHA_name = NULL;
  6398   const char* stub_name = NULL;
  6399   address     stub_addr = NULL;
  6400   bool        long_state = false;
  6402   switch (predicate) {
  6403   case 0:
  6404     if (UseSHA1Intrinsics) {
  6405       klass_SHA_name = "sun/security/provider/SHA";
  6406       stub_name = "sha1_implCompressMB";
  6407       stub_addr = StubRoutines::sha1_implCompressMB();
  6409     break;
  6410   case 1:
  6411     if (UseSHA256Intrinsics) {
  6412       klass_SHA_name = "sun/security/provider/SHA2";
  6413       stub_name = "sha256_implCompressMB";
  6414       stub_addr = StubRoutines::sha256_implCompressMB();
  6416     break;
  6417   case 2:
  6418     if (UseSHA512Intrinsics) {
  6419       klass_SHA_name = "sun/security/provider/SHA5";
  6420       stub_name = "sha512_implCompressMB";
  6421       stub_addr = StubRoutines::sha512_implCompressMB();
  6422       long_state = true;
  6424     break;
  6425   default:
  6426     fatal(err_msg_res("unknown SHA intrinsic predicate: %d", predicate));
  6428   if (klass_SHA_name != NULL) {
  6429     // get DigestBase klass to lookup for SHA klass
  6430     const TypeInstPtr* tinst = _gvn.type(digestBase_obj)->isa_instptr();
  6431     assert(tinst != NULL, "digestBase_obj is not instance???");
  6432     assert(tinst->klass()->is_loaded(), "DigestBase is not loaded");
  6434     ciKlass* klass_SHA = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make(klass_SHA_name));
  6435     assert(klass_SHA->is_loaded(), "predicate checks that this class is loaded");
  6436     ciInstanceKlass* instklass_SHA = klass_SHA->as_instance_klass();
  6437     return inline_sha_implCompressMB(digestBase_obj, instklass_SHA, long_state, stub_addr, stub_name, src_start, ofs, limit);
  6439   return false;
  6441 //------------------------------inline_sha_implCompressMB-----------------------
  6442 bool LibraryCallKit::inline_sha_implCompressMB(Node* digestBase_obj, ciInstanceKlass* instklass_SHA,
  6443                                                bool long_state, address stubAddr, const char *stubName,
  6444                                                Node* src_start, Node* ofs, Node* limit) {
  6445   const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_SHA);
  6446   const TypeOopPtr* xtype = aklass->as_instance_type();
  6447   Node* sha_obj = new (C) CheckCastPPNode(control(), digestBase_obj, xtype);
  6448   sha_obj = _gvn.transform(sha_obj);
  6450   Node* state;
  6451   if (long_state) {
  6452     state = get_state_from_sha5_object(sha_obj);
  6453   } else {
  6454     state = get_state_from_sha_object(sha_obj);
  6456   if (state == NULL) return false;
  6458   // Call the stub.
  6459   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
  6460                                  OptoRuntime::digestBase_implCompressMB_Type(),
  6461                                  stubAddr, stubName, TypePtr::BOTTOM,
  6462                                  src_start, state, ofs, limit);
  6463   // return ofs (int)
  6464   Node* result = _gvn.transform(new (C) ProjNode(call, TypeFunc::Parms));
  6465   set_result(result);
  6467   return true;
  6470 //------------------------------get_state_from_sha_object-----------------------
  6471 Node * LibraryCallKit::get_state_from_sha_object(Node *sha_object) {
  6472   Node* sha_state = load_field_from_object(sha_object, "state", "[I", /*is_exact*/ false);
  6473   assert (sha_state != NULL, "wrong version of sun.security.provider.SHA/SHA2");
  6474   if (sha_state == NULL) return (Node *) NULL;
  6476   // now have the array, need to get the start address of the state array
  6477   Node* state = array_element_address(sha_state, intcon(0), T_INT);
  6478   return state;
  6481 //------------------------------get_state_from_sha5_object-----------------------
  6482 Node * LibraryCallKit::get_state_from_sha5_object(Node *sha_object) {
  6483   Node* sha_state = load_field_from_object(sha_object, "state", "[J", /*is_exact*/ false);
  6484   assert (sha_state != NULL, "wrong version of sun.security.provider.SHA5");
  6485   if (sha_state == NULL) return (Node *) NULL;
  6487   // now have the array, need to get the start address of the state array
  6488   Node* state = array_element_address(sha_state, intcon(0), T_LONG);
  6489   return state;
  6492 //----------------------------inline_digestBase_implCompressMB_predicate----------------------------
  6493 // Return node representing slow path of predicate check.
  6494 // the pseudo code we want to emulate with this predicate is:
  6495 //    if (digestBaseObj instanceof SHA/SHA2/SHA5) do_intrinsic, else do_javapath
  6496 //
  6497 Node* LibraryCallKit::inline_digestBase_implCompressMB_predicate(int predicate) {
  6498   assert(UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics,
  6499          "need SHA1/SHA256/SHA512 instruction support");
  6500   assert((uint)predicate < 3, "sanity");
  6502   // The receiver was checked for NULL already.
  6503   Node* digestBaseObj = argument(0);
  6505   // get DigestBase klass for instanceOf check
  6506   const TypeInstPtr* tinst = _gvn.type(digestBaseObj)->isa_instptr();
  6507   assert(tinst != NULL, "digestBaseObj is null");
  6508   assert(tinst->klass()->is_loaded(), "DigestBase is not loaded");
  6510   const char* klass_SHA_name = NULL;
  6511   switch (predicate) {
  6512   case 0:
  6513     if (UseSHA1Intrinsics) {
  6514       // we want to do an instanceof comparison against the SHA class
  6515       klass_SHA_name = "sun/security/provider/SHA";
  6517     break;
  6518   case 1:
  6519     if (UseSHA256Intrinsics) {
  6520       // we want to do an instanceof comparison against the SHA2 class
  6521       klass_SHA_name = "sun/security/provider/SHA2";
  6523     break;
  6524   case 2:
  6525     if (UseSHA512Intrinsics) {
  6526       // we want to do an instanceof comparison against the SHA5 class
  6527       klass_SHA_name = "sun/security/provider/SHA5";
  6529     break;
  6530   default:
  6531     fatal(err_msg_res("unknown SHA intrinsic predicate: %d", predicate));
  6534   ciKlass* klass_SHA = NULL;
  6535   if (klass_SHA_name != NULL) {
  6536     klass_SHA = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make(klass_SHA_name));
  6538   if ((klass_SHA == NULL) || !klass_SHA->is_loaded()) {
  6539     // if none of SHA/SHA2/SHA5 is loaded, we never take the intrinsic fast path
  6540     Node* ctrl = control();
  6541     set_control(top()); // no intrinsic path
  6542     return ctrl;
  6544   ciInstanceKlass* instklass_SHA = klass_SHA->as_instance_klass();
  6546   Node* instofSHA = gen_instanceof(digestBaseObj, makecon(TypeKlassPtr::make(instklass_SHA)));
  6547   Node* cmp_instof = _gvn.transform(new (C) CmpINode(instofSHA, intcon(1)));
  6548   Node* bool_instof = _gvn.transform(new (C) BoolNode(cmp_instof, BoolTest::ne));
  6549   Node* instof_false = generate_guard(bool_instof, NULL, PROB_MIN);
  6551   return instof_false;  // even if it is NULL
  6554 bool LibraryCallKit::inline_profileBoolean() {
  6555   Node* counts = argument(1);
  6556   const TypeAryPtr* ary = NULL;
  6557   ciArray* aobj = NULL;
  6558   if (counts->is_Con()
  6559       && (ary = counts->bottom_type()->isa_aryptr()) != NULL
  6560       && (aobj = ary->const_oop()->as_array()) != NULL
  6561       && (aobj->length() == 2)) {
  6562     // Profile is int[2] where [0] and [1] correspond to false and true value occurrences respectively.
  6563     jint false_cnt = aobj->element_value(0).as_int();
  6564     jint  true_cnt = aobj->element_value(1).as_int();
  6566     method()->set_injected_profile(true);
  6568     if (C->log() != NULL) {
  6569       C->log()->elem("observe source='profileBoolean' false='%d' true='%d'",
  6570                      false_cnt, true_cnt);
  6573     if (false_cnt + true_cnt == 0) {
  6574       // According to profile, never executed.
  6575       uncommon_trap_exact(Deoptimization::Reason_intrinsic,
  6576                           Deoptimization::Action_reinterpret);
  6577       return true;
  6579     // Stop profiling.
  6580     // MethodHandleImpl::profileBoolean() has profiling logic in it's bytecode.
  6581     // By replacing method's body with profile data (represented as ProfileBooleanNode
  6582     // on IR level) we effectively disable profiling.
  6583     // It enables full speed execution once optimized code is generated.
  6584     Node* profile = _gvn.transform(new (C) ProfileBooleanNode(argument(0), false_cnt, true_cnt));
  6585     C->record_for_igvn(profile);
  6586     set_result(profile);
  6587     return true;
  6588   } else {
  6589     // Continue profiling.
  6590     // Profile data isn't available at the moment. So, execute method's bytecode version.
  6591     // Usually, when GWT LambdaForms are profiled it means that a stand-alone nmethod
  6592     // is compiled and counters aren't available since corresponding MethodHandle
  6593     // isn't a compile-time constant.
  6594     return false;

mercurial