src/share/vm/opto/phaseX.cpp

Sat, 24 Oct 2020 16:43:47 +0800

author
aoqi
date
Sat, 24 Oct 2020 16:43:47 +0800
changeset 10015
eb7ce841ccec
parent 9041
95a08233f46c
parent 9957
d2ec2776ad0c
permissions
-rw-r--r--

Merge

     1 /*
     2  * Copyright (c) 1997, 2017, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "memory/allocation.inline.hpp"
    27 #include "opto/block.hpp"
    28 #include "opto/callnode.hpp"
    29 #include "opto/cfgnode.hpp"
    30 #include "opto/connode.hpp"
    31 #include "opto/idealGraphPrinter.hpp"
    32 #include "opto/loopnode.hpp"
    33 #include "opto/machnode.hpp"
    34 #include "opto/opcodes.hpp"
    35 #include "opto/phaseX.hpp"
    36 #include "opto/regalloc.hpp"
    37 #include "opto/rootnode.hpp"
    39 //=============================================================================
    40 #define NODE_HASH_MINIMUM_SIZE    255
    41 //------------------------------NodeHash---------------------------------------
    42 NodeHash::NodeHash(uint est_max_size) :
    43   _max( round_up(est_max_size < NODE_HASH_MINIMUM_SIZE ? NODE_HASH_MINIMUM_SIZE : est_max_size) ),
    44   _a(Thread::current()->resource_area()),
    45   _table( NEW_ARENA_ARRAY( _a , Node* , _max ) ), // (Node**)_a->Amalloc(_max * sizeof(Node*)) ),
    46   _inserts(0), _insert_limit( insert_limit() ),
    47   _look_probes(0), _lookup_hits(0), _lookup_misses(0),
    48   _total_insert_probes(0), _total_inserts(0),
    49   _insert_probes(0), _grows(0) {
    50   // _sentinel must be in the current node space
    51   _sentinel = new (Compile::current()) ProjNode(NULL, TypeFunc::Control);
    52   memset(_table,0,sizeof(Node*)*_max);
    53 }
    55 //------------------------------NodeHash---------------------------------------
    56 NodeHash::NodeHash(Arena *arena, uint est_max_size) :
    57   _max( round_up(est_max_size < NODE_HASH_MINIMUM_SIZE ? NODE_HASH_MINIMUM_SIZE : est_max_size) ),
    58   _a(arena),
    59   _table( NEW_ARENA_ARRAY( _a , Node* , _max ) ),
    60   _inserts(0), _insert_limit( insert_limit() ),
    61   _look_probes(0), _lookup_hits(0), _lookup_misses(0),
    62   _delete_probes(0), _delete_hits(0), _delete_misses(0),
    63   _total_insert_probes(0), _total_inserts(0),
    64   _insert_probes(0), _grows(0) {
    65   // _sentinel must be in the current node space
    66   _sentinel = new (Compile::current()) ProjNode(NULL, TypeFunc::Control);
    67   memset(_table,0,sizeof(Node*)*_max);
    68 }
    70 //------------------------------NodeHash---------------------------------------
    71 NodeHash::NodeHash(NodeHash *nh) {
    72   debug_only(_table = (Node**)badAddress);   // interact correctly w/ operator=
    73   // just copy in all the fields
    74   *this = *nh;
    75   // nh->_sentinel must be in the current node space
    76 }
    78 void NodeHash::replace_with(NodeHash *nh) {
    79   debug_only(_table = (Node**)badAddress);   // interact correctly w/ operator=
    80   // just copy in all the fields
    81   *this = *nh;
    82   // nh->_sentinel must be in the current node space
    83 }
    85 //------------------------------hash_find--------------------------------------
    86 // Find in hash table
    87 Node *NodeHash::hash_find( const Node *n ) {
    88   // ((Node*)n)->set_hash( n->hash() );
    89   uint hash = n->hash();
    90   if (hash == Node::NO_HASH) {
    91     debug_only( _lookup_misses++ );
    92     return NULL;
    93   }
    94   uint key = hash & (_max-1);
    95   uint stride = key | 0x01;
    96   debug_only( _look_probes++ );
    97   Node *k = _table[key];        // Get hashed value
    98   if( !k ) {                    // ?Miss?
    99     debug_only( _lookup_misses++ );
   100     return NULL;                // Miss!
   101   }
   103   int op = n->Opcode();
   104   uint req = n->req();
   105   while( 1 ) {                  // While probing hash table
   106     if( k->req() == req &&      // Same count of inputs
   107         k->Opcode() == op ) {   // Same Opcode
   108       for( uint i=0; i<req; i++ )
   109         if( n->in(i)!=k->in(i)) // Different inputs?
   110           goto collision;       // "goto" is a speed hack...
   111       if( n->cmp(*k) ) {        // Check for any special bits
   112         debug_only( _lookup_hits++ );
   113         return k;               // Hit!
   114       }
   115     }
   116   collision:
   117     debug_only( _look_probes++ );
   118     key = (key + stride/*7*/) & (_max-1); // Stride through table with relative prime
   119     k = _table[key];            // Get hashed value
   120     if( !k ) {                  // ?Miss?
   121       debug_only( _lookup_misses++ );
   122       return NULL;              // Miss!
   123     }
   124   }
   125   ShouldNotReachHere();
   126   return NULL;
   127 }
   129 //------------------------------hash_find_insert-------------------------------
   130 // Find in hash table, insert if not already present
   131 // Used to preserve unique entries in hash table
   132 Node *NodeHash::hash_find_insert( Node *n ) {
   133   // n->set_hash( );
   134   uint hash = n->hash();
   135   if (hash == Node::NO_HASH) {
   136     debug_only( _lookup_misses++ );
   137     return NULL;
   138   }
   139   uint key = hash & (_max-1);
   140   uint stride = key | 0x01;     // stride must be relatively prime to table siz
   141   uint first_sentinel = 0;      // replace a sentinel if seen.
   142   debug_only( _look_probes++ );
   143   Node *k = _table[key];        // Get hashed value
   144   if( !k ) {                    // ?Miss?
   145     debug_only( _lookup_misses++ );
   146     _table[key] = n;            // Insert into table!
   147     debug_only(n->enter_hash_lock()); // Lock down the node while in the table.
   148     check_grow();               // Grow table if insert hit limit
   149     return NULL;                // Miss!
   150   }
   151   else if( k == _sentinel ) {
   152     first_sentinel = key;      // Can insert here
   153   }
   155   int op = n->Opcode();
   156   uint req = n->req();
   157   while( 1 ) {                  // While probing hash table
   158     if( k->req() == req &&      // Same count of inputs
   159         k->Opcode() == op ) {   // Same Opcode
   160       for( uint i=0; i<req; i++ )
   161         if( n->in(i)!=k->in(i)) // Different inputs?
   162           goto collision;       // "goto" is a speed hack...
   163       if( n->cmp(*k) ) {        // Check for any special bits
   164         debug_only( _lookup_hits++ );
   165         return k;               // Hit!
   166       }
   167     }
   168   collision:
   169     debug_only( _look_probes++ );
   170     key = (key + stride) & (_max-1); // Stride through table w/ relative prime
   171     k = _table[key];            // Get hashed value
   172     if( !k ) {                  // ?Miss?
   173       debug_only( _lookup_misses++ );
   174       key = (first_sentinel == 0) ? key : first_sentinel; // ?saw sentinel?
   175       _table[key] = n;          // Insert into table!
   176       debug_only(n->enter_hash_lock()); // Lock down the node while in the table.
   177       check_grow();             // Grow table if insert hit limit
   178       return NULL;              // Miss!
   179     }
   180     else if( first_sentinel == 0 && k == _sentinel ) {
   181       first_sentinel = key;    // Can insert here
   182     }
   184   }
   185   ShouldNotReachHere();
   186   return NULL;
   187 }
   189 //------------------------------hash_insert------------------------------------
   190 // Insert into hash table
   191 void NodeHash::hash_insert( Node *n ) {
   192   // // "conflict" comments -- print nodes that conflict
   193   // bool conflict = false;
   194   // n->set_hash();
   195   uint hash = n->hash();
   196   if (hash == Node::NO_HASH) {
   197     return;
   198   }
   199   check_grow();
   200   uint key = hash & (_max-1);
   201   uint stride = key | 0x01;
   203   while( 1 ) {                  // While probing hash table
   204     debug_only( _insert_probes++ );
   205     Node *k = _table[key];      // Get hashed value
   206     if( !k || (k == _sentinel) ) break;       // Found a slot
   207     assert( k != n, "already inserted" );
   208     // if( PrintCompilation && PrintOptoStatistics && Verbose ) { tty->print("  conflict: "); k->dump(); conflict = true; }
   209     key = (key + stride) & (_max-1); // Stride through table w/ relative prime
   210   }
   211   _table[key] = n;              // Insert into table!
   212   debug_only(n->enter_hash_lock()); // Lock down the node while in the table.
   213   // if( conflict ) { n->dump(); }
   214 }
   216 //------------------------------hash_delete------------------------------------
   217 // Replace in hash table with sentinel
   218 bool NodeHash::hash_delete( const Node *n ) {
   219   Node *k;
   220   uint hash = n->hash();
   221   if (hash == Node::NO_HASH) {
   222     debug_only( _delete_misses++ );
   223     return false;
   224   }
   225   uint key = hash & (_max-1);
   226   uint stride = key | 0x01;
   227   debug_only( uint counter = 0; );
   228   for( ; /* (k != NULL) && (k != _sentinel) */; ) {
   229     debug_only( counter++ );
   230     debug_only( _delete_probes++ );
   231     k = _table[key];            // Get hashed value
   232     if( !k ) {                  // Miss?
   233       debug_only( _delete_misses++ );
   234 #ifdef ASSERT
   235       if( VerifyOpto ) {
   236         for( uint i=0; i < _max; i++ )
   237           assert( _table[i] != n, "changed edges with rehashing" );
   238       }
   239 #endif
   240       return false;             // Miss! Not in chain
   241     }
   242     else if( n == k ) {
   243       debug_only( _delete_hits++ );
   244       _table[key] = _sentinel;  // Hit! Label as deleted entry
   245       debug_only(((Node*)n)->exit_hash_lock()); // Unlock the node upon removal from table.
   246       return true;
   247     }
   248     else {
   249       // collision: move through table with prime offset
   250       key = (key + stride/*7*/) & (_max-1);
   251       assert( counter <= _insert_limit, "Cycle in hash-table");
   252     }
   253   }
   254   ShouldNotReachHere();
   255   return false;
   256 }
   258 //------------------------------round_up---------------------------------------
   259 // Round up to nearest power of 2
   260 uint NodeHash::round_up( uint x ) {
   261   x += (x>>2);                  // Add 25% slop
   262   if( x <16 ) return 16;        // Small stuff
   263   uint i=16;
   264   while( i < x ) i <<= 1;       // Double to fit
   265   return i;                     // Return hash table size
   266 }
   268 //------------------------------grow-------------------------------------------
   269 // Grow _table to next power of 2 and insert old entries
   270 void  NodeHash::grow() {
   271   // Record old state
   272   uint   old_max   = _max;
   273   Node **old_table = _table;
   274   // Construct new table with twice the space
   275   _grows++;
   276   _total_inserts       += _inserts;
   277   _total_insert_probes += _insert_probes;
   278   _inserts         = 0;
   279   _insert_probes   = 0;
   280   _max     = _max << 1;
   281   _table   = NEW_ARENA_ARRAY( _a , Node* , _max ); // (Node**)_a->Amalloc( _max * sizeof(Node*) );
   282   memset(_table,0,sizeof(Node*)*_max);
   283   _insert_limit = insert_limit();
   284   // Insert old entries into the new table
   285   for( uint i = 0; i < old_max; i++ ) {
   286     Node *m = *old_table++;
   287     if( !m || m == _sentinel ) continue;
   288     debug_only(m->exit_hash_lock()); // Unlock the node upon removal from old table.
   289     hash_insert(m);
   290   }
   291 }
   293 //------------------------------clear------------------------------------------
   294 // Clear all entries in _table to NULL but keep storage
   295 void  NodeHash::clear() {
   296 #ifdef ASSERT
   297   // Unlock all nodes upon removal from table.
   298   for (uint i = 0; i < _max; i++) {
   299     Node* n = _table[i];
   300     if (!n || n == _sentinel)  continue;
   301     n->exit_hash_lock();
   302   }
   303 #endif
   305   memset( _table, 0, _max * sizeof(Node*) );
   306 }
   308 //-----------------------remove_useless_nodes----------------------------------
   309 // Remove useless nodes from value table,
   310 // implementation does not depend on hash function
   311 void NodeHash::remove_useless_nodes(VectorSet &useful) {
   313   // Dead nodes in the hash table inherited from GVN should not replace
   314   // existing nodes, remove dead nodes.
   315   uint max = size();
   316   Node *sentinel_node = sentinel();
   317   for( uint i = 0; i < max; ++i ) {
   318     Node *n = at(i);
   319     if(n != NULL && n != sentinel_node && !useful.test(n->_idx)) {
   320       debug_only(n->exit_hash_lock()); // Unlock the node when removed
   321       _table[i] = sentinel_node;       // Replace with placeholder
   322     }
   323   }
   324 }
   327 void NodeHash::check_no_speculative_types() {
   328 #ifdef ASSERT
   329   uint max = size();
   330   Node *sentinel_node = sentinel();
   331   for (uint i = 0; i < max; ++i) {
   332     Node *n = at(i);
   333     if(n != NULL && n != sentinel_node && n->is_Type()) {
   334       TypeNode* tn = n->as_Type();
   335       const Type* t = tn->type();
   336       const Type* t_no_spec = t->remove_speculative();
   337       assert(t == t_no_spec, "dead node in hash table or missed node during speculative cleanup");
   338     }
   339   }
   340 #endif
   341 }
   343 #ifndef PRODUCT
   344 //------------------------------dump-------------------------------------------
   345 // Dump statistics for the hash table
   346 void NodeHash::dump() {
   347   _total_inserts       += _inserts;
   348   _total_insert_probes += _insert_probes;
   349   if (PrintCompilation && PrintOptoStatistics && Verbose && (_inserts > 0)) {
   350     if (WizardMode) {
   351       for (uint i=0; i<_max; i++) {
   352         if (_table[i])
   353           tty->print("%d/%d/%d ",i,_table[i]->hash()&(_max-1),_table[i]->_idx);
   354       }
   355     }
   356     tty->print("\nGVN Hash stats:  %d grows to %d max_size\n", _grows, _max);
   357     tty->print("  %d/%d (%8.1f%% full)\n", _inserts, _max, (double)_inserts/_max*100.0);
   358     tty->print("  %dp/(%dh+%dm) (%8.2f probes/lookup)\n", _look_probes, _lookup_hits, _lookup_misses, (double)_look_probes/(_lookup_hits+_lookup_misses));
   359     tty->print("  %dp/%di (%8.2f probes/insert)\n", _total_insert_probes, _total_inserts, (double)_total_insert_probes/_total_inserts);
   360     // sentinels increase lookup cost, but not insert cost
   361     assert((_lookup_misses+_lookup_hits)*4+100 >= _look_probes, "bad hash function");
   362     assert( _inserts+(_inserts>>3) < _max, "table too full" );
   363     assert( _inserts*3+100 >= _insert_probes, "bad hash function" );
   364   }
   365 }
   367 Node *NodeHash::find_index(uint idx) { // For debugging
   368   // Find an entry by its index value
   369   for( uint i = 0; i < _max; i++ ) {
   370     Node *m = _table[i];
   371     if( !m || m == _sentinel ) continue;
   372     if( m->_idx == (uint)idx ) return m;
   373   }
   374   return NULL;
   375 }
   376 #endif
   378 #ifdef ASSERT
   379 NodeHash::~NodeHash() {
   380   // Unlock all nodes upon destruction of table.
   381   if (_table != (Node**)badAddress)  clear();
   382 }
   384 void NodeHash::operator=(const NodeHash& nh) {
   385   // Unlock all nodes upon replacement of table.
   386   if (&nh == this)  return;
   387   if (_table != (Node**)badAddress)  clear();
   388   memcpy(this, &nh, sizeof(*this));
   389   // Do not increment hash_lock counts again.
   390   // Instead, be sure we never again use the source table.
   391   ((NodeHash*)&nh)->_table = (Node**)badAddress;
   392 }
   395 #endif
   398 //=============================================================================
   399 //------------------------------PhaseRemoveUseless-----------------------------
   400 // 1) Use a breadthfirst walk to collect useful nodes reachable from root.
   401 PhaseRemoveUseless::PhaseRemoveUseless(PhaseGVN *gvn, Unique_Node_List *worklist, PhaseNumber phase_num) : Phase(phase_num),
   402   _useful(Thread::current()->resource_area()) {
   404   // Implementation requires 'UseLoopSafepoints == true' and an edge from root
   405   // to each SafePointNode at a backward branch.  Inserted in add_safepoint().
   406   if( !UseLoopSafepoints || !OptoRemoveUseless ) return;
   408   // Identify nodes that are reachable from below, useful.
   409   C->identify_useful_nodes(_useful);
   410   // Update dead node list
   411   C->update_dead_node_list(_useful);
   413   // Remove all useless nodes from PhaseValues' recorded types
   414   // Must be done before disconnecting nodes to preserve hash-table-invariant
   415   gvn->remove_useless_nodes(_useful.member_set());
   417   // Remove all useless nodes from future worklist
   418   worklist->remove_useless_nodes(_useful.member_set());
   420   // Disconnect 'useless' nodes that are adjacent to useful nodes
   421   C->remove_useless_nodes(_useful);
   422 }
   424 //=============================================================================
   425 //------------------------------PhaseRenumberLive------------------------------
   426 // First, remove useless nodes (equivalent to identifying live nodes).
   427 // Then, renumber live nodes.
   428 //
   429 // The set of live nodes is returned by PhaseRemoveUseless in the _useful structure.
   430 // If the number of live nodes is 'x' (where 'x' == _useful.size()), then the
   431 // PhaseRenumberLive updates the node ID of each node (the _idx field) with a unique
   432 // value in the range [0, x).
   433 //
   434 // At the end of the PhaseRenumberLive phase, the compiler's count of unique nodes is
   435 // updated to 'x' and the list of dead nodes is reset (as there are no dead nodes).
   436 //
   437 // The PhaseRenumberLive phase updates two data structures with the new node IDs.
   438 // (1) The worklist is used by the PhaseIterGVN phase to identify nodes that must be
   439 // processed. A new worklist (with the updated node IDs) is returned in 'new_worklist'.
   440 // (2) Type information (the field PhaseGVN::_types) maps type information to each
   441 // node ID. The mapping is updated to use the new node IDs as well. Updated type
   442 // information is returned in PhaseGVN::_types.
   443 //
   444 // The PhaseRenumberLive phase does not preserve the order of elements in the worklist.
   445 //
   446 // Other data structures used by the compiler are not updated. The hash table for value
   447 // numbering (the field PhaseGVN::_table) is not updated because computing the hash
   448 // values is not based on node IDs. The field PhaseGVN::_nodes is not updated either
   449 // because it is empty wherever PhaseRenumberLive is used.
   450 PhaseRenumberLive::PhaseRenumberLive(PhaseGVN* gvn,
   451                                      Unique_Node_List* worklist, Unique_Node_List* new_worklist,
   452                                      PhaseNumber phase_num) :
   453   PhaseRemoveUseless(gvn, worklist, Remove_Useless_And_Renumber_Live) {
   455   assert(RenumberLiveNodes, "RenumberLiveNodes must be set to true for node renumbering to take place");
   456   assert(C->live_nodes() == _useful.size(), "the number of live nodes must match the number of useful nodes");
   457   assert(gvn->nodes_size() == 0, "GVN must not contain any nodes at this point");
   459   uint old_unique_count = C->unique();
   460   uint live_node_count = C->live_nodes();
   461   uint worklist_size = worklist->size();
   463   // Storage for the updated type information.
   464   Type_Array new_type_array(C->comp_arena());
   466   // Iterate over the set of live nodes.
   467   uint current_idx = 0; // The current new node ID. Incremented after every assignment.
   468   for (uint i = 0; i < _useful.size(); i++) {
   469     Node* n = _useful.at(i);
   470     // Sanity check that fails if we ever decide to execute this phase after EA
   471     assert(!n->is_Phi() || n->as_Phi()->inst_mem_id() == -1, "should not be linked to data Phi");
   472     const Type* type = gvn->type_or_null(n);
   473     new_type_array.map(current_idx, type);
   475     bool in_worklist = false;
   476     if (worklist->member(n)) {
   477       in_worklist = true;
   478     }
   480     n->set_idx(current_idx); // Update node ID.
   482     if (in_worklist) {
   483       new_worklist->push(n);
   484     }
   486     current_idx++;
   487   }
   489   assert(worklist_size == new_worklist->size(), "the new worklist must have the same size as the original worklist");
   490   assert(live_node_count == current_idx, "all live nodes must be processed");
   492   // Replace the compiler's type information with the updated type information.
   493   gvn->replace_types(new_type_array);
   495   // Update the unique node count of the compilation to the number of currently live nodes.
   496   C->set_unique(live_node_count);
   498   // Set the dead node count to 0 and reset dead node list.
   499   C->reset_dead_node_list();
   500 }
   503 //=============================================================================
   504 //------------------------------PhaseTransform---------------------------------
   505 PhaseTransform::PhaseTransform( PhaseNumber pnum ) : Phase(pnum),
   506   _arena(Thread::current()->resource_area()),
   507   _nodes(_arena),
   508   _types(_arena)
   509 {
   510   init_con_caches();
   511 #ifndef PRODUCT
   512   clear_progress();
   513   clear_transforms();
   514   set_allow_progress(true);
   515 #endif
   516   // Force allocation for currently existing nodes
   517   _types.map(C->unique(), NULL);
   518 }
   520 //------------------------------PhaseTransform---------------------------------
   521 PhaseTransform::PhaseTransform( Arena *arena, PhaseNumber pnum ) : Phase(pnum),
   522   _arena(arena),
   523   _nodes(arena),
   524   _types(arena)
   525 {
   526   init_con_caches();
   527 #ifndef PRODUCT
   528   clear_progress();
   529   clear_transforms();
   530   set_allow_progress(true);
   531 #endif
   532   // Force allocation for currently existing nodes
   533   _types.map(C->unique(), NULL);
   534 }
   536 //------------------------------PhaseTransform---------------------------------
   537 // Initialize with previously generated type information
   538 PhaseTransform::PhaseTransform( PhaseTransform *pt, PhaseNumber pnum ) : Phase(pnum),
   539   _arena(pt->_arena),
   540   _nodes(pt->_nodes),
   541   _types(pt->_types)
   542 {
   543   init_con_caches();
   544 #ifndef PRODUCT
   545   clear_progress();
   546   clear_transforms();
   547   set_allow_progress(true);
   548 #endif
   549 }
   551 void PhaseTransform::init_con_caches() {
   552   memset(_icons,0,sizeof(_icons));
   553   memset(_lcons,0,sizeof(_lcons));
   554   memset(_zcons,0,sizeof(_zcons));
   555 }
   558 //--------------------------------find_int_type--------------------------------
   559 const TypeInt* PhaseTransform::find_int_type(Node* n) {
   560   if (n == NULL)  return NULL;
   561   // Call type_or_null(n) to determine node's type since we might be in
   562   // parse phase and call n->Value() may return wrong type.
   563   // (For example, a phi node at the beginning of loop parsing is not ready.)
   564   const Type* t = type_or_null(n);
   565   if (t == NULL)  return NULL;
   566   return t->isa_int();
   567 }
   570 //-------------------------------find_long_type--------------------------------
   571 const TypeLong* PhaseTransform::find_long_type(Node* n) {
   572   if (n == NULL)  return NULL;
   573   // (See comment above on type_or_null.)
   574   const Type* t = type_or_null(n);
   575   if (t == NULL)  return NULL;
   576   return t->isa_long();
   577 }
   580 #ifndef PRODUCT
   581 void PhaseTransform::dump_old2new_map() const {
   582   _nodes.dump();
   583 }
   585 void PhaseTransform::dump_new( uint nidx ) const {
   586   for( uint i=0; i<_nodes.Size(); i++ )
   587     if( _nodes[i] && _nodes[i]->_idx == nidx ) {
   588       _nodes[i]->dump();
   589       tty->cr();
   590       tty->print_cr("Old index= %d",i);
   591       return;
   592     }
   593   tty->print_cr("Node %d not found in the new indices", nidx);
   594 }
   596 //------------------------------dump_types-------------------------------------
   597 void PhaseTransform::dump_types( ) const {
   598   _types.dump();
   599 }
   601 //------------------------------dump_nodes_and_types---------------------------
   602 void PhaseTransform::dump_nodes_and_types(const Node *root, uint depth, bool only_ctrl) {
   603   VectorSet visited(Thread::current()->resource_area());
   604   dump_nodes_and_types_recur( root, depth, only_ctrl, visited );
   605 }
   607 //------------------------------dump_nodes_and_types_recur---------------------
   608 void PhaseTransform::dump_nodes_and_types_recur( const Node *n, uint depth, bool only_ctrl, VectorSet &visited) {
   609   if( !n ) return;
   610   if( depth == 0 ) return;
   611   if( visited.test_set(n->_idx) ) return;
   612   for( uint i=0; i<n->len(); i++ ) {
   613     if( only_ctrl && !(n->is_Region()) && i != TypeFunc::Control ) continue;
   614     dump_nodes_and_types_recur( n->in(i), depth-1, only_ctrl, visited );
   615   }
   616   n->dump();
   617   if (type_or_null(n) != NULL) {
   618     tty->print("      "); type(n)->dump(); tty->cr();
   619   }
   620 }
   622 #endif
   625 //=============================================================================
   626 //------------------------------PhaseValues------------------------------------
   627 // Set minimum table size to "255"
   628 PhaseValues::PhaseValues( Arena *arena, uint est_max_size ) : PhaseTransform(arena, GVN), _table(arena, est_max_size) {
   629   NOT_PRODUCT( clear_new_values(); )
   630 }
   632 //------------------------------PhaseValues------------------------------------
   633 // Set minimum table size to "255"
   634 PhaseValues::PhaseValues( PhaseValues *ptv ) : PhaseTransform( ptv, GVN ),
   635   _table(&ptv->_table) {
   636   NOT_PRODUCT( clear_new_values(); )
   637 }
   639 //------------------------------PhaseValues------------------------------------
   640 // Used by +VerifyOpto.  Clear out hash table but copy _types array.
   641 PhaseValues::PhaseValues( PhaseValues *ptv, const char *dummy ) : PhaseTransform( ptv, GVN ),
   642   _table(ptv->arena(),ptv->_table.size()) {
   643   NOT_PRODUCT( clear_new_values(); )
   644 }
   646 //------------------------------~PhaseValues-----------------------------------
   647 #ifndef PRODUCT
   648 PhaseValues::~PhaseValues() {
   649   _table.dump();
   651   // Statistics for value progress and efficiency
   652   if( PrintCompilation && Verbose && WizardMode ) {
   653     tty->print("\n%sValues: %d nodes ---> %d/%d (%d)",
   654       is_IterGVN() ? "Iter" : "    ", C->unique(), made_progress(), made_transforms(), made_new_values());
   655     if( made_transforms() != 0 ) {
   656       tty->print_cr("  ratio %f", made_progress()/(float)made_transforms() );
   657     } else {
   658       tty->cr();
   659     }
   660   }
   661 }
   662 #endif
   664 //------------------------------makecon----------------------------------------
   665 ConNode* PhaseTransform::makecon(const Type *t) {
   666   assert(t->singleton(), "must be a constant");
   667   assert(!t->empty() || t == Type::TOP, "must not be vacuous range");
   668   switch (t->base()) {  // fast paths
   669   case Type::Half:
   670   case Type::Top:  return (ConNode*) C->top();
   671   case Type::Int:  return intcon( t->is_int()->get_con() );
   672   case Type::Long: return longcon( t->is_long()->get_con() );
   673   }
   674   if (t->is_zero_type())
   675     return zerocon(t->basic_type());
   676   return uncached_makecon(t);
   677 }
   679 //--------------------------uncached_makecon-----------------------------------
   680 // Make an idealized constant - one of ConINode, ConPNode, etc.
   681 ConNode* PhaseValues::uncached_makecon(const Type *t) {
   682   assert(t->singleton(), "must be a constant");
   683   ConNode* x = ConNode::make(C, t);
   684   ConNode* k = (ConNode*)hash_find_insert(x); // Value numbering
   685   if (k == NULL) {
   686     set_type(x, t);             // Missed, provide type mapping
   687     GrowableArray<Node_Notes*>* nna = C->node_note_array();
   688     if (nna != NULL) {
   689       Node_Notes* loc = C->locate_node_notes(nna, x->_idx, true);
   690       loc->clear(); // do not put debug info on constants
   691     }
   692   } else {
   693     x->destruct();              // Hit, destroy duplicate constant
   694     x = k;                      // use existing constant
   695   }
   696   return x;
   697 }
   699 //------------------------------intcon-----------------------------------------
   700 // Fast integer constant.  Same as "transform(new ConINode(TypeInt::make(i)))"
   701 ConINode* PhaseTransform::intcon(int i) {
   702   // Small integer?  Check cache! Check that cached node is not dead
   703   if (i >= _icon_min && i <= _icon_max) {
   704     ConINode* icon = _icons[i-_icon_min];
   705     if (icon != NULL && icon->in(TypeFunc::Control) != NULL)
   706       return icon;
   707   }
   708   ConINode* icon = (ConINode*) uncached_makecon(TypeInt::make(i));
   709   assert(icon->is_Con(), "");
   710   if (i >= _icon_min && i <= _icon_max)
   711     _icons[i-_icon_min] = icon;   // Cache small integers
   712   return icon;
   713 }
   715 //------------------------------longcon----------------------------------------
   716 // Fast long constant.
   717 ConLNode* PhaseTransform::longcon(jlong l) {
   718   // Small integer?  Check cache! Check that cached node is not dead
   719   if (l >= _lcon_min && l <= _lcon_max) {
   720     ConLNode* lcon = _lcons[l-_lcon_min];
   721     if (lcon != NULL && lcon->in(TypeFunc::Control) != NULL)
   722       return lcon;
   723   }
   724   ConLNode* lcon = (ConLNode*) uncached_makecon(TypeLong::make(l));
   725   assert(lcon->is_Con(), "");
   726   if (l >= _lcon_min && l <= _lcon_max)
   727     _lcons[l-_lcon_min] = lcon;      // Cache small integers
   728   return lcon;
   729 }
   731 //------------------------------zerocon-----------------------------------------
   732 // Fast zero or null constant. Same as "transform(ConNode::make(Type::get_zero_type(bt)))"
   733 ConNode* PhaseTransform::zerocon(BasicType bt) {
   734   assert((uint)bt <= _zcon_max, "domain check");
   735   ConNode* zcon = _zcons[bt];
   736   if (zcon != NULL && zcon->in(TypeFunc::Control) != NULL)
   737     return zcon;
   738   zcon = (ConNode*) uncached_makecon(Type::get_zero_type(bt));
   739   _zcons[bt] = zcon;
   740   return zcon;
   741 }
   745 //=============================================================================
   746 //------------------------------transform--------------------------------------
   747 // Return a node which computes the same function as this node, but in a
   748 // faster or cheaper fashion.
   749 Node *PhaseGVN::transform( Node *n ) {
   750   return transform_no_reclaim(n);
   751 }
   753 //------------------------------transform--------------------------------------
   754 // Return a node which computes the same function as this node, but
   755 // in a faster or cheaper fashion.
   756 Node *PhaseGVN::transform_no_reclaim( Node *n ) {
   757   NOT_PRODUCT( set_transforms(); )
   759   // Apply the Ideal call in a loop until it no longer applies
   760   Node *k = n;
   761   NOT_PRODUCT( uint loop_count = 0; )
   762   while( 1 ) {
   763     Node *i = k->Ideal(this, /*can_reshape=*/false);
   764     if( !i ) break;
   765     assert( i->_idx >= k->_idx, "Idealize should return new nodes, use Identity to return old nodes" );
   766     k = i;
   767     assert(loop_count++ < K, "infinite loop in PhaseGVN::transform");
   768   }
   769   NOT_PRODUCT( if( loop_count != 0 ) { set_progress(); } )
   772   // If brand new node, make space in type array.
   773   ensure_type_or_null(k);
   775   // Since I just called 'Value' to compute the set of run-time values
   776   // for this Node, and 'Value' is non-local (and therefore expensive) I'll
   777   // cache Value.  Later requests for the local phase->type of this Node can
   778   // use the cached Value instead of suffering with 'bottom_type'.
   779   const Type *t = k->Value(this); // Get runtime Value set
   780   assert(t != NULL, "value sanity");
   781   if (type_or_null(k) != t) {
   782 #ifndef PRODUCT
   783     // Do not count initial visit to node as a transformation
   784     if (type_or_null(k) == NULL) {
   785       inc_new_values();
   786       set_progress();
   787     }
   788 #endif
   789     set_type(k, t);
   790     // If k is a TypeNode, capture any more-precise type permanently into Node
   791     k->raise_bottom_type(t);
   792   }
   794   if( t->singleton() && !k->is_Con() ) {
   795     NOT_PRODUCT( set_progress(); )
   796     return makecon(t);          // Turn into a constant
   797   }
   799   // Now check for Identities
   800   Node *i = k->Identity(this);  // Look for a nearby replacement
   801   if( i != k ) {                // Found? Return replacement!
   802     NOT_PRODUCT( set_progress(); )
   803     return i;
   804   }
   806   // Global Value Numbering
   807   i = hash_find_insert(k);      // Insert if new
   808   if( i && (i != k) ) {
   809     // Return the pre-existing node
   810     NOT_PRODUCT( set_progress(); )
   811     return i;
   812   }
   814   // Return Idealized original
   815   return k;
   816 }
   818 #ifdef ASSERT
   819 //------------------------------dead_loop_check--------------------------------
   820 // Check for a simple dead loop when a data node references itself directly
   821 // or through an other data node excluding cons and phis.
   822 void PhaseGVN::dead_loop_check( Node *n ) {
   823   // Phi may reference itself in a loop
   824   if (n != NULL && !n->is_dead_loop_safe() && !n->is_CFG()) {
   825     // Do 2 levels check and only data inputs.
   826     bool no_dead_loop = true;
   827     uint cnt = n->req();
   828     for (uint i = 1; i < cnt && no_dead_loop; i++) {
   829       Node *in = n->in(i);
   830       if (in == n) {
   831         no_dead_loop = false;
   832       } else if (in != NULL && !in->is_dead_loop_safe()) {
   833         uint icnt = in->req();
   834         for (uint j = 1; j < icnt && no_dead_loop; j++) {
   835           if (in->in(j) == n || in->in(j) == in)
   836             no_dead_loop = false;
   837         }
   838       }
   839     }
   840     if (!no_dead_loop) n->dump(3);
   841     assert(no_dead_loop, "dead loop detected");
   842   }
   843 }
   844 #endif
   846 //=============================================================================
   847 //------------------------------PhaseIterGVN-----------------------------------
   848 // Initialize hash table to fresh and clean for +VerifyOpto
   849 PhaseIterGVN::PhaseIterGVN( PhaseIterGVN *igvn, const char *dummy ) : PhaseGVN(igvn,dummy), _worklist( ),
   850                                                                       _stack(C->live_nodes() >> 1),
   851                                                                       _delay_transform(false) {
   852 }
   854 //------------------------------PhaseIterGVN-----------------------------------
   855 // Initialize with previous PhaseIterGVN info; used by PhaseCCP
   856 PhaseIterGVN::PhaseIterGVN( PhaseIterGVN *igvn ) : PhaseGVN(igvn),
   857                                                    _worklist( igvn->_worklist ),
   858                                                    _stack( igvn->_stack ),
   859                                                    _delay_transform(igvn->_delay_transform)
   860 {
   861 }
   863 //------------------------------PhaseIterGVN-----------------------------------
   864 // Initialize with previous PhaseGVN info from Parser
   865 PhaseIterGVN::PhaseIterGVN( PhaseGVN *gvn ) : PhaseGVN(gvn),
   866                                               _worklist(*C->for_igvn()),
   867 // TODO: Before incremental inlining it was allocated only once and it was fine. Now that
   868 //       the constructor is used in incremental inlining, this consumes too much memory:
   869 //                                            _stack(C->live_nodes() >> 1),
   870 //       So, as a band-aid, we replace this by:
   871                                               _stack(C->comp_arena(), 32),
   872                                               _delay_transform(false)
   873 {
   874   uint max;
   876   // Dead nodes in the hash table inherited from GVN were not treated as
   877   // roots during def-use info creation; hence they represent an invisible
   878   // use.  Clear them out.
   879   max = _table.size();
   880   for( uint i = 0; i < max; ++i ) {
   881     Node *n = _table.at(i);
   882     if(n != NULL && n != _table.sentinel() && n->outcnt() == 0) {
   883       if( n->is_top() ) continue;
   884       assert( false, "Parse::remove_useless_nodes missed this node");
   885       hash_delete(n);
   886     }
   887   }
   889   // Any Phis or Regions on the worklist probably had uses that could not
   890   // make more progress because the uses were made while the Phis and Regions
   891   // were in half-built states.  Put all uses of Phis and Regions on worklist.
   892   max = _worklist.size();
   893   for( uint j = 0; j < max; j++ ) {
   894     Node *n = _worklist.at(j);
   895     uint uop = n->Opcode();
   896     if( uop == Op_Phi || uop == Op_Region ||
   897         n->is_Type() ||
   898         n->is_Mem() )
   899       add_users_to_worklist(n);
   900   }
   901 }
   904 #ifndef PRODUCT
   905 void PhaseIterGVN::verify_step(Node* n) {
   906   _verify_window[_verify_counter % _verify_window_size] = n;
   907   ++_verify_counter;
   908   ResourceMark rm;
   909   ResourceArea *area = Thread::current()->resource_area();
   910   VectorSet old_space(area), new_space(area);
   911   if (C->unique() < 1000 ||
   912       0 == _verify_counter % (C->unique() < 10000 ? 10 : 100)) {
   913     ++_verify_full_passes;
   914     Node::verify_recur(C->root(), -1, old_space, new_space);
   915   }
   916   const int verify_depth = 4;
   917   for ( int i = 0; i < _verify_window_size; i++ ) {
   918     Node* n = _verify_window[i];
   919     if ( n == NULL )  continue;
   920     if( n->in(0) == NodeSentinel ) {  // xform_idom
   921       _verify_window[i] = n->in(1);
   922       --i; continue;
   923     }
   924     // Typical fanout is 1-2, so this call visits about 6 nodes.
   925     Node::verify_recur(n, verify_depth, old_space, new_space);
   926   }
   927 }
   928 #endif
   931 //------------------------------init_worklist----------------------------------
   932 // Initialize worklist for each node.
   933 void PhaseIterGVN::init_worklist( Node *n ) {
   934   if( _worklist.member(n) ) return;
   935   _worklist.push(n);
   936   uint cnt = n->req();
   937   for( uint i =0 ; i < cnt; i++ ) {
   938     Node *m = n->in(i);
   939     if( m ) init_worklist(m);
   940   }
   941 }
   943 //------------------------------optimize---------------------------------------
   944 void PhaseIterGVN::optimize() {
   945   debug_only(uint num_processed  = 0;);
   946 #ifndef PRODUCT
   947   {
   948     _verify_counter = 0;
   949     _verify_full_passes = 0;
   950     for ( int i = 0; i < _verify_window_size; i++ ) {
   951       _verify_window[i] = NULL;
   952     }
   953   }
   954 #endif
   956 #ifdef ASSERT
   957   Node* prev = NULL;
   958   uint rep_cnt = 0;
   959 #endif
   960   uint loop_count = 0;
   962   // Pull from worklist; transform node;
   963   // If node has changed: update edge info and put uses on worklist.
   964   while( _worklist.size() ) {
   965     if (C->check_node_count(NodeLimitFudgeFactor * 2,
   966                             "out of nodes optimizing method")) {
   967       return;
   968     }
   969     Node *n  = _worklist.pop();
   970     if (++loop_count >= K * C->live_nodes()) {
   971       debug_only(n->dump(4);)
   972       assert(false, "infinite loop in PhaseIterGVN::optimize");
   973       C->record_method_not_compilable("infinite loop in PhaseIterGVN::optimize");
   974       return;
   975     }
   976 #ifdef ASSERT
   977     if (n == prev) {
   978       if (++rep_cnt > 3) {
   979         n->dump(4);
   980         assert(false, "loop in Ideal transformation");
   981       }
   982     } else {
   983       rep_cnt = 0;
   984     }
   985     prev = n;
   986 #endif
   987     if (TraceIterativeGVN && Verbose) {
   988       tty->print("  Pop ");
   989       NOT_PRODUCT( n->dump(); )
   990       debug_only(if( (num_processed++ % 100) == 0 ) _worklist.print_set();)
   991     }
   993     if (n->outcnt() != 0) {
   995 #ifndef PRODUCT
   996       uint wlsize = _worklist.size();
   997       const Type* oldtype = type_or_null(n);
   998 #endif //PRODUCT
  1000       Node *nn = transform_old(n);
  1002 #ifndef PRODUCT
  1003       if (TraceIterativeGVN) {
  1004         const Type* newtype = type_or_null(n);
  1005         if (nn != n) {
  1006           // print old node
  1007           tty->print("< ");
  1008           if (oldtype != newtype && oldtype != NULL) {
  1009             oldtype->dump();
  1011           do { tty->print("\t"); } while (tty->position() < 16);
  1012           tty->print("<");
  1013           n->dump();
  1015         if (oldtype != newtype || nn != n) {
  1016           // print new node and/or new type
  1017           if (oldtype == NULL) {
  1018             tty->print("* ");
  1019           } else if (nn != n) {
  1020             tty->print("> ");
  1021           } else {
  1022             tty->print("= ");
  1024           if (newtype == NULL) {
  1025             tty->print("null");
  1026           } else {
  1027             newtype->dump();
  1029           do { tty->print("\t"); } while (tty->position() < 16);
  1030           nn->dump();
  1032         if (Verbose && wlsize < _worklist.size()) {
  1033           tty->print("  Push {");
  1034           while (wlsize != _worklist.size()) {
  1035             Node* pushed = _worklist.at(wlsize++);
  1036             tty->print(" %d", pushed->_idx);
  1038           tty->print_cr(" }");
  1041       if( VerifyIterativeGVN && nn != n ) {
  1042         verify_step((Node*) NULL);  // ignore n, it might be subsumed
  1044 #endif
  1045     } else if (!n->is_top()) {
  1046       remove_dead_node(n);
  1050 #ifndef PRODUCT
  1051   C->verify_graph_edges();
  1052   if( VerifyOpto && allow_progress() ) {
  1053     // Must turn off allow_progress to enable assert and break recursion
  1054     C->root()->verify();
  1055     { // Check if any progress was missed using IterGVN
  1056       // Def-Use info enables transformations not attempted in wash-pass
  1057       // e.g. Region/Phi cleanup, ...
  1058       // Null-check elision -- may not have reached fixpoint
  1059       //                       do not propagate to dominated nodes
  1060       ResourceMark rm;
  1061       PhaseIterGVN igvn2(this,"Verify"); // Fresh and clean!
  1062       // Fill worklist completely
  1063       igvn2.init_worklist(C->root());
  1065       igvn2.set_allow_progress(false);
  1066       igvn2.optimize();
  1067       igvn2.set_allow_progress(true);
  1070   if ( VerifyIterativeGVN && PrintOpto ) {
  1071     if ( _verify_counter == _verify_full_passes )
  1072       tty->print_cr("VerifyIterativeGVN: %d transforms and verify passes",
  1073                     (int) _verify_full_passes);
  1074     else
  1075       tty->print_cr("VerifyIterativeGVN: %d transforms, %d full verify passes",
  1076                   (int) _verify_counter, (int) _verify_full_passes);
  1078 #endif
  1082 //------------------register_new_node_with_optimizer---------------------------
  1083 // Register a new node with the optimizer.  Update the types array, the def-use
  1084 // info.  Put on worklist.
  1085 Node* PhaseIterGVN::register_new_node_with_optimizer(Node* n, Node* orig) {
  1086   set_type_bottom(n);
  1087   _worklist.push(n);
  1088   if (orig != NULL)  C->copy_node_notes_to(n, orig);
  1089   return n;
  1092 //------------------------------transform--------------------------------------
  1093 // Non-recursive: idealize Node 'n' with respect to its inputs and its value
  1094 Node *PhaseIterGVN::transform( Node *n ) {
  1095   if (_delay_transform) {
  1096     // Register the node but don't optimize for now
  1097     register_new_node_with_optimizer(n);
  1098     return n;
  1101   // If brand new node, make space in type array, and give it a type.
  1102   ensure_type_or_null(n);
  1103   if (type_or_null(n) == NULL) {
  1104     set_type_bottom(n);
  1107   return transform_old(n);
  1110 //------------------------------transform_old----------------------------------
  1111 Node *PhaseIterGVN::transform_old( Node *n ) {
  1112 #ifndef PRODUCT
  1113   debug_only(uint loop_count = 0;);
  1114   set_transforms();
  1115 #endif
  1116   // Remove 'n' from hash table in case it gets modified
  1117   _table.hash_delete(n);
  1118   if( VerifyIterativeGVN ) {
  1119    assert( !_table.find_index(n->_idx), "found duplicate entry in table");
  1122   // Apply the Ideal call in a loop until it no longer applies
  1123   Node *k = n;
  1124   DEBUG_ONLY(dead_loop_check(k);)
  1125   DEBUG_ONLY(bool is_new = (k->outcnt() == 0);)
  1126   Node *i = k->Ideal(this, /*can_reshape=*/true);
  1127   assert(i != k || is_new || i->outcnt() > 0, "don't return dead nodes");
  1128 #ifndef PRODUCT
  1129   if( VerifyIterativeGVN )
  1130     verify_step(k);
  1131   if( i && VerifyOpto ) {
  1132     if( !allow_progress() ) {
  1133       if (i->is_Add() && i->outcnt() == 1) {
  1134         // Switched input to left side because this is the only use
  1135       } else if( i->is_If() && (i->in(0) == NULL) ) {
  1136         // This IF is dead because it is dominated by an equivalent IF When
  1137         // dominating if changed, info is not propagated sparsely to 'this'
  1138         // Propagating this info further will spuriously identify other
  1139         // progress.
  1140         return i;
  1141       } else
  1142         set_progress();
  1143     } else
  1144       set_progress();
  1146 #endif
  1148   while( i ) {
  1149 #ifndef PRODUCT
  1150     debug_only( if( loop_count >= K ) i->dump(4); )
  1151     assert(loop_count < K, "infinite loop in PhaseIterGVN::transform");
  1152     debug_only( loop_count++; )
  1153 #endif
  1154     assert((i->_idx >= k->_idx) || i->is_top(), "Idealize should return new nodes, use Identity to return old nodes");
  1155     // Made a change; put users of original Node on worklist
  1156     add_users_to_worklist( k );
  1157     // Replacing root of transform tree?
  1158     if( k != i ) {
  1159       // Make users of old Node now use new.
  1160       subsume_node( k, i );
  1161       k = i;
  1163     DEBUG_ONLY(dead_loop_check(k);)
  1164     // Try idealizing again
  1165     DEBUG_ONLY(is_new = (k->outcnt() == 0);)
  1166     i = k->Ideal(this, /*can_reshape=*/true);
  1167     assert(i != k || is_new || i->outcnt() > 0, "don't return dead nodes");
  1168 #ifndef PRODUCT
  1169     if( VerifyIterativeGVN )
  1170       verify_step(k);
  1171     if( i && VerifyOpto ) set_progress();
  1172 #endif
  1175   // If brand new node, make space in type array.
  1176   ensure_type_or_null(k);
  1178   // See what kind of values 'k' takes on at runtime
  1179   const Type *t = k->Value(this);
  1180   assert(t != NULL, "value sanity");
  1182   // Since I just called 'Value' to compute the set of run-time values
  1183   // for this Node, and 'Value' is non-local (and therefore expensive) I'll
  1184   // cache Value.  Later requests for the local phase->type of this Node can
  1185   // use the cached Value instead of suffering with 'bottom_type'.
  1186   if (t != type_or_null(k)) {
  1187     NOT_PRODUCT( set_progress(); )
  1188     NOT_PRODUCT( inc_new_values();)
  1189     set_type(k, t);
  1190     // If k is a TypeNode, capture any more-precise type permanently into Node
  1191     k->raise_bottom_type(t);
  1192     // Move users of node to worklist
  1193     add_users_to_worklist( k );
  1196   // If 'k' computes a constant, replace it with a constant
  1197   if( t->singleton() && !k->is_Con() ) {
  1198     NOT_PRODUCT( set_progress(); )
  1199     Node *con = makecon(t);     // Make a constant
  1200     add_users_to_worklist( k );
  1201     subsume_node( k, con );     // Everybody using k now uses con
  1202     return con;
  1205   // Now check for Identities
  1206   i = k->Identity(this);        // Look for a nearby replacement
  1207   if( i != k ) {                // Found? Return replacement!
  1208     NOT_PRODUCT( set_progress(); )
  1209     add_users_to_worklist( k );
  1210     subsume_node( k, i );       // Everybody using k now uses i
  1211     return i;
  1214   // Global Value Numbering
  1215   i = hash_find_insert(k);      // Check for pre-existing node
  1216   if( i && (i != k) ) {
  1217     // Return the pre-existing node if it isn't dead
  1218     NOT_PRODUCT( set_progress(); )
  1219     add_users_to_worklist( k );
  1220     subsume_node( k, i );       // Everybody using k now uses i
  1221     return i;
  1224   // Return Idealized original
  1225   return k;
  1228 //---------------------------------saturate------------------------------------
  1229 const Type* PhaseIterGVN::saturate(const Type* new_type, const Type* old_type,
  1230                                    const Type* limit_type) const {
  1231   return new_type->narrow(old_type);
  1234 //------------------------------remove_globally_dead_node----------------------
  1235 // Kill a globally dead Node.  All uses are also globally dead and are
  1236 // aggressively trimmed.
  1237 void PhaseIterGVN::remove_globally_dead_node( Node *dead ) {
  1238   enum DeleteProgress {
  1239     PROCESS_INPUTS,
  1240     PROCESS_OUTPUTS
  1241   };
  1242   assert(_stack.is_empty(), "not empty");
  1243   _stack.push(dead, PROCESS_INPUTS);
  1245   while (_stack.is_nonempty()) {
  1246     dead = _stack.node();
  1247     if (dead->Opcode() == Op_SafePoint) {
  1248       dead->as_SafePoint()->disconnect_from_root(this);
  1250     uint progress_state = _stack.index();
  1251     assert(dead != C->root(), "killing root, eh?");
  1252     assert(!dead->is_top(), "add check for top when pushing");
  1253     NOT_PRODUCT( set_progress(); )
  1254     if (progress_state == PROCESS_INPUTS) {
  1255       // After following inputs, continue to outputs
  1256       _stack.set_index(PROCESS_OUTPUTS);
  1257       if (!dead->is_Con()) { // Don't kill cons but uses
  1258         bool recurse = false;
  1259         // Remove from hash table
  1260         _table.hash_delete( dead );
  1261         // Smash all inputs to 'dead', isolating him completely
  1262         for (uint i = 0; i < dead->req(); i++) {
  1263           Node *in = dead->in(i);
  1264           if (in != NULL && in != C->top()) {  // Points to something?
  1265             int nrep = dead->replace_edge(in, NULL);  // Kill edges
  1266             assert((nrep > 0), "sanity");
  1267             if (in->outcnt() == 0) { // Made input go dead?
  1268               _stack.push(in, PROCESS_INPUTS); // Recursively remove
  1269               recurse = true;
  1270             } else if (in->outcnt() == 1 &&
  1271                        in->has_special_unique_user()) {
  1272               _worklist.push(in->unique_out());
  1273             } else if (in->outcnt() <= 2 && dead->is_Phi()) {
  1274               if (in->Opcode() == Op_Region) {
  1275                 _worklist.push(in);
  1276               } else if (in->is_Store()) {
  1277                 DUIterator_Fast imax, i = in->fast_outs(imax);
  1278                 _worklist.push(in->fast_out(i));
  1279                 i++;
  1280                 if (in->outcnt() == 2) {
  1281                   _worklist.push(in->fast_out(i));
  1282                   i++;
  1284                 assert(!(i < imax), "sanity");
  1287             if (ReduceFieldZeroing && dead->is_Load() && i == MemNode::Memory &&
  1288                 in->is_Proj() && in->in(0) != NULL && in->in(0)->is_Initialize()) {
  1289               // A Load that directly follows an InitializeNode is
  1290               // going away. The Stores that follow are candidates
  1291               // again to be captured by the InitializeNode.
  1292               for (DUIterator_Fast jmax, j = in->fast_outs(jmax); j < jmax; j++) {
  1293                 Node *n = in->fast_out(j);
  1294                 if (n->is_Store()) {
  1295                   _worklist.push(n);
  1299           } // if (in != NULL && in != C->top())
  1300         } // for (uint i = 0; i < dead->req(); i++)
  1301         if (recurse) {
  1302           continue;
  1304       } // if (!dead->is_Con())
  1305     } // if (progress_state == PROCESS_INPUTS)
  1307     // Aggressively kill globally dead uses
  1308     // (Rather than pushing all the outs at once, we push one at a time,
  1309     // plus the parent to resume later, because of the indefinite number
  1310     // of edge deletions per loop trip.)
  1311     if (dead->outcnt() > 0) {
  1312       // Recursively remove output edges
  1313       _stack.push(dead->raw_out(0), PROCESS_INPUTS);
  1314     } else {
  1315       // Finished disconnecting all input and output edges.
  1316       _stack.pop();
  1317       // Remove dead node from iterative worklist
  1318       _worklist.remove(dead);
  1319       // Constant node that has no out-edges and has only one in-edge from
  1320       // root is usually dead. However, sometimes reshaping walk makes
  1321       // it reachable by adding use edges. So, we will NOT count Con nodes
  1322       // as dead to be conservative about the dead node count at any
  1323       // given time.
  1324       if (!dead->is_Con()) {
  1325         C->record_dead_node(dead->_idx);
  1327       if (dead->is_macro()) {
  1328         C->remove_macro_node(dead);
  1330       if (dead->is_expensive()) {
  1331         C->remove_expensive_node(dead);
  1333       CastIINode* cast = dead->isa_CastII();
  1334       if (cast != NULL && cast->has_range_check()) {
  1335         C->remove_range_check_cast(cast);
  1338   } // while (_stack.is_nonempty())
  1341 //------------------------------subsume_node-----------------------------------
  1342 // Remove users from node 'old' and add them to node 'nn'.
  1343 void PhaseIterGVN::subsume_node( Node *old, Node *nn ) {
  1344   if (old->Opcode() == Op_SafePoint) {
  1345     old->as_SafePoint()->disconnect_from_root(this);
  1347   assert( old != hash_find(old), "should already been removed" );
  1348   assert( old != C->top(), "cannot subsume top node");
  1349   // Copy debug or profile information to the new version:
  1350   C->copy_node_notes_to(nn, old);
  1351   // Move users of node 'old' to node 'nn'
  1352   for (DUIterator_Last imin, i = old->last_outs(imin); i >= imin; ) {
  1353     Node* use = old->last_out(i);  // for each use...
  1354     // use might need re-hashing (but it won't if it's a new node)
  1355     bool is_in_table = _table.hash_delete( use );
  1356     // Update use-def info as well
  1357     // We remove all occurrences of old within use->in,
  1358     // so as to avoid rehashing any node more than once.
  1359     // The hash table probe swamps any outer loop overhead.
  1360     uint num_edges = 0;
  1361     for (uint jmax = use->len(), j = 0; j < jmax; j++) {
  1362       if (use->in(j) == old) {
  1363         use->set_req(j, nn);
  1364         ++num_edges;
  1367     // Insert into GVN hash table if unique
  1368     // If a duplicate, 'use' will be cleaned up when pulled off worklist
  1369     if( is_in_table ) {
  1370       hash_find_insert(use);
  1372     i -= num_edges;    // we deleted 1 or more copies of this edge
  1375   // Search for instance field data PhiNodes in the same region pointing to the old
  1376   // memory PhiNode and update their instance memory ids to point to the new node.
  1377   if (old->is_Phi() && old->as_Phi()->type()->has_memory() && old->in(0) != NULL) {
  1378     Node* region = old->in(0);
  1379     for (DUIterator_Fast imax, i = region->fast_outs(imax); i < imax; i++) {
  1380       PhiNode* phi = region->fast_out(i)->isa_Phi();
  1381       if (phi != NULL && phi->inst_mem_id() == (int)old->_idx) {
  1382         phi->set_inst_mem_id((int)nn->_idx);
  1387   // Smash all inputs to 'old', isolating him completely
  1388   Node *temp = new (C) Node(1);
  1389   temp->init_req(0,nn);     // Add a use to nn to prevent him from dying
  1390   remove_dead_node( old );
  1391   temp->del_req(0);         // Yank bogus edge
  1392 #ifndef PRODUCT
  1393   if( VerifyIterativeGVN ) {
  1394     for ( int i = 0; i < _verify_window_size; i++ ) {
  1395       if ( _verify_window[i] == old )
  1396         _verify_window[i] = nn;
  1399 #endif
  1400   _worklist.remove(temp);   // this can be necessary
  1401   temp->destruct();         // reuse the _idx of this little guy
  1404 //------------------------------add_users_to_worklist--------------------------
  1405 void PhaseIterGVN::add_users_to_worklist0( Node *n ) {
  1406   for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
  1407     _worklist.push(n->fast_out(i));  // Push on worklist
  1411 // Return counted loop Phi if as a counted loop exit condition, cmp
  1412 // compares the the induction variable with n
  1413 static PhiNode* countedloop_phi_from_cmp(CmpINode* cmp, Node* n) {
  1414   for (DUIterator_Fast imax, i = cmp->fast_outs(imax); i < imax; i++) {
  1415     Node* bol = cmp->fast_out(i);
  1416     for (DUIterator_Fast i2max, i2 = bol->fast_outs(i2max); i2 < i2max; i2++) {
  1417       Node* iff = bol->fast_out(i2);
  1418       if (iff->is_CountedLoopEnd()) {
  1419         CountedLoopEndNode* cle = iff->as_CountedLoopEnd();
  1420         if (cle->limit() == n) {
  1421           PhiNode* phi = cle->phi();
  1422           if (phi != NULL) {
  1423             return phi;
  1429   return NULL;
  1432 void PhaseIterGVN::add_users_to_worklist( Node *n ) {
  1433   add_users_to_worklist0(n);
  1435   // Move users of node to worklist
  1436   for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
  1437     Node* use = n->fast_out(i); // Get use
  1439     if( use->is_Multi() ||      // Multi-definer?  Push projs on worklist
  1440         use->is_Store() )       // Enable store/load same address
  1441       add_users_to_worklist0(use);
  1443     // If we changed the receiver type to a call, we need to revisit
  1444     // the Catch following the call.  It's looking for a non-NULL
  1445     // receiver to know when to enable the regular fall-through path
  1446     // in addition to the NullPtrException path.
  1447     if (use->is_CallDynamicJava() && n == use->in(TypeFunc::Parms)) {
  1448       Node* p = use->as_CallDynamicJava()->proj_out(TypeFunc::Control);
  1449       if (p != NULL) {
  1450         add_users_to_worklist0(p);
  1454     uint use_op = use->Opcode();
  1455     if(use->is_Cmp()) {       // Enable CMP/BOOL optimization
  1456       add_users_to_worklist(use); // Put Bool on worklist
  1457       if (use->outcnt() > 0) {
  1458         Node* bol = use->raw_out(0);
  1459         if (bol->outcnt() > 0) {
  1460           Node* iff = bol->raw_out(0);
  1461           if (iff->outcnt() == 2) {
  1462             // Look for the 'is_x2logic' pattern: "x ? : 0 : 1" and put the
  1463             // phi merging either 0 or 1 onto the worklist
  1464             Node* ifproj0 = iff->raw_out(0);
  1465             Node* ifproj1 = iff->raw_out(1);
  1466             if (ifproj0->outcnt() > 0 && ifproj1->outcnt() > 0) {
  1467               Node* region0 = ifproj0->raw_out(0);
  1468               Node* region1 = ifproj1->raw_out(0);
  1469               if( region0 == region1 )
  1470                 add_users_to_worklist0(region0);
  1475       if (use_op == Op_CmpI) {
  1476         Node* phi = countedloop_phi_from_cmp((CmpINode*)use, n);
  1477         if (phi != NULL) {
  1478           // If an opaque node feeds into the limit condition of a
  1479           // CountedLoop, we need to process the Phi node for the
  1480           // induction variable when the opaque node is removed:
  1481           // the range of values taken by the Phi is now known and
  1482           // so its type is also known.
  1483           _worklist.push(phi);
  1485         Node* in1 = use->in(1);
  1486         for (uint i = 0; i < in1->outcnt(); i++) {
  1487           if (in1->raw_out(i)->Opcode() == Op_CastII) {
  1488             Node* castii = in1->raw_out(i);
  1489             if (castii->in(0) != NULL && castii->in(0)->in(0) != NULL && castii->in(0)->in(0)->is_If()) {
  1490               Node* ifnode = castii->in(0)->in(0);
  1491               if (ifnode->in(1) != NULL && ifnode->in(1)->is_Bool() && ifnode->in(1)->in(1) == use) {
  1492                 // Reprocess a CastII node that may depend on an
  1493                 // opaque node value when the opaque node is
  1494                 // removed. In case it carries a dependency we can do
  1495                 // a better job of computing its type.
  1496                 _worklist.push(castii);
  1504     // If changed Cast input, check Phi users for simple cycles
  1505     if( use->is_ConstraintCast() || use->is_CheckCastPP() ) {
  1506       for (DUIterator_Fast i2max, i2 = use->fast_outs(i2max); i2 < i2max; i2++) {
  1507         Node* u = use->fast_out(i2);
  1508         if (u->is_Phi())
  1509           _worklist.push(u);
  1512     // If changed LShift inputs, check RShift users for useless sign-ext
  1513     if( use_op == Op_LShiftI ) {
  1514       for (DUIterator_Fast i2max, i2 = use->fast_outs(i2max); i2 < i2max; i2++) {
  1515         Node* u = use->fast_out(i2);
  1516         if (u->Opcode() == Op_RShiftI)
  1517           _worklist.push(u);
  1520     // If changed AddI/SubI inputs, check CmpU for range check optimization.
  1521     if (use_op == Op_AddI || use_op == Op_SubI) {
  1522       for (DUIterator_Fast i2max, i2 = use->fast_outs(i2max); i2 < i2max; i2++) {
  1523         Node* u = use->fast_out(i2);
  1524         if (u->is_Cmp() && (u->Opcode() == Op_CmpU)) {
  1525           _worklist.push(u);
  1529     // If changed AddP inputs, check Stores for loop invariant
  1530     if( use_op == Op_AddP ) {
  1531       for (DUIterator_Fast i2max, i2 = use->fast_outs(i2max); i2 < i2max; i2++) {
  1532         Node* u = use->fast_out(i2);
  1533         if (u->is_Mem())
  1534           _worklist.push(u);
  1537     // If changed initialization activity, check dependent Stores
  1538     if (use_op == Op_Allocate || use_op == Op_AllocateArray) {
  1539       InitializeNode* init = use->as_Allocate()->initialization();
  1540       if (init != NULL) {
  1541         Node* imem = init->proj_out(TypeFunc::Memory);
  1542         if (imem != NULL)  add_users_to_worklist0(imem);
  1545     if (use_op == Op_Initialize) {
  1546       Node* imem = use->as_Initialize()->proj_out(TypeFunc::Memory);
  1547       if (imem != NULL)  add_users_to_worklist0(imem);
  1552 /**
  1553  * Remove the speculative part of all types that we know of
  1554  */
  1555 void PhaseIterGVN::remove_speculative_types()  {
  1556   assert(UseTypeSpeculation, "speculation is off");
  1557   for (uint i = 0; i < _types.Size(); i++)  {
  1558     const Type* t = _types.fast_lookup(i);
  1559     if (t != NULL) {
  1560       _types.map(i, t->remove_speculative());
  1563   _table.check_no_speculative_types();
  1566 //=============================================================================
  1567 #ifndef PRODUCT
  1568 uint PhaseCCP::_total_invokes   = 0;
  1569 uint PhaseCCP::_total_constants = 0;
  1570 #endif
  1571 //------------------------------PhaseCCP---------------------------------------
  1572 // Conditional Constant Propagation, ala Wegman & Zadeck
  1573 PhaseCCP::PhaseCCP( PhaseIterGVN *igvn ) : PhaseIterGVN(igvn) {
  1574   NOT_PRODUCT( clear_constants(); )
  1575   assert( _worklist.size() == 0, "" );
  1576   // Clear out _nodes from IterGVN.  Must be clear to transform call.
  1577   _nodes.clear();               // Clear out from IterGVN
  1578   analyze();
  1581 #ifndef PRODUCT
  1582 //------------------------------~PhaseCCP--------------------------------------
  1583 PhaseCCP::~PhaseCCP() {
  1584   inc_invokes();
  1585   _total_constants += count_constants();
  1587 #endif
  1590 #ifdef ASSERT
  1591 static bool ccp_type_widens(const Type* t, const Type* t0) {
  1592   assert(t->meet(t0) == t, "Not monotonic");
  1593   switch (t->base() == t0->base() ? t->base() : Type::Top) {
  1594   case Type::Int:
  1595     assert(t0->isa_int()->_widen <= t->isa_int()->_widen, "widen increases");
  1596     break;
  1597   case Type::Long:
  1598     assert(t0->isa_long()->_widen <= t->isa_long()->_widen, "widen increases");
  1599     break;
  1601   return true;
  1603 #endif //ASSERT
  1605 //------------------------------analyze----------------------------------------
  1606 void PhaseCCP::analyze() {
  1607   // Initialize all types to TOP, optimistic analysis
  1608   for (int i = C->unique() - 1; i >= 0; i--)  {
  1609     _types.map(i,Type::TOP);
  1612   // Push root onto worklist
  1613   Unique_Node_List worklist;
  1614   worklist.push(C->root());
  1616   // Pull from worklist; compute new value; push changes out.
  1617   // This loop is the meat of CCP.
  1618   while( worklist.size() ) {
  1619     Node *n = worklist.pop();
  1620     const Type *t = n->Value(this);
  1621     if (t != type(n)) {
  1622       assert(ccp_type_widens(t, type(n)), "ccp type must widen");
  1623 #ifndef PRODUCT
  1624       if( TracePhaseCCP ) {
  1625         t->dump();
  1626         do { tty->print("\t"); } while (tty->position() < 16);
  1627         n->dump();
  1629 #endif
  1630       set_type(n, t);
  1631       for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
  1632         Node* m = n->fast_out(i);   // Get user
  1633         if (m->is_Region()) {  // New path to Region?  Must recheck Phis too
  1634           for (DUIterator_Fast i2max, i2 = m->fast_outs(i2max); i2 < i2max; i2++) {
  1635             Node* p = m->fast_out(i2); // Propagate changes to uses
  1636             if (p->bottom_type() != type(p)) { // If not already bottomed out
  1637               worklist.push(p); // Propagate change to user
  1641         // If we changed the receiver type to a call, we need to revisit
  1642         // the Catch following the call.  It's looking for a non-NULL
  1643         // receiver to know when to enable the regular fall-through path
  1644         // in addition to the NullPtrException path
  1645         if (m->is_Call()) {
  1646           for (DUIterator_Fast i2max, i2 = m->fast_outs(i2max); i2 < i2max; i2++) {
  1647             Node* p = m->fast_out(i2);  // Propagate changes to uses
  1648             if (p->is_Proj() && p->as_Proj()->_con == TypeFunc::Control) {
  1649               Node* catch_node = p->find_out_with(Op_Catch);
  1650               if (catch_node != NULL) {
  1651                 worklist.push(catch_node);
  1656         if (m->bottom_type() != type(m)) { // If not already bottomed out
  1657           worklist.push(m);     // Propagate change to user
  1660         // CmpU nodes can get their type information from two nodes up in the
  1661         // graph (instead of from the nodes immediately above). Make sure they
  1662         // are added to the worklist if nodes they depend on are updated, since
  1663         // they could be missed and get wrong types otherwise.
  1664         uint m_op = m->Opcode();
  1665         if (m_op == Op_AddI || m_op == Op_SubI) {
  1666           for (DUIterator_Fast i2max, i2 = m->fast_outs(i2max); i2 < i2max; i2++) {
  1667             Node* p = m->fast_out(i2); // Propagate changes to uses
  1668             if (p->Opcode() == Op_CmpU) {
  1669               // Got a CmpU which might need the new type information from node n.
  1670               if(p->bottom_type() != type(p)) { // If not already bottomed out
  1671                 worklist.push(p); // Propagate change to user
  1676         // If n is used in a counted loop exit condition then the type
  1677         // of the counted loop's Phi depends on the type of n. See
  1678         // PhiNode::Value().
  1679         if (m_op == Op_CmpI) {
  1680           PhiNode* phi = countedloop_phi_from_cmp((CmpINode*)m, n);
  1681           if (phi != NULL) {
  1682             worklist.push(phi);
  1690 //------------------------------do_transform-----------------------------------
  1691 // Top level driver for the recursive transformer
  1692 void PhaseCCP::do_transform() {
  1693   // Correct leaves of new-space Nodes; they point to old-space.
  1694   C->set_root( transform(C->root())->as_Root() );
  1695   assert( C->top(),  "missing TOP node" );
  1696   assert( C->root(), "missing root" );
  1699 //------------------------------transform--------------------------------------
  1700 // Given a Node in old-space, clone him into new-space.
  1701 // Convert any of his old-space children into new-space children.
  1702 Node *PhaseCCP::transform( Node *n ) {
  1703   Node *new_node = _nodes[n->_idx]; // Check for transformed node
  1704   if( new_node != NULL )
  1705     return new_node;                // Been there, done that, return old answer
  1706   new_node = transform_once(n);     // Check for constant
  1707   _nodes.map( n->_idx, new_node );  // Flag as having been cloned
  1709   // Allocate stack of size _nodes.Size()/2 to avoid frequent realloc
  1710   GrowableArray <Node *> trstack(C->live_nodes() >> 1);
  1712   trstack.push(new_node);           // Process children of cloned node
  1713   while ( trstack.is_nonempty() ) {
  1714     Node *clone = trstack.pop();
  1715     uint cnt = clone->req();
  1716     for( uint i = 0; i < cnt; i++ ) {          // For all inputs do
  1717       Node *input = clone->in(i);
  1718       if( input != NULL ) {                    // Ignore NULLs
  1719         Node *new_input = _nodes[input->_idx]; // Check for cloned input node
  1720         if( new_input == NULL ) {
  1721           new_input = transform_once(input);   // Check for constant
  1722           _nodes.map( input->_idx, new_input );// Flag as having been cloned
  1723           trstack.push(new_input);
  1725         assert( new_input == clone->in(i), "insanity check");
  1729   return new_node;
  1733 //------------------------------transform_once---------------------------------
  1734 // For PhaseCCP, transformation is IDENTITY unless Node computed a constant.
  1735 Node *PhaseCCP::transform_once( Node *n ) {
  1736   const Type *t = type(n);
  1737   // Constant?  Use constant Node instead
  1738   if( t->singleton() ) {
  1739     Node *nn = n;               // Default is to return the original constant
  1740     if( t == Type::TOP ) {
  1741       // cache my top node on the Compile instance
  1742       if( C->cached_top_node() == NULL || C->cached_top_node()->in(0) == NULL ) {
  1743         C->set_cached_top_node( ConNode::make(C, Type::TOP) );
  1744         set_type(C->top(), Type::TOP);
  1746       nn = C->top();
  1748     if( !n->is_Con() ) {
  1749       if( t != Type::TOP ) {
  1750         nn = makecon(t);        // ConNode::make(t);
  1751         NOT_PRODUCT( inc_constants(); )
  1752       } else if( n->is_Region() ) { // Unreachable region
  1753         // Note: nn == C->top()
  1754         n->set_req(0, NULL);        // Cut selfreference
  1755         // Eagerly remove dead phis to avoid phis copies creation.
  1756         for (DUIterator i = n->outs(); n->has_out(i); i++) {
  1757           Node* m = n->out(i);
  1758           if( m->is_Phi() ) {
  1759             assert(type(m) == Type::TOP, "Unreachable region should not have live phis.");
  1760             replace_node(m, nn);
  1761             --i; // deleted this phi; rescan starting with next position
  1765       replace_node(n,nn);       // Update DefUse edges for new constant
  1767     return nn;
  1770   // If x is a TypeNode, capture any more-precise type permanently into Node
  1771   if (t != n->bottom_type()) {
  1772     hash_delete(n);             // changing bottom type may force a rehash
  1773     n->raise_bottom_type(t);
  1774     _worklist.push(n);          // n re-enters the hash table via the worklist
  1777   // Idealize graph using DU info.  Must clone() into new-space.
  1778   // DU info is generally used to show profitability, progress or safety
  1779   // (but generally not needed for correctness).
  1780   Node *nn = n->Ideal_DU_postCCP(this);
  1782   // TEMPORARY fix to ensure that 2nd GVN pass eliminates NULL checks
  1783   switch( n->Opcode() ) {
  1784   case Op_FastLock:      // Revisit FastLocks for lock coarsening
  1785   case Op_If:
  1786   case Op_CountedLoopEnd:
  1787   case Op_Region:
  1788   case Op_Loop:
  1789   case Op_CountedLoop:
  1790   case Op_Conv2B:
  1791   case Op_Opaque1:
  1792   case Op_Opaque2:
  1793     _worklist.push(n);
  1794     break;
  1795   default:
  1796     break;
  1798   if( nn ) {
  1799     _worklist.push(n);
  1800     // Put users of 'n' onto worklist for second igvn transform
  1801     add_users_to_worklist(n);
  1802     return nn;
  1805   return  n;
  1808 //---------------------------------saturate------------------------------------
  1809 const Type* PhaseCCP::saturate(const Type* new_type, const Type* old_type,
  1810                                const Type* limit_type) const {
  1811   const Type* wide_type = new_type->widen(old_type, limit_type);
  1812   if (wide_type != new_type) {          // did we widen?
  1813     // If so, we may have widened beyond the limit type.  Clip it back down.
  1814     new_type = wide_type->filter(limit_type);
  1816   return new_type;
  1819 //------------------------------print_statistics-------------------------------
  1820 #ifndef PRODUCT
  1821 void PhaseCCP::print_statistics() {
  1822   tty->print_cr("CCP: %d  constants found: %d", _total_invokes, _total_constants);
  1824 #endif
  1827 //=============================================================================
  1828 #ifndef PRODUCT
  1829 uint PhasePeephole::_total_peepholes = 0;
  1830 #endif
  1831 //------------------------------PhasePeephole----------------------------------
  1832 // Conditional Constant Propagation, ala Wegman & Zadeck
  1833 PhasePeephole::PhasePeephole( PhaseRegAlloc *regalloc, PhaseCFG &cfg )
  1834   : PhaseTransform(Peephole), _regalloc(regalloc), _cfg(cfg) {
  1835   NOT_PRODUCT( clear_peepholes(); )
  1838 #ifndef PRODUCT
  1839 //------------------------------~PhasePeephole---------------------------------
  1840 PhasePeephole::~PhasePeephole() {
  1841   _total_peepholes += count_peepholes();
  1843 #endif
  1845 //------------------------------transform--------------------------------------
  1846 Node *PhasePeephole::transform( Node *n ) {
  1847   ShouldNotCallThis();
  1848   return NULL;
  1851 //------------------------------do_transform-----------------------------------
  1852 void PhasePeephole::do_transform() {
  1853   bool method_name_not_printed = true;
  1855   // Examine each basic block
  1856   for (uint block_number = 1; block_number < _cfg.number_of_blocks(); ++block_number) {
  1857     Block* block = _cfg.get_block(block_number);
  1858     bool block_not_printed = true;
  1860     // and each instruction within a block
  1861     uint end_index = block->number_of_nodes();
  1862     // block->end_idx() not valid after PhaseRegAlloc
  1863     for( uint instruction_index = 1; instruction_index < end_index; ++instruction_index ) {
  1864       Node     *n = block->get_node(instruction_index);
  1865       if( n->is_Mach() ) {
  1866         MachNode *m = n->as_Mach();
  1867         int deleted_count = 0;
  1868         // check for peephole opportunities
  1869         MachNode *m2 = m->peephole( block, instruction_index, _regalloc, deleted_count, C );
  1870         if( m2 != NULL ) {
  1871 #ifndef PRODUCT
  1872           if( PrintOptoPeephole ) {
  1873             // Print method, first time only
  1874             if( C->method() && method_name_not_printed ) {
  1875               C->method()->print_short_name(); tty->cr();
  1876               method_name_not_printed = false;
  1878             // Print this block
  1879             if( Verbose && block_not_printed) {
  1880               tty->print_cr("in block");
  1881               block->dump();
  1882               block_not_printed = false;
  1884             // Print instructions being deleted
  1885             for( int i = (deleted_count - 1); i >= 0; --i ) {
  1886               block->get_node(instruction_index-i)->as_Mach()->format(_regalloc); tty->cr();
  1888             tty->print_cr("replaced with");
  1889             // Print new instruction
  1890             m2->format(_regalloc);
  1891             tty->print("\n\n");
  1893 #endif
  1894           // Remove old nodes from basic block and update instruction_index
  1895           // (old nodes still exist and may have edges pointing to them
  1896           //  as register allocation info is stored in the allocator using
  1897           //  the node index to live range mappings.)
  1898           uint safe_instruction_index = (instruction_index - deleted_count);
  1899           for( ; (instruction_index > safe_instruction_index); --instruction_index ) {
  1900             block->remove_node( instruction_index );
  1902           // install new node after safe_instruction_index
  1903           block->insert_node(m2, safe_instruction_index + 1);
  1904           end_index = block->number_of_nodes() - 1; // Recompute new block size
  1905           NOT_PRODUCT( inc_peepholes(); )
  1912 //------------------------------print_statistics-------------------------------
  1913 #ifndef PRODUCT
  1914 void PhasePeephole::print_statistics() {
  1915   tty->print_cr("Peephole: peephole rules applied: %d",  _total_peepholes);
  1917 #endif
  1920 //=============================================================================
  1921 //------------------------------set_req_X--------------------------------------
  1922 void Node::set_req_X( uint i, Node *n, PhaseIterGVN *igvn ) {
  1923   assert( is_not_dead(n), "can not use dead node");
  1924   assert( igvn->hash_find(this) != this, "Need to remove from hash before changing edges" );
  1925   Node *old = in(i);
  1926   set_req(i, n);
  1928   // old goes dead?
  1929   if( old ) {
  1930     switch (old->outcnt()) {
  1931     case 0:
  1932       // Put into the worklist to kill later. We do not kill it now because the
  1933       // recursive kill will delete the current node (this) if dead-loop exists
  1934       if (!old->is_top())
  1935         igvn->_worklist.push( old );
  1936       break;
  1937     case 1:
  1938       if( old->is_Store() || old->has_special_unique_user() )
  1939         igvn->add_users_to_worklist( old );
  1940       break;
  1941     case 2:
  1942       if( old->is_Store() )
  1943         igvn->add_users_to_worklist( old );
  1944       if( old->Opcode() == Op_Region )
  1945         igvn->_worklist.push(old);
  1946       break;
  1947     case 3:
  1948       if( old->Opcode() == Op_Region ) {
  1949         igvn->_worklist.push(old);
  1950         igvn->add_users_to_worklist( old );
  1952       break;
  1953     default:
  1954       break;
  1960 //-------------------------------replace_by-----------------------------------
  1961 // Using def-use info, replace one node for another.  Follow the def-use info
  1962 // to all users of the OLD node.  Then make all uses point to the NEW node.
  1963 void Node::replace_by(Node *new_node) {
  1964   assert(!is_top(), "top node has no DU info");
  1965   for (DUIterator_Last imin, i = last_outs(imin); i >= imin; ) {
  1966     Node* use = last_out(i);
  1967     uint uses_found = 0;
  1968     for (uint j = 0; j < use->len(); j++) {
  1969       if (use->in(j) == this) {
  1970         if (j < use->req())
  1971               use->set_req(j, new_node);
  1972         else  use->set_prec(j, new_node);
  1973         uses_found++;
  1976     i -= uses_found;    // we deleted 1 or more copies of this edge
  1980 //=============================================================================
  1981 //-----------------------------------------------------------------------------
  1982 void Type_Array::grow( uint i ) {
  1983   if( !_max ) {
  1984     _max = 1;
  1985     _types = (const Type**)_a->Amalloc( _max * sizeof(Type*) );
  1986     _types[0] = NULL;
  1988   uint old = _max;
  1989   while( i >= _max ) _max <<= 1;        // Double to fit
  1990   _types = (const Type**)_a->Arealloc( _types, old*sizeof(Type*),_max*sizeof(Type*));
  1991   memset( &_types[old], 0, (_max-old)*sizeof(Type*) );
  1994 //------------------------------dump-------------------------------------------
  1995 #ifndef PRODUCT
  1996 void Type_Array::dump() const {
  1997   uint max = Size();
  1998   for( uint i = 0; i < max; i++ ) {
  1999     if( _types[i] != NULL ) {
  2000       tty->print("  %d\t== ", i); _types[i]->dump(); tty->cr();
  2004 #endif

mercurial