src/share/vm/gc_implementation/parallelScavenge/psParallelCompact.cpp

Tue, 07 Oct 2008 11:01:35 -0700

author
trims
date
Tue, 07 Oct 2008 11:01:35 -0700
changeset 815
eb28cf662f56
parent 811
0166ac265d53
child 888
c96030fff130
permissions
-rw-r--r--

Merge

     1 /*
     2  * Copyright 2005-2008 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 #include "incls/_precompiled.incl"
    26 #include "incls/_psParallelCompact.cpp.incl"
    28 #include <math.h>
    30 // All sizes are in HeapWords.
    31 const size_t ParallelCompactData::Log2RegionSize  = 9; // 512 words
    32 const size_t ParallelCompactData::RegionSize      = (size_t)1 << Log2RegionSize;
    33 const size_t ParallelCompactData::RegionSizeBytes =
    34   RegionSize << LogHeapWordSize;
    35 const size_t ParallelCompactData::RegionSizeOffsetMask = RegionSize - 1;
    36 const size_t ParallelCompactData::RegionAddrOffsetMask = RegionSizeBytes - 1;
    37 const size_t ParallelCompactData::RegionAddrMask  = ~RegionAddrOffsetMask;
    39 const ParallelCompactData::RegionData::region_sz_t
    40 ParallelCompactData::RegionData::dc_shift = 27;
    42 const ParallelCompactData::RegionData::region_sz_t
    43 ParallelCompactData::RegionData::dc_mask = ~0U << dc_shift;
    45 const ParallelCompactData::RegionData::region_sz_t
    46 ParallelCompactData::RegionData::dc_one = 0x1U << dc_shift;
    48 const ParallelCompactData::RegionData::region_sz_t
    49 ParallelCompactData::RegionData::los_mask = ~dc_mask;
    51 const ParallelCompactData::RegionData::region_sz_t
    52 ParallelCompactData::RegionData::dc_claimed = 0x8U << dc_shift;
    54 const ParallelCompactData::RegionData::region_sz_t
    55 ParallelCompactData::RegionData::dc_completed = 0xcU << dc_shift;
    57 SpaceInfo PSParallelCompact::_space_info[PSParallelCompact::last_space_id];
    58 bool      PSParallelCompact::_print_phases = false;
    60 ReferenceProcessor* PSParallelCompact::_ref_processor = NULL;
    61 klassOop            PSParallelCompact::_updated_int_array_klass_obj = NULL;
    63 double PSParallelCompact::_dwl_mean;
    64 double PSParallelCompact::_dwl_std_dev;
    65 double PSParallelCompact::_dwl_first_term;
    66 double PSParallelCompact::_dwl_adjustment;
    67 #ifdef  ASSERT
    68 bool   PSParallelCompact::_dwl_initialized = false;
    69 #endif  // #ifdef ASSERT
    71 #ifdef VALIDATE_MARK_SWEEP
    72 GrowableArray<void*>*   PSParallelCompact::_root_refs_stack = NULL;
    73 GrowableArray<oop> *    PSParallelCompact::_live_oops = NULL;
    74 GrowableArray<oop> *    PSParallelCompact::_live_oops_moved_to = NULL;
    75 GrowableArray<size_t>*  PSParallelCompact::_live_oops_size = NULL;
    76 size_t                  PSParallelCompact::_live_oops_index = 0;
    77 size_t                  PSParallelCompact::_live_oops_index_at_perm = 0;
    78 GrowableArray<void*>*   PSParallelCompact::_other_refs_stack = NULL;
    79 GrowableArray<void*>*   PSParallelCompact::_adjusted_pointers = NULL;
    80 bool                    PSParallelCompact::_pointer_tracking = false;
    81 bool                    PSParallelCompact::_root_tracking = true;
    83 GrowableArray<HeapWord*>* PSParallelCompact::_cur_gc_live_oops = NULL;
    84 GrowableArray<HeapWord*>* PSParallelCompact::_cur_gc_live_oops_moved_to = NULL;
    85 GrowableArray<size_t>   * PSParallelCompact::_cur_gc_live_oops_size = NULL;
    86 GrowableArray<HeapWord*>* PSParallelCompact::_last_gc_live_oops = NULL;
    87 GrowableArray<HeapWord*>* PSParallelCompact::_last_gc_live_oops_moved_to = NULL;
    88 GrowableArray<size_t>   * PSParallelCompact::_last_gc_live_oops_size = NULL;
    89 #endif
    91 #ifndef PRODUCT
    92 const char* PSParallelCompact::space_names[] = {
    93   "perm", "old ", "eden", "from", "to  "
    94 };
    96 void PSParallelCompact::print_region_ranges()
    97 {
    98   tty->print_cr("space  bottom     top        end        new_top");
    99   tty->print_cr("------ ---------- ---------- ---------- ----------");
   101   for (unsigned int id = 0; id < last_space_id; ++id) {
   102     const MutableSpace* space = _space_info[id].space();
   103     tty->print_cr("%u %s "
   104                   SIZE_FORMAT_W(10) " " SIZE_FORMAT_W(10) " "
   105                   SIZE_FORMAT_W(10) " " SIZE_FORMAT_W(10) " ",
   106                   id, space_names[id],
   107                   summary_data().addr_to_region_idx(space->bottom()),
   108                   summary_data().addr_to_region_idx(space->top()),
   109                   summary_data().addr_to_region_idx(space->end()),
   110                   summary_data().addr_to_region_idx(_space_info[id].new_top()));
   111   }
   112 }
   114 void
   115 print_generic_summary_region(size_t i, const ParallelCompactData::RegionData* c)
   116 {
   117 #define REGION_IDX_FORMAT        SIZE_FORMAT_W(7)
   118 #define REGION_DATA_FORMAT       SIZE_FORMAT_W(5)
   120   ParallelCompactData& sd = PSParallelCompact::summary_data();
   121   size_t dci = c->destination() ? sd.addr_to_region_idx(c->destination()) : 0;
   122   tty->print_cr(REGION_IDX_FORMAT " " PTR_FORMAT " "
   123                 REGION_IDX_FORMAT " " PTR_FORMAT " "
   124                 REGION_DATA_FORMAT " " REGION_DATA_FORMAT " "
   125                 REGION_DATA_FORMAT " " REGION_IDX_FORMAT " %d",
   126                 i, c->data_location(), dci, c->destination(),
   127                 c->partial_obj_size(), c->live_obj_size(),
   128                 c->data_size(), c->source_region(), c->destination_count());
   130 #undef  REGION_IDX_FORMAT
   131 #undef  REGION_DATA_FORMAT
   132 }
   134 void
   135 print_generic_summary_data(ParallelCompactData& summary_data,
   136                            HeapWord* const beg_addr,
   137                            HeapWord* const end_addr)
   138 {
   139   size_t total_words = 0;
   140   size_t i = summary_data.addr_to_region_idx(beg_addr);
   141   const size_t last = summary_data.addr_to_region_idx(end_addr);
   142   HeapWord* pdest = 0;
   144   while (i <= last) {
   145     ParallelCompactData::RegionData* c = summary_data.region(i);
   146     if (c->data_size() != 0 || c->destination() != pdest) {
   147       print_generic_summary_region(i, c);
   148       total_words += c->data_size();
   149       pdest = c->destination();
   150     }
   151     ++i;
   152   }
   154   tty->print_cr("summary_data_bytes=" SIZE_FORMAT, total_words * HeapWordSize);
   155 }
   157 void
   158 print_generic_summary_data(ParallelCompactData& summary_data,
   159                            SpaceInfo* space_info)
   160 {
   161   for (unsigned int id = 0; id < PSParallelCompact::last_space_id; ++id) {
   162     const MutableSpace* space = space_info[id].space();
   163     print_generic_summary_data(summary_data, space->bottom(),
   164                                MAX2(space->top(), space_info[id].new_top()));
   165   }
   166 }
   168 void
   169 print_initial_summary_region(size_t i,
   170                              const ParallelCompactData::RegionData* c,
   171                              bool newline = true)
   172 {
   173   tty->print(SIZE_FORMAT_W(5) " " PTR_FORMAT " "
   174              SIZE_FORMAT_W(5) " " SIZE_FORMAT_W(5) " "
   175              SIZE_FORMAT_W(5) " " SIZE_FORMAT_W(5) " %d",
   176              i, c->destination(),
   177              c->partial_obj_size(), c->live_obj_size(),
   178              c->data_size(), c->source_region(), c->destination_count());
   179   if (newline) tty->cr();
   180 }
   182 void
   183 print_initial_summary_data(ParallelCompactData& summary_data,
   184                            const MutableSpace* space) {
   185   if (space->top() == space->bottom()) {
   186     return;
   187   }
   189   const size_t region_size = ParallelCompactData::RegionSize;
   190   typedef ParallelCompactData::RegionData RegionData;
   191   HeapWord* const top_aligned_up = summary_data.region_align_up(space->top());
   192   const size_t end_region = summary_data.addr_to_region_idx(top_aligned_up);
   193   const RegionData* c = summary_data.region(end_region - 1);
   194   HeapWord* end_addr = c->destination() + c->data_size();
   195   const size_t live_in_space = pointer_delta(end_addr, space->bottom());
   197   // Print (and count) the full regions at the beginning of the space.
   198   size_t full_region_count = 0;
   199   size_t i = summary_data.addr_to_region_idx(space->bottom());
   200   while (i < end_region && summary_data.region(i)->data_size() == region_size) {
   201     print_initial_summary_region(i, summary_data.region(i));
   202     ++full_region_count;
   203     ++i;
   204   }
   206   size_t live_to_right = live_in_space - full_region_count * region_size;
   208   double max_reclaimed_ratio = 0.0;
   209   size_t max_reclaimed_ratio_region = 0;
   210   size_t max_dead_to_right = 0;
   211   size_t max_live_to_right = 0;
   213   // Print the 'reclaimed ratio' for regions while there is something live in
   214   // the region or to the right of it.  The remaining regions are empty (and
   215   // uninteresting), and computing the ratio will result in division by 0.
   216   while (i < end_region && live_to_right > 0) {
   217     c = summary_data.region(i);
   218     HeapWord* const region_addr = summary_data.region_to_addr(i);
   219     const size_t used_to_right = pointer_delta(space->top(), region_addr);
   220     const size_t dead_to_right = used_to_right - live_to_right;
   221     const double reclaimed_ratio = double(dead_to_right) / live_to_right;
   223     if (reclaimed_ratio > max_reclaimed_ratio) {
   224             max_reclaimed_ratio = reclaimed_ratio;
   225             max_reclaimed_ratio_region = i;
   226             max_dead_to_right = dead_to_right;
   227             max_live_to_right = live_to_right;
   228     }
   230     print_initial_summary_region(i, c, false);
   231     tty->print_cr(" %12.10f " SIZE_FORMAT_W(10) " " SIZE_FORMAT_W(10),
   232                   reclaimed_ratio, dead_to_right, live_to_right);
   234     live_to_right -= c->data_size();
   235     ++i;
   236   }
   238   // Any remaining regions are empty.  Print one more if there is one.
   239   if (i < end_region) {
   240     print_initial_summary_region(i, summary_data.region(i));
   241   }
   243   tty->print_cr("max:  " SIZE_FORMAT_W(4) " d2r=" SIZE_FORMAT_W(10) " "
   244                 "l2r=" SIZE_FORMAT_W(10) " max_ratio=%14.12f",
   245                 max_reclaimed_ratio_region, max_dead_to_right,
   246                 max_live_to_right, max_reclaimed_ratio);
   247 }
   249 void
   250 print_initial_summary_data(ParallelCompactData& summary_data,
   251                            SpaceInfo* space_info) {
   252   unsigned int id = PSParallelCompact::perm_space_id;
   253   const MutableSpace* space;
   254   do {
   255     space = space_info[id].space();
   256     print_initial_summary_data(summary_data, space);
   257   } while (++id < PSParallelCompact::eden_space_id);
   259   do {
   260     space = space_info[id].space();
   261     print_generic_summary_data(summary_data, space->bottom(), space->top());
   262   } while (++id < PSParallelCompact::last_space_id);
   263 }
   264 #endif  // #ifndef PRODUCT
   266 #ifdef  ASSERT
   267 size_t add_obj_count;
   268 size_t add_obj_size;
   269 size_t mark_bitmap_count;
   270 size_t mark_bitmap_size;
   271 #endif  // #ifdef ASSERT
   273 ParallelCompactData::ParallelCompactData()
   274 {
   275   _region_start = 0;
   277   _region_vspace = 0;
   278   _region_data = 0;
   279   _region_count = 0;
   280 }
   282 bool ParallelCompactData::initialize(MemRegion covered_region)
   283 {
   284   _region_start = covered_region.start();
   285   const size_t region_size = covered_region.word_size();
   286   DEBUG_ONLY(_region_end = _region_start + region_size;)
   288   assert(region_align_down(_region_start) == _region_start,
   289          "region start not aligned");
   290   assert((region_size & RegionSizeOffsetMask) == 0,
   291          "region size not a multiple of RegionSize");
   293   bool result = initialize_region_data(region_size);
   295   return result;
   296 }
   298 PSVirtualSpace*
   299 ParallelCompactData::create_vspace(size_t count, size_t element_size)
   300 {
   301   const size_t raw_bytes = count * element_size;
   302   const size_t page_sz = os::page_size_for_region(raw_bytes, raw_bytes, 10);
   303   const size_t granularity = os::vm_allocation_granularity();
   304   const size_t bytes = align_size_up(raw_bytes, MAX2(page_sz, granularity));
   306   const size_t rs_align = page_sz == (size_t) os::vm_page_size() ? 0 :
   307     MAX2(page_sz, granularity);
   308   ReservedSpace rs(bytes, rs_align, rs_align > 0);
   309   os::trace_page_sizes("par compact", raw_bytes, raw_bytes, page_sz, rs.base(),
   310                        rs.size());
   311   PSVirtualSpace* vspace = new PSVirtualSpace(rs, page_sz);
   312   if (vspace != 0) {
   313     if (vspace->expand_by(bytes)) {
   314       return vspace;
   315     }
   316     delete vspace;
   317     // Release memory reserved in the space.
   318     rs.release();
   319   }
   321   return 0;
   322 }
   324 bool ParallelCompactData::initialize_region_data(size_t region_size)
   325 {
   326   const size_t count = (region_size + RegionSizeOffsetMask) >> Log2RegionSize;
   327   _region_vspace = create_vspace(count, sizeof(RegionData));
   328   if (_region_vspace != 0) {
   329     _region_data = (RegionData*)_region_vspace->reserved_low_addr();
   330     _region_count = count;
   331     return true;
   332   }
   333   return false;
   334 }
   336 void ParallelCompactData::clear()
   337 {
   338   memset(_region_data, 0, _region_vspace->committed_size());
   339 }
   341 void ParallelCompactData::clear_range(size_t beg_region, size_t end_region) {
   342   assert(beg_region <= _region_count, "beg_region out of range");
   343   assert(end_region <= _region_count, "end_region out of range");
   345   const size_t region_cnt = end_region - beg_region;
   346   memset(_region_data + beg_region, 0, region_cnt * sizeof(RegionData));
   347 }
   349 HeapWord* ParallelCompactData::partial_obj_end(size_t region_idx) const
   350 {
   351   const RegionData* cur_cp = region(region_idx);
   352   const RegionData* const end_cp = region(region_count() - 1);
   354   HeapWord* result = region_to_addr(region_idx);
   355   if (cur_cp < end_cp) {
   356     do {
   357       result += cur_cp->partial_obj_size();
   358     } while (cur_cp->partial_obj_size() == RegionSize && ++cur_cp < end_cp);
   359   }
   360   return result;
   361 }
   363 void ParallelCompactData::add_obj(HeapWord* addr, size_t len)
   364 {
   365   const size_t obj_ofs = pointer_delta(addr, _region_start);
   366   const size_t beg_region = obj_ofs >> Log2RegionSize;
   367   const size_t end_region = (obj_ofs + len - 1) >> Log2RegionSize;
   369   DEBUG_ONLY(Atomic::inc_ptr(&add_obj_count);)
   370   DEBUG_ONLY(Atomic::add_ptr(len, &add_obj_size);)
   372   if (beg_region == end_region) {
   373     // All in one region.
   374     _region_data[beg_region].add_live_obj(len);
   375     return;
   376   }
   378   // First region.
   379   const size_t beg_ofs = region_offset(addr);
   380   _region_data[beg_region].add_live_obj(RegionSize - beg_ofs);
   382   klassOop klass = ((oop)addr)->klass();
   383   // Middle regions--completely spanned by this object.
   384   for (size_t region = beg_region + 1; region < end_region; ++region) {
   385     _region_data[region].set_partial_obj_size(RegionSize);
   386     _region_data[region].set_partial_obj_addr(addr);
   387   }
   389   // Last region.
   390   const size_t end_ofs = region_offset(addr + len - 1);
   391   _region_data[end_region].set_partial_obj_size(end_ofs + 1);
   392   _region_data[end_region].set_partial_obj_addr(addr);
   393 }
   395 void
   396 ParallelCompactData::summarize_dense_prefix(HeapWord* beg, HeapWord* end)
   397 {
   398   assert(region_offset(beg) == 0, "not RegionSize aligned");
   399   assert(region_offset(end) == 0, "not RegionSize aligned");
   401   size_t cur_region = addr_to_region_idx(beg);
   402   const size_t end_region = addr_to_region_idx(end);
   403   HeapWord* addr = beg;
   404   while (cur_region < end_region) {
   405     _region_data[cur_region].set_destination(addr);
   406     _region_data[cur_region].set_destination_count(0);
   407     _region_data[cur_region].set_source_region(cur_region);
   408     _region_data[cur_region].set_data_location(addr);
   410     // Update live_obj_size so the region appears completely full.
   411     size_t live_size = RegionSize - _region_data[cur_region].partial_obj_size();
   412     _region_data[cur_region].set_live_obj_size(live_size);
   414     ++cur_region;
   415     addr += RegionSize;
   416   }
   417 }
   419 bool ParallelCompactData::summarize(HeapWord* target_beg, HeapWord* target_end,
   420                                     HeapWord* source_beg, HeapWord* source_end,
   421                                     HeapWord** target_next,
   422                                     HeapWord** source_next) {
   423   // This is too strict.
   424   // assert(region_offset(source_beg) == 0, "not RegionSize aligned");
   426   if (TraceParallelOldGCSummaryPhase) {
   427     tty->print_cr("tb=" PTR_FORMAT " te=" PTR_FORMAT " "
   428                   "sb=" PTR_FORMAT " se=" PTR_FORMAT " "
   429                   "tn=" PTR_FORMAT " sn=" PTR_FORMAT,
   430                   target_beg, target_end,
   431                   source_beg, source_end,
   432                   target_next != 0 ? *target_next : (HeapWord*) 0,
   433                   source_next != 0 ? *source_next : (HeapWord*) 0);
   434   }
   436   size_t cur_region = addr_to_region_idx(source_beg);
   437   const size_t end_region = addr_to_region_idx(region_align_up(source_end));
   439   HeapWord *dest_addr = target_beg;
   440   while (cur_region < end_region) {
   441     size_t words = _region_data[cur_region].data_size();
   443 #if     1
   444     assert(pointer_delta(target_end, dest_addr) >= words,
   445            "source region does not fit into target region");
   446 #else
   447     // XXX - need some work on the corner cases here.  If the region does not
   448     // fit, then must either make sure any partial_obj from the region fits, or
   449     // "undo" the initial part of the partial_obj that is in the previous
   450     // region.
   451     if (dest_addr + words >= target_end) {
   452       // Let the caller know where to continue.
   453       *target_next = dest_addr;
   454       *source_next = region_to_addr(cur_region);
   455       return false;
   456     }
   457 #endif  // #if 1
   459     _region_data[cur_region].set_destination(dest_addr);
   461     // Set the destination_count for cur_region, and if necessary, update
   462     // source_region for a destination region.  The source_region field is
   463     // updated if cur_region is the first (left-most) region to be copied to a
   464     // destination region.
   465     //
   466     // The destination_count calculation is a bit subtle.  A region that has
   467     // data that compacts into itself does not count itself as a destination.
   468     // This maintains the invariant that a zero count means the region is
   469     // available and can be claimed and then filled.
   470     if (words > 0) {
   471       HeapWord* const last_addr = dest_addr + words - 1;
   472       const size_t dest_region_1 = addr_to_region_idx(dest_addr);
   473       const size_t dest_region_2 = addr_to_region_idx(last_addr);
   474 #if     0
   475       // Initially assume that the destination regions will be the same and
   476       // adjust the value below if necessary.  Under this assumption, if
   477       // cur_region == dest_region_2, then cur_region will be compacted
   478       // completely into itself.
   479       uint destination_count = cur_region == dest_region_2 ? 0 : 1;
   480       if (dest_region_1 != dest_region_2) {
   481         // Destination regions differ; adjust destination_count.
   482         destination_count += 1;
   483         // Data from cur_region will be copied to the start of dest_region_2.
   484         _region_data[dest_region_2].set_source_region(cur_region);
   485       } else if (region_offset(dest_addr) == 0) {
   486         // Data from cur_region will be copied to the start of the destination
   487         // region.
   488         _region_data[dest_region_1].set_source_region(cur_region);
   489       }
   490 #else
   491       // Initially assume that the destination regions will be different and
   492       // adjust the value below if necessary.  Under this assumption, if
   493       // cur_region == dest_region2, then cur_region will be compacted partially
   494       // into dest_region_1 and partially into itself.
   495       uint destination_count = cur_region == dest_region_2 ? 1 : 2;
   496       if (dest_region_1 != dest_region_2) {
   497         // Data from cur_region will be copied to the start of dest_region_2.
   498         _region_data[dest_region_2].set_source_region(cur_region);
   499       } else {
   500         // Destination regions are the same; adjust destination_count.
   501         destination_count -= 1;
   502         if (region_offset(dest_addr) == 0) {
   503           // Data from cur_region will be copied to the start of the destination
   504           // region.
   505           _region_data[dest_region_1].set_source_region(cur_region);
   506         }
   507       }
   508 #endif  // #if 0
   510       _region_data[cur_region].set_destination_count(destination_count);
   511       _region_data[cur_region].set_data_location(region_to_addr(cur_region));
   512       dest_addr += words;
   513     }
   515     ++cur_region;
   516   }
   518   *target_next = dest_addr;
   519   return true;
   520 }
   522 HeapWord* ParallelCompactData::calc_new_pointer(HeapWord* addr) {
   523   assert(addr != NULL, "Should detect NULL oop earlier");
   524   assert(PSParallelCompact::gc_heap()->is_in(addr), "addr not in heap");
   525 #ifdef ASSERT
   526   if (PSParallelCompact::mark_bitmap()->is_unmarked(addr)) {
   527     gclog_or_tty->print_cr("calc_new_pointer:: addr " PTR_FORMAT, addr);
   528   }
   529 #endif
   530   assert(PSParallelCompact::mark_bitmap()->is_marked(addr), "obj not marked");
   532   // Region covering the object.
   533   size_t region_index = addr_to_region_idx(addr);
   534   const RegionData* const region_ptr = region(region_index);
   535   HeapWord* const region_addr = region_align_down(addr);
   537   assert(addr < region_addr + RegionSize, "Region does not cover object");
   538   assert(addr_to_region_ptr(region_addr) == region_ptr, "sanity check");
   540   HeapWord* result = region_ptr->destination();
   542   // If all the data in the region is live, then the new location of the object
   543   // can be calculated from the destination of the region plus the offset of the
   544   // object in the region.
   545   if (region_ptr->data_size() == RegionSize) {
   546     result += pointer_delta(addr, region_addr);
   547     return result;
   548   }
   550   // The new location of the object is
   551   //    region destination +
   552   //    size of the partial object extending onto the region +
   553   //    sizes of the live objects in the Region that are to the left of addr
   554   const size_t partial_obj_size = region_ptr->partial_obj_size();
   555   HeapWord* const search_start = region_addr + partial_obj_size;
   557   const ParMarkBitMap* bitmap = PSParallelCompact::mark_bitmap();
   558   size_t live_to_left = bitmap->live_words_in_range(search_start, oop(addr));
   560   result += partial_obj_size + live_to_left;
   561   assert(result <= addr, "object cannot move to the right");
   562   return result;
   563 }
   565 klassOop ParallelCompactData::calc_new_klass(klassOop old_klass) {
   566   klassOop updated_klass;
   567   if (PSParallelCompact::should_update_klass(old_klass)) {
   568     updated_klass = (klassOop) calc_new_pointer(old_klass);
   569   } else {
   570     updated_klass = old_klass;
   571   }
   573   return updated_klass;
   574 }
   576 #ifdef  ASSERT
   577 void ParallelCompactData::verify_clear(const PSVirtualSpace* vspace)
   578 {
   579   const size_t* const beg = (const size_t*)vspace->committed_low_addr();
   580   const size_t* const end = (const size_t*)vspace->committed_high_addr();
   581   for (const size_t* p = beg; p < end; ++p) {
   582     assert(*p == 0, "not zero");
   583   }
   584 }
   586 void ParallelCompactData::verify_clear()
   587 {
   588   verify_clear(_region_vspace);
   589 }
   590 #endif  // #ifdef ASSERT
   592 #ifdef NOT_PRODUCT
   593 ParallelCompactData::RegionData* debug_region(size_t region_index) {
   594   ParallelCompactData& sd = PSParallelCompact::summary_data();
   595   return sd.region(region_index);
   596 }
   597 #endif
   599 elapsedTimer        PSParallelCompact::_accumulated_time;
   600 unsigned int        PSParallelCompact::_total_invocations = 0;
   601 unsigned int        PSParallelCompact::_maximum_compaction_gc_num = 0;
   602 jlong               PSParallelCompact::_time_of_last_gc = 0;
   603 CollectorCounters*  PSParallelCompact::_counters = NULL;
   604 ParMarkBitMap       PSParallelCompact::_mark_bitmap;
   605 ParallelCompactData PSParallelCompact::_summary_data;
   607 PSParallelCompact::IsAliveClosure PSParallelCompact::_is_alive_closure;
   609 void PSParallelCompact::IsAliveClosure::do_object(oop p)   { ShouldNotReachHere(); }
   610 bool PSParallelCompact::IsAliveClosure::do_object_b(oop p) { return mark_bitmap()->is_marked(p); }
   612 void PSParallelCompact::KeepAliveClosure::do_oop(oop* p)       { PSParallelCompact::KeepAliveClosure::do_oop_work(p); }
   613 void PSParallelCompact::KeepAliveClosure::do_oop(narrowOop* p) { PSParallelCompact::KeepAliveClosure::do_oop_work(p); }
   615 PSParallelCompact::AdjustPointerClosure PSParallelCompact::_adjust_root_pointer_closure(true);
   616 PSParallelCompact::AdjustPointerClosure PSParallelCompact::_adjust_pointer_closure(false);
   618 void PSParallelCompact::AdjustPointerClosure::do_oop(oop* p)       { adjust_pointer(p, _is_root); }
   619 void PSParallelCompact::AdjustPointerClosure::do_oop(narrowOop* p) { adjust_pointer(p, _is_root); }
   621 void PSParallelCompact::FollowStackClosure::do_void() { follow_stack(_compaction_manager); }
   623 void PSParallelCompact::MarkAndPushClosure::do_oop(oop* p)       { mark_and_push(_compaction_manager, p); }
   624 void PSParallelCompact::MarkAndPushClosure::do_oop(narrowOop* p) { mark_and_push(_compaction_manager, p); }
   626 void PSParallelCompact::post_initialize() {
   627   ParallelScavengeHeap* heap = gc_heap();
   628   assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
   630   MemRegion mr = heap->reserved_region();
   631   _ref_processor = ReferenceProcessor::create_ref_processor(
   632     mr,                         // span
   633     true,                       // atomic_discovery
   634     true,                       // mt_discovery
   635     &_is_alive_closure,
   636     ParallelGCThreads,
   637     ParallelRefProcEnabled);
   638   _counters = new CollectorCounters("PSParallelCompact", 1);
   640   // Initialize static fields in ParCompactionManager.
   641   ParCompactionManager::initialize(mark_bitmap());
   642 }
   644 bool PSParallelCompact::initialize() {
   645   ParallelScavengeHeap* heap = gc_heap();
   646   assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
   647   MemRegion mr = heap->reserved_region();
   649   // Was the old gen get allocated successfully?
   650   if (!heap->old_gen()->is_allocated()) {
   651     return false;
   652   }
   654   initialize_space_info();
   655   initialize_dead_wood_limiter();
   657   if (!_mark_bitmap.initialize(mr)) {
   658     vm_shutdown_during_initialization("Unable to allocate bit map for "
   659       "parallel garbage collection for the requested heap size.");
   660     return false;
   661   }
   663   if (!_summary_data.initialize(mr)) {
   664     vm_shutdown_during_initialization("Unable to allocate tables for "
   665       "parallel garbage collection for the requested heap size.");
   666     return false;
   667   }
   669   return true;
   670 }
   672 void PSParallelCompact::initialize_space_info()
   673 {
   674   memset(&_space_info, 0, sizeof(_space_info));
   676   ParallelScavengeHeap* heap = gc_heap();
   677   PSYoungGen* young_gen = heap->young_gen();
   678   MutableSpace* perm_space = heap->perm_gen()->object_space();
   680   _space_info[perm_space_id].set_space(perm_space);
   681   _space_info[old_space_id].set_space(heap->old_gen()->object_space());
   682   _space_info[eden_space_id].set_space(young_gen->eden_space());
   683   _space_info[from_space_id].set_space(young_gen->from_space());
   684   _space_info[to_space_id].set_space(young_gen->to_space());
   686   _space_info[perm_space_id].set_start_array(heap->perm_gen()->start_array());
   687   _space_info[old_space_id].set_start_array(heap->old_gen()->start_array());
   689   _space_info[perm_space_id].set_min_dense_prefix(perm_space->top());
   690   if (TraceParallelOldGCDensePrefix) {
   691     tty->print_cr("perm min_dense_prefix=" PTR_FORMAT,
   692                   _space_info[perm_space_id].min_dense_prefix());
   693   }
   694 }
   696 void PSParallelCompact::initialize_dead_wood_limiter()
   697 {
   698   const size_t max = 100;
   699   _dwl_mean = double(MIN2(ParallelOldDeadWoodLimiterMean, max)) / 100.0;
   700   _dwl_std_dev = double(MIN2(ParallelOldDeadWoodLimiterStdDev, max)) / 100.0;
   701   _dwl_first_term = 1.0 / (sqrt(2.0 * M_PI) * _dwl_std_dev);
   702   DEBUG_ONLY(_dwl_initialized = true;)
   703   _dwl_adjustment = normal_distribution(1.0);
   704 }
   706 // Simple class for storing info about the heap at the start of GC, to be used
   707 // after GC for comparison/printing.
   708 class PreGCValues {
   709 public:
   710   PreGCValues() { }
   711   PreGCValues(ParallelScavengeHeap* heap) { fill(heap); }
   713   void fill(ParallelScavengeHeap* heap) {
   714     _heap_used      = heap->used();
   715     _young_gen_used = heap->young_gen()->used_in_bytes();
   716     _old_gen_used   = heap->old_gen()->used_in_bytes();
   717     _perm_gen_used  = heap->perm_gen()->used_in_bytes();
   718   };
   720   size_t heap_used() const      { return _heap_used; }
   721   size_t young_gen_used() const { return _young_gen_used; }
   722   size_t old_gen_used() const   { return _old_gen_used; }
   723   size_t perm_gen_used() const  { return _perm_gen_used; }
   725 private:
   726   size_t _heap_used;
   727   size_t _young_gen_used;
   728   size_t _old_gen_used;
   729   size_t _perm_gen_used;
   730 };
   732 void
   733 PSParallelCompact::clear_data_covering_space(SpaceId id)
   734 {
   735   // At this point, top is the value before GC, new_top() is the value that will
   736   // be set at the end of GC.  The marking bitmap is cleared to top; nothing
   737   // should be marked above top.  The summary data is cleared to the larger of
   738   // top & new_top.
   739   MutableSpace* const space = _space_info[id].space();
   740   HeapWord* const bot = space->bottom();
   741   HeapWord* const top = space->top();
   742   HeapWord* const max_top = MAX2(top, _space_info[id].new_top());
   744   const idx_t beg_bit = _mark_bitmap.addr_to_bit(bot);
   745   const idx_t end_bit = BitMap::word_align_up(_mark_bitmap.addr_to_bit(top));
   746   _mark_bitmap.clear_range(beg_bit, end_bit);
   748   const size_t beg_region = _summary_data.addr_to_region_idx(bot);
   749   const size_t end_region =
   750     _summary_data.addr_to_region_idx(_summary_data.region_align_up(max_top));
   751   _summary_data.clear_range(beg_region, end_region);
   752 }
   754 void PSParallelCompact::pre_compact(PreGCValues* pre_gc_values)
   755 {
   756   // Update the from & to space pointers in space_info, since they are swapped
   757   // at each young gen gc.  Do the update unconditionally (even though a
   758   // promotion failure does not swap spaces) because an unknown number of minor
   759   // collections will have swapped the spaces an unknown number of times.
   760   TraceTime tm("pre compact", print_phases(), true, gclog_or_tty);
   761   ParallelScavengeHeap* heap = gc_heap();
   762   _space_info[from_space_id].set_space(heap->young_gen()->from_space());
   763   _space_info[to_space_id].set_space(heap->young_gen()->to_space());
   765   pre_gc_values->fill(heap);
   767   ParCompactionManager::reset();
   768   NOT_PRODUCT(_mark_bitmap.reset_counters());
   769   DEBUG_ONLY(add_obj_count = add_obj_size = 0;)
   770   DEBUG_ONLY(mark_bitmap_count = mark_bitmap_size = 0;)
   772   // Increment the invocation count
   773   heap->increment_total_collections(true);
   775   // We need to track unique mark sweep invocations as well.
   776   _total_invocations++;
   778   if (PrintHeapAtGC) {
   779     Universe::print_heap_before_gc();
   780   }
   782   // Fill in TLABs
   783   heap->accumulate_statistics_all_tlabs();
   784   heap->ensure_parsability(true);  // retire TLABs
   786   if (VerifyBeforeGC && heap->total_collections() >= VerifyGCStartAt) {
   787     HandleMark hm;  // Discard invalid handles created during verification
   788     gclog_or_tty->print(" VerifyBeforeGC:");
   789     Universe::verify(true);
   790   }
   792   // Verify object start arrays
   793   if (VerifyObjectStartArray &&
   794       VerifyBeforeGC) {
   795     heap->old_gen()->verify_object_start_array();
   796     heap->perm_gen()->verify_object_start_array();
   797   }
   799   DEBUG_ONLY(mark_bitmap()->verify_clear();)
   800   DEBUG_ONLY(summary_data().verify_clear();)
   802   // Have worker threads release resources the next time they run a task.
   803   gc_task_manager()->release_all_resources();
   804 }
   806 void PSParallelCompact::post_compact()
   807 {
   808   TraceTime tm("post compact", print_phases(), true, gclog_or_tty);
   810   // Clear the marking bitmap and summary data and update top() in each space.
   811   for (unsigned int id = perm_space_id; id < last_space_id; ++id) {
   812     clear_data_covering_space(SpaceId(id));
   813     _space_info[id].space()->set_top(_space_info[id].new_top());
   814   }
   816   MutableSpace* const eden_space = _space_info[eden_space_id].space();
   817   MutableSpace* const from_space = _space_info[from_space_id].space();
   818   MutableSpace* const to_space   = _space_info[to_space_id].space();
   820   ParallelScavengeHeap* heap = gc_heap();
   821   bool eden_empty = eden_space->is_empty();
   822   if (!eden_empty) {
   823     eden_empty = absorb_live_data_from_eden(heap->size_policy(),
   824                                             heap->young_gen(), heap->old_gen());
   825   }
   827   // Update heap occupancy information which is used as input to the soft ref
   828   // clearing policy at the next gc.
   829   Universe::update_heap_info_at_gc();
   831   bool young_gen_empty = eden_empty && from_space->is_empty() &&
   832     to_space->is_empty();
   834   BarrierSet* bs = heap->barrier_set();
   835   if (bs->is_a(BarrierSet::ModRef)) {
   836     ModRefBarrierSet* modBS = (ModRefBarrierSet*)bs;
   837     MemRegion old_mr = heap->old_gen()->reserved();
   838     MemRegion perm_mr = heap->perm_gen()->reserved();
   839     assert(perm_mr.end() <= old_mr.start(), "Generations out of order");
   841     if (young_gen_empty) {
   842       modBS->clear(MemRegion(perm_mr.start(), old_mr.end()));
   843     } else {
   844       modBS->invalidate(MemRegion(perm_mr.start(), old_mr.end()));
   845     }
   846   }
   848   Threads::gc_epilogue();
   849   CodeCache::gc_epilogue();
   851   COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
   853   ref_processor()->enqueue_discovered_references(NULL);
   855   if (ZapUnusedHeapArea) {
   856     heap->gen_mangle_unused_area();
   857   }
   859   // Update time of last GC
   860   reset_millis_since_last_gc();
   861 }
   863 HeapWord*
   864 PSParallelCompact::compute_dense_prefix_via_density(const SpaceId id,
   865                                                     bool maximum_compaction)
   866 {
   867   const size_t region_size = ParallelCompactData::RegionSize;
   868   const ParallelCompactData& sd = summary_data();
   870   const MutableSpace* const space = _space_info[id].space();
   871   HeapWord* const top_aligned_up = sd.region_align_up(space->top());
   872   const RegionData* const beg_cp = sd.addr_to_region_ptr(space->bottom());
   873   const RegionData* const end_cp = sd.addr_to_region_ptr(top_aligned_up);
   875   // Skip full regions at the beginning of the space--they are necessarily part
   876   // of the dense prefix.
   877   size_t full_count = 0;
   878   const RegionData* cp;
   879   for (cp = beg_cp; cp < end_cp && cp->data_size() == region_size; ++cp) {
   880     ++full_count;
   881   }
   883   assert(total_invocations() >= _maximum_compaction_gc_num, "sanity");
   884   const size_t gcs_since_max = total_invocations() - _maximum_compaction_gc_num;
   885   const bool interval_ended = gcs_since_max > HeapMaximumCompactionInterval;
   886   if (maximum_compaction || cp == end_cp || interval_ended) {
   887     _maximum_compaction_gc_num = total_invocations();
   888     return sd.region_to_addr(cp);
   889   }
   891   HeapWord* const new_top = _space_info[id].new_top();
   892   const size_t space_live = pointer_delta(new_top, space->bottom());
   893   const size_t space_used = space->used_in_words();
   894   const size_t space_capacity = space->capacity_in_words();
   896   const double cur_density = double(space_live) / space_capacity;
   897   const double deadwood_density =
   898     (1.0 - cur_density) * (1.0 - cur_density) * cur_density * cur_density;
   899   const size_t deadwood_goal = size_t(space_capacity * deadwood_density);
   901   if (TraceParallelOldGCDensePrefix) {
   902     tty->print_cr("cur_dens=%5.3f dw_dens=%5.3f dw_goal=" SIZE_FORMAT,
   903                   cur_density, deadwood_density, deadwood_goal);
   904     tty->print_cr("space_live=" SIZE_FORMAT " " "space_used=" SIZE_FORMAT " "
   905                   "space_cap=" SIZE_FORMAT,
   906                   space_live, space_used,
   907                   space_capacity);
   908   }
   910   // XXX - Use binary search?
   911   HeapWord* dense_prefix = sd.region_to_addr(cp);
   912   const RegionData* full_cp = cp;
   913   const RegionData* const top_cp = sd.addr_to_region_ptr(space->top() - 1);
   914   while (cp < end_cp) {
   915     HeapWord* region_destination = cp->destination();
   916     const size_t cur_deadwood = pointer_delta(dense_prefix, region_destination);
   917     if (TraceParallelOldGCDensePrefix && Verbose) {
   918       tty->print_cr("c#=" SIZE_FORMAT_W(4) " dst=" PTR_FORMAT " "
   919                     "dp=" SIZE_FORMAT_W(8) " " "cdw=" SIZE_FORMAT_W(8),
   920                     sd.region(cp), region_destination,
   921                     dense_prefix, cur_deadwood);
   922     }
   924     if (cur_deadwood >= deadwood_goal) {
   925       // Found the region that has the correct amount of deadwood to the left.
   926       // This typically occurs after crossing a fairly sparse set of regions, so
   927       // iterate backwards over those sparse regions, looking for the region
   928       // that has the lowest density of live objects 'to the right.'
   929       size_t space_to_left = sd.region(cp) * region_size;
   930       size_t live_to_left = space_to_left - cur_deadwood;
   931       size_t space_to_right = space_capacity - space_to_left;
   932       size_t live_to_right = space_live - live_to_left;
   933       double density_to_right = double(live_to_right) / space_to_right;
   934       while (cp > full_cp) {
   935         --cp;
   936         const size_t prev_region_live_to_right = live_to_right -
   937           cp->data_size();
   938         const size_t prev_region_space_to_right = space_to_right + region_size;
   939         double prev_region_density_to_right =
   940           double(prev_region_live_to_right) / prev_region_space_to_right;
   941         if (density_to_right <= prev_region_density_to_right) {
   942           return dense_prefix;
   943         }
   944         if (TraceParallelOldGCDensePrefix && Verbose) {
   945           tty->print_cr("backing up from c=" SIZE_FORMAT_W(4) " d2r=%10.8f "
   946                         "pc_d2r=%10.8f", sd.region(cp), density_to_right,
   947                         prev_region_density_to_right);
   948         }
   949         dense_prefix -= region_size;
   950         live_to_right = prev_region_live_to_right;
   951         space_to_right = prev_region_space_to_right;
   952         density_to_right = prev_region_density_to_right;
   953       }
   954       return dense_prefix;
   955     }
   957     dense_prefix += region_size;
   958     ++cp;
   959   }
   961   return dense_prefix;
   962 }
   964 #ifndef PRODUCT
   965 void PSParallelCompact::print_dense_prefix_stats(const char* const algorithm,
   966                                                  const SpaceId id,
   967                                                  const bool maximum_compaction,
   968                                                  HeapWord* const addr)
   969 {
   970   const size_t region_idx = summary_data().addr_to_region_idx(addr);
   971   RegionData* const cp = summary_data().region(region_idx);
   972   const MutableSpace* const space = _space_info[id].space();
   973   HeapWord* const new_top = _space_info[id].new_top();
   975   const size_t space_live = pointer_delta(new_top, space->bottom());
   976   const size_t dead_to_left = pointer_delta(addr, cp->destination());
   977   const size_t space_cap = space->capacity_in_words();
   978   const double dead_to_left_pct = double(dead_to_left) / space_cap;
   979   const size_t live_to_right = new_top - cp->destination();
   980   const size_t dead_to_right = space->top() - addr - live_to_right;
   982   tty->print_cr("%s=" PTR_FORMAT " dpc=" SIZE_FORMAT_W(5) " "
   983                 "spl=" SIZE_FORMAT " "
   984                 "d2l=" SIZE_FORMAT " d2l%%=%6.4f "
   985                 "d2r=" SIZE_FORMAT " l2r=" SIZE_FORMAT
   986                 " ratio=%10.8f",
   987                 algorithm, addr, region_idx,
   988                 space_live,
   989                 dead_to_left, dead_to_left_pct,
   990                 dead_to_right, live_to_right,
   991                 double(dead_to_right) / live_to_right);
   992 }
   993 #endif  // #ifndef PRODUCT
   995 // Return a fraction indicating how much of the generation can be treated as
   996 // "dead wood" (i.e., not reclaimed).  The function uses a normal distribution
   997 // based on the density of live objects in the generation to determine a limit,
   998 // which is then adjusted so the return value is min_percent when the density is
   999 // 1.
  1000 //
  1001 // The following table shows some return values for a different values of the
  1002 // standard deviation (ParallelOldDeadWoodLimiterStdDev); the mean is 0.5 and
  1003 // min_percent is 1.
  1004 //
  1005 //                          fraction allowed as dead wood
  1006 //         -----------------------------------------------------------------
  1007 // density std_dev=70 std_dev=75 std_dev=80 std_dev=85 std_dev=90 std_dev=95
  1008 // ------- ---------- ---------- ---------- ---------- ---------- ----------
  1009 // 0.00000 0.01000000 0.01000000 0.01000000 0.01000000 0.01000000 0.01000000
  1010 // 0.05000 0.03193096 0.02836880 0.02550828 0.02319280 0.02130337 0.01974941
  1011 // 0.10000 0.05247504 0.04547452 0.03988045 0.03537016 0.03170171 0.02869272
  1012 // 0.15000 0.07135702 0.06111390 0.05296419 0.04641639 0.04110601 0.03676066
  1013 // 0.20000 0.08831616 0.07509618 0.06461766 0.05622444 0.04943437 0.04388975
  1014 // 0.25000 0.10311208 0.08724696 0.07471205 0.06469760 0.05661313 0.05002313
  1015 // 0.30000 0.11553050 0.09741183 0.08313394 0.07175114 0.06257797 0.05511132
  1016 // 0.35000 0.12538832 0.10545958 0.08978741 0.07731366 0.06727491 0.05911289
  1017 // 0.40000 0.13253818 0.11128511 0.09459590 0.08132834 0.07066107 0.06199500
  1018 // 0.45000 0.13687208 0.11481163 0.09750361 0.08375387 0.07270534 0.06373386
  1019 // 0.50000 0.13832410 0.11599237 0.09847664 0.08456518 0.07338887 0.06431510
  1020 // 0.55000 0.13687208 0.11481163 0.09750361 0.08375387 0.07270534 0.06373386
  1021 // 0.60000 0.13253818 0.11128511 0.09459590 0.08132834 0.07066107 0.06199500
  1022 // 0.65000 0.12538832 0.10545958 0.08978741 0.07731366 0.06727491 0.05911289
  1023 // 0.70000 0.11553050 0.09741183 0.08313394 0.07175114 0.06257797 0.05511132
  1024 // 0.75000 0.10311208 0.08724696 0.07471205 0.06469760 0.05661313 0.05002313
  1025 // 0.80000 0.08831616 0.07509618 0.06461766 0.05622444 0.04943437 0.04388975
  1026 // 0.85000 0.07135702 0.06111390 0.05296419 0.04641639 0.04110601 0.03676066
  1027 // 0.90000 0.05247504 0.04547452 0.03988045 0.03537016 0.03170171 0.02869272
  1028 // 0.95000 0.03193096 0.02836880 0.02550828 0.02319280 0.02130337 0.01974941
  1029 // 1.00000 0.01000000 0.01000000 0.01000000 0.01000000 0.01000000 0.01000000
  1031 double PSParallelCompact::dead_wood_limiter(double density, size_t min_percent)
  1033   assert(_dwl_initialized, "uninitialized");
  1035   // The raw limit is the value of the normal distribution at x = density.
  1036   const double raw_limit = normal_distribution(density);
  1038   // Adjust the raw limit so it becomes the minimum when the density is 1.
  1039   //
  1040   // First subtract the adjustment value (which is simply the precomputed value
  1041   // normal_distribution(1.0)); this yields a value of 0 when the density is 1.
  1042   // Then add the minimum value, so the minimum is returned when the density is
  1043   // 1.  Finally, prevent negative values, which occur when the mean is not 0.5.
  1044   const double min = double(min_percent) / 100.0;
  1045   const double limit = raw_limit - _dwl_adjustment + min;
  1046   return MAX2(limit, 0.0);
  1049 ParallelCompactData::RegionData*
  1050 PSParallelCompact::first_dead_space_region(const RegionData* beg,
  1051                                            const RegionData* end)
  1053   const size_t region_size = ParallelCompactData::RegionSize;
  1054   ParallelCompactData& sd = summary_data();
  1055   size_t left = sd.region(beg);
  1056   size_t right = end > beg ? sd.region(end) - 1 : left;
  1058   // Binary search.
  1059   while (left < right) {
  1060     // Equivalent to (left + right) / 2, but does not overflow.
  1061     const size_t middle = left + (right - left) / 2;
  1062     RegionData* const middle_ptr = sd.region(middle);
  1063     HeapWord* const dest = middle_ptr->destination();
  1064     HeapWord* const addr = sd.region_to_addr(middle);
  1065     assert(dest != NULL, "sanity");
  1066     assert(dest <= addr, "must move left");
  1068     if (middle > left && dest < addr) {
  1069       right = middle - 1;
  1070     } else if (middle < right && middle_ptr->data_size() == region_size) {
  1071       left = middle + 1;
  1072     } else {
  1073       return middle_ptr;
  1076   return sd.region(left);
  1079 ParallelCompactData::RegionData*
  1080 PSParallelCompact::dead_wood_limit_region(const RegionData* beg,
  1081                                           const RegionData* end,
  1082                                           size_t dead_words)
  1084   ParallelCompactData& sd = summary_data();
  1085   size_t left = sd.region(beg);
  1086   size_t right = end > beg ? sd.region(end) - 1 : left;
  1088   // Binary search.
  1089   while (left < right) {
  1090     // Equivalent to (left + right) / 2, but does not overflow.
  1091     const size_t middle = left + (right - left) / 2;
  1092     RegionData* const middle_ptr = sd.region(middle);
  1093     HeapWord* const dest = middle_ptr->destination();
  1094     HeapWord* const addr = sd.region_to_addr(middle);
  1095     assert(dest != NULL, "sanity");
  1096     assert(dest <= addr, "must move left");
  1098     const size_t dead_to_left = pointer_delta(addr, dest);
  1099     if (middle > left && dead_to_left > dead_words) {
  1100       right = middle - 1;
  1101     } else if (middle < right && dead_to_left < dead_words) {
  1102       left = middle + 1;
  1103     } else {
  1104       return middle_ptr;
  1107   return sd.region(left);
  1110 // The result is valid during the summary phase, after the initial summarization
  1111 // of each space into itself, and before final summarization.
  1112 inline double
  1113 PSParallelCompact::reclaimed_ratio(const RegionData* const cp,
  1114                                    HeapWord* const bottom,
  1115                                    HeapWord* const top,
  1116                                    HeapWord* const new_top)
  1118   ParallelCompactData& sd = summary_data();
  1120   assert(cp != NULL, "sanity");
  1121   assert(bottom != NULL, "sanity");
  1122   assert(top != NULL, "sanity");
  1123   assert(new_top != NULL, "sanity");
  1124   assert(top >= new_top, "summary data problem?");
  1125   assert(new_top > bottom, "space is empty; should not be here");
  1126   assert(new_top >= cp->destination(), "sanity");
  1127   assert(top >= sd.region_to_addr(cp), "sanity");
  1129   HeapWord* const destination = cp->destination();
  1130   const size_t dense_prefix_live  = pointer_delta(destination, bottom);
  1131   const size_t compacted_region_live = pointer_delta(new_top, destination);
  1132   const size_t compacted_region_used = pointer_delta(top,
  1133                                                      sd.region_to_addr(cp));
  1134   const size_t reclaimable = compacted_region_used - compacted_region_live;
  1136   const double divisor = dense_prefix_live + 1.25 * compacted_region_live;
  1137   return double(reclaimable) / divisor;
  1140 // Return the address of the end of the dense prefix, a.k.a. the start of the
  1141 // compacted region.  The address is always on a region boundary.
  1142 //
  1143 // Completely full regions at the left are skipped, since no compaction can
  1144 // occur in those regions.  Then the maximum amount of dead wood to allow is
  1145 // computed, based on the density (amount live / capacity) of the generation;
  1146 // the region with approximately that amount of dead space to the left is
  1147 // identified as the limit region.  Regions between the last completely full
  1148 // region and the limit region are scanned and the one that has the best
  1149 // (maximum) reclaimed_ratio() is selected.
  1150 HeapWord*
  1151 PSParallelCompact::compute_dense_prefix(const SpaceId id,
  1152                                         bool maximum_compaction)
  1154   const size_t region_size = ParallelCompactData::RegionSize;
  1155   const ParallelCompactData& sd = summary_data();
  1157   const MutableSpace* const space = _space_info[id].space();
  1158   HeapWord* const top = space->top();
  1159   HeapWord* const top_aligned_up = sd.region_align_up(top);
  1160   HeapWord* const new_top = _space_info[id].new_top();
  1161   HeapWord* const new_top_aligned_up = sd.region_align_up(new_top);
  1162   HeapWord* const bottom = space->bottom();
  1163   const RegionData* const beg_cp = sd.addr_to_region_ptr(bottom);
  1164   const RegionData* const top_cp = sd.addr_to_region_ptr(top_aligned_up);
  1165   const RegionData* const new_top_cp =
  1166     sd.addr_to_region_ptr(new_top_aligned_up);
  1168   // Skip full regions at the beginning of the space--they are necessarily part
  1169   // of the dense prefix.
  1170   const RegionData* const full_cp = first_dead_space_region(beg_cp, new_top_cp);
  1171   assert(full_cp->destination() == sd.region_to_addr(full_cp) ||
  1172          space->is_empty(), "no dead space allowed to the left");
  1173   assert(full_cp->data_size() < region_size || full_cp == new_top_cp - 1,
  1174          "region must have dead space");
  1176   // The gc number is saved whenever a maximum compaction is done, and used to
  1177   // determine when the maximum compaction interval has expired.  This avoids
  1178   // successive max compactions for different reasons.
  1179   assert(total_invocations() >= _maximum_compaction_gc_num, "sanity");
  1180   const size_t gcs_since_max = total_invocations() - _maximum_compaction_gc_num;
  1181   const bool interval_ended = gcs_since_max > HeapMaximumCompactionInterval ||
  1182     total_invocations() == HeapFirstMaximumCompactionCount;
  1183   if (maximum_compaction || full_cp == top_cp || interval_ended) {
  1184     _maximum_compaction_gc_num = total_invocations();
  1185     return sd.region_to_addr(full_cp);
  1188   const size_t space_live = pointer_delta(new_top, bottom);
  1189   const size_t space_used = space->used_in_words();
  1190   const size_t space_capacity = space->capacity_in_words();
  1192   const double density = double(space_live) / double(space_capacity);
  1193   const size_t min_percent_free =
  1194           id == perm_space_id ? PermMarkSweepDeadRatio : MarkSweepDeadRatio;
  1195   const double limiter = dead_wood_limiter(density, min_percent_free);
  1196   const size_t dead_wood_max = space_used - space_live;
  1197   const size_t dead_wood_limit = MIN2(size_t(space_capacity * limiter),
  1198                                       dead_wood_max);
  1200   if (TraceParallelOldGCDensePrefix) {
  1201     tty->print_cr("space_live=" SIZE_FORMAT " " "space_used=" SIZE_FORMAT " "
  1202                   "space_cap=" SIZE_FORMAT,
  1203                   space_live, space_used,
  1204                   space_capacity);
  1205     tty->print_cr("dead_wood_limiter(%6.4f, %d)=%6.4f "
  1206                   "dead_wood_max=" SIZE_FORMAT " dead_wood_limit=" SIZE_FORMAT,
  1207                   density, min_percent_free, limiter,
  1208                   dead_wood_max, dead_wood_limit);
  1211   // Locate the region with the desired amount of dead space to the left.
  1212   const RegionData* const limit_cp =
  1213     dead_wood_limit_region(full_cp, top_cp, dead_wood_limit);
  1215   // Scan from the first region with dead space to the limit region and find the
  1216   // one with the best (largest) reclaimed ratio.
  1217   double best_ratio = 0.0;
  1218   const RegionData* best_cp = full_cp;
  1219   for (const RegionData* cp = full_cp; cp < limit_cp; ++cp) {
  1220     double tmp_ratio = reclaimed_ratio(cp, bottom, top, new_top);
  1221     if (tmp_ratio > best_ratio) {
  1222       best_cp = cp;
  1223       best_ratio = tmp_ratio;
  1227 #if     0
  1228   // Something to consider:  if the region with the best ratio is 'close to' the
  1229   // first region w/free space, choose the first region with free space
  1230   // ("first-free").  The first-free region is usually near the start of the
  1231   // heap, which means we are copying most of the heap already, so copy a bit
  1232   // more to get complete compaction.
  1233   if (pointer_delta(best_cp, full_cp, sizeof(RegionData)) < 4) {
  1234     _maximum_compaction_gc_num = total_invocations();
  1235     best_cp = full_cp;
  1237 #endif  // #if 0
  1239   return sd.region_to_addr(best_cp);
  1242 void PSParallelCompact::summarize_spaces_quick()
  1244   for (unsigned int i = 0; i < last_space_id; ++i) {
  1245     const MutableSpace* space = _space_info[i].space();
  1246     bool result = _summary_data.summarize(space->bottom(), space->end(),
  1247                                           space->bottom(), space->top(),
  1248                                           _space_info[i].new_top_addr());
  1249     assert(result, "should never fail");
  1250     _space_info[i].set_dense_prefix(space->bottom());
  1254 void PSParallelCompact::fill_dense_prefix_end(SpaceId id)
  1256   HeapWord* const dense_prefix_end = dense_prefix(id);
  1257   const RegionData* region = _summary_data.addr_to_region_ptr(dense_prefix_end);
  1258   const idx_t dense_prefix_bit = _mark_bitmap.addr_to_bit(dense_prefix_end);
  1259   if (dead_space_crosses_boundary(region, dense_prefix_bit)) {
  1260     // Only enough dead space is filled so that any remaining dead space to the
  1261     // left is larger than the minimum filler object.  (The remainder is filled
  1262     // during the copy/update phase.)
  1263     //
  1264     // The size of the dead space to the right of the boundary is not a
  1265     // concern, since compaction will be able to use whatever space is
  1266     // available.
  1267     //
  1268     // Here '||' is the boundary, 'x' represents a don't care bit and a box
  1269     // surrounds the space to be filled with an object.
  1270     //
  1271     // In the 32-bit VM, each bit represents two 32-bit words:
  1272     //                              +---+
  1273     // a) beg_bits:  ...  x   x   x | 0 | ||   0   x  x  ...
  1274     //    end_bits:  ...  x   x   x | 0 | ||   0   x  x  ...
  1275     //                              +---+
  1276     //
  1277     // In the 64-bit VM, each bit represents one 64-bit word:
  1278     //                              +------------+
  1279     // b) beg_bits:  ...  x   x   x | 0   ||   0 | x  x  ...
  1280     //    end_bits:  ...  x   x   1 | 0   ||   0 | x  x  ...
  1281     //                              +------------+
  1282     //                          +-------+
  1283     // c) beg_bits:  ...  x   x | 0   0 | ||   0   x  x  ...
  1284     //    end_bits:  ...  x   1 | 0   0 | ||   0   x  x  ...
  1285     //                          +-------+
  1286     //                      +-----------+
  1287     // d) beg_bits:  ...  x | 0   0   0 | ||   0   x  x  ...
  1288     //    end_bits:  ...  1 | 0   0   0 | ||   0   x  x  ...
  1289     //                      +-----------+
  1290     //                          +-------+
  1291     // e) beg_bits:  ...  0   0 | 0   0 | ||   0   x  x  ...
  1292     //    end_bits:  ...  0   0 | 0   0 | ||   0   x  x  ...
  1293     //                          +-------+
  1295     // Initially assume case a, c or e will apply.
  1296     size_t obj_len = (size_t)oopDesc::header_size();
  1297     HeapWord* obj_beg = dense_prefix_end - obj_len;
  1299 #ifdef  _LP64
  1300     if (_mark_bitmap.is_obj_end(dense_prefix_bit - 2)) {
  1301       // Case b above.
  1302       obj_beg = dense_prefix_end - 1;
  1303     } else if (!_mark_bitmap.is_obj_end(dense_prefix_bit - 3) &&
  1304                _mark_bitmap.is_obj_end(dense_prefix_bit - 4)) {
  1305       // Case d above.
  1306       obj_beg = dense_prefix_end - 3;
  1307       obj_len = 3;
  1309 #endif  // #ifdef _LP64
  1311     MemRegion region(obj_beg, obj_len);
  1312     SharedHeap::fill_region_with_object(region);
  1313     _mark_bitmap.mark_obj(obj_beg, obj_len);
  1314     _summary_data.add_obj(obj_beg, obj_len);
  1315     assert(start_array(id) != NULL, "sanity");
  1316     start_array(id)->allocate_block(obj_beg);
  1320 void
  1321 PSParallelCompact::summarize_space(SpaceId id, bool maximum_compaction)
  1323   assert(id < last_space_id, "id out of range");
  1324   assert(_space_info[id].dense_prefix() == _space_info[id].space()->bottom(),
  1325          "should have been set in summarize_spaces_quick()");
  1327   const MutableSpace* space = _space_info[id].space();
  1328   if (_space_info[id].new_top() != space->bottom()) {
  1329     HeapWord* dense_prefix_end = compute_dense_prefix(id, maximum_compaction);
  1330     _space_info[id].set_dense_prefix(dense_prefix_end);
  1332 #ifndef PRODUCT
  1333     if (TraceParallelOldGCDensePrefix) {
  1334       print_dense_prefix_stats("ratio", id, maximum_compaction,
  1335                                dense_prefix_end);
  1336       HeapWord* addr = compute_dense_prefix_via_density(id, maximum_compaction);
  1337       print_dense_prefix_stats("density", id, maximum_compaction, addr);
  1339 #endif  // #ifndef PRODUCT
  1341     // If dead space crosses the dense prefix boundary, it is (at least
  1342     // partially) filled with a dummy object, marked live and added to the
  1343     // summary data.  This simplifies the copy/update phase and must be done
  1344     // before the final locations of objects are determined, to prevent leaving
  1345     // a fragment of dead space that is too small to fill with an object.
  1346     if (!maximum_compaction && dense_prefix_end != space->bottom()) {
  1347       fill_dense_prefix_end(id);
  1350     // Compute the destination of each Region, and thus each object.
  1351     _summary_data.summarize_dense_prefix(space->bottom(), dense_prefix_end);
  1352     _summary_data.summarize(dense_prefix_end, space->end(),
  1353                             dense_prefix_end, space->top(),
  1354                             _space_info[id].new_top_addr());
  1357   if (TraceParallelOldGCSummaryPhase) {
  1358     const size_t region_size = ParallelCompactData::RegionSize;
  1359     HeapWord* const dense_prefix_end = _space_info[id].dense_prefix();
  1360     const size_t dp_region = _summary_data.addr_to_region_idx(dense_prefix_end);
  1361     const size_t dp_words = pointer_delta(dense_prefix_end, space->bottom());
  1362     HeapWord* const new_top = _space_info[id].new_top();
  1363     const HeapWord* nt_aligned_up = _summary_data.region_align_up(new_top);
  1364     const size_t cr_words = pointer_delta(nt_aligned_up, dense_prefix_end);
  1365     tty->print_cr("id=%d cap=" SIZE_FORMAT " dp=" PTR_FORMAT " "
  1366                   "dp_region=" SIZE_FORMAT " " "dp_count=" SIZE_FORMAT " "
  1367                   "cr_count=" SIZE_FORMAT " " "nt=" PTR_FORMAT,
  1368                   id, space->capacity_in_words(), dense_prefix_end,
  1369                   dp_region, dp_words / region_size,
  1370                   cr_words / region_size, new_top);
  1374 void PSParallelCompact::summary_phase(ParCompactionManager* cm,
  1375                                       bool maximum_compaction)
  1377   EventMark m("2 summarize");
  1378   TraceTime tm("summary phase", print_phases(), true, gclog_or_tty);
  1379   // trace("2");
  1381 #ifdef  ASSERT
  1382   if (TraceParallelOldGCMarkingPhase) {
  1383     tty->print_cr("add_obj_count=" SIZE_FORMAT " "
  1384                   "add_obj_bytes=" SIZE_FORMAT,
  1385                   add_obj_count, add_obj_size * HeapWordSize);
  1386     tty->print_cr("mark_bitmap_count=" SIZE_FORMAT " "
  1387                   "mark_bitmap_bytes=" SIZE_FORMAT,
  1388                   mark_bitmap_count, mark_bitmap_size * HeapWordSize);
  1390 #endif  // #ifdef ASSERT
  1392   // Quick summarization of each space into itself, to see how much is live.
  1393   summarize_spaces_quick();
  1395   if (TraceParallelOldGCSummaryPhase) {
  1396     tty->print_cr("summary_phase:  after summarizing each space to self");
  1397     Universe::print();
  1398     NOT_PRODUCT(print_region_ranges());
  1399     if (Verbose) {
  1400       NOT_PRODUCT(print_initial_summary_data(_summary_data, _space_info));
  1404   // The amount of live data that will end up in old space (assuming it fits).
  1405   size_t old_space_total_live = 0;
  1406   unsigned int id;
  1407   for (id = old_space_id; id < last_space_id; ++id) {
  1408     old_space_total_live += pointer_delta(_space_info[id].new_top(),
  1409                                           _space_info[id].space()->bottom());
  1412   const MutableSpace* old_space = _space_info[old_space_id].space();
  1413   if (old_space_total_live > old_space->capacity_in_words()) {
  1414     // XXX - should also try to expand
  1415     maximum_compaction = true;
  1416   } else if (!UseParallelOldGCDensePrefix) {
  1417     maximum_compaction = true;
  1420   // Permanent and Old generations.
  1421   summarize_space(perm_space_id, maximum_compaction);
  1422   summarize_space(old_space_id, maximum_compaction);
  1424   // Summarize the remaining spaces (those in the young gen) into old space.  If
  1425   // the live data from a space doesn't fit, the existing summarization is left
  1426   // intact, so the data is compacted down within the space itself.
  1427   HeapWord** new_top_addr = _space_info[old_space_id].new_top_addr();
  1428   HeapWord* const target_space_end = old_space->end();
  1429   for (id = eden_space_id; id < last_space_id; ++id) {
  1430     const MutableSpace* space = _space_info[id].space();
  1431     const size_t live = pointer_delta(_space_info[id].new_top(),
  1432                                       space->bottom());
  1433     const size_t available = pointer_delta(target_space_end, *new_top_addr);
  1434     if (live > 0 && live <= available) {
  1435       // All the live data will fit.
  1436       if (TraceParallelOldGCSummaryPhase) {
  1437         tty->print_cr("summarizing %d into old_space @ " PTR_FORMAT,
  1438                       id, *new_top_addr);
  1440       _summary_data.summarize(*new_top_addr, target_space_end,
  1441                               space->bottom(), space->top(),
  1442                               new_top_addr);
  1444       // Clear the source_region field for each region in the space.
  1445       HeapWord* const new_top = _space_info[id].new_top();
  1446       HeapWord* const clear_end = _summary_data.region_align_up(new_top);
  1447       RegionData* beg_region =
  1448         _summary_data.addr_to_region_ptr(space->bottom());
  1449       RegionData* end_region = _summary_data.addr_to_region_ptr(clear_end);
  1450       while (beg_region < end_region) {
  1451         beg_region->set_source_region(0);
  1452         ++beg_region;
  1455       // Reset the new_top value for the space.
  1456       _space_info[id].set_new_top(space->bottom());
  1460   if (TraceParallelOldGCSummaryPhase) {
  1461     tty->print_cr("summary_phase:  after final summarization");
  1462     Universe::print();
  1463     NOT_PRODUCT(print_region_ranges());
  1464     if (Verbose) {
  1465       NOT_PRODUCT(print_generic_summary_data(_summary_data, _space_info));
  1470 // This method should contain all heap-specific policy for invoking a full
  1471 // collection.  invoke_no_policy() will only attempt to compact the heap; it
  1472 // will do nothing further.  If we need to bail out for policy reasons, scavenge
  1473 // before full gc, or any other specialized behavior, it needs to be added here.
  1474 //
  1475 // Note that this method should only be called from the vm_thread while at a
  1476 // safepoint.
  1477 void PSParallelCompact::invoke(bool maximum_heap_compaction) {
  1478   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
  1479   assert(Thread::current() == (Thread*)VMThread::vm_thread(),
  1480          "should be in vm thread");
  1481   ParallelScavengeHeap* heap = gc_heap();
  1482   GCCause::Cause gc_cause = heap->gc_cause();
  1483   assert(!heap->is_gc_active(), "not reentrant");
  1485   PSAdaptiveSizePolicy* policy = heap->size_policy();
  1487   // Before each allocation/collection attempt, find out from the
  1488   // policy object if GCs are, on the whole, taking too long. If so,
  1489   // bail out without attempting a collection.  The exceptions are
  1490   // for explicitly requested GC's.
  1491   if (!policy->gc_time_limit_exceeded() ||
  1492       GCCause::is_user_requested_gc(gc_cause) ||
  1493       GCCause::is_serviceability_requested_gc(gc_cause)) {
  1494     IsGCActiveMark mark;
  1496     if (ScavengeBeforeFullGC) {
  1497       PSScavenge::invoke_no_policy();
  1500     PSParallelCompact::invoke_no_policy(maximum_heap_compaction);
  1504 bool ParallelCompactData::region_contains(size_t region_index, HeapWord* addr) {
  1505   size_t addr_region_index = addr_to_region_idx(addr);
  1506   return region_index == addr_region_index;
  1509 // This method contains no policy. You should probably
  1510 // be calling invoke() instead.
  1511 void PSParallelCompact::invoke_no_policy(bool maximum_heap_compaction) {
  1512   assert(SafepointSynchronize::is_at_safepoint(), "must be at a safepoint");
  1513   assert(ref_processor() != NULL, "Sanity");
  1515   if (GC_locker::check_active_before_gc()) {
  1516     return;
  1519   TimeStamp marking_start;
  1520   TimeStamp compaction_start;
  1521   TimeStamp collection_exit;
  1523   ParallelScavengeHeap* heap = gc_heap();
  1524   GCCause::Cause gc_cause = heap->gc_cause();
  1525   PSYoungGen* young_gen = heap->young_gen();
  1526   PSOldGen* old_gen = heap->old_gen();
  1527   PSPermGen* perm_gen = heap->perm_gen();
  1528   PSAdaptiveSizePolicy* size_policy = heap->size_policy();
  1530   if (ZapUnusedHeapArea) {
  1531     // Save information needed to minimize mangling
  1532     heap->record_gen_tops_before_GC();
  1535   _print_phases = PrintGCDetails && PrintParallelOldGCPhaseTimes;
  1537   // Make sure data structures are sane, make the heap parsable, and do other
  1538   // miscellaneous bookkeeping.
  1539   PreGCValues pre_gc_values;
  1540   pre_compact(&pre_gc_values);
  1542   // Get the compaction manager reserved for the VM thread.
  1543   ParCompactionManager* const vmthread_cm =
  1544     ParCompactionManager::manager_array(gc_task_manager()->workers());
  1546   // Place after pre_compact() where the number of invocations is incremented.
  1547   AdaptiveSizePolicyOutput(size_policy, heap->total_collections());
  1550     ResourceMark rm;
  1551     HandleMark hm;
  1553     const bool is_system_gc = gc_cause == GCCause::_java_lang_system_gc;
  1555     // This is useful for debugging but don't change the output the
  1556     // the customer sees.
  1557     const char* gc_cause_str = "Full GC";
  1558     if (is_system_gc && PrintGCDetails) {
  1559       gc_cause_str = "Full GC (System)";
  1561     gclog_or_tty->date_stamp(PrintGC && PrintGCDateStamps);
  1562     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
  1563     TraceTime t1(gc_cause_str, PrintGC, !PrintGCDetails, gclog_or_tty);
  1564     TraceCollectorStats tcs(counters());
  1565     TraceMemoryManagerStats tms(true /* Full GC */);
  1567     if (TraceGen1Time) accumulated_time()->start();
  1569     // Let the size policy know we're starting
  1570     size_policy->major_collection_begin();
  1572     // When collecting the permanent generation methodOops may be moving,
  1573     // so we either have to flush all bcp data or convert it into bci.
  1574     CodeCache::gc_prologue();
  1575     Threads::gc_prologue();
  1577     NOT_PRODUCT(ref_processor()->verify_no_references_recorded());
  1578     COMPILER2_PRESENT(DerivedPointerTable::clear());
  1580     ref_processor()->enable_discovery();
  1582     bool marked_for_unloading = false;
  1584     marking_start.update();
  1585     marking_phase(vmthread_cm, maximum_heap_compaction);
  1587 #ifndef PRODUCT
  1588     if (TraceParallelOldGCMarkingPhase) {
  1589       gclog_or_tty->print_cr("marking_phase: cas_tries %d  cas_retries %d "
  1590         "cas_by_another %d",
  1591         mark_bitmap()->cas_tries(), mark_bitmap()->cas_retries(),
  1592         mark_bitmap()->cas_by_another());
  1594 #endif  // #ifndef PRODUCT
  1596     bool max_on_system_gc = UseMaximumCompactionOnSystemGC && is_system_gc;
  1597     summary_phase(vmthread_cm, maximum_heap_compaction || max_on_system_gc);
  1599     COMPILER2_PRESENT(assert(DerivedPointerTable::is_active(), "Sanity"));
  1600     COMPILER2_PRESENT(DerivedPointerTable::set_active(false));
  1602     // adjust_roots() updates Universe::_intArrayKlassObj which is
  1603     // needed by the compaction for filling holes in the dense prefix.
  1604     adjust_roots();
  1606     compaction_start.update();
  1607     // Does the perm gen always have to be done serially because
  1608     // klasses are used in the update of an object?
  1609     compact_perm(vmthread_cm);
  1611     if (UseParallelOldGCCompacting) {
  1612       compact();
  1613     } else {
  1614       compact_serial(vmthread_cm);
  1617     // Reset the mark bitmap, summary data, and do other bookkeeping.  Must be
  1618     // done before resizing.
  1619     post_compact();
  1621     // Let the size policy know we're done
  1622     size_policy->major_collection_end(old_gen->used_in_bytes(), gc_cause);
  1624     if (UseAdaptiveSizePolicy) {
  1625       if (PrintAdaptiveSizePolicy) {
  1626         gclog_or_tty->print("AdaptiveSizeStart: ");
  1627         gclog_or_tty->stamp();
  1628         gclog_or_tty->print_cr(" collection: %d ",
  1629                        heap->total_collections());
  1630         if (Verbose) {
  1631           gclog_or_tty->print("old_gen_capacity: %d young_gen_capacity: %d"
  1632             " perm_gen_capacity: %d ",
  1633             old_gen->capacity_in_bytes(), young_gen->capacity_in_bytes(),
  1634             perm_gen->capacity_in_bytes());
  1638       // Don't check if the size_policy is ready here.  Let
  1639       // the size_policy check that internally.
  1640       if (UseAdaptiveGenerationSizePolicyAtMajorCollection &&
  1641           ((gc_cause != GCCause::_java_lang_system_gc) ||
  1642             UseAdaptiveSizePolicyWithSystemGC)) {
  1643         // Calculate optimal free space amounts
  1644         assert(young_gen->max_size() >
  1645           young_gen->from_space()->capacity_in_bytes() +
  1646           young_gen->to_space()->capacity_in_bytes(),
  1647           "Sizes of space in young gen are out-of-bounds");
  1648         size_t max_eden_size = young_gen->max_size() -
  1649           young_gen->from_space()->capacity_in_bytes() -
  1650           young_gen->to_space()->capacity_in_bytes();
  1651         size_policy->compute_generation_free_space(
  1652                               young_gen->used_in_bytes(),
  1653                               young_gen->eden_space()->used_in_bytes(),
  1654                               old_gen->used_in_bytes(),
  1655                               perm_gen->used_in_bytes(),
  1656                               young_gen->eden_space()->capacity_in_bytes(),
  1657                               old_gen->max_gen_size(),
  1658                               max_eden_size,
  1659                               true /* full gc*/,
  1660                               gc_cause);
  1662         heap->resize_old_gen(
  1663           size_policy->calculated_old_free_size_in_bytes());
  1665         // Don't resize the young generation at an major collection.  A
  1666         // desired young generation size may have been calculated but
  1667         // resizing the young generation complicates the code because the
  1668         // resizing of the old generation may have moved the boundary
  1669         // between the young generation and the old generation.  Let the
  1670         // young generation resizing happen at the minor collections.
  1672       if (PrintAdaptiveSizePolicy) {
  1673         gclog_or_tty->print_cr("AdaptiveSizeStop: collection: %d ",
  1674                        heap->total_collections());
  1678     if (UsePerfData) {
  1679       PSGCAdaptivePolicyCounters* const counters = heap->gc_policy_counters();
  1680       counters->update_counters();
  1681       counters->update_old_capacity(old_gen->capacity_in_bytes());
  1682       counters->update_young_capacity(young_gen->capacity_in_bytes());
  1685     heap->resize_all_tlabs();
  1687     // We collected the perm gen, so we'll resize it here.
  1688     perm_gen->compute_new_size(pre_gc_values.perm_gen_used());
  1690     if (TraceGen1Time) accumulated_time()->stop();
  1692     if (PrintGC) {
  1693       if (PrintGCDetails) {
  1694         // No GC timestamp here.  This is after GC so it would be confusing.
  1695         young_gen->print_used_change(pre_gc_values.young_gen_used());
  1696         old_gen->print_used_change(pre_gc_values.old_gen_used());
  1697         heap->print_heap_change(pre_gc_values.heap_used());
  1698         // Print perm gen last (print_heap_change() excludes the perm gen).
  1699         perm_gen->print_used_change(pre_gc_values.perm_gen_used());
  1700       } else {
  1701         heap->print_heap_change(pre_gc_values.heap_used());
  1705     // Track memory usage and detect low memory
  1706     MemoryService::track_memory_usage();
  1707     heap->update_counters();
  1709     if (PrintGCDetails) {
  1710       if (size_policy->print_gc_time_limit_would_be_exceeded()) {
  1711         if (size_policy->gc_time_limit_exceeded()) {
  1712           gclog_or_tty->print_cr("      GC time is exceeding GCTimeLimit "
  1713             "of %d%%", GCTimeLimit);
  1714         } else {
  1715           gclog_or_tty->print_cr("      GC time would exceed GCTimeLimit "
  1716             "of %d%%", GCTimeLimit);
  1719       size_policy->set_print_gc_time_limit_would_be_exceeded(false);
  1723   if (VerifyAfterGC && heap->total_collections() >= VerifyGCStartAt) {
  1724     HandleMark hm;  // Discard invalid handles created during verification
  1725     gclog_or_tty->print(" VerifyAfterGC:");
  1726     Universe::verify(false);
  1729   // Re-verify object start arrays
  1730   if (VerifyObjectStartArray &&
  1731       VerifyAfterGC) {
  1732     old_gen->verify_object_start_array();
  1733     perm_gen->verify_object_start_array();
  1736   if (ZapUnusedHeapArea) {
  1737     old_gen->object_space()->check_mangled_unused_area_complete();
  1738     perm_gen->object_space()->check_mangled_unused_area_complete();
  1741   NOT_PRODUCT(ref_processor()->verify_no_references_recorded());
  1743   collection_exit.update();
  1745   if (PrintHeapAtGC) {
  1746     Universe::print_heap_after_gc();
  1748   if (PrintGCTaskTimeStamps) {
  1749     gclog_or_tty->print_cr("VM-Thread " INT64_FORMAT " " INT64_FORMAT " "
  1750                            INT64_FORMAT,
  1751                            marking_start.ticks(), compaction_start.ticks(),
  1752                            collection_exit.ticks());
  1753     gc_task_manager()->print_task_time_stamps();
  1757 bool PSParallelCompact::absorb_live_data_from_eden(PSAdaptiveSizePolicy* size_policy,
  1758                                              PSYoungGen* young_gen,
  1759                                              PSOldGen* old_gen) {
  1760   MutableSpace* const eden_space = young_gen->eden_space();
  1761   assert(!eden_space->is_empty(), "eden must be non-empty");
  1762   assert(young_gen->virtual_space()->alignment() ==
  1763          old_gen->virtual_space()->alignment(), "alignments do not match");
  1765   if (!(UseAdaptiveSizePolicy && UseAdaptiveGCBoundary)) {
  1766     return false;
  1769   // Both generations must be completely committed.
  1770   if (young_gen->virtual_space()->uncommitted_size() != 0) {
  1771     return false;
  1773   if (old_gen->virtual_space()->uncommitted_size() != 0) {
  1774     return false;
  1777   // Figure out how much to take from eden.  Include the average amount promoted
  1778   // in the total; otherwise the next young gen GC will simply bail out to a
  1779   // full GC.
  1780   const size_t alignment = old_gen->virtual_space()->alignment();
  1781   const size_t eden_used = eden_space->used_in_bytes();
  1782   const size_t promoted = (size_t)size_policy->avg_promoted()->padded_average();
  1783   const size_t absorb_size = align_size_up(eden_used + promoted, alignment);
  1784   const size_t eden_capacity = eden_space->capacity_in_bytes();
  1786   if (absorb_size >= eden_capacity) {
  1787     return false; // Must leave some space in eden.
  1790   const size_t new_young_size = young_gen->capacity_in_bytes() - absorb_size;
  1791   if (new_young_size < young_gen->min_gen_size()) {
  1792     return false; // Respect young gen minimum size.
  1795   if (TraceAdaptiveGCBoundary && Verbose) {
  1796     gclog_or_tty->print(" absorbing " SIZE_FORMAT "K:  "
  1797                         "eden " SIZE_FORMAT "K->" SIZE_FORMAT "K "
  1798                         "from " SIZE_FORMAT "K, to " SIZE_FORMAT "K "
  1799                         "young_gen " SIZE_FORMAT "K->" SIZE_FORMAT "K ",
  1800                         absorb_size / K,
  1801                         eden_capacity / K, (eden_capacity - absorb_size) / K,
  1802                         young_gen->from_space()->used_in_bytes() / K,
  1803                         young_gen->to_space()->used_in_bytes() / K,
  1804                         young_gen->capacity_in_bytes() / K, new_young_size / K);
  1807   // Fill the unused part of the old gen.
  1808   MutableSpace* const old_space = old_gen->object_space();
  1809   MemRegion old_gen_unused(old_space->top(), old_space->end());
  1810   if (!old_gen_unused.is_empty()) {
  1811     SharedHeap::fill_region_with_object(old_gen_unused);
  1814   // Take the live data from eden and set both top and end in the old gen to
  1815   // eden top.  (Need to set end because reset_after_change() mangles the region
  1816   // from end to virtual_space->high() in debug builds).
  1817   HeapWord* const new_top = eden_space->top();
  1818   old_gen->virtual_space()->expand_into(young_gen->virtual_space(),
  1819                                         absorb_size);
  1820   young_gen->reset_after_change();
  1821   old_space->set_top(new_top);
  1822   old_space->set_end(new_top);
  1823   old_gen->reset_after_change();
  1825   // Update the object start array for the filler object and the data from eden.
  1826   ObjectStartArray* const start_array = old_gen->start_array();
  1827   HeapWord* const start = old_gen_unused.start();
  1828   for (HeapWord* addr = start; addr < new_top; addr += oop(addr)->size()) {
  1829     start_array->allocate_block(addr);
  1832   // Could update the promoted average here, but it is not typically updated at
  1833   // full GCs and the value to use is unclear.  Something like
  1834   //
  1835   // cur_promoted_avg + absorb_size / number_of_scavenges_since_last_full_gc.
  1837   size_policy->set_bytes_absorbed_from_eden(absorb_size);
  1838   return true;
  1841 GCTaskManager* const PSParallelCompact::gc_task_manager() {
  1842   assert(ParallelScavengeHeap::gc_task_manager() != NULL,
  1843     "shouldn't return NULL");
  1844   return ParallelScavengeHeap::gc_task_manager();
  1847 void PSParallelCompact::marking_phase(ParCompactionManager* cm,
  1848                                       bool maximum_heap_compaction) {
  1849   // Recursively traverse all live objects and mark them
  1850   EventMark m("1 mark object");
  1851   TraceTime tm("marking phase", print_phases(), true, gclog_or_tty);
  1853   ParallelScavengeHeap* heap = gc_heap();
  1854   uint parallel_gc_threads = heap->gc_task_manager()->workers();
  1855   TaskQueueSetSuper* qset = ParCompactionManager::region_array();
  1856   ParallelTaskTerminator terminator(parallel_gc_threads, qset);
  1858   PSParallelCompact::MarkAndPushClosure mark_and_push_closure(cm);
  1859   PSParallelCompact::FollowStackClosure follow_stack_closure(cm);
  1862     TraceTime tm_m("par mark", print_phases(), true, gclog_or_tty);
  1864     GCTaskQueue* q = GCTaskQueue::create();
  1866     q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::universe));
  1867     q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::jni_handles));
  1868     // We scan the thread roots in parallel
  1869     Threads::create_thread_roots_marking_tasks(q);
  1870     q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::object_synchronizer));
  1871     q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::flat_profiler));
  1872     q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::management));
  1873     q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::system_dictionary));
  1874     q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::jvmti));
  1875     q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::vm_symbols));
  1877     if (parallel_gc_threads > 1) {
  1878       for (uint j = 0; j < parallel_gc_threads; j++) {
  1879         q->enqueue(new StealMarkingTask(&terminator));
  1883     WaitForBarrierGCTask* fin = WaitForBarrierGCTask::create();
  1884     q->enqueue(fin);
  1886     gc_task_manager()->add_list(q);
  1888     fin->wait_for();
  1890     // We have to release the barrier tasks!
  1891     WaitForBarrierGCTask::destroy(fin);
  1894   // Process reference objects found during marking
  1896     TraceTime tm_r("reference processing", print_phases(), true, gclog_or_tty);
  1897     ReferencePolicy *soft_ref_policy;
  1898     if (maximum_heap_compaction) {
  1899       soft_ref_policy = new AlwaysClearPolicy();
  1900     } else {
  1901 #ifdef COMPILER2
  1902       soft_ref_policy = new LRUMaxHeapPolicy();
  1903 #else
  1904       soft_ref_policy = new LRUCurrentHeapPolicy();
  1905 #endif // COMPILER2
  1907     assert(soft_ref_policy != NULL, "No soft reference policy");
  1908     if (ref_processor()->processing_is_mt()) {
  1909       RefProcTaskExecutor task_executor;
  1910       ref_processor()->process_discovered_references(
  1911         soft_ref_policy, is_alive_closure(), &mark_and_push_closure,
  1912         &follow_stack_closure, &task_executor);
  1913     } else {
  1914       ref_processor()->process_discovered_references(
  1915         soft_ref_policy, is_alive_closure(), &mark_and_push_closure,
  1916         &follow_stack_closure, NULL);
  1920   TraceTime tm_c("class unloading", print_phases(), true, gclog_or_tty);
  1921   // Follow system dictionary roots and unload classes.
  1922   bool purged_class = SystemDictionary::do_unloading(is_alive_closure());
  1924   // Follow code cache roots.
  1925   CodeCache::do_unloading(is_alive_closure(), &mark_and_push_closure,
  1926                           purged_class);
  1927   follow_stack(cm); // Flush marking stack.
  1929   // Update subklass/sibling/implementor links of live klasses
  1930   // revisit_klass_stack is used in follow_weak_klass_links().
  1931   follow_weak_klass_links(cm);
  1933   // Visit symbol and interned string tables and delete unmarked oops
  1934   SymbolTable::unlink(is_alive_closure());
  1935   StringTable::unlink(is_alive_closure());
  1937   assert(cm->marking_stack()->size() == 0, "stack should be empty by now");
  1938   assert(cm->overflow_stack()->is_empty(), "stack should be empty by now");
  1941 // This should be moved to the shared markSweep code!
  1942 class PSAlwaysTrueClosure: public BoolObjectClosure {
  1943 public:
  1944   void do_object(oop p) { ShouldNotReachHere(); }
  1945   bool do_object_b(oop p) { return true; }
  1946 };
  1947 static PSAlwaysTrueClosure always_true;
  1949 void PSParallelCompact::adjust_roots() {
  1950   // Adjust the pointers to reflect the new locations
  1951   EventMark m("3 adjust roots");
  1952   TraceTime tm("adjust roots", print_phases(), true, gclog_or_tty);
  1954   // General strong roots.
  1955   Universe::oops_do(adjust_root_pointer_closure());
  1956   ReferenceProcessor::oops_do(adjust_root_pointer_closure());
  1957   JNIHandles::oops_do(adjust_root_pointer_closure());   // Global (strong) JNI handles
  1958   Threads::oops_do(adjust_root_pointer_closure());
  1959   ObjectSynchronizer::oops_do(adjust_root_pointer_closure());
  1960   FlatProfiler::oops_do(adjust_root_pointer_closure());
  1961   Management::oops_do(adjust_root_pointer_closure());
  1962   JvmtiExport::oops_do(adjust_root_pointer_closure());
  1963   // SO_AllClasses
  1964   SystemDictionary::oops_do(adjust_root_pointer_closure());
  1965   vmSymbols::oops_do(adjust_root_pointer_closure());
  1967   // Now adjust pointers in remaining weak roots.  (All of which should
  1968   // have been cleared if they pointed to non-surviving objects.)
  1969   // Global (weak) JNI handles
  1970   JNIHandles::weak_oops_do(&always_true, adjust_root_pointer_closure());
  1972   CodeCache::oops_do(adjust_pointer_closure());
  1973   SymbolTable::oops_do(adjust_root_pointer_closure());
  1974   StringTable::oops_do(adjust_root_pointer_closure());
  1975   ref_processor()->weak_oops_do(adjust_root_pointer_closure());
  1976   // Roots were visited so references into the young gen in roots
  1977   // may have been scanned.  Process them also.
  1978   // Should the reference processor have a span that excludes
  1979   // young gen objects?
  1980   PSScavenge::reference_processor()->weak_oops_do(
  1981                                               adjust_root_pointer_closure());
  1984 void PSParallelCompact::compact_perm(ParCompactionManager* cm) {
  1985   EventMark m("4 compact perm");
  1986   TraceTime tm("compact perm gen", print_phases(), true, gclog_or_tty);
  1987   // trace("4");
  1989   gc_heap()->perm_gen()->start_array()->reset();
  1990   move_and_update(cm, perm_space_id);
  1993 void PSParallelCompact::enqueue_region_draining_tasks(GCTaskQueue* q,
  1994                                                       uint parallel_gc_threads)
  1996   TraceTime tm("drain task setup", print_phases(), true, gclog_or_tty);
  1998   const unsigned int task_count = MAX2(parallel_gc_threads, 1U);
  1999   for (unsigned int j = 0; j < task_count; j++) {
  2000     q->enqueue(new DrainStacksCompactionTask());
  2003   // Find all regions that are available (can be filled immediately) and
  2004   // distribute them to the thread stacks.  The iteration is done in reverse
  2005   // order (high to low) so the regions will be removed in ascending order.
  2007   const ParallelCompactData& sd = PSParallelCompact::summary_data();
  2009   size_t fillable_regions = 0;   // A count for diagnostic purposes.
  2010   unsigned int which = 0;       // The worker thread number.
  2012   for (unsigned int id = to_space_id; id > perm_space_id; --id) {
  2013     SpaceInfo* const space_info = _space_info + id;
  2014     MutableSpace* const space = space_info->space();
  2015     HeapWord* const new_top = space_info->new_top();
  2017     const size_t beg_region = sd.addr_to_region_idx(space_info->dense_prefix());
  2018     const size_t end_region =
  2019       sd.addr_to_region_idx(sd.region_align_up(new_top));
  2020     assert(end_region > 0, "perm gen cannot be empty");
  2022     for (size_t cur = end_region - 1; cur >= beg_region; --cur) {
  2023       if (sd.region(cur)->claim_unsafe()) {
  2024         ParCompactionManager* cm = ParCompactionManager::manager_array(which);
  2025         cm->save_for_processing(cur);
  2027         if (TraceParallelOldGCCompactionPhase && Verbose) {
  2028           const size_t count_mod_8 = fillable_regions & 7;
  2029           if (count_mod_8 == 0) gclog_or_tty->print("fillable: ");
  2030           gclog_or_tty->print(" " SIZE_FORMAT_W(7), cur);
  2031           if (count_mod_8 == 7) gclog_or_tty->cr();
  2034         NOT_PRODUCT(++fillable_regions;)
  2036         // Assign regions to threads in round-robin fashion.
  2037         if (++which == task_count) {
  2038           which = 0;
  2044   if (TraceParallelOldGCCompactionPhase) {
  2045     if (Verbose && (fillable_regions & 7) != 0) gclog_or_tty->cr();
  2046     gclog_or_tty->print_cr("%u initially fillable regions", fillable_regions);
  2050 #define PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING 4
  2052 void PSParallelCompact::enqueue_dense_prefix_tasks(GCTaskQueue* q,
  2053                                                     uint parallel_gc_threads) {
  2054   TraceTime tm("dense prefix task setup", print_phases(), true, gclog_or_tty);
  2056   ParallelCompactData& sd = PSParallelCompact::summary_data();
  2058   // Iterate over all the spaces adding tasks for updating
  2059   // regions in the dense prefix.  Assume that 1 gc thread
  2060   // will work on opening the gaps and the remaining gc threads
  2061   // will work on the dense prefix.
  2062   SpaceId space_id = old_space_id;
  2063   while (space_id != last_space_id) {
  2064     HeapWord* const dense_prefix_end = _space_info[space_id].dense_prefix();
  2065     const MutableSpace* const space = _space_info[space_id].space();
  2067     if (dense_prefix_end == space->bottom()) {
  2068       // There is no dense prefix for this space.
  2069       space_id = next_compaction_space_id(space_id);
  2070       continue;
  2073     // The dense prefix is before this region.
  2074     size_t region_index_end_dense_prefix =
  2075         sd.addr_to_region_idx(dense_prefix_end);
  2076     RegionData* const dense_prefix_cp =
  2077       sd.region(region_index_end_dense_prefix);
  2078     assert(dense_prefix_end == space->end() ||
  2079            dense_prefix_cp->available() ||
  2080            dense_prefix_cp->claimed(),
  2081            "The region after the dense prefix should always be ready to fill");
  2083     size_t region_index_start = sd.addr_to_region_idx(space->bottom());
  2085     // Is there dense prefix work?
  2086     size_t total_dense_prefix_regions =
  2087       region_index_end_dense_prefix - region_index_start;
  2088     // How many regions of the dense prefix should be given to
  2089     // each thread?
  2090     if (total_dense_prefix_regions > 0) {
  2091       uint tasks_for_dense_prefix = 1;
  2092       if (UseParallelDensePrefixUpdate) {
  2093         if (total_dense_prefix_regions <=
  2094             (parallel_gc_threads * PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING)) {
  2095           // Don't over partition.  This assumes that
  2096           // PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING is a small integer value
  2097           // so there are not many regions to process.
  2098           tasks_for_dense_prefix = parallel_gc_threads;
  2099         } else {
  2100           // Over partition
  2101           tasks_for_dense_prefix = parallel_gc_threads *
  2102             PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING;
  2105       size_t regions_per_thread = total_dense_prefix_regions /
  2106         tasks_for_dense_prefix;
  2107       // Give each thread at least 1 region.
  2108       if (regions_per_thread == 0) {
  2109         regions_per_thread = 1;
  2112       for (uint k = 0; k < tasks_for_dense_prefix; k++) {
  2113         if (region_index_start >= region_index_end_dense_prefix) {
  2114           break;
  2116         // region_index_end is not processed
  2117         size_t region_index_end = MIN2(region_index_start + regions_per_thread,
  2118                                        region_index_end_dense_prefix);
  2119         q->enqueue(new UpdateDensePrefixTask(
  2120                                  space_id,
  2121                                  region_index_start,
  2122                                  region_index_end));
  2123         region_index_start = region_index_end;
  2126     // This gets any part of the dense prefix that did not
  2127     // fit evenly.
  2128     if (region_index_start < region_index_end_dense_prefix) {
  2129       q->enqueue(new UpdateDensePrefixTask(
  2130                                  space_id,
  2131                                  region_index_start,
  2132                                  region_index_end_dense_prefix));
  2134     space_id = next_compaction_space_id(space_id);
  2135   }  // End tasks for dense prefix
  2138 void PSParallelCompact::enqueue_region_stealing_tasks(
  2139                                      GCTaskQueue* q,
  2140                                      ParallelTaskTerminator* terminator_ptr,
  2141                                      uint parallel_gc_threads) {
  2142   TraceTime tm("steal task setup", print_phases(), true, gclog_or_tty);
  2144   // Once a thread has drained it's stack, it should try to steal regions from
  2145   // other threads.
  2146   if (parallel_gc_threads > 1) {
  2147     for (uint j = 0; j < parallel_gc_threads; j++) {
  2148       q->enqueue(new StealRegionCompactionTask(terminator_ptr));
  2153 void PSParallelCompact::compact() {
  2154   EventMark m("5 compact");
  2155   // trace("5");
  2156   TraceTime tm("compaction phase", print_phases(), true, gclog_or_tty);
  2158   ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
  2159   assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
  2160   PSOldGen* old_gen = heap->old_gen();
  2161   old_gen->start_array()->reset();
  2162   uint parallel_gc_threads = heap->gc_task_manager()->workers();
  2163   TaskQueueSetSuper* qset = ParCompactionManager::region_array();
  2164   ParallelTaskTerminator terminator(parallel_gc_threads, qset);
  2166   GCTaskQueue* q = GCTaskQueue::create();
  2167   enqueue_region_draining_tasks(q, parallel_gc_threads);
  2168   enqueue_dense_prefix_tasks(q, parallel_gc_threads);
  2169   enqueue_region_stealing_tasks(q, &terminator, parallel_gc_threads);
  2172     TraceTime tm_pc("par compact", print_phases(), true, gclog_or_tty);
  2174     WaitForBarrierGCTask* fin = WaitForBarrierGCTask::create();
  2175     q->enqueue(fin);
  2177     gc_task_manager()->add_list(q);
  2179     fin->wait_for();
  2181     // We have to release the barrier tasks!
  2182     WaitForBarrierGCTask::destroy(fin);
  2184 #ifdef  ASSERT
  2185     // Verify that all regions have been processed before the deferred updates.
  2186     // Note that perm_space_id is skipped; this type of verification is not
  2187     // valid until the perm gen is compacted by regions.
  2188     for (unsigned int id = old_space_id; id < last_space_id; ++id) {
  2189       verify_complete(SpaceId(id));
  2191 #endif
  2195     // Update the deferred objects, if any.  Any compaction manager can be used.
  2196     TraceTime tm_du("deferred updates", print_phases(), true, gclog_or_tty);
  2197     ParCompactionManager* cm = ParCompactionManager::manager_array(0);
  2198     for (unsigned int id = old_space_id; id < last_space_id; ++id) {
  2199       update_deferred_objects(cm, SpaceId(id));
  2204 #ifdef  ASSERT
  2205 void PSParallelCompact::verify_complete(SpaceId space_id) {
  2206   // All Regions between space bottom() to new_top() should be marked as filled
  2207   // and all Regions between new_top() and top() should be available (i.e.,
  2208   // should have been emptied).
  2209   ParallelCompactData& sd = summary_data();
  2210   SpaceInfo si = _space_info[space_id];
  2211   HeapWord* new_top_addr = sd.region_align_up(si.new_top());
  2212   HeapWord* old_top_addr = sd.region_align_up(si.space()->top());
  2213   const size_t beg_region = sd.addr_to_region_idx(si.space()->bottom());
  2214   const size_t new_top_region = sd.addr_to_region_idx(new_top_addr);
  2215   const size_t old_top_region = sd.addr_to_region_idx(old_top_addr);
  2217   bool issued_a_warning = false;
  2219   size_t cur_region;
  2220   for (cur_region = beg_region; cur_region < new_top_region; ++cur_region) {
  2221     const RegionData* const c = sd.region(cur_region);
  2222     if (!c->completed()) {
  2223       warning("region " SIZE_FORMAT " not filled:  "
  2224               "destination_count=" SIZE_FORMAT,
  2225               cur_region, c->destination_count());
  2226       issued_a_warning = true;
  2230   for (cur_region = new_top_region; cur_region < old_top_region; ++cur_region) {
  2231     const RegionData* const c = sd.region(cur_region);
  2232     if (!c->available()) {
  2233       warning("region " SIZE_FORMAT " not empty:   "
  2234               "destination_count=" SIZE_FORMAT,
  2235               cur_region, c->destination_count());
  2236       issued_a_warning = true;
  2240   if (issued_a_warning) {
  2241     print_region_ranges();
  2244 #endif  // #ifdef ASSERT
  2246 void PSParallelCompact::compact_serial(ParCompactionManager* cm) {
  2247   EventMark m("5 compact serial");
  2248   TraceTime tm("compact serial", print_phases(), true, gclog_or_tty);
  2250   ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
  2251   assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
  2253   PSYoungGen* young_gen = heap->young_gen();
  2254   PSOldGen* old_gen = heap->old_gen();
  2256   old_gen->start_array()->reset();
  2257   old_gen->move_and_update(cm);
  2258   young_gen->move_and_update(cm);
  2262 void PSParallelCompact::follow_stack(ParCompactionManager* cm) {
  2263   while(!cm->overflow_stack()->is_empty()) {
  2264     oop obj = cm->overflow_stack()->pop();
  2265     obj->follow_contents(cm);
  2268   oop obj;
  2269   // obj is a reference!!!
  2270   while (cm->marking_stack()->pop_local(obj)) {
  2271     // It would be nice to assert about the type of objects we might
  2272     // pop, but they can come from anywhere, unfortunately.
  2273     obj->follow_contents(cm);
  2277 void
  2278 PSParallelCompact::follow_weak_klass_links(ParCompactionManager* serial_cm) {
  2279   // All klasses on the revisit stack are marked at this point.
  2280   // Update and follow all subklass, sibling and implementor links.
  2281   for (uint i = 0; i < ParallelGCThreads+1; i++) {
  2282     ParCompactionManager* cm = ParCompactionManager::manager_array(i);
  2283     KeepAliveClosure keep_alive_closure(cm);
  2284     for (int i = 0; i < cm->revisit_klass_stack()->length(); i++) {
  2285       cm->revisit_klass_stack()->at(i)->follow_weak_klass_links(
  2286         is_alive_closure(),
  2287         &keep_alive_closure);
  2289     follow_stack(cm);
  2293 void
  2294 PSParallelCompact::revisit_weak_klass_link(ParCompactionManager* cm, Klass* k) {
  2295   cm->revisit_klass_stack()->push(k);
  2298 #ifdef VALIDATE_MARK_SWEEP
  2300 void PSParallelCompact::track_adjusted_pointer(void* p, bool isroot) {
  2301   if (!ValidateMarkSweep)
  2302     return;
  2304   if (!isroot) {
  2305     if (_pointer_tracking) {
  2306       guarantee(_adjusted_pointers->contains(p), "should have seen this pointer");
  2307       _adjusted_pointers->remove(p);
  2309   } else {
  2310     ptrdiff_t index = _root_refs_stack->find(p);
  2311     if (index != -1) {
  2312       int l = _root_refs_stack->length();
  2313       if (l > 0 && l - 1 != index) {
  2314         void* last = _root_refs_stack->pop();
  2315         assert(last != p, "should be different");
  2316         _root_refs_stack->at_put(index, last);
  2317       } else {
  2318         _root_refs_stack->remove(p);
  2325 void PSParallelCompact::check_adjust_pointer(void* p) {
  2326   _adjusted_pointers->push(p);
  2330 class AdjusterTracker: public OopClosure {
  2331  public:
  2332   AdjusterTracker() {};
  2333   void do_oop(oop* o)         { PSParallelCompact::check_adjust_pointer(o); }
  2334   void do_oop(narrowOop* o)   { PSParallelCompact::check_adjust_pointer(o); }
  2335 };
  2338 void PSParallelCompact::track_interior_pointers(oop obj) {
  2339   if (ValidateMarkSweep) {
  2340     _adjusted_pointers->clear();
  2341     _pointer_tracking = true;
  2343     AdjusterTracker checker;
  2344     obj->oop_iterate(&checker);
  2349 void PSParallelCompact::check_interior_pointers() {
  2350   if (ValidateMarkSweep) {
  2351     _pointer_tracking = false;
  2352     guarantee(_adjusted_pointers->length() == 0, "should have processed the same pointers");
  2357 void PSParallelCompact::reset_live_oop_tracking(bool at_perm) {
  2358   if (ValidateMarkSweep) {
  2359     guarantee((size_t)_live_oops->length() == _live_oops_index, "should be at end of live oops");
  2360     _live_oops_index = at_perm ? _live_oops_index_at_perm : 0;
  2365 void PSParallelCompact::register_live_oop(oop p, size_t size) {
  2366   if (ValidateMarkSweep) {
  2367     _live_oops->push(p);
  2368     _live_oops_size->push(size);
  2369     _live_oops_index++;
  2373 void PSParallelCompact::validate_live_oop(oop p, size_t size) {
  2374   if (ValidateMarkSweep) {
  2375     oop obj = _live_oops->at((int)_live_oops_index);
  2376     guarantee(obj == p, "should be the same object");
  2377     guarantee(_live_oops_size->at((int)_live_oops_index) == size, "should be the same size");
  2378     _live_oops_index++;
  2382 void PSParallelCompact::live_oop_moved_to(HeapWord* q, size_t size,
  2383                                   HeapWord* compaction_top) {
  2384   assert(oop(q)->forwardee() == NULL || oop(q)->forwardee() == oop(compaction_top),
  2385          "should be moved to forwarded location");
  2386   if (ValidateMarkSweep) {
  2387     PSParallelCompact::validate_live_oop(oop(q), size);
  2388     _live_oops_moved_to->push(oop(compaction_top));
  2390   if (RecordMarkSweepCompaction) {
  2391     _cur_gc_live_oops->push(q);
  2392     _cur_gc_live_oops_moved_to->push(compaction_top);
  2393     _cur_gc_live_oops_size->push(size);
  2398 void PSParallelCompact::compaction_complete() {
  2399   if (RecordMarkSweepCompaction) {
  2400     GrowableArray<HeapWord*>* _tmp_live_oops          = _cur_gc_live_oops;
  2401     GrowableArray<HeapWord*>* _tmp_live_oops_moved_to = _cur_gc_live_oops_moved_to;
  2402     GrowableArray<size_t>   * _tmp_live_oops_size     = _cur_gc_live_oops_size;
  2404     _cur_gc_live_oops           = _last_gc_live_oops;
  2405     _cur_gc_live_oops_moved_to  = _last_gc_live_oops_moved_to;
  2406     _cur_gc_live_oops_size      = _last_gc_live_oops_size;
  2407     _last_gc_live_oops          = _tmp_live_oops;
  2408     _last_gc_live_oops_moved_to = _tmp_live_oops_moved_to;
  2409     _last_gc_live_oops_size     = _tmp_live_oops_size;
  2414 void PSParallelCompact::print_new_location_of_heap_address(HeapWord* q) {
  2415   if (!RecordMarkSweepCompaction) {
  2416     tty->print_cr("Requires RecordMarkSweepCompaction to be enabled");
  2417     return;
  2420   if (_last_gc_live_oops == NULL) {
  2421     tty->print_cr("No compaction information gathered yet");
  2422     return;
  2425   for (int i = 0; i < _last_gc_live_oops->length(); i++) {
  2426     HeapWord* old_oop = _last_gc_live_oops->at(i);
  2427     size_t    sz      = _last_gc_live_oops_size->at(i);
  2428     if (old_oop <= q && q < (old_oop + sz)) {
  2429       HeapWord* new_oop = _last_gc_live_oops_moved_to->at(i);
  2430       size_t offset = (q - old_oop);
  2431       tty->print_cr("Address " PTR_FORMAT, q);
  2432       tty->print_cr(" Was in oop " PTR_FORMAT ", size %d, at offset %d", old_oop, sz, offset);
  2433       tty->print_cr(" Now in oop " PTR_FORMAT ", actual address " PTR_FORMAT, new_oop, new_oop + offset);
  2434       return;
  2438   tty->print_cr("Address " PTR_FORMAT " not found in live oop information from last GC", q);
  2440 #endif //VALIDATE_MARK_SWEEP
  2442 // Update interior oops in the ranges of regions [beg_region, end_region).
  2443 void
  2444 PSParallelCompact::update_and_deadwood_in_dense_prefix(ParCompactionManager* cm,
  2445                                                        SpaceId space_id,
  2446                                                        size_t beg_region,
  2447                                                        size_t end_region) {
  2448   ParallelCompactData& sd = summary_data();
  2449   ParMarkBitMap* const mbm = mark_bitmap();
  2451   HeapWord* beg_addr = sd.region_to_addr(beg_region);
  2452   HeapWord* const end_addr = sd.region_to_addr(end_region);
  2453   assert(beg_region <= end_region, "bad region range");
  2454   assert(end_addr <= dense_prefix(space_id), "not in the dense prefix");
  2456 #ifdef  ASSERT
  2457   // Claim the regions to avoid triggering an assert when they are marked as
  2458   // filled.
  2459   for (size_t claim_region = beg_region; claim_region < end_region; ++claim_region) {
  2460     assert(sd.region(claim_region)->claim_unsafe(), "claim() failed");
  2462 #endif  // #ifdef ASSERT
  2464   if (beg_addr != space(space_id)->bottom()) {
  2465     // Find the first live object or block of dead space that *starts* in this
  2466     // range of regions.  If a partial object crosses onto the region, skip it;
  2467     // it will be marked for 'deferred update' when the object head is
  2468     // processed.  If dead space crosses onto the region, it is also skipped; it
  2469     // will be filled when the prior region is processed.  If neither of those
  2470     // apply, the first word in the region is the start of a live object or dead
  2471     // space.
  2472     assert(beg_addr > space(space_id)->bottom(), "sanity");
  2473     const RegionData* const cp = sd.region(beg_region);
  2474     if (cp->partial_obj_size() != 0) {
  2475       beg_addr = sd.partial_obj_end(beg_region);
  2476     } else if (dead_space_crosses_boundary(cp, mbm->addr_to_bit(beg_addr))) {
  2477       beg_addr = mbm->find_obj_beg(beg_addr, end_addr);
  2481   if (beg_addr < end_addr) {
  2482     // A live object or block of dead space starts in this range of Regions.
  2483      HeapWord* const dense_prefix_end = dense_prefix(space_id);
  2485     // Create closures and iterate.
  2486     UpdateOnlyClosure update_closure(mbm, cm, space_id);
  2487     FillClosure fill_closure(cm, space_id);
  2488     ParMarkBitMap::IterationStatus status;
  2489     status = mbm->iterate(&update_closure, &fill_closure, beg_addr, end_addr,
  2490                           dense_prefix_end);
  2491     if (status == ParMarkBitMap::incomplete) {
  2492       update_closure.do_addr(update_closure.source());
  2496   // Mark the regions as filled.
  2497   RegionData* const beg_cp = sd.region(beg_region);
  2498   RegionData* const end_cp = sd.region(end_region);
  2499   for (RegionData* cp = beg_cp; cp < end_cp; ++cp) {
  2500     cp->set_completed();
  2504 // Return the SpaceId for the space containing addr.  If addr is not in the
  2505 // heap, last_space_id is returned.  In debug mode it expects the address to be
  2506 // in the heap and asserts such.
  2507 PSParallelCompact::SpaceId PSParallelCompact::space_id(HeapWord* addr) {
  2508   assert(Universe::heap()->is_in_reserved(addr), "addr not in the heap");
  2510   for (unsigned int id = perm_space_id; id < last_space_id; ++id) {
  2511     if (_space_info[id].space()->contains(addr)) {
  2512       return SpaceId(id);
  2516   assert(false, "no space contains the addr");
  2517   return last_space_id;
  2520 void PSParallelCompact::update_deferred_objects(ParCompactionManager* cm,
  2521                                                 SpaceId id) {
  2522   assert(id < last_space_id, "bad space id");
  2524   ParallelCompactData& sd = summary_data();
  2525   const SpaceInfo* const space_info = _space_info + id;
  2526   ObjectStartArray* const start_array = space_info->start_array();
  2528   const MutableSpace* const space = space_info->space();
  2529   assert(space_info->dense_prefix() >= space->bottom(), "dense_prefix not set");
  2530   HeapWord* const beg_addr = space_info->dense_prefix();
  2531   HeapWord* const end_addr = sd.region_align_up(space_info->new_top());
  2533   const RegionData* const beg_region = sd.addr_to_region_ptr(beg_addr);
  2534   const RegionData* const end_region = sd.addr_to_region_ptr(end_addr);
  2535   const RegionData* cur_region;
  2536   for (cur_region = beg_region; cur_region < end_region; ++cur_region) {
  2537     HeapWord* const addr = cur_region->deferred_obj_addr();
  2538     if (addr != NULL) {
  2539       if (start_array != NULL) {
  2540         start_array->allocate_block(addr);
  2542       oop(addr)->update_contents(cm);
  2543       assert(oop(addr)->is_oop_or_null(), "should be an oop now");
  2548 // Skip over count live words starting from beg, and return the address of the
  2549 // next live word.  Unless marked, the word corresponding to beg is assumed to
  2550 // be dead.  Callers must either ensure beg does not correspond to the middle of
  2551 // an object, or account for those live words in some other way.  Callers must
  2552 // also ensure that there are enough live words in the range [beg, end) to skip.
  2553 HeapWord*
  2554 PSParallelCompact::skip_live_words(HeapWord* beg, HeapWord* end, size_t count)
  2556   assert(count > 0, "sanity");
  2558   ParMarkBitMap* m = mark_bitmap();
  2559   idx_t bits_to_skip = m->words_to_bits(count);
  2560   idx_t cur_beg = m->addr_to_bit(beg);
  2561   const idx_t search_end = BitMap::word_align_up(m->addr_to_bit(end));
  2563   do {
  2564     cur_beg = m->find_obj_beg(cur_beg, search_end);
  2565     idx_t cur_end = m->find_obj_end(cur_beg, search_end);
  2566     const size_t obj_bits = cur_end - cur_beg + 1;
  2567     if (obj_bits > bits_to_skip) {
  2568       return m->bit_to_addr(cur_beg + bits_to_skip);
  2570     bits_to_skip -= obj_bits;
  2571     cur_beg = cur_end + 1;
  2572   } while (bits_to_skip > 0);
  2574   // Skipping the desired number of words landed just past the end of an object.
  2575   // Find the start of the next object.
  2576   cur_beg = m->find_obj_beg(cur_beg, search_end);
  2577   assert(cur_beg < m->addr_to_bit(end), "not enough live words to skip");
  2578   return m->bit_to_addr(cur_beg);
  2581 HeapWord*
  2582 PSParallelCompact::first_src_addr(HeapWord* const dest_addr,
  2583                                  size_t src_region_idx)
  2585   ParMarkBitMap* const bitmap = mark_bitmap();
  2586   const ParallelCompactData& sd = summary_data();
  2587   const size_t RegionSize = ParallelCompactData::RegionSize;
  2589   assert(sd.is_region_aligned(dest_addr), "not aligned");
  2591   const RegionData* const src_region_ptr = sd.region(src_region_idx);
  2592   const size_t partial_obj_size = src_region_ptr->partial_obj_size();
  2593   HeapWord* const src_region_destination = src_region_ptr->destination();
  2595   assert(dest_addr >= src_region_destination, "wrong src region");
  2596   assert(src_region_ptr->data_size() > 0, "src region cannot be empty");
  2598   HeapWord* const src_region_beg = sd.region_to_addr(src_region_idx);
  2599   HeapWord* const src_region_end = src_region_beg + RegionSize;
  2601   HeapWord* addr = src_region_beg;
  2602   if (dest_addr == src_region_destination) {
  2603     // Return the first live word in the source region.
  2604     if (partial_obj_size == 0) {
  2605       addr = bitmap->find_obj_beg(addr, src_region_end);
  2606       assert(addr < src_region_end, "no objects start in src region");
  2608     return addr;
  2611   // Must skip some live data.
  2612   size_t words_to_skip = dest_addr - src_region_destination;
  2613   assert(src_region_ptr->data_size() > words_to_skip, "wrong src region");
  2615   if (partial_obj_size >= words_to_skip) {
  2616     // All the live words to skip are part of the partial object.
  2617     addr += words_to_skip;
  2618     if (partial_obj_size == words_to_skip) {
  2619       // Find the first live word past the partial object.
  2620       addr = bitmap->find_obj_beg(addr, src_region_end);
  2621       assert(addr < src_region_end, "wrong src region");
  2623     return addr;
  2626   // Skip over the partial object (if any).
  2627   if (partial_obj_size != 0) {
  2628     words_to_skip -= partial_obj_size;
  2629     addr += partial_obj_size;
  2632   // Skip over live words due to objects that start in the region.
  2633   addr = skip_live_words(addr, src_region_end, words_to_skip);
  2634   assert(addr < src_region_end, "wrong src region");
  2635   return addr;
  2638 void PSParallelCompact::decrement_destination_counts(ParCompactionManager* cm,
  2639                                                      size_t beg_region,
  2640                                                      HeapWord* end_addr)
  2642   ParallelCompactData& sd = summary_data();
  2643   RegionData* const beg = sd.region(beg_region);
  2644   HeapWord* const end_addr_aligned_up = sd.region_align_up(end_addr);
  2645   RegionData* const end = sd.addr_to_region_ptr(end_addr_aligned_up);
  2646   size_t cur_idx = beg_region;
  2647   for (RegionData* cur = beg; cur < end; ++cur, ++cur_idx) {
  2648     assert(cur->data_size() > 0, "region must have live data");
  2649     cur->decrement_destination_count();
  2650     if (cur_idx <= cur->source_region() && cur->available() && cur->claim()) {
  2651       cm->save_for_processing(cur_idx);
  2656 size_t PSParallelCompact::next_src_region(MoveAndUpdateClosure& closure,
  2657                                           SpaceId& src_space_id,
  2658                                           HeapWord*& src_space_top,
  2659                                           HeapWord* end_addr)
  2661   typedef ParallelCompactData::RegionData RegionData;
  2663   ParallelCompactData& sd = PSParallelCompact::summary_data();
  2664   const size_t region_size = ParallelCompactData::RegionSize;
  2666   size_t src_region_idx = 0;
  2668   // Skip empty regions (if any) up to the top of the space.
  2669   HeapWord* const src_aligned_up = sd.region_align_up(end_addr);
  2670   RegionData* src_region_ptr = sd.addr_to_region_ptr(src_aligned_up);
  2671   HeapWord* const top_aligned_up = sd.region_align_up(src_space_top);
  2672   const RegionData* const top_region_ptr =
  2673     sd.addr_to_region_ptr(top_aligned_up);
  2674   while (src_region_ptr < top_region_ptr && src_region_ptr->data_size() == 0) {
  2675     ++src_region_ptr;
  2678   if (src_region_ptr < top_region_ptr) {
  2679     // The next source region is in the current space.  Update src_region_idx
  2680     // and the source address to match src_region_ptr.
  2681     src_region_idx = sd.region(src_region_ptr);
  2682     HeapWord* const src_region_addr = sd.region_to_addr(src_region_idx);
  2683     if (src_region_addr > closure.source()) {
  2684       closure.set_source(src_region_addr);
  2686     return src_region_idx;
  2689   // Switch to a new source space and find the first non-empty region.
  2690   unsigned int space_id = src_space_id + 1;
  2691   assert(space_id < last_space_id, "not enough spaces");
  2693   HeapWord* const destination = closure.destination();
  2695   do {
  2696     MutableSpace* space = _space_info[space_id].space();
  2697     HeapWord* const bottom = space->bottom();
  2698     const RegionData* const bottom_cp = sd.addr_to_region_ptr(bottom);
  2700     // Iterate over the spaces that do not compact into themselves.
  2701     if (bottom_cp->destination() != bottom) {
  2702       HeapWord* const top_aligned_up = sd.region_align_up(space->top());
  2703       const RegionData* const top_cp = sd.addr_to_region_ptr(top_aligned_up);
  2705       for (const RegionData* src_cp = bottom_cp; src_cp < top_cp; ++src_cp) {
  2706         if (src_cp->live_obj_size() > 0) {
  2707           // Found it.
  2708           assert(src_cp->destination() == destination,
  2709                  "first live obj in the space must match the destination");
  2710           assert(src_cp->partial_obj_size() == 0,
  2711                  "a space cannot begin with a partial obj");
  2713           src_space_id = SpaceId(space_id);
  2714           src_space_top = space->top();
  2715           const size_t src_region_idx = sd.region(src_cp);
  2716           closure.set_source(sd.region_to_addr(src_region_idx));
  2717           return src_region_idx;
  2718         } else {
  2719           assert(src_cp->data_size() == 0, "sanity");
  2723   } while (++space_id < last_space_id);
  2725   assert(false, "no source region was found");
  2726   return 0;
  2729 void PSParallelCompact::fill_region(ParCompactionManager* cm, size_t region_idx)
  2731   typedef ParMarkBitMap::IterationStatus IterationStatus;
  2732   const size_t RegionSize = ParallelCompactData::RegionSize;
  2733   ParMarkBitMap* const bitmap = mark_bitmap();
  2734   ParallelCompactData& sd = summary_data();
  2735   RegionData* const region_ptr = sd.region(region_idx);
  2737   // Get the items needed to construct the closure.
  2738   HeapWord* dest_addr = sd.region_to_addr(region_idx);
  2739   SpaceId dest_space_id = space_id(dest_addr);
  2740   ObjectStartArray* start_array = _space_info[dest_space_id].start_array();
  2741   HeapWord* new_top = _space_info[dest_space_id].new_top();
  2742   assert(dest_addr < new_top, "sanity");
  2743   const size_t words = MIN2(pointer_delta(new_top, dest_addr), RegionSize);
  2745   // Get the source region and related info.
  2746   size_t src_region_idx = region_ptr->source_region();
  2747   SpaceId src_space_id = space_id(sd.region_to_addr(src_region_idx));
  2748   HeapWord* src_space_top = _space_info[src_space_id].space()->top();
  2750   MoveAndUpdateClosure closure(bitmap, cm, start_array, dest_addr, words);
  2751   closure.set_source(first_src_addr(dest_addr, src_region_idx));
  2753   // Adjust src_region_idx to prepare for decrementing destination counts (the
  2754   // destination count is not decremented when a region is copied to itself).
  2755   if (src_region_idx == region_idx) {
  2756     src_region_idx += 1;
  2759   if (bitmap->is_unmarked(closure.source())) {
  2760     // The first source word is in the middle of an object; copy the remainder
  2761     // of the object or as much as will fit.  The fact that pointer updates were
  2762     // deferred will be noted when the object header is processed.
  2763     HeapWord* const old_src_addr = closure.source();
  2764     closure.copy_partial_obj();
  2765     if (closure.is_full()) {
  2766       decrement_destination_counts(cm, src_region_idx, closure.source());
  2767       region_ptr->set_deferred_obj_addr(NULL);
  2768       region_ptr->set_completed();
  2769       return;
  2772     HeapWord* const end_addr = sd.region_align_down(closure.source());
  2773     if (sd.region_align_down(old_src_addr) != end_addr) {
  2774       // The partial object was copied from more than one source region.
  2775       decrement_destination_counts(cm, src_region_idx, end_addr);
  2777       // Move to the next source region, possibly switching spaces as well.  All
  2778       // args except end_addr may be modified.
  2779       src_region_idx = next_src_region(closure, src_space_id, src_space_top,
  2780                                        end_addr);
  2784   do {
  2785     HeapWord* const cur_addr = closure.source();
  2786     HeapWord* const end_addr = MIN2(sd.region_align_up(cur_addr + 1),
  2787                                     src_space_top);
  2788     IterationStatus status = bitmap->iterate(&closure, cur_addr, end_addr);
  2790     if (status == ParMarkBitMap::incomplete) {
  2791       // The last obj that starts in the source region does not end in the
  2792       // region.
  2793       assert(closure.source() < end_addr, "sanity")
  2794       HeapWord* const obj_beg = closure.source();
  2795       HeapWord* const range_end = MIN2(obj_beg + closure.words_remaining(),
  2796                                        src_space_top);
  2797       HeapWord* const obj_end = bitmap->find_obj_end(obj_beg, range_end);
  2798       if (obj_end < range_end) {
  2799         // The end was found; the entire object will fit.
  2800         status = closure.do_addr(obj_beg, bitmap->obj_size(obj_beg, obj_end));
  2801         assert(status != ParMarkBitMap::would_overflow, "sanity");
  2802       } else {
  2803         // The end was not found; the object will not fit.
  2804         assert(range_end < src_space_top, "obj cannot cross space boundary");
  2805         status = ParMarkBitMap::would_overflow;
  2809     if (status == ParMarkBitMap::would_overflow) {
  2810       // The last object did not fit.  Note that interior oop updates were
  2811       // deferred, then copy enough of the object to fill the region.
  2812       region_ptr->set_deferred_obj_addr(closure.destination());
  2813       status = closure.copy_until_full(); // copies from closure.source()
  2815       decrement_destination_counts(cm, src_region_idx, closure.source());
  2816       region_ptr->set_completed();
  2817       return;
  2820     if (status == ParMarkBitMap::full) {
  2821       decrement_destination_counts(cm, src_region_idx, closure.source());
  2822       region_ptr->set_deferred_obj_addr(NULL);
  2823       region_ptr->set_completed();
  2824       return;
  2827     decrement_destination_counts(cm, src_region_idx, end_addr);
  2829     // Move to the next source region, possibly switching spaces as well.  All
  2830     // args except end_addr may be modified.
  2831     src_region_idx = next_src_region(closure, src_space_id, src_space_top,
  2832                                      end_addr);
  2833   } while (true);
  2836 void
  2837 PSParallelCompact::move_and_update(ParCompactionManager* cm, SpaceId space_id) {
  2838   const MutableSpace* sp = space(space_id);
  2839   if (sp->is_empty()) {
  2840     return;
  2843   ParallelCompactData& sd = PSParallelCompact::summary_data();
  2844   ParMarkBitMap* const bitmap = mark_bitmap();
  2845   HeapWord* const dp_addr = dense_prefix(space_id);
  2846   HeapWord* beg_addr = sp->bottom();
  2847   HeapWord* end_addr = sp->top();
  2849 #ifdef ASSERT
  2850   assert(beg_addr <= dp_addr && dp_addr <= end_addr, "bad dense prefix");
  2851   if (cm->should_verify_only()) {
  2852     VerifyUpdateClosure verify_update(cm, sp);
  2853     bitmap->iterate(&verify_update, beg_addr, end_addr);
  2854     return;
  2857   if (cm->should_reset_only()) {
  2858     ResetObjectsClosure reset_objects(cm);
  2859     bitmap->iterate(&reset_objects, beg_addr, end_addr);
  2860     return;
  2862 #endif
  2864   const size_t beg_region = sd.addr_to_region_idx(beg_addr);
  2865   const size_t dp_region = sd.addr_to_region_idx(dp_addr);
  2866   if (beg_region < dp_region) {
  2867     update_and_deadwood_in_dense_prefix(cm, space_id, beg_region, dp_region);
  2870   // The destination of the first live object that starts in the region is one
  2871   // past the end of the partial object entering the region (if any).
  2872   HeapWord* const dest_addr = sd.partial_obj_end(dp_region);
  2873   HeapWord* const new_top = _space_info[space_id].new_top();
  2874   assert(new_top >= dest_addr, "bad new_top value");
  2875   const size_t words = pointer_delta(new_top, dest_addr);
  2877   if (words > 0) {
  2878     ObjectStartArray* start_array = _space_info[space_id].start_array();
  2879     MoveAndUpdateClosure closure(bitmap, cm, start_array, dest_addr, words);
  2881     ParMarkBitMap::IterationStatus status;
  2882     status = bitmap->iterate(&closure, dest_addr, end_addr);
  2883     assert(status == ParMarkBitMap::full, "iteration not complete");
  2884     assert(bitmap->find_obj_beg(closure.source(), end_addr) == end_addr,
  2885            "live objects skipped because closure is full");
  2889 jlong PSParallelCompact::millis_since_last_gc() {
  2890   jlong ret_val = os::javaTimeMillis() - _time_of_last_gc;
  2891   // XXX See note in genCollectedHeap::millis_since_last_gc().
  2892   if (ret_val < 0) {
  2893     NOT_PRODUCT(warning("time warp: %d", ret_val);)
  2894     return 0;
  2896   return ret_val;
  2899 void PSParallelCompact::reset_millis_since_last_gc() {
  2900   _time_of_last_gc = os::javaTimeMillis();
  2903 ParMarkBitMap::IterationStatus MoveAndUpdateClosure::copy_until_full()
  2905   if (source() != destination()) {
  2906     assert(source() > destination(), "must copy to the left");
  2907     Copy::aligned_conjoint_words(source(), destination(), words_remaining());
  2909   update_state(words_remaining());
  2910   assert(is_full(), "sanity");
  2911   return ParMarkBitMap::full;
  2914 void MoveAndUpdateClosure::copy_partial_obj()
  2916   size_t words = words_remaining();
  2918   HeapWord* const range_end = MIN2(source() + words, bitmap()->region_end());
  2919   HeapWord* const end_addr = bitmap()->find_obj_end(source(), range_end);
  2920   if (end_addr < range_end) {
  2921     words = bitmap()->obj_size(source(), end_addr);
  2924   // This test is necessary; if omitted, the pointer updates to a partial object
  2925   // that crosses the dense prefix boundary could be overwritten.
  2926   if (source() != destination()) {
  2927     assert(source() > destination(), "must copy to the left");
  2928     Copy::aligned_conjoint_words(source(), destination(), words);
  2930   update_state(words);
  2933 ParMarkBitMapClosure::IterationStatus
  2934 MoveAndUpdateClosure::do_addr(HeapWord* addr, size_t words) {
  2935   assert(destination() != NULL, "sanity");
  2936   assert(bitmap()->obj_size(addr) == words, "bad size");
  2938   _source = addr;
  2939   assert(PSParallelCompact::summary_data().calc_new_pointer(source()) ==
  2940          destination(), "wrong destination");
  2942   if (words > words_remaining()) {
  2943     return ParMarkBitMap::would_overflow;
  2946   // The start_array must be updated even if the object is not moving.
  2947   if (_start_array != NULL) {
  2948     _start_array->allocate_block(destination());
  2951   if (destination() != source()) {
  2952     assert(destination() < source(), "must copy to the left");
  2953     Copy::aligned_conjoint_words(source(), destination(), words);
  2956   oop moved_oop = (oop) destination();
  2957   moved_oop->update_contents(compaction_manager());
  2958   assert(moved_oop->is_oop_or_null(), "Object should be whole at this point");
  2960   update_state(words);
  2961   assert(destination() == (HeapWord*)moved_oop + moved_oop->size(), "sanity");
  2962   return is_full() ? ParMarkBitMap::full : ParMarkBitMap::incomplete;
  2965 UpdateOnlyClosure::UpdateOnlyClosure(ParMarkBitMap* mbm,
  2966                                      ParCompactionManager* cm,
  2967                                      PSParallelCompact::SpaceId space_id) :
  2968   ParMarkBitMapClosure(mbm, cm),
  2969   _space_id(space_id),
  2970   _start_array(PSParallelCompact::start_array(space_id))
  2974 // Updates the references in the object to their new values.
  2975 ParMarkBitMapClosure::IterationStatus
  2976 UpdateOnlyClosure::do_addr(HeapWord* addr, size_t words) {
  2977   do_addr(addr);
  2978   return ParMarkBitMap::incomplete;
  2981 // Verify the new location using the forwarding pointer
  2982 // from MarkSweep::mark_sweep_phase2().  Set the mark_word
  2983 // to the initial value.
  2984 ParMarkBitMapClosure::IterationStatus
  2985 PSParallelCompact::VerifyUpdateClosure::do_addr(HeapWord* addr, size_t words) {
  2986   // The second arg (words) is not used.
  2987   oop obj = (oop) addr;
  2988   HeapWord* forwarding_ptr = (HeapWord*) obj->mark()->decode_pointer();
  2989   HeapWord* new_pointer = summary_data().calc_new_pointer(obj);
  2990   if (forwarding_ptr == NULL) {
  2991     // The object is dead or not moving.
  2992     assert(bitmap()->is_unmarked(obj) || (new_pointer == (HeapWord*) obj),
  2993            "Object liveness is wrong.");
  2994     return ParMarkBitMap::incomplete;
  2996   assert(UseParallelOldGCDensePrefix ||
  2997          (HeapMaximumCompactionInterval > 1) ||
  2998          (MarkSweepAlwaysCompactCount > 1) ||
  2999          (forwarding_ptr == new_pointer),
  3000     "Calculation of new location is incorrect");
  3001   return ParMarkBitMap::incomplete;
  3004 // Reset objects modified for debug checking.
  3005 ParMarkBitMapClosure::IterationStatus
  3006 PSParallelCompact::ResetObjectsClosure::do_addr(HeapWord* addr, size_t words) {
  3007   // The second arg (words) is not used.
  3008   oop obj = (oop) addr;
  3009   obj->init_mark();
  3010   return ParMarkBitMap::incomplete;
  3013 // Prepare for compaction.  This method is executed once
  3014 // (i.e., by a single thread) before compaction.
  3015 // Save the updated location of the intArrayKlassObj for
  3016 // filling holes in the dense prefix.
  3017 void PSParallelCompact::compact_prologue() {
  3018   _updated_int_array_klass_obj = (klassOop)
  3019     summary_data().calc_new_pointer(Universe::intArrayKlassObj());
  3022 // The initial implementation of this method created a field
  3023 // _next_compaction_space_id in SpaceInfo and initialized
  3024 // that field in SpaceInfo::initialize_space_info().  That
  3025 // required that _next_compaction_space_id be declared a
  3026 // SpaceId in SpaceInfo and that would have required that
  3027 // either SpaceId be declared in a separate class or that
  3028 // it be declared in SpaceInfo.  It didn't seem consistent
  3029 // to declare it in SpaceInfo (didn't really fit logically).
  3030 // Alternatively, defining a separate class to define SpaceId
  3031 // seem excessive.  This implementation is simple and localizes
  3032 // the knowledge.
  3034 PSParallelCompact::SpaceId
  3035 PSParallelCompact::next_compaction_space_id(SpaceId id) {
  3036   assert(id < last_space_id, "id out of range");
  3037   switch (id) {
  3038     case perm_space_id :
  3039       return last_space_id;
  3040     case old_space_id :
  3041       return eden_space_id;
  3042     case eden_space_id :
  3043       return from_space_id;
  3044     case from_space_id :
  3045       return to_space_id;
  3046     case to_space_id :
  3047       return last_space_id;
  3048     default:
  3049       assert(false, "Bad space id");
  3050       return last_space_id;

mercurial