src/share/vm/opto/matcher.cpp

Thu, 13 Mar 2008 16:06:34 -0700

author
kvn
date
Thu, 13 Mar 2008 16:06:34 -0700
changeset 498
eac007780a58
parent 435
a61af66fc99e
child 548
ba764ed4b6f2
permissions
-rw-r--r--

6671807: (Escape Analysis) Add new ideal node to represent the state of a scalarized object at a safepoint
Summary: Values of non-static fields of a scalarized object should be saved in debug info to reallocate the object during deoptimization.
Reviewed-by: never

     1 /*
     2  * Copyright 1997-2007 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 #include "incls/_precompiled.incl"
    26 #include "incls/_matcher.cpp.incl"
    28 OptoReg::Name OptoReg::c_frame_pointer;
    32 const int Matcher::base2reg[Type::lastype] = {
    33   Node::NotAMachineReg,0,0, Op_RegI, Op_RegL, 0,
    34   Node::NotAMachineReg, Node::NotAMachineReg, /* tuple, array */
    35   Op_RegP, Op_RegP, Op_RegP, Op_RegP, Op_RegP, Op_RegP, /* the pointers */
    36   0, 0/*abio*/,
    37   Op_RegP /* Return address */, 0, /* the memories */
    38   Op_RegF, Op_RegF, Op_RegF, Op_RegD, Op_RegD, Op_RegD,
    39   0  /*bottom*/
    40 };
    42 const RegMask *Matcher::idealreg2regmask[_last_machine_leaf];
    43 RegMask Matcher::mreg2regmask[_last_Mach_Reg];
    44 RegMask Matcher::STACK_ONLY_mask;
    45 RegMask Matcher::c_frame_ptr_mask;
    46 const uint Matcher::_begin_rematerialize = _BEGIN_REMATERIALIZE;
    47 const uint Matcher::_end_rematerialize   = _END_REMATERIALIZE;
    49 //---------------------------Matcher-------------------------------------------
    50 Matcher::Matcher( Node_List &proj_list ) :
    51   PhaseTransform( Phase::Ins_Select ),
    52 #ifdef ASSERT
    53   _old2new_map(C->comp_arena()),
    54 #endif
    55   _shared_constants(C->comp_arena()),
    56   _reduceOp(reduceOp), _leftOp(leftOp), _rightOp(rightOp),
    57   _swallowed(swallowed),
    58   _begin_inst_chain_rule(_BEGIN_INST_CHAIN_RULE),
    59   _end_inst_chain_rule(_END_INST_CHAIN_RULE),
    60   _must_clone(must_clone), _proj_list(proj_list),
    61   _register_save_policy(register_save_policy),
    62   _c_reg_save_policy(c_reg_save_policy),
    63   _register_save_type(register_save_type),
    64   _ruleName(ruleName),
    65   _allocation_started(false),
    66   _states_arena(Chunk::medium_size),
    67   _visited(&_states_arena),
    68   _shared(&_states_arena),
    69   _dontcare(&_states_arena) {
    70   C->set_matcher(this);
    72   idealreg2spillmask[Op_RegI] = NULL;
    73   idealreg2spillmask[Op_RegL] = NULL;
    74   idealreg2spillmask[Op_RegF] = NULL;
    75   idealreg2spillmask[Op_RegD] = NULL;
    76   idealreg2spillmask[Op_RegP] = NULL;
    78   idealreg2debugmask[Op_RegI] = NULL;
    79   idealreg2debugmask[Op_RegL] = NULL;
    80   idealreg2debugmask[Op_RegF] = NULL;
    81   idealreg2debugmask[Op_RegD] = NULL;
    82   idealreg2debugmask[Op_RegP] = NULL;
    83 }
    85 //------------------------------warp_incoming_stk_arg------------------------
    86 // This warps a VMReg into an OptoReg::Name
    87 OptoReg::Name Matcher::warp_incoming_stk_arg( VMReg reg ) {
    88   OptoReg::Name warped;
    89   if( reg->is_stack() ) {  // Stack slot argument?
    90     warped = OptoReg::add(_old_SP, reg->reg2stack() );
    91     warped = OptoReg::add(warped, C->out_preserve_stack_slots());
    92     if( warped >= _in_arg_limit )
    93       _in_arg_limit = OptoReg::add(warped, 1); // Bump max stack slot seen
    94     if (!RegMask::can_represent(warped)) {
    95       // the compiler cannot represent this method's calling sequence
    96       C->record_method_not_compilable_all_tiers("unsupported incoming calling sequence");
    97       return OptoReg::Bad;
    98     }
    99     return warped;
   100   }
   101   return OptoReg::as_OptoReg(reg);
   102 }
   104 //---------------------------compute_old_SP------------------------------------
   105 OptoReg::Name Compile::compute_old_SP() {
   106   int fixed    = fixed_slots();
   107   int preserve = in_preserve_stack_slots();
   108   return OptoReg::stack2reg(round_to(fixed + preserve, Matcher::stack_alignment_in_slots()));
   109 }
   113 #ifdef ASSERT
   114 void Matcher::verify_new_nodes_only(Node* xroot) {
   115   // Make sure that the new graph only references new nodes
   116   ResourceMark rm;
   117   Unique_Node_List worklist;
   118   VectorSet visited(Thread::current()->resource_area());
   119   worklist.push(xroot);
   120   while (worklist.size() > 0) {
   121     Node* n = worklist.pop();
   122     visited <<= n->_idx;
   123     assert(C->node_arena()->contains(n), "dead node");
   124     for (uint j = 0; j < n->req(); j++) {
   125       Node* in = n->in(j);
   126       if (in != NULL) {
   127         assert(C->node_arena()->contains(in), "dead node");
   128         if (!visited.test(in->_idx)) {
   129           worklist.push(in);
   130         }
   131       }
   132     }
   133   }
   134 }
   135 #endif
   138 //---------------------------match---------------------------------------------
   139 void Matcher::match( ) {
   140   // One-time initialization of some register masks.
   141   init_spill_mask( C->root()->in(1) );
   142   _return_addr_mask = return_addr();
   143 #ifdef _LP64
   144   // Pointers take 2 slots in 64-bit land
   145   _return_addr_mask.Insert(OptoReg::add(return_addr(),1));
   146 #endif
   148   // Map a Java-signature return type into return register-value
   149   // machine registers for 0, 1 and 2 returned values.
   150   const TypeTuple *range = C->tf()->range();
   151   if( range->cnt() > TypeFunc::Parms ) { // If not a void function
   152     // Get ideal-register return type
   153     int ireg = base2reg[range->field_at(TypeFunc::Parms)->base()];
   154     // Get machine return register
   155     uint sop = C->start()->Opcode();
   156     OptoRegPair regs = return_value(ireg, false);
   158     // And mask for same
   159     _return_value_mask = RegMask(regs.first());
   160     if( OptoReg::is_valid(regs.second()) )
   161       _return_value_mask.Insert(regs.second());
   162   }
   164   // ---------------
   165   // Frame Layout
   167   // Need the method signature to determine the incoming argument types,
   168   // because the types determine which registers the incoming arguments are
   169   // in, and this affects the matched code.
   170   const TypeTuple *domain = C->tf()->domain();
   171   uint             argcnt = domain->cnt() - TypeFunc::Parms;
   172   BasicType *sig_bt        = NEW_RESOURCE_ARRAY( BasicType, argcnt );
   173   VMRegPair *vm_parm_regs  = NEW_RESOURCE_ARRAY( VMRegPair, argcnt );
   174   _parm_regs               = NEW_RESOURCE_ARRAY( OptoRegPair, argcnt );
   175   _calling_convention_mask = NEW_RESOURCE_ARRAY( RegMask, argcnt );
   176   uint i;
   177   for( i = 0; i<argcnt; i++ ) {
   178     sig_bt[i] = domain->field_at(i+TypeFunc::Parms)->basic_type();
   179   }
   181   // Pass array of ideal registers and length to USER code (from the AD file)
   182   // that will convert this to an array of register numbers.
   183   const StartNode *start = C->start();
   184   start->calling_convention( sig_bt, vm_parm_regs, argcnt );
   185 #ifdef ASSERT
   186   // Sanity check users' calling convention.  Real handy while trying to
   187   // get the initial port correct.
   188   { for (uint i = 0; i<argcnt; i++) {
   189       if( !vm_parm_regs[i].first()->is_valid() && !vm_parm_regs[i].second()->is_valid() ) {
   190         assert(domain->field_at(i+TypeFunc::Parms)==Type::HALF, "only allowed on halve" );
   191         _parm_regs[i].set_bad();
   192         continue;
   193       }
   194       VMReg parm_reg = vm_parm_regs[i].first();
   195       assert(parm_reg->is_valid(), "invalid arg?");
   196       if (parm_reg->is_reg()) {
   197         OptoReg::Name opto_parm_reg = OptoReg::as_OptoReg(parm_reg);
   198         assert(can_be_java_arg(opto_parm_reg) ||
   199                C->stub_function() == CAST_FROM_FN_PTR(address, OptoRuntime::rethrow_C) ||
   200                opto_parm_reg == inline_cache_reg(),
   201                "parameters in register must be preserved by runtime stubs");
   202       }
   203       for (uint j = 0; j < i; j++) {
   204         assert(parm_reg != vm_parm_regs[j].first(),
   205                "calling conv. must produce distinct regs");
   206       }
   207     }
   208   }
   209 #endif
   211   // Do some initial frame layout.
   213   // Compute the old incoming SP (may be called FP) as
   214   //   OptoReg::stack0() + locks + in_preserve_stack_slots + pad2.
   215   _old_SP = C->compute_old_SP();
   216   assert( is_even(_old_SP), "must be even" );
   218   // Compute highest incoming stack argument as
   219   //   _old_SP + out_preserve_stack_slots + incoming argument size.
   220   _in_arg_limit = OptoReg::add(_old_SP, C->out_preserve_stack_slots());
   221   assert( is_even(_in_arg_limit), "out_preserve must be even" );
   222   for( i = 0; i < argcnt; i++ ) {
   223     // Permit args to have no register
   224     _calling_convention_mask[i].Clear();
   225     if( !vm_parm_regs[i].first()->is_valid() && !vm_parm_regs[i].second()->is_valid() ) {
   226       continue;
   227     }
   228     // calling_convention returns stack arguments as a count of
   229     // slots beyond OptoReg::stack0()/VMRegImpl::stack0.  We need to convert this to
   230     // the allocators point of view, taking into account all the
   231     // preserve area, locks & pad2.
   233     OptoReg::Name reg1 = warp_incoming_stk_arg(vm_parm_regs[i].first());
   234     if( OptoReg::is_valid(reg1))
   235       _calling_convention_mask[i].Insert(reg1);
   237     OptoReg::Name reg2 = warp_incoming_stk_arg(vm_parm_regs[i].second());
   238     if( OptoReg::is_valid(reg2))
   239       _calling_convention_mask[i].Insert(reg2);
   241     // Saved biased stack-slot register number
   242     _parm_regs[i].set_pair(reg2, reg1);
   243   }
   245   // Finally, make sure the incoming arguments take up an even number of
   246   // words, in case the arguments or locals need to contain doubleword stack
   247   // slots.  The rest of the system assumes that stack slot pairs (in
   248   // particular, in the spill area) which look aligned will in fact be
   249   // aligned relative to the stack pointer in the target machine.  Double
   250   // stack slots will always be allocated aligned.
   251   _new_SP = OptoReg::Name(round_to(_in_arg_limit, RegMask::SlotsPerLong));
   253   // Compute highest outgoing stack argument as
   254   //   _new_SP + out_preserve_stack_slots + max(outgoing argument size).
   255   _out_arg_limit = OptoReg::add(_new_SP, C->out_preserve_stack_slots());
   256   assert( is_even(_out_arg_limit), "out_preserve must be even" );
   258   if (!RegMask::can_represent(OptoReg::add(_out_arg_limit,-1))) {
   259     // the compiler cannot represent this method's calling sequence
   260     C->record_method_not_compilable("must be able to represent all call arguments in reg mask");
   261   }
   263   if (C->failing())  return;  // bailed out on incoming arg failure
   265   // ---------------
   266   // Collect roots of matcher trees.  Every node for which
   267   // _shared[_idx] is cleared is guaranteed to not be shared, and thus
   268   // can be a valid interior of some tree.
   269   find_shared( C->root() );
   270   find_shared( C->top() );
   272   C->print_method("Before Matching", 2);
   274   // Swap out to old-space; emptying new-space
   275   Arena *old = C->node_arena()->move_contents(C->old_arena());
   277   // Save debug and profile information for nodes in old space:
   278   _old_node_note_array = C->node_note_array();
   279   if (_old_node_note_array != NULL) {
   280     C->set_node_note_array(new(C->comp_arena()) GrowableArray<Node_Notes*>
   281                            (C->comp_arena(), _old_node_note_array->length(),
   282                             0, NULL));
   283   }
   285   // Pre-size the new_node table to avoid the need for range checks.
   286   grow_new_node_array(C->unique());
   288   // Reset node counter so MachNodes start with _idx at 0
   289   int nodes = C->unique(); // save value
   290   C->set_unique(0);
   292   // Recursively match trees from old space into new space.
   293   // Correct leaves of new-space Nodes; they point to old-space.
   294   _visited.Clear();             // Clear visit bits for xform call
   295   C->set_cached_top_node(xform( C->top(), nodes ));
   296   if (!C->failing()) {
   297     Node* xroot =        xform( C->root(), 1 );
   298     if (xroot == NULL) {
   299       Matcher::soft_match_failure();  // recursive matching process failed
   300       C->record_method_not_compilable("instruction match failed");
   301     } else {
   302       // During matching shared constants were attached to C->root()
   303       // because xroot wasn't available yet, so transfer the uses to
   304       // the xroot.
   305       for( DUIterator_Fast jmax, j = C->root()->fast_outs(jmax); j < jmax; j++ ) {
   306         Node* n = C->root()->fast_out(j);
   307         if (C->node_arena()->contains(n)) {
   308           assert(n->in(0) == C->root(), "should be control user");
   309           n->set_req(0, xroot);
   310           --j;
   311           --jmax;
   312         }
   313       }
   315       C->set_root(xroot->is_Root() ? xroot->as_Root() : NULL);
   316 #ifdef ASSERT
   317       verify_new_nodes_only(xroot);
   318 #endif
   319     }
   320   }
   321   if (C->top() == NULL || C->root() == NULL) {
   322     C->record_method_not_compilable("graph lost"); // %%% cannot happen?
   323   }
   324   if (C->failing()) {
   325     // delete old;
   326     old->destruct_contents();
   327     return;
   328   }
   329   assert( C->top(), "" );
   330   assert( C->root(), "" );
   331   validate_null_checks();
   333   // Now smoke old-space
   334   NOT_DEBUG( old->destruct_contents() );
   336   // ------------------------
   337   // Set up save-on-entry registers
   338   Fixup_Save_On_Entry( );
   339 }
   342 //------------------------------Fixup_Save_On_Entry----------------------------
   343 // The stated purpose of this routine is to take care of save-on-entry
   344 // registers.  However, the overall goal of the Match phase is to convert into
   345 // machine-specific instructions which have RegMasks to guide allocation.
   346 // So what this procedure really does is put a valid RegMask on each input
   347 // to the machine-specific variations of all Return, TailCall and Halt
   348 // instructions.  It also adds edgs to define the save-on-entry values (and of
   349 // course gives them a mask).
   351 static RegMask *init_input_masks( uint size, RegMask &ret_adr, RegMask &fp ) {
   352   RegMask *rms = NEW_RESOURCE_ARRAY( RegMask, size );
   353   // Do all the pre-defined register masks
   354   rms[TypeFunc::Control  ] = RegMask::Empty;
   355   rms[TypeFunc::I_O      ] = RegMask::Empty;
   356   rms[TypeFunc::Memory   ] = RegMask::Empty;
   357   rms[TypeFunc::ReturnAdr] = ret_adr;
   358   rms[TypeFunc::FramePtr ] = fp;
   359   return rms;
   360 }
   362 //---------------------------init_first_stack_mask-----------------------------
   363 // Create the initial stack mask used by values spilling to the stack.
   364 // Disallow any debug info in outgoing argument areas by setting the
   365 // initial mask accordingly.
   366 void Matcher::init_first_stack_mask() {
   368   // Allocate storage for spill masks as masks for the appropriate load type.
   369   RegMask *rms = (RegMask*)C->comp_arena()->Amalloc_D(sizeof(RegMask)*10);
   370   idealreg2spillmask[Op_RegI] = &rms[0];
   371   idealreg2spillmask[Op_RegL] = &rms[1];
   372   idealreg2spillmask[Op_RegF] = &rms[2];
   373   idealreg2spillmask[Op_RegD] = &rms[3];
   374   idealreg2spillmask[Op_RegP] = &rms[4];
   375   idealreg2debugmask[Op_RegI] = &rms[5];
   376   idealreg2debugmask[Op_RegL] = &rms[6];
   377   idealreg2debugmask[Op_RegF] = &rms[7];
   378   idealreg2debugmask[Op_RegD] = &rms[8];
   379   idealreg2debugmask[Op_RegP] = &rms[9];
   381   OptoReg::Name i;
   383   // At first, start with the empty mask
   384   C->FIRST_STACK_mask().Clear();
   386   // Add in the incoming argument area
   387   OptoReg::Name init = OptoReg::add(_old_SP, C->out_preserve_stack_slots());
   388   for (i = init; i < _in_arg_limit; i = OptoReg::add(i,1))
   389     C->FIRST_STACK_mask().Insert(i);
   391   // Add in all bits past the outgoing argument area
   392   guarantee(RegMask::can_represent(OptoReg::add(_out_arg_limit,-1)),
   393             "must be able to represent all call arguments in reg mask");
   394   init = _out_arg_limit;
   395   for (i = init; RegMask::can_represent(i); i = OptoReg::add(i,1))
   396     C->FIRST_STACK_mask().Insert(i);
   398   // Finally, set the "infinite stack" bit.
   399   C->FIRST_STACK_mask().set_AllStack();
   401   // Make spill masks.  Registers for their class, plus FIRST_STACK_mask.
   402   *idealreg2spillmask[Op_RegI] = *idealreg2regmask[Op_RegI];
   403    idealreg2spillmask[Op_RegI]->OR(C->FIRST_STACK_mask());
   404   *idealreg2spillmask[Op_RegL] = *idealreg2regmask[Op_RegL];
   405    idealreg2spillmask[Op_RegL]->OR(C->FIRST_STACK_mask());
   406   *idealreg2spillmask[Op_RegF] = *idealreg2regmask[Op_RegF];
   407    idealreg2spillmask[Op_RegF]->OR(C->FIRST_STACK_mask());
   408   *idealreg2spillmask[Op_RegD] = *idealreg2regmask[Op_RegD];
   409    idealreg2spillmask[Op_RegD]->OR(C->FIRST_STACK_mask());
   410   *idealreg2spillmask[Op_RegP] = *idealreg2regmask[Op_RegP];
   411    idealreg2spillmask[Op_RegP]->OR(C->FIRST_STACK_mask());
   413   // Make up debug masks.  Any spill slot plus callee-save registers.
   414   // Caller-save registers are assumed to be trashable by the various
   415   // inline-cache fixup routines.
   416   *idealreg2debugmask[Op_RegI]= *idealreg2spillmask[Op_RegI];
   417   *idealreg2debugmask[Op_RegL]= *idealreg2spillmask[Op_RegL];
   418   *idealreg2debugmask[Op_RegF]= *idealreg2spillmask[Op_RegF];
   419   *idealreg2debugmask[Op_RegD]= *idealreg2spillmask[Op_RegD];
   420   *idealreg2debugmask[Op_RegP]= *idealreg2spillmask[Op_RegP];
   422   // Prevent stub compilations from attempting to reference
   423   // callee-saved registers from debug info
   424   bool exclude_soe = !Compile::current()->is_method_compilation();
   426   for( i=OptoReg::Name(0); i<OptoReg::Name(_last_Mach_Reg); i = OptoReg::add(i,1) ) {
   427     // registers the caller has to save do not work
   428     if( _register_save_policy[i] == 'C' ||
   429         _register_save_policy[i] == 'A' ||
   430         (_register_save_policy[i] == 'E' && exclude_soe) ) {
   431       idealreg2debugmask[Op_RegI]->Remove(i); // Exclude save-on-call
   432       idealreg2debugmask[Op_RegL]->Remove(i); // registers from debug
   433       idealreg2debugmask[Op_RegF]->Remove(i); // masks
   434       idealreg2debugmask[Op_RegD]->Remove(i);
   435       idealreg2debugmask[Op_RegP]->Remove(i);
   436     }
   437   }
   438 }
   440 //---------------------------is_save_on_entry----------------------------------
   441 bool Matcher::is_save_on_entry( int reg ) {
   442   return
   443     _register_save_policy[reg] == 'E' ||
   444     _register_save_policy[reg] == 'A' || // Save-on-entry register?
   445     // Also save argument registers in the trampolining stubs
   446     (C->save_argument_registers() && is_spillable_arg(reg));
   447 }
   449 //---------------------------Fixup_Save_On_Entry-------------------------------
   450 void Matcher::Fixup_Save_On_Entry( ) {
   451   init_first_stack_mask();
   453   Node *root = C->root();       // Short name for root
   454   // Count number of save-on-entry registers.
   455   uint soe_cnt = number_of_saved_registers();
   456   uint i;
   458   // Find the procedure Start Node
   459   StartNode *start = C->start();
   460   assert( start, "Expect a start node" );
   462   // Save argument registers in the trampolining stubs
   463   if( C->save_argument_registers() )
   464     for( i = 0; i < _last_Mach_Reg; i++ )
   465       if( is_spillable_arg(i) )
   466         soe_cnt++;
   468   // Input RegMask array shared by all Returns.
   469   // The type for doubles and longs has a count of 2, but
   470   // there is only 1 returned value
   471   uint ret_edge_cnt = TypeFunc::Parms + ((C->tf()->range()->cnt() == TypeFunc::Parms) ? 0 : 1);
   472   RegMask *ret_rms  = init_input_masks( ret_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
   473   // Returns have 0 or 1 returned values depending on call signature.
   474   // Return register is specified by return_value in the AD file.
   475   if (ret_edge_cnt > TypeFunc::Parms)
   476     ret_rms[TypeFunc::Parms+0] = _return_value_mask;
   478   // Input RegMask array shared by all Rethrows.
   479   uint reth_edge_cnt = TypeFunc::Parms+1;
   480   RegMask *reth_rms  = init_input_masks( reth_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
   481   // Rethrow takes exception oop only, but in the argument 0 slot.
   482   reth_rms[TypeFunc::Parms] = mreg2regmask[find_receiver(false)];
   483 #ifdef _LP64
   484   // Need two slots for ptrs in 64-bit land
   485   reth_rms[TypeFunc::Parms].Insert(OptoReg::add(OptoReg::Name(find_receiver(false)),1));
   486 #endif
   488   // Input RegMask array shared by all TailCalls
   489   uint tail_call_edge_cnt = TypeFunc::Parms+2;
   490   RegMask *tail_call_rms = init_input_masks( tail_call_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
   492   // Input RegMask array shared by all TailJumps
   493   uint tail_jump_edge_cnt = TypeFunc::Parms+2;
   494   RegMask *tail_jump_rms = init_input_masks( tail_jump_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
   496   // TailCalls have 2 returned values (target & moop), whose masks come
   497   // from the usual MachNode/MachOper mechanism.  Find a sample
   498   // TailCall to extract these masks and put the correct masks into
   499   // the tail_call_rms array.
   500   for( i=1; i < root->req(); i++ ) {
   501     MachReturnNode *m = root->in(i)->as_MachReturn();
   502     if( m->ideal_Opcode() == Op_TailCall ) {
   503       tail_call_rms[TypeFunc::Parms+0] = m->MachNode::in_RegMask(TypeFunc::Parms+0);
   504       tail_call_rms[TypeFunc::Parms+1] = m->MachNode::in_RegMask(TypeFunc::Parms+1);
   505       break;
   506     }
   507   }
   509   // TailJumps have 2 returned values (target & ex_oop), whose masks come
   510   // from the usual MachNode/MachOper mechanism.  Find a sample
   511   // TailJump to extract these masks and put the correct masks into
   512   // the tail_jump_rms array.
   513   for( i=1; i < root->req(); i++ ) {
   514     MachReturnNode *m = root->in(i)->as_MachReturn();
   515     if( m->ideal_Opcode() == Op_TailJump ) {
   516       tail_jump_rms[TypeFunc::Parms+0] = m->MachNode::in_RegMask(TypeFunc::Parms+0);
   517       tail_jump_rms[TypeFunc::Parms+1] = m->MachNode::in_RegMask(TypeFunc::Parms+1);
   518       break;
   519     }
   520   }
   522   // Input RegMask array shared by all Halts
   523   uint halt_edge_cnt = TypeFunc::Parms;
   524   RegMask *halt_rms = init_input_masks( halt_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
   526   // Capture the return input masks into each exit flavor
   527   for( i=1; i < root->req(); i++ ) {
   528     MachReturnNode *exit = root->in(i)->as_MachReturn();
   529     switch( exit->ideal_Opcode() ) {
   530       case Op_Return   : exit->_in_rms = ret_rms;  break;
   531       case Op_Rethrow  : exit->_in_rms = reth_rms; break;
   532       case Op_TailCall : exit->_in_rms = tail_call_rms; break;
   533       case Op_TailJump : exit->_in_rms = tail_jump_rms; break;
   534       case Op_Halt     : exit->_in_rms = halt_rms; break;
   535       default          : ShouldNotReachHere();
   536     }
   537   }
   539   // Next unused projection number from Start.
   540   int proj_cnt = C->tf()->domain()->cnt();
   542   // Do all the save-on-entry registers.  Make projections from Start for
   543   // them, and give them a use at the exit points.  To the allocator, they
   544   // look like incoming register arguments.
   545   for( i = 0; i < _last_Mach_Reg; i++ ) {
   546     if( is_save_on_entry(i) ) {
   548       // Add the save-on-entry to the mask array
   549       ret_rms      [      ret_edge_cnt] = mreg2regmask[i];
   550       reth_rms     [     reth_edge_cnt] = mreg2regmask[i];
   551       tail_call_rms[tail_call_edge_cnt] = mreg2regmask[i];
   552       tail_jump_rms[tail_jump_edge_cnt] = mreg2regmask[i];
   553       // Halts need the SOE registers, but only in the stack as debug info.
   554       // A just-prior uncommon-trap or deoptimization will use the SOE regs.
   555       halt_rms     [     halt_edge_cnt] = *idealreg2spillmask[_register_save_type[i]];
   557       Node *mproj;
   559       // Is this a RegF low half of a RegD?  Double up 2 adjacent RegF's
   560       // into a single RegD.
   561       if( (i&1) == 0 &&
   562           _register_save_type[i  ] == Op_RegF &&
   563           _register_save_type[i+1] == Op_RegF &&
   564           is_save_on_entry(i+1) ) {
   565         // Add other bit for double
   566         ret_rms      [      ret_edge_cnt].Insert(OptoReg::Name(i+1));
   567         reth_rms     [     reth_edge_cnt].Insert(OptoReg::Name(i+1));
   568         tail_call_rms[tail_call_edge_cnt].Insert(OptoReg::Name(i+1));
   569         tail_jump_rms[tail_jump_edge_cnt].Insert(OptoReg::Name(i+1));
   570         halt_rms     [     halt_edge_cnt].Insert(OptoReg::Name(i+1));
   571         mproj = new (C, 1) MachProjNode( start, proj_cnt, ret_rms[ret_edge_cnt], Op_RegD );
   572         proj_cnt += 2;          // Skip 2 for doubles
   573       }
   574       else if( (i&1) == 1 &&    // Else check for high half of double
   575                _register_save_type[i-1] == Op_RegF &&
   576                _register_save_type[i  ] == Op_RegF &&
   577                is_save_on_entry(i-1) ) {
   578         ret_rms      [      ret_edge_cnt] = RegMask::Empty;
   579         reth_rms     [     reth_edge_cnt] = RegMask::Empty;
   580         tail_call_rms[tail_call_edge_cnt] = RegMask::Empty;
   581         tail_jump_rms[tail_jump_edge_cnt] = RegMask::Empty;
   582         halt_rms     [     halt_edge_cnt] = RegMask::Empty;
   583         mproj = C->top();
   584       }
   585       // Is this a RegI low half of a RegL?  Double up 2 adjacent RegI's
   586       // into a single RegL.
   587       else if( (i&1) == 0 &&
   588           _register_save_type[i  ] == Op_RegI &&
   589           _register_save_type[i+1] == Op_RegI &&
   590         is_save_on_entry(i+1) ) {
   591         // Add other bit for long
   592         ret_rms      [      ret_edge_cnt].Insert(OptoReg::Name(i+1));
   593         reth_rms     [     reth_edge_cnt].Insert(OptoReg::Name(i+1));
   594         tail_call_rms[tail_call_edge_cnt].Insert(OptoReg::Name(i+1));
   595         tail_jump_rms[tail_jump_edge_cnt].Insert(OptoReg::Name(i+1));
   596         halt_rms     [     halt_edge_cnt].Insert(OptoReg::Name(i+1));
   597         mproj = new (C, 1) MachProjNode( start, proj_cnt, ret_rms[ret_edge_cnt], Op_RegL );
   598         proj_cnt += 2;          // Skip 2 for longs
   599       }
   600       else if( (i&1) == 1 &&    // Else check for high half of long
   601                _register_save_type[i-1] == Op_RegI &&
   602                _register_save_type[i  ] == Op_RegI &&
   603                is_save_on_entry(i-1) ) {
   604         ret_rms      [      ret_edge_cnt] = RegMask::Empty;
   605         reth_rms     [     reth_edge_cnt] = RegMask::Empty;
   606         tail_call_rms[tail_call_edge_cnt] = RegMask::Empty;
   607         tail_jump_rms[tail_jump_edge_cnt] = RegMask::Empty;
   608         halt_rms     [     halt_edge_cnt] = RegMask::Empty;
   609         mproj = C->top();
   610       } else {
   611         // Make a projection for it off the Start
   612         mproj = new (C, 1) MachProjNode( start, proj_cnt++, ret_rms[ret_edge_cnt], _register_save_type[i] );
   613       }
   615       ret_edge_cnt ++;
   616       reth_edge_cnt ++;
   617       tail_call_edge_cnt ++;
   618       tail_jump_edge_cnt ++;
   619       halt_edge_cnt ++;
   621       // Add a use of the SOE register to all exit paths
   622       for( uint j=1; j < root->req(); j++ )
   623         root->in(j)->add_req(mproj);
   624     } // End of if a save-on-entry register
   625   } // End of for all machine registers
   626 }
   628 //------------------------------init_spill_mask--------------------------------
   629 void Matcher::init_spill_mask( Node *ret ) {
   630   if( idealreg2regmask[Op_RegI] ) return; // One time only init
   632   OptoReg::c_frame_pointer = c_frame_pointer();
   633   c_frame_ptr_mask = c_frame_pointer();
   634 #ifdef _LP64
   635   // pointers are twice as big
   636   c_frame_ptr_mask.Insert(OptoReg::add(c_frame_pointer(),1));
   637 #endif
   639   // Start at OptoReg::stack0()
   640   STACK_ONLY_mask.Clear();
   641   OptoReg::Name init = OptoReg::stack2reg(0);
   642   // STACK_ONLY_mask is all stack bits
   643   OptoReg::Name i;
   644   for (i = init; RegMask::can_represent(i); i = OptoReg::add(i,1))
   645     STACK_ONLY_mask.Insert(i);
   646   // Also set the "infinite stack" bit.
   647   STACK_ONLY_mask.set_AllStack();
   649   // Copy the register names over into the shared world
   650   for( i=OptoReg::Name(0); i<OptoReg::Name(_last_Mach_Reg); i = OptoReg::add(i,1) ) {
   651     // SharedInfo::regName[i] = regName[i];
   652     // Handy RegMasks per machine register
   653     mreg2regmask[i].Insert(i);
   654   }
   656   // Grab the Frame Pointer
   657   Node *fp  = ret->in(TypeFunc::FramePtr);
   658   Node *mem = ret->in(TypeFunc::Memory);
   659   const TypePtr* atp = TypePtr::BOTTOM;
   660   // Share frame pointer while making spill ops
   661   set_shared(fp);
   663   // Compute generic short-offset Loads
   664   MachNode *spillI  = match_tree(new (C, 3) LoadINode(NULL,mem,fp,atp));
   665   MachNode *spillL  = match_tree(new (C, 3) LoadLNode(NULL,mem,fp,atp));
   666   MachNode *spillF  = match_tree(new (C, 3) LoadFNode(NULL,mem,fp,atp));
   667   MachNode *spillD  = match_tree(new (C, 3) LoadDNode(NULL,mem,fp,atp));
   668   MachNode *spillP  = match_tree(new (C, 3) LoadPNode(NULL,mem,fp,atp,TypeInstPtr::BOTTOM));
   669   assert(spillI != NULL && spillL != NULL && spillF != NULL &&
   670          spillD != NULL && spillP != NULL, "");
   672   // Get the ADLC notion of the right regmask, for each basic type.
   673   idealreg2regmask[Op_RegI] = &spillI->out_RegMask();
   674   idealreg2regmask[Op_RegL] = &spillL->out_RegMask();
   675   idealreg2regmask[Op_RegF] = &spillF->out_RegMask();
   676   idealreg2regmask[Op_RegD] = &spillD->out_RegMask();
   677   idealreg2regmask[Op_RegP] = &spillP->out_RegMask();
   678 }
   680 #ifdef ASSERT
   681 static void match_alias_type(Compile* C, Node* n, Node* m) {
   682   if (!VerifyAliases)  return;  // do not go looking for trouble by default
   683   const TypePtr* nat = n->adr_type();
   684   const TypePtr* mat = m->adr_type();
   685   int nidx = C->get_alias_index(nat);
   686   int midx = C->get_alias_index(mat);
   687   // Detune the assert for cases like (AndI 0xFF (LoadB p)).
   688   if (nidx == Compile::AliasIdxTop && midx >= Compile::AliasIdxRaw) {
   689     for (uint i = 1; i < n->req(); i++) {
   690       Node* n1 = n->in(i);
   691       const TypePtr* n1at = n1->adr_type();
   692       if (n1at != NULL) {
   693         nat = n1at;
   694         nidx = C->get_alias_index(n1at);
   695       }
   696     }
   697   }
   698   // %%% Kludgery.  Instead, fix ideal adr_type methods for all these cases:
   699   if (nidx == Compile::AliasIdxTop && midx == Compile::AliasIdxRaw) {
   700     switch (n->Opcode()) {
   701     case Op_PrefetchRead:
   702     case Op_PrefetchWrite:
   703       nidx = Compile::AliasIdxRaw;
   704       nat = TypeRawPtr::BOTTOM;
   705       break;
   706     }
   707   }
   708   if (nidx == Compile::AliasIdxRaw && midx == Compile::AliasIdxTop) {
   709     switch (n->Opcode()) {
   710     case Op_ClearArray:
   711       midx = Compile::AliasIdxRaw;
   712       mat = TypeRawPtr::BOTTOM;
   713       break;
   714     }
   715   }
   716   if (nidx == Compile::AliasIdxTop && midx == Compile::AliasIdxBot) {
   717     switch (n->Opcode()) {
   718     case Op_Return:
   719     case Op_Rethrow:
   720     case Op_Halt:
   721     case Op_TailCall:
   722     case Op_TailJump:
   723       nidx = Compile::AliasIdxBot;
   724       nat = TypePtr::BOTTOM;
   725       break;
   726     }
   727   }
   728   if (nidx == Compile::AliasIdxBot && midx == Compile::AliasIdxTop) {
   729     switch (n->Opcode()) {
   730     case Op_StrComp:
   731     case Op_MemBarVolatile:
   732     case Op_MemBarCPUOrder: // %%% these ideals should have narrower adr_type?
   733       nidx = Compile::AliasIdxTop;
   734       nat = NULL;
   735       break;
   736     }
   737   }
   738   if (nidx != midx) {
   739     if (PrintOpto || (PrintMiscellaneous && (WizardMode || Verbose))) {
   740       tty->print_cr("==== Matcher alias shift %d => %d", nidx, midx);
   741       n->dump();
   742       m->dump();
   743     }
   744     assert(C->subsume_loads() && C->must_alias(nat, midx),
   745            "must not lose alias info when matching");
   746   }
   747 }
   748 #endif
   751 //------------------------------MStack-----------------------------------------
   752 // State and MStack class used in xform() and find_shared() iterative methods.
   753 enum Node_State { Pre_Visit,  // node has to be pre-visited
   754                       Visit,  // visit node
   755                  Post_Visit,  // post-visit node
   756              Alt_Post_Visit   // alternative post-visit path
   757                 };
   759 class MStack: public Node_Stack {
   760   public:
   761     MStack(int size) : Node_Stack(size) { }
   763     void push(Node *n, Node_State ns) {
   764       Node_Stack::push(n, (uint)ns);
   765     }
   766     void push(Node *n, Node_State ns, Node *parent, int indx) {
   767       ++_inode_top;
   768       if ((_inode_top + 1) >= _inode_max) grow();
   769       _inode_top->node = parent;
   770       _inode_top->indx = (uint)indx;
   771       ++_inode_top;
   772       _inode_top->node = n;
   773       _inode_top->indx = (uint)ns;
   774     }
   775     Node *parent() {
   776       pop();
   777       return node();
   778     }
   779     Node_State state() const {
   780       return (Node_State)index();
   781     }
   782     void set_state(Node_State ns) {
   783       set_index((uint)ns);
   784     }
   785 };
   788 //------------------------------xform------------------------------------------
   789 // Given a Node in old-space, Match him (Label/Reduce) to produce a machine
   790 // Node in new-space.  Given a new-space Node, recursively walk his children.
   791 Node *Matcher::transform( Node *n ) { ShouldNotCallThis(); return n; }
   792 Node *Matcher::xform( Node *n, int max_stack ) {
   793   // Use one stack to keep both: child's node/state and parent's node/index
   794   MStack mstack(max_stack * 2 * 2); // C->unique() * 2 * 2
   795   mstack.push(n, Visit, NULL, -1);  // set NULL as parent to indicate root
   797   while (mstack.is_nonempty()) {
   798     n = mstack.node();          // Leave node on stack
   799     Node_State nstate = mstack.state();
   800     if (nstate == Visit) {
   801       mstack.set_state(Post_Visit);
   802       Node *oldn = n;
   803       // Old-space or new-space check
   804       if (!C->node_arena()->contains(n)) {
   805         // Old space!
   806         Node* m;
   807         if (has_new_node(n)) {  // Not yet Label/Reduced
   808           m = new_node(n);
   809         } else {
   810           if (!is_dontcare(n)) { // Matcher can match this guy
   811             // Calls match special.  They match alone with no children.
   812             // Their children, the incoming arguments, match normally.
   813             m = n->is_SafePoint() ? match_sfpt(n->as_SafePoint()):match_tree(n);
   814             if (C->failing())  return NULL;
   815             if (m == NULL) { Matcher::soft_match_failure(); return NULL; }
   816           } else {                  // Nothing the matcher cares about
   817             if( n->is_Proj() && n->in(0)->is_Multi()) {       // Projections?
   818               // Convert to machine-dependent projection
   819               m = n->in(0)->as_Multi()->match( n->as_Proj(), this );
   820               if (m->in(0) != NULL) // m might be top
   821                 collect_null_checks(m);
   822             } else {                // Else just a regular 'ol guy
   823               m = n->clone();       // So just clone into new-space
   824               // Def-Use edges will be added incrementally as Uses
   825               // of this node are matched.
   826               assert(m->outcnt() == 0, "no Uses of this clone yet");
   827             }
   828           }
   830           set_new_node(n, m);       // Map old to new
   831           if (_old_node_note_array != NULL) {
   832             Node_Notes* nn = C->locate_node_notes(_old_node_note_array,
   833                                                   n->_idx);
   834             C->set_node_notes_at(m->_idx, nn);
   835           }
   836           debug_only(match_alias_type(C, n, m));
   837         }
   838         n = m;    // n is now a new-space node
   839         mstack.set_node(n);
   840       }
   842       // New space!
   843       if (_visited.test_set(n->_idx)) continue; // while(mstack.is_nonempty())
   845       int i;
   846       // Put precedence edges on stack first (match them last).
   847       for (i = oldn->req(); (uint)i < oldn->len(); i++) {
   848         Node *m = oldn->in(i);
   849         if (m == NULL) break;
   850         // set -1 to call add_prec() instead of set_req() during Step1
   851         mstack.push(m, Visit, n, -1);
   852       }
   854       // For constant debug info, I'd rather have unmatched constants.
   855       int cnt = n->req();
   856       JVMState* jvms = n->jvms();
   857       int debug_cnt = jvms ? jvms->debug_start() : cnt;
   859       // Now do only debug info.  Clone constants rather than matching.
   860       // Constants are represented directly in the debug info without
   861       // the need for executable machine instructions.
   862       // Monitor boxes are also represented directly.
   863       for (i = cnt - 1; i >= debug_cnt; --i) { // For all debug inputs do
   864         Node *m = n->in(i);          // Get input
   865         int op = m->Opcode();
   866         assert((op == Op_BoxLock) == jvms->is_monitor_use(i), "boxes only at monitor sites");
   867         if( op == Op_ConI || op == Op_ConP ||
   868             op == Op_ConF || op == Op_ConD || op == Op_ConL
   869             // || op == Op_BoxLock  // %%%% enable this and remove (+++) in chaitin.cpp
   870             ) {
   871           m = m->clone();
   872           mstack.push(m, Post_Visit, n, i); // Don't neet to visit
   873           mstack.push(m->in(0), Visit, m, 0);
   874         } else {
   875           mstack.push(m, Visit, n, i);
   876         }
   877       }
   879       // And now walk his children, and convert his inputs to new-space.
   880       for( ; i >= 0; --i ) { // For all normal inputs do
   881         Node *m = n->in(i);  // Get input
   882         if(m != NULL)
   883           mstack.push(m, Visit, n, i);
   884       }
   886     }
   887     else if (nstate == Post_Visit) {
   888       // Set xformed input
   889       Node *p = mstack.parent();
   890       if (p != NULL) { // root doesn't have parent
   891         int i = (int)mstack.index();
   892         if (i >= 0)
   893           p->set_req(i, n); // required input
   894         else if (i == -1)
   895           p->add_prec(n);   // precedence input
   896         else
   897           ShouldNotReachHere();
   898       }
   899       mstack.pop(); // remove processed node from stack
   900     }
   901     else {
   902       ShouldNotReachHere();
   903     }
   904   } // while (mstack.is_nonempty())
   905   return n; // Return new-space Node
   906 }
   908 //------------------------------warp_outgoing_stk_arg------------------------
   909 OptoReg::Name Matcher::warp_outgoing_stk_arg( VMReg reg, OptoReg::Name begin_out_arg_area, OptoReg::Name &out_arg_limit_per_call ) {
   910   // Convert outgoing argument location to a pre-biased stack offset
   911   if (reg->is_stack()) {
   912     OptoReg::Name warped = reg->reg2stack();
   913     // Adjust the stack slot offset to be the register number used
   914     // by the allocator.
   915     warped = OptoReg::add(begin_out_arg_area, warped);
   916     // Keep track of the largest numbered stack slot used for an arg.
   917     // Largest used slot per call-site indicates the amount of stack
   918     // that is killed by the call.
   919     if( warped >= out_arg_limit_per_call )
   920       out_arg_limit_per_call = OptoReg::add(warped,1);
   921     if (!RegMask::can_represent(warped)) {
   922       C->record_method_not_compilable_all_tiers("unsupported calling sequence");
   923       return OptoReg::Bad;
   924     }
   925     return warped;
   926   }
   927   return OptoReg::as_OptoReg(reg);
   928 }
   931 //------------------------------match_sfpt-------------------------------------
   932 // Helper function to match call instructions.  Calls match special.
   933 // They match alone with no children.  Their children, the incoming
   934 // arguments, match normally.
   935 MachNode *Matcher::match_sfpt( SafePointNode *sfpt ) {
   936   MachSafePointNode *msfpt = NULL;
   937   MachCallNode      *mcall = NULL;
   938   uint               cnt;
   939   // Split out case for SafePoint vs Call
   940   CallNode *call;
   941   const TypeTuple *domain;
   942   ciMethod*        method = NULL;
   943   if( sfpt->is_Call() ) {
   944     call = sfpt->as_Call();
   945     domain = call->tf()->domain();
   946     cnt = domain->cnt();
   948     // Match just the call, nothing else
   949     MachNode *m = match_tree(call);
   950     if (C->failing())  return NULL;
   951     if( m == NULL ) { Matcher::soft_match_failure(); return NULL; }
   953     // Copy data from the Ideal SafePoint to the machine version
   954     mcall = m->as_MachCall();
   956     mcall->set_tf(         call->tf());
   957     mcall->set_entry_point(call->entry_point());
   958     mcall->set_cnt(        call->cnt());
   960     if( mcall->is_MachCallJava() ) {
   961       MachCallJavaNode *mcall_java  = mcall->as_MachCallJava();
   962       const CallJavaNode *call_java =  call->as_CallJava();
   963       method = call_java->method();
   964       mcall_java->_method = method;
   965       mcall_java->_bci = call_java->_bci;
   966       mcall_java->_optimized_virtual = call_java->is_optimized_virtual();
   967       if( mcall_java->is_MachCallStaticJava() )
   968         mcall_java->as_MachCallStaticJava()->_name =
   969          call_java->as_CallStaticJava()->_name;
   970       if( mcall_java->is_MachCallDynamicJava() )
   971         mcall_java->as_MachCallDynamicJava()->_vtable_index =
   972          call_java->as_CallDynamicJava()->_vtable_index;
   973     }
   974     else if( mcall->is_MachCallRuntime() ) {
   975       mcall->as_MachCallRuntime()->_name = call->as_CallRuntime()->_name;
   976     }
   977     msfpt = mcall;
   978   }
   979   // This is a non-call safepoint
   980   else {
   981     call = NULL;
   982     domain = NULL;
   983     MachNode *mn = match_tree(sfpt);
   984     if (C->failing())  return NULL;
   985     msfpt = mn->as_MachSafePoint();
   986     cnt = TypeFunc::Parms;
   987   }
   989   // Advertise the correct memory effects (for anti-dependence computation).
   990   msfpt->set_adr_type(sfpt->adr_type());
   992   // Allocate a private array of RegMasks.  These RegMasks are not shared.
   993   msfpt->_in_rms = NEW_RESOURCE_ARRAY( RegMask, cnt );
   994   // Empty them all.
   995   memset( msfpt->_in_rms, 0, sizeof(RegMask)*cnt );
   997   // Do all the pre-defined non-Empty register masks
   998   msfpt->_in_rms[TypeFunc::ReturnAdr] = _return_addr_mask;
   999   msfpt->_in_rms[TypeFunc::FramePtr ] = c_frame_ptr_mask;
  1001   // Place first outgoing argument can possibly be put.
  1002   OptoReg::Name begin_out_arg_area = OptoReg::add(_new_SP, C->out_preserve_stack_slots());
  1003   assert( is_even(begin_out_arg_area), "" );
  1004   // Compute max outgoing register number per call site.
  1005   OptoReg::Name out_arg_limit_per_call = begin_out_arg_area;
  1006   // Calls to C may hammer extra stack slots above and beyond any arguments.
  1007   // These are usually backing store for register arguments for varargs.
  1008   if( call != NULL && call->is_CallRuntime() )
  1009     out_arg_limit_per_call = OptoReg::add(out_arg_limit_per_call,C->varargs_C_out_slots_killed());
  1012   // Do the normal argument list (parameters) register masks
  1013   int argcnt = cnt - TypeFunc::Parms;
  1014   if( argcnt > 0 ) {          // Skip it all if we have no args
  1015     BasicType *sig_bt  = NEW_RESOURCE_ARRAY( BasicType, argcnt );
  1016     VMRegPair *parm_regs = NEW_RESOURCE_ARRAY( VMRegPair, argcnt );
  1017     int i;
  1018     for( i = 0; i < argcnt; i++ ) {
  1019       sig_bt[i] = domain->field_at(i+TypeFunc::Parms)->basic_type();
  1021     // V-call to pick proper calling convention
  1022     call->calling_convention( sig_bt, parm_regs, argcnt );
  1024 #ifdef ASSERT
  1025     // Sanity check users' calling convention.  Really handy during
  1026     // the initial porting effort.  Fairly expensive otherwise.
  1027     { for (int i = 0; i<argcnt; i++) {
  1028       if( !parm_regs[i].first()->is_valid() &&
  1029           !parm_regs[i].second()->is_valid() ) continue;
  1030       VMReg reg1 = parm_regs[i].first();
  1031       VMReg reg2 = parm_regs[i].second();
  1032       for (int j = 0; j < i; j++) {
  1033         if( !parm_regs[j].first()->is_valid() &&
  1034             !parm_regs[j].second()->is_valid() ) continue;
  1035         VMReg reg3 = parm_regs[j].first();
  1036         VMReg reg4 = parm_regs[j].second();
  1037         if( !reg1->is_valid() ) {
  1038           assert( !reg2->is_valid(), "valid halvsies" );
  1039         } else if( !reg3->is_valid() ) {
  1040           assert( !reg4->is_valid(), "valid halvsies" );
  1041         } else {
  1042           assert( reg1 != reg2, "calling conv. must produce distinct regs");
  1043           assert( reg1 != reg3, "calling conv. must produce distinct regs");
  1044           assert( reg1 != reg4, "calling conv. must produce distinct regs");
  1045           assert( reg2 != reg3, "calling conv. must produce distinct regs");
  1046           assert( reg2 != reg4 || !reg2->is_valid(), "calling conv. must produce distinct regs");
  1047           assert( reg3 != reg4, "calling conv. must produce distinct regs");
  1052 #endif
  1054     // Visit each argument.  Compute its outgoing register mask.
  1055     // Return results now can have 2 bits returned.
  1056     // Compute max over all outgoing arguments both per call-site
  1057     // and over the entire method.
  1058     for( i = 0; i < argcnt; i++ ) {
  1059       // Address of incoming argument mask to fill in
  1060       RegMask *rm = &mcall->_in_rms[i+TypeFunc::Parms];
  1061       if( !parm_regs[i].first()->is_valid() &&
  1062           !parm_regs[i].second()->is_valid() ) {
  1063         continue;               // Avoid Halves
  1065       // Grab first register, adjust stack slots and insert in mask.
  1066       OptoReg::Name reg1 = warp_outgoing_stk_arg(parm_regs[i].first(), begin_out_arg_area, out_arg_limit_per_call );
  1067       if (OptoReg::is_valid(reg1))
  1068         rm->Insert( reg1 );
  1069       // Grab second register (if any), adjust stack slots and insert in mask.
  1070       OptoReg::Name reg2 = warp_outgoing_stk_arg(parm_regs[i].second(), begin_out_arg_area, out_arg_limit_per_call );
  1071       if (OptoReg::is_valid(reg2))
  1072         rm->Insert( reg2 );
  1073     } // End of for all arguments
  1075     // Compute number of stack slots needed to restore stack in case of
  1076     // Pascal-style argument popping.
  1077     mcall->_argsize = out_arg_limit_per_call - begin_out_arg_area;
  1080   // Compute the max stack slot killed by any call.  These will not be
  1081   // available for debug info, and will be used to adjust FIRST_STACK_mask
  1082   // after all call sites have been visited.
  1083   if( _out_arg_limit < out_arg_limit_per_call)
  1084     _out_arg_limit = out_arg_limit_per_call;
  1086   if (mcall) {
  1087     // Kill the outgoing argument area, including any non-argument holes and
  1088     // any legacy C-killed slots.  Use Fat-Projections to do the killing.
  1089     // Since the max-per-method covers the max-per-call-site and debug info
  1090     // is excluded on the max-per-method basis, debug info cannot land in
  1091     // this killed area.
  1092     uint r_cnt = mcall->tf()->range()->cnt();
  1093     MachProjNode *proj = new (C, 1) MachProjNode( mcall, r_cnt+10000, RegMask::Empty, MachProjNode::fat_proj );
  1094     if (!RegMask::can_represent(OptoReg::Name(out_arg_limit_per_call-1))) {
  1095       C->record_method_not_compilable_all_tiers("unsupported outgoing calling sequence");
  1096     } else {
  1097       for (int i = begin_out_arg_area; i < out_arg_limit_per_call; i++)
  1098         proj->_rout.Insert(OptoReg::Name(i));
  1100     if( proj->_rout.is_NotEmpty() )
  1101       _proj_list.push(proj);
  1103   // Transfer the safepoint information from the call to the mcall
  1104   // Move the JVMState list
  1105   msfpt->set_jvms(sfpt->jvms());
  1106   for (JVMState* jvms = msfpt->jvms(); jvms; jvms = jvms->caller()) {
  1107     jvms->set_map(sfpt);
  1110   // Debug inputs begin just after the last incoming parameter
  1111   assert( (mcall == NULL) || (mcall->jvms() == NULL) ||
  1112           (mcall->jvms()->debug_start() + mcall->_jvmadj == mcall->tf()->domain()->cnt()), "" );
  1114   // Move the OopMap
  1115   msfpt->_oop_map = sfpt->_oop_map;
  1117   // Registers killed by the call are set in the local scheduling pass
  1118   // of Global Code Motion.
  1119   return msfpt;
  1122 //---------------------------match_tree----------------------------------------
  1123 // Match a Ideal Node DAG - turn it into a tree; Label & Reduce.  Used as part
  1124 // of the whole-sale conversion from Ideal to Mach Nodes.  Also used for
  1125 // making GotoNodes while building the CFG and in init_spill_mask() to identify
  1126 // a Load's result RegMask for memoization in idealreg2regmask[]
  1127 MachNode *Matcher::match_tree( const Node *n ) {
  1128   assert( n->Opcode() != Op_Phi, "cannot match" );
  1129   assert( !n->is_block_start(), "cannot match" );
  1130   // Set the mark for all locally allocated State objects.
  1131   // When this call returns, the _states_arena arena will be reset
  1132   // freeing all State objects.
  1133   ResourceMark rm( &_states_arena );
  1135   LabelRootDepth = 0;
  1137   // StoreNodes require their Memory input to match any LoadNodes
  1138   Node *mem = n->is_Store() ? n->in(MemNode::Memory) : (Node*)1 ;
  1140   // State object for root node of match tree
  1141   // Allocate it on _states_arena - stack allocation can cause stack overflow.
  1142   State *s = new (&_states_arena) State;
  1143   s->_kids[0] = NULL;
  1144   s->_kids[1] = NULL;
  1145   s->_leaf = (Node*)n;
  1146   // Label the input tree, allocating labels from top-level arena
  1147   Label_Root( n, s, n->in(0), mem );
  1148   if (C->failing())  return NULL;
  1150   // The minimum cost match for the whole tree is found at the root State
  1151   uint mincost = max_juint;
  1152   uint cost = max_juint;
  1153   uint i;
  1154   for( i = 0; i < NUM_OPERANDS; i++ ) {
  1155     if( s->valid(i) &&                // valid entry and
  1156         s->_cost[i] < cost &&         // low cost and
  1157         s->_rule[i] >= NUM_OPERANDS ) // not an operand
  1158       cost = s->_cost[mincost=i];
  1160   if (mincost == max_juint) {
  1161 #ifndef PRODUCT
  1162     tty->print("No matching rule for:");
  1163     s->dump();
  1164 #endif
  1165     Matcher::soft_match_failure();
  1166     return NULL;
  1168   // Reduce input tree based upon the state labels to machine Nodes
  1169   MachNode *m = ReduceInst( s, s->_rule[mincost], mem );
  1170 #ifdef ASSERT
  1171   _old2new_map.map(n->_idx, m);
  1172 #endif
  1174   // Add any Matcher-ignored edges
  1175   uint cnt = n->req();
  1176   uint start = 1;
  1177   if( mem != (Node*)1 ) start = MemNode::Memory+1;
  1178   if( n->Opcode() == Op_AddP ) {
  1179     assert( mem == (Node*)1, "" );
  1180     start = AddPNode::Base+1;
  1182   for( i = start; i < cnt; i++ ) {
  1183     if( !n->match_edge(i) ) {
  1184       if( i < m->req() )
  1185         m->ins_req( i, n->in(i) );
  1186       else
  1187         m->add_req( n->in(i) );
  1191   return m;
  1195 //------------------------------match_into_reg---------------------------------
  1196 // Choose to either match this Node in a register or part of the current
  1197 // match tree.  Return true for requiring a register and false for matching
  1198 // as part of the current match tree.
  1199 static bool match_into_reg( const Node *n, Node *m, Node *control, int i, bool shared ) {
  1201   const Type *t = m->bottom_type();
  1203   if( t->singleton() ) {
  1204     // Never force constants into registers.  Allow them to match as
  1205     // constants or registers.  Copies of the same value will share
  1206     // the same register.  See find_shared_constant.
  1207     return false;
  1208   } else {                      // Not a constant
  1209     // Stop recursion if they have different Controls.
  1210     // Slot 0 of constants is not really a Control.
  1211     if( control && m->in(0) && control != m->in(0) ) {
  1213       // Actually, we can live with the most conservative control we
  1214       // find, if it post-dominates the others.  This allows us to
  1215       // pick up load/op/store trees where the load can float a little
  1216       // above the store.
  1217       Node *x = control;
  1218       const uint max_scan = 6;   // Arbitrary scan cutoff
  1219       uint j;
  1220       for( j=0; j<max_scan; j++ ) {
  1221         if( x->is_Region() )    // Bail out at merge points
  1222           return true;
  1223         x = x->in(0);
  1224         if( x == m->in(0) )     // Does 'control' post-dominate
  1225           break;                // m->in(0)?  If so, we can use it
  1227       if( j == max_scan )       // No post-domination before scan end?
  1228         return true;            // Then break the match tree up
  1232   // Not forceably cloning.  If shared, put it into a register.
  1233   return shared;
  1237 //------------------------------Instruction Selection--------------------------
  1238 // Label method walks a "tree" of nodes, using the ADLC generated DFA to match
  1239 // ideal nodes to machine instructions.  Trees are delimited by shared Nodes,
  1240 // things the Matcher does not match (e.g., Memory), and things with different
  1241 // Controls (hence forced into different blocks).  We pass in the Control
  1242 // selected for this entire State tree.
  1244 // The Matcher works on Trees, but an Intel add-to-memory requires a DAG: the
  1245 // Store and the Load must have identical Memories (as well as identical
  1246 // pointers).  Since the Matcher does not have anything for Memory (and
  1247 // does not handle DAGs), I have to match the Memory input myself.  If the
  1248 // Tree root is a Store, I require all Loads to have the identical memory.
  1249 Node *Matcher::Label_Root( const Node *n, State *svec, Node *control, const Node *mem){
  1250   // Since Label_Root is a recursive function, its possible that we might run
  1251   // out of stack space.  See bugs 6272980 & 6227033 for more info.
  1252   LabelRootDepth++;
  1253   if (LabelRootDepth > MaxLabelRootDepth) {
  1254     C->record_method_not_compilable_all_tiers("Out of stack space, increase MaxLabelRootDepth");
  1255     return NULL;
  1257   uint care = 0;                // Edges matcher cares about
  1258   uint cnt = n->req();
  1259   uint i = 0;
  1261   // Examine children for memory state
  1262   // Can only subsume a child into your match-tree if that child's memory state
  1263   // is not modified along the path to another input.
  1264   // It is unsafe even if the other inputs are separate roots.
  1265   Node *input_mem = NULL;
  1266   for( i = 1; i < cnt; i++ ) {
  1267     if( !n->match_edge(i) ) continue;
  1268     Node *m = n->in(i);         // Get ith input
  1269     assert( m, "expect non-null children" );
  1270     if( m->is_Load() ) {
  1271       if( input_mem == NULL ) {
  1272         input_mem = m->in(MemNode::Memory);
  1273       } else if( input_mem != m->in(MemNode::Memory) ) {
  1274         input_mem = NodeSentinel;
  1279   for( i = 1; i < cnt; i++ ){// For my children
  1280     if( !n->match_edge(i) ) continue;
  1281     Node *m = n->in(i);         // Get ith input
  1282     // Allocate states out of a private arena
  1283     State *s = new (&_states_arena) State;
  1284     svec->_kids[care++] = s;
  1285     assert( care <= 2, "binary only for now" );
  1287     // Recursively label the State tree.
  1288     s->_kids[0] = NULL;
  1289     s->_kids[1] = NULL;
  1290     s->_leaf = m;
  1292     // Check for leaves of the State Tree; things that cannot be a part of
  1293     // the current tree.  If it finds any, that value is matched as a
  1294     // register operand.  If not, then the normal matching is used.
  1295     if( match_into_reg(n, m, control, i, is_shared(m)) ||
  1296         //
  1297         // Stop recursion if this is LoadNode and the root of this tree is a
  1298         // StoreNode and the load & store have different memories.
  1299         ((mem!=(Node*)1) && m->is_Load() && m->in(MemNode::Memory) != mem) ||
  1300         // Can NOT include the match of a subtree when its memory state
  1301         // is used by any of the other subtrees
  1302         (input_mem == NodeSentinel) ) {
  1303 #ifndef PRODUCT
  1304       // Print when we exclude matching due to different memory states at input-loads
  1305       if( PrintOpto && (Verbose && WizardMode) && (input_mem == NodeSentinel)
  1306         && !((mem!=(Node*)1) && m->is_Load() && m->in(MemNode::Memory) != mem) ) {
  1307         tty->print_cr("invalid input_mem");
  1309 #endif
  1310       // Switch to a register-only opcode; this value must be in a register
  1311       // and cannot be subsumed as part of a larger instruction.
  1312       s->DFA( m->ideal_reg(), m );
  1314     } else {
  1315       // If match tree has no control and we do, adopt it for entire tree
  1316       if( control == NULL && m->in(0) != NULL && m->req() > 1 )
  1317         control = m->in(0);         // Pick up control
  1318       // Else match as a normal part of the match tree.
  1319       control = Label_Root(m,s,control,mem);
  1320       if (C->failing()) return NULL;
  1325   // Call DFA to match this node, and return
  1326   svec->DFA( n->Opcode(), n );
  1328 #ifdef ASSERT
  1329   uint x;
  1330   for( x = 0; x < _LAST_MACH_OPER; x++ )
  1331     if( svec->valid(x) )
  1332       break;
  1334   if (x >= _LAST_MACH_OPER) {
  1335     n->dump();
  1336     svec->dump();
  1337     assert( false, "bad AD file" );
  1339 #endif
  1340   return control;
  1344 // Con nodes reduced using the same rule can share their MachNode
  1345 // which reduces the number of copies of a constant in the final
  1346 // program.  The register allocator is free to split uses later to
  1347 // split live ranges.
  1348 MachNode* Matcher::find_shared_constant(Node* leaf, uint rule) {
  1349   if (!leaf->is_Con()) return NULL;
  1351   // See if this Con has already been reduced using this rule.
  1352   if (_shared_constants.Size() <= leaf->_idx) return NULL;
  1353   MachNode* last = (MachNode*)_shared_constants.at(leaf->_idx);
  1354   if (last != NULL && rule == last->rule()) {
  1355     // Get the new space root.
  1356     Node* xroot = new_node(C->root());
  1357     if (xroot == NULL) {
  1358       // This shouldn't happen give the order of matching.
  1359       return NULL;
  1362     // Shared constants need to have their control be root so they
  1363     // can be scheduled properly.
  1364     Node* control = last->in(0);
  1365     if (control != xroot) {
  1366       if (control == NULL || control == C->root()) {
  1367         last->set_req(0, xroot);
  1368       } else {
  1369         assert(false, "unexpected control");
  1370         return NULL;
  1373     return last;
  1375   return NULL;
  1379 //------------------------------ReduceInst-------------------------------------
  1380 // Reduce a State tree (with given Control) into a tree of MachNodes.
  1381 // This routine (and it's cohort ReduceOper) convert Ideal Nodes into
  1382 // complicated machine Nodes.  Each MachNode covers some tree of Ideal Nodes.
  1383 // Each MachNode has a number of complicated MachOper operands; each
  1384 // MachOper also covers a further tree of Ideal Nodes.
  1386 // The root of the Ideal match tree is always an instruction, so we enter
  1387 // the recursion here.  After building the MachNode, we need to recurse
  1388 // the tree checking for these cases:
  1389 // (1) Child is an instruction -
  1390 //     Build the instruction (recursively), add it as an edge.
  1391 //     Build a simple operand (register) to hold the result of the instruction.
  1392 // (2) Child is an interior part of an instruction -
  1393 //     Skip over it (do nothing)
  1394 // (3) Child is the start of a operand -
  1395 //     Build the operand, place it inside the instruction
  1396 //     Call ReduceOper.
  1397 MachNode *Matcher::ReduceInst( State *s, int rule, Node *&mem ) {
  1398   assert( rule >= NUM_OPERANDS, "called with operand rule" );
  1400   MachNode* shared_con = find_shared_constant(s->_leaf, rule);
  1401   if (shared_con != NULL) {
  1402     return shared_con;
  1405   // Build the object to represent this state & prepare for recursive calls
  1406   MachNode *mach = s->MachNodeGenerator( rule, C );
  1407   mach->_opnds[0] = s->MachOperGenerator( _reduceOp[rule], C );
  1408   assert( mach->_opnds[0] != NULL, "Missing result operand" );
  1409   Node *leaf = s->_leaf;
  1410   // Check for instruction or instruction chain rule
  1411   if( rule >= _END_INST_CHAIN_RULE || rule < _BEGIN_INST_CHAIN_RULE ) {
  1412     // Instruction
  1413     mach->add_req( leaf->in(0) ); // Set initial control
  1414     // Reduce interior of complex instruction
  1415     ReduceInst_Interior( s, rule, mem, mach, 1 );
  1416   } else {
  1417     // Instruction chain rules are data-dependent on their inputs
  1418     mach->add_req(0);             // Set initial control to none
  1419     ReduceInst_Chain_Rule( s, rule, mem, mach );
  1422   // If a Memory was used, insert a Memory edge
  1423   if( mem != (Node*)1 )
  1424     mach->ins_req(MemNode::Memory,mem);
  1426   // If the _leaf is an AddP, insert the base edge
  1427   if( leaf->Opcode() == Op_AddP )
  1428     mach->ins_req(AddPNode::Base,leaf->in(AddPNode::Base));
  1430   uint num_proj = _proj_list.size();
  1432   // Perform any 1-to-many expansions required
  1433   MachNode *ex = mach->Expand(s,_proj_list);
  1434   if( ex != mach ) {
  1435     assert(ex->ideal_reg() == mach->ideal_reg(), "ideal types should match");
  1436     if( ex->in(1)->is_Con() )
  1437       ex->in(1)->set_req(0, C->root());
  1438     // Remove old node from the graph
  1439     for( uint i=0; i<mach->req(); i++ ) {
  1440       mach->set_req(i,NULL);
  1444   // PhaseChaitin::fixup_spills will sometimes generate spill code
  1445   // via the matcher.  By the time, nodes have been wired into the CFG,
  1446   // and any further nodes generated by expand rules will be left hanging
  1447   // in space, and will not get emitted as output code.  Catch this.
  1448   // Also, catch any new register allocation constraints ("projections")
  1449   // generated belatedly during spill code generation.
  1450   if (_allocation_started) {
  1451     guarantee(ex == mach, "no expand rules during spill generation");
  1452     guarantee(_proj_list.size() == num_proj, "no allocation during spill generation");
  1455   if (leaf->is_Con()) {
  1456     // Record the con for sharing
  1457     _shared_constants.map(leaf->_idx, ex);
  1460   return ex;
  1463 void Matcher::ReduceInst_Chain_Rule( State *s, int rule, Node *&mem, MachNode *mach ) {
  1464   // 'op' is what I am expecting to receive
  1465   int op = _leftOp[rule];
  1466   // Operand type to catch childs result
  1467   // This is what my child will give me.
  1468   int opnd_class_instance = s->_rule[op];
  1469   // Choose between operand class or not.
  1470   // This is what I will recieve.
  1471   int catch_op = (FIRST_OPERAND_CLASS <= op && op < NUM_OPERANDS) ? opnd_class_instance : op;
  1472   // New rule for child.  Chase operand classes to get the actual rule.
  1473   int newrule = s->_rule[catch_op];
  1475   if( newrule < NUM_OPERANDS ) {
  1476     // Chain from operand or operand class, may be output of shared node
  1477     assert( 0 <= opnd_class_instance && opnd_class_instance < NUM_OPERANDS,
  1478             "Bad AD file: Instruction chain rule must chain from operand");
  1479     // Insert operand into array of operands for this instruction
  1480     mach->_opnds[1] = s->MachOperGenerator( opnd_class_instance, C );
  1482     ReduceOper( s, newrule, mem, mach );
  1483   } else {
  1484     // Chain from the result of an instruction
  1485     assert( newrule >= _LAST_MACH_OPER, "Do NOT chain from internal operand");
  1486     mach->_opnds[1] = s->MachOperGenerator( _reduceOp[catch_op], C );
  1487     Node *mem1 = (Node*)1;
  1488     mach->add_req( ReduceInst(s, newrule, mem1) );
  1490   return;
  1494 uint Matcher::ReduceInst_Interior( State *s, int rule, Node *&mem, MachNode *mach, uint num_opnds ) {
  1495   if( s->_leaf->is_Load() ) {
  1496     Node *mem2 = s->_leaf->in(MemNode::Memory);
  1497     assert( mem == (Node*)1 || mem == mem2, "multiple Memories being matched at once?" );
  1498     mem = mem2;
  1500   if( s->_leaf->in(0) != NULL && s->_leaf->req() > 1) {
  1501     if( mach->in(0) == NULL )
  1502       mach->set_req(0, s->_leaf->in(0));
  1505   // Now recursively walk the state tree & add operand list.
  1506   for( uint i=0; i<2; i++ ) {   // binary tree
  1507     State *newstate = s->_kids[i];
  1508     if( newstate == NULL ) break;      // Might only have 1 child
  1509     // 'op' is what I am expecting to receive
  1510     int op;
  1511     if( i == 0 ) {
  1512       op = _leftOp[rule];
  1513     } else {
  1514       op = _rightOp[rule];
  1516     // Operand type to catch childs result
  1517     // This is what my child will give me.
  1518     int opnd_class_instance = newstate->_rule[op];
  1519     // Choose between operand class or not.
  1520     // This is what I will receive.
  1521     int catch_op = (op >= FIRST_OPERAND_CLASS && op < NUM_OPERANDS) ? opnd_class_instance : op;
  1522     // New rule for child.  Chase operand classes to get the actual rule.
  1523     int newrule = newstate->_rule[catch_op];
  1525     if( newrule < NUM_OPERANDS ) { // Operand/operandClass or internalOp/instruction?
  1526       // Operand/operandClass
  1527       // Insert operand into array of operands for this instruction
  1528       mach->_opnds[num_opnds++] = newstate->MachOperGenerator( opnd_class_instance, C );
  1529       ReduceOper( newstate, newrule, mem, mach );
  1531     } else {                    // Child is internal operand or new instruction
  1532       if( newrule < _LAST_MACH_OPER ) { // internal operand or instruction?
  1533         // internal operand --> call ReduceInst_Interior
  1534         // Interior of complex instruction.  Do nothing but recurse.
  1535         num_opnds = ReduceInst_Interior( newstate, newrule, mem, mach, num_opnds );
  1536       } else {
  1537         // instruction --> call build operand(  ) to catch result
  1538         //             --> ReduceInst( newrule )
  1539         mach->_opnds[num_opnds++] = s->MachOperGenerator( _reduceOp[catch_op], C );
  1540         Node *mem1 = (Node*)1;
  1541         mach->add_req( ReduceInst( newstate, newrule, mem1 ) );
  1544     assert( mach->_opnds[num_opnds-1], "" );
  1546   return num_opnds;
  1549 // This routine walks the interior of possible complex operands.
  1550 // At each point we check our children in the match tree:
  1551 // (1) No children -
  1552 //     We are a leaf; add _leaf field as an input to the MachNode
  1553 // (2) Child is an internal operand -
  1554 //     Skip over it ( do nothing )
  1555 // (3) Child is an instruction -
  1556 //     Call ReduceInst recursively and
  1557 //     and instruction as an input to the MachNode
  1558 void Matcher::ReduceOper( State *s, int rule, Node *&mem, MachNode *mach ) {
  1559   assert( rule < _LAST_MACH_OPER, "called with operand rule" );
  1560   State *kid = s->_kids[0];
  1561   assert( kid == NULL || s->_leaf->in(0) == NULL, "internal operands have no control" );
  1563   // Leaf?  And not subsumed?
  1564   if( kid == NULL && !_swallowed[rule] ) {
  1565     mach->add_req( s->_leaf );  // Add leaf pointer
  1566     return;                     // Bail out
  1569   if( s->_leaf->is_Load() ) {
  1570     assert( mem == (Node*)1, "multiple Memories being matched at once?" );
  1571     mem = s->_leaf->in(MemNode::Memory);
  1573   if( s->_leaf->in(0) && s->_leaf->req() > 1) {
  1574     if( !mach->in(0) )
  1575       mach->set_req(0,s->_leaf->in(0));
  1576     else {
  1577       assert( s->_leaf->in(0) == mach->in(0), "same instruction, differing controls?" );
  1581   for( uint i=0; kid != NULL && i<2; kid = s->_kids[1], i++ ) {   // binary tree
  1582     int newrule;
  1583     if( i == 0 )
  1584       newrule = kid->_rule[_leftOp[rule]];
  1585     else
  1586       newrule = kid->_rule[_rightOp[rule]];
  1588     if( newrule < _LAST_MACH_OPER ) { // Operand or instruction?
  1589       // Internal operand; recurse but do nothing else
  1590       ReduceOper( kid, newrule, mem, mach );
  1592     } else {                    // Child is a new instruction
  1593       // Reduce the instruction, and add a direct pointer from this
  1594       // machine instruction to the newly reduced one.
  1595       Node *mem1 = (Node*)1;
  1596       mach->add_req( ReduceInst( kid, newrule, mem1 ) );
  1602 // -------------------------------------------------------------------------
  1603 // Java-Java calling convention
  1604 // (what you use when Java calls Java)
  1606 //------------------------------find_receiver----------------------------------
  1607 // For a given signature, return the OptoReg for parameter 0.
  1608 OptoReg::Name Matcher::find_receiver( bool is_outgoing ) {
  1609   VMRegPair regs;
  1610   BasicType sig_bt = T_OBJECT;
  1611   calling_convention(&sig_bt, &regs, 1, is_outgoing);
  1612   // Return argument 0 register.  In the LP64 build pointers
  1613   // take 2 registers, but the VM wants only the 'main' name.
  1614   return OptoReg::as_OptoReg(regs.first());
  1617 // A method-klass-holder may be passed in the inline_cache_reg
  1618 // and then expanded into the inline_cache_reg and a method_oop register
  1619 //   defined in ad_<arch>.cpp
  1622 //------------------------------find_shared------------------------------------
  1623 // Set bits if Node is shared or otherwise a root
  1624 void Matcher::find_shared( Node *n ) {
  1625   // Allocate stack of size C->unique() * 2 to avoid frequent realloc
  1626   MStack mstack(C->unique() * 2);
  1627   mstack.push(n, Visit);     // Don't need to pre-visit root node
  1628   while (mstack.is_nonempty()) {
  1629     n = mstack.node();       // Leave node on stack
  1630     Node_State nstate = mstack.state();
  1631     if (nstate == Pre_Visit) {
  1632       if (is_visited(n)) {   // Visited already?
  1633         // Node is shared and has no reason to clone.  Flag it as shared.
  1634         // This causes it to match into a register for the sharing.
  1635         set_shared(n);       // Flag as shared and
  1636         mstack.pop();        // remove node from stack
  1637         continue;
  1639       nstate = Visit; // Not already visited; so visit now
  1641     if (nstate == Visit) {
  1642       mstack.set_state(Post_Visit);
  1643       set_visited(n);   // Flag as visited now
  1644       bool mem_op = false;
  1646       switch( n->Opcode() ) {  // Handle some opcodes special
  1647       case Op_Phi:             // Treat Phis as shared roots
  1648       case Op_Parm:
  1649       case Op_Proj:            // All handled specially during matching
  1650       case Op_SafePointScalarObject:
  1651         set_shared(n);
  1652         set_dontcare(n);
  1653         break;
  1654       case Op_If:
  1655       case Op_CountedLoopEnd:
  1656         mstack.set_state(Alt_Post_Visit); // Alternative way
  1657         // Convert (If (Bool (CmpX A B))) into (If (Bool) (CmpX A B)).  Helps
  1658         // with matching cmp/branch in 1 instruction.  The Matcher needs the
  1659         // Bool and CmpX side-by-side, because it can only get at constants
  1660         // that are at the leaves of Match trees, and the Bool's condition acts
  1661         // as a constant here.
  1662         mstack.push(n->in(1), Visit);         // Clone the Bool
  1663         mstack.push(n->in(0), Pre_Visit);     // Visit control input
  1664         continue; // while (mstack.is_nonempty())
  1665       case Op_ConvI2D:         // These forms efficiently match with a prior
  1666       case Op_ConvI2F:         //   Load but not a following Store
  1667         if( n->in(1)->is_Load() &&        // Prior load
  1668             n->outcnt() == 1 &&           // Not already shared
  1669             n->unique_out()->is_Store() ) // Following store
  1670           set_shared(n);       // Force it to be a root
  1671         break;
  1672       case Op_ReverseBytesI:
  1673       case Op_ReverseBytesL:
  1674         if( n->in(1)->is_Load() &&        // Prior load
  1675             n->outcnt() == 1 )            // Not already shared
  1676           set_shared(n);                  // Force it to be a root
  1677         break;
  1678       case Op_BoxLock:         // Cant match until we get stack-regs in ADLC
  1679       case Op_IfFalse:
  1680       case Op_IfTrue:
  1681       case Op_MachProj:
  1682       case Op_MergeMem:
  1683       case Op_Catch:
  1684       case Op_CatchProj:
  1685       case Op_CProj:
  1686       case Op_JumpProj:
  1687       case Op_JProj:
  1688       case Op_NeverBranch:
  1689         set_dontcare(n);
  1690         break;
  1691       case Op_Jump:
  1692         mstack.push(n->in(1), Visit);         // Switch Value
  1693         mstack.push(n->in(0), Pre_Visit);     // Visit Control input
  1694         continue;                             // while (mstack.is_nonempty())
  1695       case Op_StrComp:
  1696         set_shared(n); // Force result into register (it will be anyways)
  1697         break;
  1698       case Op_ConP: {  // Convert pointers above the centerline to NUL
  1699         TypeNode *tn = n->as_Type(); // Constants derive from type nodes
  1700         const TypePtr* tp = tn->type()->is_ptr();
  1701         if (tp->_ptr == TypePtr::AnyNull) {
  1702           tn->set_type(TypePtr::NULL_PTR);
  1704         break;
  1706       case Op_Binary:         // These are introduced in the Post_Visit state.
  1707         ShouldNotReachHere();
  1708         break;
  1709       case Op_StoreB:         // Do match these, despite no ideal reg
  1710       case Op_StoreC:
  1711       case Op_StoreCM:
  1712       case Op_StoreD:
  1713       case Op_StoreF:
  1714       case Op_StoreI:
  1715       case Op_StoreL:
  1716       case Op_StoreP:
  1717       case Op_Store16B:
  1718       case Op_Store8B:
  1719       case Op_Store4B:
  1720       case Op_Store8C:
  1721       case Op_Store4C:
  1722       case Op_Store2C:
  1723       case Op_Store4I:
  1724       case Op_Store2I:
  1725       case Op_Store2L:
  1726       case Op_Store4F:
  1727       case Op_Store2F:
  1728       case Op_Store2D:
  1729       case Op_ClearArray:
  1730       case Op_SafePoint:
  1731         mem_op = true;
  1732         break;
  1733       case Op_LoadB:
  1734       case Op_LoadC:
  1735       case Op_LoadD:
  1736       case Op_LoadF:
  1737       case Op_LoadI:
  1738       case Op_LoadKlass:
  1739       case Op_LoadL:
  1740       case Op_LoadS:
  1741       case Op_LoadP:
  1742       case Op_LoadRange:
  1743       case Op_LoadD_unaligned:
  1744       case Op_LoadL_unaligned:
  1745       case Op_Load16B:
  1746       case Op_Load8B:
  1747       case Op_Load4B:
  1748       case Op_Load4C:
  1749       case Op_Load2C:
  1750       case Op_Load8C:
  1751       case Op_Load8S:
  1752       case Op_Load4S:
  1753       case Op_Load2S:
  1754       case Op_Load4I:
  1755       case Op_Load2I:
  1756       case Op_Load2L:
  1757       case Op_Load4F:
  1758       case Op_Load2F:
  1759       case Op_Load2D:
  1760         mem_op = true;
  1761         // Must be root of match tree due to prior load conflict
  1762         if( C->subsume_loads() == false ) {
  1763           set_shared(n);
  1765         // Fall into default case
  1766       default:
  1767         if( !n->ideal_reg() )
  1768           set_dontcare(n);  // Unmatchable Nodes
  1769       } // end_switch
  1771       for(int i = n->req() - 1; i >= 0; --i) { // For my children
  1772         Node *m = n->in(i); // Get ith input
  1773         if (m == NULL) continue;  // Ignore NULLs
  1774         uint mop = m->Opcode();
  1776         // Must clone all producers of flags, or we will not match correctly.
  1777         // Suppose a compare setting int-flags is shared (e.g., a switch-tree)
  1778         // then it will match into an ideal Op_RegFlags.  Alas, the fp-flags
  1779         // are also there, so we may match a float-branch to int-flags and
  1780         // expect the allocator to haul the flags from the int-side to the
  1781         // fp-side.  No can do.
  1782         if( _must_clone[mop] ) {
  1783           mstack.push(m, Visit);
  1784           continue; // for(int i = ...)
  1787         // Clone addressing expressions as they are "free" in most instructions
  1788         if( mem_op && i == MemNode::Address && mop == Op_AddP ) {
  1789           Node *off = m->in(AddPNode::Offset);
  1790           if( off->is_Con() ) {
  1791             set_visited(m);  // Flag as visited now
  1792             Node *adr = m->in(AddPNode::Address);
  1794             // Intel, ARM and friends can handle 2 adds in addressing mode
  1795             if( clone_shift_expressions && adr->Opcode() == Op_AddP &&
  1796                 // AtomicAdd is not an addressing expression.
  1797                 // Cheap to find it by looking for screwy base.
  1798                 !adr->in(AddPNode::Base)->is_top() ) {
  1799               set_visited(adr);  // Flag as visited now
  1800               Node *shift = adr->in(AddPNode::Offset);
  1801               // Check for shift by small constant as well
  1802               if( shift->Opcode() == Op_LShiftX && shift->in(2)->is_Con() &&
  1803                   shift->in(2)->get_int() <= 3 ) {
  1804                 set_visited(shift);  // Flag as visited now
  1805                 mstack.push(shift->in(2), Visit);
  1806 #ifdef _LP64
  1807                 // Allow Matcher to match the rule which bypass
  1808                 // ConvI2L operation for an array index on LP64
  1809                 // if the index value is positive.
  1810                 if( shift->in(1)->Opcode() == Op_ConvI2L &&
  1811                     shift->in(1)->as_Type()->type()->is_long()->_lo >= 0 ) {
  1812                   set_visited(shift->in(1));  // Flag as visited now
  1813                   mstack.push(shift->in(1)->in(1), Pre_Visit);
  1814                 } else
  1815 #endif
  1816                 mstack.push(shift->in(1), Pre_Visit);
  1817               } else {
  1818                 mstack.push(shift, Pre_Visit);
  1820               mstack.push(adr->in(AddPNode::Address), Pre_Visit);
  1821               mstack.push(adr->in(AddPNode::Base), Pre_Visit);
  1822             } else {  // Sparc, Alpha, PPC and friends
  1823               mstack.push(adr, Pre_Visit);
  1826             // Clone X+offset as it also folds into most addressing expressions
  1827             mstack.push(off, Visit);
  1828             mstack.push(m->in(AddPNode::Base), Pre_Visit);
  1829             continue; // for(int i = ...)
  1830           } // if( off->is_Con() )
  1831         }   // if( mem_op &&
  1832         mstack.push(m, Pre_Visit);
  1833       }     // for(int i = ...)
  1835     else if (nstate == Alt_Post_Visit) {
  1836       mstack.pop(); // Remove node from stack
  1837       // We cannot remove the Cmp input from the Bool here, as the Bool may be
  1838       // shared and all users of the Bool need to move the Cmp in parallel.
  1839       // This leaves both the Bool and the If pointing at the Cmp.  To
  1840       // prevent the Matcher from trying to Match the Cmp along both paths
  1841       // BoolNode::match_edge always returns a zero.
  1843       // We reorder the Op_If in a pre-order manner, so we can visit without
  1844       // accidently sharing the Cmp (the Bool and the If make 2 users).
  1845       n->add_req( n->in(1)->in(1) ); // Add the Cmp next to the Bool
  1847     else if (nstate == Post_Visit) {
  1848       mstack.pop(); // Remove node from stack
  1850       // Now hack a few special opcodes
  1851       switch( n->Opcode() ) {       // Handle some opcodes special
  1852       case Op_StorePConditional:
  1853       case Op_StoreLConditional:
  1854       case Op_CompareAndSwapI:
  1855       case Op_CompareAndSwapL:
  1856       case Op_CompareAndSwapP: {   // Convert trinary to binary-tree
  1857         Node *newval = n->in(MemNode::ValueIn );
  1858         Node *oldval  = n->in(LoadStoreNode::ExpectedIn);
  1859         Node *pair = new (C, 3) BinaryNode( oldval, newval );
  1860         n->set_req(MemNode::ValueIn,pair);
  1861         n->del_req(LoadStoreNode::ExpectedIn);
  1862         break;
  1864       case Op_CMoveD:              // Convert trinary to binary-tree
  1865       case Op_CMoveF:
  1866       case Op_CMoveI:
  1867       case Op_CMoveL:
  1868       case Op_CMoveP: {
  1869         // Restructure into a binary tree for Matching.  It's possible that
  1870         // we could move this code up next to the graph reshaping for IfNodes
  1871         // or vice-versa, but I do not want to debug this for Ladybird.
  1872         // 10/2/2000 CNC.
  1873         Node *pair1 = new (C, 3) BinaryNode(n->in(1),n->in(1)->in(1));
  1874         n->set_req(1,pair1);
  1875         Node *pair2 = new (C, 3) BinaryNode(n->in(2),n->in(3));
  1876         n->set_req(2,pair2);
  1877         n->del_req(3);
  1878         break;
  1880       default:
  1881         break;
  1884     else {
  1885       ShouldNotReachHere();
  1887   } // end of while (mstack.is_nonempty())
  1890 #ifdef ASSERT
  1891 // machine-independent root to machine-dependent root
  1892 void Matcher::dump_old2new_map() {
  1893   _old2new_map.dump();
  1895 #endif
  1897 //---------------------------collect_null_checks-------------------------------
  1898 // Find null checks in the ideal graph; write a machine-specific node for
  1899 // it.  Used by later implicit-null-check handling.  Actually collects
  1900 // either an IfTrue or IfFalse for the common NOT-null path, AND the ideal
  1901 // value being tested.
  1902 void Matcher::collect_null_checks( Node *proj ) {
  1903   Node *iff = proj->in(0);
  1904   if( iff->Opcode() == Op_If ) {
  1905     // During matching If's have Bool & Cmp side-by-side
  1906     BoolNode *b = iff->in(1)->as_Bool();
  1907     Node *cmp = iff->in(2);
  1908     if( cmp->Opcode() == Op_CmpP ) {
  1909       if( cmp->in(2)->bottom_type() == TypePtr::NULL_PTR ) {
  1911         if( proj->Opcode() == Op_IfTrue ) {
  1912           extern int all_null_checks_found;
  1913           all_null_checks_found++;
  1914           if( b->_test._test == BoolTest::ne ) {
  1915             _null_check_tests.push(proj);
  1916             _null_check_tests.push(cmp->in(1));
  1918         } else {
  1919           assert( proj->Opcode() == Op_IfFalse, "" );
  1920           if( b->_test._test == BoolTest::eq ) {
  1921             _null_check_tests.push(proj);
  1922             _null_check_tests.push(cmp->in(1));
  1930 //---------------------------validate_null_checks------------------------------
  1931 // Its possible that the value being NULL checked is not the root of a match
  1932 // tree.  If so, I cannot use the value in an implicit null check.
  1933 void Matcher::validate_null_checks( ) {
  1934   uint cnt = _null_check_tests.size();
  1935   for( uint i=0; i < cnt; i+=2 ) {
  1936     Node *test = _null_check_tests[i];
  1937     Node *val = _null_check_tests[i+1];
  1938     if (has_new_node(val)) {
  1939       // Is a match-tree root, so replace with the matched value
  1940       _null_check_tests.map(i+1, new_node(val));
  1941     } else {
  1942       // Yank from candidate list
  1943       _null_check_tests.map(i+1,_null_check_tests[--cnt]);
  1944       _null_check_tests.map(i,_null_check_tests[--cnt]);
  1945       _null_check_tests.pop();
  1946       _null_check_tests.pop();
  1947       i-=2;
  1953 // Used by the DFA in dfa_sparc.cpp.  Check for a prior FastLock
  1954 // acting as an Acquire and thus we don't need an Acquire here.  We
  1955 // retain the Node to act as a compiler ordering barrier.
  1956 bool Matcher::prior_fast_lock( const Node *acq ) {
  1957   Node *r = acq->in(0);
  1958   if( !r->is_Region() || r->req() <= 1 ) return false;
  1959   Node *proj = r->in(1);
  1960   if( !proj->is_Proj() ) return false;
  1961   Node *call = proj->in(0);
  1962   if( !call->is_Call() || call->as_Call()->entry_point() != OptoRuntime::complete_monitor_locking_Java() )
  1963     return false;
  1965   return true;
  1968 // Used by the DFA in dfa_sparc.cpp.  Check for a following FastUnLock
  1969 // acting as a Release and thus we don't need a Release here.  We
  1970 // retain the Node to act as a compiler ordering barrier.
  1971 bool Matcher::post_fast_unlock( const Node *rel ) {
  1972   Compile *C = Compile::current();
  1973   assert( rel->Opcode() == Op_MemBarRelease, "" );
  1974   const MemBarReleaseNode *mem = (const MemBarReleaseNode*)rel;
  1975   DUIterator_Fast imax, i = mem->fast_outs(imax);
  1976   Node *ctrl = NULL;
  1977   while( true ) {
  1978     ctrl = mem->fast_out(i);            // Throw out-of-bounds if proj not found
  1979     assert( ctrl->is_Proj(), "only projections here" );
  1980     ProjNode *proj = (ProjNode*)ctrl;
  1981     if( proj->_con == TypeFunc::Control &&
  1982         !C->node_arena()->contains(ctrl) ) // Unmatched old-space only
  1983       break;
  1984     i++;
  1986   Node *iff = NULL;
  1987   for( DUIterator_Fast jmax, j = ctrl->fast_outs(jmax); j < jmax; j++ ) {
  1988     Node *x = ctrl->fast_out(j);
  1989     if( x->is_If() && x->req() > 1 &&
  1990         !C->node_arena()->contains(x) ) { // Unmatched old-space only
  1991       iff = x;
  1992       break;
  1995   if( !iff ) return false;
  1996   Node *bol = iff->in(1);
  1997   // The iff might be some random subclass of If or bol might be Con-Top
  1998   if (!bol->is_Bool())  return false;
  1999   assert( bol->req() > 1, "" );
  2000   return (bol->in(1)->Opcode() == Op_FastUnlock);
  2003 // Used by the DFA in dfa_xxx.cpp.  Check for a following barrier or
  2004 // atomic instruction acting as a store_load barrier without any
  2005 // intervening volatile load, and thus we don't need a barrier here.
  2006 // We retain the Node to act as a compiler ordering barrier.
  2007 bool Matcher::post_store_load_barrier(const Node *vmb) {
  2008   Compile *C = Compile::current();
  2009   assert( vmb->is_MemBar(), "" );
  2010   assert( vmb->Opcode() != Op_MemBarAcquire, "" );
  2011   const MemBarNode *mem = (const MemBarNode*)vmb;
  2013   // Get the Proj node, ctrl, that can be used to iterate forward
  2014   Node *ctrl = NULL;
  2015   DUIterator_Fast imax, i = mem->fast_outs(imax);
  2016   while( true ) {
  2017     ctrl = mem->fast_out(i);            // Throw out-of-bounds if proj not found
  2018     assert( ctrl->is_Proj(), "only projections here" );
  2019     ProjNode *proj = (ProjNode*)ctrl;
  2020     if( proj->_con == TypeFunc::Control &&
  2021         !C->node_arena()->contains(ctrl) ) // Unmatched old-space only
  2022       break;
  2023     i++;
  2026   for( DUIterator_Fast jmax, j = ctrl->fast_outs(jmax); j < jmax; j++ ) {
  2027     Node *x = ctrl->fast_out(j);
  2028     int xop = x->Opcode();
  2030     // We don't need current barrier if we see another or a lock
  2031     // before seeing volatile load.
  2032     //
  2033     // Op_Fastunlock previously appeared in the Op_* list below.
  2034     // With the advent of 1-0 lock operations we're no longer guaranteed
  2035     // that a monitor exit operation contains a serializing instruction.
  2037     if (xop == Op_MemBarVolatile ||
  2038         xop == Op_FastLock ||
  2039         xop == Op_CompareAndSwapL ||
  2040         xop == Op_CompareAndSwapP ||
  2041         xop == Op_CompareAndSwapI)
  2042       return true;
  2044     if (x->is_MemBar()) {
  2045       // We must retain this membar if there is an upcoming volatile
  2046       // load, which will be preceded by acquire membar.
  2047       if (xop == Op_MemBarAcquire)
  2048         return false;
  2049       // For other kinds of barriers, check by pretending we
  2050       // are them, and seeing if we can be removed.
  2051       else
  2052         return post_store_load_barrier((const MemBarNode*)x);
  2055     // Delicate code to detect case of an upcoming fastlock block
  2056     if( x->is_If() && x->req() > 1 &&
  2057         !C->node_arena()->contains(x) ) { // Unmatched old-space only
  2058       Node *iff = x;
  2059       Node *bol = iff->in(1);
  2060       // The iff might be some random subclass of If or bol might be Con-Top
  2061       if (!bol->is_Bool())  return false;
  2062       assert( bol->req() > 1, "" );
  2063       return (bol->in(1)->Opcode() == Op_FastUnlock);
  2065     // probably not necessary to check for these
  2066     if (x->is_Call() || x->is_SafePoint() || x->is_block_proj())
  2067       return false;
  2069   return false;
  2072 //=============================================================================
  2073 //---------------------------State---------------------------------------------
  2074 State::State(void) {
  2075 #ifdef ASSERT
  2076   _id = 0;
  2077   _kids[0] = _kids[1] = (State*)(intptr_t) CONST64(0xcafebabecafebabe);
  2078   _leaf = (Node*)(intptr_t) CONST64(0xbaadf00dbaadf00d);
  2079   //memset(_cost, -1, sizeof(_cost));
  2080   //memset(_rule, -1, sizeof(_rule));
  2081 #endif
  2082   memset(_valid, 0, sizeof(_valid));
  2085 #ifdef ASSERT
  2086 State::~State() {
  2087   _id = 99;
  2088   _kids[0] = _kids[1] = (State*)(intptr_t) CONST64(0xcafebabecafebabe);
  2089   _leaf = (Node*)(intptr_t) CONST64(0xbaadf00dbaadf00d);
  2090   memset(_cost, -3, sizeof(_cost));
  2091   memset(_rule, -3, sizeof(_rule));
  2093 #endif
  2095 #ifndef PRODUCT
  2096 //---------------------------dump----------------------------------------------
  2097 void State::dump() {
  2098   tty->print("\n");
  2099   dump(0);
  2102 void State::dump(int depth) {
  2103   for( int j = 0; j < depth; j++ )
  2104     tty->print("   ");
  2105   tty->print("--N: ");
  2106   _leaf->dump();
  2107   uint i;
  2108   for( i = 0; i < _LAST_MACH_OPER; i++ )
  2109     // Check for valid entry
  2110     if( valid(i) ) {
  2111       for( int j = 0; j < depth; j++ )
  2112         tty->print("   ");
  2113         assert(_cost[i] != max_juint, "cost must be a valid value");
  2114         assert(_rule[i] < _last_Mach_Node, "rule[i] must be valid rule");
  2115         tty->print_cr("%s  %d  %s",
  2116                       ruleName[i], _cost[i], ruleName[_rule[i]] );
  2118   tty->print_cr("");
  2120   for( i=0; i<2; i++ )
  2121     if( _kids[i] )
  2122       _kids[i]->dump(depth+1);
  2124 #endif

mercurial