src/share/vm/opto/callnode.hpp

Thu, 13 Mar 2008 16:06:34 -0700

author
kvn
date
Thu, 13 Mar 2008 16:06:34 -0700
changeset 498
eac007780a58
parent 474
76256d272075
child 500
99269dbf4ba8
permissions
-rw-r--r--

6671807: (Escape Analysis) Add new ideal node to represent the state of a scalarized object at a safepoint
Summary: Values of non-static fields of a scalarized object should be saved in debug info to reallocate the object during deoptimization.
Reviewed-by: never

     1 /*
     2  * Copyright 1997-2006 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 // Portions of code courtesy of Clifford Click
    27 // Optimization - Graph Style
    29 class Chaitin;
    30 class NamedCounter;
    31 class MultiNode;
    32 class  SafePointNode;
    33 class   CallNode;
    34 class     CallJavaNode;
    35 class       CallStaticJavaNode;
    36 class       CallDynamicJavaNode;
    37 class     CallRuntimeNode;
    38 class       CallLeafNode;
    39 class         CallLeafNoFPNode;
    40 class     AllocateNode;
    41 class       AllocateArrayNode;
    42 class     LockNode;
    43 class     UnlockNode;
    44 class JVMState;
    45 class OopMap;
    46 class State;
    47 class StartNode;
    48 class MachCallNode;
    49 class FastLockNode;
    51 //------------------------------StartNode--------------------------------------
    52 // The method start node
    53 class StartNode : public MultiNode {
    54   virtual uint cmp( const Node &n ) const;
    55   virtual uint size_of() const; // Size is bigger
    56 public:
    57   const TypeTuple *_domain;
    58   StartNode( Node *root, const TypeTuple *domain ) : MultiNode(2), _domain(domain) {
    59     init_class_id(Class_Start);
    60     init_flags(Flag_is_block_start);
    61     init_req(0,this);
    62     init_req(1,root);
    63   }
    64   virtual int Opcode() const;
    65   virtual bool pinned() const { return true; };
    66   virtual const Type *bottom_type() const;
    67   virtual const TypePtr *adr_type() const { return TypePtr::BOTTOM; }
    68   virtual const Type *Value( PhaseTransform *phase ) const;
    69   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
    70   virtual void  calling_convention( BasicType* sig_bt, VMRegPair *parm_reg, uint length ) const;
    71   virtual const RegMask &in_RegMask(uint) const;
    72   virtual Node *match( const ProjNode *proj, const Matcher *m );
    73   virtual uint ideal_reg() const { return 0; }
    74 #ifndef PRODUCT
    75   virtual void  dump_spec(outputStream *st) const;
    76 #endif
    77 };
    79 //------------------------------StartOSRNode-----------------------------------
    80 // The method start node for on stack replacement code
    81 class StartOSRNode : public StartNode {
    82 public:
    83   StartOSRNode( Node *root, const TypeTuple *domain ) : StartNode(root, domain) {}
    84   virtual int   Opcode() const;
    85   static  const TypeTuple *osr_domain();
    86 };
    89 //------------------------------ParmNode---------------------------------------
    90 // Incoming parameters
    91 class ParmNode : public ProjNode {
    92   static const char * const names[TypeFunc::Parms+1];
    93 public:
    94   ParmNode( StartNode *src, uint con ) : ProjNode(src,con) {
    95     init_class_id(Class_Parm);
    96   }
    97   virtual int Opcode() const;
    98   virtual bool  is_CFG() const { return (_con == TypeFunc::Control); }
    99   virtual uint ideal_reg() const;
   100 #ifndef PRODUCT
   101   virtual void dump_spec(outputStream *st) const;
   102 #endif
   103 };
   106 //------------------------------ReturnNode-------------------------------------
   107 // Return from subroutine node
   108 class ReturnNode : public Node {
   109 public:
   110   ReturnNode( uint edges, Node *cntrl, Node *i_o, Node *memory, Node *retadr, Node *frameptr );
   111   virtual int Opcode() const;
   112   virtual bool  is_CFG() const { return true; }
   113   virtual uint hash() const { return NO_HASH; }  // CFG nodes do not hash
   114   virtual bool depends_only_on_test() const { return false; }
   115   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
   116   virtual const Type *Value( PhaseTransform *phase ) const;
   117   virtual uint ideal_reg() const { return NotAMachineReg; }
   118   virtual uint match_edge(uint idx) const;
   119 #ifndef PRODUCT
   120   virtual void dump_req() const;
   121 #endif
   122 };
   125 //------------------------------RethrowNode------------------------------------
   126 // Rethrow of exception at call site.  Ends a procedure before rethrowing;
   127 // ends the current basic block like a ReturnNode.  Restores registers and
   128 // unwinds stack.  Rethrow happens in the caller's method.
   129 class RethrowNode : public Node {
   130  public:
   131   RethrowNode( Node *cntrl, Node *i_o, Node *memory, Node *frameptr, Node *ret_adr, Node *exception );
   132   virtual int Opcode() const;
   133   virtual bool  is_CFG() const { return true; }
   134   virtual uint hash() const { return NO_HASH; }  // CFG nodes do not hash
   135   virtual bool depends_only_on_test() const { return false; }
   136   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
   137   virtual const Type *Value( PhaseTransform *phase ) const;
   138   virtual uint match_edge(uint idx) const;
   139   virtual uint ideal_reg() const { return NotAMachineReg; }
   140 #ifndef PRODUCT
   141   virtual void dump_req() const;
   142 #endif
   143 };
   146 //------------------------------TailCallNode-----------------------------------
   147 // Pop stack frame and jump indirect
   148 class TailCallNode : public ReturnNode {
   149 public:
   150   TailCallNode( Node *cntrl, Node *i_o, Node *memory, Node *frameptr, Node *retadr, Node *target, Node *moop )
   151     : ReturnNode( TypeFunc::Parms+2, cntrl, i_o, memory, frameptr, retadr ) {
   152     init_req(TypeFunc::Parms, target);
   153     init_req(TypeFunc::Parms+1, moop);
   154   }
   156   virtual int Opcode() const;
   157   virtual uint match_edge(uint idx) const;
   158 };
   160 //------------------------------TailJumpNode-----------------------------------
   161 // Pop stack frame and jump indirect
   162 class TailJumpNode : public ReturnNode {
   163 public:
   164   TailJumpNode( Node *cntrl, Node *i_o, Node *memory, Node *frameptr, Node *target, Node *ex_oop)
   165     : ReturnNode(TypeFunc::Parms+2, cntrl, i_o, memory, frameptr, Compile::current()->top()) {
   166     init_req(TypeFunc::Parms, target);
   167     init_req(TypeFunc::Parms+1, ex_oop);
   168   }
   170   virtual int Opcode() const;
   171   virtual uint match_edge(uint idx) const;
   172 };
   174 //-------------------------------JVMState-------------------------------------
   175 // A linked list of JVMState nodes captures the whole interpreter state,
   176 // plus GC roots, for all active calls at some call site in this compilation
   177 // unit.  (If there is no inlining, then the list has exactly one link.)
   178 // This provides a way to map the optimized program back into the interpreter,
   179 // or to let the GC mark the stack.
   180 class JVMState : public ResourceObj {
   181 private:
   182   JVMState*         _caller;    // List pointer for forming scope chains
   183   uint              _depth;     // One mroe than caller depth, or one.
   184   uint              _locoff;    // Offset to locals in input edge mapping
   185   uint              _stkoff;    // Offset to stack in input edge mapping
   186   uint              _monoff;    // Offset to monitors in input edge mapping
   187   uint              _scloff;    // Offset to fields of scalar objs in input edge mapping
   188   uint              _endoff;    // Offset to end of input edge mapping
   189   uint              _sp;        // Jave Expression Stack Pointer for this state
   190   int               _bci;       // Byte Code Index of this JVM point
   191   ciMethod*         _method;    // Method Pointer
   192   SafePointNode*    _map;       // Map node associated with this scope
   193 public:
   194   friend class Compile;
   196   // Because JVMState objects live over the entire lifetime of the
   197   // Compile object, they are allocated into the comp_arena, which
   198   // does not get resource marked or reset during the compile process
   199   void *operator new( size_t x, Compile* C ) { return C->comp_arena()->Amalloc(x); }
   200   void operator delete( void * ) { } // fast deallocation
   202   // Create a new JVMState, ready for abstract interpretation.
   203   JVMState(ciMethod* method, JVMState* caller);
   204   JVMState(int stack_size);  // root state; has a null method
   206   // Access functions for the JVM
   207   uint              locoff() const { return _locoff; }
   208   uint              stkoff() const { return _stkoff; }
   209   uint              argoff() const { return _stkoff + _sp; }
   210   uint              monoff() const { return _monoff; }
   211   uint              scloff() const { return _scloff; }
   212   uint              endoff() const { return _endoff; }
   213   uint              oopoff() const { return debug_end(); }
   215   int            loc_size() const { return _stkoff - _locoff; }
   216   int            stk_size() const { return _monoff - _stkoff; }
   217   int            mon_size() const { return _scloff - _monoff; }
   218   int            scl_size() const { return _endoff - _scloff; }
   220   bool        is_loc(uint i) const { return i >= _locoff && i < _stkoff; }
   221   bool        is_stk(uint i) const { return i >= _stkoff && i < _monoff; }
   222   bool        is_mon(uint i) const { return i >= _monoff && i < _scloff; }
   223   bool        is_scl(uint i) const { return i >= _scloff && i < _endoff; }
   225   uint              sp()     const { return _sp; }
   226   int               bci()    const { return _bci; }
   227   bool          has_method() const { return _method != NULL; }
   228   ciMethod*         method() const { assert(has_method(), ""); return _method; }
   229   JVMState*         caller() const { return _caller; }
   230   SafePointNode*    map()    const { return _map; }
   231   uint              depth()  const { return _depth; }
   232   uint        debug_start()  const; // returns locoff of root caller
   233   uint        debug_end()    const; // returns endoff of self
   234   uint        debug_size()   const {
   235     return loc_size() + sp() + mon_size() + scl_size();
   236   }
   237   uint        debug_depth()  const; // returns sum of debug_size values at all depths
   239   // Returns the JVM state at the desired depth (1 == root).
   240   JVMState* of_depth(int d) const;
   242   // Tells if two JVM states have the same call chain (depth, methods, & bcis).
   243   bool same_calls_as(const JVMState* that) const;
   245   // Monitors (monitors are stored as (boxNode, objNode) pairs
   246   enum { logMonitorEdges = 1 };
   247   int  nof_monitors()              const { return mon_size() >> logMonitorEdges; }
   248   int  monitor_depth()             const { return nof_monitors() + (caller() ? caller()->monitor_depth() : 0); }
   249   int  monitor_box_offset(int idx) const { return monoff() + (idx << logMonitorEdges) + 0; }
   250   int  monitor_obj_offset(int idx) const { return monoff() + (idx << logMonitorEdges) + 1; }
   251   bool is_monitor_box(uint off)    const {
   252     assert(is_mon(off), "should be called only for monitor edge");
   253     return (0 == bitfield(off - monoff(), 0, logMonitorEdges));
   254   }
   255   bool is_monitor_use(uint off)    const { return (is_mon(off)
   256                                                    && is_monitor_box(off))
   257                                              || (caller() && caller()->is_monitor_use(off)); }
   259   // Initialization functions for the JVM
   260   void              set_locoff(uint off) { _locoff = off; }
   261   void              set_stkoff(uint off) { _stkoff = off; }
   262   void              set_monoff(uint off) { _monoff = off; }
   263   void              set_scloff(uint off) { _scloff = off; }
   264   void              set_endoff(uint off) { _endoff = off; }
   265   void              set_offsets(uint off) {
   266     _locoff = _stkoff = _monoff = _scloff = _endoff = off;
   267   }
   268   void              set_map(SafePointNode *map) { _map = map; }
   269   void              set_sp(uint sp) { _sp = sp; }
   270   void              set_bci(int bci) { _bci = bci; }
   272   // Miscellaneous utility functions
   273   JVMState* clone_deep(Compile* C) const;    // recursively clones caller chain
   274   JVMState* clone_shallow(Compile* C) const; // retains uncloned caller
   276 #ifndef PRODUCT
   277   void      format(PhaseRegAlloc *regalloc, const Node *n, outputStream* st) const;
   278   void      dump_spec(outputStream *st) const;
   279   void      dump_on(outputStream* st) const;
   280   void      dump() const {
   281     dump_on(tty);
   282   }
   283 #endif
   284 };
   286 //------------------------------SafePointNode----------------------------------
   287 // A SafePointNode is a subclass of a MultiNode for convenience (and
   288 // potential code sharing) only - conceptually it is independent of
   289 // the Node semantics.
   290 class SafePointNode : public MultiNode {
   291   virtual uint           cmp( const Node &n ) const;
   292   virtual uint           size_of() const;       // Size is bigger
   294 public:
   295   SafePointNode(uint edges, JVMState* jvms,
   296                 // A plain safepoint advertises no memory effects (NULL):
   297                 const TypePtr* adr_type = NULL)
   298     : MultiNode( edges ),
   299       _jvms(jvms),
   300       _oop_map(NULL),
   301       _adr_type(adr_type)
   302   {
   303     init_class_id(Class_SafePoint);
   304   }
   306   OopMap*         _oop_map;   // Array of OopMap info (8-bit char) for GC
   307   JVMState* const _jvms;      // Pointer to list of JVM State objects
   308   const TypePtr*  _adr_type;  // What type of memory does this node produce?
   310   // Many calls take *all* of memory as input,
   311   // but some produce a limited subset of that memory as output.
   312   // The adr_type reports the call's behavior as a store, not a load.
   314   virtual JVMState* jvms() const { return _jvms; }
   315   void set_jvms(JVMState* s) {
   316     *(JVMState**)&_jvms = s;  // override const attribute in the accessor
   317   }
   318   OopMap *oop_map() const { return _oop_map; }
   319   void set_oop_map(OopMap *om) { _oop_map = om; }
   321   // Functionality from old debug nodes which has changed
   322   Node *local(JVMState* jvms, uint idx) const {
   323     assert(verify_jvms(jvms), "jvms must match");
   324     return in(jvms->locoff() + idx);
   325   }
   326   Node *stack(JVMState* jvms, uint idx) const {
   327     assert(verify_jvms(jvms), "jvms must match");
   328     return in(jvms->stkoff() + idx);
   329   }
   330   Node *argument(JVMState* jvms, uint idx) const {
   331     assert(verify_jvms(jvms), "jvms must match");
   332     return in(jvms->argoff() + idx);
   333   }
   334   Node *monitor_box(JVMState* jvms, uint idx) const {
   335     assert(verify_jvms(jvms), "jvms must match");
   336     return in(jvms->monitor_box_offset(idx));
   337   }
   338   Node *monitor_obj(JVMState* jvms, uint idx) const {
   339     assert(verify_jvms(jvms), "jvms must match");
   340     return in(jvms->monitor_obj_offset(idx));
   341   }
   343   void  set_local(JVMState* jvms, uint idx, Node *c);
   345   void  set_stack(JVMState* jvms, uint idx, Node *c) {
   346     assert(verify_jvms(jvms), "jvms must match");
   347     set_req(jvms->stkoff() + idx, c);
   348   }
   349   void  set_argument(JVMState* jvms, uint idx, Node *c) {
   350     assert(verify_jvms(jvms), "jvms must match");
   351     set_req(jvms->argoff() + idx, c);
   352   }
   353   void ensure_stack(JVMState* jvms, uint stk_size) {
   354     assert(verify_jvms(jvms), "jvms must match");
   355     int grow_by = (int)stk_size - (int)jvms->stk_size();
   356     if (grow_by > 0)  grow_stack(jvms, grow_by);
   357   }
   358   void grow_stack(JVMState* jvms, uint grow_by);
   359   // Handle monitor stack
   360   void push_monitor( const FastLockNode *lock );
   361   void pop_monitor ();
   362   Node *peek_monitor_box() const;
   363   Node *peek_monitor_obj() const;
   365   // Access functions for the JVM
   366   Node *control  () const { return in(TypeFunc::Control  ); }
   367   Node *i_o      () const { return in(TypeFunc::I_O      ); }
   368   Node *memory   () const { return in(TypeFunc::Memory   ); }
   369   Node *returnadr() const { return in(TypeFunc::ReturnAdr); }
   370   Node *frameptr () const { return in(TypeFunc::FramePtr ); }
   372   void set_control  ( Node *c ) { set_req(TypeFunc::Control,c); }
   373   void set_i_o      ( Node *c ) { set_req(TypeFunc::I_O    ,c); }
   374   void set_memory   ( Node *c ) { set_req(TypeFunc::Memory ,c); }
   376   MergeMemNode* merged_memory() const {
   377     return in(TypeFunc::Memory)->as_MergeMem();
   378   }
   380   // The parser marks useless maps as dead when it's done with them:
   381   bool is_killed() { return in(TypeFunc::Control) == NULL; }
   383   // Exception states bubbling out of subgraphs such as inlined calls
   384   // are recorded here.  (There might be more than one, hence the "next".)
   385   // This feature is used only for safepoints which serve as "maps"
   386   // for JVM states during parsing, intrinsic expansion, etc.
   387   SafePointNode*         next_exception() const;
   388   void               set_next_exception(SafePointNode* n);
   389   bool                   has_exceptions() const { return next_exception() != NULL; }
   391   // Standard Node stuff
   392   virtual int            Opcode() const;
   393   virtual bool           pinned() const { return true; }
   394   virtual const Type    *Value( PhaseTransform *phase ) const;
   395   virtual const Type    *bottom_type() const { return Type::CONTROL; }
   396   virtual const TypePtr *adr_type() const { return _adr_type; }
   397   virtual Node          *Ideal(PhaseGVN *phase, bool can_reshape);
   398   virtual Node          *Identity( PhaseTransform *phase );
   399   virtual uint           ideal_reg() const { return 0; }
   400   virtual const RegMask &in_RegMask(uint) const;
   401   virtual const RegMask &out_RegMask() const;
   402   virtual uint           match_edge(uint idx) const;
   404   static  bool           needs_polling_address_input();
   406 #ifndef PRODUCT
   407   virtual void              dump_spec(outputStream *st) const;
   408 #endif
   409 };
   411 //------------------------------SafePointScalarObjectNode----------------------
   412 // A SafePointScalarObjectNode represents the state of a scalarized object
   413 // at a safepoint.
   415 class SafePointScalarObjectNode: public TypeNode {
   416   uint _first_index; // First input edge index of a SafePoint node where
   417                      // states of the scalarized object fields are collected.
   418   uint _n_fields;    // Number of non-static fields of the scalarized object.
   419   DEBUG_ONLY(AllocateNode* _alloc);
   420 public:
   421   SafePointScalarObjectNode(const TypeOopPtr* tp,
   422 #ifdef ASSERT
   423                             AllocateNode* alloc,
   424 #endif
   425                             uint first_index, uint n_fields);
   426   virtual int Opcode() const;
   427   virtual uint           ideal_reg() const;
   428   virtual const RegMask &in_RegMask(uint) const;
   429   virtual const RegMask &out_RegMask() const;
   430   virtual uint           match_edge(uint idx) const;
   432   uint first_index() const { return _first_index; }
   433   uint n_fields()    const { return _n_fields; }
   434   DEBUG_ONLY(AllocateNode* alloc() const { return _alloc; })
   436   virtual uint size_of() const { return sizeof(*this); }
   438   // Assumes that "this" is an argument to a safepoint node "s", and that
   439   // "new_call" is being created to correspond to "s".  But the difference
   440   // between the start index of the jvmstates of "new_call" and "s" is
   441   // "jvms_adj".  Produce and return a SafePointScalarObjectNode that
   442   // corresponds appropriately to "this" in "new_call".  Assumes that
   443   // "sosn_map" is a map, specific to the translation of "s" to "new_call",
   444   // mapping old SafePointScalarObjectNodes to new, to avoid multiple copies.
   445   SafePointScalarObjectNode* clone(int jvms_adj, Dict* sosn_map) const;
   447 #ifndef PRODUCT
   448   virtual void              dump_spec(outputStream *st) const;
   449 #endif
   450 };
   452 //------------------------------CallNode---------------------------------------
   453 // Call nodes now subsume the function of debug nodes at callsites, so they
   454 // contain the functionality of a full scope chain of debug nodes.
   455 class CallNode : public SafePointNode {
   456 public:
   457   const TypeFunc *_tf;        // Function type
   458   address      _entry_point;  // Address of method being called
   459   float        _cnt;          // Estimate of number of times called
   460   PointsToNode::EscapeState _escape_state;
   462   CallNode(const TypeFunc* tf, address addr, const TypePtr* adr_type)
   463     : SafePointNode(tf->domain()->cnt(), NULL, adr_type),
   464       _tf(tf),
   465       _entry_point(addr),
   466       _cnt(COUNT_UNKNOWN)
   467   {
   468     init_class_id(Class_Call);
   469     init_flags(Flag_is_Call);
   470     _escape_state = PointsToNode::UnknownEscape;
   471   }
   473   const TypeFunc* tf()        const { return _tf; }
   474   const address entry_point() const { return _entry_point; }
   475   const float   cnt()         const { return _cnt; }
   477   void set_tf(const TypeFunc* tf) { _tf = tf; }
   478   void set_entry_point(address p) { _entry_point = p; }
   479   void set_cnt(float c)           { _cnt = c; }
   481   virtual const Type *bottom_type() const;
   482   virtual const Type *Value( PhaseTransform *phase ) const;
   483   virtual Node *Identity( PhaseTransform *phase ) { return this; }
   484   virtual uint        cmp( const Node &n ) const;
   485   virtual uint        size_of() const = 0;
   486   virtual void        calling_convention( BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt ) const;
   487   virtual Node       *match( const ProjNode *proj, const Matcher *m );
   488   virtual uint        ideal_reg() const { return NotAMachineReg; }
   489   // Are we guaranteed that this node is a safepoint?  Not true for leaf calls and
   490   // for some macro nodes whose expansion does not have a safepoint on the fast path.
   491   virtual bool        guaranteed_safepoint()  { return true; }
   492   // For macro nodes, the JVMState gets modified during expansion, so when cloning
   493   // the node the JVMState must be cloned.
   494   virtual void        clone_jvms() { }   // default is not to clone
   496   virtual uint match_edge(uint idx) const;
   498 #ifndef PRODUCT
   499   virtual void        dump_req()  const;
   500   virtual void        dump_spec(outputStream *st) const;
   501 #endif
   502 };
   504 //------------------------------CallJavaNode-----------------------------------
   505 // Make a static or dynamic subroutine call node using Java calling
   506 // convention.  (The "Java" calling convention is the compiler's calling
   507 // convention, as opposed to the interpreter's or that of native C.)
   508 class CallJavaNode : public CallNode {
   509 protected:
   510   virtual uint cmp( const Node &n ) const;
   511   virtual uint size_of() const; // Size is bigger
   513   bool    _optimized_virtual;
   514   ciMethod* _method;            // Method being direct called
   515 public:
   516   const int       _bci;         // Byte Code Index of call byte code
   517   CallJavaNode(const TypeFunc* tf , address addr, ciMethod* method, int bci)
   518     : CallNode(tf, addr, TypePtr::BOTTOM),
   519       _method(method), _bci(bci), _optimized_virtual(false)
   520   {
   521     init_class_id(Class_CallJava);
   522   }
   524   virtual int   Opcode() const;
   525   ciMethod* method() const                { return _method; }
   526   void  set_method(ciMethod *m)           { _method = m; }
   527   void  set_optimized_virtual(bool f)     { _optimized_virtual = f; }
   528   bool  is_optimized_virtual() const      { return _optimized_virtual; }
   530 #ifndef PRODUCT
   531   virtual void  dump_spec(outputStream *st) const;
   532 #endif
   533 };
   535 //------------------------------CallStaticJavaNode-----------------------------
   536 // Make a direct subroutine call using Java calling convention (for static
   537 // calls and optimized virtual calls, plus calls to wrappers for run-time
   538 // routines); generates static stub.
   539 class CallStaticJavaNode : public CallJavaNode {
   540   virtual uint cmp( const Node &n ) const;
   541   virtual uint size_of() const; // Size is bigger
   542 public:
   543   CallStaticJavaNode(const TypeFunc* tf, address addr, ciMethod* method, int bci)
   544     : CallJavaNode(tf, addr, method, bci), _name(NULL) {
   545     init_class_id(Class_CallStaticJava);
   546   }
   547   CallStaticJavaNode(const TypeFunc* tf, address addr, const char* name, int bci,
   548                      const TypePtr* adr_type)
   549     : CallJavaNode(tf, addr, NULL, bci), _name(name) {
   550     init_class_id(Class_CallStaticJava);
   551     // This node calls a runtime stub, which often has narrow memory effects.
   552     _adr_type = adr_type;
   553   }
   554   const char *_name;            // Runtime wrapper name
   556   // If this is an uncommon trap, return the request code, else zero.
   557   int uncommon_trap_request() const;
   558   static int extract_uncommon_trap_request(const Node* call);
   560   virtual int         Opcode() const;
   561 #ifndef PRODUCT
   562   virtual void        dump_spec(outputStream *st) const;
   563 #endif
   564 };
   566 //------------------------------CallDynamicJavaNode----------------------------
   567 // Make a dispatched call using Java calling convention.
   568 class CallDynamicJavaNode : public CallJavaNode {
   569   virtual uint cmp( const Node &n ) const;
   570   virtual uint size_of() const; // Size is bigger
   571 public:
   572   CallDynamicJavaNode( const TypeFunc *tf , address addr, ciMethod* method, int vtable_index, int bci ) : CallJavaNode(tf,addr,method,bci), _vtable_index(vtable_index) {
   573     init_class_id(Class_CallDynamicJava);
   574   }
   576   int _vtable_index;
   577   virtual int   Opcode() const;
   578 #ifndef PRODUCT
   579   virtual void  dump_spec(outputStream *st) const;
   580 #endif
   581 };
   583 //------------------------------CallRuntimeNode--------------------------------
   584 // Make a direct subroutine call node into compiled C++ code.
   585 class CallRuntimeNode : public CallNode {
   586   virtual uint cmp( const Node &n ) const;
   587   virtual uint size_of() const; // Size is bigger
   588 public:
   589   CallRuntimeNode(const TypeFunc* tf, address addr, const char* name,
   590                   const TypePtr* adr_type)
   591     : CallNode(tf, addr, adr_type),
   592       _name(name)
   593   {
   594     init_class_id(Class_CallRuntime);
   595   }
   597   const char *_name;            // Printable name, if _method is NULL
   598   virtual int   Opcode() const;
   599   virtual void  calling_convention( BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt ) const;
   601 #ifndef PRODUCT
   602   virtual void  dump_spec(outputStream *st) const;
   603 #endif
   604 };
   606 //------------------------------CallLeafNode-----------------------------------
   607 // Make a direct subroutine call node into compiled C++ code, without
   608 // safepoints
   609 class CallLeafNode : public CallRuntimeNode {
   610 public:
   611   CallLeafNode(const TypeFunc* tf, address addr, const char* name,
   612                const TypePtr* adr_type)
   613     : CallRuntimeNode(tf, addr, name, adr_type)
   614   {
   615     init_class_id(Class_CallLeaf);
   616   }
   617   virtual int   Opcode() const;
   618   virtual bool        guaranteed_safepoint()  { return false; }
   619 #ifndef PRODUCT
   620   virtual void  dump_spec(outputStream *st) const;
   621 #endif
   622 };
   624 //------------------------------CallLeafNoFPNode-------------------------------
   625 // CallLeafNode, not using floating point or using it in the same manner as
   626 // the generated code
   627 class CallLeafNoFPNode : public CallLeafNode {
   628 public:
   629   CallLeafNoFPNode(const TypeFunc* tf, address addr, const char* name,
   630                    const TypePtr* adr_type)
   631     : CallLeafNode(tf, addr, name, adr_type)
   632   {
   633   }
   634   virtual int   Opcode() const;
   635 };
   638 //------------------------------Allocate---------------------------------------
   639 // High-level memory allocation
   640 //
   641 //  AllocateNode and AllocateArrayNode are subclasses of CallNode because they will
   642 //  get expanded into a code sequence containing a call.  Unlike other CallNodes,
   643 //  they have 2 memory projections and 2 i_o projections (which are distinguished by
   644 //  the _is_io_use flag in the projection.)  This is needed when expanding the node in
   645 //  order to differentiate the uses of the projection on the normal control path from
   646 //  those on the exception return path.
   647 //
   648 class AllocateNode : public CallNode {
   649 public:
   650   enum {
   651     // Output:
   652     RawAddress  = TypeFunc::Parms,    // the newly-allocated raw address
   653     // Inputs:
   654     AllocSize   = TypeFunc::Parms,    // size (in bytes) of the new object
   655     KlassNode,                        // type (maybe dynamic) of the obj.
   656     InitialTest,                      // slow-path test (may be constant)
   657     ALength,                          // array length (or TOP if none)
   658     ParmLimit
   659   };
   661   static const TypeFunc* alloc_type() {
   662     const Type** fields = TypeTuple::fields(ParmLimit - TypeFunc::Parms);
   663     fields[AllocSize]   = TypeInt::POS;
   664     fields[KlassNode]   = TypeInstPtr::NOTNULL;
   665     fields[InitialTest] = TypeInt::BOOL;
   666     fields[ALength]     = TypeInt::INT;  // length (can be a bad length)
   668     const TypeTuple *domain = TypeTuple::make(ParmLimit, fields);
   670     // create result type (range)
   671     fields = TypeTuple::fields(1);
   672     fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
   674     const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
   676     return TypeFunc::make(domain, range);
   677   }
   679   bool _is_scalar_replaceable;  // Result of Escape Analysis
   681   virtual uint size_of() const; // Size is bigger
   682   AllocateNode(Compile* C, const TypeFunc *atype, Node *ctrl, Node *mem, Node *abio,
   683                Node *size, Node *klass_node, Node *initial_test);
   684   // Expansion modifies the JVMState, so we need to clone it
   685   virtual void  clone_jvms() {
   686     set_jvms(jvms()->clone_deep(Compile::current()));
   687   }
   688   virtual int Opcode() const;
   689   virtual uint ideal_reg() const { return Op_RegP; }
   690   virtual bool        guaranteed_safepoint()  { return false; }
   692   // Pattern-match a possible usage of AllocateNode.
   693   // Return null if no allocation is recognized.
   694   // The operand is the pointer produced by the (possible) allocation.
   695   // It must be a projection of the Allocate or its subsequent CastPP.
   696   // (Note:  This function is defined in file graphKit.cpp, near
   697   // GraphKit::new_instance/new_array, whose output it recognizes.)
   698   // The 'ptr' may not have an offset unless the 'offset' argument is given.
   699   static AllocateNode* Ideal_allocation(Node* ptr, PhaseTransform* phase);
   701   // Fancy version which uses AddPNode::Ideal_base_and_offset to strip
   702   // an offset, which is reported back to the caller.
   703   // (Note:  AllocateNode::Ideal_allocation is defined in graphKit.cpp.)
   704   static AllocateNode* Ideal_allocation(Node* ptr, PhaseTransform* phase,
   705                                         intptr_t& offset);
   707   // Dig the klass operand out of a (possible) allocation site.
   708   static Node* Ideal_klass(Node* ptr, PhaseTransform* phase) {
   709     AllocateNode* allo = Ideal_allocation(ptr, phase);
   710     return (allo == NULL) ? NULL : allo->in(KlassNode);
   711   }
   713   // Conservatively small estimate of offset of first non-header byte.
   714   int minimum_header_size() {
   715     return is_AllocateArray() ? sizeof(arrayOopDesc) : sizeof(oopDesc);
   716   }
   718   // Return the corresponding initialization barrier (or null if none).
   719   // Walks out edges to find it...
   720   // (Note: Both InitializeNode::allocation and AllocateNode::initialization
   721   // are defined in graphKit.cpp, which sets up the bidirectional relation.)
   722   InitializeNode* initialization();
   724   // Convenience for initialization->maybe_set_complete(phase)
   725   bool maybe_set_complete(PhaseGVN* phase);
   726 };
   728 //------------------------------AllocateArray---------------------------------
   729 //
   730 // High-level array allocation
   731 //
   732 class AllocateArrayNode : public AllocateNode {
   733 public:
   734   AllocateArrayNode(Compile* C, const TypeFunc *atype, Node *ctrl, Node *mem, Node *abio,
   735                     Node* size, Node* klass_node, Node* initial_test,
   736                     Node* count_val
   737                     )
   738     : AllocateNode(C, atype, ctrl, mem, abio, size, klass_node,
   739                    initial_test)
   740   {
   741     init_class_id(Class_AllocateArray);
   742     set_req(AllocateNode::ALength,        count_val);
   743   }
   744   virtual int Opcode() const;
   745   virtual uint size_of() const; // Size is bigger
   747   // Pattern-match a possible usage of AllocateArrayNode.
   748   // Return null if no allocation is recognized.
   749   static AllocateArrayNode* Ideal_array_allocation(Node* ptr, PhaseTransform* phase) {
   750     AllocateNode* allo = Ideal_allocation(ptr, phase);
   751     return (allo == NULL || !allo->is_AllocateArray())
   752            ? NULL : allo->as_AllocateArray();
   753   }
   755   // Dig the length operand out of a (possible) array allocation site.
   756   static Node* Ideal_length(Node* ptr, PhaseTransform* phase) {
   757     AllocateArrayNode* allo = Ideal_array_allocation(ptr, phase);
   758     return (allo == NULL) ? NULL : allo->in(AllocateNode::ALength);
   759   }
   760 };
   762 //------------------------------AbstractLockNode-----------------------------------
   763 class AbstractLockNode: public CallNode {
   764 private:
   765  bool _eliminate;    // indicates this lock can be safely eliminated
   766 #ifndef PRODUCT
   767   NamedCounter* _counter;
   768 #endif
   770 protected:
   771   // helper functions for lock elimination
   772   //
   774   bool find_matching_unlock(const Node* ctrl, LockNode* lock,
   775                             GrowableArray<AbstractLockNode*> &lock_ops);
   776   bool find_lock_and_unlock_through_if(Node* node, LockNode* lock,
   777                                        GrowableArray<AbstractLockNode*> &lock_ops);
   778   bool find_unlocks_for_region(const RegionNode* region, LockNode* lock,
   779                                GrowableArray<AbstractLockNode*> &lock_ops);
   780   LockNode *find_matching_lock(UnlockNode* unlock);
   783 public:
   784   AbstractLockNode(const TypeFunc *tf)
   785     : CallNode(tf, NULL, TypeRawPtr::BOTTOM),
   786       _eliminate(false)
   787   {
   788 #ifndef PRODUCT
   789     _counter = NULL;
   790 #endif
   791   }
   792   virtual int Opcode() const = 0;
   793   Node *   obj_node() const       {return in(TypeFunc::Parms + 0); }
   794   Node *   box_node() const       {return in(TypeFunc::Parms + 1); }
   795   Node *   fastlock_node() const  {return in(TypeFunc::Parms + 2); }
   796   const Type *sub(const Type *t1, const Type *t2) const { return TypeInt::CC;}
   798   virtual uint size_of() const { return sizeof(*this); }
   800   bool is_eliminated()         {return _eliminate; }
   801   // mark node as eliminated and update the counter if there is one
   802   void set_eliminated();
   804 #ifndef PRODUCT
   805   void create_lock_counter(JVMState* s);
   806   NamedCounter* counter() const { return _counter; }
   807 #endif
   808 };
   810 //------------------------------Lock---------------------------------------
   811 // High-level lock operation
   812 //
   813 // This is a subclass of CallNode because it is a macro node which gets expanded
   814 // into a code sequence containing a call.  This node takes 3 "parameters":
   815 //    0  -  object to lock
   816 //    1 -   a BoxLockNode
   817 //    2 -   a FastLockNode
   818 //
   819 class LockNode : public AbstractLockNode {
   820 public:
   822   static const TypeFunc *lock_type() {
   823     // create input type (domain)
   824     const Type **fields = TypeTuple::fields(3);
   825     fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // Object to be Locked
   826     fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM;    // Address of stack location for lock
   827     fields[TypeFunc::Parms+2] = TypeInt::BOOL;         // FastLock
   828     const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+3,fields);
   830     // create result type (range)
   831     fields = TypeTuple::fields(0);
   833     const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
   835     return TypeFunc::make(domain,range);
   836   }
   838   virtual int Opcode() const;
   839   virtual uint size_of() const; // Size is bigger
   840   LockNode(Compile* C, const TypeFunc *tf) : AbstractLockNode( tf ) {
   841     init_class_id(Class_Lock);
   842     init_flags(Flag_is_macro);
   843     C->add_macro_node(this);
   844   }
   845   virtual bool        guaranteed_safepoint()  { return false; }
   847   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
   848   // Expansion modifies the JVMState, so we need to clone it
   849   virtual void  clone_jvms() {
   850     set_jvms(jvms()->clone_deep(Compile::current()));
   851   }
   852 };
   854 //------------------------------Unlock---------------------------------------
   855 // High-level unlock operation
   856 class UnlockNode : public AbstractLockNode {
   857 public:
   858   virtual int Opcode() const;
   859   virtual uint size_of() const; // Size is bigger
   860   UnlockNode(Compile* C, const TypeFunc *tf) : AbstractLockNode( tf ) {
   861     init_class_id(Class_Unlock);
   862     init_flags(Flag_is_macro);
   863     C->add_macro_node(this);
   864   }
   865   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
   866   // unlock is never a safepoint
   867   virtual bool        guaranteed_safepoint()  { return false; }
   868 };

mercurial