src/share/vm/memory/referenceProcessor.hpp

Wed, 02 Jun 2010 22:45:42 -0700

author
jrose
date
Wed, 02 Jun 2010 22:45:42 -0700
changeset 1934
e9ff18c4ace7
parent 1907
c18cbe5936b8
child 2144
a83b0246bb77
child 2188
8b10f48633dc
permissions
-rw-r--r--

Merge

     1 /*
     2  * Copyright (c) 2001, 2008, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 // ReferenceProcessor class encapsulates the per-"collector" processing
    26 // of java.lang.Reference objects for GC. The interface is useful for supporting
    27 // a generational abstraction, in particular when there are multiple
    28 // generations that are being independently collected -- possibly
    29 // concurrently and/or incrementally.  Note, however, that the
    30 // ReferenceProcessor class abstracts away from a generational setting
    31 // by using only a heap interval (called "span" below), thus allowing
    32 // its use in a straightforward manner in a general, non-generational
    33 // setting.
    34 //
    35 // The basic idea is that each ReferenceProcessor object concerns
    36 // itself with ("weak") reference processing in a specific "span"
    37 // of the heap of interest to a specific collector. Currently,
    38 // the span is a convex interval of the heap, but, efficiency
    39 // apart, there seems to be no reason it couldn't be extended
    40 // (with appropriate modifications) to any "non-convex interval".
    42 // forward references
    43 class ReferencePolicy;
    44 class AbstractRefProcTaskExecutor;
    45 class DiscoveredList;
    47 class ReferenceProcessor : public CHeapObj {
    48  protected:
    49   // End of list marker
    50   static oop  _sentinelRef;
    51   MemRegion   _span; // (right-open) interval of heap
    52                      // subject to wkref discovery
    53   bool        _discovering_refs;      // true when discovery enabled
    54   bool        _discovery_is_atomic;   // if discovery is atomic wrt
    55                                       // other collectors in configuration
    56   bool        _discovery_is_mt;       // true if reference discovery is MT.
    57   // If true, setting "next" field of a discovered refs list requires
    58   // write barrier(s).  (Must be true if used in a collector in which
    59   // elements of a discovered list may be moved during discovery: for
    60   // example, a collector like Garbage-First that moves objects during a
    61   // long-term concurrent marking phase that does weak reference
    62   // discovery.)
    63   bool        _discovered_list_needs_barrier;
    64   BarrierSet* _bs;                    // Cached copy of BarrierSet.
    65   bool        _enqueuing_is_done;     // true if all weak references enqueued
    66   bool        _processing_is_mt;      // true during phases when
    67                                       // reference processing is MT.
    68   int         _next_id;               // round-robin counter in
    69                                       // support of work distribution
    71   // For collectors that do not keep GC marking information
    72   // in the object header, this field holds a closure that
    73   // helps the reference processor determine the reachability
    74   // of an oop (the field is currently initialized to NULL for
    75   // all collectors but the CMS collector).
    76   BoolObjectClosure* _is_alive_non_header;
    78   // Soft ref clearing policies
    79   // . the default policy
    80   static ReferencePolicy*   _default_soft_ref_policy;
    81   // . the "clear all" policy
    82   static ReferencePolicy*   _always_clear_soft_ref_policy;
    83   // . the current policy below is either one of the above
    84   ReferencePolicy*          _current_soft_ref_policy;
    86   // The discovered ref lists themselves
    88   // The MT'ness degree of the queues below
    89   int             _num_q;
    90   // Arrays of lists of oops, one per thread
    91   DiscoveredList* _discoveredSoftRefs;
    92   DiscoveredList* _discoveredWeakRefs;
    93   DiscoveredList* _discoveredFinalRefs;
    94   DiscoveredList* _discoveredPhantomRefs;
    96  public:
    97   int num_q()                            { return _num_q; }
    98   DiscoveredList* discovered_soft_refs() { return _discoveredSoftRefs; }
    99   static oop  sentinel_ref()             { return _sentinelRef; }
   100   static oop* adr_sentinel_ref()         { return &_sentinelRef; }
   101   ReferencePolicy* setup_policy(bool always_clear) {
   102     _current_soft_ref_policy = always_clear ?
   103       _always_clear_soft_ref_policy : _default_soft_ref_policy;
   104     _current_soft_ref_policy->setup();   // snapshot the policy threshold
   105     return _current_soft_ref_policy;
   106   }
   108  public:
   109   // Process references with a certain reachability level.
   110   void process_discovered_reflist(DiscoveredList               refs_lists[],
   111                                   ReferencePolicy*             policy,
   112                                   bool                         clear_referent,
   113                                   BoolObjectClosure*           is_alive,
   114                                   OopClosure*                  keep_alive,
   115                                   VoidClosure*                 complete_gc,
   116                                   AbstractRefProcTaskExecutor* task_executor);
   118   void process_phaseJNI(BoolObjectClosure* is_alive,
   119                         OopClosure*        keep_alive,
   120                         VoidClosure*       complete_gc);
   122   // Work methods used by the method process_discovered_reflist
   123   // Phase1: keep alive all those referents that are otherwise
   124   // dead but which must be kept alive by policy (and their closure).
   125   void process_phase1(DiscoveredList&     refs_list,
   126                       ReferencePolicy*    policy,
   127                       BoolObjectClosure*  is_alive,
   128                       OopClosure*         keep_alive,
   129                       VoidClosure*        complete_gc);
   130   // Phase2: remove all those references whose referents are
   131   // reachable.
   132   inline void process_phase2(DiscoveredList&    refs_list,
   133                              BoolObjectClosure* is_alive,
   134                              OopClosure*        keep_alive,
   135                              VoidClosure*       complete_gc) {
   136     if (discovery_is_atomic()) {
   137       // complete_gc is ignored in this case for this phase
   138       pp2_work(refs_list, is_alive, keep_alive);
   139     } else {
   140       assert(complete_gc != NULL, "Error");
   141       pp2_work_concurrent_discovery(refs_list, is_alive,
   142                                     keep_alive, complete_gc);
   143     }
   144   }
   145   // Work methods in support of process_phase2
   146   void pp2_work(DiscoveredList&    refs_list,
   147                 BoolObjectClosure* is_alive,
   148                 OopClosure*        keep_alive);
   149   void pp2_work_concurrent_discovery(
   150                 DiscoveredList&    refs_list,
   151                 BoolObjectClosure* is_alive,
   152                 OopClosure*        keep_alive,
   153                 VoidClosure*       complete_gc);
   154   // Phase3: process the referents by either clearing them
   155   // or keeping them alive (and their closure)
   156   void process_phase3(DiscoveredList&    refs_list,
   157                       bool               clear_referent,
   158                       BoolObjectClosure* is_alive,
   159                       OopClosure*        keep_alive,
   160                       VoidClosure*       complete_gc);
   162   // Enqueue references with a certain reachability level
   163   void enqueue_discovered_reflist(DiscoveredList& refs_list, HeapWord* pending_list_addr);
   165   // "Preclean" all the discovered reference lists
   166   // by removing references with strongly reachable referents.
   167   // The first argument is a predicate on an oop that indicates
   168   // its (strong) reachability and the second is a closure that
   169   // may be used to incrementalize or abort the precleaning process.
   170   // The caller is responsible for taking care of potential
   171   // interference with concurrent operations on these lists
   172   // (or predicates involved) by other threads. Currently
   173   // only used by the CMS collector.  should_unload_classes is
   174   // used to aid assertion checking when classes are collected.
   175   void preclean_discovered_references(BoolObjectClosure* is_alive,
   176                                       OopClosure*        keep_alive,
   177                                       VoidClosure*       complete_gc,
   178                                       YieldClosure*      yield,
   179                                       bool               should_unload_classes);
   181   // Delete entries in the discovered lists that have
   182   // either a null referent or are not active. Such
   183   // Reference objects can result from the clearing
   184   // or enqueueing of Reference objects concurrent
   185   // with their discovery by a (concurrent) collector.
   186   // For a definition of "active" see java.lang.ref.Reference;
   187   // Refs are born active, become inactive when enqueued,
   188   // and never become active again. The state of being
   189   // active is encoded as follows: A Ref is active
   190   // if and only if its "next" field is NULL.
   191   void clean_up_discovered_references();
   192   void clean_up_discovered_reflist(DiscoveredList& refs_list);
   194   // Returns the name of the discovered reference list
   195   // occupying the i / _num_q slot.
   196   const char* list_name(int i);
   198   void enqueue_discovered_reflists(HeapWord* pending_list_addr, AbstractRefProcTaskExecutor* task_executor);
   200  protected:
   201   // "Preclean" the given discovered reference list
   202   // by removing references with strongly reachable referents.
   203   // Currently used in support of CMS only.
   204   void preclean_discovered_reflist(DiscoveredList&    refs_list,
   205                                    BoolObjectClosure* is_alive,
   206                                    OopClosure*        keep_alive,
   207                                    VoidClosure*       complete_gc,
   208                                    YieldClosure*      yield);
   210   int next_id() {
   211     int id = _next_id;
   212     if (++_next_id == _num_q) {
   213       _next_id = 0;
   214     }
   215     return id;
   216   }
   217   DiscoveredList* get_discovered_list(ReferenceType rt);
   218   inline void add_to_discovered_list_mt(DiscoveredList& refs_list, oop obj,
   219                                         HeapWord* discovered_addr);
   220   void verify_ok_to_handle_reflists() PRODUCT_RETURN;
   222   void abandon_partial_discovered_list(DiscoveredList& refs_list);
   224   // Calculate the number of jni handles.
   225   unsigned int count_jni_refs();
   227   // Balances reference queues.
   228   void balance_queues(DiscoveredList ref_lists[]);
   230   // Update (advance) the soft ref master clock field.
   231   void update_soft_ref_master_clock();
   233  public:
   234   // constructor
   235   ReferenceProcessor():
   236     _span((HeapWord*)NULL, (HeapWord*)NULL),
   237     _discoveredSoftRefs(NULL),  _discoveredWeakRefs(NULL),
   238     _discoveredFinalRefs(NULL), _discoveredPhantomRefs(NULL),
   239     _discovering_refs(false),
   240     _discovery_is_atomic(true),
   241     _enqueuing_is_done(false),
   242     _discovery_is_mt(false),
   243     _discovered_list_needs_barrier(false),
   244     _bs(NULL),
   245     _is_alive_non_header(NULL),
   246     _num_q(0),
   247     _processing_is_mt(false),
   248     _next_id(0)
   249   {}
   251   ReferenceProcessor(MemRegion span, bool atomic_discovery,
   252                      bool mt_discovery,
   253                      int mt_degree = 1,
   254                      bool mt_processing = false,
   255                      bool discovered_list_needs_barrier = false);
   257   // Allocates and initializes a reference processor.
   258   static ReferenceProcessor* create_ref_processor(
   259     MemRegion          span,
   260     bool               atomic_discovery,
   261     bool               mt_discovery,
   262     BoolObjectClosure* is_alive_non_header = NULL,
   263     int                parallel_gc_threads = 1,
   264     bool               mt_processing = false,
   265     bool               discovered_list_needs_barrier = false);
   267   // RefDiscoveryPolicy values
   268   enum DiscoveryPolicy {
   269     ReferenceBasedDiscovery = 0,
   270     ReferentBasedDiscovery  = 1,
   271     DiscoveryPolicyMin      = ReferenceBasedDiscovery,
   272     DiscoveryPolicyMax      = ReferentBasedDiscovery
   273   };
   275   static void init_statics();
   277  public:
   278   // get and set "is_alive_non_header" field
   279   BoolObjectClosure* is_alive_non_header() {
   280     return _is_alive_non_header;
   281   }
   282   void set_is_alive_non_header(BoolObjectClosure* is_alive_non_header) {
   283     _is_alive_non_header = is_alive_non_header;
   284   }
   286   // get and set span
   287   MemRegion span()                   { return _span; }
   288   void      set_span(MemRegion span) { _span = span; }
   290   // start and stop weak ref discovery
   291   void enable_discovery()   { _discovering_refs = true;  }
   292   void disable_discovery()  { _discovering_refs = false; }
   293   bool discovery_enabled()  { return _discovering_refs;  }
   295   // whether discovery is atomic wrt other collectors
   296   bool discovery_is_atomic() const { return _discovery_is_atomic; }
   297   void set_atomic_discovery(bool atomic) { _discovery_is_atomic = atomic; }
   299   // whether discovery is done by multiple threads same-old-timeously
   300   bool discovery_is_mt() const { return _discovery_is_mt; }
   301   void set_mt_discovery(bool mt) { _discovery_is_mt = mt; }
   303   // Whether we are in a phase when _processing_ is MT.
   304   bool processing_is_mt() const { return _processing_is_mt; }
   305   void set_mt_processing(bool mt) { _processing_is_mt = mt; }
   307   // whether all enqueuing of weak references is complete
   308   bool enqueuing_is_done()  { return _enqueuing_is_done; }
   309   void set_enqueuing_is_done(bool v) { _enqueuing_is_done = v; }
   311   // iterate over oops
   312   void weak_oops_do(OopClosure* f);       // weak roots
   313   static void oops_do(OopClosure* f);     // strong root(s)
   315   // Discover a Reference object, using appropriate discovery criteria
   316   bool discover_reference(oop obj, ReferenceType rt);
   318   // Process references found during GC (called by the garbage collector)
   319   void process_discovered_references(BoolObjectClosure*           is_alive,
   320                                      OopClosure*                  keep_alive,
   321                                      VoidClosure*                 complete_gc,
   322                                      AbstractRefProcTaskExecutor* task_executor);
   324  public:
   325   // Enqueue references at end of GC (called by the garbage collector)
   326   bool enqueue_discovered_references(AbstractRefProcTaskExecutor* task_executor = NULL);
   328   // If a discovery is in process that is being superceded, abandon it: all
   329   // the discovered lists will be empty, and all the objects on them will
   330   // have NULL discovered fields.  Must be called only at a safepoint.
   331   void abandon_partial_discovery();
   333   // debugging
   334   void verify_no_references_recorded() PRODUCT_RETURN;
   335   static void verify();
   337   // clear the discovered lists (unlinking each entry).
   338   void clear_discovered_references() PRODUCT_RETURN;
   339 };
   341 // A utility class to disable reference discovery in
   342 // the scope which contains it, for given ReferenceProcessor.
   343 class NoRefDiscovery: StackObj {
   344  private:
   345   ReferenceProcessor* _rp;
   346   bool _was_discovering_refs;
   347  public:
   348   NoRefDiscovery(ReferenceProcessor* rp) : _rp(rp) {
   349     if (_was_discovering_refs = _rp->discovery_enabled()) {
   350       _rp->disable_discovery();
   351     }
   352   }
   354   ~NoRefDiscovery() {
   355     if (_was_discovering_refs) {
   356       _rp->enable_discovery();
   357     }
   358   }
   359 };
   362 // A utility class to temporarily mutate the span of the
   363 // given ReferenceProcessor in the scope that contains it.
   364 class ReferenceProcessorSpanMutator: StackObj {
   365  private:
   366   ReferenceProcessor* _rp;
   367   MemRegion           _saved_span;
   369  public:
   370   ReferenceProcessorSpanMutator(ReferenceProcessor* rp,
   371                                 MemRegion span):
   372     _rp(rp) {
   373     _saved_span = _rp->span();
   374     _rp->set_span(span);
   375   }
   377   ~ReferenceProcessorSpanMutator() {
   378     _rp->set_span(_saved_span);
   379   }
   380 };
   382 // A utility class to temporarily change the MT'ness of
   383 // reference discovery for the given ReferenceProcessor
   384 // in the scope that contains it.
   385 class ReferenceProcessorMTMutator: StackObj {
   386  private:
   387   ReferenceProcessor* _rp;
   388   bool                _saved_mt;
   390  public:
   391   ReferenceProcessorMTMutator(ReferenceProcessor* rp,
   392                               bool mt):
   393     _rp(rp) {
   394     _saved_mt = _rp->discovery_is_mt();
   395     _rp->set_mt_discovery(mt);
   396   }
   398   ~ReferenceProcessorMTMutator() {
   399     _rp->set_mt_discovery(_saved_mt);
   400   }
   401 };
   404 // A utility class to temporarily change the disposition
   405 // of the "is_alive_non_header" closure field of the
   406 // given ReferenceProcessor in the scope that contains it.
   407 class ReferenceProcessorIsAliveMutator: StackObj {
   408  private:
   409   ReferenceProcessor* _rp;
   410   BoolObjectClosure*  _saved_cl;
   412  public:
   413   ReferenceProcessorIsAliveMutator(ReferenceProcessor* rp,
   414                                    BoolObjectClosure*  cl):
   415     _rp(rp) {
   416     _saved_cl = _rp->is_alive_non_header();
   417     _rp->set_is_alive_non_header(cl);
   418   }
   420   ~ReferenceProcessorIsAliveMutator() {
   421     _rp->set_is_alive_non_header(_saved_cl);
   422   }
   423 };
   425 // A utility class to temporarily change the disposition
   426 // of the "discovery_is_atomic" field of the
   427 // given ReferenceProcessor in the scope that contains it.
   428 class ReferenceProcessorAtomicMutator: StackObj {
   429  private:
   430   ReferenceProcessor* _rp;
   431   bool                _saved_atomic_discovery;
   433  public:
   434   ReferenceProcessorAtomicMutator(ReferenceProcessor* rp,
   435                                   bool atomic):
   436     _rp(rp) {
   437     _saved_atomic_discovery = _rp->discovery_is_atomic();
   438     _rp->set_atomic_discovery(atomic);
   439   }
   441   ~ReferenceProcessorAtomicMutator() {
   442     _rp->set_atomic_discovery(_saved_atomic_discovery);
   443   }
   444 };
   447 // A utility class to temporarily change the MT processing
   448 // disposition of the given ReferenceProcessor instance
   449 // in the scope that contains it.
   450 class ReferenceProcessorMTProcMutator: StackObj {
   451  private:
   452   ReferenceProcessor* _rp;
   453   bool  _saved_mt;
   455  public:
   456   ReferenceProcessorMTProcMutator(ReferenceProcessor* rp,
   457                                   bool mt):
   458     _rp(rp) {
   459     _saved_mt = _rp->processing_is_mt();
   460     _rp->set_mt_processing(mt);
   461   }
   463   ~ReferenceProcessorMTProcMutator() {
   464     _rp->set_mt_processing(_saved_mt);
   465   }
   466 };
   469 // This class is an interface used to implement task execution for the
   470 // reference processing.
   471 class AbstractRefProcTaskExecutor {
   472 public:
   474   // Abstract tasks to execute.
   475   class ProcessTask;
   476   class EnqueueTask;
   478   // Executes a task using worker threads.
   479   virtual void execute(ProcessTask& task) = 0;
   480   virtual void execute(EnqueueTask& task) = 0;
   482   // Switch to single threaded mode.
   483   virtual void set_single_threaded_mode() { };
   484 };
   486 // Abstract reference processing task to execute.
   487 class AbstractRefProcTaskExecutor::ProcessTask {
   488 protected:
   489   ProcessTask(ReferenceProcessor& ref_processor,
   490               DiscoveredList      refs_lists[],
   491               bool                marks_oops_alive)
   492     : _ref_processor(ref_processor),
   493       _refs_lists(refs_lists),
   494       _marks_oops_alive(marks_oops_alive)
   495   { }
   497 public:
   498   virtual void work(unsigned int work_id, BoolObjectClosure& is_alive,
   499                     OopClosure& keep_alive,
   500                     VoidClosure& complete_gc) = 0;
   502   // Returns true if a task marks some oops as alive.
   503   bool marks_oops_alive() const
   504   { return _marks_oops_alive; }
   506 protected:
   507   ReferenceProcessor& _ref_processor;
   508   DiscoveredList*     _refs_lists;
   509   const bool          _marks_oops_alive;
   510 };
   512 // Abstract reference processing task to execute.
   513 class AbstractRefProcTaskExecutor::EnqueueTask {
   514 protected:
   515   EnqueueTask(ReferenceProcessor& ref_processor,
   516               DiscoveredList      refs_lists[],
   517               HeapWord*           pending_list_addr,
   518               oop                 sentinel_ref,
   519               int                 n_queues)
   520     : _ref_processor(ref_processor),
   521       _refs_lists(refs_lists),
   522       _pending_list_addr(pending_list_addr),
   523       _sentinel_ref(sentinel_ref),
   524       _n_queues(n_queues)
   525   { }
   527 public:
   528   virtual void work(unsigned int work_id) = 0;
   530 protected:
   531   ReferenceProcessor& _ref_processor;
   532   DiscoveredList*     _refs_lists;
   533   HeapWord*           _pending_list_addr;
   534   oop                 _sentinel_ref;
   535   int                 _n_queues;
   536 };

mercurial