src/share/vm/memory/cardTableRS.cpp

Wed, 02 Jun 2010 22:45:42 -0700

author
jrose
date
Wed, 02 Jun 2010 22:45:42 -0700
changeset 1934
e9ff18c4ace7
parent 1907
c18cbe5936b8
child 2314
f95d63e2154a
permissions
-rw-r--r--

Merge

     1 /*
     2  * Copyright (c) 2001, 2009, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 # include "incls/_precompiled.incl"
    26 # include "incls/_cardTableRS.cpp.incl"
    28 CardTableRS::CardTableRS(MemRegion whole_heap,
    29                          int max_covered_regions) :
    30   GenRemSet(),
    31   _cur_youngergen_card_val(youngergenP1_card),
    32   _regions_to_iterate(max_covered_regions - 1)
    33 {
    34 #ifndef SERIALGC
    35   if (UseG1GC) {
    36       _ct_bs = new G1SATBCardTableLoggingModRefBS(whole_heap,
    37                                                   max_covered_regions);
    38   } else {
    39     _ct_bs = new CardTableModRefBSForCTRS(whole_heap, max_covered_regions);
    40   }
    41 #else
    42   _ct_bs = new CardTableModRefBSForCTRS(whole_heap, max_covered_regions);
    43 #endif
    44   set_bs(_ct_bs);
    45   _last_cur_val_in_gen = new jbyte[GenCollectedHeap::max_gens + 1];
    46   if (_last_cur_val_in_gen == NULL) {
    47     vm_exit_during_initialization("Could not last_cur_val_in_gen array.");
    48   }
    49   for (int i = 0; i < GenCollectedHeap::max_gens + 1; i++) {
    50     _last_cur_val_in_gen[i] = clean_card_val();
    51   }
    52   _ct_bs->set_CTRS(this);
    53 }
    55 void CardTableRS::resize_covered_region(MemRegion new_region) {
    56   _ct_bs->resize_covered_region(new_region);
    57 }
    59 jbyte CardTableRS::find_unused_youngergenP_card_value() {
    60   for (jbyte v = youngergenP1_card;
    61        v < cur_youngergen_and_prev_nonclean_card;
    62        v++) {
    63     bool seen = false;
    64     for (int g = 0; g < _regions_to_iterate; g++) {
    65       if (_last_cur_val_in_gen[g] == v) {
    66         seen = true;
    67         break;
    68       }
    69     }
    70     if (!seen) return v;
    71   }
    72   ShouldNotReachHere();
    73   return 0;
    74 }
    76 void CardTableRS::prepare_for_younger_refs_iterate(bool parallel) {
    77   // Parallel or sequential, we must always set the prev to equal the
    78   // last one written.
    79   if (parallel) {
    80     // Find a parallel value to be used next.
    81     jbyte next_val = find_unused_youngergenP_card_value();
    82     set_cur_youngergen_card_val(next_val);
    84   } else {
    85     // In an sequential traversal we will always write youngergen, so that
    86     // the inline barrier is  correct.
    87     set_cur_youngergen_card_val(youngergen_card);
    88   }
    89 }
    91 void CardTableRS::younger_refs_iterate(Generation* g,
    92                                        OopsInGenClosure* blk) {
    93   _last_cur_val_in_gen[g->level()+1] = cur_youngergen_card_val();
    94   g->younger_refs_iterate(blk);
    95 }
    97 class ClearNoncleanCardWrapper: public MemRegionClosure {
    98   MemRegionClosure* _dirty_card_closure;
    99   CardTableRS* _ct;
   100   bool _is_par;
   101 private:
   102   // Clears the given card, return true if the corresponding card should be
   103   // processed.
   104   bool clear_card(jbyte* entry) {
   105     if (_is_par) {
   106       while (true) {
   107         // In the parallel case, we may have to do this several times.
   108         jbyte entry_val = *entry;
   109         assert(entry_val != CardTableRS::clean_card_val(),
   110                "We shouldn't be looking at clean cards, and this should "
   111                "be the only place they get cleaned.");
   112         if (CardTableRS::card_is_dirty_wrt_gen_iter(entry_val)
   113             || _ct->is_prev_youngergen_card_val(entry_val)) {
   114           jbyte res =
   115             Atomic::cmpxchg(CardTableRS::clean_card_val(), entry, entry_val);
   116           if (res == entry_val) {
   117             break;
   118           } else {
   119             assert(res == CardTableRS::cur_youngergen_and_prev_nonclean_card,
   120                    "The CAS above should only fail if another thread did "
   121                    "a GC write barrier.");
   122           }
   123         } else if (entry_val ==
   124                    CardTableRS::cur_youngergen_and_prev_nonclean_card) {
   125           // Parallelism shouldn't matter in this case.  Only the thread
   126           // assigned to scan the card should change this value.
   127           *entry = _ct->cur_youngergen_card_val();
   128           break;
   129         } else {
   130           assert(entry_val == _ct->cur_youngergen_card_val(),
   131                  "Should be the only possibility.");
   132           // In this case, the card was clean before, and become
   133           // cur_youngergen only because of processing of a promoted object.
   134           // We don't have to look at the card.
   135           return false;
   136         }
   137       }
   138       return true;
   139     } else {
   140       jbyte entry_val = *entry;
   141       assert(entry_val != CardTableRS::clean_card_val(),
   142              "We shouldn't be looking at clean cards, and this should "
   143              "be the only place they get cleaned.");
   144       assert(entry_val != CardTableRS::cur_youngergen_and_prev_nonclean_card,
   145              "This should be possible in the sequential case.");
   146       *entry = CardTableRS::clean_card_val();
   147       return true;
   148     }
   149   }
   151 public:
   152   ClearNoncleanCardWrapper(MemRegionClosure* dirty_card_closure,
   153                            CardTableRS* ct) :
   154     _dirty_card_closure(dirty_card_closure), _ct(ct) {
   155     _is_par = (SharedHeap::heap()->n_par_threads() > 0);
   156   }
   157   void do_MemRegion(MemRegion mr) {
   158     // We start at the high end of "mr", walking backwards
   159     // while accumulating a contiguous dirty range of cards in
   160     // [start_of_non_clean, end_of_non_clean) which we then
   161     // process en masse.
   162     HeapWord* end_of_non_clean = mr.end();
   163     HeapWord* start_of_non_clean = end_of_non_clean;
   164     jbyte*       entry = _ct->byte_for(mr.last());
   165     const jbyte* first_entry = _ct->byte_for(mr.start());
   166     while (entry >= first_entry) {
   167       HeapWord* cur = _ct->addr_for(entry);
   168       if (!clear_card(entry)) {
   169         // We hit a clean card; process any non-empty
   170         // dirty range accumulated so far.
   171         if (start_of_non_clean < end_of_non_clean) {
   172           MemRegion mr2(start_of_non_clean, end_of_non_clean);
   173           _dirty_card_closure->do_MemRegion(mr2);
   174         }
   175         // Reset the dirty window while continuing to
   176         // look for the next dirty window to process.
   177         end_of_non_clean = cur;
   178         start_of_non_clean = end_of_non_clean;
   179       }
   180       // Open the left end of the window one card to the left.
   181       start_of_non_clean = cur;
   182       // Note that "entry" leads "start_of_non_clean" in
   183       // its leftward excursion after this point
   184       // in the loop and, when we hit the left end of "mr",
   185       // will point off of the left end of the card-table
   186       // for "mr".
   187       entry--;
   188     }
   189     // If the first card of "mr" was dirty, we will have
   190     // been left with a dirty window, co-initial with "mr",
   191     // which we now process.
   192     if (start_of_non_clean < end_of_non_clean) {
   193       MemRegion mr2(start_of_non_clean, end_of_non_clean);
   194       _dirty_card_closure->do_MemRegion(mr2);
   195     }
   196   }
   197 };
   198 // clean (by dirty->clean before) ==> cur_younger_gen
   199 // dirty                          ==> cur_youngergen_and_prev_nonclean_card
   200 // precleaned                     ==> cur_youngergen_and_prev_nonclean_card
   201 // prev-younger-gen               ==> cur_youngergen_and_prev_nonclean_card
   202 // cur-younger-gen                ==> cur_younger_gen
   203 // cur_youngergen_and_prev_nonclean_card ==> no change.
   204 void CardTableRS::write_ref_field_gc_par(void* field, oop new_val) {
   205   jbyte* entry = ct_bs()->byte_for(field);
   206   do {
   207     jbyte entry_val = *entry;
   208     // We put this first because it's probably the most common case.
   209     if (entry_val == clean_card_val()) {
   210       // No threat of contention with cleaning threads.
   211       *entry = cur_youngergen_card_val();
   212       return;
   213     } else if (card_is_dirty_wrt_gen_iter(entry_val)
   214                || is_prev_youngergen_card_val(entry_val)) {
   215       // Mark it as both cur and prev youngergen; card cleaning thread will
   216       // eventually remove the previous stuff.
   217       jbyte new_val = cur_youngergen_and_prev_nonclean_card;
   218       jbyte res = Atomic::cmpxchg(new_val, entry, entry_val);
   219       // Did the CAS succeed?
   220       if (res == entry_val) return;
   221       // Otherwise, retry, to see the new value.
   222       continue;
   223     } else {
   224       assert(entry_val == cur_youngergen_and_prev_nonclean_card
   225              || entry_val == cur_youngergen_card_val(),
   226              "should be only possibilities.");
   227       return;
   228     }
   229   } while (true);
   230 }
   232 void CardTableRS::younger_refs_in_space_iterate(Space* sp,
   233                                                 OopsInGenClosure* cl) {
   234   DirtyCardToOopClosure* dcto_cl = sp->new_dcto_cl(cl, _ct_bs->precision(),
   235                                                    cl->gen_boundary());
   236   ClearNoncleanCardWrapper clear_cl(dcto_cl, this);
   238   _ct_bs->non_clean_card_iterate(sp, sp->used_region_at_save_marks(),
   239                                 dcto_cl, &clear_cl, false);
   240 }
   242 void CardTableRS::clear_into_younger(Generation* gen, bool clear_perm) {
   243   GenCollectedHeap* gch = GenCollectedHeap::heap();
   244   // Generations younger than gen have been evacuated. We can clear
   245   // card table entries for gen (we know that it has no pointers
   246   // to younger gens) and for those below. The card tables for
   247   // the youngest gen need never be cleared, and those for perm gen
   248   // will be cleared based on the parameter clear_perm.
   249   // There's a bit of subtlety in the clear() and invalidate()
   250   // methods that we exploit here and in invalidate_or_clear()
   251   // below to avoid missing cards at the fringes. If clear() or
   252   // invalidate() are changed in the future, this code should
   253   // be revisited. 20040107.ysr
   254   Generation* g = gen;
   255   for(Generation* prev_gen = gch->prev_gen(g);
   256       prev_gen != NULL;
   257       g = prev_gen, prev_gen = gch->prev_gen(g)) {
   258     MemRegion to_be_cleared_mr = g->prev_used_region();
   259     clear(to_be_cleared_mr);
   260   }
   261   // Clear perm gen cards if asked to do so.
   262   if (clear_perm) {
   263     MemRegion to_be_cleared_mr = gch->perm_gen()->prev_used_region();
   264     clear(to_be_cleared_mr);
   265   }
   266 }
   268 void CardTableRS::invalidate_or_clear(Generation* gen, bool younger,
   269                                       bool perm) {
   270   GenCollectedHeap* gch = GenCollectedHeap::heap();
   271   // For each generation gen (and younger and/or perm)
   272   // invalidate the cards for the currently occupied part
   273   // of that generation and clear the cards for the
   274   // unoccupied part of the generation (if any, making use
   275   // of that generation's prev_used_region to determine that
   276   // region). No need to do anything for the youngest
   277   // generation. Also see note#20040107.ysr above.
   278   Generation* g = gen;
   279   for(Generation* prev_gen = gch->prev_gen(g); prev_gen != NULL;
   280       g = prev_gen, prev_gen = gch->prev_gen(g))  {
   281     MemRegion used_mr = g->used_region();
   282     MemRegion to_be_cleared_mr = g->prev_used_region().minus(used_mr);
   283     if (!to_be_cleared_mr.is_empty()) {
   284       clear(to_be_cleared_mr);
   285     }
   286     invalidate(used_mr);
   287     if (!younger) break;
   288   }
   289   // Clear perm gen cards if asked to do so.
   290   if (perm) {
   291     g = gch->perm_gen();
   292     MemRegion used_mr = g->used_region();
   293     MemRegion to_be_cleared_mr = g->prev_used_region().minus(used_mr);
   294     if (!to_be_cleared_mr.is_empty()) {
   295       clear(to_be_cleared_mr);
   296     }
   297     invalidate(used_mr);
   298   }
   299 }
   302 class VerifyCleanCardClosure: public OopClosure {
   303 private:
   304   HeapWord* _boundary;
   305   HeapWord* _begin;
   306   HeapWord* _end;
   307 protected:
   308   template <class T> void do_oop_work(T* p) {
   309     HeapWord* jp = (HeapWord*)p;
   310     if (jp >= _begin && jp < _end) {
   311       oop obj = oopDesc::load_decode_heap_oop(p);
   312       guarantee(obj == NULL ||
   313                 (HeapWord*)p < _boundary ||
   314                 (HeapWord*)obj >= _boundary,
   315                 "pointer on clean card crosses boundary");
   316     }
   317   }
   318 public:
   319   VerifyCleanCardClosure(HeapWord* b, HeapWord* begin, HeapWord* end) :
   320     _boundary(b), _begin(begin), _end(end) {}
   321   virtual void do_oop(oop* p)       { VerifyCleanCardClosure::do_oop_work(p); }
   322   virtual void do_oop(narrowOop* p) { VerifyCleanCardClosure::do_oop_work(p); }
   323 };
   325 class VerifyCTSpaceClosure: public SpaceClosure {
   326 private:
   327   CardTableRS* _ct;
   328   HeapWord* _boundary;
   329 public:
   330   VerifyCTSpaceClosure(CardTableRS* ct, HeapWord* boundary) :
   331     _ct(ct), _boundary(boundary) {}
   332   virtual void do_space(Space* s) { _ct->verify_space(s, _boundary); }
   333 };
   335 class VerifyCTGenClosure: public GenCollectedHeap::GenClosure {
   336   CardTableRS* _ct;
   337 public:
   338   VerifyCTGenClosure(CardTableRS* ct) : _ct(ct) {}
   339   void do_generation(Generation* gen) {
   340     // Skip the youngest generation.
   341     if (gen->level() == 0) return;
   342     // Normally, we're interested in pointers to younger generations.
   343     VerifyCTSpaceClosure blk(_ct, gen->reserved().start());
   344     gen->space_iterate(&blk, true);
   345   }
   346 };
   348 void CardTableRS::verify_space(Space* s, HeapWord* gen_boundary) {
   349   // We don't need to do young-gen spaces.
   350   if (s->end() <= gen_boundary) return;
   351   MemRegion used = s->used_region();
   353   jbyte* cur_entry = byte_for(used.start());
   354   jbyte* limit = byte_after(used.last());
   355   while (cur_entry < limit) {
   356     if (*cur_entry == CardTableModRefBS::clean_card) {
   357       jbyte* first_dirty = cur_entry+1;
   358       while (first_dirty < limit &&
   359              *first_dirty == CardTableModRefBS::clean_card) {
   360         first_dirty++;
   361       }
   362       // If the first object is a regular object, and it has a
   363       // young-to-old field, that would mark the previous card.
   364       HeapWord* boundary = addr_for(cur_entry);
   365       HeapWord* end = (first_dirty >= limit) ? used.end() : addr_for(first_dirty);
   366       HeapWord* boundary_block = s->block_start(boundary);
   367       HeapWord* begin = boundary;             // Until proven otherwise.
   368       HeapWord* start_block = boundary_block; // Until proven otherwise.
   369       if (boundary_block < boundary) {
   370         if (s->block_is_obj(boundary_block) && s->obj_is_alive(boundary_block)) {
   371           oop boundary_obj = oop(boundary_block);
   372           if (!boundary_obj->is_objArray() &&
   373               !boundary_obj->is_typeArray()) {
   374             guarantee(cur_entry > byte_for(used.start()),
   375                       "else boundary would be boundary_block");
   376             if (*byte_for(boundary_block) != CardTableModRefBS::clean_card) {
   377               begin = boundary_block + s->block_size(boundary_block);
   378               start_block = begin;
   379             }
   380           }
   381         }
   382       }
   383       // Now traverse objects until end.
   384       HeapWord* cur = start_block;
   385       VerifyCleanCardClosure verify_blk(gen_boundary, begin, end);
   386       while (cur < end) {
   387         if (s->block_is_obj(cur) && s->obj_is_alive(cur)) {
   388           oop(cur)->oop_iterate(&verify_blk);
   389         }
   390         cur += s->block_size(cur);
   391       }
   392       cur_entry = first_dirty;
   393     } else {
   394       // We'd normally expect that cur_youngergen_and_prev_nonclean_card
   395       // is a transient value, that cannot be in the card table
   396       // except during GC, and thus assert that:
   397       // guarantee(*cur_entry != cur_youngergen_and_prev_nonclean_card,
   398       //        "Illegal CT value");
   399       // That however, need not hold, as will become clear in the
   400       // following...
   402       // We'd normally expect that if we are in the parallel case,
   403       // we can't have left a prev value (which would be different
   404       // from the current value) in the card table, and so we'd like to
   405       // assert that:
   406       // guarantee(cur_youngergen_card_val() == youngergen_card
   407       //           || !is_prev_youngergen_card_val(*cur_entry),
   408       //           "Illegal CT value");
   409       // That, however, may not hold occasionally, because of
   410       // CMS or MSC in the old gen. To wit, consider the
   411       // following two simple illustrative scenarios:
   412       // (a) CMS: Consider the case where a large object L
   413       //     spanning several cards is allocated in the old
   414       //     gen, and has a young gen reference stored in it, dirtying
   415       //     some interior cards. A young collection scans the card,
   416       //     finds a young ref and installs a youngergenP_n value.
   417       //     L then goes dead. Now a CMS collection starts,
   418       //     finds L dead and sweeps it up. Assume that L is
   419       //     abutting _unallocated_blk, so _unallocated_blk is
   420       //     adjusted down to (below) L. Assume further that
   421       //     no young collection intervenes during this CMS cycle.
   422       //     The next young gen cycle will not get to look at this
   423       //     youngergenP_n card since it lies in the unoccupied
   424       //     part of the space.
   425       //     Some young collections later the blocks on this
   426       //     card can be re-allocated either due to direct allocation
   427       //     or due to absorbing promotions. At this time, the
   428       //     before-gc verification will fail the above assert.
   429       // (b) MSC: In this case, an object L with a young reference
   430       //     is on a card that (therefore) holds a youngergen_n value.
   431       //     Suppose also that L lies towards the end of the used
   432       //     the used space before GC. An MSC collection
   433       //     occurs that compacts to such an extent that this
   434       //     card is no longer in the occupied part of the space.
   435       //     Since current code in MSC does not always clear cards
   436       //     in the unused part of old gen, this stale youngergen_n
   437       //     value is left behind and can later be covered by
   438       //     an object when promotion or direct allocation
   439       //     re-allocates that part of the heap.
   440       //
   441       // Fortunately, the presence of such stale card values is
   442       // "only" a minor annoyance in that subsequent young collections
   443       // might needlessly scan such cards, but would still never corrupt
   444       // the heap as a result. However, it's likely not to be a significant
   445       // performance inhibitor in practice. For instance,
   446       // some recent measurements with unoccupied cards eagerly cleared
   447       // out to maintain this invariant, showed next to no
   448       // change in young collection times; of course one can construct
   449       // degenerate examples where the cost can be significant.)
   450       // Note, in particular, that if the "stale" card is modified
   451       // after re-allocation, it would be dirty, not "stale". Thus,
   452       // we can never have a younger ref in such a card and it is
   453       // safe not to scan that card in any collection. [As we see
   454       // below, we do some unnecessary scanning
   455       // in some cases in the current parallel scanning algorithm.]
   456       //
   457       // The main point below is that the parallel card scanning code
   458       // deals correctly with these stale card values. There are two main
   459       // cases to consider where we have a stale "younger gen" value and a
   460       // "derivative" case to consider, where we have a stale
   461       // "cur_younger_gen_and_prev_non_clean" value, as will become
   462       // apparent in the case analysis below.
   463       // o Case 1. If the stale value corresponds to a younger_gen_n
   464       //   value other than the cur_younger_gen value then the code
   465       //   treats this as being tantamount to a prev_younger_gen
   466       //   card. This means that the card may be unnecessarily scanned.
   467       //   There are two sub-cases to consider:
   468       //   o Case 1a. Let us say that the card is in the occupied part
   469       //     of the generation at the time the collection begins. In
   470       //     that case the card will be either cleared when it is scanned
   471       //     for young pointers, or will be set to cur_younger_gen as a
   472       //     result of promotion. (We have elided the normal case where
   473       //     the scanning thread and the promoting thread interleave
   474       //     possibly resulting in a transient
   475       //     cur_younger_gen_and_prev_non_clean value before settling
   476       //     to cur_younger_gen. [End Case 1a.]
   477       //   o Case 1b. Consider now the case when the card is in the unoccupied
   478       //     part of the space which becomes occupied because of promotions
   479       //     into it during the current young GC. In this case the card
   480       //     will never be scanned for young references. The current
   481       //     code will set the card value to either
   482       //     cur_younger_gen_and_prev_non_clean or leave
   483       //     it with its stale value -- because the promotions didn't
   484       //     result in any younger refs on that card. Of these two
   485       //     cases, the latter will be covered in Case 1a during
   486       //     a subsequent scan. To deal with the former case, we need
   487       //     to further consider how we deal with a stale value of
   488       //     cur_younger_gen_and_prev_non_clean in our case analysis
   489       //     below. This we do in Case 3 below. [End Case 1b]
   490       //   [End Case 1]
   491       // o Case 2. If the stale value corresponds to cur_younger_gen being
   492       //   a value not necessarily written by a current promotion, the
   493       //   card will not be scanned by the younger refs scanning code.
   494       //   (This is OK since as we argued above such cards cannot contain
   495       //   any younger refs.) The result is that this value will be
   496       //   treated as a prev_younger_gen value in a subsequent collection,
   497       //   which is addressed in Case 1 above. [End Case 2]
   498       // o Case 3. We here consider the "derivative" case from Case 1b. above
   499       //   because of which we may find a stale
   500       //   cur_younger_gen_and_prev_non_clean card value in the table.
   501       //   Once again, as in Case 1, we consider two subcases, depending
   502       //   on whether the card lies in the occupied or unoccupied part
   503       //   of the space at the start of the young collection.
   504       //   o Case 3a. Let us say the card is in the occupied part of
   505       //     the old gen at the start of the young collection. In that
   506       //     case, the card will be scanned by the younger refs scanning
   507       //     code which will set it to cur_younger_gen. In a subsequent
   508       //     scan, the card will be considered again and get its final
   509       //     correct value. [End Case 3a]
   510       //   o Case 3b. Now consider the case where the card is in the
   511       //     unoccupied part of the old gen, and is occupied as a result
   512       //     of promotions during thus young gc. In that case,
   513       //     the card will not be scanned for younger refs. The presence
   514       //     of newly promoted objects on the card will then result in
   515       //     its keeping the value cur_younger_gen_and_prev_non_clean
   516       //     value, which we have dealt with in Case 3 here. [End Case 3b]
   517       //   [End Case 3]
   518       //
   519       // (Please refer to the code in the helper class
   520       // ClearNonCleanCardWrapper and in CardTableModRefBS for details.)
   521       //
   522       // The informal arguments above can be tightened into a formal
   523       // correctness proof and it behooves us to write up such a proof,
   524       // or to use model checking to prove that there are no lingering
   525       // concerns.
   526       //
   527       // Clearly because of Case 3b one cannot bound the time for
   528       // which a card will retain what we have called a "stale" value.
   529       // However, one can obtain a Loose upper bound on the redundant
   530       // work as a result of such stale values. Note first that any
   531       // time a stale card lies in the occupied part of the space at
   532       // the start of the collection, it is scanned by younger refs
   533       // code and we can define a rank function on card values that
   534       // declines when this is so. Note also that when a card does not
   535       // lie in the occupied part of the space at the beginning of a
   536       // young collection, its rank can either decline or stay unchanged.
   537       // In this case, no extra work is done in terms of redundant
   538       // younger refs scanning of that card.
   539       // Then, the case analysis above reveals that, in the worst case,
   540       // any such stale card will be scanned unnecessarily at most twice.
   541       //
   542       // It is nonethelss advisable to try and get rid of some of this
   543       // redundant work in a subsequent (low priority) re-design of
   544       // the card-scanning code, if only to simplify the underlying
   545       // state machine analysis/proof. ysr 1/28/2002. XXX
   546       cur_entry++;
   547     }
   548   }
   549 }
   551 void CardTableRS::verify() {
   552   // At present, we only know how to verify the card table RS for
   553   // generational heaps.
   554   VerifyCTGenClosure blk(this);
   555   CollectedHeap* ch = Universe::heap();
   556   // We will do the perm-gen portion of the card table, too.
   557   Generation* pg = SharedHeap::heap()->perm_gen();
   558   HeapWord* pg_boundary = pg->reserved().start();
   560   if (ch->kind() == CollectedHeap::GenCollectedHeap) {
   561     GenCollectedHeap::heap()->generation_iterate(&blk, false);
   562     _ct_bs->verify();
   564     // If the old gen collections also collect perm, then we are only
   565     // interested in perm-to-young pointers, not perm-to-old pointers.
   566     GenCollectedHeap* gch = GenCollectedHeap::heap();
   567     CollectorPolicy* cp = gch->collector_policy();
   568     if (cp->is_mark_sweep_policy() || cp->is_concurrent_mark_sweep_policy()) {
   569       pg_boundary = gch->get_gen(1)->reserved().start();
   570     }
   571   }
   572   VerifyCTSpaceClosure perm_space_blk(this, pg_boundary);
   573   SharedHeap::heap()->perm_gen()->space_iterate(&perm_space_blk, true);
   574 }
   577 void CardTableRS::verify_aligned_region_empty(MemRegion mr) {
   578   if (!mr.is_empty()) {
   579     jbyte* cur_entry = byte_for(mr.start());
   580     jbyte* limit = byte_after(mr.last());
   581     // The region mr may not start on a card boundary so
   582     // the first card may reflect a write to the space
   583     // just prior to mr.
   584     if (!is_aligned(mr.start())) {
   585       cur_entry++;
   586     }
   587     for (;cur_entry < limit; cur_entry++) {
   588       guarantee(*cur_entry == CardTableModRefBS::clean_card,
   589                 "Unexpected dirty card found");
   590     }
   591   }
   592 }

mercurial