src/share/vm/code/compiledIC.cpp

Wed, 02 Jun 2010 22:45:42 -0700

author
jrose
date
Wed, 02 Jun 2010 22:45:42 -0700
changeset 1934
e9ff18c4ace7
parent 1907
c18cbe5936b8
parent 1918
1a5913bf5e19
child 2314
f95d63e2154a
permissions
-rw-r--r--

Merge

     1 /*
     2  * Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "incls/_precompiled.incl"
    26 #include "incls/_compiledIC.cpp.incl"
    29 // Every time a compiled IC is changed or its type is being accessed,
    30 // either the CompiledIC_lock must be set or we must be at a safe point.
    32 //-----------------------------------------------------------------------------
    33 // Low-level access to an inline cache. Private, since they might not be
    34 // MT-safe to use.
    36 void CompiledIC::set_cached_oop(oop cache) {
    37   assert (CompiledIC_lock->is_locked() || SafepointSynchronize::is_at_safepoint(), "");
    38   assert (!is_optimized(), "an optimized virtual call does not have a cached oop");
    39   assert (cache == NULL || cache != badOop, "invalid oop");
    41   if (TraceCompiledIC) {
    42     tty->print("  ");
    43     print_compiled_ic();
    44     tty->print_cr(" changing oop to " INTPTR_FORMAT, (address)cache);
    45   }
    47   if (cache == NULL)  cache = (oop)Universe::non_oop_word();
    49   *_oop_addr = cache;
    50   // fix up the relocations
    51   RelocIterator iter = _oops;
    52   while (iter.next()) {
    53     if (iter.type() == relocInfo::oop_type) {
    54       oop_Relocation* r = iter.oop_reloc();
    55       if (r->oop_addr() == _oop_addr)
    56         r->fix_oop_relocation();
    57     }
    58   }
    59   return;
    60 }
    63 oop CompiledIC::cached_oop() const {
    64   assert (CompiledIC_lock->is_locked() || SafepointSynchronize::is_at_safepoint(), "");
    65   assert (!is_optimized(), "an optimized virtual call does not have a cached oop");
    67   if (!is_in_transition_state()) {
    68     oop data = *_oop_addr;
    69     // If we let the oop value here be initialized to zero...
    70     assert(data != NULL || Universe::non_oop_word() == NULL,
    71            "no raw nulls in CompiledIC oops, because of patching races");
    72     return (data == (oop)Universe::non_oop_word()) ? (oop)NULL : data;
    73   } else {
    74     return InlineCacheBuffer::cached_oop_for((CompiledIC *)this);
    75   }
    76 }
    79 void CompiledIC::set_ic_destination(address entry_point) {
    80   assert(entry_point != NULL, "must set legal entry point");
    81   assert(CompiledIC_lock->is_locked() || SafepointSynchronize::is_at_safepoint(), "");
    82   if (TraceCompiledIC) {
    83     tty->print("  ");
    84     print_compiled_ic();
    85     tty->print_cr(" changing destination to " INTPTR_FORMAT, entry_point);
    86   }
    87   MutexLockerEx pl(Patching_lock, Mutex::_no_safepoint_check_flag);
    88 #ifdef ASSERT
    89   CodeBlob* cb = CodeCache::find_blob_unsafe(_ic_call);
    90   assert(cb != NULL && cb->is_nmethod(), "must be nmethod");
    91 #endif
    92   _ic_call->set_destination_mt_safe(entry_point);
    93 }
    96 address CompiledIC::ic_destination() const {
    97  assert (CompiledIC_lock->is_locked() || SafepointSynchronize::is_at_safepoint(), "");
    98  if (!is_in_transition_state()) {
    99    return _ic_call->destination();
   100  } else {
   101    return InlineCacheBuffer::ic_destination_for((CompiledIC *)this);
   102  }
   103 }
   106 bool CompiledIC::is_in_transition_state() const {
   107   assert (CompiledIC_lock->is_locked() || SafepointSynchronize::is_at_safepoint(), "");
   108   return InlineCacheBuffer::contains(_ic_call->destination());
   109 }
   112 // Returns native address of 'call' instruction in inline-cache. Used by
   113 // the InlineCacheBuffer when it needs to find the stub.
   114 address CompiledIC::stub_address() const {
   115   assert(is_in_transition_state(), "should only be called when we are in a transition state");
   116   return _ic_call->destination();
   117 }
   120 //-----------------------------------------------------------------------------
   121 // High-level access to an inline cache. Guaranteed to be MT-safe.
   124 void CompiledIC::set_to_megamorphic(CallInfo* call_info, Bytecodes::Code bytecode, TRAPS) {
   125   methodHandle method = call_info->selected_method();
   126   bool is_invoke_interface = (bytecode == Bytecodes::_invokeinterface && !call_info->has_vtable_index());
   127   assert(CompiledIC_lock->is_locked() || SafepointSynchronize::is_at_safepoint(), "");
   128   assert(method->is_oop(), "cannot be NULL and must be oop");
   129   assert(!is_optimized(), "cannot set an optimized virtual call to megamorphic");
   130   assert(is_call_to_compiled() || is_call_to_interpreted(), "going directly to megamorphic?");
   132   address entry;
   133   if (is_invoke_interface) {
   134     int index = klassItable::compute_itable_index(call_info->resolved_method()());
   135     entry = VtableStubs::create_stub(false, index, method());
   136     assert(entry != NULL, "entry not computed");
   137     klassOop k = call_info->resolved_method()->method_holder();
   138     assert(Klass::cast(k)->is_interface(), "sanity check");
   139     InlineCacheBuffer::create_transition_stub(this, k, entry);
   140   } else {
   141     // Can be different than method->vtable_index(), due to package-private etc.
   142     int vtable_index = call_info->vtable_index();
   143     entry = VtableStubs::create_stub(true, vtable_index, method());
   144     InlineCacheBuffer::create_transition_stub(this, method(), entry);
   145   }
   147   if (TraceICs) {
   148     ResourceMark rm;
   149     tty->print_cr ("IC@" INTPTR_FORMAT ": to megamorphic %s entry: " INTPTR_FORMAT,
   150                    instruction_address(), method->print_value_string(), entry);
   151   }
   153   Events::log("compiledIC " INTPTR_FORMAT " --> megamorphic " INTPTR_FORMAT, this, (address)method());
   154   // We can't check this anymore. With lazy deopt we could have already
   155   // cleaned this IC entry before we even return. This is possible if
   156   // we ran out of space in the inline cache buffer trying to do the
   157   // set_next and we safepointed to free up space. This is a benign
   158   // race because the IC entry was complete when we safepointed so
   159   // cleaning it immediately is harmless.
   160   // assert(is_megamorphic(), "sanity check");
   161 }
   164 // true if destination is megamorphic stub
   165 bool CompiledIC::is_megamorphic() const {
   166   assert(CompiledIC_lock->is_locked() || SafepointSynchronize::is_at_safepoint(), "");
   167   assert(!is_optimized(), "an optimized call cannot be megamorphic");
   169   // Cannot rely on cached_oop. It is either an interface or a method.
   170   return VtableStubs::is_entry_point(ic_destination());
   171 }
   173 bool CompiledIC::is_call_to_compiled() const {
   174   assert (CompiledIC_lock->is_locked() || SafepointSynchronize::is_at_safepoint(), "");
   176   // Use unsafe, since an inline cache might point to a zombie method. However, the zombie
   177   // method is guaranteed to still exist, since we only remove methods after all inline caches
   178   // has been cleaned up
   179   CodeBlob* cb = CodeCache::find_blob_unsafe(ic_destination());
   180   bool is_monomorphic = (cb != NULL && cb->is_nmethod());
   181   // Check that the cached_oop is a klass for non-optimized monomorphic calls
   182   // This assertion is invalid for compiler1: a call that does not look optimized (no static stub) can be used
   183   // for calling directly to vep without using the inline cache (i.e., cached_oop == NULL)
   184 #ifdef ASSERT
   185 #ifdef TIERED
   186   CodeBlob* caller = CodeCache::find_blob_unsafe(instruction_address());
   187   bool is_c1_method = caller->is_compiled_by_c1();
   188 #else
   189 #ifdef COMPILER1
   190   bool is_c1_method = true;
   191 #else
   192   bool is_c1_method = false;
   193 #endif // COMPILER1
   194 #endif // TIERED
   195   assert( is_c1_method ||
   196          !is_monomorphic ||
   197          is_optimized() ||
   198          (cached_oop() != NULL && cached_oop()->is_klass()), "sanity check");
   199 #endif // ASSERT
   200   return is_monomorphic;
   201 }
   204 bool CompiledIC::is_call_to_interpreted() const {
   205   assert (CompiledIC_lock->is_locked() || SafepointSynchronize::is_at_safepoint(), "");
   206   // Call to interpreter if destination is either calling to a stub (if it
   207   // is optimized), or calling to an I2C blob
   208   bool is_call_to_interpreted = false;
   209   if (!is_optimized()) {
   210     // must use unsafe because the destination can be a zombie (and we're cleaning)
   211     // and the print_compiled_ic code wants to know if site (in the non-zombie)
   212     // is to the interpreter.
   213     CodeBlob* cb = CodeCache::find_blob_unsafe(ic_destination());
   214     is_call_to_interpreted = (cb != NULL && cb->is_adapter_blob());
   215     assert(!is_call_to_interpreted ||  (cached_oop() != NULL && cached_oop()->is_compiledICHolder()), "sanity check");
   216   } else {
   217     // Check if we are calling into our own codeblob (i.e., to a stub)
   218     CodeBlob* cb = CodeCache::find_blob(_ic_call->instruction_address());
   219     address dest = ic_destination();
   220 #ifdef ASSERT
   221     {
   222       CodeBlob* db = CodeCache::find_blob_unsafe(dest);
   223       assert(!db->is_adapter_blob(), "must use stub!");
   224     }
   225 #endif /* ASSERT */
   226     is_call_to_interpreted = cb->contains(dest);
   227   }
   228   return is_call_to_interpreted;
   229 }
   232 void CompiledIC::set_to_clean() {
   233   assert(SafepointSynchronize::is_at_safepoint() || CompiledIC_lock->is_locked() , "MT-unsafe call");
   234   if (TraceInlineCacheClearing || TraceICs) {
   235     tty->print_cr("IC@" INTPTR_FORMAT ": set to clean", instruction_address());
   236     print();
   237   }
   239   address entry;
   240   if (is_optimized()) {
   241     entry = SharedRuntime::get_resolve_opt_virtual_call_stub();
   242   } else {
   243     entry = SharedRuntime::get_resolve_virtual_call_stub();
   244   }
   246   // A zombie transition will always be safe, since the oop has already been set to NULL, so
   247   // we only need to patch the destination
   248   bool safe_transition = is_optimized() || SafepointSynchronize::is_at_safepoint();
   250   if (safe_transition) {
   251     if (!is_optimized()) set_cached_oop(NULL);
   252     // Kill any leftover stub we might have too
   253     if (is_in_transition_state()) {
   254       ICStub* old_stub = ICStub_from_destination_address(stub_address());
   255       old_stub->clear();
   256     }
   257     set_ic_destination(entry);
   258   } else {
   259     // Unsafe transition - create stub.
   260     InlineCacheBuffer::create_transition_stub(this, NULL, entry);
   261   }
   262   // We can't check this anymore. With lazy deopt we could have already
   263   // cleaned this IC entry before we even return. This is possible if
   264   // we ran out of space in the inline cache buffer trying to do the
   265   // set_next and we safepointed to free up space. This is a benign
   266   // race because the IC entry was complete when we safepointed so
   267   // cleaning it immediately is harmless.
   268   // assert(is_clean(), "sanity check");
   269 }
   272 bool CompiledIC::is_clean() const {
   273   assert (CompiledIC_lock->is_locked() || SafepointSynchronize::is_at_safepoint(), "");
   274   bool is_clean = false;
   275   address dest = ic_destination();
   276   is_clean = dest == SharedRuntime::get_resolve_opt_virtual_call_stub() ||
   277              dest == SharedRuntime::get_resolve_virtual_call_stub();
   278   assert(!is_clean || is_optimized() || cached_oop() == NULL, "sanity check");
   279   return is_clean;
   280 }
   283 void CompiledIC::set_to_monomorphic(const CompiledICInfo& info) {
   284   assert (CompiledIC_lock->is_locked() || SafepointSynchronize::is_at_safepoint(), "");
   285   // Updating a cache to the wrong entry can cause bugs that are very hard
   286   // to track down - if cache entry gets invalid - we just clean it. In
   287   // this way it is always the same code path that is responsible for
   288   // updating and resolving an inline cache
   289   //
   290   // The above is no longer true. SharedRuntime::fixup_callers_callsite will change optimized
   291   // callsites. In addition ic_miss code will update a site to monomorphic if it determines
   292   // that an monomorphic call to the interpreter can now be monomorphic to compiled code.
   293   //
   294   // In both of these cases the only thing being modifed is the jump/call target and these
   295   // transitions are mt_safe
   297   Thread *thread = Thread::current();
   298   if (info._to_interpreter) {
   299     // Call to interpreter
   300     if (info.is_optimized() && is_optimized()) {
   301        assert(is_clean(), "unsafe IC path");
   302        MutexLockerEx pl(Patching_lock, Mutex::_no_safepoint_check_flag);
   303       // the call analysis (callee structure) specifies that the call is optimized
   304       // (either because of CHA or the static target is final)
   305       // At code generation time, this call has been emitted as static call
   306       // Call via stub
   307       assert(info.cached_oop().not_null() && info.cached_oop()->is_method(), "sanity check");
   308       CompiledStaticCall* csc = compiledStaticCall_at(instruction_address());
   309       methodHandle method (thread, (methodOop)info.cached_oop()());
   310       csc->set_to_interpreted(method, info.entry());
   311       if (TraceICs) {
   312          ResourceMark rm(thread);
   313          tty->print_cr ("IC@" INTPTR_FORMAT ": monomorphic to interpreter: %s",
   314            instruction_address(),
   315            method->print_value_string());
   316       }
   317     } else {
   318       // Call via method-klass-holder
   319       assert(info.cached_oop().not_null(), "must be set");
   320       InlineCacheBuffer::create_transition_stub(this, info.cached_oop()(), info.entry());
   322       if (TraceICs) {
   323          ResourceMark rm(thread);
   324          tty->print_cr ("IC@" INTPTR_FORMAT ": monomorphic to interpreter via mkh", instruction_address());
   325       }
   326     }
   327   } else {
   328     // Call to compiled code
   329     bool static_bound = info.is_optimized() || (info.cached_oop().is_null());
   330 #ifdef ASSERT
   331     CodeBlob* cb = CodeCache::find_blob_unsafe(info.entry());
   332     assert (cb->is_nmethod(), "must be compiled!");
   333 #endif /* ASSERT */
   335     // This is MT safe if we come from a clean-cache and go through a
   336     // non-verified entry point
   337     bool safe = SafepointSynchronize::is_at_safepoint() ||
   338                 (!is_in_transition_state() && (info.is_optimized() || static_bound || is_clean()));
   340     if (!safe) {
   341       InlineCacheBuffer::create_transition_stub(this, info.cached_oop()(), info.entry());
   342     } else {
   343       set_ic_destination(info.entry());
   344       if (!is_optimized()) set_cached_oop(info.cached_oop()());
   345     }
   347     if (TraceICs) {
   348       ResourceMark rm(thread);
   349       assert(info.cached_oop() == NULL || info.cached_oop()()->is_klass(), "must be");
   350       tty->print_cr ("IC@" INTPTR_FORMAT ": monomorphic to compiled (rcvr klass) %s: %s",
   351         instruction_address(),
   352         ((klassOop)info.cached_oop()())->print_value_string(),
   353         (safe) ? "" : "via stub");
   354     }
   355   }
   356   // We can't check this anymore. With lazy deopt we could have already
   357   // cleaned this IC entry before we even return. This is possible if
   358   // we ran out of space in the inline cache buffer trying to do the
   359   // set_next and we safepointed to free up space. This is a benign
   360   // race because the IC entry was complete when we safepointed so
   361   // cleaning it immediately is harmless.
   362   // assert(is_call_to_compiled() || is_call_to_interpreted(), "sanity check");
   363 }
   366 // is_optimized: Compiler has generated an optimized call (i.e., no inline
   367 // cache) static_bound: The call can be static bound (i.e, no need to use
   368 // inline cache)
   369 void CompiledIC::compute_monomorphic_entry(methodHandle method,
   370                                            KlassHandle receiver_klass,
   371                                            bool is_optimized,
   372                                            bool static_bound,
   373                                            CompiledICInfo& info,
   374                                            TRAPS) {
   375   info._is_optimized = is_optimized;
   377   nmethod* method_code = method->code();
   378   address entry = NULL;
   379   if (method_code != NULL) {
   380     // Call to compiled code
   381     if (static_bound || is_optimized) {
   382       entry      = method_code->verified_entry_point();
   383     } else {
   384       entry      = method_code->entry_point();
   385     }
   386   }
   387   if (entry != NULL) {
   388     // Call to compiled code
   389     info._entry      = entry;
   390     if (static_bound || is_optimized) {
   391       info._cached_oop = Handle(THREAD, (oop)NULL);
   392     } else {
   393       info._cached_oop = receiver_klass;
   394     }
   395     info._to_interpreter = false;
   396   } else {
   397     // Note: the following problem exists with Compiler1:
   398     //   - at compile time we may or may not know if the destination is final
   399     //   - if we know that the destination is final, we will emit an optimized
   400     //     virtual call (no inline cache), and need a methodOop to make a call
   401     //     to the interpreter
   402     //   - if we do not know if the destination is final, we emit a standard
   403     //     virtual call, and use CompiledICHolder to call interpreted code
   404     //     (no static call stub has been generated)
   405     //     However in that case we will now notice it is static_bound
   406     //     and convert the call into what looks to be an optimized
   407     //     virtual call. This causes problems in verifying the IC because
   408     //     it look vanilla but is optimized. Code in is_call_to_interpreted
   409     //     is aware of this and weakens its asserts.
   411     info._to_interpreter = true;
   412     // static_bound should imply is_optimized -- otherwise we have a
   413     // performance bug (statically-bindable method is called via
   414     // dynamically-dispatched call note: the reverse implication isn't
   415     // necessarily true -- the call may have been optimized based on compiler
   416     // analysis (static_bound is only based on "final" etc.)
   417 #ifdef COMPILER2
   418 #ifdef TIERED
   419 #if defined(ASSERT)
   420     // can't check the assert because we don't have the CompiledIC with which to
   421     // find the address if the call instruction.
   422     //
   423     // CodeBlob* cb = find_blob_unsafe(instruction_address());
   424     // assert(cb->is_compiled_by_c1() || !static_bound || is_optimized, "static_bound should imply is_optimized");
   425 #endif // ASSERT
   426 #else
   427     assert(!static_bound || is_optimized, "static_bound should imply is_optimized");
   428 #endif // TIERED
   429 #endif // COMPILER2
   430     if (is_optimized) {
   431       // Use stub entry
   432       info._entry      = method()->get_c2i_entry();
   433       info._cached_oop = method;
   434     } else {
   435       // Use mkh entry
   436       oop holder = oopFactory::new_compiledICHolder(method, receiver_klass, CHECK);
   437       info._cached_oop = Handle(THREAD, holder);
   438       info._entry      = method()->get_c2i_unverified_entry();
   439     }
   440   }
   441 }
   444 inline static RelocIterator parse_ic(nmethod* nm, address ic_call, oop* &_oop_addr, bool *is_optimized) {
   445    address  first_oop = NULL;
   446    // Mergers please note: Sun SC5.x CC insists on an lvalue for a reference parameter.
   447    nmethod* tmp_nm = nm;
   448    return virtual_call_Relocation::parse_ic(tmp_nm, ic_call, first_oop, _oop_addr, is_optimized);
   449 }
   451 CompiledIC::CompiledIC(NativeCall* ic_call)
   452   : _ic_call(ic_call),
   453     _oops(parse_ic(NULL, ic_call->instruction_address(), _oop_addr, &_is_optimized))
   454 {
   455 }
   458 CompiledIC::CompiledIC(Relocation* ic_reloc)
   459   : _ic_call(nativeCall_at(ic_reloc->addr())),
   460     _oops(parse_ic(ic_reloc->code(), ic_reloc->addr(), _oop_addr, &_is_optimized))
   461 {
   462   assert(ic_reloc->type() == relocInfo::virtual_call_type ||
   463          ic_reloc->type() == relocInfo::opt_virtual_call_type, "wrong reloc. info");
   464 }
   467 // ----------------------------------------------------------------------------
   469 void CompiledStaticCall::set_to_clean() {
   470   assert (CompiledIC_lock->is_locked() || SafepointSynchronize::is_at_safepoint(), "mt unsafe call");
   471   // Reset call site
   472   MutexLockerEx pl(Patching_lock, Mutex::_no_safepoint_check_flag);
   473 #ifdef ASSERT
   474   CodeBlob* cb = CodeCache::find_blob_unsafe(this);
   475   assert(cb != NULL && cb->is_nmethod(), "must be nmethod");
   476 #endif
   477   set_destination_mt_safe(SharedRuntime::get_resolve_static_call_stub());
   479   // Do not reset stub here:  It is too expensive to call find_stub.
   480   // Instead, rely on caller (nmethod::clear_inline_caches) to clear
   481   // both the call and its stub.
   482 }
   485 bool CompiledStaticCall::is_clean() const {
   486   return destination() == SharedRuntime::get_resolve_static_call_stub();
   487 }
   489 bool CompiledStaticCall::is_call_to_compiled() const {
   490   return CodeCache::contains(destination());
   491 }
   494 bool CompiledStaticCall::is_call_to_interpreted() const {
   495   // It is a call to interpreted, if it calls to a stub. Hence, the destination
   496   // must be in the stub part of the nmethod that contains the call
   497   nmethod* nm = CodeCache::find_nmethod(instruction_address());
   498   return nm->stub_contains(destination());
   499 }
   502 void CompiledStaticCall::set_to_interpreted(methodHandle callee, address entry) {
   503   address stub=find_stub();
   504   assert(stub!=NULL, "stub not found");
   506   if (TraceICs) {
   507     ResourceMark rm;
   508     tty->print_cr("CompiledStaticCall@" INTPTR_FORMAT ": set_to_interpreted %s",
   509                   instruction_address(),
   510                   callee->name_and_sig_as_C_string());
   511   }
   513   NativeMovConstReg* method_holder = nativeMovConstReg_at(stub);   // creation also verifies the object
   514   NativeJump*        jump          = nativeJump_at(method_holder->next_instruction_address());
   516   assert(method_holder->data()    == 0           || method_holder->data()    == (intptr_t)callee(), "a) MT-unsafe modification of inline cache");
   517   assert(jump->jump_destination() == (address)-1 || jump->jump_destination() == entry, "b) MT-unsafe modification of inline cache");
   519   // Update stub
   520   method_holder->set_data((intptr_t)callee());
   521   jump->set_jump_destination(entry);
   523   // Update jump to call
   524   set_destination_mt_safe(stub);
   525 }
   528 void CompiledStaticCall::set(const StaticCallInfo& info) {
   529   assert (CompiledIC_lock->is_locked() || SafepointSynchronize::is_at_safepoint(), "mt unsafe call");
   530   MutexLockerEx pl(Patching_lock, Mutex::_no_safepoint_check_flag);
   531   // Updating a cache to the wrong entry can cause bugs that are very hard
   532   // to track down - if cache entry gets invalid - we just clean it. In
   533   // this way it is always the same code path that is responsible for
   534   // updating and resolving an inline cache
   535   assert(is_clean(), "do not update a call entry - use clean");
   537   if (info._to_interpreter) {
   538     // Call to interpreted code
   539     set_to_interpreted(info.callee(), info.entry());
   540   } else {
   541     if (TraceICs) {
   542       ResourceMark rm;
   543       tty->print_cr("CompiledStaticCall@" INTPTR_FORMAT ": set_to_compiled " INTPTR_FORMAT,
   544                     instruction_address(),
   545                     info.entry());
   546     }
   547     // Call to compiled code
   548     assert (CodeCache::contains(info.entry()), "wrong entry point");
   549     set_destination_mt_safe(info.entry());
   550   }
   551 }
   554 // Compute settings for a CompiledStaticCall. Since we might have to set
   555 // the stub when calling to the interpreter, we need to return arguments.
   556 void CompiledStaticCall::compute_entry(methodHandle m, StaticCallInfo& info) {
   557   nmethod* m_code = m->code();
   558   info._callee = m;
   559   if (m_code != NULL) {
   560     info._to_interpreter = false;
   561     info._entry  = m_code->verified_entry_point();
   562   } else {
   563     // Callee is interpreted code.  In any case entering the interpreter
   564     // puts a converter-frame on the stack to save arguments.
   565     info._to_interpreter = true;
   566     info._entry      = m()->get_c2i_entry();
   567   }
   568 }
   571 void CompiledStaticCall::set_stub_to_clean(static_stub_Relocation* static_stub) {
   572   assert (CompiledIC_lock->is_locked() || SafepointSynchronize::is_at_safepoint(), "mt unsafe call");
   573   // Reset stub
   574   address stub = static_stub->addr();
   575   assert(stub!=NULL, "stub not found");
   576   NativeMovConstReg* method_holder = nativeMovConstReg_at(stub);   // creation also verifies the object
   577   NativeJump*        jump          = nativeJump_at(method_holder->next_instruction_address());
   578   method_holder->set_data(0);
   579   jump->set_jump_destination((address)-1);
   580 }
   583 address CompiledStaticCall::find_stub() {
   584   // Find reloc. information containing this call-site
   585   RelocIterator iter((nmethod*)NULL, instruction_address());
   586   while (iter.next()) {
   587     if (iter.addr() == instruction_address()) {
   588       switch(iter.type()) {
   589         case relocInfo::static_call_type:
   590           return iter.static_call_reloc()->static_stub();
   591         // We check here for opt_virtual_call_type, since we reuse the code
   592         // from the CompiledIC implementation
   593         case relocInfo::opt_virtual_call_type:
   594           return iter.opt_virtual_call_reloc()->static_stub();
   595         case relocInfo::poll_type:
   596         case relocInfo::poll_return_type: // A safepoint can't overlap a call.
   597         default:
   598           ShouldNotReachHere();
   599       }
   600     }
   601   }
   602   return NULL;
   603 }
   606 //-----------------------------------------------------------------------------
   607 // Non-product mode code
   608 #ifndef PRODUCT
   610 void CompiledIC::verify() {
   611   // make sure code pattern is actually a call imm32 instruction
   612   _ic_call->verify();
   613   if (os::is_MP()) {
   614     _ic_call->verify_alignment();
   615   }
   616   assert(is_clean() || is_call_to_compiled() || is_call_to_interpreted()
   617           || is_optimized() || is_megamorphic(), "sanity check");
   618 }
   621 void CompiledIC::print() {
   622   print_compiled_ic();
   623   tty->cr();
   624 }
   627 void CompiledIC::print_compiled_ic() {
   628   tty->print("Inline cache at " INTPTR_FORMAT ", calling %s " INTPTR_FORMAT,
   629              instruction_address(), is_call_to_interpreted() ? "interpreted " : "", ic_destination());
   630 }
   633 void CompiledStaticCall::print() {
   634   tty->print("static call at " INTPTR_FORMAT " -> ", instruction_address());
   635   if (is_clean()) {
   636     tty->print("clean");
   637   } else if (is_call_to_compiled()) {
   638     tty->print("compiled");
   639   } else if (is_call_to_interpreted()) {
   640     tty->print("interpreted");
   641   }
   642   tty->cr();
   643 }
   645 void CompiledStaticCall::verify() {
   646   // Verify call
   647   NativeCall::verify();
   648   if (os::is_MP()) {
   649     verify_alignment();
   650   }
   652   // Verify stub
   653   address stub = find_stub();
   654   assert(stub != NULL, "no stub found for static call");
   655   NativeMovConstReg* method_holder = nativeMovConstReg_at(stub);   // creation also verifies the object
   656   NativeJump*        jump          = nativeJump_at(method_holder->next_instruction_address());
   658   // Verify state
   659   assert(is_clean() || is_call_to_compiled() || is_call_to_interpreted(), "sanity check");
   660 }
   662 #endif

mercurial