src/cpu/x86/vm/vm_version_x86.cpp

Wed, 02 Jun 2010 22:45:42 -0700

author
jrose
date
Wed, 02 Jun 2010 22:45:42 -0700
changeset 1934
e9ff18c4ace7
parent 1907
c18cbe5936b8
child 1977
76efbe666d6c
permissions
-rw-r--r--

Merge

     1 /*
     2  * Copyright (c) 1997, 2009, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 # include "incls/_precompiled.incl"
    26 # include "incls/_vm_version_x86.cpp.incl"
    29 int VM_Version::_cpu;
    30 int VM_Version::_model;
    31 int VM_Version::_stepping;
    32 int VM_Version::_cpuFeatures;
    33 const char*           VM_Version::_features_str = "";
    34 VM_Version::CpuidInfo VM_Version::_cpuid_info   = { 0, };
    36 static BufferBlob* stub_blob;
    37 static const int stub_size = 300;
    39 extern "C" {
    40   typedef void (*getPsrInfo_stub_t)(void*);
    41 }
    42 static getPsrInfo_stub_t getPsrInfo_stub = NULL;
    45 class VM_Version_StubGenerator: public StubCodeGenerator {
    46  public:
    48   VM_Version_StubGenerator(CodeBuffer *c) : StubCodeGenerator(c) {}
    50   address generate_getPsrInfo() {
    51     // Flags to test CPU type.
    52     const uint32_t EFL_AC           = 0x40000;
    53     const uint32_t EFL_ID           = 0x200000;
    54     // Values for when we don't have a CPUID instruction.
    55     const int      CPU_FAMILY_SHIFT = 8;
    56     const uint32_t CPU_FAMILY_386   = (3 << CPU_FAMILY_SHIFT);
    57     const uint32_t CPU_FAMILY_486   = (4 << CPU_FAMILY_SHIFT);
    59     Label detect_486, cpu486, detect_586, std_cpuid1;
    60     Label ext_cpuid1, ext_cpuid5, done;
    62     StubCodeMark mark(this, "VM_Version", "getPsrInfo_stub");
    63 #   define __ _masm->
    65     address start = __ pc();
    67     //
    68     // void getPsrInfo(VM_Version::CpuidInfo* cpuid_info);
    69     //
    70     // LP64: rcx and rdx are first and second argument registers on windows
    72     __ push(rbp);
    73 #ifdef _LP64
    74     __ mov(rbp, c_rarg0); // cpuid_info address
    75 #else
    76     __ movptr(rbp, Address(rsp, 8)); // cpuid_info address
    77 #endif
    78     __ push(rbx);
    79     __ push(rsi);
    80     __ pushf();          // preserve rbx, and flags
    81     __ pop(rax);
    82     __ push(rax);
    83     __ mov(rcx, rax);
    84     //
    85     // if we are unable to change the AC flag, we have a 386
    86     //
    87     __ xorl(rax, EFL_AC);
    88     __ push(rax);
    89     __ popf();
    90     __ pushf();
    91     __ pop(rax);
    92     __ cmpptr(rax, rcx);
    93     __ jccb(Assembler::notEqual, detect_486);
    95     __ movl(rax, CPU_FAMILY_386);
    96     __ movl(Address(rbp, in_bytes(VM_Version::std_cpuid1_offset())), rax);
    97     __ jmp(done);
    99     //
   100     // If we are unable to change the ID flag, we have a 486 which does
   101     // not support the "cpuid" instruction.
   102     //
   103     __ bind(detect_486);
   104     __ mov(rax, rcx);
   105     __ xorl(rax, EFL_ID);
   106     __ push(rax);
   107     __ popf();
   108     __ pushf();
   109     __ pop(rax);
   110     __ cmpptr(rcx, rax);
   111     __ jccb(Assembler::notEqual, detect_586);
   113     __ bind(cpu486);
   114     __ movl(rax, CPU_FAMILY_486);
   115     __ movl(Address(rbp, in_bytes(VM_Version::std_cpuid1_offset())), rax);
   116     __ jmp(done);
   118     //
   119     // At this point, we have a chip which supports the "cpuid" instruction
   120     //
   121     __ bind(detect_586);
   122     __ xorl(rax, rax);
   123     __ cpuid();
   124     __ orl(rax, rax);
   125     __ jcc(Assembler::equal, cpu486);   // if cpuid doesn't support an input
   126                                         // value of at least 1, we give up and
   127                                         // assume a 486
   128     __ lea(rsi, Address(rbp, in_bytes(VM_Version::std_cpuid0_offset())));
   129     __ movl(Address(rsi, 0), rax);
   130     __ movl(Address(rsi, 4), rbx);
   131     __ movl(Address(rsi, 8), rcx);
   132     __ movl(Address(rsi,12), rdx);
   134     __ cmpl(rax, 3);     // Is cpuid(0x4) supported?
   135     __ jccb(Assembler::belowEqual, std_cpuid1);
   137     //
   138     // cpuid(0x4) Deterministic cache params
   139     //
   140     __ movl(rax, 4);
   141     __ xorl(rcx, rcx);   // L1 cache
   142     __ cpuid();
   143     __ push(rax);
   144     __ andl(rax, 0x1f);  // Determine if valid cache parameters used
   145     __ orl(rax, rax);    // eax[4:0] == 0 indicates invalid cache
   146     __ pop(rax);
   147     __ jccb(Assembler::equal, std_cpuid1);
   149     __ lea(rsi, Address(rbp, in_bytes(VM_Version::dcp_cpuid4_offset())));
   150     __ movl(Address(rsi, 0), rax);
   151     __ movl(Address(rsi, 4), rbx);
   152     __ movl(Address(rsi, 8), rcx);
   153     __ movl(Address(rsi,12), rdx);
   155     //
   156     // Standard cpuid(0x1)
   157     //
   158     __ bind(std_cpuid1);
   159     __ movl(rax, 1);
   160     __ cpuid();
   161     __ lea(rsi, Address(rbp, in_bytes(VM_Version::std_cpuid1_offset())));
   162     __ movl(Address(rsi, 0), rax);
   163     __ movl(Address(rsi, 4), rbx);
   164     __ movl(Address(rsi, 8), rcx);
   165     __ movl(Address(rsi,12), rdx);
   167     __ movl(rax, 0x80000000);
   168     __ cpuid();
   169     __ cmpl(rax, 0x80000000);     // Is cpuid(0x80000001) supported?
   170     __ jcc(Assembler::belowEqual, done);
   171     __ cmpl(rax, 0x80000004);     // Is cpuid(0x80000005) supported?
   172     __ jccb(Assembler::belowEqual, ext_cpuid1);
   173     __ cmpl(rax, 0x80000007);     // Is cpuid(0x80000008) supported?
   174     __ jccb(Assembler::belowEqual, ext_cpuid5);
   175     //
   176     // Extended cpuid(0x80000008)
   177     //
   178     __ movl(rax, 0x80000008);
   179     __ cpuid();
   180     __ lea(rsi, Address(rbp, in_bytes(VM_Version::ext_cpuid8_offset())));
   181     __ movl(Address(rsi, 0), rax);
   182     __ movl(Address(rsi, 4), rbx);
   183     __ movl(Address(rsi, 8), rcx);
   184     __ movl(Address(rsi,12), rdx);
   186     //
   187     // Extended cpuid(0x80000005)
   188     //
   189     __ bind(ext_cpuid5);
   190     __ movl(rax, 0x80000005);
   191     __ cpuid();
   192     __ lea(rsi, Address(rbp, in_bytes(VM_Version::ext_cpuid5_offset())));
   193     __ movl(Address(rsi, 0), rax);
   194     __ movl(Address(rsi, 4), rbx);
   195     __ movl(Address(rsi, 8), rcx);
   196     __ movl(Address(rsi,12), rdx);
   198     //
   199     // Extended cpuid(0x80000001)
   200     //
   201     __ bind(ext_cpuid1);
   202     __ movl(rax, 0x80000001);
   203     __ cpuid();
   204     __ lea(rsi, Address(rbp, in_bytes(VM_Version::ext_cpuid1_offset())));
   205     __ movl(Address(rsi, 0), rax);
   206     __ movl(Address(rsi, 4), rbx);
   207     __ movl(Address(rsi, 8), rcx);
   208     __ movl(Address(rsi,12), rdx);
   210     //
   211     // return
   212     //
   213     __ bind(done);
   214     __ popf();
   215     __ pop(rsi);
   216     __ pop(rbx);
   217     __ pop(rbp);
   218     __ ret(0);
   220 #   undef __
   222     return start;
   223   };
   224 };
   227 void VM_Version::get_processor_features() {
   229   _cpu = 4; // 486 by default
   230   _model = 0;
   231   _stepping = 0;
   232   _cpuFeatures = 0;
   233   _logical_processors_per_package = 1;
   235   if (!Use486InstrsOnly) {
   236     // Get raw processor info
   237     getPsrInfo_stub(&_cpuid_info);
   238     assert_is_initialized();
   239     _cpu = extended_cpu_family();
   240     _model = extended_cpu_model();
   241     _stepping = cpu_stepping();
   243     if (cpu_family() > 4) { // it supports CPUID
   244       _cpuFeatures = feature_flags();
   245       // Logical processors are only available on P4s and above,
   246       // and only if hyperthreading is available.
   247       _logical_processors_per_package = logical_processor_count();
   248     }
   249   }
   251   _supports_cx8 = supports_cmpxchg8();
   253 #ifdef _LP64
   254   // OS should support SSE for x64 and hardware should support at least SSE2.
   255   if (!VM_Version::supports_sse2()) {
   256     vm_exit_during_initialization("Unknown x64 processor: SSE2 not supported");
   257   }
   258   // in 64 bit the use of SSE2 is the minimum
   259   if (UseSSE < 2) UseSSE = 2;
   260 #endif
   262   // If the OS doesn't support SSE, we can't use this feature even if the HW does
   263   if (!os::supports_sse())
   264     _cpuFeatures &= ~(CPU_SSE|CPU_SSE2|CPU_SSE3|CPU_SSSE3|CPU_SSE4A|CPU_SSE4_1|CPU_SSE4_2);
   266   if (UseSSE < 4) {
   267     _cpuFeatures &= ~CPU_SSE4_1;
   268     _cpuFeatures &= ~CPU_SSE4_2;
   269   }
   271   if (UseSSE < 3) {
   272     _cpuFeatures &= ~CPU_SSE3;
   273     _cpuFeatures &= ~CPU_SSSE3;
   274     _cpuFeatures &= ~CPU_SSE4A;
   275   }
   277   if (UseSSE < 2)
   278     _cpuFeatures &= ~CPU_SSE2;
   280   if (UseSSE < 1)
   281     _cpuFeatures &= ~CPU_SSE;
   283   if (logical_processors_per_package() == 1) {
   284     // HT processor could be installed on a system which doesn't support HT.
   285     _cpuFeatures &= ~CPU_HT;
   286   }
   288   char buf[256];
   289   jio_snprintf(buf, sizeof(buf), "(%u cores per cpu, %u threads per core) family %d model %d stepping %d%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s",
   290                cores_per_cpu(), threads_per_core(),
   291                cpu_family(), _model, _stepping,
   292                (supports_cmov() ? ", cmov" : ""),
   293                (supports_cmpxchg8() ? ", cx8" : ""),
   294                (supports_fxsr() ? ", fxsr" : ""),
   295                (supports_mmx()  ? ", mmx"  : ""),
   296                (supports_sse()  ? ", sse"  : ""),
   297                (supports_sse2() ? ", sse2" : ""),
   298                (supports_sse3() ? ", sse3" : ""),
   299                (supports_ssse3()? ", ssse3": ""),
   300                (supports_sse4_1() ? ", sse4.1" : ""),
   301                (supports_sse4_2() ? ", sse4.2" : ""),
   302                (supports_popcnt() ? ", popcnt" : ""),
   303                (supports_mmx_ext() ? ", mmxext" : ""),
   304                (supports_3dnow()   ? ", 3dnow"  : ""),
   305                (supports_3dnow2()  ? ", 3dnowext" : ""),
   306                (supports_lzcnt()   ? ", lzcnt": ""),
   307                (supports_sse4a()   ? ", sse4a": ""),
   308                (supports_ht() ? ", ht": ""));
   309   _features_str = strdup(buf);
   311   // UseSSE is set to the smaller of what hardware supports and what
   312   // the command line requires.  I.e., you cannot set UseSSE to 2 on
   313   // older Pentiums which do not support it.
   314   if( UseSSE > 4 ) UseSSE=4;
   315   if( UseSSE < 0 ) UseSSE=0;
   316   if( !supports_sse4_1() ) // Drop to 3 if no SSE4 support
   317     UseSSE = MIN2((intx)3,UseSSE);
   318   if( !supports_sse3() ) // Drop to 2 if no SSE3 support
   319     UseSSE = MIN2((intx)2,UseSSE);
   320   if( !supports_sse2() ) // Drop to 1 if no SSE2 support
   321     UseSSE = MIN2((intx)1,UseSSE);
   322   if( !supports_sse () ) // Drop to 0 if no SSE  support
   323     UseSSE = 0;
   325   // On new cpus instructions which update whole XMM register should be used
   326   // to prevent partial register stall due to dependencies on high half.
   327   //
   328   // UseXmmLoadAndClearUpper == true  --> movsd(xmm, mem)
   329   // UseXmmLoadAndClearUpper == false --> movlpd(xmm, mem)
   330   // UseXmmRegToRegMoveAll == true  --> movaps(xmm, xmm), movapd(xmm, xmm).
   331   // UseXmmRegToRegMoveAll == false --> movss(xmm, xmm),  movsd(xmm, xmm).
   333   if( is_amd() ) { // AMD cpus specific settings
   334     if( supports_sse2() && FLAG_IS_DEFAULT(UseAddressNop) ) {
   335       // Use it on new AMD cpus starting from Opteron.
   336       UseAddressNop = true;
   337     }
   338     if( supports_sse2() && FLAG_IS_DEFAULT(UseNewLongLShift) ) {
   339       // Use it on new AMD cpus starting from Opteron.
   340       UseNewLongLShift = true;
   341     }
   342     if( FLAG_IS_DEFAULT(UseXmmLoadAndClearUpper) ) {
   343       if( supports_sse4a() ) {
   344         UseXmmLoadAndClearUpper = true; // use movsd only on '10h' Opteron
   345       } else {
   346         UseXmmLoadAndClearUpper = false;
   347       }
   348     }
   349     if( FLAG_IS_DEFAULT(UseXmmRegToRegMoveAll) ) {
   350       if( supports_sse4a() ) {
   351         UseXmmRegToRegMoveAll = true; // use movaps, movapd only on '10h'
   352       } else {
   353         UseXmmRegToRegMoveAll = false;
   354       }
   355     }
   356     if( FLAG_IS_DEFAULT(UseXmmI2F) ) {
   357       if( supports_sse4a() ) {
   358         UseXmmI2F = true;
   359       } else {
   360         UseXmmI2F = false;
   361       }
   362     }
   363     if( FLAG_IS_DEFAULT(UseXmmI2D) ) {
   364       if( supports_sse4a() ) {
   365         UseXmmI2D = true;
   366       } else {
   367         UseXmmI2D = false;
   368       }
   369     }
   371     // Use count leading zeros count instruction if available.
   372     if (supports_lzcnt()) {
   373       if (FLAG_IS_DEFAULT(UseCountLeadingZerosInstruction)) {
   374         UseCountLeadingZerosInstruction = true;
   375       }
   376     }
   377   }
   379   if( is_intel() ) { // Intel cpus specific settings
   380     if( FLAG_IS_DEFAULT(UseStoreImmI16) ) {
   381       UseStoreImmI16 = false; // don't use it on Intel cpus
   382     }
   383     if( cpu_family() == 6 || cpu_family() == 15 ) {
   384       if( FLAG_IS_DEFAULT(UseAddressNop) ) {
   385         // Use it on all Intel cpus starting from PentiumPro
   386         UseAddressNop = true;
   387       }
   388     }
   389     if( FLAG_IS_DEFAULT(UseXmmLoadAndClearUpper) ) {
   390       UseXmmLoadAndClearUpper = true; // use movsd on all Intel cpus
   391     }
   392     if( FLAG_IS_DEFAULT(UseXmmRegToRegMoveAll) ) {
   393       if( supports_sse3() ) {
   394         UseXmmRegToRegMoveAll = true; // use movaps, movapd on new Intel cpus
   395       } else {
   396         UseXmmRegToRegMoveAll = false;
   397       }
   398     }
   399     if( cpu_family() == 6 && supports_sse3() ) { // New Intel cpus
   400 #ifdef COMPILER2
   401       if( FLAG_IS_DEFAULT(MaxLoopPad) ) {
   402         // For new Intel cpus do the next optimization:
   403         // don't align the beginning of a loop if there are enough instructions
   404         // left (NumberOfLoopInstrToAlign defined in c2_globals.hpp)
   405         // in current fetch line (OptoLoopAlignment) or the padding
   406         // is big (> MaxLoopPad).
   407         // Set MaxLoopPad to 11 for new Intel cpus to reduce number of
   408         // generated NOP instructions. 11 is the largest size of one
   409         // address NOP instruction '0F 1F' (see Assembler::nop(i)).
   410         MaxLoopPad = 11;
   411       }
   412 #endif // COMPILER2
   413       if( FLAG_IS_DEFAULT(UseXMMForArrayCopy) ) {
   414         UseXMMForArrayCopy = true; // use SSE2 movq on new Intel cpus
   415       }
   416       if( supports_sse4_2() && supports_ht() ) { // Newest Intel cpus
   417         if( FLAG_IS_DEFAULT(UseUnalignedLoadStores) && UseXMMForArrayCopy ) {
   418           UseUnalignedLoadStores = true; // use movdqu on newest Intel cpus
   419         }
   420       }
   421       if( supports_sse4_2() && UseSSE >= 4 ) {
   422         if( FLAG_IS_DEFAULT(UseSSE42Intrinsics)) {
   423           UseSSE42Intrinsics = true;
   424         }
   425       }
   426     }
   427   }
   429   // Use population count instruction if available.
   430   if (supports_popcnt()) {
   431     if (FLAG_IS_DEFAULT(UsePopCountInstruction)) {
   432       UsePopCountInstruction = true;
   433     }
   434   }
   436   assert(0 <= ReadPrefetchInstr && ReadPrefetchInstr <= 3, "invalid value");
   437   assert(0 <= AllocatePrefetchInstr && AllocatePrefetchInstr <= 3, "invalid value");
   439   // set valid Prefetch instruction
   440   if( ReadPrefetchInstr < 0 ) ReadPrefetchInstr = 0;
   441   if( ReadPrefetchInstr > 3 ) ReadPrefetchInstr = 3;
   442   if( ReadPrefetchInstr == 3 && !supports_3dnow() ) ReadPrefetchInstr = 0;
   443   if( !supports_sse() && supports_3dnow() ) ReadPrefetchInstr = 3;
   445   if( AllocatePrefetchInstr < 0 ) AllocatePrefetchInstr = 0;
   446   if( AllocatePrefetchInstr > 3 ) AllocatePrefetchInstr = 3;
   447   if( AllocatePrefetchInstr == 3 && !supports_3dnow() ) AllocatePrefetchInstr=0;
   448   if( !supports_sse() && supports_3dnow() ) AllocatePrefetchInstr = 3;
   450   // Allocation prefetch settings
   451   intx cache_line_size = L1_data_cache_line_size();
   452   if( cache_line_size > AllocatePrefetchStepSize )
   453     AllocatePrefetchStepSize = cache_line_size;
   454   if( FLAG_IS_DEFAULT(AllocatePrefetchLines) )
   455     AllocatePrefetchLines = 3; // Optimistic value
   456   assert(AllocatePrefetchLines > 0, "invalid value");
   457   if( AllocatePrefetchLines < 1 ) // set valid value in product VM
   458     AllocatePrefetchLines = 1; // Conservative value
   460   AllocatePrefetchDistance = allocate_prefetch_distance();
   461   AllocatePrefetchStyle    = allocate_prefetch_style();
   463   if( AllocatePrefetchStyle == 2 && is_intel() &&
   464       cpu_family() == 6 && supports_sse3() ) { // watermark prefetching on Core
   465 #ifdef _LP64
   466     AllocatePrefetchDistance = 384;
   467 #else
   468     AllocatePrefetchDistance = 320;
   469 #endif
   470   }
   471   assert(AllocatePrefetchDistance % AllocatePrefetchStepSize == 0, "invalid value");
   473 #ifdef _LP64
   474   // Prefetch settings
   475   PrefetchCopyIntervalInBytes = prefetch_copy_interval_in_bytes();
   476   PrefetchScanIntervalInBytes = prefetch_scan_interval_in_bytes();
   477   PrefetchFieldsAhead         = prefetch_fields_ahead();
   478 #endif
   480 #ifndef PRODUCT
   481   if (PrintMiscellaneous && Verbose) {
   482     tty->print_cr("Logical CPUs per core: %u",
   483                   logical_processors_per_package());
   484     tty->print_cr("UseSSE=%d",UseSSE);
   485     tty->print("Allocation: ");
   486     if (AllocatePrefetchStyle <= 0 || UseSSE == 0 && !supports_3dnow()) {
   487       tty->print_cr("no prefetching");
   488     } else {
   489       if (UseSSE == 0 && supports_3dnow()) {
   490         tty->print("PREFETCHW");
   491       } else if (UseSSE >= 1) {
   492         if (AllocatePrefetchInstr == 0) {
   493           tty->print("PREFETCHNTA");
   494         } else if (AllocatePrefetchInstr == 1) {
   495           tty->print("PREFETCHT0");
   496         } else if (AllocatePrefetchInstr == 2) {
   497           tty->print("PREFETCHT2");
   498         } else if (AllocatePrefetchInstr == 3) {
   499           tty->print("PREFETCHW");
   500         }
   501       }
   502       if (AllocatePrefetchLines > 1) {
   503         tty->print_cr(" %d, %d lines with step %d bytes", AllocatePrefetchDistance, AllocatePrefetchLines, AllocatePrefetchStepSize);
   504       } else {
   505         tty->print_cr(" %d, one line", AllocatePrefetchDistance);
   506       }
   507     }
   509     if (PrefetchCopyIntervalInBytes > 0) {
   510       tty->print_cr("PrefetchCopyIntervalInBytes %d", PrefetchCopyIntervalInBytes);
   511     }
   512     if (PrefetchScanIntervalInBytes > 0) {
   513       tty->print_cr("PrefetchScanIntervalInBytes %d", PrefetchScanIntervalInBytes);
   514     }
   515     if (PrefetchFieldsAhead > 0) {
   516       tty->print_cr("PrefetchFieldsAhead %d", PrefetchFieldsAhead);
   517     }
   518   }
   519 #endif // !PRODUCT
   520 }
   522 void VM_Version::initialize() {
   523   ResourceMark rm;
   524   // Making this stub must be FIRST use of assembler
   526   stub_blob = BufferBlob::create("getPsrInfo_stub", stub_size);
   527   if (stub_blob == NULL) {
   528     vm_exit_during_initialization("Unable to allocate getPsrInfo_stub");
   529   }
   530   CodeBuffer c(stub_blob->instructions_begin(),
   531                stub_blob->instructions_size());
   532   VM_Version_StubGenerator g(&c);
   533   getPsrInfo_stub = CAST_TO_FN_PTR(getPsrInfo_stub_t,
   534                                    g.generate_getPsrInfo());
   536   get_processor_features();
   537 }

mercurial