src/cpu/x86/vm/templateTable_x86_64.cpp

Wed, 02 Jun 2010 22:45:42 -0700

author
jrose
date
Wed, 02 Jun 2010 22:45:42 -0700
changeset 1934
e9ff18c4ace7
parent 1907
c18cbe5936b8
parent 1920
ab102d5d923e
child 1957
136b78722a08
permissions
-rw-r--r--

Merge

     1 /*
     2  * Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "incls/_precompiled.incl"
    26 #include "incls/_templateTable_x86_64.cpp.incl"
    28 #ifndef CC_INTERP
    30 #define __ _masm->
    32 // Platform-dependent initialization
    34 void TemplateTable::pd_initialize() {
    35   // No amd64 specific initialization
    36 }
    38 // Address computation: local variables
    40 static inline Address iaddress(int n) {
    41   return Address(r14, Interpreter::local_offset_in_bytes(n));
    42 }
    44 static inline Address laddress(int n) {
    45   return iaddress(n + 1);
    46 }
    48 static inline Address faddress(int n) {
    49   return iaddress(n);
    50 }
    52 static inline Address daddress(int n) {
    53   return laddress(n);
    54 }
    56 static inline Address aaddress(int n) {
    57   return iaddress(n);
    58 }
    60 static inline Address iaddress(Register r) {
    61   return Address(r14, r, Address::times_8);
    62 }
    64 static inline Address laddress(Register r) {
    65   return Address(r14, r, Address::times_8, Interpreter::local_offset_in_bytes(1));
    66 }
    68 static inline Address faddress(Register r) {
    69   return iaddress(r);
    70 }
    72 static inline Address daddress(Register r) {
    73   return laddress(r);
    74 }
    76 static inline Address aaddress(Register r) {
    77   return iaddress(r);
    78 }
    80 static inline Address at_rsp() {
    81   return Address(rsp, 0);
    82 }
    84 // At top of Java expression stack which may be different than esp().  It
    85 // isn't for category 1 objects.
    86 static inline Address at_tos   () {
    87   return Address(rsp,  Interpreter::expr_offset_in_bytes(0));
    88 }
    90 static inline Address at_tos_p1() {
    91   return Address(rsp,  Interpreter::expr_offset_in_bytes(1));
    92 }
    94 static inline Address at_tos_p2() {
    95   return Address(rsp,  Interpreter::expr_offset_in_bytes(2));
    96 }
    98 static inline Address at_tos_p3() {
    99   return Address(rsp,  Interpreter::expr_offset_in_bytes(3));
   100 }
   102 // Condition conversion
   103 static Assembler::Condition j_not(TemplateTable::Condition cc) {
   104   switch (cc) {
   105   case TemplateTable::equal        : return Assembler::notEqual;
   106   case TemplateTable::not_equal    : return Assembler::equal;
   107   case TemplateTable::less         : return Assembler::greaterEqual;
   108   case TemplateTable::less_equal   : return Assembler::greater;
   109   case TemplateTable::greater      : return Assembler::lessEqual;
   110   case TemplateTable::greater_equal: return Assembler::less;
   111   }
   112   ShouldNotReachHere();
   113   return Assembler::zero;
   114 }
   117 // Miscelaneous helper routines
   118 // Store an oop (or NULL) at the address described by obj.
   119 // If val == noreg this means store a NULL
   121 static void do_oop_store(InterpreterMacroAssembler* _masm,
   122                          Address obj,
   123                          Register val,
   124                          BarrierSet::Name barrier,
   125                          bool precise) {
   126   assert(val == noreg || val == rax, "parameter is just for looks");
   127   switch (barrier) {
   128 #ifndef SERIALGC
   129     case BarrierSet::G1SATBCT:
   130     case BarrierSet::G1SATBCTLogging:
   131       {
   132         // flatten object address if needed
   133         if (obj.index() == noreg && obj.disp() == 0) {
   134           if (obj.base() != rdx) {
   135             __ movq(rdx, obj.base());
   136           }
   137         } else {
   138           __ leaq(rdx, obj);
   139         }
   140         __ g1_write_barrier_pre(rdx, r8, rbx, val != noreg);
   141         if (val == noreg) {
   142           __ store_heap_oop_null(Address(rdx, 0));
   143         } else {
   144           __ store_heap_oop(Address(rdx, 0), val);
   145           __ g1_write_barrier_post(rdx, val, r8, rbx);
   146         }
   148       }
   149       break;
   150 #endif // SERIALGC
   151     case BarrierSet::CardTableModRef:
   152     case BarrierSet::CardTableExtension:
   153       {
   154         if (val == noreg) {
   155           __ store_heap_oop_null(obj);
   156         } else {
   157           __ store_heap_oop(obj, val);
   158           // flatten object address if needed
   159           if (!precise || (obj.index() == noreg && obj.disp() == 0)) {
   160             __ store_check(obj.base());
   161           } else {
   162             __ leaq(rdx, obj);
   163             __ store_check(rdx);
   164           }
   165         }
   166       }
   167       break;
   168     case BarrierSet::ModRef:
   169     case BarrierSet::Other:
   170       if (val == noreg) {
   171         __ store_heap_oop_null(obj);
   172       } else {
   173         __ store_heap_oop(obj, val);
   174       }
   175       break;
   176     default      :
   177       ShouldNotReachHere();
   179   }
   180 }
   182 Address TemplateTable::at_bcp(int offset) {
   183   assert(_desc->uses_bcp(), "inconsistent uses_bcp information");
   184   return Address(r13, offset);
   185 }
   187 void TemplateTable::patch_bytecode(Bytecodes::Code bytecode, Register bc,
   188                                    Register scratch,
   189                                    bool load_bc_into_scratch/*=true*/) {
   190   if (!RewriteBytecodes) {
   191     return;
   192   }
   193   // the pair bytecodes have already done the load.
   194   if (load_bc_into_scratch) {
   195     __ movl(bc, bytecode);
   196   }
   197   Label patch_done;
   198   if (JvmtiExport::can_post_breakpoint()) {
   199     Label fast_patch;
   200     // if a breakpoint is present we can't rewrite the stream directly
   201     __ movzbl(scratch, at_bcp(0));
   202     __ cmpl(scratch, Bytecodes::_breakpoint);
   203     __ jcc(Assembler::notEqual, fast_patch);
   204     __ get_method(scratch);
   205     // Let breakpoint table handling rewrite to quicker bytecode
   206     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::set_original_bytecode_at), scratch, r13, bc);
   207 #ifndef ASSERT
   208     __ jmpb(patch_done);
   209 #else
   210     __ jmp(patch_done);
   211 #endif
   212     __ bind(fast_patch);
   213   }
   214 #ifdef ASSERT
   215   Label okay;
   216   __ load_unsigned_byte(scratch, at_bcp(0));
   217   __ cmpl(scratch, (int) Bytecodes::java_code(bytecode));
   218   __ jcc(Assembler::equal, okay);
   219   __ cmpl(scratch, bc);
   220   __ jcc(Assembler::equal, okay);
   221   __ stop("patching the wrong bytecode");
   222   __ bind(okay);
   223 #endif
   224   // patch bytecode
   225   __ movb(at_bcp(0), bc);
   226   __ bind(patch_done);
   227 }
   230 // Individual instructions
   232 void TemplateTable::nop() {
   233   transition(vtos, vtos);
   234   // nothing to do
   235 }
   237 void TemplateTable::shouldnotreachhere() {
   238   transition(vtos, vtos);
   239   __ stop("shouldnotreachhere bytecode");
   240 }
   242 void TemplateTable::aconst_null() {
   243   transition(vtos, atos);
   244   __ xorl(rax, rax);
   245 }
   247 void TemplateTable::iconst(int value) {
   248   transition(vtos, itos);
   249   if (value == 0) {
   250     __ xorl(rax, rax);
   251   } else {
   252     __ movl(rax, value);
   253   }
   254 }
   256 void TemplateTable::lconst(int value) {
   257   transition(vtos, ltos);
   258   if (value == 0) {
   259     __ xorl(rax, rax);
   260   } else {
   261     __ movl(rax, value);
   262   }
   263 }
   265 void TemplateTable::fconst(int value) {
   266   transition(vtos, ftos);
   267   static float one = 1.0f, two = 2.0f;
   268   switch (value) {
   269   case 0:
   270     __ xorps(xmm0, xmm0);
   271     break;
   272   case 1:
   273     __ movflt(xmm0, ExternalAddress((address) &one));
   274     break;
   275   case 2:
   276     __ movflt(xmm0, ExternalAddress((address) &two));
   277     break;
   278   default:
   279     ShouldNotReachHere();
   280     break;
   281   }
   282 }
   284 void TemplateTable::dconst(int value) {
   285   transition(vtos, dtos);
   286   static double one = 1.0;
   287   switch (value) {
   288   case 0:
   289     __ xorpd(xmm0, xmm0);
   290     break;
   291   case 1:
   292     __ movdbl(xmm0, ExternalAddress((address) &one));
   293     break;
   294   default:
   295     ShouldNotReachHere();
   296     break;
   297   }
   298 }
   300 void TemplateTable::bipush() {
   301   transition(vtos, itos);
   302   __ load_signed_byte(rax, at_bcp(1));
   303 }
   305 void TemplateTable::sipush() {
   306   transition(vtos, itos);
   307   __ load_unsigned_short(rax, at_bcp(1));
   308   __ bswapl(rax);
   309   __ sarl(rax, 16);
   310 }
   312 void TemplateTable::ldc(bool wide) {
   313   transition(vtos, vtos);
   314   Label call_ldc, notFloat, notClass, Done;
   316   if (wide) {
   317     __ get_unsigned_2_byte_index_at_bcp(rbx, 1);
   318   } else {
   319     __ load_unsigned_byte(rbx, at_bcp(1));
   320   }
   322   __ get_cpool_and_tags(rcx, rax);
   323   const int base_offset = constantPoolOopDesc::header_size() * wordSize;
   324   const int tags_offset = typeArrayOopDesc::header_size(T_BYTE) * wordSize;
   326   // get type
   327   __ movzbl(rdx, Address(rax, rbx, Address::times_1, tags_offset));
   329   // unresolved string - get the resolved string
   330   __ cmpl(rdx, JVM_CONSTANT_UnresolvedString);
   331   __ jccb(Assembler::equal, call_ldc);
   333   // unresolved class - get the resolved class
   334   __ cmpl(rdx, JVM_CONSTANT_UnresolvedClass);
   335   __ jccb(Assembler::equal, call_ldc);
   337   // unresolved class in error state - call into runtime to throw the error
   338   // from the first resolution attempt
   339   __ cmpl(rdx, JVM_CONSTANT_UnresolvedClassInError);
   340   __ jccb(Assembler::equal, call_ldc);
   342   // resolved class - need to call vm to get java mirror of the class
   343   __ cmpl(rdx, JVM_CONSTANT_Class);
   344   __ jcc(Assembler::notEqual, notClass);
   346   __ bind(call_ldc);
   347   __ movl(c_rarg1, wide);
   348   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::ldc), c_rarg1);
   349   __ push_ptr(rax);
   350   __ verify_oop(rax);
   351   __ jmp(Done);
   353   __ bind(notClass);
   354   __ cmpl(rdx, JVM_CONSTANT_Float);
   355   __ jccb(Assembler::notEqual, notFloat);
   356   // ftos
   357   __ movflt(xmm0, Address(rcx, rbx, Address::times_8, base_offset));
   358   __ push_f();
   359   __ jmp(Done);
   361   __ bind(notFloat);
   362 #ifdef ASSERT
   363   {
   364     Label L;
   365     __ cmpl(rdx, JVM_CONSTANT_Integer);
   366     __ jcc(Assembler::equal, L);
   367     __ cmpl(rdx, JVM_CONSTANT_String);
   368     __ jcc(Assembler::equal, L);
   369     __ stop("unexpected tag type in ldc");
   370     __ bind(L);
   371   }
   372 #endif
   373   // atos and itos
   374   Label isOop;
   375   __ cmpl(rdx, JVM_CONSTANT_Integer);
   376   __ jcc(Assembler::notEqual, isOop);
   377   __ movl(rax, Address(rcx, rbx, Address::times_8, base_offset));
   378   __ push_i(rax);
   379   __ jmp(Done);
   381   __ bind(isOop);
   382   __ movptr(rax, Address(rcx, rbx, Address::times_8, base_offset));
   383   __ push_ptr(rax);
   385   if (VerifyOops) {
   386     __ verify_oop(rax);
   387   }
   389   __ bind(Done);
   390 }
   392 void TemplateTable::ldc2_w() {
   393   transition(vtos, vtos);
   394   Label Long, Done;
   395   __ get_unsigned_2_byte_index_at_bcp(rbx, 1);
   397   __ get_cpool_and_tags(rcx, rax);
   398   const int base_offset = constantPoolOopDesc::header_size() * wordSize;
   399   const int tags_offset = typeArrayOopDesc::header_size(T_BYTE) * wordSize;
   401   // get type
   402   __ cmpb(Address(rax, rbx, Address::times_1, tags_offset),
   403           JVM_CONSTANT_Double);
   404   __ jccb(Assembler::notEqual, Long);
   405   // dtos
   406   __ movdbl(xmm0, Address(rcx, rbx, Address::times_8, base_offset));
   407   __ push_d();
   408   __ jmpb(Done);
   410   __ bind(Long);
   411   // ltos
   412   __ movq(rax, Address(rcx, rbx, Address::times_8, base_offset));
   413   __ push_l();
   415   __ bind(Done);
   416 }
   418 void TemplateTable::locals_index(Register reg, int offset) {
   419   __ load_unsigned_byte(reg, at_bcp(offset));
   420   __ negptr(reg);
   421 }
   423 void TemplateTable::iload() {
   424   transition(vtos, itos);
   425   if (RewriteFrequentPairs) {
   426     Label rewrite, done;
   427     const Register bc = c_rarg3;
   428     assert(rbx != bc, "register damaged");
   430     // get next byte
   431     __ load_unsigned_byte(rbx,
   432                           at_bcp(Bytecodes::length_for(Bytecodes::_iload)));
   433     // if _iload, wait to rewrite to iload2.  We only want to rewrite the
   434     // last two iloads in a pair.  Comparing against fast_iload means that
   435     // the next bytecode is neither an iload or a caload, and therefore
   436     // an iload pair.
   437     __ cmpl(rbx, Bytecodes::_iload);
   438     __ jcc(Assembler::equal, done);
   440     __ cmpl(rbx, Bytecodes::_fast_iload);
   441     __ movl(bc, Bytecodes::_fast_iload2);
   442     __ jccb(Assembler::equal, rewrite);
   444     // if _caload, rewrite to fast_icaload
   445     __ cmpl(rbx, Bytecodes::_caload);
   446     __ movl(bc, Bytecodes::_fast_icaload);
   447     __ jccb(Assembler::equal, rewrite);
   449     // rewrite so iload doesn't check again.
   450     __ movl(bc, Bytecodes::_fast_iload);
   452     // rewrite
   453     // bc: fast bytecode
   454     __ bind(rewrite);
   455     patch_bytecode(Bytecodes::_iload, bc, rbx, false);
   456     __ bind(done);
   457   }
   459   // Get the local value into tos
   460   locals_index(rbx);
   461   __ movl(rax, iaddress(rbx));
   462 }
   464 void TemplateTable::fast_iload2() {
   465   transition(vtos, itos);
   466   locals_index(rbx);
   467   __ movl(rax, iaddress(rbx));
   468   __ push(itos);
   469   locals_index(rbx, 3);
   470   __ movl(rax, iaddress(rbx));
   471 }
   473 void TemplateTable::fast_iload() {
   474   transition(vtos, itos);
   475   locals_index(rbx);
   476   __ movl(rax, iaddress(rbx));
   477 }
   479 void TemplateTable::lload() {
   480   transition(vtos, ltos);
   481   locals_index(rbx);
   482   __ movq(rax, laddress(rbx));
   483 }
   485 void TemplateTable::fload() {
   486   transition(vtos, ftos);
   487   locals_index(rbx);
   488   __ movflt(xmm0, faddress(rbx));
   489 }
   491 void TemplateTable::dload() {
   492   transition(vtos, dtos);
   493   locals_index(rbx);
   494   __ movdbl(xmm0, daddress(rbx));
   495 }
   497 void TemplateTable::aload() {
   498   transition(vtos, atos);
   499   locals_index(rbx);
   500   __ movptr(rax, aaddress(rbx));
   501 }
   503 void TemplateTable::locals_index_wide(Register reg) {
   504   __ movl(reg, at_bcp(2));
   505   __ bswapl(reg);
   506   __ shrl(reg, 16);
   507   __ negptr(reg);
   508 }
   510 void TemplateTable::wide_iload() {
   511   transition(vtos, itos);
   512   locals_index_wide(rbx);
   513   __ movl(rax, iaddress(rbx));
   514 }
   516 void TemplateTable::wide_lload() {
   517   transition(vtos, ltos);
   518   locals_index_wide(rbx);
   519   __ movq(rax, laddress(rbx));
   520 }
   522 void TemplateTable::wide_fload() {
   523   transition(vtos, ftos);
   524   locals_index_wide(rbx);
   525   __ movflt(xmm0, faddress(rbx));
   526 }
   528 void TemplateTable::wide_dload() {
   529   transition(vtos, dtos);
   530   locals_index_wide(rbx);
   531   __ movdbl(xmm0, daddress(rbx));
   532 }
   534 void TemplateTable::wide_aload() {
   535   transition(vtos, atos);
   536   locals_index_wide(rbx);
   537   __ movptr(rax, aaddress(rbx));
   538 }
   540 void TemplateTable::index_check(Register array, Register index) {
   541   // destroys rbx
   542   // check array
   543   __ null_check(array, arrayOopDesc::length_offset_in_bytes());
   544   // sign extend index for use by indexed load
   545   __ movl2ptr(index, index);
   546   // check index
   547   __ cmpl(index, Address(array, arrayOopDesc::length_offset_in_bytes()));
   548   if (index != rbx) {
   549     // ??? convention: move aberrant index into ebx for exception message
   550     assert(rbx != array, "different registers");
   551     __ movl(rbx, index);
   552   }
   553   __ jump_cc(Assembler::aboveEqual,
   554              ExternalAddress(Interpreter::_throw_ArrayIndexOutOfBoundsException_entry));
   555 }
   557 void TemplateTable::iaload() {
   558   transition(itos, itos);
   559   __ pop_ptr(rdx);
   560   // eax: index
   561   // rdx: array
   562   index_check(rdx, rax); // kills rbx
   563   __ movl(rax, Address(rdx, rax,
   564                        Address::times_4,
   565                        arrayOopDesc::base_offset_in_bytes(T_INT)));
   566 }
   568 void TemplateTable::laload() {
   569   transition(itos, ltos);
   570   __ pop_ptr(rdx);
   571   // eax: index
   572   // rdx: array
   573   index_check(rdx, rax); // kills rbx
   574   __ movq(rax, Address(rdx, rbx,
   575                        Address::times_8,
   576                        arrayOopDesc::base_offset_in_bytes(T_LONG)));
   577 }
   579 void TemplateTable::faload() {
   580   transition(itos, ftos);
   581   __ pop_ptr(rdx);
   582   // eax: index
   583   // rdx: array
   584   index_check(rdx, rax); // kills rbx
   585   __ movflt(xmm0, Address(rdx, rax,
   586                          Address::times_4,
   587                          arrayOopDesc::base_offset_in_bytes(T_FLOAT)));
   588 }
   590 void TemplateTable::daload() {
   591   transition(itos, dtos);
   592   __ pop_ptr(rdx);
   593   // eax: index
   594   // rdx: array
   595   index_check(rdx, rax); // kills rbx
   596   __ movdbl(xmm0, Address(rdx, rax,
   597                           Address::times_8,
   598                           arrayOopDesc::base_offset_in_bytes(T_DOUBLE)));
   599 }
   601 void TemplateTable::aaload() {
   602   transition(itos, atos);
   603   __ pop_ptr(rdx);
   604   // eax: index
   605   // rdx: array
   606   index_check(rdx, rax); // kills rbx
   607   __ load_heap_oop(rax, Address(rdx, rax,
   608                                 UseCompressedOops ? Address::times_4 : Address::times_8,
   609                                 arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
   610 }
   612 void TemplateTable::baload() {
   613   transition(itos, itos);
   614   __ pop_ptr(rdx);
   615   // eax: index
   616   // rdx: array
   617   index_check(rdx, rax); // kills rbx
   618   __ load_signed_byte(rax,
   619                       Address(rdx, rax,
   620                               Address::times_1,
   621                               arrayOopDesc::base_offset_in_bytes(T_BYTE)));
   622 }
   624 void TemplateTable::caload() {
   625   transition(itos, itos);
   626   __ pop_ptr(rdx);
   627   // eax: index
   628   // rdx: array
   629   index_check(rdx, rax); // kills rbx
   630   __ load_unsigned_short(rax,
   631                          Address(rdx, rax,
   632                                  Address::times_2,
   633                                  arrayOopDesc::base_offset_in_bytes(T_CHAR)));
   634 }
   636 // iload followed by caload frequent pair
   637 void TemplateTable::fast_icaload() {
   638   transition(vtos, itos);
   639   // load index out of locals
   640   locals_index(rbx);
   641   __ movl(rax, iaddress(rbx));
   643   // eax: index
   644   // rdx: array
   645   __ pop_ptr(rdx);
   646   index_check(rdx, rax); // kills rbx
   647   __ load_unsigned_short(rax,
   648                          Address(rdx, rax,
   649                                  Address::times_2,
   650                                  arrayOopDesc::base_offset_in_bytes(T_CHAR)));
   651 }
   653 void TemplateTable::saload() {
   654   transition(itos, itos);
   655   __ pop_ptr(rdx);
   656   // eax: index
   657   // rdx: array
   658   index_check(rdx, rax); // kills rbx
   659   __ load_signed_short(rax,
   660                        Address(rdx, rax,
   661                                Address::times_2,
   662                                arrayOopDesc::base_offset_in_bytes(T_SHORT)));
   663 }
   665 void TemplateTable::iload(int n) {
   666   transition(vtos, itos);
   667   __ movl(rax, iaddress(n));
   668 }
   670 void TemplateTable::lload(int n) {
   671   transition(vtos, ltos);
   672   __ movq(rax, laddress(n));
   673 }
   675 void TemplateTable::fload(int n) {
   676   transition(vtos, ftos);
   677   __ movflt(xmm0, faddress(n));
   678 }
   680 void TemplateTable::dload(int n) {
   681   transition(vtos, dtos);
   682   __ movdbl(xmm0, daddress(n));
   683 }
   685 void TemplateTable::aload(int n) {
   686   transition(vtos, atos);
   687   __ movptr(rax, aaddress(n));
   688 }
   690 void TemplateTable::aload_0() {
   691   transition(vtos, atos);
   692   // According to bytecode histograms, the pairs:
   693   //
   694   // _aload_0, _fast_igetfield
   695   // _aload_0, _fast_agetfield
   696   // _aload_0, _fast_fgetfield
   697   //
   698   // occur frequently. If RewriteFrequentPairs is set, the (slow)
   699   // _aload_0 bytecode checks if the next bytecode is either
   700   // _fast_igetfield, _fast_agetfield or _fast_fgetfield and then
   701   // rewrites the current bytecode into a pair bytecode; otherwise it
   702   // rewrites the current bytecode into _fast_aload_0 that doesn't do
   703   // the pair check anymore.
   704   //
   705   // Note: If the next bytecode is _getfield, the rewrite must be
   706   //       delayed, otherwise we may miss an opportunity for a pair.
   707   //
   708   // Also rewrite frequent pairs
   709   //   aload_0, aload_1
   710   //   aload_0, iload_1
   711   // These bytecodes with a small amount of code are most profitable
   712   // to rewrite
   713   if (RewriteFrequentPairs) {
   714     Label rewrite, done;
   715     const Register bc = c_rarg3;
   716     assert(rbx != bc, "register damaged");
   717     // get next byte
   718     __ load_unsigned_byte(rbx,
   719                           at_bcp(Bytecodes::length_for(Bytecodes::_aload_0)));
   721     // do actual aload_0
   722     aload(0);
   724     // if _getfield then wait with rewrite
   725     __ cmpl(rbx, Bytecodes::_getfield);
   726     __ jcc(Assembler::equal, done);
   728     // if _igetfield then reqrite to _fast_iaccess_0
   729     assert(Bytecodes::java_code(Bytecodes::_fast_iaccess_0) ==
   730            Bytecodes::_aload_0,
   731            "fix bytecode definition");
   732     __ cmpl(rbx, Bytecodes::_fast_igetfield);
   733     __ movl(bc, Bytecodes::_fast_iaccess_0);
   734     __ jccb(Assembler::equal, rewrite);
   736     // if _agetfield then reqrite to _fast_aaccess_0
   737     assert(Bytecodes::java_code(Bytecodes::_fast_aaccess_0) ==
   738            Bytecodes::_aload_0,
   739            "fix bytecode definition");
   740     __ cmpl(rbx, Bytecodes::_fast_agetfield);
   741     __ movl(bc, Bytecodes::_fast_aaccess_0);
   742     __ jccb(Assembler::equal, rewrite);
   744     // if _fgetfield then reqrite to _fast_faccess_0
   745     assert(Bytecodes::java_code(Bytecodes::_fast_faccess_0) ==
   746            Bytecodes::_aload_0,
   747            "fix bytecode definition");
   748     __ cmpl(rbx, Bytecodes::_fast_fgetfield);
   749     __ movl(bc, Bytecodes::_fast_faccess_0);
   750     __ jccb(Assembler::equal, rewrite);
   752     // else rewrite to _fast_aload0
   753     assert(Bytecodes::java_code(Bytecodes::_fast_aload_0) ==
   754            Bytecodes::_aload_0,
   755            "fix bytecode definition");
   756     __ movl(bc, Bytecodes::_fast_aload_0);
   758     // rewrite
   759     // bc: fast bytecode
   760     __ bind(rewrite);
   761     patch_bytecode(Bytecodes::_aload_0, bc, rbx, false);
   763     __ bind(done);
   764   } else {
   765     aload(0);
   766   }
   767 }
   769 void TemplateTable::istore() {
   770   transition(itos, vtos);
   771   locals_index(rbx);
   772   __ movl(iaddress(rbx), rax);
   773 }
   775 void TemplateTable::lstore() {
   776   transition(ltos, vtos);
   777   locals_index(rbx);
   778   __ movq(laddress(rbx), rax);
   779 }
   781 void TemplateTable::fstore() {
   782   transition(ftos, vtos);
   783   locals_index(rbx);
   784   __ movflt(faddress(rbx), xmm0);
   785 }
   787 void TemplateTable::dstore() {
   788   transition(dtos, vtos);
   789   locals_index(rbx);
   790   __ movdbl(daddress(rbx), xmm0);
   791 }
   793 void TemplateTable::astore() {
   794   transition(vtos, vtos);
   795   __ pop_ptr(rax);
   796   locals_index(rbx);
   797   __ movptr(aaddress(rbx), rax);
   798 }
   800 void TemplateTable::wide_istore() {
   801   transition(vtos, vtos);
   802   __ pop_i();
   803   locals_index_wide(rbx);
   804   __ movl(iaddress(rbx), rax);
   805 }
   807 void TemplateTable::wide_lstore() {
   808   transition(vtos, vtos);
   809   __ pop_l();
   810   locals_index_wide(rbx);
   811   __ movq(laddress(rbx), rax);
   812 }
   814 void TemplateTable::wide_fstore() {
   815   transition(vtos, vtos);
   816   __ pop_f();
   817   locals_index_wide(rbx);
   818   __ movflt(faddress(rbx), xmm0);
   819 }
   821 void TemplateTable::wide_dstore() {
   822   transition(vtos, vtos);
   823   __ pop_d();
   824   locals_index_wide(rbx);
   825   __ movdbl(daddress(rbx), xmm0);
   826 }
   828 void TemplateTable::wide_astore() {
   829   transition(vtos, vtos);
   830   __ pop_ptr(rax);
   831   locals_index_wide(rbx);
   832   __ movptr(aaddress(rbx), rax);
   833 }
   835 void TemplateTable::iastore() {
   836   transition(itos, vtos);
   837   __ pop_i(rbx);
   838   __ pop_ptr(rdx);
   839   // eax: value
   840   // ebx: index
   841   // rdx: array
   842   index_check(rdx, rbx); // prefer index in ebx
   843   __ movl(Address(rdx, rbx,
   844                   Address::times_4,
   845                   arrayOopDesc::base_offset_in_bytes(T_INT)),
   846           rax);
   847 }
   849 void TemplateTable::lastore() {
   850   transition(ltos, vtos);
   851   __ pop_i(rbx);
   852   __ pop_ptr(rdx);
   853   // rax: value
   854   // ebx: index
   855   // rdx: array
   856   index_check(rdx, rbx); // prefer index in ebx
   857   __ movq(Address(rdx, rbx,
   858                   Address::times_8,
   859                   arrayOopDesc::base_offset_in_bytes(T_LONG)),
   860           rax);
   861 }
   863 void TemplateTable::fastore() {
   864   transition(ftos, vtos);
   865   __ pop_i(rbx);
   866   __ pop_ptr(rdx);
   867   // xmm0: value
   868   // ebx:  index
   869   // rdx:  array
   870   index_check(rdx, rbx); // prefer index in ebx
   871   __ movflt(Address(rdx, rbx,
   872                    Address::times_4,
   873                    arrayOopDesc::base_offset_in_bytes(T_FLOAT)),
   874            xmm0);
   875 }
   877 void TemplateTable::dastore() {
   878   transition(dtos, vtos);
   879   __ pop_i(rbx);
   880   __ pop_ptr(rdx);
   881   // xmm0: value
   882   // ebx:  index
   883   // rdx:  array
   884   index_check(rdx, rbx); // prefer index in ebx
   885   __ movdbl(Address(rdx, rbx,
   886                    Address::times_8,
   887                    arrayOopDesc::base_offset_in_bytes(T_DOUBLE)),
   888            xmm0);
   889 }
   891 void TemplateTable::aastore() {
   892   Label is_null, ok_is_subtype, done;
   893   transition(vtos, vtos);
   894   // stack: ..., array, index, value
   895   __ movptr(rax, at_tos());    // value
   896   __ movl(rcx, at_tos_p1()); // index
   897   __ movptr(rdx, at_tos_p2()); // array
   899   Address element_address(rdx, rcx,
   900                           UseCompressedOops? Address::times_4 : Address::times_8,
   901                           arrayOopDesc::base_offset_in_bytes(T_OBJECT));
   903   index_check(rdx, rcx);     // kills rbx
   904   // do array store check - check for NULL value first
   905   __ testptr(rax, rax);
   906   __ jcc(Assembler::zero, is_null);
   908   // Move subklass into rbx
   909   __ load_klass(rbx, rax);
   910   // Move superklass into rax
   911   __ load_klass(rax, rdx);
   912   __ movptr(rax, Address(rax,
   913                          sizeof(oopDesc) +
   914                          objArrayKlass::element_klass_offset_in_bytes()));
   915   // Compress array + index*oopSize + 12 into a single register.  Frees rcx.
   916   __ lea(rdx, element_address);
   918   // Generate subtype check.  Blows rcx, rdi
   919   // Superklass in rax.  Subklass in rbx.
   920   __ gen_subtype_check(rbx, ok_is_subtype);
   922   // Come here on failure
   923   // object is at TOS
   924   __ jump(ExternalAddress(Interpreter::_throw_ArrayStoreException_entry));
   926   // Come here on success
   927   __ bind(ok_is_subtype);
   929   // Get the value we will store
   930   __ movptr(rax, at_tos());
   931   // Now store using the appropriate barrier
   932   do_oop_store(_masm, Address(rdx, 0), rax, _bs->kind(), true);
   933   __ jmp(done);
   935   // Have a NULL in rax, rdx=array, ecx=index.  Store NULL at ary[idx]
   936   __ bind(is_null);
   937   __ profile_null_seen(rbx);
   939   // Store a NULL
   940   do_oop_store(_masm, element_address, noreg, _bs->kind(), true);
   942   // Pop stack arguments
   943   __ bind(done);
   944   __ addptr(rsp, 3 * Interpreter::stackElementSize);
   945 }
   947 void TemplateTable::bastore() {
   948   transition(itos, vtos);
   949   __ pop_i(rbx);
   950   __ pop_ptr(rdx);
   951   // eax: value
   952   // ebx: index
   953   // rdx: array
   954   index_check(rdx, rbx); // prefer index in ebx
   955   __ movb(Address(rdx, rbx,
   956                   Address::times_1,
   957                   arrayOopDesc::base_offset_in_bytes(T_BYTE)),
   958           rax);
   959 }
   961 void TemplateTable::castore() {
   962   transition(itos, vtos);
   963   __ pop_i(rbx);
   964   __ pop_ptr(rdx);
   965   // eax: value
   966   // ebx: index
   967   // rdx: array
   968   index_check(rdx, rbx);  // prefer index in ebx
   969   __ movw(Address(rdx, rbx,
   970                   Address::times_2,
   971                   arrayOopDesc::base_offset_in_bytes(T_CHAR)),
   972           rax);
   973 }
   975 void TemplateTable::sastore() {
   976   castore();
   977 }
   979 void TemplateTable::istore(int n) {
   980   transition(itos, vtos);
   981   __ movl(iaddress(n), rax);
   982 }
   984 void TemplateTable::lstore(int n) {
   985   transition(ltos, vtos);
   986   __ movq(laddress(n), rax);
   987 }
   989 void TemplateTable::fstore(int n) {
   990   transition(ftos, vtos);
   991   __ movflt(faddress(n), xmm0);
   992 }
   994 void TemplateTable::dstore(int n) {
   995   transition(dtos, vtos);
   996   __ movdbl(daddress(n), xmm0);
   997 }
   999 void TemplateTable::astore(int n) {
  1000   transition(vtos, vtos);
  1001   __ pop_ptr(rax);
  1002   __ movptr(aaddress(n), rax);
  1005 void TemplateTable::pop() {
  1006   transition(vtos, vtos);
  1007   __ addptr(rsp, Interpreter::stackElementSize);
  1010 void TemplateTable::pop2() {
  1011   transition(vtos, vtos);
  1012   __ addptr(rsp, 2 * Interpreter::stackElementSize);
  1015 void TemplateTable::dup() {
  1016   transition(vtos, vtos);
  1017   __ load_ptr(0, rax);
  1018   __ push_ptr(rax);
  1019   // stack: ..., a, a
  1022 void TemplateTable::dup_x1() {
  1023   transition(vtos, vtos);
  1024   // stack: ..., a, b
  1025   __ load_ptr( 0, rax);  // load b
  1026   __ load_ptr( 1, rcx);  // load a
  1027   __ store_ptr(1, rax);  // store b
  1028   __ store_ptr(0, rcx);  // store a
  1029   __ push_ptr(rax);      // push b
  1030   // stack: ..., b, a, b
  1033 void TemplateTable::dup_x2() {
  1034   transition(vtos, vtos);
  1035   // stack: ..., a, b, c
  1036   __ load_ptr( 0, rax);  // load c
  1037   __ load_ptr( 2, rcx);  // load a
  1038   __ store_ptr(2, rax);  // store c in a
  1039   __ push_ptr(rax);      // push c
  1040   // stack: ..., c, b, c, c
  1041   __ load_ptr( 2, rax);  // load b
  1042   __ store_ptr(2, rcx);  // store a in b
  1043   // stack: ..., c, a, c, c
  1044   __ store_ptr(1, rax);  // store b in c
  1045   // stack: ..., c, a, b, c
  1048 void TemplateTable::dup2() {
  1049   transition(vtos, vtos);
  1050   // stack: ..., a, b
  1051   __ load_ptr(1, rax);  // load a
  1052   __ push_ptr(rax);     // push a
  1053   __ load_ptr(1, rax);  // load b
  1054   __ push_ptr(rax);     // push b
  1055   // stack: ..., a, b, a, b
  1058 void TemplateTable::dup2_x1() {
  1059   transition(vtos, vtos);
  1060   // stack: ..., a, b, c
  1061   __ load_ptr( 0, rcx);  // load c
  1062   __ load_ptr( 1, rax);  // load b
  1063   __ push_ptr(rax);      // push b
  1064   __ push_ptr(rcx);      // push c
  1065   // stack: ..., a, b, c, b, c
  1066   __ store_ptr(3, rcx);  // store c in b
  1067   // stack: ..., a, c, c, b, c
  1068   __ load_ptr( 4, rcx);  // load a
  1069   __ store_ptr(2, rcx);  // store a in 2nd c
  1070   // stack: ..., a, c, a, b, c
  1071   __ store_ptr(4, rax);  // store b in a
  1072   // stack: ..., b, c, a, b, c
  1075 void TemplateTable::dup2_x2() {
  1076   transition(vtos, vtos);
  1077   // stack: ..., a, b, c, d
  1078   __ load_ptr( 0, rcx);  // load d
  1079   __ load_ptr( 1, rax);  // load c
  1080   __ push_ptr(rax);      // push c
  1081   __ push_ptr(rcx);      // push d
  1082   // stack: ..., a, b, c, d, c, d
  1083   __ load_ptr( 4, rax);  // load b
  1084   __ store_ptr(2, rax);  // store b in d
  1085   __ store_ptr(4, rcx);  // store d in b
  1086   // stack: ..., a, d, c, b, c, d
  1087   __ load_ptr( 5, rcx);  // load a
  1088   __ load_ptr( 3, rax);  // load c
  1089   __ store_ptr(3, rcx);  // store a in c
  1090   __ store_ptr(5, rax);  // store c in a
  1091   // stack: ..., c, d, a, b, c, d
  1094 void TemplateTable::swap() {
  1095   transition(vtos, vtos);
  1096   // stack: ..., a, b
  1097   __ load_ptr( 1, rcx);  // load a
  1098   __ load_ptr( 0, rax);  // load b
  1099   __ store_ptr(0, rcx);  // store a in b
  1100   __ store_ptr(1, rax);  // store b in a
  1101   // stack: ..., b, a
  1104 void TemplateTable::iop2(Operation op) {
  1105   transition(itos, itos);
  1106   switch (op) {
  1107   case add  :                    __ pop_i(rdx); __ addl (rax, rdx); break;
  1108   case sub  : __ movl(rdx, rax); __ pop_i(rax); __ subl (rax, rdx); break;
  1109   case mul  :                    __ pop_i(rdx); __ imull(rax, rdx); break;
  1110   case _and :                    __ pop_i(rdx); __ andl (rax, rdx); break;
  1111   case _or  :                    __ pop_i(rdx); __ orl  (rax, rdx); break;
  1112   case _xor :                    __ pop_i(rdx); __ xorl (rax, rdx); break;
  1113   case shl  : __ movl(rcx, rax); __ pop_i(rax); __ shll (rax);      break;
  1114   case shr  : __ movl(rcx, rax); __ pop_i(rax); __ sarl (rax);      break;
  1115   case ushr : __ movl(rcx, rax); __ pop_i(rax); __ shrl (rax);      break;
  1116   default   : ShouldNotReachHere();
  1120 void TemplateTable::lop2(Operation op) {
  1121   transition(ltos, ltos);
  1122   switch (op) {
  1123   case add  :                    __ pop_l(rdx); __ addptr(rax, rdx); break;
  1124   case sub  : __ mov(rdx, rax);  __ pop_l(rax); __ subptr(rax, rdx); break;
  1125   case _and :                    __ pop_l(rdx); __ andptr(rax, rdx); break;
  1126   case _or  :                    __ pop_l(rdx); __ orptr (rax, rdx); break;
  1127   case _xor :                    __ pop_l(rdx); __ xorptr(rax, rdx); break;
  1128   default   : ShouldNotReachHere();
  1132 void TemplateTable::idiv() {
  1133   transition(itos, itos);
  1134   __ movl(rcx, rax);
  1135   __ pop_i(rax);
  1136   // Note: could xor eax and ecx and compare with (-1 ^ min_int). If
  1137   //       they are not equal, one could do a normal division (no correction
  1138   //       needed), which may speed up this implementation for the common case.
  1139   //       (see also JVM spec., p.243 & p.271)
  1140   __ corrected_idivl(rcx);
  1143 void TemplateTable::irem() {
  1144   transition(itos, itos);
  1145   __ movl(rcx, rax);
  1146   __ pop_i(rax);
  1147   // Note: could xor eax and ecx and compare with (-1 ^ min_int). If
  1148   //       they are not equal, one could do a normal division (no correction
  1149   //       needed), which may speed up this implementation for the common case.
  1150   //       (see also JVM spec., p.243 & p.271)
  1151   __ corrected_idivl(rcx);
  1152   __ movl(rax, rdx);
  1155 void TemplateTable::lmul() {
  1156   transition(ltos, ltos);
  1157   __ pop_l(rdx);
  1158   __ imulq(rax, rdx);
  1161 void TemplateTable::ldiv() {
  1162   transition(ltos, ltos);
  1163   __ mov(rcx, rax);
  1164   __ pop_l(rax);
  1165   // generate explicit div0 check
  1166   __ testq(rcx, rcx);
  1167   __ jump_cc(Assembler::zero,
  1168              ExternalAddress(Interpreter::_throw_ArithmeticException_entry));
  1169   // Note: could xor rax and rcx and compare with (-1 ^ min_int). If
  1170   //       they are not equal, one could do a normal division (no correction
  1171   //       needed), which may speed up this implementation for the common case.
  1172   //       (see also JVM spec., p.243 & p.271)
  1173   __ corrected_idivq(rcx); // kills rbx
  1176 void TemplateTable::lrem() {
  1177   transition(ltos, ltos);
  1178   __ mov(rcx, rax);
  1179   __ pop_l(rax);
  1180   __ testq(rcx, rcx);
  1181   __ jump_cc(Assembler::zero,
  1182              ExternalAddress(Interpreter::_throw_ArithmeticException_entry));
  1183   // Note: could xor rax and rcx and compare with (-1 ^ min_int). If
  1184   //       they are not equal, one could do a normal division (no correction
  1185   //       needed), which may speed up this implementation for the common case.
  1186   //       (see also JVM spec., p.243 & p.271)
  1187   __ corrected_idivq(rcx); // kills rbx
  1188   __ mov(rax, rdx);
  1191 void TemplateTable::lshl() {
  1192   transition(itos, ltos);
  1193   __ movl(rcx, rax);                             // get shift count
  1194   __ pop_l(rax);                                 // get shift value
  1195   __ shlq(rax);
  1198 void TemplateTable::lshr() {
  1199   transition(itos, ltos);
  1200   __ movl(rcx, rax);                             // get shift count
  1201   __ pop_l(rax);                                 // get shift value
  1202   __ sarq(rax);
  1205 void TemplateTable::lushr() {
  1206   transition(itos, ltos);
  1207   __ movl(rcx, rax);                             // get shift count
  1208   __ pop_l(rax);                                 // get shift value
  1209   __ shrq(rax);
  1212 void TemplateTable::fop2(Operation op) {
  1213   transition(ftos, ftos);
  1214   switch (op) {
  1215   case add:
  1216     __ addss(xmm0, at_rsp());
  1217     __ addptr(rsp, Interpreter::stackElementSize);
  1218     break;
  1219   case sub:
  1220     __ movflt(xmm1, xmm0);
  1221     __ pop_f(xmm0);
  1222     __ subss(xmm0, xmm1);
  1223     break;
  1224   case mul:
  1225     __ mulss(xmm0, at_rsp());
  1226     __ addptr(rsp, Interpreter::stackElementSize);
  1227     break;
  1228   case div:
  1229     __ movflt(xmm1, xmm0);
  1230     __ pop_f(xmm0);
  1231     __ divss(xmm0, xmm1);
  1232     break;
  1233   case rem:
  1234     __ movflt(xmm1, xmm0);
  1235     __ pop_f(xmm0);
  1236     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::frem), 2);
  1237     break;
  1238   default:
  1239     ShouldNotReachHere();
  1240     break;
  1244 void TemplateTable::dop2(Operation op) {
  1245   transition(dtos, dtos);
  1246   switch (op) {
  1247   case add:
  1248     __ addsd(xmm0, at_rsp());
  1249     __ addptr(rsp, 2 * Interpreter::stackElementSize);
  1250     break;
  1251   case sub:
  1252     __ movdbl(xmm1, xmm0);
  1253     __ pop_d(xmm0);
  1254     __ subsd(xmm0, xmm1);
  1255     break;
  1256   case mul:
  1257     __ mulsd(xmm0, at_rsp());
  1258     __ addptr(rsp, 2 * Interpreter::stackElementSize);
  1259     break;
  1260   case div:
  1261     __ movdbl(xmm1, xmm0);
  1262     __ pop_d(xmm0);
  1263     __ divsd(xmm0, xmm1);
  1264     break;
  1265   case rem:
  1266     __ movdbl(xmm1, xmm0);
  1267     __ pop_d(xmm0);
  1268     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::drem), 2);
  1269     break;
  1270   default:
  1271     ShouldNotReachHere();
  1272     break;
  1276 void TemplateTable::ineg() {
  1277   transition(itos, itos);
  1278   __ negl(rax);
  1281 void TemplateTable::lneg() {
  1282   transition(ltos, ltos);
  1283   __ negq(rax);
  1286 // Note: 'double' and 'long long' have 32-bits alignment on x86.
  1287 static jlong* double_quadword(jlong *adr, jlong lo, jlong hi) {
  1288   // Use the expression (adr)&(~0xF) to provide 128-bits aligned address
  1289   // of 128-bits operands for SSE instructions.
  1290   jlong *operand = (jlong*)(((intptr_t)adr)&((intptr_t)(~0xF)));
  1291   // Store the value to a 128-bits operand.
  1292   operand[0] = lo;
  1293   operand[1] = hi;
  1294   return operand;
  1297 // Buffer for 128-bits masks used by SSE instructions.
  1298 static jlong float_signflip_pool[2*2];
  1299 static jlong double_signflip_pool[2*2];
  1301 void TemplateTable::fneg() {
  1302   transition(ftos, ftos);
  1303   static jlong *float_signflip  = double_quadword(&float_signflip_pool[1], 0x8000000080000000, 0x8000000080000000);
  1304   __ xorps(xmm0, ExternalAddress((address) float_signflip));
  1307 void TemplateTable::dneg() {
  1308   transition(dtos, dtos);
  1309   static jlong *double_signflip  = double_quadword(&double_signflip_pool[1], 0x8000000000000000, 0x8000000000000000);
  1310   __ xorpd(xmm0, ExternalAddress((address) double_signflip));
  1313 void TemplateTable::iinc() {
  1314   transition(vtos, vtos);
  1315   __ load_signed_byte(rdx, at_bcp(2)); // get constant
  1316   locals_index(rbx);
  1317   __ addl(iaddress(rbx), rdx);
  1320 void TemplateTable::wide_iinc() {
  1321   transition(vtos, vtos);
  1322   __ movl(rdx, at_bcp(4)); // get constant
  1323   locals_index_wide(rbx);
  1324   __ bswapl(rdx); // swap bytes & sign-extend constant
  1325   __ sarl(rdx, 16);
  1326   __ addl(iaddress(rbx), rdx);
  1327   // Note: should probably use only one movl to get both
  1328   //       the index and the constant -> fix this
  1331 void TemplateTable::convert() {
  1332   // Checking
  1333 #ifdef ASSERT
  1335     TosState tos_in  = ilgl;
  1336     TosState tos_out = ilgl;
  1337     switch (bytecode()) {
  1338     case Bytecodes::_i2l: // fall through
  1339     case Bytecodes::_i2f: // fall through
  1340     case Bytecodes::_i2d: // fall through
  1341     case Bytecodes::_i2b: // fall through
  1342     case Bytecodes::_i2c: // fall through
  1343     case Bytecodes::_i2s: tos_in = itos; break;
  1344     case Bytecodes::_l2i: // fall through
  1345     case Bytecodes::_l2f: // fall through
  1346     case Bytecodes::_l2d: tos_in = ltos; break;
  1347     case Bytecodes::_f2i: // fall through
  1348     case Bytecodes::_f2l: // fall through
  1349     case Bytecodes::_f2d: tos_in = ftos; break;
  1350     case Bytecodes::_d2i: // fall through
  1351     case Bytecodes::_d2l: // fall through
  1352     case Bytecodes::_d2f: tos_in = dtos; break;
  1353     default             : ShouldNotReachHere();
  1355     switch (bytecode()) {
  1356     case Bytecodes::_l2i: // fall through
  1357     case Bytecodes::_f2i: // fall through
  1358     case Bytecodes::_d2i: // fall through
  1359     case Bytecodes::_i2b: // fall through
  1360     case Bytecodes::_i2c: // fall through
  1361     case Bytecodes::_i2s: tos_out = itos; break;
  1362     case Bytecodes::_i2l: // fall through
  1363     case Bytecodes::_f2l: // fall through
  1364     case Bytecodes::_d2l: tos_out = ltos; break;
  1365     case Bytecodes::_i2f: // fall through
  1366     case Bytecodes::_l2f: // fall through
  1367     case Bytecodes::_d2f: tos_out = ftos; break;
  1368     case Bytecodes::_i2d: // fall through
  1369     case Bytecodes::_l2d: // fall through
  1370     case Bytecodes::_f2d: tos_out = dtos; break;
  1371     default             : ShouldNotReachHere();
  1373     transition(tos_in, tos_out);
  1375 #endif // ASSERT
  1377   static const int64_t is_nan = 0x8000000000000000L;
  1379   // Conversion
  1380   switch (bytecode()) {
  1381   case Bytecodes::_i2l:
  1382     __ movslq(rax, rax);
  1383     break;
  1384   case Bytecodes::_i2f:
  1385     __ cvtsi2ssl(xmm0, rax);
  1386     break;
  1387   case Bytecodes::_i2d:
  1388     __ cvtsi2sdl(xmm0, rax);
  1389     break;
  1390   case Bytecodes::_i2b:
  1391     __ movsbl(rax, rax);
  1392     break;
  1393   case Bytecodes::_i2c:
  1394     __ movzwl(rax, rax);
  1395     break;
  1396   case Bytecodes::_i2s:
  1397     __ movswl(rax, rax);
  1398     break;
  1399   case Bytecodes::_l2i:
  1400     __ movl(rax, rax);
  1401     break;
  1402   case Bytecodes::_l2f:
  1403     __ cvtsi2ssq(xmm0, rax);
  1404     break;
  1405   case Bytecodes::_l2d:
  1406     __ cvtsi2sdq(xmm0, rax);
  1407     break;
  1408   case Bytecodes::_f2i:
  1410     Label L;
  1411     __ cvttss2sil(rax, xmm0);
  1412     __ cmpl(rax, 0x80000000); // NaN or overflow/underflow?
  1413     __ jcc(Assembler::notEqual, L);
  1414     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2i), 1);
  1415     __ bind(L);
  1417     break;
  1418   case Bytecodes::_f2l:
  1420     Label L;
  1421     __ cvttss2siq(rax, xmm0);
  1422     // NaN or overflow/underflow?
  1423     __ cmp64(rax, ExternalAddress((address) &is_nan));
  1424     __ jcc(Assembler::notEqual, L);
  1425     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2l), 1);
  1426     __ bind(L);
  1428     break;
  1429   case Bytecodes::_f2d:
  1430     __ cvtss2sd(xmm0, xmm0);
  1431     break;
  1432   case Bytecodes::_d2i:
  1434     Label L;
  1435     __ cvttsd2sil(rax, xmm0);
  1436     __ cmpl(rax, 0x80000000); // NaN or overflow/underflow?
  1437     __ jcc(Assembler::notEqual, L);
  1438     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2i), 1);
  1439     __ bind(L);
  1441     break;
  1442   case Bytecodes::_d2l:
  1444     Label L;
  1445     __ cvttsd2siq(rax, xmm0);
  1446     // NaN or overflow/underflow?
  1447     __ cmp64(rax, ExternalAddress((address) &is_nan));
  1448     __ jcc(Assembler::notEqual, L);
  1449     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2l), 1);
  1450     __ bind(L);
  1452     break;
  1453   case Bytecodes::_d2f:
  1454     __ cvtsd2ss(xmm0, xmm0);
  1455     break;
  1456   default:
  1457     ShouldNotReachHere();
  1461 void TemplateTable::lcmp() {
  1462   transition(ltos, itos);
  1463   Label done;
  1464   __ pop_l(rdx);
  1465   __ cmpq(rdx, rax);
  1466   __ movl(rax, -1);
  1467   __ jccb(Assembler::less, done);
  1468   __ setb(Assembler::notEqual, rax);
  1469   __ movzbl(rax, rax);
  1470   __ bind(done);
  1473 void TemplateTable::float_cmp(bool is_float, int unordered_result) {
  1474   Label done;
  1475   if (is_float) {
  1476     // XXX get rid of pop here, use ... reg, mem32
  1477     __ pop_f(xmm1);
  1478     __ ucomiss(xmm1, xmm0);
  1479   } else {
  1480     // XXX get rid of pop here, use ... reg, mem64
  1481     __ pop_d(xmm1);
  1482     __ ucomisd(xmm1, xmm0);
  1484   if (unordered_result < 0) {
  1485     __ movl(rax, -1);
  1486     __ jccb(Assembler::parity, done);
  1487     __ jccb(Assembler::below, done);
  1488     __ setb(Assembler::notEqual, rdx);
  1489     __ movzbl(rax, rdx);
  1490   } else {
  1491     __ movl(rax, 1);
  1492     __ jccb(Assembler::parity, done);
  1493     __ jccb(Assembler::above, done);
  1494     __ movl(rax, 0);
  1495     __ jccb(Assembler::equal, done);
  1496     __ decrementl(rax);
  1498   __ bind(done);
  1501 void TemplateTable::branch(bool is_jsr, bool is_wide) {
  1502   __ get_method(rcx); // rcx holds method
  1503   __ profile_taken_branch(rax, rbx); // rax holds updated MDP, rbx
  1504                                      // holds bumped taken count
  1506   const ByteSize be_offset = methodOopDesc::backedge_counter_offset() +
  1507                              InvocationCounter::counter_offset();
  1508   const ByteSize inv_offset = methodOopDesc::invocation_counter_offset() +
  1509                               InvocationCounter::counter_offset();
  1510   const int method_offset = frame::interpreter_frame_method_offset * wordSize;
  1512   // Load up edx with the branch displacement
  1513   __ movl(rdx, at_bcp(1));
  1514   __ bswapl(rdx);
  1516   if (!is_wide) {
  1517     __ sarl(rdx, 16);
  1519   __ movl2ptr(rdx, rdx);
  1521   // Handle all the JSR stuff here, then exit.
  1522   // It's much shorter and cleaner than intermingling with the non-JSR
  1523   // normal-branch stuff occurring below.
  1524   if (is_jsr) {
  1525     // Pre-load the next target bytecode into rbx
  1526     __ load_unsigned_byte(rbx, Address(r13, rdx, Address::times_1, 0));
  1528     // compute return address as bci in rax
  1529     __ lea(rax, at_bcp((is_wide ? 5 : 3) -
  1530                         in_bytes(constMethodOopDesc::codes_offset())));
  1531     __ subptr(rax, Address(rcx, methodOopDesc::const_offset()));
  1532     // Adjust the bcp in r13 by the displacement in rdx
  1533     __ addptr(r13, rdx);
  1534     // jsr returns atos that is not an oop
  1535     __ push_i(rax);
  1536     __ dispatch_only(vtos);
  1537     return;
  1540   // Normal (non-jsr) branch handling
  1542   // Adjust the bcp in r13 by the displacement in rdx
  1543   __ addptr(r13, rdx);
  1545   assert(UseLoopCounter || !UseOnStackReplacement,
  1546          "on-stack-replacement requires loop counters");
  1547   Label backedge_counter_overflow;
  1548   Label profile_method;
  1549   Label dispatch;
  1550   if (UseLoopCounter) {
  1551     // increment backedge counter for backward branches
  1552     // rax: MDO
  1553     // ebx: MDO bumped taken-count
  1554     // rcx: method
  1555     // rdx: target offset
  1556     // r13: target bcp
  1557     // r14: locals pointer
  1558     __ testl(rdx, rdx);             // check if forward or backward branch
  1559     __ jcc(Assembler::positive, dispatch); // count only if backward branch
  1561     // increment counter
  1562     __ movl(rax, Address(rcx, be_offset));        // load backedge counter
  1563     __ incrementl(rax, InvocationCounter::count_increment); // increment
  1564                                                             // counter
  1565     __ movl(Address(rcx, be_offset), rax);        // store counter
  1567     __ movl(rax, Address(rcx, inv_offset));    // load invocation counter
  1568     __ andl(rax, InvocationCounter::count_mask_value); // and the status bits
  1569     __ addl(rax, Address(rcx, be_offset));        // add both counters
  1571     if (ProfileInterpreter) {
  1572       // Test to see if we should create a method data oop
  1573       __ cmp32(rax,
  1574                ExternalAddress((address) &InvocationCounter::InterpreterProfileLimit));
  1575       __ jcc(Assembler::less, dispatch);
  1577       // if no method data exists, go to profile method
  1578       __ test_method_data_pointer(rax, profile_method);
  1580       if (UseOnStackReplacement) {
  1581         // check for overflow against ebx which is the MDO taken count
  1582         __ cmp32(rbx,
  1583                  ExternalAddress((address) &InvocationCounter::InterpreterBackwardBranchLimit));
  1584         __ jcc(Assembler::below, dispatch);
  1586         // When ProfileInterpreter is on, the backedge_count comes
  1587         // from the methodDataOop, which value does not get reset on
  1588         // the call to frequency_counter_overflow().  To avoid
  1589         // excessive calls to the overflow routine while the method is
  1590         // being compiled, add a second test to make sure the overflow
  1591         // function is called only once every overflow_frequency.
  1592         const int overflow_frequency = 1024;
  1593         __ andl(rbx, overflow_frequency - 1);
  1594         __ jcc(Assembler::zero, backedge_counter_overflow);
  1597     } else {
  1598       if (UseOnStackReplacement) {
  1599         // check for overflow against eax, which is the sum of the
  1600         // counters
  1601         __ cmp32(rax,
  1602                  ExternalAddress((address) &InvocationCounter::InterpreterBackwardBranchLimit));
  1603         __ jcc(Assembler::aboveEqual, backedge_counter_overflow);
  1607     __ bind(dispatch);
  1610   // Pre-load the next target bytecode into rbx
  1611   __ load_unsigned_byte(rbx, Address(r13, 0));
  1613   // continue with the bytecode @ target
  1614   // eax: return bci for jsr's, unused otherwise
  1615   // ebx: target bytecode
  1616   // r13: target bcp
  1617   __ dispatch_only(vtos);
  1619   if (UseLoopCounter) {
  1620     if (ProfileInterpreter) {
  1621       // Out-of-line code to allocate method data oop.
  1622       __ bind(profile_method);
  1623       __ call_VM(noreg,
  1624                  CAST_FROM_FN_PTR(address,
  1625                                   InterpreterRuntime::profile_method), r13);
  1626       __ load_unsigned_byte(rbx, Address(r13, 0));  // restore target bytecode
  1627       __ movptr(rcx, Address(rbp, method_offset));
  1628       __ movptr(rcx, Address(rcx,
  1629                              in_bytes(methodOopDesc::method_data_offset())));
  1630       __ movptr(Address(rbp, frame::interpreter_frame_mdx_offset * wordSize),
  1631                 rcx);
  1632       __ test_method_data_pointer(rcx, dispatch);
  1633       // offset non-null mdp by MDO::data_offset() + IR::profile_method()
  1634       __ addptr(rcx, in_bytes(methodDataOopDesc::data_offset()));
  1635       __ addptr(rcx, rax);
  1636       __ movptr(Address(rbp, frame::interpreter_frame_mdx_offset * wordSize),
  1637                 rcx);
  1638       __ jmp(dispatch);
  1641     if (UseOnStackReplacement) {
  1642       // invocation counter overflow
  1643       __ bind(backedge_counter_overflow);
  1644       __ negptr(rdx);
  1645       __ addptr(rdx, r13); // branch bcp
  1646       // IcoResult frequency_counter_overflow([JavaThread*], address branch_bcp)
  1647       __ call_VM(noreg,
  1648                  CAST_FROM_FN_PTR(address,
  1649                                   InterpreterRuntime::frequency_counter_overflow),
  1650                  rdx);
  1651       __ load_unsigned_byte(rbx, Address(r13, 0));  // restore target bytecode
  1653       // rax: osr nmethod (osr ok) or NULL (osr not possible)
  1654       // ebx: target bytecode
  1655       // rdx: scratch
  1656       // r14: locals pointer
  1657       // r13: bcp
  1658       __ testptr(rax, rax);                        // test result
  1659       __ jcc(Assembler::zero, dispatch);         // no osr if null
  1660       // nmethod may have been invalidated (VM may block upon call_VM return)
  1661       __ movl(rcx, Address(rax, nmethod::entry_bci_offset()));
  1662       __ cmpl(rcx, InvalidOSREntryBci);
  1663       __ jcc(Assembler::equal, dispatch);
  1665       // We have the address of an on stack replacement routine in eax
  1666       // We need to prepare to execute the OSR method. First we must
  1667       // migrate the locals and monitors off of the stack.
  1669       __ mov(r13, rax);                             // save the nmethod
  1671       call_VM(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_begin));
  1673       // eax is OSR buffer, move it to expected parameter location
  1674       __ mov(j_rarg0, rax);
  1676       // We use j_rarg definitions here so that registers don't conflict as parameter
  1677       // registers change across platforms as we are in the midst of a calling
  1678       // sequence to the OSR nmethod and we don't want collision. These are NOT parameters.
  1680       const Register retaddr = j_rarg2;
  1681       const Register sender_sp = j_rarg1;
  1683       // pop the interpreter frame
  1684       __ movptr(sender_sp, Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize)); // get sender sp
  1685       __ leave();                                // remove frame anchor
  1686       __ pop(retaddr);                           // get return address
  1687       __ mov(rsp, sender_sp);                   // set sp to sender sp
  1688       // Ensure compiled code always sees stack at proper alignment
  1689       __ andptr(rsp, -(StackAlignmentInBytes));
  1691       // unlike x86 we need no specialized return from compiled code
  1692       // to the interpreter or the call stub.
  1694       // push the return address
  1695       __ push(retaddr);
  1697       // and begin the OSR nmethod
  1698       __ jmp(Address(r13, nmethod::osr_entry_point_offset()));
  1704 void TemplateTable::if_0cmp(Condition cc) {
  1705   transition(itos, vtos);
  1706   // assume branch is more often taken than not (loops use backward branches)
  1707   Label not_taken;
  1708   __ testl(rax, rax);
  1709   __ jcc(j_not(cc), not_taken);
  1710   branch(false, false);
  1711   __ bind(not_taken);
  1712   __ profile_not_taken_branch(rax);
  1715 void TemplateTable::if_icmp(Condition cc) {
  1716   transition(itos, vtos);
  1717   // assume branch is more often taken than not (loops use backward branches)
  1718   Label not_taken;
  1719   __ pop_i(rdx);
  1720   __ cmpl(rdx, rax);
  1721   __ jcc(j_not(cc), not_taken);
  1722   branch(false, false);
  1723   __ bind(not_taken);
  1724   __ profile_not_taken_branch(rax);
  1727 void TemplateTable::if_nullcmp(Condition cc) {
  1728   transition(atos, vtos);
  1729   // assume branch is more often taken than not (loops use backward branches)
  1730   Label not_taken;
  1731   __ testptr(rax, rax);
  1732   __ jcc(j_not(cc), not_taken);
  1733   branch(false, false);
  1734   __ bind(not_taken);
  1735   __ profile_not_taken_branch(rax);
  1738 void TemplateTable::if_acmp(Condition cc) {
  1739   transition(atos, vtos);
  1740   // assume branch is more often taken than not (loops use backward branches)
  1741   Label not_taken;
  1742   __ pop_ptr(rdx);
  1743   __ cmpptr(rdx, rax);
  1744   __ jcc(j_not(cc), not_taken);
  1745   branch(false, false);
  1746   __ bind(not_taken);
  1747   __ profile_not_taken_branch(rax);
  1750 void TemplateTable::ret() {
  1751   transition(vtos, vtos);
  1752   locals_index(rbx);
  1753   __ movslq(rbx, iaddress(rbx)); // get return bci, compute return bcp
  1754   __ profile_ret(rbx, rcx);
  1755   __ get_method(rax);
  1756   __ movptr(r13, Address(rax, methodOopDesc::const_offset()));
  1757   __ lea(r13, Address(r13, rbx, Address::times_1,
  1758                       constMethodOopDesc::codes_offset()));
  1759   __ dispatch_next(vtos);
  1762 void TemplateTable::wide_ret() {
  1763   transition(vtos, vtos);
  1764   locals_index_wide(rbx);
  1765   __ movptr(rbx, aaddress(rbx)); // get return bci, compute return bcp
  1766   __ profile_ret(rbx, rcx);
  1767   __ get_method(rax);
  1768   __ movptr(r13, Address(rax, methodOopDesc::const_offset()));
  1769   __ lea(r13, Address(r13, rbx, Address::times_1, constMethodOopDesc::codes_offset()));
  1770   __ dispatch_next(vtos);
  1773 void TemplateTable::tableswitch() {
  1774   Label default_case, continue_execution;
  1775   transition(itos, vtos);
  1776   // align r13
  1777   __ lea(rbx, at_bcp(BytesPerInt));
  1778   __ andptr(rbx, -BytesPerInt);
  1779   // load lo & hi
  1780   __ movl(rcx, Address(rbx, BytesPerInt));
  1781   __ movl(rdx, Address(rbx, 2 * BytesPerInt));
  1782   __ bswapl(rcx);
  1783   __ bswapl(rdx);
  1784   // check against lo & hi
  1785   __ cmpl(rax, rcx);
  1786   __ jcc(Assembler::less, default_case);
  1787   __ cmpl(rax, rdx);
  1788   __ jcc(Assembler::greater, default_case);
  1789   // lookup dispatch offset
  1790   __ subl(rax, rcx);
  1791   __ movl(rdx, Address(rbx, rax, Address::times_4, 3 * BytesPerInt));
  1792   __ profile_switch_case(rax, rbx, rcx);
  1793   // continue execution
  1794   __ bind(continue_execution);
  1795   __ bswapl(rdx);
  1796   __ movl2ptr(rdx, rdx);
  1797   __ load_unsigned_byte(rbx, Address(r13, rdx, Address::times_1));
  1798   __ addptr(r13, rdx);
  1799   __ dispatch_only(vtos);
  1800   // handle default
  1801   __ bind(default_case);
  1802   __ profile_switch_default(rax);
  1803   __ movl(rdx, Address(rbx, 0));
  1804   __ jmp(continue_execution);
  1807 void TemplateTable::lookupswitch() {
  1808   transition(itos, itos);
  1809   __ stop("lookupswitch bytecode should have been rewritten");
  1812 void TemplateTable::fast_linearswitch() {
  1813   transition(itos, vtos);
  1814   Label loop_entry, loop, found, continue_execution;
  1815   // bswap rax so we can avoid bswapping the table entries
  1816   __ bswapl(rax);
  1817   // align r13
  1818   __ lea(rbx, at_bcp(BytesPerInt)); // btw: should be able to get rid of
  1819                                     // this instruction (change offsets
  1820                                     // below)
  1821   __ andptr(rbx, -BytesPerInt);
  1822   // set counter
  1823   __ movl(rcx, Address(rbx, BytesPerInt));
  1824   __ bswapl(rcx);
  1825   __ jmpb(loop_entry);
  1826   // table search
  1827   __ bind(loop);
  1828   __ cmpl(rax, Address(rbx, rcx, Address::times_8, 2 * BytesPerInt));
  1829   __ jcc(Assembler::equal, found);
  1830   __ bind(loop_entry);
  1831   __ decrementl(rcx);
  1832   __ jcc(Assembler::greaterEqual, loop);
  1833   // default case
  1834   __ profile_switch_default(rax);
  1835   __ movl(rdx, Address(rbx, 0));
  1836   __ jmp(continue_execution);
  1837   // entry found -> get offset
  1838   __ bind(found);
  1839   __ movl(rdx, Address(rbx, rcx, Address::times_8, 3 * BytesPerInt));
  1840   __ profile_switch_case(rcx, rax, rbx);
  1841   // continue execution
  1842   __ bind(continue_execution);
  1843   __ bswapl(rdx);
  1844   __ movl2ptr(rdx, rdx);
  1845   __ load_unsigned_byte(rbx, Address(r13, rdx, Address::times_1));
  1846   __ addptr(r13, rdx);
  1847   __ dispatch_only(vtos);
  1850 void TemplateTable::fast_binaryswitch() {
  1851   transition(itos, vtos);
  1852   // Implementation using the following core algorithm:
  1853   //
  1854   // int binary_search(int key, LookupswitchPair* array, int n) {
  1855   //   // Binary search according to "Methodik des Programmierens" by
  1856   //   // Edsger W. Dijkstra and W.H.J. Feijen, Addison Wesley Germany 1985.
  1857   //   int i = 0;
  1858   //   int j = n;
  1859   //   while (i+1 < j) {
  1860   //     // invariant P: 0 <= i < j <= n and (a[i] <= key < a[j] or Q)
  1861   //     // with      Q: for all i: 0 <= i < n: key < a[i]
  1862   //     // where a stands for the array and assuming that the (inexisting)
  1863   //     // element a[n] is infinitely big.
  1864   //     int h = (i + j) >> 1;
  1865   //     // i < h < j
  1866   //     if (key < array[h].fast_match()) {
  1867   //       j = h;
  1868   //     } else {
  1869   //       i = h;
  1870   //     }
  1871   //   }
  1872   //   // R: a[i] <= key < a[i+1] or Q
  1873   //   // (i.e., if key is within array, i is the correct index)
  1874   //   return i;
  1875   // }
  1877   // Register allocation
  1878   const Register key   = rax; // already set (tosca)
  1879   const Register array = rbx;
  1880   const Register i     = rcx;
  1881   const Register j     = rdx;
  1882   const Register h     = rdi;
  1883   const Register temp  = rsi;
  1885   // Find array start
  1886   __ lea(array, at_bcp(3 * BytesPerInt)); // btw: should be able to
  1887                                           // get rid of this
  1888                                           // instruction (change
  1889                                           // offsets below)
  1890   __ andptr(array, -BytesPerInt);
  1892   // Initialize i & j
  1893   __ xorl(i, i);                            // i = 0;
  1894   __ movl(j, Address(array, -BytesPerInt)); // j = length(array);
  1896   // Convert j into native byteordering
  1897   __ bswapl(j);
  1899   // And start
  1900   Label entry;
  1901   __ jmp(entry);
  1903   // binary search loop
  1905     Label loop;
  1906     __ bind(loop);
  1907     // int h = (i + j) >> 1;
  1908     __ leal(h, Address(i, j, Address::times_1)); // h = i + j;
  1909     __ sarl(h, 1);                               // h = (i + j) >> 1;
  1910     // if (key < array[h].fast_match()) {
  1911     //   j = h;
  1912     // } else {
  1913     //   i = h;
  1914     // }
  1915     // Convert array[h].match to native byte-ordering before compare
  1916     __ movl(temp, Address(array, h, Address::times_8));
  1917     __ bswapl(temp);
  1918     __ cmpl(key, temp);
  1919     // j = h if (key <  array[h].fast_match())
  1920     __ cmovl(Assembler::less, j, h);
  1921     // i = h if (key >= array[h].fast_match())
  1922     __ cmovl(Assembler::greaterEqual, i, h);
  1923     // while (i+1 < j)
  1924     __ bind(entry);
  1925     __ leal(h, Address(i, 1)); // i+1
  1926     __ cmpl(h, j);             // i+1 < j
  1927     __ jcc(Assembler::less, loop);
  1930   // end of binary search, result index is i (must check again!)
  1931   Label default_case;
  1932   // Convert array[i].match to native byte-ordering before compare
  1933   __ movl(temp, Address(array, i, Address::times_8));
  1934   __ bswapl(temp);
  1935   __ cmpl(key, temp);
  1936   __ jcc(Assembler::notEqual, default_case);
  1938   // entry found -> j = offset
  1939   __ movl(j , Address(array, i, Address::times_8, BytesPerInt));
  1940   __ profile_switch_case(i, key, array);
  1941   __ bswapl(j);
  1942   __ movl2ptr(j, j);
  1943   __ load_unsigned_byte(rbx, Address(r13, j, Address::times_1));
  1944   __ addptr(r13, j);
  1945   __ dispatch_only(vtos);
  1947   // default case -> j = default offset
  1948   __ bind(default_case);
  1949   __ profile_switch_default(i);
  1950   __ movl(j, Address(array, -2 * BytesPerInt));
  1951   __ bswapl(j);
  1952   __ movl2ptr(j, j);
  1953   __ load_unsigned_byte(rbx, Address(r13, j, Address::times_1));
  1954   __ addptr(r13, j);
  1955   __ dispatch_only(vtos);
  1959 void TemplateTable::_return(TosState state) {
  1960   transition(state, state);
  1961   assert(_desc->calls_vm(),
  1962          "inconsistent calls_vm information"); // call in remove_activation
  1964   if (_desc->bytecode() == Bytecodes::_return_register_finalizer) {
  1965     assert(state == vtos, "only valid state");
  1966     __ movptr(c_rarg1, aaddress(0));
  1967     __ load_klass(rdi, c_rarg1);
  1968     __ movl(rdi, Address(rdi, Klass::access_flags_offset_in_bytes() + sizeof(oopDesc)));
  1969     __ testl(rdi, JVM_ACC_HAS_FINALIZER);
  1970     Label skip_register_finalizer;
  1971     __ jcc(Assembler::zero, skip_register_finalizer);
  1973     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::register_finalizer), c_rarg1);
  1975     __ bind(skip_register_finalizer);
  1978   __ remove_activation(state, r13);
  1979   __ jmp(r13);
  1982 // ----------------------------------------------------------------------------
  1983 // Volatile variables demand their effects be made known to all CPU's
  1984 // in order.  Store buffers on most chips allow reads & writes to
  1985 // reorder; the JMM's ReadAfterWrite.java test fails in -Xint mode
  1986 // without some kind of memory barrier (i.e., it's not sufficient that
  1987 // the interpreter does not reorder volatile references, the hardware
  1988 // also must not reorder them).
  1989 //
  1990 // According to the new Java Memory Model (JMM):
  1991 // (1) All volatiles are serialized wrt to each other.  ALSO reads &
  1992 //     writes act as aquire & release, so:
  1993 // (2) A read cannot let unrelated NON-volatile memory refs that
  1994 //     happen after the read float up to before the read.  It's OK for
  1995 //     non-volatile memory refs that happen before the volatile read to
  1996 //     float down below it.
  1997 // (3) Similar a volatile write cannot let unrelated NON-volatile
  1998 //     memory refs that happen BEFORE the write float down to after the
  1999 //     write.  It's OK for non-volatile memory refs that happen after the
  2000 //     volatile write to float up before it.
  2001 //
  2002 // We only put in barriers around volatile refs (they are expensive),
  2003 // not _between_ memory refs (that would require us to track the
  2004 // flavor of the previous memory refs).  Requirements (2) and (3)
  2005 // require some barriers before volatile stores and after volatile
  2006 // loads.  These nearly cover requirement (1) but miss the
  2007 // volatile-store-volatile-load case.  This final case is placed after
  2008 // volatile-stores although it could just as well go before
  2009 // volatile-loads.
  2010 void TemplateTable::volatile_barrier(Assembler::Membar_mask_bits
  2011                                      order_constraint) {
  2012   // Helper function to insert a is-volatile test and memory barrier
  2013   if (os::is_MP()) { // Not needed on single CPU
  2014     __ membar(order_constraint);
  2018 void TemplateTable::resolve_cache_and_index(int byte_no,
  2019                                             Register result,
  2020                                             Register Rcache,
  2021                                             Register index,
  2022                                             size_t index_size) {
  2023   const Register temp = rbx;
  2024   assert_different_registers(result, Rcache, index, temp);
  2026   Label resolved;
  2027   __ get_cache_and_index_at_bcp(Rcache, index, 1, index_size);
  2028   if (byte_no == f1_oop) {
  2029     // We are resolved if the f1 field contains a non-null object (CallSite, etc.)
  2030     // This kind of CP cache entry does not need to match the flags byte, because
  2031     // there is a 1-1 relation between bytecode type and CP entry type.
  2032     assert(result != noreg, ""); //else do cmpptr(Address(...), (int32_t) NULL_WORD)
  2033     __ movptr(result, Address(Rcache, index, Address::times_ptr, constantPoolCacheOopDesc::base_offset() + ConstantPoolCacheEntry::f1_offset()));
  2034     __ testptr(result, result);
  2035     __ jcc(Assembler::notEqual, resolved);
  2036   } else {
  2037     assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range");
  2038     assert(result == noreg, "");  //else change code for setting result
  2039     const int shift_count = (1 + byte_no) * BitsPerByte;
  2040     __ movl(temp, Address(Rcache, index, Address::times_ptr, constantPoolCacheOopDesc::base_offset() + ConstantPoolCacheEntry::indices_offset()));
  2041     __ shrl(temp, shift_count);
  2042     // have we resolved this bytecode?
  2043     __ andl(temp, 0xFF);
  2044     __ cmpl(temp, (int) bytecode());
  2045     __ jcc(Assembler::equal, resolved);
  2048   // resolve first time through
  2049   address entry;
  2050   switch (bytecode()) {
  2051   case Bytecodes::_getstatic:
  2052   case Bytecodes::_putstatic:
  2053   case Bytecodes::_getfield:
  2054   case Bytecodes::_putfield:
  2055     entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_get_put);
  2056     break;
  2057   case Bytecodes::_invokevirtual:
  2058   case Bytecodes::_invokespecial:
  2059   case Bytecodes::_invokestatic:
  2060   case Bytecodes::_invokeinterface:
  2061     entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_invoke);
  2062     break;
  2063   case Bytecodes::_invokedynamic:
  2064     entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_invokedynamic);
  2065     break;
  2066   default:
  2067     ShouldNotReachHere();
  2068     break;
  2070   __ movl(temp, (int) bytecode());
  2071   __ call_VM(noreg, entry, temp);
  2073   // Update registers with resolved info
  2074   __ get_cache_and_index_at_bcp(Rcache, index, 1, index_size);
  2075   if (result != noreg)
  2076     __ movptr(result, Address(Rcache, index, Address::times_ptr, constantPoolCacheOopDesc::base_offset() + ConstantPoolCacheEntry::f1_offset()));
  2077   __ bind(resolved);
  2080 // The Rcache and index registers must be set before call
  2081 void TemplateTable::load_field_cp_cache_entry(Register obj,
  2082                                               Register cache,
  2083                                               Register index,
  2084                                               Register off,
  2085                                               Register flags,
  2086                                               bool is_static = false) {
  2087   assert_different_registers(cache, index, flags, off);
  2089   ByteSize cp_base_offset = constantPoolCacheOopDesc::base_offset();
  2090   // Field offset
  2091   __ movptr(off, Address(cache, index, Address::times_8,
  2092                          in_bytes(cp_base_offset +
  2093                                   ConstantPoolCacheEntry::f2_offset())));
  2094   // Flags
  2095   __ movl(flags, Address(cache, index, Address::times_8,
  2096                          in_bytes(cp_base_offset +
  2097                                   ConstantPoolCacheEntry::flags_offset())));
  2099   // klass overwrite register
  2100   if (is_static) {
  2101     __ movptr(obj, Address(cache, index, Address::times_8,
  2102                            in_bytes(cp_base_offset +
  2103                                     ConstantPoolCacheEntry::f1_offset())));
  2107 void TemplateTable::load_invoke_cp_cache_entry(int byte_no,
  2108                                                Register method,
  2109                                                Register itable_index,
  2110                                                Register flags,
  2111                                                bool is_invokevirtual,
  2112                                                bool is_invokevfinal, /*unused*/
  2113                                                bool is_invokedynamic) {
  2114   // setup registers
  2115   const Register cache = rcx;
  2116   const Register index = rdx;
  2117   assert_different_registers(method, flags);
  2118   assert_different_registers(method, cache, index);
  2119   assert_different_registers(itable_index, flags);
  2120   assert_different_registers(itable_index, cache, index);
  2121   // determine constant pool cache field offsets
  2122   const int method_offset = in_bytes(
  2123     constantPoolCacheOopDesc::base_offset() +
  2124       (is_invokevirtual
  2125        ? ConstantPoolCacheEntry::f2_offset()
  2126        : ConstantPoolCacheEntry::f1_offset()));
  2127   const int flags_offset = in_bytes(constantPoolCacheOopDesc::base_offset() +
  2128                                     ConstantPoolCacheEntry::flags_offset());
  2129   // access constant pool cache fields
  2130   const int index_offset = in_bytes(constantPoolCacheOopDesc::base_offset() +
  2131                                     ConstantPoolCacheEntry::f2_offset());
  2133   if (byte_no == f1_oop) {
  2134     // Resolved f1_oop goes directly into 'method' register.
  2135     assert(is_invokedynamic, "");
  2136     resolve_cache_and_index(byte_no, method, cache, index, sizeof(u4));
  2137   } else {
  2138     resolve_cache_and_index(byte_no, noreg, cache, index, sizeof(u2));
  2139     __ movptr(method, Address(cache, index, Address::times_ptr, method_offset));
  2141   if (itable_index != noreg) {
  2142     __ movptr(itable_index, Address(cache, index, Address::times_ptr, index_offset));
  2144   __ movl(flags, Address(cache, index, Address::times_ptr, flags_offset));
  2148 // The registers cache and index expected to be set before call.
  2149 // Correct values of the cache and index registers are preserved.
  2150 void TemplateTable::jvmti_post_field_access(Register cache, Register index,
  2151                                             bool is_static, bool has_tos) {
  2152   // do the JVMTI work here to avoid disturbing the register state below
  2153   // We use c_rarg registers here because we want to use the register used in
  2154   // the call to the VM
  2155   if (JvmtiExport::can_post_field_access()) {
  2156     // Check to see if a field access watch has been set before we
  2157     // take the time to call into the VM.
  2158     Label L1;
  2159     assert_different_registers(cache, index, rax);
  2160     __ mov32(rax, ExternalAddress((address) JvmtiExport::get_field_access_count_addr()));
  2161     __ testl(rax, rax);
  2162     __ jcc(Assembler::zero, L1);
  2164     __ get_cache_and_index_at_bcp(c_rarg2, c_rarg3, 1);
  2166     // cache entry pointer
  2167     __ addptr(c_rarg2, in_bytes(constantPoolCacheOopDesc::base_offset()));
  2168     __ shll(c_rarg3, LogBytesPerWord);
  2169     __ addptr(c_rarg2, c_rarg3);
  2170     if (is_static) {
  2171       __ xorl(c_rarg1, c_rarg1); // NULL object reference
  2172     } else {
  2173       __ movptr(c_rarg1, at_tos()); // get object pointer without popping it
  2174       __ verify_oop(c_rarg1);
  2176     // c_rarg1: object pointer or NULL
  2177     // c_rarg2: cache entry pointer
  2178     // c_rarg3: jvalue object on the stack
  2179     __ call_VM(noreg, CAST_FROM_FN_PTR(address,
  2180                                        InterpreterRuntime::post_field_access),
  2181                c_rarg1, c_rarg2, c_rarg3);
  2182     __ get_cache_and_index_at_bcp(cache, index, 1);
  2183     __ bind(L1);
  2187 void TemplateTable::pop_and_check_object(Register r) {
  2188   __ pop_ptr(r);
  2189   __ null_check(r);  // for field access must check obj.
  2190   __ verify_oop(r);
  2193 void TemplateTable::getfield_or_static(int byte_no, bool is_static) {
  2194   transition(vtos, vtos);
  2196   const Register cache = rcx;
  2197   const Register index = rdx;
  2198   const Register obj   = c_rarg3;
  2199   const Register off   = rbx;
  2200   const Register flags = rax;
  2201   const Register bc = c_rarg3; // uses same reg as obj, so don't mix them
  2203   resolve_cache_and_index(byte_no, noreg, cache, index, sizeof(u2));
  2204   jvmti_post_field_access(cache, index, is_static, false);
  2205   load_field_cp_cache_entry(obj, cache, index, off, flags, is_static);
  2207   if (!is_static) {
  2208     // obj is on the stack
  2209     pop_and_check_object(obj);
  2212   const Address field(obj, off, Address::times_1);
  2214   Label Done, notByte, notInt, notShort, notChar,
  2215               notLong, notFloat, notObj, notDouble;
  2217   __ shrl(flags, ConstantPoolCacheEntry::tosBits);
  2218   assert(btos == 0, "change code, btos != 0");
  2220   __ andl(flags, 0x0F);
  2221   __ jcc(Assembler::notZero, notByte);
  2222   // btos
  2223   __ load_signed_byte(rax, field);
  2224   __ push(btos);
  2225   // Rewrite bytecode to be faster
  2226   if (!is_static) {
  2227     patch_bytecode(Bytecodes::_fast_bgetfield, bc, rbx);
  2229   __ jmp(Done);
  2231   __ bind(notByte);
  2232   __ cmpl(flags, atos);
  2233   __ jcc(Assembler::notEqual, notObj);
  2234   // atos
  2235   __ load_heap_oop(rax, field);
  2236   __ push(atos);
  2237   if (!is_static) {
  2238     patch_bytecode(Bytecodes::_fast_agetfield, bc, rbx);
  2240   __ jmp(Done);
  2242   __ bind(notObj);
  2243   __ cmpl(flags, itos);
  2244   __ jcc(Assembler::notEqual, notInt);
  2245   // itos
  2246   __ movl(rax, field);
  2247   __ push(itos);
  2248   // Rewrite bytecode to be faster
  2249   if (!is_static) {
  2250     patch_bytecode(Bytecodes::_fast_igetfield, bc, rbx);
  2252   __ jmp(Done);
  2254   __ bind(notInt);
  2255   __ cmpl(flags, ctos);
  2256   __ jcc(Assembler::notEqual, notChar);
  2257   // ctos
  2258   __ load_unsigned_short(rax, field);
  2259   __ push(ctos);
  2260   // Rewrite bytecode to be faster
  2261   if (!is_static) {
  2262     patch_bytecode(Bytecodes::_fast_cgetfield, bc, rbx);
  2264   __ jmp(Done);
  2266   __ bind(notChar);
  2267   __ cmpl(flags, stos);
  2268   __ jcc(Assembler::notEqual, notShort);
  2269   // stos
  2270   __ load_signed_short(rax, field);
  2271   __ push(stos);
  2272   // Rewrite bytecode to be faster
  2273   if (!is_static) {
  2274     patch_bytecode(Bytecodes::_fast_sgetfield, bc, rbx);
  2276   __ jmp(Done);
  2278   __ bind(notShort);
  2279   __ cmpl(flags, ltos);
  2280   __ jcc(Assembler::notEqual, notLong);
  2281   // ltos
  2282   __ movq(rax, field);
  2283   __ push(ltos);
  2284   // Rewrite bytecode to be faster
  2285   if (!is_static) {
  2286     patch_bytecode(Bytecodes::_fast_lgetfield, bc, rbx);
  2288   __ jmp(Done);
  2290   __ bind(notLong);
  2291   __ cmpl(flags, ftos);
  2292   __ jcc(Assembler::notEqual, notFloat);
  2293   // ftos
  2294   __ movflt(xmm0, field);
  2295   __ push(ftos);
  2296   // Rewrite bytecode to be faster
  2297   if (!is_static) {
  2298     patch_bytecode(Bytecodes::_fast_fgetfield, bc, rbx);
  2300   __ jmp(Done);
  2302   __ bind(notFloat);
  2303 #ifdef ASSERT
  2304   __ cmpl(flags, dtos);
  2305   __ jcc(Assembler::notEqual, notDouble);
  2306 #endif
  2307   // dtos
  2308   __ movdbl(xmm0, field);
  2309   __ push(dtos);
  2310   // Rewrite bytecode to be faster
  2311   if (!is_static) {
  2312     patch_bytecode(Bytecodes::_fast_dgetfield, bc, rbx);
  2314 #ifdef ASSERT
  2315   __ jmp(Done);
  2317   __ bind(notDouble);
  2318   __ stop("Bad state");
  2319 #endif
  2321   __ bind(Done);
  2322   // [jk] not needed currently
  2323   // volatile_barrier(Assembler::Membar_mask_bits(Assembler::LoadLoad |
  2324   //                                              Assembler::LoadStore));
  2328 void TemplateTable::getfield(int byte_no) {
  2329   getfield_or_static(byte_no, false);
  2332 void TemplateTable::getstatic(int byte_no) {
  2333   getfield_or_static(byte_no, true);
  2336 // The registers cache and index expected to be set before call.
  2337 // The function may destroy various registers, just not the cache and index registers.
  2338 void TemplateTable::jvmti_post_field_mod(Register cache, Register index, bool is_static) {
  2339   transition(vtos, vtos);
  2341   ByteSize cp_base_offset = constantPoolCacheOopDesc::base_offset();
  2343   if (JvmtiExport::can_post_field_modification()) {
  2344     // Check to see if a field modification watch has been set before
  2345     // we take the time to call into the VM.
  2346     Label L1;
  2347     assert_different_registers(cache, index, rax);
  2348     __ mov32(rax, ExternalAddress((address)JvmtiExport::get_field_modification_count_addr()));
  2349     __ testl(rax, rax);
  2350     __ jcc(Assembler::zero, L1);
  2352     __ get_cache_and_index_at_bcp(c_rarg2, rscratch1, 1);
  2354     if (is_static) {
  2355       // Life is simple.  Null out the object pointer.
  2356       __ xorl(c_rarg1, c_rarg1);
  2357     } else {
  2358       // Life is harder. The stack holds the value on top, followed by
  2359       // the object.  We don't know the size of the value, though; it
  2360       // could be one or two words depending on its type. As a result,
  2361       // we must find the type to determine where the object is.
  2362       __ movl(c_rarg3, Address(c_rarg2, rscratch1,
  2363                            Address::times_8,
  2364                            in_bytes(cp_base_offset +
  2365                                      ConstantPoolCacheEntry::flags_offset())));
  2366       __ shrl(c_rarg3, ConstantPoolCacheEntry::tosBits);
  2367       // Make sure we don't need to mask rcx for tosBits after the
  2368       // above shift
  2369       ConstantPoolCacheEntry::verify_tosBits();
  2370       __ movptr(c_rarg1, at_tos_p1());  // initially assume a one word jvalue
  2371       __ cmpl(c_rarg3, ltos);
  2372       __ cmovptr(Assembler::equal,
  2373                  c_rarg1, at_tos_p2()); // ltos (two word jvalue)
  2374       __ cmpl(c_rarg3, dtos);
  2375       __ cmovptr(Assembler::equal,
  2376                  c_rarg1, at_tos_p2()); // dtos (two word jvalue)
  2378     // cache entry pointer
  2379     __ addptr(c_rarg2, in_bytes(cp_base_offset));
  2380     __ shll(rscratch1, LogBytesPerWord);
  2381     __ addptr(c_rarg2, rscratch1);
  2382     // object (tos)
  2383     __ mov(c_rarg3, rsp);
  2384     // c_rarg1: object pointer set up above (NULL if static)
  2385     // c_rarg2: cache entry pointer
  2386     // c_rarg3: jvalue object on the stack
  2387     __ call_VM(noreg,
  2388                CAST_FROM_FN_PTR(address,
  2389                                 InterpreterRuntime::post_field_modification),
  2390                c_rarg1, c_rarg2, c_rarg3);
  2391     __ get_cache_and_index_at_bcp(cache, index, 1);
  2392     __ bind(L1);
  2396 void TemplateTable::putfield_or_static(int byte_no, bool is_static) {
  2397   transition(vtos, vtos);
  2399   const Register cache = rcx;
  2400   const Register index = rdx;
  2401   const Register obj   = rcx;
  2402   const Register off   = rbx;
  2403   const Register flags = rax;
  2404   const Register bc    = c_rarg3;
  2406   resolve_cache_and_index(byte_no, noreg, cache, index, sizeof(u2));
  2407   jvmti_post_field_mod(cache, index, is_static);
  2408   load_field_cp_cache_entry(obj, cache, index, off, flags, is_static);
  2410   // [jk] not needed currently
  2411   // volatile_barrier(Assembler::Membar_mask_bits(Assembler::LoadStore |
  2412   //                                              Assembler::StoreStore));
  2414   Label notVolatile, Done;
  2415   __ movl(rdx, flags);
  2416   __ shrl(rdx, ConstantPoolCacheEntry::volatileField);
  2417   __ andl(rdx, 0x1);
  2419   // field address
  2420   const Address field(obj, off, Address::times_1);
  2422   Label notByte, notInt, notShort, notChar,
  2423         notLong, notFloat, notObj, notDouble;
  2425   __ shrl(flags, ConstantPoolCacheEntry::tosBits);
  2427   assert(btos == 0, "change code, btos != 0");
  2428   __ andl(flags, 0x0f);
  2429   __ jcc(Assembler::notZero, notByte);
  2430   // btos
  2431   __ pop(btos);
  2432   if (!is_static) pop_and_check_object(obj);
  2433   __ movb(field, rax);
  2434   if (!is_static) {
  2435     patch_bytecode(Bytecodes::_fast_bputfield, bc, rbx);
  2437   __ jmp(Done);
  2439   __ bind(notByte);
  2440   __ cmpl(flags, atos);
  2441   __ jcc(Assembler::notEqual, notObj);
  2442   // atos
  2443   __ pop(atos);
  2444   if (!is_static) pop_and_check_object(obj);
  2446   // Store into the field
  2447   do_oop_store(_masm, field, rax, _bs->kind(), false);
  2449   if (!is_static) {
  2450     patch_bytecode(Bytecodes::_fast_aputfield, bc, rbx);
  2452   __ jmp(Done);
  2454   __ bind(notObj);
  2455   __ cmpl(flags, itos);
  2456   __ jcc(Assembler::notEqual, notInt);
  2457   // itos
  2458   __ pop(itos);
  2459   if (!is_static) pop_and_check_object(obj);
  2460   __ movl(field, rax);
  2461   if (!is_static) {
  2462     patch_bytecode(Bytecodes::_fast_iputfield, bc, rbx);
  2464   __ jmp(Done);
  2466   __ bind(notInt);
  2467   __ cmpl(flags, ctos);
  2468   __ jcc(Assembler::notEqual, notChar);
  2469   // ctos
  2470   __ pop(ctos);
  2471   if (!is_static) pop_and_check_object(obj);
  2472   __ movw(field, rax);
  2473   if (!is_static) {
  2474     patch_bytecode(Bytecodes::_fast_cputfield, bc, rbx);
  2476   __ jmp(Done);
  2478   __ bind(notChar);
  2479   __ cmpl(flags, stos);
  2480   __ jcc(Assembler::notEqual, notShort);
  2481   // stos
  2482   __ pop(stos);
  2483   if (!is_static) pop_and_check_object(obj);
  2484   __ movw(field, rax);
  2485   if (!is_static) {
  2486     patch_bytecode(Bytecodes::_fast_sputfield, bc, rbx);
  2488   __ jmp(Done);
  2490   __ bind(notShort);
  2491   __ cmpl(flags, ltos);
  2492   __ jcc(Assembler::notEqual, notLong);
  2493   // ltos
  2494   __ pop(ltos);
  2495   if (!is_static) pop_and_check_object(obj);
  2496   __ movq(field, rax);
  2497   if (!is_static) {
  2498     patch_bytecode(Bytecodes::_fast_lputfield, bc, rbx);
  2500   __ jmp(Done);
  2502   __ bind(notLong);
  2503   __ cmpl(flags, ftos);
  2504   __ jcc(Assembler::notEqual, notFloat);
  2505   // ftos
  2506   __ pop(ftos);
  2507   if (!is_static) pop_and_check_object(obj);
  2508   __ movflt(field, xmm0);
  2509   if (!is_static) {
  2510     patch_bytecode(Bytecodes::_fast_fputfield, bc, rbx);
  2512   __ jmp(Done);
  2514   __ bind(notFloat);
  2515 #ifdef ASSERT
  2516   __ cmpl(flags, dtos);
  2517   __ jcc(Assembler::notEqual, notDouble);
  2518 #endif
  2519   // dtos
  2520   __ pop(dtos);
  2521   if (!is_static) pop_and_check_object(obj);
  2522   __ movdbl(field, xmm0);
  2523   if (!is_static) {
  2524     patch_bytecode(Bytecodes::_fast_dputfield, bc, rbx);
  2527 #ifdef ASSERT
  2528   __ jmp(Done);
  2530   __ bind(notDouble);
  2531   __ stop("Bad state");
  2532 #endif
  2534   __ bind(Done);
  2535   // Check for volatile store
  2536   __ testl(rdx, rdx);
  2537   __ jcc(Assembler::zero, notVolatile);
  2538   volatile_barrier(Assembler::Membar_mask_bits(Assembler::StoreLoad |
  2539                                                Assembler::StoreStore));
  2541   __ bind(notVolatile);
  2544 void TemplateTable::putfield(int byte_no) {
  2545   putfield_or_static(byte_no, false);
  2548 void TemplateTable::putstatic(int byte_no) {
  2549   putfield_or_static(byte_no, true);
  2552 void TemplateTable::jvmti_post_fast_field_mod() {
  2553   if (JvmtiExport::can_post_field_modification()) {
  2554     // Check to see if a field modification watch has been set before
  2555     // we take the time to call into the VM.
  2556     Label L2;
  2557     __ mov32(c_rarg3, ExternalAddress((address)JvmtiExport::get_field_modification_count_addr()));
  2558     __ testl(c_rarg3, c_rarg3);
  2559     __ jcc(Assembler::zero, L2);
  2560     __ pop_ptr(rbx);                  // copy the object pointer from tos
  2561     __ verify_oop(rbx);
  2562     __ push_ptr(rbx);                 // put the object pointer back on tos
  2563     __ subptr(rsp, sizeof(jvalue));  // add space for a jvalue object
  2564     __ mov(c_rarg3, rsp);
  2565     const Address field(c_rarg3, 0);
  2567     switch (bytecode()) {          // load values into the jvalue object
  2568     case Bytecodes::_fast_aputfield: __ movq(field, rax); break;
  2569     case Bytecodes::_fast_lputfield: __ movq(field, rax); break;
  2570     case Bytecodes::_fast_iputfield: __ movl(field, rax); break;
  2571     case Bytecodes::_fast_bputfield: __ movb(field, rax); break;
  2572     case Bytecodes::_fast_sputfield: // fall through
  2573     case Bytecodes::_fast_cputfield: __ movw(field, rax); break;
  2574     case Bytecodes::_fast_fputfield: __ movflt(field, xmm0); break;
  2575     case Bytecodes::_fast_dputfield: __ movdbl(field, xmm0); break;
  2576     default:
  2577       ShouldNotReachHere();
  2580     // Save rax because call_VM() will clobber it, then use it for
  2581     // JVMTI purposes
  2582     __ push(rax);
  2583     // access constant pool cache entry
  2584     __ get_cache_entry_pointer_at_bcp(c_rarg2, rax, 1);
  2585     __ verify_oop(rbx);
  2586     // rbx: object pointer copied above
  2587     // c_rarg2: cache entry pointer
  2588     // c_rarg3: jvalue object on the stack
  2589     __ call_VM(noreg,
  2590                CAST_FROM_FN_PTR(address,
  2591                                 InterpreterRuntime::post_field_modification),
  2592                rbx, c_rarg2, c_rarg3);
  2593     __ pop(rax);     // restore lower value
  2594     __ addptr(rsp, sizeof(jvalue));  // release jvalue object space
  2595     __ bind(L2);
  2599 void TemplateTable::fast_storefield(TosState state) {
  2600   transition(state, vtos);
  2602   ByteSize base = constantPoolCacheOopDesc::base_offset();
  2604   jvmti_post_fast_field_mod();
  2606   // access constant pool cache
  2607   __ get_cache_and_index_at_bcp(rcx, rbx, 1);
  2609   // test for volatile with rdx
  2610   __ movl(rdx, Address(rcx, rbx, Address::times_8,
  2611                        in_bytes(base +
  2612                                 ConstantPoolCacheEntry::flags_offset())));
  2614   // replace index with field offset from cache entry
  2615   __ movptr(rbx, Address(rcx, rbx, Address::times_8,
  2616                          in_bytes(base + ConstantPoolCacheEntry::f2_offset())));
  2618   // [jk] not needed currently
  2619   // volatile_barrier(Assembler::Membar_mask_bits(Assembler::LoadStore |
  2620   //                                              Assembler::StoreStore));
  2622   Label notVolatile;
  2623   __ shrl(rdx, ConstantPoolCacheEntry::volatileField);
  2624   __ andl(rdx, 0x1);
  2626   // Get object from stack
  2627   pop_and_check_object(rcx);
  2629   // field address
  2630   const Address field(rcx, rbx, Address::times_1);
  2632   // access field
  2633   switch (bytecode()) {
  2634   case Bytecodes::_fast_aputfield:
  2635     do_oop_store(_masm, field, rax, _bs->kind(), false);
  2636     break;
  2637   case Bytecodes::_fast_lputfield:
  2638     __ movq(field, rax);
  2639     break;
  2640   case Bytecodes::_fast_iputfield:
  2641     __ movl(field, rax);
  2642     break;
  2643   case Bytecodes::_fast_bputfield:
  2644     __ movb(field, rax);
  2645     break;
  2646   case Bytecodes::_fast_sputfield:
  2647     // fall through
  2648   case Bytecodes::_fast_cputfield:
  2649     __ movw(field, rax);
  2650     break;
  2651   case Bytecodes::_fast_fputfield:
  2652     __ movflt(field, xmm0);
  2653     break;
  2654   case Bytecodes::_fast_dputfield:
  2655     __ movdbl(field, xmm0);
  2656     break;
  2657   default:
  2658     ShouldNotReachHere();
  2661   // Check for volatile store
  2662   __ testl(rdx, rdx);
  2663   __ jcc(Assembler::zero, notVolatile);
  2664   volatile_barrier(Assembler::Membar_mask_bits(Assembler::StoreLoad |
  2665                                                Assembler::StoreStore));
  2666   __ bind(notVolatile);
  2670 void TemplateTable::fast_accessfield(TosState state) {
  2671   transition(atos, state);
  2673   // Do the JVMTI work here to avoid disturbing the register state below
  2674   if (JvmtiExport::can_post_field_access()) {
  2675     // Check to see if a field access watch has been set before we
  2676     // take the time to call into the VM.
  2677     Label L1;
  2678     __ mov32(rcx, ExternalAddress((address) JvmtiExport::get_field_access_count_addr()));
  2679     __ testl(rcx, rcx);
  2680     __ jcc(Assembler::zero, L1);
  2681     // access constant pool cache entry
  2682     __ get_cache_entry_pointer_at_bcp(c_rarg2, rcx, 1);
  2683     __ verify_oop(rax);
  2684     __ mov(r12, rax);  // save object pointer before call_VM() clobbers it
  2685     __ mov(c_rarg1, rax);
  2686     // c_rarg1: object pointer copied above
  2687     // c_rarg2: cache entry pointer
  2688     __ call_VM(noreg,
  2689                CAST_FROM_FN_PTR(address,
  2690                                 InterpreterRuntime::post_field_access),
  2691                c_rarg1, c_rarg2);
  2692     __ mov(rax, r12); // restore object pointer
  2693     __ reinit_heapbase();
  2694     __ bind(L1);
  2697   // access constant pool cache
  2698   __ get_cache_and_index_at_bcp(rcx, rbx, 1);
  2699   // replace index with field offset from cache entry
  2700   // [jk] not needed currently
  2701   // if (os::is_MP()) {
  2702   //   __ movl(rdx, Address(rcx, rbx, Address::times_8,
  2703   //                        in_bytes(constantPoolCacheOopDesc::base_offset() +
  2704   //                                 ConstantPoolCacheEntry::flags_offset())));
  2705   //   __ shrl(rdx, ConstantPoolCacheEntry::volatileField);
  2706   //   __ andl(rdx, 0x1);
  2707   // }
  2708   __ movptr(rbx, Address(rcx, rbx, Address::times_8,
  2709                          in_bytes(constantPoolCacheOopDesc::base_offset() +
  2710                                   ConstantPoolCacheEntry::f2_offset())));
  2712   // rax: object
  2713   __ verify_oop(rax);
  2714   __ null_check(rax);
  2715   Address field(rax, rbx, Address::times_1);
  2717   // access field
  2718   switch (bytecode()) {
  2719   case Bytecodes::_fast_agetfield:
  2720     __ load_heap_oop(rax, field);
  2721     __ verify_oop(rax);
  2722     break;
  2723   case Bytecodes::_fast_lgetfield:
  2724     __ movq(rax, field);
  2725     break;
  2726   case Bytecodes::_fast_igetfield:
  2727     __ movl(rax, field);
  2728     break;
  2729   case Bytecodes::_fast_bgetfield:
  2730     __ movsbl(rax, field);
  2731     break;
  2732   case Bytecodes::_fast_sgetfield:
  2733     __ load_signed_short(rax, field);
  2734     break;
  2735   case Bytecodes::_fast_cgetfield:
  2736     __ load_unsigned_short(rax, field);
  2737     break;
  2738   case Bytecodes::_fast_fgetfield:
  2739     __ movflt(xmm0, field);
  2740     break;
  2741   case Bytecodes::_fast_dgetfield:
  2742     __ movdbl(xmm0, field);
  2743     break;
  2744   default:
  2745     ShouldNotReachHere();
  2747   // [jk] not needed currently
  2748   // if (os::is_MP()) {
  2749   //   Label notVolatile;
  2750   //   __ testl(rdx, rdx);
  2751   //   __ jcc(Assembler::zero, notVolatile);
  2752   //   __ membar(Assembler::LoadLoad);
  2753   //   __ bind(notVolatile);
  2754   //};
  2757 void TemplateTable::fast_xaccess(TosState state) {
  2758   transition(vtos, state);
  2760   // get receiver
  2761   __ movptr(rax, aaddress(0));
  2762   // access constant pool cache
  2763   __ get_cache_and_index_at_bcp(rcx, rdx, 2);
  2764   __ movptr(rbx,
  2765             Address(rcx, rdx, Address::times_8,
  2766                     in_bytes(constantPoolCacheOopDesc::base_offset() +
  2767                              ConstantPoolCacheEntry::f2_offset())));
  2768   // make sure exception is reported in correct bcp range (getfield is
  2769   // next instruction)
  2770   __ increment(r13);
  2771   __ null_check(rax);
  2772   switch (state) {
  2773   case itos:
  2774     __ movl(rax, Address(rax, rbx, Address::times_1));
  2775     break;
  2776   case atos:
  2777     __ load_heap_oop(rax, Address(rax, rbx, Address::times_1));
  2778     __ verify_oop(rax);
  2779     break;
  2780   case ftos:
  2781     __ movflt(xmm0, Address(rax, rbx, Address::times_1));
  2782     break;
  2783   default:
  2784     ShouldNotReachHere();
  2787   // [jk] not needed currently
  2788   // if (os::is_MP()) {
  2789   //   Label notVolatile;
  2790   //   __ movl(rdx, Address(rcx, rdx, Address::times_8,
  2791   //                        in_bytes(constantPoolCacheOopDesc::base_offset() +
  2792   //                                 ConstantPoolCacheEntry::flags_offset())));
  2793   //   __ shrl(rdx, ConstantPoolCacheEntry::volatileField);
  2794   //   __ testl(rdx, 0x1);
  2795   //   __ jcc(Assembler::zero, notVolatile);
  2796   //   __ membar(Assembler::LoadLoad);
  2797   //   __ bind(notVolatile);
  2798   // }
  2800   __ decrement(r13);
  2805 //-----------------------------------------------------------------------------
  2806 // Calls
  2808 void TemplateTable::count_calls(Register method, Register temp) {
  2809   // implemented elsewhere
  2810   ShouldNotReachHere();
  2813 void TemplateTable::prepare_invoke(Register method, Register index, int byte_no) {
  2814   // determine flags
  2815   Bytecodes::Code code = bytecode();
  2816   const bool is_invokeinterface  = code == Bytecodes::_invokeinterface;
  2817   const bool is_invokedynamic    = code == Bytecodes::_invokedynamic;
  2818   const bool is_invokevirtual    = code == Bytecodes::_invokevirtual;
  2819   const bool is_invokespecial    = code == Bytecodes::_invokespecial;
  2820   const bool load_receiver      = (code != Bytecodes::_invokestatic && code != Bytecodes::_invokedynamic);
  2821   const bool receiver_null_check = is_invokespecial;
  2822   const bool save_flags = is_invokeinterface || is_invokevirtual;
  2823   // setup registers & access constant pool cache
  2824   const Register recv   = rcx;
  2825   const Register flags  = rdx;
  2826   assert_different_registers(method, index, recv, flags);
  2828   // save 'interpreter return address'
  2829   __ save_bcp();
  2831   load_invoke_cp_cache_entry(byte_no, method, index, flags, is_invokevirtual, false, is_invokedynamic);
  2833   // load receiver if needed (note: no return address pushed yet)
  2834   if (load_receiver) {
  2835     assert(!is_invokedynamic, "");
  2836     __ movl(recv, flags);
  2837     __ andl(recv, 0xFF);
  2838     Address recv_addr(rsp, recv, Address::times_8, -Interpreter::expr_offset_in_bytes(1));
  2839     __ movptr(recv, recv_addr);
  2840     __ verify_oop(recv);
  2843   // do null check if needed
  2844   if (receiver_null_check) {
  2845     __ null_check(recv);
  2848   if (save_flags) {
  2849     __ movl(r13, flags);
  2852   // compute return type
  2853   __ shrl(flags, ConstantPoolCacheEntry::tosBits);
  2854   // Make sure we don't need to mask flags for tosBits after the above shift
  2855   ConstantPoolCacheEntry::verify_tosBits();
  2856   // load return address
  2858     address table_addr;
  2859     if (is_invokeinterface || is_invokedynamic)
  2860       table_addr = (address)Interpreter::return_5_addrs_by_index_table();
  2861     else
  2862       table_addr = (address)Interpreter::return_3_addrs_by_index_table();
  2863     ExternalAddress table(table_addr);
  2864     __ lea(rscratch1, table);
  2865     __ movptr(flags, Address(rscratch1, flags, Address::times_ptr));
  2868   // push return address
  2869   __ push(flags);
  2871   // Restore flag field from the constant pool cache, and restore esi
  2872   // for later null checks.  r13 is the bytecode pointer
  2873   if (save_flags) {
  2874     __ movl(flags, r13);
  2875     __ restore_bcp();
  2880 void TemplateTable::invokevirtual_helper(Register index,
  2881                                          Register recv,
  2882                                          Register flags) {
  2883   // Uses temporary registers rax, rdx  assert_different_registers(index, recv, rax, rdx);
  2885   // Test for an invoke of a final method
  2886   Label notFinal;
  2887   __ movl(rax, flags);
  2888   __ andl(rax, (1 << ConstantPoolCacheEntry::vfinalMethod));
  2889   __ jcc(Assembler::zero, notFinal);
  2891   const Register method = index;  // method must be rbx
  2892   assert(method == rbx,
  2893          "methodOop must be rbx for interpreter calling convention");
  2895   // do the call - the index is actually the method to call
  2896   __ verify_oop(method);
  2898   // It's final, need a null check here!
  2899   __ null_check(recv);
  2901   // profile this call
  2902   __ profile_final_call(rax);
  2904   __ jump_from_interpreted(method, rax);
  2906   __ bind(notFinal);
  2908   // get receiver klass
  2909   __ null_check(recv, oopDesc::klass_offset_in_bytes());
  2910   __ load_klass(rax, recv);
  2912   __ verify_oop(rax);
  2914   // profile this call
  2915   __ profile_virtual_call(rax, r14, rdx);
  2917   // get target methodOop & entry point
  2918   const int base = instanceKlass::vtable_start_offset() * wordSize;
  2919   assert(vtableEntry::size() * wordSize == 8,
  2920          "adjust the scaling in the code below");
  2921   __ movptr(method, Address(rax, index,
  2922                                  Address::times_8,
  2923                                  base + vtableEntry::method_offset_in_bytes()));
  2924   __ movptr(rdx, Address(method, methodOopDesc::interpreter_entry_offset()));
  2925   __ jump_from_interpreted(method, rdx);
  2929 void TemplateTable::invokevirtual(int byte_no) {
  2930   transition(vtos, vtos);
  2931   assert(byte_no == f2_byte, "use this argument");
  2932   prepare_invoke(rbx, noreg, byte_no);
  2934   // rbx: index
  2935   // rcx: receiver
  2936   // rdx: flags
  2938   invokevirtual_helper(rbx, rcx, rdx);
  2942 void TemplateTable::invokespecial(int byte_no) {
  2943   transition(vtos, vtos);
  2944   assert(byte_no == f1_byte, "use this argument");
  2945   prepare_invoke(rbx, noreg, byte_no);
  2946   // do the call
  2947   __ verify_oop(rbx);
  2948   __ profile_call(rax);
  2949   __ jump_from_interpreted(rbx, rax);
  2953 void TemplateTable::invokestatic(int byte_no) {
  2954   transition(vtos, vtos);
  2955   assert(byte_no == f1_byte, "use this argument");
  2956   prepare_invoke(rbx, noreg, byte_no);
  2957   // do the call
  2958   __ verify_oop(rbx);
  2959   __ profile_call(rax);
  2960   __ jump_from_interpreted(rbx, rax);
  2963 void TemplateTable::fast_invokevfinal(int byte_no) {
  2964   transition(vtos, vtos);
  2965   assert(byte_no == f2_byte, "use this argument");
  2966   __ stop("fast_invokevfinal not used on amd64");
  2969 void TemplateTable::invokeinterface(int byte_no) {
  2970   transition(vtos, vtos);
  2971   assert(byte_no == f1_byte, "use this argument");
  2972   prepare_invoke(rax, rbx, byte_no);
  2974   // rax: Interface
  2975   // rbx: index
  2976   // rcx: receiver
  2977   // rdx: flags
  2979   // Special case of invokeinterface called for virtual method of
  2980   // java.lang.Object.  See cpCacheOop.cpp for details.
  2981   // This code isn't produced by javac, but could be produced by
  2982   // another compliant java compiler.
  2983   Label notMethod;
  2984   __ movl(r14, rdx);
  2985   __ andl(r14, (1 << ConstantPoolCacheEntry::methodInterface));
  2986   __ jcc(Assembler::zero, notMethod);
  2988   invokevirtual_helper(rbx, rcx, rdx);
  2989   __ bind(notMethod);
  2991   // Get receiver klass into rdx - also a null check
  2992   __ restore_locals(); // restore r14
  2993   __ load_klass(rdx, rcx);
  2994   __ verify_oop(rdx);
  2996   // profile this call
  2997   __ profile_virtual_call(rdx, r13, r14);
  2999   Label no_such_interface, no_such_method;
  3001   __ lookup_interface_method(// inputs: rec. class, interface, itable index
  3002                              rdx, rax, rbx,
  3003                              // outputs: method, scan temp. reg
  3004                              rbx, r13,
  3005                              no_such_interface);
  3007   // rbx,: methodOop to call
  3008   // rcx: receiver
  3009   // Check for abstract method error
  3010   // Note: This should be done more efficiently via a throw_abstract_method_error
  3011   //       interpreter entry point and a conditional jump to it in case of a null
  3012   //       method.
  3013   __ testptr(rbx, rbx);
  3014   __ jcc(Assembler::zero, no_such_method);
  3016   // do the call
  3017   // rcx: receiver
  3018   // rbx,: methodOop
  3019   __ jump_from_interpreted(rbx, rdx);
  3020   __ should_not_reach_here();
  3022   // exception handling code follows...
  3023   // note: must restore interpreter registers to canonical
  3024   //       state for exception handling to work correctly!
  3026   __ bind(no_such_method);
  3027   // throw exception
  3028   __ pop(rbx);           // pop return address (pushed by prepare_invoke)
  3029   __ restore_bcp();      // r13 must be correct for exception handler   (was destroyed)
  3030   __ restore_locals();   // make sure locals pointer is correct as well (was destroyed)
  3031   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_AbstractMethodError));
  3032   // the call_VM checks for exception, so we should never return here.
  3033   __ should_not_reach_here();
  3035   __ bind(no_such_interface);
  3036   // throw exception
  3037   __ pop(rbx);           // pop return address (pushed by prepare_invoke)
  3038   __ restore_bcp();      // r13 must be correct for exception handler   (was destroyed)
  3039   __ restore_locals();   // make sure locals pointer is correct as well (was destroyed)
  3040   __ call_VM(noreg, CAST_FROM_FN_PTR(address,
  3041                    InterpreterRuntime::throw_IncompatibleClassChangeError));
  3042   // the call_VM checks for exception, so we should never return here.
  3043   __ should_not_reach_here();
  3044   return;
  3047 void TemplateTable::invokedynamic(int byte_no) {
  3048   transition(vtos, vtos);
  3049   assert(byte_no == f1_oop, "use this argument");
  3051   if (!EnableInvokeDynamic) {
  3052     // We should not encounter this bytecode if !EnableInvokeDynamic.
  3053     // The verifier will stop it.  However, if we get past the verifier,
  3054     // this will stop the thread in a reasonable way, without crashing the JVM.
  3055     __ call_VM(noreg, CAST_FROM_FN_PTR(address,
  3056                      InterpreterRuntime::throw_IncompatibleClassChangeError));
  3057     // the call_VM checks for exception, so we should never return here.
  3058     __ should_not_reach_here();
  3059     return;
  3062   assert(byte_no == f1_oop, "use this argument");
  3063   prepare_invoke(rax, rbx, byte_no);
  3065   // rax: CallSite object (f1)
  3066   // rbx: unused (f2)
  3067   // rcx: receiver address
  3068   // rdx: flags (unused)
  3070   if (ProfileInterpreter) {
  3071     Label L;
  3072     // %%% should make a type profile for any invokedynamic that takes a ref argument
  3073     // profile this call
  3074     __ profile_call(r13);
  3077   __ movptr(rcx, Address(rax, __ delayed_value(java_dyn_CallSite::target_offset_in_bytes, rcx)));
  3078   __ null_check(rcx);
  3079   __ prepare_to_jump_from_interpreted();
  3080   __ jump_to_method_handle_entry(rcx, rdx);
  3084 //-----------------------------------------------------------------------------
  3085 // Allocation
  3087 void TemplateTable::_new() {
  3088   transition(vtos, atos);
  3089   __ get_unsigned_2_byte_index_at_bcp(rdx, 1);
  3090   Label slow_case;
  3091   Label done;
  3092   Label initialize_header;
  3093   Label initialize_object; // including clearing the fields
  3094   Label allocate_shared;
  3096   __ get_cpool_and_tags(rsi, rax);
  3097   // get instanceKlass
  3098   __ movptr(rsi, Address(rsi, rdx,
  3099                          Address::times_8, sizeof(constantPoolOopDesc)));
  3101   // make sure the class we're about to instantiate has been
  3102   // resolved. Note: slow_case does a pop of stack, which is why we
  3103   // loaded class/pushed above
  3104   const int tags_offset = typeArrayOopDesc::header_size(T_BYTE) * wordSize;
  3105   __ cmpb(Address(rax, rdx, Address::times_1, tags_offset),
  3106           JVM_CONSTANT_Class);
  3107   __ jcc(Assembler::notEqual, slow_case);
  3109   // make sure klass is initialized & doesn't have finalizer
  3110   // make sure klass is fully initialized
  3111   __ cmpl(Address(rsi,
  3112                   instanceKlass::init_state_offset_in_bytes() +
  3113                   sizeof(oopDesc)),
  3114           instanceKlass::fully_initialized);
  3115   __ jcc(Assembler::notEqual, slow_case);
  3117   // get instance_size in instanceKlass (scaled to a count of bytes)
  3118   __ movl(rdx,
  3119           Address(rsi,
  3120                   Klass::layout_helper_offset_in_bytes() + sizeof(oopDesc)));
  3121   // test to see if it has a finalizer or is malformed in some way
  3122   __ testl(rdx, Klass::_lh_instance_slow_path_bit);
  3123   __ jcc(Assembler::notZero, slow_case);
  3125   // Allocate the instance
  3126   // 1) Try to allocate in the TLAB
  3127   // 2) if fail and the object is large allocate in the shared Eden
  3128   // 3) if the above fails (or is not applicable), go to a slow case
  3129   // (creates a new TLAB, etc.)
  3131   const bool allow_shared_alloc =
  3132     Universe::heap()->supports_inline_contig_alloc() && !CMSIncrementalMode;
  3134   if (UseTLAB) {
  3135     __ movptr(rax, Address(r15_thread, in_bytes(JavaThread::tlab_top_offset())));
  3136     __ lea(rbx, Address(rax, rdx, Address::times_1));
  3137     __ cmpptr(rbx, Address(r15_thread, in_bytes(JavaThread::tlab_end_offset())));
  3138     __ jcc(Assembler::above, allow_shared_alloc ? allocate_shared : slow_case);
  3139     __ movptr(Address(r15_thread, in_bytes(JavaThread::tlab_top_offset())), rbx);
  3140     if (ZeroTLAB) {
  3141       // the fields have been already cleared
  3142       __ jmp(initialize_header);
  3143     } else {
  3144       // initialize both the header and fields
  3145       __ jmp(initialize_object);
  3149   // Allocation in the shared Eden, if allowed.
  3150   //
  3151   // rdx: instance size in bytes
  3152   if (allow_shared_alloc) {
  3153     __ bind(allocate_shared);
  3155     ExternalAddress top((address)Universe::heap()->top_addr());
  3156     ExternalAddress end((address)Universe::heap()->end_addr());
  3158     const Register RtopAddr = rscratch1;
  3159     const Register RendAddr = rscratch2;
  3161     __ lea(RtopAddr, top);
  3162     __ lea(RendAddr, end);
  3163     __ movptr(rax, Address(RtopAddr, 0));
  3165     // For retries rax gets set by cmpxchgq
  3166     Label retry;
  3167     __ bind(retry);
  3168     __ lea(rbx, Address(rax, rdx, Address::times_1));
  3169     __ cmpptr(rbx, Address(RendAddr, 0));
  3170     __ jcc(Assembler::above, slow_case);
  3172     // Compare rax with the top addr, and if still equal, store the new
  3173     // top addr in rbx at the address of the top addr pointer. Sets ZF if was
  3174     // equal, and clears it otherwise. Use lock prefix for atomicity on MPs.
  3175     //
  3176     // rax: object begin
  3177     // rbx: object end
  3178     // rdx: instance size in bytes
  3179     if (os::is_MP()) {
  3180       __ lock();
  3182     __ cmpxchgptr(rbx, Address(RtopAddr, 0));
  3184     // if someone beat us on the allocation, try again, otherwise continue
  3185     __ jcc(Assembler::notEqual, retry);
  3188   if (UseTLAB || Universe::heap()->supports_inline_contig_alloc()) {
  3189     // The object is initialized before the header.  If the object size is
  3190     // zero, go directly to the header initialization.
  3191     __ bind(initialize_object);
  3192     __ decrementl(rdx, sizeof(oopDesc));
  3193     __ jcc(Assembler::zero, initialize_header);
  3195     // Initialize object fields
  3196     __ xorl(rcx, rcx); // use zero reg to clear memory (shorter code)
  3197     __ shrl(rdx, LogBytesPerLong);  // divide by oopSize to simplify the loop
  3199       Label loop;
  3200       __ bind(loop);
  3201       __ movq(Address(rax, rdx, Address::times_8,
  3202                       sizeof(oopDesc) - oopSize),
  3203               rcx);
  3204       __ decrementl(rdx);
  3205       __ jcc(Assembler::notZero, loop);
  3208     // initialize object header only.
  3209     __ bind(initialize_header);
  3210     if (UseBiasedLocking) {
  3211       __ movptr(rscratch1, Address(rsi, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes()));
  3212       __ movptr(Address(rax, oopDesc::mark_offset_in_bytes()), rscratch1);
  3213     } else {
  3214       __ movptr(Address(rax, oopDesc::mark_offset_in_bytes()),
  3215                (intptr_t) markOopDesc::prototype()); // header (address 0x1)
  3217     __ xorl(rcx, rcx); // use zero reg to clear memory (shorter code)
  3218     __ store_klass_gap(rax, rcx);  // zero klass gap for compressed oops
  3219     __ store_klass(rax, rsi);      // store klass last
  3222       SkipIfEqual skip(_masm, &DTraceAllocProbes, false);
  3223       // Trigger dtrace event for fastpath
  3224       __ push(atos); // save the return value
  3225       __ call_VM_leaf(
  3226            CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_object_alloc), rax);
  3227       __ pop(atos); // restore the return value
  3230     __ jmp(done);
  3234   // slow case
  3235   __ bind(slow_case);
  3236   __ get_constant_pool(c_rarg1);
  3237   __ get_unsigned_2_byte_index_at_bcp(c_rarg2, 1);
  3238   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::_new), c_rarg1, c_rarg2);
  3239   __ verify_oop(rax);
  3241   // continue
  3242   __ bind(done);
  3245 void TemplateTable::newarray() {
  3246   transition(itos, atos);
  3247   __ load_unsigned_byte(c_rarg1, at_bcp(1));
  3248   __ movl(c_rarg2, rax);
  3249   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::newarray),
  3250           c_rarg1, c_rarg2);
  3253 void TemplateTable::anewarray() {
  3254   transition(itos, atos);
  3255   __ get_unsigned_2_byte_index_at_bcp(c_rarg2, 1);
  3256   __ get_constant_pool(c_rarg1);
  3257   __ movl(c_rarg3, rax);
  3258   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::anewarray),
  3259           c_rarg1, c_rarg2, c_rarg3);
  3262 void TemplateTable::arraylength() {
  3263   transition(atos, itos);
  3264   __ null_check(rax, arrayOopDesc::length_offset_in_bytes());
  3265   __ movl(rax, Address(rax, arrayOopDesc::length_offset_in_bytes()));
  3268 void TemplateTable::checkcast() {
  3269   transition(atos, atos);
  3270   Label done, is_null, ok_is_subtype, quicked, resolved;
  3271   __ testptr(rax, rax); // object is in rax
  3272   __ jcc(Assembler::zero, is_null);
  3274   // Get cpool & tags index
  3275   __ get_cpool_and_tags(rcx, rdx); // rcx=cpool, rdx=tags array
  3276   __ get_unsigned_2_byte_index_at_bcp(rbx, 1); // rbx=index
  3277   // See if bytecode has already been quicked
  3278   __ cmpb(Address(rdx, rbx,
  3279                   Address::times_1,
  3280                   typeArrayOopDesc::header_size(T_BYTE) * wordSize),
  3281           JVM_CONSTANT_Class);
  3282   __ jcc(Assembler::equal, quicked);
  3283   __ push(atos); // save receiver for result, and for GC
  3284   __ mov(r12, rcx); // save rcx XXX
  3285   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc));
  3286   __ movq(rcx, r12); // restore rcx XXX
  3287   __ reinit_heapbase();
  3288   __ pop_ptr(rdx); // restore receiver
  3289   __ jmpb(resolved);
  3291   // Get superklass in rax and subklass in rbx
  3292   __ bind(quicked);
  3293   __ mov(rdx, rax); // Save object in rdx; rax needed for subtype check
  3294   __ movptr(rax, Address(rcx, rbx,
  3295                        Address::times_8, sizeof(constantPoolOopDesc)));
  3297   __ bind(resolved);
  3298   __ load_klass(rbx, rdx);
  3300   // Generate subtype check.  Blows rcx, rdi.  Object in rdx.
  3301   // Superklass in rax.  Subklass in rbx.
  3302   __ gen_subtype_check(rbx, ok_is_subtype);
  3304   // Come here on failure
  3305   __ push_ptr(rdx);
  3306   // object is at TOS
  3307   __ jump(ExternalAddress(Interpreter::_throw_ClassCastException_entry));
  3309   // Come here on success
  3310   __ bind(ok_is_subtype);
  3311   __ mov(rax, rdx); // Restore object in rdx
  3313   // Collect counts on whether this check-cast sees NULLs a lot or not.
  3314   if (ProfileInterpreter) {
  3315     __ jmp(done);
  3316     __ bind(is_null);
  3317     __ profile_null_seen(rcx);
  3318   } else {
  3319     __ bind(is_null);   // same as 'done'
  3321   __ bind(done);
  3324 void TemplateTable::instanceof() {
  3325   transition(atos, itos);
  3326   Label done, is_null, ok_is_subtype, quicked, resolved;
  3327   __ testptr(rax, rax);
  3328   __ jcc(Assembler::zero, is_null);
  3330   // Get cpool & tags index
  3331   __ get_cpool_and_tags(rcx, rdx); // rcx=cpool, rdx=tags array
  3332   __ get_unsigned_2_byte_index_at_bcp(rbx, 1); // rbx=index
  3333   // See if bytecode has already been quicked
  3334   __ cmpb(Address(rdx, rbx,
  3335                   Address::times_1,
  3336                   typeArrayOopDesc::header_size(T_BYTE) * wordSize),
  3337           JVM_CONSTANT_Class);
  3338   __ jcc(Assembler::equal, quicked);
  3340   __ push(atos); // save receiver for result, and for GC
  3341   __ mov(r12, rcx); // save rcx
  3342   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc));
  3343   __ movq(rcx, r12); // restore rcx
  3344   __ reinit_heapbase();
  3345   __ pop_ptr(rdx); // restore receiver
  3346   __ load_klass(rdx, rdx);
  3347   __ jmpb(resolved);
  3349   // Get superklass in rax and subklass in rdx
  3350   __ bind(quicked);
  3351   __ load_klass(rdx, rax);
  3352   __ movptr(rax, Address(rcx, rbx,
  3353                          Address::times_8, sizeof(constantPoolOopDesc)));
  3355   __ bind(resolved);
  3357   // Generate subtype check.  Blows rcx, rdi
  3358   // Superklass in rax.  Subklass in rdx.
  3359   __ gen_subtype_check(rdx, ok_is_subtype);
  3361   // Come here on failure
  3362   __ xorl(rax, rax);
  3363   __ jmpb(done);
  3364   // Come here on success
  3365   __ bind(ok_is_subtype);
  3366   __ movl(rax, 1);
  3368   // Collect counts on whether this test sees NULLs a lot or not.
  3369   if (ProfileInterpreter) {
  3370     __ jmp(done);
  3371     __ bind(is_null);
  3372     __ profile_null_seen(rcx);
  3373   } else {
  3374     __ bind(is_null);   // same as 'done'
  3376   __ bind(done);
  3377   // rax = 0: obj == NULL or  obj is not an instanceof the specified klass
  3378   // rax = 1: obj != NULL and obj is     an instanceof the specified klass
  3381 //-----------------------------------------------------------------------------
  3382 // Breakpoints
  3383 void TemplateTable::_breakpoint() {
  3384   // Note: We get here even if we are single stepping..
  3385   // jbug inists on setting breakpoints at every bytecode
  3386   // even if we are in single step mode.
  3388   transition(vtos, vtos);
  3390   // get the unpatched byte code
  3391   __ get_method(c_rarg1);
  3392   __ call_VM(noreg,
  3393              CAST_FROM_FN_PTR(address,
  3394                               InterpreterRuntime::get_original_bytecode_at),
  3395              c_rarg1, r13);
  3396   __ mov(rbx, rax);
  3398   // post the breakpoint event
  3399   __ get_method(c_rarg1);
  3400   __ call_VM(noreg,
  3401              CAST_FROM_FN_PTR(address, InterpreterRuntime::_breakpoint),
  3402              c_rarg1, r13);
  3404   // complete the execution of original bytecode
  3405   __ dispatch_only_normal(vtos);
  3408 //-----------------------------------------------------------------------------
  3409 // Exceptions
  3411 void TemplateTable::athrow() {
  3412   transition(atos, vtos);
  3413   __ null_check(rax);
  3414   __ jump(ExternalAddress(Interpreter::throw_exception_entry()));
  3417 //-----------------------------------------------------------------------------
  3418 // Synchronization
  3419 //
  3420 // Note: monitorenter & exit are symmetric routines; which is reflected
  3421 //       in the assembly code structure as well
  3422 //
  3423 // Stack layout:
  3424 //
  3425 // [expressions  ] <--- rsp               = expression stack top
  3426 // ..
  3427 // [expressions  ]
  3428 // [monitor entry] <--- monitor block top = expression stack bot
  3429 // ..
  3430 // [monitor entry]
  3431 // [frame data   ] <--- monitor block bot
  3432 // ...
  3433 // [saved rbp    ] <--- rbp
  3434 void TemplateTable::monitorenter() {
  3435   transition(atos, vtos);
  3437   // check for NULL object
  3438   __ null_check(rax);
  3440   const Address monitor_block_top(
  3441         rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
  3442   const Address monitor_block_bot(
  3443         rbp, frame::interpreter_frame_initial_sp_offset * wordSize);
  3444   const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
  3446   Label allocated;
  3448   // initialize entry pointer
  3449   __ xorl(c_rarg1, c_rarg1); // points to free slot or NULL
  3451   // find a free slot in the monitor block (result in c_rarg1)
  3453     Label entry, loop, exit;
  3454     __ movptr(c_rarg3, monitor_block_top); // points to current entry,
  3455                                      // starting with top-most entry
  3456     __ lea(c_rarg2, monitor_block_bot); // points to word before bottom
  3457                                      // of monitor block
  3458     __ jmpb(entry);
  3460     __ bind(loop);
  3461     // check if current entry is used
  3462     __ cmpptr(Address(c_rarg3, BasicObjectLock::obj_offset_in_bytes()), (int32_t) NULL_WORD);
  3463     // if not used then remember entry in c_rarg1
  3464     __ cmov(Assembler::equal, c_rarg1, c_rarg3);
  3465     // check if current entry is for same object
  3466     __ cmpptr(rax, Address(c_rarg3, BasicObjectLock::obj_offset_in_bytes()));
  3467     // if same object then stop searching
  3468     __ jccb(Assembler::equal, exit);
  3469     // otherwise advance to next entry
  3470     __ addptr(c_rarg3, entry_size);
  3471     __ bind(entry);
  3472     // check if bottom reached
  3473     __ cmpptr(c_rarg3, c_rarg2);
  3474     // if not at bottom then check this entry
  3475     __ jcc(Assembler::notEqual, loop);
  3476     __ bind(exit);
  3479   __ testptr(c_rarg1, c_rarg1); // check if a slot has been found
  3480   __ jcc(Assembler::notZero, allocated); // if found, continue with that one
  3482   // allocate one if there's no free slot
  3484     Label entry, loop;
  3485     // 1. compute new pointers             // rsp: old expression stack top
  3486     __ movptr(c_rarg1, monitor_block_bot); // c_rarg1: old expression stack bottom
  3487     __ subptr(rsp, entry_size);            // move expression stack top
  3488     __ subptr(c_rarg1, entry_size);        // move expression stack bottom
  3489     __ mov(c_rarg3, rsp);                  // set start value for copy loop
  3490     __ movptr(monitor_block_bot, c_rarg1); // set new monitor block bottom
  3491     __ jmp(entry);
  3492     // 2. move expression stack contents
  3493     __ bind(loop);
  3494     __ movptr(c_rarg2, Address(c_rarg3, entry_size)); // load expression stack
  3495                                                       // word from old location
  3496     __ movptr(Address(c_rarg3, 0), c_rarg2);          // and store it at new location
  3497     __ addptr(c_rarg3, wordSize);                     // advance to next word
  3498     __ bind(entry);
  3499     __ cmpptr(c_rarg3, c_rarg1);            // check if bottom reached
  3500     __ jcc(Assembler::notEqual, loop);      // if not at bottom then
  3501                                             // copy next word
  3504   // call run-time routine
  3505   // c_rarg1: points to monitor entry
  3506   __ bind(allocated);
  3508   // Increment bcp to point to the next bytecode, so exception
  3509   // handling for async. exceptions work correctly.
  3510   // The object has already been poped from the stack, so the
  3511   // expression stack looks correct.
  3512   __ increment(r13);
  3514   // store object
  3515   __ movptr(Address(c_rarg1, BasicObjectLock::obj_offset_in_bytes()), rax);
  3516   __ lock_object(c_rarg1);
  3518   // check to make sure this monitor doesn't cause stack overflow after locking
  3519   __ save_bcp();  // in case of exception
  3520   __ generate_stack_overflow_check(0);
  3522   // The bcp has already been incremented. Just need to dispatch to
  3523   // next instruction.
  3524   __ dispatch_next(vtos);
  3528 void TemplateTable::monitorexit() {
  3529   transition(atos, vtos);
  3531   // check for NULL object
  3532   __ null_check(rax);
  3534   const Address monitor_block_top(
  3535         rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
  3536   const Address monitor_block_bot(
  3537         rbp, frame::interpreter_frame_initial_sp_offset * wordSize);
  3538   const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
  3540   Label found;
  3542   // find matching slot
  3544     Label entry, loop;
  3545     __ movptr(c_rarg1, monitor_block_top); // points to current entry,
  3546                                      // starting with top-most entry
  3547     __ lea(c_rarg2, monitor_block_bot); // points to word before bottom
  3548                                      // of monitor block
  3549     __ jmpb(entry);
  3551     __ bind(loop);
  3552     // check if current entry is for same object
  3553     __ cmpptr(rax, Address(c_rarg1, BasicObjectLock::obj_offset_in_bytes()));
  3554     // if same object then stop searching
  3555     __ jcc(Assembler::equal, found);
  3556     // otherwise advance to next entry
  3557     __ addptr(c_rarg1, entry_size);
  3558     __ bind(entry);
  3559     // check if bottom reached
  3560     __ cmpptr(c_rarg1, c_rarg2);
  3561     // if not at bottom then check this entry
  3562     __ jcc(Assembler::notEqual, loop);
  3565   // error handling. Unlocking was not block-structured
  3566   __ call_VM(noreg, CAST_FROM_FN_PTR(address,
  3567                    InterpreterRuntime::throw_illegal_monitor_state_exception));
  3568   __ should_not_reach_here();
  3570   // call run-time routine
  3571   // rsi: points to monitor entry
  3572   __ bind(found);
  3573   __ push_ptr(rax); // make sure object is on stack (contract with oopMaps)
  3574   __ unlock_object(c_rarg1);
  3575   __ pop_ptr(rax); // discard object
  3579 // Wide instructions
  3580 void TemplateTable::wide() {
  3581   transition(vtos, vtos);
  3582   __ load_unsigned_byte(rbx, at_bcp(1));
  3583   __ lea(rscratch1, ExternalAddress((address)Interpreter::_wentry_point));
  3584   __ jmp(Address(rscratch1, rbx, Address::times_8));
  3585   // Note: the r13 increment step is part of the individual wide
  3586   // bytecode implementations
  3590 // Multi arrays
  3591 void TemplateTable::multianewarray() {
  3592   transition(vtos, atos);
  3593   __ load_unsigned_byte(rax, at_bcp(3)); // get number of dimensions
  3594   // last dim is on top of stack; we want address of first one:
  3595   // first_addr = last_addr + (ndims - 1) * wordSize
  3596   __ lea(c_rarg1, Address(rsp, rax, Address::times_8, -wordSize));
  3597   call_VM(rax,
  3598           CAST_FROM_FN_PTR(address, InterpreterRuntime::multianewarray),
  3599           c_rarg1);
  3600   __ load_unsigned_byte(rbx, at_bcp(3));
  3601   __ lea(rsp, Address(rsp, rbx, Address::times_8));
  3603 #endif // !CC_INTERP

mercurial