src/cpu/x86/vm/templateTable_x86_32.cpp

Wed, 02 Jun 2010 22:45:42 -0700

author
jrose
date
Wed, 02 Jun 2010 22:45:42 -0700
changeset 1934
e9ff18c4ace7
parent 1907
c18cbe5936b8
parent 1920
ab102d5d923e
child 1957
136b78722a08
permissions
-rw-r--r--

Merge

     1 /*
     2  * Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "incls/_precompiled.incl"
    26 #include "incls/_templateTable_x86_32.cpp.incl"
    28 #ifndef CC_INTERP
    29 #define __ _masm->
    31 //----------------------------------------------------------------------------------------------------
    32 // Platform-dependent initialization
    34 void TemplateTable::pd_initialize() {
    35   // No i486 specific initialization
    36 }
    38 //----------------------------------------------------------------------------------------------------
    39 // Address computation
    41 // local variables
    42 static inline Address iaddress(int n)            {
    43   return Address(rdi, Interpreter::local_offset_in_bytes(n));
    44 }
    46 static inline Address laddress(int n)            { return iaddress(n + 1); }
    47 static inline Address haddress(int n)            { return iaddress(n + 0); }
    48 static inline Address faddress(int n)            { return iaddress(n); }
    49 static inline Address daddress(int n)            { return laddress(n); }
    50 static inline Address aaddress(int n)            { return iaddress(n); }
    52 static inline Address iaddress(Register r)       {
    53   return Address(rdi, r, Interpreter::stackElementScale());
    54 }
    55 static inline Address laddress(Register r)       {
    56   return Address(rdi, r, Interpreter::stackElementScale(), Interpreter::local_offset_in_bytes(1));
    57 }
    58 static inline Address haddress(Register r)       {
    59   return Address(rdi, r, Interpreter::stackElementScale(), Interpreter::local_offset_in_bytes(0));
    60 }
    62 static inline Address faddress(Register r)       { return iaddress(r); }
    63 static inline Address daddress(Register r)       { return laddress(r); }
    64 static inline Address aaddress(Register r)       { return iaddress(r); }
    66 // expression stack
    67 // (Note: Must not use symmetric equivalents at_rsp_m1/2 since they store
    68 // data beyond the rsp which is potentially unsafe in an MT environment;
    69 // an interrupt may overwrite that data.)
    70 static inline Address at_rsp   () {
    71   return Address(rsp, 0);
    72 }
    74 // At top of Java expression stack which may be different than rsp().  It
    75 // isn't for category 1 objects.
    76 static inline Address at_tos   () {
    77   Address tos = Address(rsp,  Interpreter::expr_offset_in_bytes(0));
    78   return tos;
    79 }
    81 static inline Address at_tos_p1() {
    82   return Address(rsp,  Interpreter::expr_offset_in_bytes(1));
    83 }
    85 static inline Address at_tos_p2() {
    86   return Address(rsp,  Interpreter::expr_offset_in_bytes(2));
    87 }
    89 // Condition conversion
    90 static Assembler::Condition j_not(TemplateTable::Condition cc) {
    91   switch (cc) {
    92     case TemplateTable::equal        : return Assembler::notEqual;
    93     case TemplateTable::not_equal    : return Assembler::equal;
    94     case TemplateTable::less         : return Assembler::greaterEqual;
    95     case TemplateTable::less_equal   : return Assembler::greater;
    96     case TemplateTable::greater      : return Assembler::lessEqual;
    97     case TemplateTable::greater_equal: return Assembler::less;
    98   }
    99   ShouldNotReachHere();
   100   return Assembler::zero;
   101 }
   104 //----------------------------------------------------------------------------------------------------
   105 // Miscelaneous helper routines
   107 // Store an oop (or NULL) at the address described by obj.
   108 // If val == noreg this means store a NULL
   110 static void do_oop_store(InterpreterMacroAssembler* _masm,
   111                          Address obj,
   112                          Register val,
   113                          BarrierSet::Name barrier,
   114                          bool precise) {
   115   assert(val == noreg || val == rax, "parameter is just for looks");
   116   switch (barrier) {
   117 #ifndef SERIALGC
   118     case BarrierSet::G1SATBCT:
   119     case BarrierSet::G1SATBCTLogging:
   120       {
   121         // flatten object address if needed
   122         // We do it regardless of precise because we need the registers
   123         if (obj.index() == noreg && obj.disp() == 0) {
   124           if (obj.base() != rdx) {
   125             __ movl(rdx, obj.base());
   126           }
   127         } else {
   128           __ leal(rdx, obj);
   129         }
   130         __ get_thread(rcx);
   131         __ save_bcp();
   132         __ g1_write_barrier_pre(rdx, rcx, rsi, rbx, val != noreg);
   134         // Do the actual store
   135         // noreg means NULL
   136         if (val == noreg) {
   137           __ movptr(Address(rdx, 0), NULL_WORD);
   138           // No post barrier for NULL
   139         } else {
   140           __ movl(Address(rdx, 0), val);
   141           __ g1_write_barrier_post(rdx, rax, rcx, rbx, rsi);
   142         }
   143         __ restore_bcp();
   145       }
   146       break;
   147 #endif // SERIALGC
   148     case BarrierSet::CardTableModRef:
   149     case BarrierSet::CardTableExtension:
   150       {
   151         if (val == noreg) {
   152           __ movptr(obj, NULL_WORD);
   153         } else {
   154           __ movl(obj, val);
   155           // flatten object address if needed
   156           if (!precise || (obj.index() == noreg && obj.disp() == 0)) {
   157             __ store_check(obj.base());
   158           } else {
   159             __ leal(rdx, obj);
   160             __ store_check(rdx);
   161           }
   162         }
   163       }
   164       break;
   165     case BarrierSet::ModRef:
   166     case BarrierSet::Other:
   167       if (val == noreg) {
   168         __ movptr(obj, NULL_WORD);
   169       } else {
   170         __ movl(obj, val);
   171       }
   172       break;
   173     default      :
   174       ShouldNotReachHere();
   176   }
   177 }
   179 Address TemplateTable::at_bcp(int offset) {
   180   assert(_desc->uses_bcp(), "inconsistent uses_bcp information");
   181   return Address(rsi, offset);
   182 }
   185 void TemplateTable::patch_bytecode(Bytecodes::Code bytecode, Register bc,
   186                                    Register scratch,
   187                                    bool load_bc_into_scratch/*=true*/) {
   189   if (!RewriteBytecodes) return;
   190   // the pair bytecodes have already done the load.
   191   if (load_bc_into_scratch) {
   192     __ movl(bc, bytecode);
   193   }
   194   Label patch_done;
   195   if (JvmtiExport::can_post_breakpoint()) {
   196     Label fast_patch;
   197     // if a breakpoint is present we can't rewrite the stream directly
   198     __ movzbl(scratch, at_bcp(0));
   199     __ cmpl(scratch, Bytecodes::_breakpoint);
   200     __ jcc(Assembler::notEqual, fast_patch);
   201     __ get_method(scratch);
   202     // Let breakpoint table handling rewrite to quicker bytecode
   203     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::set_original_bytecode_at), scratch, rsi, bc);
   204 #ifndef ASSERT
   205     __ jmpb(patch_done);
   206 #else
   207     __ jmp(patch_done);
   208 #endif
   209     __ bind(fast_patch);
   210   }
   211 #ifdef ASSERT
   212   Label okay;
   213   __ load_unsigned_byte(scratch, at_bcp(0));
   214   __ cmpl(scratch, (int)Bytecodes::java_code(bytecode));
   215   __ jccb(Assembler::equal, okay);
   216   __ cmpl(scratch, bc);
   217   __ jcc(Assembler::equal, okay);
   218   __ stop("patching the wrong bytecode");
   219   __ bind(okay);
   220 #endif
   221   // patch bytecode
   222   __ movb(at_bcp(0), bc);
   223   __ bind(patch_done);
   224 }
   226 //----------------------------------------------------------------------------------------------------
   227 // Individual instructions
   229 void TemplateTable::nop() {
   230   transition(vtos, vtos);
   231   // nothing to do
   232 }
   234 void TemplateTable::shouldnotreachhere() {
   235   transition(vtos, vtos);
   236   __ stop("shouldnotreachhere bytecode");
   237 }
   241 void TemplateTable::aconst_null() {
   242   transition(vtos, atos);
   243   __ xorptr(rax, rax);
   244 }
   247 void TemplateTable::iconst(int value) {
   248   transition(vtos, itos);
   249   if (value == 0) {
   250     __ xorptr(rax, rax);
   251   } else {
   252     __ movptr(rax, value);
   253   }
   254 }
   257 void TemplateTable::lconst(int value) {
   258   transition(vtos, ltos);
   259   if (value == 0) {
   260     __ xorptr(rax, rax);
   261   } else {
   262     __ movptr(rax, value);
   263   }
   264   assert(value >= 0, "check this code");
   265   __ xorptr(rdx, rdx);
   266 }
   269 void TemplateTable::fconst(int value) {
   270   transition(vtos, ftos);
   271          if (value == 0) { __ fldz();
   272   } else if (value == 1) { __ fld1();
   273   } else if (value == 2) { __ fld1(); __ fld1(); __ faddp(); // should do a better solution here
   274   } else                 { ShouldNotReachHere();
   275   }
   276 }
   279 void TemplateTable::dconst(int value) {
   280   transition(vtos, dtos);
   281          if (value == 0) { __ fldz();
   282   } else if (value == 1) { __ fld1();
   283   } else                 { ShouldNotReachHere();
   284   }
   285 }
   288 void TemplateTable::bipush() {
   289   transition(vtos, itos);
   290   __ load_signed_byte(rax, at_bcp(1));
   291 }
   294 void TemplateTable::sipush() {
   295   transition(vtos, itos);
   296   __ load_unsigned_short(rax, at_bcp(1));
   297   __ bswapl(rax);
   298   __ sarl(rax, 16);
   299 }
   301 void TemplateTable::ldc(bool wide) {
   302   transition(vtos, vtos);
   303   Label call_ldc, notFloat, notClass, Done;
   305   if (wide) {
   306     __ get_unsigned_2_byte_index_at_bcp(rbx, 1);
   307   } else {
   308     __ load_unsigned_byte(rbx, at_bcp(1));
   309   }
   310   __ get_cpool_and_tags(rcx, rax);
   311   const int base_offset = constantPoolOopDesc::header_size() * wordSize;
   312   const int tags_offset = typeArrayOopDesc::header_size(T_BYTE) * wordSize;
   314   // get type
   315   __ xorptr(rdx, rdx);
   316   __ movb(rdx, Address(rax, rbx, Address::times_1, tags_offset));
   318   // unresolved string - get the resolved string
   319   __ cmpl(rdx, JVM_CONSTANT_UnresolvedString);
   320   __ jccb(Assembler::equal, call_ldc);
   322   // unresolved class - get the resolved class
   323   __ cmpl(rdx, JVM_CONSTANT_UnresolvedClass);
   324   __ jccb(Assembler::equal, call_ldc);
   326   // unresolved class in error (resolution failed) - call into runtime
   327   // so that the same error from first resolution attempt is thrown.
   328   __ cmpl(rdx, JVM_CONSTANT_UnresolvedClassInError);
   329   __ jccb(Assembler::equal, call_ldc);
   331   // resolved class - need to call vm to get java mirror of the class
   332   __ cmpl(rdx, JVM_CONSTANT_Class);
   333   __ jcc(Assembler::notEqual, notClass);
   335   __ bind(call_ldc);
   336   __ movl(rcx, wide);
   337   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::ldc), rcx);
   338   __ push(atos);
   339   __ jmp(Done);
   341   __ bind(notClass);
   342   __ cmpl(rdx, JVM_CONSTANT_Float);
   343   __ jccb(Assembler::notEqual, notFloat);
   344   // ftos
   345   __ fld_s(    Address(rcx, rbx, Address::times_ptr, base_offset));
   346   __ push(ftos);
   347   __ jmp(Done);
   349   __ bind(notFloat);
   350 #ifdef ASSERT
   351   { Label L;
   352     __ cmpl(rdx, JVM_CONSTANT_Integer);
   353     __ jcc(Assembler::equal, L);
   354     __ cmpl(rdx, JVM_CONSTANT_String);
   355     __ jcc(Assembler::equal, L);
   356     __ stop("unexpected tag type in ldc");
   357     __ bind(L);
   358   }
   359 #endif
   360   Label isOop;
   361   // atos and itos
   362   // String is only oop type we will see here
   363   __ cmpl(rdx, JVM_CONSTANT_String);
   364   __ jccb(Assembler::equal, isOop);
   365   __ movl(rax, Address(rcx, rbx, Address::times_ptr, base_offset));
   366   __ push(itos);
   367   __ jmp(Done);
   368   __ bind(isOop);
   369   __ movptr(rax, Address(rcx, rbx, Address::times_ptr, base_offset));
   370   __ push(atos);
   372   if (VerifyOops) {
   373     __ verify_oop(rax);
   374   }
   375   __ bind(Done);
   376 }
   378 void TemplateTable::ldc2_w() {
   379   transition(vtos, vtos);
   380   Label Long, Done;
   381   __ get_unsigned_2_byte_index_at_bcp(rbx, 1);
   383   __ get_cpool_and_tags(rcx, rax);
   384   const int base_offset = constantPoolOopDesc::header_size() * wordSize;
   385   const int tags_offset = typeArrayOopDesc::header_size(T_BYTE) * wordSize;
   387   // get type
   388   __ cmpb(Address(rax, rbx, Address::times_1, tags_offset), JVM_CONSTANT_Double);
   389   __ jccb(Assembler::notEqual, Long);
   390   // dtos
   391   __ fld_d(    Address(rcx, rbx, Address::times_ptr, base_offset));
   392   __ push(dtos);
   393   __ jmpb(Done);
   395   __ bind(Long);
   396   // ltos
   397   __ movptr(rax, Address(rcx, rbx, Address::times_ptr, base_offset + 0 * wordSize));
   398   NOT_LP64(__ movptr(rdx, Address(rcx, rbx, Address::times_ptr, base_offset + 1 * wordSize)));
   400   __ push(ltos);
   402   __ bind(Done);
   403 }
   406 void TemplateTable::locals_index(Register reg, int offset) {
   407   __ load_unsigned_byte(reg, at_bcp(offset));
   408   __ negptr(reg);
   409 }
   412 void TemplateTable::iload() {
   413   transition(vtos, itos);
   414   if (RewriteFrequentPairs) {
   415     Label rewrite, done;
   417     // get next byte
   418     __ load_unsigned_byte(rbx, at_bcp(Bytecodes::length_for(Bytecodes::_iload)));
   419     // if _iload, wait to rewrite to iload2.  We only want to rewrite the
   420     // last two iloads in a pair.  Comparing against fast_iload means that
   421     // the next bytecode is neither an iload or a caload, and therefore
   422     // an iload pair.
   423     __ cmpl(rbx, Bytecodes::_iload);
   424     __ jcc(Assembler::equal, done);
   426     __ cmpl(rbx, Bytecodes::_fast_iload);
   427     __ movl(rcx, Bytecodes::_fast_iload2);
   428     __ jccb(Assembler::equal, rewrite);
   430     // if _caload, rewrite to fast_icaload
   431     __ cmpl(rbx, Bytecodes::_caload);
   432     __ movl(rcx, Bytecodes::_fast_icaload);
   433     __ jccb(Assembler::equal, rewrite);
   435     // rewrite so iload doesn't check again.
   436     __ movl(rcx, Bytecodes::_fast_iload);
   438     // rewrite
   439     // rcx: fast bytecode
   440     __ bind(rewrite);
   441     patch_bytecode(Bytecodes::_iload, rcx, rbx, false);
   442     __ bind(done);
   443   }
   445   // Get the local value into tos
   446   locals_index(rbx);
   447   __ movl(rax, iaddress(rbx));
   448 }
   451 void TemplateTable::fast_iload2() {
   452   transition(vtos, itos);
   453   locals_index(rbx);
   454   __ movl(rax, iaddress(rbx));
   455   __ push(itos);
   456   locals_index(rbx, 3);
   457   __ movl(rax, iaddress(rbx));
   458 }
   460 void TemplateTable::fast_iload() {
   461   transition(vtos, itos);
   462   locals_index(rbx);
   463   __ movl(rax, iaddress(rbx));
   464 }
   467 void TemplateTable::lload() {
   468   transition(vtos, ltos);
   469   locals_index(rbx);
   470   __ movptr(rax, laddress(rbx));
   471   NOT_LP64(__ movl(rdx, haddress(rbx)));
   472 }
   475 void TemplateTable::fload() {
   476   transition(vtos, ftos);
   477   locals_index(rbx);
   478   __ fld_s(faddress(rbx));
   479 }
   482 void TemplateTable::dload() {
   483   transition(vtos, dtos);
   484   locals_index(rbx);
   485   __ fld_d(daddress(rbx));
   486 }
   489 void TemplateTable::aload() {
   490   transition(vtos, atos);
   491   locals_index(rbx);
   492   __ movptr(rax, aaddress(rbx));
   493 }
   496 void TemplateTable::locals_index_wide(Register reg) {
   497   __ movl(reg, at_bcp(2));
   498   __ bswapl(reg);
   499   __ shrl(reg, 16);
   500   __ negptr(reg);
   501 }
   504 void TemplateTable::wide_iload() {
   505   transition(vtos, itos);
   506   locals_index_wide(rbx);
   507   __ movl(rax, iaddress(rbx));
   508 }
   511 void TemplateTable::wide_lload() {
   512   transition(vtos, ltos);
   513   locals_index_wide(rbx);
   514   __ movptr(rax, laddress(rbx));
   515   NOT_LP64(__ movl(rdx, haddress(rbx)));
   516 }
   519 void TemplateTable::wide_fload() {
   520   transition(vtos, ftos);
   521   locals_index_wide(rbx);
   522   __ fld_s(faddress(rbx));
   523 }
   526 void TemplateTable::wide_dload() {
   527   transition(vtos, dtos);
   528   locals_index_wide(rbx);
   529   __ fld_d(daddress(rbx));
   530 }
   533 void TemplateTable::wide_aload() {
   534   transition(vtos, atos);
   535   locals_index_wide(rbx);
   536   __ movptr(rax, aaddress(rbx));
   537 }
   539 void TemplateTable::index_check(Register array, Register index) {
   540   // Pop ptr into array
   541   __ pop_ptr(array);
   542   index_check_without_pop(array, index);
   543 }
   545 void TemplateTable::index_check_without_pop(Register array, Register index) {
   546   // destroys rbx,
   547   // check array
   548   __ null_check(array, arrayOopDesc::length_offset_in_bytes());
   549   LP64_ONLY(__ movslq(index, index));
   550   // check index
   551   __ cmpl(index, Address(array, arrayOopDesc::length_offset_in_bytes()));
   552   if (index != rbx) {
   553     // ??? convention: move aberrant index into rbx, for exception message
   554     assert(rbx != array, "different registers");
   555     __ mov(rbx, index);
   556   }
   557   __ jump_cc(Assembler::aboveEqual,
   558              ExternalAddress(Interpreter::_throw_ArrayIndexOutOfBoundsException_entry));
   559 }
   562 void TemplateTable::iaload() {
   563   transition(itos, itos);
   564   // rdx: array
   565   index_check(rdx, rax);  // kills rbx,
   566   // rax,: index
   567   __ movl(rax, Address(rdx, rax, Address::times_4, arrayOopDesc::base_offset_in_bytes(T_INT)));
   568 }
   571 void TemplateTable::laload() {
   572   transition(itos, ltos);
   573   // rax,: index
   574   // rdx: array
   575   index_check(rdx, rax);
   576   __ mov(rbx, rax);
   577   // rbx,: index
   578   __ movptr(rax, Address(rdx, rbx, Address::times_8, arrayOopDesc::base_offset_in_bytes(T_LONG) + 0 * wordSize));
   579   NOT_LP64(__ movl(rdx, Address(rdx, rbx, Address::times_8, arrayOopDesc::base_offset_in_bytes(T_LONG) + 1 * wordSize)));
   580 }
   583 void TemplateTable::faload() {
   584   transition(itos, ftos);
   585   // rdx: array
   586   index_check(rdx, rax);  // kills rbx,
   587   // rax,: index
   588   __ fld_s(Address(rdx, rax, Address::times_4, arrayOopDesc::base_offset_in_bytes(T_FLOAT)));
   589 }
   592 void TemplateTable::daload() {
   593   transition(itos, dtos);
   594   // rdx: array
   595   index_check(rdx, rax);  // kills rbx,
   596   // rax,: index
   597   __ fld_d(Address(rdx, rax, Address::times_8, arrayOopDesc::base_offset_in_bytes(T_DOUBLE)));
   598 }
   601 void TemplateTable::aaload() {
   602   transition(itos, atos);
   603   // rdx: array
   604   index_check(rdx, rax);  // kills rbx,
   605   // rax,: index
   606   __ movptr(rax, Address(rdx, rax, Address::times_ptr, arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
   607 }
   610 void TemplateTable::baload() {
   611   transition(itos, itos);
   612   // rdx: array
   613   index_check(rdx, rax);  // kills rbx,
   614   // rax,: index
   615   // can do better code for P5 - fix this at some point
   616   __ load_signed_byte(rbx, Address(rdx, rax, Address::times_1, arrayOopDesc::base_offset_in_bytes(T_BYTE)));
   617   __ mov(rax, rbx);
   618 }
   621 void TemplateTable::caload() {
   622   transition(itos, itos);
   623   // rdx: array
   624   index_check(rdx, rax);  // kills rbx,
   625   // rax,: index
   626   // can do better code for P5 - may want to improve this at some point
   627   __ load_unsigned_short(rbx, Address(rdx, rax, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_CHAR)));
   628   __ mov(rax, rbx);
   629 }
   631 // iload followed by caload frequent pair
   632 void TemplateTable::fast_icaload() {
   633   transition(vtos, itos);
   634   // load index out of locals
   635   locals_index(rbx);
   636   __ movl(rax, iaddress(rbx));
   638   // rdx: array
   639   index_check(rdx, rax);
   640   // rax,: index
   641   __ load_unsigned_short(rbx, Address(rdx, rax, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_CHAR)));
   642   __ mov(rax, rbx);
   643 }
   645 void TemplateTable::saload() {
   646   transition(itos, itos);
   647   // rdx: array
   648   index_check(rdx, rax);  // kills rbx,
   649   // rax,: index
   650   // can do better code for P5 - may want to improve this at some point
   651   __ load_signed_short(rbx, Address(rdx, rax, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_SHORT)));
   652   __ mov(rax, rbx);
   653 }
   656 void TemplateTable::iload(int n) {
   657   transition(vtos, itos);
   658   __ movl(rax, iaddress(n));
   659 }
   662 void TemplateTable::lload(int n) {
   663   transition(vtos, ltos);
   664   __ movptr(rax, laddress(n));
   665   NOT_LP64(__ movptr(rdx, haddress(n)));
   666 }
   669 void TemplateTable::fload(int n) {
   670   transition(vtos, ftos);
   671   __ fld_s(faddress(n));
   672 }
   675 void TemplateTable::dload(int n) {
   676   transition(vtos, dtos);
   677   __ fld_d(daddress(n));
   678 }
   681 void TemplateTable::aload(int n) {
   682   transition(vtos, atos);
   683   __ movptr(rax, aaddress(n));
   684 }
   687 void TemplateTable::aload_0() {
   688   transition(vtos, atos);
   689   // According to bytecode histograms, the pairs:
   690   //
   691   // _aload_0, _fast_igetfield
   692   // _aload_0, _fast_agetfield
   693   // _aload_0, _fast_fgetfield
   694   //
   695   // occur frequently. If RewriteFrequentPairs is set, the (slow) _aload_0
   696   // bytecode checks if the next bytecode is either _fast_igetfield,
   697   // _fast_agetfield or _fast_fgetfield and then rewrites the
   698   // current bytecode into a pair bytecode; otherwise it rewrites the current
   699   // bytecode into _fast_aload_0 that doesn't do the pair check anymore.
   700   //
   701   // Note: If the next bytecode is _getfield, the rewrite must be delayed,
   702   //       otherwise we may miss an opportunity for a pair.
   703   //
   704   // Also rewrite frequent pairs
   705   //   aload_0, aload_1
   706   //   aload_0, iload_1
   707   // These bytecodes with a small amount of code are most profitable to rewrite
   708   if (RewriteFrequentPairs) {
   709     Label rewrite, done;
   710     // get next byte
   711     __ load_unsigned_byte(rbx, at_bcp(Bytecodes::length_for(Bytecodes::_aload_0)));
   713     // do actual aload_0
   714     aload(0);
   716     // if _getfield then wait with rewrite
   717     __ cmpl(rbx, Bytecodes::_getfield);
   718     __ jcc(Assembler::equal, done);
   720     // if _igetfield then reqrite to _fast_iaccess_0
   721     assert(Bytecodes::java_code(Bytecodes::_fast_iaccess_0) == Bytecodes::_aload_0, "fix bytecode definition");
   722     __ cmpl(rbx, Bytecodes::_fast_igetfield);
   723     __ movl(rcx, Bytecodes::_fast_iaccess_0);
   724     __ jccb(Assembler::equal, rewrite);
   726     // if _agetfield then reqrite to _fast_aaccess_0
   727     assert(Bytecodes::java_code(Bytecodes::_fast_aaccess_0) == Bytecodes::_aload_0, "fix bytecode definition");
   728     __ cmpl(rbx, Bytecodes::_fast_agetfield);
   729     __ movl(rcx, Bytecodes::_fast_aaccess_0);
   730     __ jccb(Assembler::equal, rewrite);
   732     // if _fgetfield then reqrite to _fast_faccess_0
   733     assert(Bytecodes::java_code(Bytecodes::_fast_faccess_0) == Bytecodes::_aload_0, "fix bytecode definition");
   734     __ cmpl(rbx, Bytecodes::_fast_fgetfield);
   735     __ movl(rcx, Bytecodes::_fast_faccess_0);
   736     __ jccb(Assembler::equal, rewrite);
   738     // else rewrite to _fast_aload0
   739     assert(Bytecodes::java_code(Bytecodes::_fast_aload_0) == Bytecodes::_aload_0, "fix bytecode definition");
   740     __ movl(rcx, Bytecodes::_fast_aload_0);
   742     // rewrite
   743     // rcx: fast bytecode
   744     __ bind(rewrite);
   745     patch_bytecode(Bytecodes::_aload_0, rcx, rbx, false);
   747     __ bind(done);
   748   } else {
   749     aload(0);
   750   }
   751 }
   753 void TemplateTable::istore() {
   754   transition(itos, vtos);
   755   locals_index(rbx);
   756   __ movl(iaddress(rbx), rax);
   757 }
   760 void TemplateTable::lstore() {
   761   transition(ltos, vtos);
   762   locals_index(rbx);
   763   __ movptr(laddress(rbx), rax);
   764   NOT_LP64(__ movptr(haddress(rbx), rdx));
   765 }
   768 void TemplateTable::fstore() {
   769   transition(ftos, vtos);
   770   locals_index(rbx);
   771   __ fstp_s(faddress(rbx));
   772 }
   775 void TemplateTable::dstore() {
   776   transition(dtos, vtos);
   777   locals_index(rbx);
   778   __ fstp_d(daddress(rbx));
   779 }
   782 void TemplateTable::astore() {
   783   transition(vtos, vtos);
   784   __ pop_ptr(rax);
   785   locals_index(rbx);
   786   __ movptr(aaddress(rbx), rax);
   787 }
   790 void TemplateTable::wide_istore() {
   791   transition(vtos, vtos);
   792   __ pop_i(rax);
   793   locals_index_wide(rbx);
   794   __ movl(iaddress(rbx), rax);
   795 }
   798 void TemplateTable::wide_lstore() {
   799   transition(vtos, vtos);
   800   __ pop_l(rax, rdx);
   801   locals_index_wide(rbx);
   802   __ movptr(laddress(rbx), rax);
   803   NOT_LP64(__ movl(haddress(rbx), rdx));
   804 }
   807 void TemplateTable::wide_fstore() {
   808   wide_istore();
   809 }
   812 void TemplateTable::wide_dstore() {
   813   wide_lstore();
   814 }
   817 void TemplateTable::wide_astore() {
   818   transition(vtos, vtos);
   819   __ pop_ptr(rax);
   820   locals_index_wide(rbx);
   821   __ movptr(aaddress(rbx), rax);
   822 }
   825 void TemplateTable::iastore() {
   826   transition(itos, vtos);
   827   __ pop_i(rbx);
   828   // rax,: value
   829   // rdx: array
   830   index_check(rdx, rbx);  // prefer index in rbx,
   831   // rbx,: index
   832   __ movl(Address(rdx, rbx, Address::times_4, arrayOopDesc::base_offset_in_bytes(T_INT)), rax);
   833 }
   836 void TemplateTable::lastore() {
   837   transition(ltos, vtos);
   838   __ pop_i(rbx);
   839   // rax,: low(value)
   840   // rcx: array
   841   // rdx: high(value)
   842   index_check(rcx, rbx);  // prefer index in rbx,
   843   // rbx,: index
   844   __ movptr(Address(rcx, rbx, Address::times_8, arrayOopDesc::base_offset_in_bytes(T_LONG) + 0 * wordSize), rax);
   845   NOT_LP64(__ movl(Address(rcx, rbx, Address::times_8, arrayOopDesc::base_offset_in_bytes(T_LONG) + 1 * wordSize), rdx));
   846 }
   849 void TemplateTable::fastore() {
   850   transition(ftos, vtos);
   851   __ pop_i(rbx);
   852   // rdx: array
   853   // st0: value
   854   index_check(rdx, rbx);  // prefer index in rbx,
   855   // rbx,: index
   856   __ fstp_s(Address(rdx, rbx, Address::times_4, arrayOopDesc::base_offset_in_bytes(T_FLOAT)));
   857 }
   860 void TemplateTable::dastore() {
   861   transition(dtos, vtos);
   862   __ pop_i(rbx);
   863   // rdx: array
   864   // st0: value
   865   index_check(rdx, rbx);  // prefer index in rbx,
   866   // rbx,: index
   867   __ fstp_d(Address(rdx, rbx, Address::times_8, arrayOopDesc::base_offset_in_bytes(T_DOUBLE)));
   868 }
   871 void TemplateTable::aastore() {
   872   Label is_null, ok_is_subtype, done;
   873   transition(vtos, vtos);
   874   // stack: ..., array, index, value
   875   __ movptr(rax, at_tos());     // Value
   876   __ movl(rcx, at_tos_p1());  // Index
   877   __ movptr(rdx, at_tos_p2());  // Array
   879   Address element_address(rdx, rcx, Address::times_4, arrayOopDesc::base_offset_in_bytes(T_OBJECT));
   880   index_check_without_pop(rdx, rcx);      // kills rbx,
   881   // do array store check - check for NULL value first
   882   __ testptr(rax, rax);
   883   __ jcc(Assembler::zero, is_null);
   885   // Move subklass into EBX
   886   __ movptr(rbx, Address(rax, oopDesc::klass_offset_in_bytes()));
   887   // Move superklass into EAX
   888   __ movptr(rax, Address(rdx, oopDesc::klass_offset_in_bytes()));
   889   __ movptr(rax, Address(rax, sizeof(oopDesc) + objArrayKlass::element_klass_offset_in_bytes()));
   890   // Compress array+index*wordSize+12 into a single register.  Frees ECX.
   891   __ lea(rdx, element_address);
   893   // Generate subtype check.  Blows ECX.  Resets EDI to locals.
   894   // Superklass in EAX.  Subklass in EBX.
   895   __ gen_subtype_check( rbx, ok_is_subtype );
   897   // Come here on failure
   898   // object is at TOS
   899   __ jump(ExternalAddress(Interpreter::_throw_ArrayStoreException_entry));
   901   // Come here on success
   902   __ bind(ok_is_subtype);
   904   // Get the value to store
   905   __ movptr(rax, at_rsp());
   906   // and store it with appropriate barrier
   907   do_oop_store(_masm, Address(rdx, 0), rax, _bs->kind(), true);
   909   __ jmp(done);
   911   // Have a NULL in EAX, EDX=array, ECX=index.  Store NULL at ary[idx]
   912   __ bind(is_null);
   913   __ profile_null_seen(rbx);
   915   // Store NULL, (noreg means NULL to do_oop_store)
   916   do_oop_store(_masm, element_address, noreg, _bs->kind(), true);
   918   // Pop stack arguments
   919   __ bind(done);
   920   __ addptr(rsp, 3 * Interpreter::stackElementSize);
   921 }
   924 void TemplateTable::bastore() {
   925   transition(itos, vtos);
   926   __ pop_i(rbx);
   927   // rax,: value
   928   // rdx: array
   929   index_check(rdx, rbx);  // prefer index in rbx,
   930   // rbx,: index
   931   __ movb(Address(rdx, rbx, Address::times_1, arrayOopDesc::base_offset_in_bytes(T_BYTE)), rax);
   932 }
   935 void TemplateTable::castore() {
   936   transition(itos, vtos);
   937   __ pop_i(rbx);
   938   // rax,: value
   939   // rdx: array
   940   index_check(rdx, rbx);  // prefer index in rbx,
   941   // rbx,: index
   942   __ movw(Address(rdx, rbx, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_CHAR)), rax);
   943 }
   946 void TemplateTable::sastore() {
   947   castore();
   948 }
   951 void TemplateTable::istore(int n) {
   952   transition(itos, vtos);
   953   __ movl(iaddress(n), rax);
   954 }
   957 void TemplateTable::lstore(int n) {
   958   transition(ltos, vtos);
   959   __ movptr(laddress(n), rax);
   960   NOT_LP64(__ movptr(haddress(n), rdx));
   961 }
   964 void TemplateTable::fstore(int n) {
   965   transition(ftos, vtos);
   966   __ fstp_s(faddress(n));
   967 }
   970 void TemplateTable::dstore(int n) {
   971   transition(dtos, vtos);
   972   __ fstp_d(daddress(n));
   973 }
   976 void TemplateTable::astore(int n) {
   977   transition(vtos, vtos);
   978   __ pop_ptr(rax);
   979   __ movptr(aaddress(n), rax);
   980 }
   983 void TemplateTable::pop() {
   984   transition(vtos, vtos);
   985   __ addptr(rsp, Interpreter::stackElementSize);
   986 }
   989 void TemplateTable::pop2() {
   990   transition(vtos, vtos);
   991   __ addptr(rsp, 2*Interpreter::stackElementSize);
   992 }
   995 void TemplateTable::dup() {
   996   transition(vtos, vtos);
   997   // stack: ..., a
   998   __ load_ptr(0, rax);
   999   __ push_ptr(rax);
  1000   // stack: ..., a, a
  1004 void TemplateTable::dup_x1() {
  1005   transition(vtos, vtos);
  1006   // stack: ..., a, b
  1007   __ load_ptr( 0, rax);  // load b
  1008   __ load_ptr( 1, rcx);  // load a
  1009   __ store_ptr(1, rax);  // store b
  1010   __ store_ptr(0, rcx);  // store a
  1011   __ push_ptr(rax);      // push b
  1012   // stack: ..., b, a, b
  1016 void TemplateTable::dup_x2() {
  1017   transition(vtos, vtos);
  1018   // stack: ..., a, b, c
  1019   __ load_ptr( 0, rax);  // load c
  1020   __ load_ptr( 2, rcx);  // load a
  1021   __ store_ptr(2, rax);  // store c in a
  1022   __ push_ptr(rax);      // push c
  1023   // stack: ..., c, b, c, c
  1024   __ load_ptr( 2, rax);  // load b
  1025   __ store_ptr(2, rcx);  // store a in b
  1026   // stack: ..., c, a, c, c
  1027   __ store_ptr(1, rax);  // store b in c
  1028   // stack: ..., c, a, b, c
  1032 void TemplateTable::dup2() {
  1033   transition(vtos, vtos);
  1034   // stack: ..., a, b
  1035   __ load_ptr(1, rax);  // load a
  1036   __ push_ptr(rax);     // push a
  1037   __ load_ptr(1, rax);  // load b
  1038   __ push_ptr(rax);     // push b
  1039   // stack: ..., a, b, a, b
  1043 void TemplateTable::dup2_x1() {
  1044   transition(vtos, vtos);
  1045   // stack: ..., a, b, c
  1046   __ load_ptr( 0, rcx);  // load c
  1047   __ load_ptr( 1, rax);  // load b
  1048   __ push_ptr(rax);      // push b
  1049   __ push_ptr(rcx);      // push c
  1050   // stack: ..., a, b, c, b, c
  1051   __ store_ptr(3, rcx);  // store c in b
  1052   // stack: ..., a, c, c, b, c
  1053   __ load_ptr( 4, rcx);  // load a
  1054   __ store_ptr(2, rcx);  // store a in 2nd c
  1055   // stack: ..., a, c, a, b, c
  1056   __ store_ptr(4, rax);  // store b in a
  1057   // stack: ..., b, c, a, b, c
  1058   // stack: ..., b, c, a, b, c
  1062 void TemplateTable::dup2_x2() {
  1063   transition(vtos, vtos);
  1064   // stack: ..., a, b, c, d
  1065   __ load_ptr( 0, rcx);  // load d
  1066   __ load_ptr( 1, rax);  // load c
  1067   __ push_ptr(rax);      // push c
  1068   __ push_ptr(rcx);      // push d
  1069   // stack: ..., a, b, c, d, c, d
  1070   __ load_ptr( 4, rax);  // load b
  1071   __ store_ptr(2, rax);  // store b in d
  1072   __ store_ptr(4, rcx);  // store d in b
  1073   // stack: ..., a, d, c, b, c, d
  1074   __ load_ptr( 5, rcx);  // load a
  1075   __ load_ptr( 3, rax);  // load c
  1076   __ store_ptr(3, rcx);  // store a in c
  1077   __ store_ptr(5, rax);  // store c in a
  1078   // stack: ..., c, d, a, b, c, d
  1079   // stack: ..., c, d, a, b, c, d
  1083 void TemplateTable::swap() {
  1084   transition(vtos, vtos);
  1085   // stack: ..., a, b
  1086   __ load_ptr( 1, rcx);  // load a
  1087   __ load_ptr( 0, rax);  // load b
  1088   __ store_ptr(0, rcx);  // store a in b
  1089   __ store_ptr(1, rax);  // store b in a
  1090   // stack: ..., b, a
  1094 void TemplateTable::iop2(Operation op) {
  1095   transition(itos, itos);
  1096   switch (op) {
  1097     case add  :                   __ pop_i(rdx); __ addl (rax, rdx); break;
  1098     case sub  : __ mov(rdx, rax); __ pop_i(rax); __ subl (rax, rdx); break;
  1099     case mul  :                   __ pop_i(rdx); __ imull(rax, rdx); break;
  1100     case _and :                   __ pop_i(rdx); __ andl (rax, rdx); break;
  1101     case _or  :                   __ pop_i(rdx); __ orl  (rax, rdx); break;
  1102     case _xor :                   __ pop_i(rdx); __ xorl (rax, rdx); break;
  1103     case shl  : __ mov(rcx, rax); __ pop_i(rax); __ shll (rax);      break; // implicit masking of lower 5 bits by Intel shift instr.
  1104     case shr  : __ mov(rcx, rax); __ pop_i(rax); __ sarl (rax);      break; // implicit masking of lower 5 bits by Intel shift instr.
  1105     case ushr : __ mov(rcx, rax); __ pop_i(rax); __ shrl (rax);      break; // implicit masking of lower 5 bits by Intel shift instr.
  1106     default   : ShouldNotReachHere();
  1111 void TemplateTable::lop2(Operation op) {
  1112   transition(ltos, ltos);
  1113   __ pop_l(rbx, rcx);
  1114   switch (op) {
  1115     case add  : __ addl(rax, rbx); __ adcl(rdx, rcx); break;
  1116     case sub  : __ subl(rbx, rax); __ sbbl(rcx, rdx);
  1117                 __ mov (rax, rbx); __ mov (rdx, rcx); break;
  1118     case _and : __ andl(rax, rbx); __ andl(rdx, rcx); break;
  1119     case _or  : __ orl (rax, rbx); __ orl (rdx, rcx); break;
  1120     case _xor : __ xorl(rax, rbx); __ xorl(rdx, rcx); break;
  1121     default   : ShouldNotReachHere();
  1126 void TemplateTable::idiv() {
  1127   transition(itos, itos);
  1128   __ mov(rcx, rax);
  1129   __ pop_i(rax);
  1130   // Note: could xor rax, and rcx and compare with (-1 ^ min_int). If
  1131   //       they are not equal, one could do a normal division (no correction
  1132   //       needed), which may speed up this implementation for the common case.
  1133   //       (see also JVM spec., p.243 & p.271)
  1134   __ corrected_idivl(rcx);
  1138 void TemplateTable::irem() {
  1139   transition(itos, itos);
  1140   __ mov(rcx, rax);
  1141   __ pop_i(rax);
  1142   // Note: could xor rax, and rcx and compare with (-1 ^ min_int). If
  1143   //       they are not equal, one could do a normal division (no correction
  1144   //       needed), which may speed up this implementation for the common case.
  1145   //       (see also JVM spec., p.243 & p.271)
  1146   __ corrected_idivl(rcx);
  1147   __ mov(rax, rdx);
  1151 void TemplateTable::lmul() {
  1152   transition(ltos, ltos);
  1153   __ pop_l(rbx, rcx);
  1154   __ push(rcx); __ push(rbx);
  1155   __ push(rdx); __ push(rax);
  1156   __ lmul(2 * wordSize, 0);
  1157   __ addptr(rsp, 4 * wordSize);  // take off temporaries
  1161 void TemplateTable::ldiv() {
  1162   transition(ltos, ltos);
  1163   __ pop_l(rbx, rcx);
  1164   __ push(rcx); __ push(rbx);
  1165   __ push(rdx); __ push(rax);
  1166   // check if y = 0
  1167   __ orl(rax, rdx);
  1168   __ jump_cc(Assembler::zero,
  1169              ExternalAddress(Interpreter::_throw_ArithmeticException_entry));
  1170   __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::ldiv));
  1171   __ addptr(rsp, 4 * wordSize);  // take off temporaries
  1175 void TemplateTable::lrem() {
  1176   transition(ltos, ltos);
  1177   __ pop_l(rbx, rcx);
  1178   __ push(rcx); __ push(rbx);
  1179   __ push(rdx); __ push(rax);
  1180   // check if y = 0
  1181   __ orl(rax, rdx);
  1182   __ jump_cc(Assembler::zero,
  1183              ExternalAddress(Interpreter::_throw_ArithmeticException_entry));
  1184   __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::lrem));
  1185   __ addptr(rsp, 4 * wordSize);
  1189 void TemplateTable::lshl() {
  1190   transition(itos, ltos);
  1191   __ movl(rcx, rax);                             // get shift count
  1192   __ pop_l(rax, rdx);                            // get shift value
  1193   __ lshl(rdx, rax);
  1197 void TemplateTable::lshr() {
  1198   transition(itos, ltos);
  1199   __ mov(rcx, rax);                              // get shift count
  1200   __ pop_l(rax, rdx);                            // get shift value
  1201   __ lshr(rdx, rax, true);
  1205 void TemplateTable::lushr() {
  1206   transition(itos, ltos);
  1207   __ mov(rcx, rax);                              // get shift count
  1208   __ pop_l(rax, rdx);                            // get shift value
  1209   __ lshr(rdx, rax);
  1213 void TemplateTable::fop2(Operation op) {
  1214   transition(ftos, ftos);
  1215   switch (op) {
  1216     case add: __ fadd_s (at_rsp());                break;
  1217     case sub: __ fsubr_s(at_rsp());                break;
  1218     case mul: __ fmul_s (at_rsp());                break;
  1219     case div: __ fdivr_s(at_rsp());                break;
  1220     case rem: __ fld_s  (at_rsp()); __ fremr(rax); break;
  1221     default : ShouldNotReachHere();
  1223   __ f2ieee();
  1224   __ pop(rax);  // pop float thing off
  1228 void TemplateTable::dop2(Operation op) {
  1229   transition(dtos, dtos);
  1231   switch (op) {
  1232     case add: __ fadd_d (at_rsp());                break;
  1233     case sub: __ fsubr_d(at_rsp());                break;
  1234     case mul: {
  1235       Label L_strict;
  1236       Label L_join;
  1237       const Address access_flags      (rcx, methodOopDesc::access_flags_offset());
  1238       __ get_method(rcx);
  1239       __ movl(rcx, access_flags);
  1240       __ testl(rcx, JVM_ACC_STRICT);
  1241       __ jccb(Assembler::notZero, L_strict);
  1242       __ fmul_d (at_rsp());
  1243       __ jmpb(L_join);
  1244       __ bind(L_strict);
  1245       __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias1()));
  1246       __ fmulp();
  1247       __ fmul_d (at_rsp());
  1248       __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias2()));
  1249       __ fmulp();
  1250       __ bind(L_join);
  1251       break;
  1253     case div: {
  1254       Label L_strict;
  1255       Label L_join;
  1256       const Address access_flags      (rcx, methodOopDesc::access_flags_offset());
  1257       __ get_method(rcx);
  1258       __ movl(rcx, access_flags);
  1259       __ testl(rcx, JVM_ACC_STRICT);
  1260       __ jccb(Assembler::notZero, L_strict);
  1261       __ fdivr_d(at_rsp());
  1262       __ jmp(L_join);
  1263       __ bind(L_strict);
  1264       __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias1()));
  1265       __ fmul_d (at_rsp());
  1266       __ fdivrp();
  1267       __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias2()));
  1268       __ fmulp();
  1269       __ bind(L_join);
  1270       break;
  1272     case rem: __ fld_d  (at_rsp()); __ fremr(rax); break;
  1273     default : ShouldNotReachHere();
  1275   __ d2ieee();
  1276   // Pop double precision number from rsp.
  1277   __ pop(rax);
  1278   __ pop(rdx);
  1282 void TemplateTable::ineg() {
  1283   transition(itos, itos);
  1284   __ negl(rax);
  1288 void TemplateTable::lneg() {
  1289   transition(ltos, ltos);
  1290   __ lneg(rdx, rax);
  1294 void TemplateTable::fneg() {
  1295   transition(ftos, ftos);
  1296   __ fchs();
  1300 void TemplateTable::dneg() {
  1301   transition(dtos, dtos);
  1302   __ fchs();
  1306 void TemplateTable::iinc() {
  1307   transition(vtos, vtos);
  1308   __ load_signed_byte(rdx, at_bcp(2));           // get constant
  1309   locals_index(rbx);
  1310   __ addl(iaddress(rbx), rdx);
  1314 void TemplateTable::wide_iinc() {
  1315   transition(vtos, vtos);
  1316   __ movl(rdx, at_bcp(4));                       // get constant
  1317   locals_index_wide(rbx);
  1318   __ bswapl(rdx);                                 // swap bytes & sign-extend constant
  1319   __ sarl(rdx, 16);
  1320   __ addl(iaddress(rbx), rdx);
  1321   // Note: should probably use only one movl to get both
  1322   //       the index and the constant -> fix this
  1326 void TemplateTable::convert() {
  1327   // Checking
  1328 #ifdef ASSERT
  1329   { TosState tos_in  = ilgl;
  1330     TosState tos_out = ilgl;
  1331     switch (bytecode()) {
  1332       case Bytecodes::_i2l: // fall through
  1333       case Bytecodes::_i2f: // fall through
  1334       case Bytecodes::_i2d: // fall through
  1335       case Bytecodes::_i2b: // fall through
  1336       case Bytecodes::_i2c: // fall through
  1337       case Bytecodes::_i2s: tos_in = itos; break;
  1338       case Bytecodes::_l2i: // fall through
  1339       case Bytecodes::_l2f: // fall through
  1340       case Bytecodes::_l2d: tos_in = ltos; break;
  1341       case Bytecodes::_f2i: // fall through
  1342       case Bytecodes::_f2l: // fall through
  1343       case Bytecodes::_f2d: tos_in = ftos; break;
  1344       case Bytecodes::_d2i: // fall through
  1345       case Bytecodes::_d2l: // fall through
  1346       case Bytecodes::_d2f: tos_in = dtos; break;
  1347       default             : ShouldNotReachHere();
  1349     switch (bytecode()) {
  1350       case Bytecodes::_l2i: // fall through
  1351       case Bytecodes::_f2i: // fall through
  1352       case Bytecodes::_d2i: // fall through
  1353       case Bytecodes::_i2b: // fall through
  1354       case Bytecodes::_i2c: // fall through
  1355       case Bytecodes::_i2s: tos_out = itos; break;
  1356       case Bytecodes::_i2l: // fall through
  1357       case Bytecodes::_f2l: // fall through
  1358       case Bytecodes::_d2l: tos_out = ltos; break;
  1359       case Bytecodes::_i2f: // fall through
  1360       case Bytecodes::_l2f: // fall through
  1361       case Bytecodes::_d2f: tos_out = ftos; break;
  1362       case Bytecodes::_i2d: // fall through
  1363       case Bytecodes::_l2d: // fall through
  1364       case Bytecodes::_f2d: tos_out = dtos; break;
  1365       default             : ShouldNotReachHere();
  1367     transition(tos_in, tos_out);
  1369 #endif // ASSERT
  1371   // Conversion
  1372   // (Note: use push(rcx)/pop(rcx) for 1/2-word stack-ptr manipulation)
  1373   switch (bytecode()) {
  1374     case Bytecodes::_i2l:
  1375       __ extend_sign(rdx, rax);
  1376       break;
  1377     case Bytecodes::_i2f:
  1378       __ push(rax);          // store int on tos
  1379       __ fild_s(at_rsp());   // load int to ST0
  1380       __ f2ieee();           // truncate to float size
  1381       __ pop(rcx);           // adjust rsp
  1382       break;
  1383     case Bytecodes::_i2d:
  1384       __ push(rax);          // add one slot for d2ieee()
  1385       __ push(rax);          // store int on tos
  1386       __ fild_s(at_rsp());   // load int to ST0
  1387       __ d2ieee();           // truncate to double size
  1388       __ pop(rcx);           // adjust rsp
  1389       __ pop(rcx);
  1390       break;
  1391     case Bytecodes::_i2b:
  1392       __ shll(rax, 24);      // truncate upper 24 bits
  1393       __ sarl(rax, 24);      // and sign-extend byte
  1394       LP64_ONLY(__ movsbl(rax, rax));
  1395       break;
  1396     case Bytecodes::_i2c:
  1397       __ andl(rax, 0xFFFF);  // truncate upper 16 bits
  1398       LP64_ONLY(__ movzwl(rax, rax));
  1399       break;
  1400     case Bytecodes::_i2s:
  1401       __ shll(rax, 16);      // truncate upper 16 bits
  1402       __ sarl(rax, 16);      // and sign-extend short
  1403       LP64_ONLY(__ movswl(rax, rax));
  1404       break;
  1405     case Bytecodes::_l2i:
  1406       /* nothing to do */
  1407       break;
  1408     case Bytecodes::_l2f:
  1409       __ push(rdx);          // store long on tos
  1410       __ push(rax);
  1411       __ fild_d(at_rsp());   // load long to ST0
  1412       __ f2ieee();           // truncate to float size
  1413       __ pop(rcx);           // adjust rsp
  1414       __ pop(rcx);
  1415       break;
  1416     case Bytecodes::_l2d:
  1417       __ push(rdx);          // store long on tos
  1418       __ push(rax);
  1419       __ fild_d(at_rsp());   // load long to ST0
  1420       __ d2ieee();           // truncate to double size
  1421       __ pop(rcx);           // adjust rsp
  1422       __ pop(rcx);
  1423       break;
  1424     case Bytecodes::_f2i:
  1425       __ push(rcx);          // reserve space for argument
  1426       __ fstp_s(at_rsp());   // pass float argument on stack
  1427       __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2i), 1);
  1428       break;
  1429     case Bytecodes::_f2l:
  1430       __ push(rcx);          // reserve space for argument
  1431       __ fstp_s(at_rsp());   // pass float argument on stack
  1432       __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2l), 1);
  1433       break;
  1434     case Bytecodes::_f2d:
  1435       /* nothing to do */
  1436       break;
  1437     case Bytecodes::_d2i:
  1438       __ push(rcx);          // reserve space for argument
  1439       __ push(rcx);
  1440       __ fstp_d(at_rsp());   // pass double argument on stack
  1441       __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2i), 2);
  1442       break;
  1443     case Bytecodes::_d2l:
  1444       __ push(rcx);          // reserve space for argument
  1445       __ push(rcx);
  1446       __ fstp_d(at_rsp());   // pass double argument on stack
  1447       __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2l), 2);
  1448       break;
  1449     case Bytecodes::_d2f:
  1450       __ push(rcx);          // reserve space for f2ieee()
  1451       __ f2ieee();           // truncate to float size
  1452       __ pop(rcx);           // adjust rsp
  1453       break;
  1454     default             :
  1455       ShouldNotReachHere();
  1460 void TemplateTable::lcmp() {
  1461   transition(ltos, itos);
  1462   // y = rdx:rax
  1463   __ pop_l(rbx, rcx);             // get x = rcx:rbx
  1464   __ lcmp2int(rcx, rbx, rdx, rax);// rcx := cmp(x, y)
  1465   __ mov(rax, rcx);
  1469 void TemplateTable::float_cmp(bool is_float, int unordered_result) {
  1470   if (is_float) {
  1471     __ fld_s(at_rsp());
  1472   } else {
  1473     __ fld_d(at_rsp());
  1474     __ pop(rdx);
  1476   __ pop(rcx);
  1477   __ fcmp2int(rax, unordered_result < 0);
  1481 void TemplateTable::branch(bool is_jsr, bool is_wide) {
  1482   __ get_method(rcx);           // ECX holds method
  1483   __ profile_taken_branch(rax,rbx); // EAX holds updated MDP, EBX holds bumped taken count
  1485   const ByteSize be_offset = methodOopDesc::backedge_counter_offset() + InvocationCounter::counter_offset();
  1486   const ByteSize inv_offset = methodOopDesc::invocation_counter_offset() + InvocationCounter::counter_offset();
  1487   const int method_offset = frame::interpreter_frame_method_offset * wordSize;
  1489   // Load up EDX with the branch displacement
  1490   __ movl(rdx, at_bcp(1));
  1491   __ bswapl(rdx);
  1492   if (!is_wide) __ sarl(rdx, 16);
  1493   LP64_ONLY(__ movslq(rdx, rdx));
  1496   // Handle all the JSR stuff here, then exit.
  1497   // It's much shorter and cleaner than intermingling with the
  1498   // non-JSR normal-branch stuff occurring below.
  1499   if (is_jsr) {
  1500     // Pre-load the next target bytecode into EBX
  1501     __ load_unsigned_byte(rbx, Address(rsi, rdx, Address::times_1, 0));
  1503     // compute return address as bci in rax,
  1504     __ lea(rax, at_bcp((is_wide ? 5 : 3) - in_bytes(constMethodOopDesc::codes_offset())));
  1505     __ subptr(rax, Address(rcx, methodOopDesc::const_offset()));
  1506     // Adjust the bcp in RSI by the displacement in EDX
  1507     __ addptr(rsi, rdx);
  1508     // Push return address
  1509     __ push_i(rax);
  1510     // jsr returns vtos
  1511     __ dispatch_only_noverify(vtos);
  1512     return;
  1515   // Normal (non-jsr) branch handling
  1517   // Adjust the bcp in RSI by the displacement in EDX
  1518   __ addptr(rsi, rdx);
  1520   assert(UseLoopCounter || !UseOnStackReplacement, "on-stack-replacement requires loop counters");
  1521   Label backedge_counter_overflow;
  1522   Label profile_method;
  1523   Label dispatch;
  1524   if (UseLoopCounter) {
  1525     // increment backedge counter for backward branches
  1526     // rax,: MDO
  1527     // rbx,: MDO bumped taken-count
  1528     // rcx: method
  1529     // rdx: target offset
  1530     // rsi: target bcp
  1531     // rdi: locals pointer
  1532     __ testl(rdx, rdx);             // check if forward or backward branch
  1533     __ jcc(Assembler::positive, dispatch); // count only if backward branch
  1535     // increment counter
  1536     __ movl(rax, Address(rcx, be_offset));        // load backedge counter
  1537     __ incrementl(rax, InvocationCounter::count_increment); // increment counter
  1538     __ movl(Address(rcx, be_offset), rax);        // store counter
  1540     __ movl(rax, Address(rcx, inv_offset));    // load invocation counter
  1541     __ andl(rax, InvocationCounter::count_mask_value);     // and the status bits
  1542     __ addl(rax, Address(rcx, be_offset));        // add both counters
  1544     if (ProfileInterpreter) {
  1545       // Test to see if we should create a method data oop
  1546       __ cmp32(rax,
  1547                ExternalAddress((address) &InvocationCounter::InterpreterProfileLimit));
  1548       __ jcc(Assembler::less, dispatch);
  1550       // if no method data exists, go to profile method
  1551       __ test_method_data_pointer(rax, profile_method);
  1553       if (UseOnStackReplacement) {
  1554         // check for overflow against rbx, which is the MDO taken count
  1555         __ cmp32(rbx,
  1556                  ExternalAddress((address) &InvocationCounter::InterpreterBackwardBranchLimit));
  1557         __ jcc(Assembler::below, dispatch);
  1559         // When ProfileInterpreter is on, the backedge_count comes from the
  1560         // methodDataOop, which value does not get reset on the call to
  1561         // frequency_counter_overflow().  To avoid excessive calls to the overflow
  1562         // routine while the method is being compiled, add a second test to make
  1563         // sure the overflow function is called only once every overflow_frequency.
  1564         const int overflow_frequency = 1024;
  1565         __ andptr(rbx, overflow_frequency-1);
  1566         __ jcc(Assembler::zero, backedge_counter_overflow);
  1569     } else {
  1570       if (UseOnStackReplacement) {
  1571         // check for overflow against rax, which is the sum of the counters
  1572         __ cmp32(rax,
  1573                  ExternalAddress((address) &InvocationCounter::InterpreterBackwardBranchLimit));
  1574         __ jcc(Assembler::aboveEqual, backedge_counter_overflow);
  1578     __ bind(dispatch);
  1581   // Pre-load the next target bytecode into EBX
  1582   __ load_unsigned_byte(rbx, Address(rsi, 0));
  1584   // continue with the bytecode @ target
  1585   // rax,: return bci for jsr's, unused otherwise
  1586   // rbx,: target bytecode
  1587   // rsi: target bcp
  1588   __ dispatch_only(vtos);
  1590   if (UseLoopCounter) {
  1591     if (ProfileInterpreter) {
  1592       // Out-of-line code to allocate method data oop.
  1593       __ bind(profile_method);
  1594       __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::profile_method), rsi);
  1595       __ load_unsigned_byte(rbx, Address(rsi, 0));  // restore target bytecode
  1596       __ movptr(rcx, Address(rbp, method_offset));
  1597       __ movptr(rcx, Address(rcx, in_bytes(methodOopDesc::method_data_offset())));
  1598       __ movptr(Address(rbp, frame::interpreter_frame_mdx_offset * wordSize), rcx);
  1599       __ test_method_data_pointer(rcx, dispatch);
  1600       // offset non-null mdp by MDO::data_offset() + IR::profile_method()
  1601       __ addptr(rcx, in_bytes(methodDataOopDesc::data_offset()));
  1602       __ addptr(rcx, rax);
  1603       __ movptr(Address(rbp, frame::interpreter_frame_mdx_offset * wordSize), rcx);
  1604       __ jmp(dispatch);
  1607     if (UseOnStackReplacement) {
  1609       // invocation counter overflow
  1610       __ bind(backedge_counter_overflow);
  1611       __ negptr(rdx);
  1612       __ addptr(rdx, rsi);        // branch bcp
  1613       call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::frequency_counter_overflow), rdx);
  1614       __ load_unsigned_byte(rbx, Address(rsi, 0));  // restore target bytecode
  1616       // rax,: osr nmethod (osr ok) or NULL (osr not possible)
  1617       // rbx,: target bytecode
  1618       // rdx: scratch
  1619       // rdi: locals pointer
  1620       // rsi: bcp
  1621       __ testptr(rax, rax);                      // test result
  1622       __ jcc(Assembler::zero, dispatch);         // no osr if null
  1623       // nmethod may have been invalidated (VM may block upon call_VM return)
  1624       __ movl(rcx, Address(rax, nmethod::entry_bci_offset()));
  1625       __ cmpl(rcx, InvalidOSREntryBci);
  1626       __ jcc(Assembler::equal, dispatch);
  1628       // We have the address of an on stack replacement routine in rax,
  1629       // We need to prepare to execute the OSR method. First we must
  1630       // migrate the locals and monitors off of the stack.
  1632       __ mov(rbx, rax);                             // save the nmethod
  1634       const Register thread = rcx;
  1635       __ get_thread(thread);
  1636       call_VM(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_begin));
  1637       // rax, is OSR buffer, move it to expected parameter location
  1638       __ mov(rcx, rax);
  1640       // pop the interpreter frame
  1641       __ movptr(rdx, Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize)); // get sender sp
  1642       __ leave();                                // remove frame anchor
  1643       __ pop(rdi);                               // get return address
  1644       __ mov(rsp, rdx);                          // set sp to sender sp
  1647       Label skip;
  1648       Label chkint;
  1650       // The interpreter frame we have removed may be returning to
  1651       // either the callstub or the interpreter. Since we will
  1652       // now be returning from a compiled (OSR) nmethod we must
  1653       // adjust the return to the return were it can handler compiled
  1654       // results and clean the fpu stack. This is very similar to
  1655       // what a i2c adapter must do.
  1657       // Are we returning to the call stub?
  1659       __ cmp32(rdi, ExternalAddress(StubRoutines::_call_stub_return_address));
  1660       __ jcc(Assembler::notEqual, chkint);
  1662       // yes adjust to the specialized call stub  return.
  1663       assert(StubRoutines::x86::get_call_stub_compiled_return() != NULL, "must be set");
  1664       __ lea(rdi, ExternalAddress(StubRoutines::x86::get_call_stub_compiled_return()));
  1665       __ jmp(skip);
  1667       __ bind(chkint);
  1669       // Are we returning to the interpreter? Look for sentinel
  1671       __ cmpl(Address(rdi, -2*wordSize), Interpreter::return_sentinel);
  1672       __ jcc(Assembler::notEqual, skip);
  1674       // Adjust to compiled return back to interpreter
  1676       __ movptr(rdi, Address(rdi, -wordSize));
  1677       __ bind(skip);
  1679       // Align stack pointer for compiled code (note that caller is
  1680       // responsible for undoing this fixup by remembering the old SP
  1681       // in an rbp,-relative location)
  1682       __ andptr(rsp, -(StackAlignmentInBytes));
  1684       // push the (possibly adjusted) return address
  1685       __ push(rdi);
  1687       // and begin the OSR nmethod
  1688       __ jmp(Address(rbx, nmethod::osr_entry_point_offset()));
  1694 void TemplateTable::if_0cmp(Condition cc) {
  1695   transition(itos, vtos);
  1696   // assume branch is more often taken than not (loops use backward branches)
  1697   Label not_taken;
  1698   __ testl(rax, rax);
  1699   __ jcc(j_not(cc), not_taken);
  1700   branch(false, false);
  1701   __ bind(not_taken);
  1702   __ profile_not_taken_branch(rax);
  1706 void TemplateTable::if_icmp(Condition cc) {
  1707   transition(itos, vtos);
  1708   // assume branch is more often taken than not (loops use backward branches)
  1709   Label not_taken;
  1710   __ pop_i(rdx);
  1711   __ cmpl(rdx, rax);
  1712   __ jcc(j_not(cc), not_taken);
  1713   branch(false, false);
  1714   __ bind(not_taken);
  1715   __ profile_not_taken_branch(rax);
  1719 void TemplateTable::if_nullcmp(Condition cc) {
  1720   transition(atos, vtos);
  1721   // assume branch is more often taken than not (loops use backward branches)
  1722   Label not_taken;
  1723   __ testptr(rax, rax);
  1724   __ jcc(j_not(cc), not_taken);
  1725   branch(false, false);
  1726   __ bind(not_taken);
  1727   __ profile_not_taken_branch(rax);
  1731 void TemplateTable::if_acmp(Condition cc) {
  1732   transition(atos, vtos);
  1733   // assume branch is more often taken than not (loops use backward branches)
  1734   Label not_taken;
  1735   __ pop_ptr(rdx);
  1736   __ cmpptr(rdx, rax);
  1737   __ jcc(j_not(cc), not_taken);
  1738   branch(false, false);
  1739   __ bind(not_taken);
  1740   __ profile_not_taken_branch(rax);
  1744 void TemplateTable::ret() {
  1745   transition(vtos, vtos);
  1746   locals_index(rbx);
  1747   __ movptr(rbx, iaddress(rbx));                   // get return bci, compute return bcp
  1748   __ profile_ret(rbx, rcx);
  1749   __ get_method(rax);
  1750   __ movptr(rsi, Address(rax, methodOopDesc::const_offset()));
  1751   __ lea(rsi, Address(rsi, rbx, Address::times_1,
  1752                       constMethodOopDesc::codes_offset()));
  1753   __ dispatch_next(vtos);
  1757 void TemplateTable::wide_ret() {
  1758   transition(vtos, vtos);
  1759   locals_index_wide(rbx);
  1760   __ movptr(rbx, iaddress(rbx));                   // get return bci, compute return bcp
  1761   __ profile_ret(rbx, rcx);
  1762   __ get_method(rax);
  1763   __ movptr(rsi, Address(rax, methodOopDesc::const_offset()));
  1764   __ lea(rsi, Address(rsi, rbx, Address::times_1, constMethodOopDesc::codes_offset()));
  1765   __ dispatch_next(vtos);
  1769 void TemplateTable::tableswitch() {
  1770   Label default_case, continue_execution;
  1771   transition(itos, vtos);
  1772   // align rsi
  1773   __ lea(rbx, at_bcp(wordSize));
  1774   __ andptr(rbx, -wordSize);
  1775   // load lo & hi
  1776   __ movl(rcx, Address(rbx, 1 * wordSize));
  1777   __ movl(rdx, Address(rbx, 2 * wordSize));
  1778   __ bswapl(rcx);
  1779   __ bswapl(rdx);
  1780   // check against lo & hi
  1781   __ cmpl(rax, rcx);
  1782   __ jccb(Assembler::less, default_case);
  1783   __ cmpl(rax, rdx);
  1784   __ jccb(Assembler::greater, default_case);
  1785   // lookup dispatch offset
  1786   __ subl(rax, rcx);
  1787   __ movl(rdx, Address(rbx, rax, Address::times_4, 3 * BytesPerInt));
  1788   __ profile_switch_case(rax, rbx, rcx);
  1789   // continue execution
  1790   __ bind(continue_execution);
  1791   __ bswapl(rdx);
  1792   __ load_unsigned_byte(rbx, Address(rsi, rdx, Address::times_1));
  1793   __ addptr(rsi, rdx);
  1794   __ dispatch_only(vtos);
  1795   // handle default
  1796   __ bind(default_case);
  1797   __ profile_switch_default(rax);
  1798   __ movl(rdx, Address(rbx, 0));
  1799   __ jmp(continue_execution);
  1803 void TemplateTable::lookupswitch() {
  1804   transition(itos, itos);
  1805   __ stop("lookupswitch bytecode should have been rewritten");
  1809 void TemplateTable::fast_linearswitch() {
  1810   transition(itos, vtos);
  1811   Label loop_entry, loop, found, continue_execution;
  1812   // bswapl rax, so we can avoid bswapping the table entries
  1813   __ bswapl(rax);
  1814   // align rsi
  1815   __ lea(rbx, at_bcp(wordSize));                // btw: should be able to get rid of this instruction (change offsets below)
  1816   __ andptr(rbx, -wordSize);
  1817   // set counter
  1818   __ movl(rcx, Address(rbx, wordSize));
  1819   __ bswapl(rcx);
  1820   __ jmpb(loop_entry);
  1821   // table search
  1822   __ bind(loop);
  1823   __ cmpl(rax, Address(rbx, rcx, Address::times_8, 2 * wordSize));
  1824   __ jccb(Assembler::equal, found);
  1825   __ bind(loop_entry);
  1826   __ decrementl(rcx);
  1827   __ jcc(Assembler::greaterEqual, loop);
  1828   // default case
  1829   __ profile_switch_default(rax);
  1830   __ movl(rdx, Address(rbx, 0));
  1831   __ jmpb(continue_execution);
  1832   // entry found -> get offset
  1833   __ bind(found);
  1834   __ movl(rdx, Address(rbx, rcx, Address::times_8, 3 * wordSize));
  1835   __ profile_switch_case(rcx, rax, rbx);
  1836   // continue execution
  1837   __ bind(continue_execution);
  1838   __ bswapl(rdx);
  1839   __ load_unsigned_byte(rbx, Address(rsi, rdx, Address::times_1));
  1840   __ addptr(rsi, rdx);
  1841   __ dispatch_only(vtos);
  1845 void TemplateTable::fast_binaryswitch() {
  1846   transition(itos, vtos);
  1847   // Implementation using the following core algorithm:
  1848   //
  1849   // int binary_search(int key, LookupswitchPair* array, int n) {
  1850   //   // Binary search according to "Methodik des Programmierens" by
  1851   //   // Edsger W. Dijkstra and W.H.J. Feijen, Addison Wesley Germany 1985.
  1852   //   int i = 0;
  1853   //   int j = n;
  1854   //   while (i+1 < j) {
  1855   //     // invariant P: 0 <= i < j <= n and (a[i] <= key < a[j] or Q)
  1856   //     // with      Q: for all i: 0 <= i < n: key < a[i]
  1857   //     // where a stands for the array and assuming that the (inexisting)
  1858   //     // element a[n] is infinitely big.
  1859   //     int h = (i + j) >> 1;
  1860   //     // i < h < j
  1861   //     if (key < array[h].fast_match()) {
  1862   //       j = h;
  1863   //     } else {
  1864   //       i = h;
  1865   //     }
  1866   //   }
  1867   //   // R: a[i] <= key < a[i+1] or Q
  1868   //   // (i.e., if key is within array, i is the correct index)
  1869   //   return i;
  1870   // }
  1872   // register allocation
  1873   const Register key   = rax;                    // already set (tosca)
  1874   const Register array = rbx;
  1875   const Register i     = rcx;
  1876   const Register j     = rdx;
  1877   const Register h     = rdi;                    // needs to be restored
  1878   const Register temp  = rsi;
  1879   // setup array
  1880   __ save_bcp();
  1882   __ lea(array, at_bcp(3*wordSize));             // btw: should be able to get rid of this instruction (change offsets below)
  1883   __ andptr(array, -wordSize);
  1884   // initialize i & j
  1885   __ xorl(i, i);                                 // i = 0;
  1886   __ movl(j, Address(array, -wordSize));         // j = length(array);
  1887   // Convert j into native byteordering
  1888   __ bswapl(j);
  1889   // and start
  1890   Label entry;
  1891   __ jmp(entry);
  1893   // binary search loop
  1894   { Label loop;
  1895     __ bind(loop);
  1896     // int h = (i + j) >> 1;
  1897     __ leal(h, Address(i, j, Address::times_1)); // h = i + j;
  1898     __ sarl(h, 1);                               // h = (i + j) >> 1;
  1899     // if (key < array[h].fast_match()) {
  1900     //   j = h;
  1901     // } else {
  1902     //   i = h;
  1903     // }
  1904     // Convert array[h].match to native byte-ordering before compare
  1905     __ movl(temp, Address(array, h, Address::times_8, 0*wordSize));
  1906     __ bswapl(temp);
  1907     __ cmpl(key, temp);
  1908     if (VM_Version::supports_cmov()) {
  1909       __ cmovl(Assembler::less        , j, h);   // j = h if (key <  array[h].fast_match())
  1910       __ cmovl(Assembler::greaterEqual, i, h);   // i = h if (key >= array[h].fast_match())
  1911     } else {
  1912       Label set_i, end_of_if;
  1913       __ jccb(Assembler::greaterEqual, set_i);     // {
  1914       __ mov(j, h);                                //   j = h;
  1915       __ jmp(end_of_if);                           // }
  1916       __ bind(set_i);                              // else {
  1917       __ mov(i, h);                                //   i = h;
  1918       __ bind(end_of_if);                          // }
  1920     // while (i+1 < j)
  1921     __ bind(entry);
  1922     __ leal(h, Address(i, 1));                   // i+1
  1923     __ cmpl(h, j);                               // i+1 < j
  1924     __ jcc(Assembler::less, loop);
  1927   // end of binary search, result index is i (must check again!)
  1928   Label default_case;
  1929   // Convert array[i].match to native byte-ordering before compare
  1930   __ movl(temp, Address(array, i, Address::times_8, 0*wordSize));
  1931   __ bswapl(temp);
  1932   __ cmpl(key, temp);
  1933   __ jcc(Assembler::notEqual, default_case);
  1935   // entry found -> j = offset
  1936   __ movl(j , Address(array, i, Address::times_8, 1*wordSize));
  1937   __ profile_switch_case(i, key, array);
  1938   __ bswapl(j);
  1939   LP64_ONLY(__ movslq(j, j));
  1940   __ restore_bcp();
  1941   __ restore_locals();                           // restore rdi
  1942   __ load_unsigned_byte(rbx, Address(rsi, j, Address::times_1));
  1944   __ addptr(rsi, j);
  1945   __ dispatch_only(vtos);
  1947   // default case -> j = default offset
  1948   __ bind(default_case);
  1949   __ profile_switch_default(i);
  1950   __ movl(j, Address(array, -2*wordSize));
  1951   __ bswapl(j);
  1952   LP64_ONLY(__ movslq(j, j));
  1953   __ restore_bcp();
  1954   __ restore_locals();                           // restore rdi
  1955   __ load_unsigned_byte(rbx, Address(rsi, j, Address::times_1));
  1956   __ addptr(rsi, j);
  1957   __ dispatch_only(vtos);
  1961 void TemplateTable::_return(TosState state) {
  1962   transition(state, state);
  1963   assert(_desc->calls_vm(), "inconsistent calls_vm information"); // call in remove_activation
  1965   if (_desc->bytecode() == Bytecodes::_return_register_finalizer) {
  1966     assert(state == vtos, "only valid state");
  1967     __ movptr(rax, aaddress(0));
  1968     __ movptr(rdi, Address(rax, oopDesc::klass_offset_in_bytes()));
  1969     __ movl(rdi, Address(rdi, Klass::access_flags_offset_in_bytes() + sizeof(oopDesc)));
  1970     __ testl(rdi, JVM_ACC_HAS_FINALIZER);
  1971     Label skip_register_finalizer;
  1972     __ jcc(Assembler::zero, skip_register_finalizer);
  1974     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::register_finalizer), rax);
  1976     __ bind(skip_register_finalizer);
  1979   __ remove_activation(state, rsi);
  1980   __ jmp(rsi);
  1984 // ----------------------------------------------------------------------------
  1985 // Volatile variables demand their effects be made known to all CPU's in
  1986 // order.  Store buffers on most chips allow reads & writes to reorder; the
  1987 // JMM's ReadAfterWrite.java test fails in -Xint mode without some kind of
  1988 // memory barrier (i.e., it's not sufficient that the interpreter does not
  1989 // reorder volatile references, the hardware also must not reorder them).
  1990 //
  1991 // According to the new Java Memory Model (JMM):
  1992 // (1) All volatiles are serialized wrt to each other.
  1993 // ALSO reads & writes act as aquire & release, so:
  1994 // (2) A read cannot let unrelated NON-volatile memory refs that happen after
  1995 // the read float up to before the read.  It's OK for non-volatile memory refs
  1996 // that happen before the volatile read to float down below it.
  1997 // (3) Similar a volatile write cannot let unrelated NON-volatile memory refs
  1998 // that happen BEFORE the write float down to after the write.  It's OK for
  1999 // non-volatile memory refs that happen after the volatile write to float up
  2000 // before it.
  2001 //
  2002 // We only put in barriers around volatile refs (they are expensive), not
  2003 // _between_ memory refs (that would require us to track the flavor of the
  2004 // previous memory refs).  Requirements (2) and (3) require some barriers
  2005 // before volatile stores and after volatile loads.  These nearly cover
  2006 // requirement (1) but miss the volatile-store-volatile-load case.  This final
  2007 // case is placed after volatile-stores although it could just as well go
  2008 // before volatile-loads.
  2009 void TemplateTable::volatile_barrier(Assembler::Membar_mask_bits order_constraint ) {
  2010   // Helper function to insert a is-volatile test and memory barrier
  2011   if( !os::is_MP() ) return;    // Not needed on single CPU
  2012   __ membar(order_constraint);
  2015 void TemplateTable::resolve_cache_and_index(int byte_no,
  2016                                             Register result,
  2017                                             Register Rcache,
  2018                                             Register index,
  2019                                             size_t index_size) {
  2020   Register temp = rbx;
  2022   assert_different_registers(result, Rcache, index, temp);
  2024   Label resolved;
  2025   __ get_cache_and_index_at_bcp(Rcache, index, 1, index_size);
  2026   if (byte_no == f1_oop) {
  2027     // We are resolved if the f1 field contains a non-null object (CallSite, etc.)
  2028     // This kind of CP cache entry does not need to match the flags byte, because
  2029     // there is a 1-1 relation between bytecode type and CP entry type.
  2030     assert(result != noreg, ""); //else do cmpptr(Address(...), (int32_t) NULL_WORD)
  2031     __ movptr(result, Address(Rcache, index, Address::times_ptr, constantPoolCacheOopDesc::base_offset() + ConstantPoolCacheEntry::f1_offset()));
  2032     __ testptr(result, result);
  2033     __ jcc(Assembler::notEqual, resolved);
  2034   } else {
  2035     assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range");
  2036     assert(result == noreg, "");  //else change code for setting result
  2037     const int shift_count = (1 + byte_no)*BitsPerByte;
  2038     __ movl(temp, Address(Rcache, index, Address::times_4, constantPoolCacheOopDesc::base_offset() + ConstantPoolCacheEntry::indices_offset()));
  2039     __ shrl(temp, shift_count);
  2040     // have we resolved this bytecode?
  2041     __ andl(temp, 0xFF);
  2042     __ cmpl(temp, (int)bytecode());
  2043     __ jcc(Assembler::equal, resolved);
  2046   // resolve first time through
  2047   address entry;
  2048   switch (bytecode()) {
  2049     case Bytecodes::_getstatic      : // fall through
  2050     case Bytecodes::_putstatic      : // fall through
  2051     case Bytecodes::_getfield       : // fall through
  2052     case Bytecodes::_putfield       : entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_get_put); break;
  2053     case Bytecodes::_invokevirtual  : // fall through
  2054     case Bytecodes::_invokespecial  : // fall through
  2055     case Bytecodes::_invokestatic   : // fall through
  2056     case Bytecodes::_invokeinterface: entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_invoke);  break;
  2057     case Bytecodes::_invokedynamic  : entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_invokedynamic); break;
  2058     default                         : ShouldNotReachHere();                                 break;
  2060   __ movl(temp, (int)bytecode());
  2061   __ call_VM(noreg, entry, temp);
  2062   // Update registers with resolved info
  2063   __ get_cache_and_index_at_bcp(Rcache, index, 1, index_size);
  2064   if (result != noreg)
  2065     __ movptr(result, Address(Rcache, index, Address::times_ptr, constantPoolCacheOopDesc::base_offset() + ConstantPoolCacheEntry::f1_offset()));
  2066   __ bind(resolved);
  2070 // The cache and index registers must be set before call
  2071 void TemplateTable::load_field_cp_cache_entry(Register obj,
  2072                                               Register cache,
  2073                                               Register index,
  2074                                               Register off,
  2075                                               Register flags,
  2076                                               bool is_static = false) {
  2077   assert_different_registers(cache, index, flags, off);
  2079   ByteSize cp_base_offset = constantPoolCacheOopDesc::base_offset();
  2080   // Field offset
  2081   __ movptr(off, Address(cache, index, Address::times_ptr,
  2082                          in_bytes(cp_base_offset + ConstantPoolCacheEntry::f2_offset())));
  2083   // Flags
  2084   __ movl(flags, Address(cache, index, Address::times_ptr,
  2085            in_bytes(cp_base_offset + ConstantPoolCacheEntry::flags_offset())));
  2087   // klass     overwrite register
  2088   if (is_static) {
  2089     __ movptr(obj, Address(cache, index, Address::times_ptr,
  2090                            in_bytes(cp_base_offset + ConstantPoolCacheEntry::f1_offset())));
  2094 void TemplateTable::load_invoke_cp_cache_entry(int byte_no,
  2095                                                Register method,
  2096                                                Register itable_index,
  2097                                                Register flags,
  2098                                                bool is_invokevirtual,
  2099                                                bool is_invokevfinal /*unused*/,
  2100                                                bool is_invokedynamic) {
  2101   // setup registers
  2102   const Register cache = rcx;
  2103   const Register index = rdx;
  2104   assert_different_registers(method, flags);
  2105   assert_different_registers(method, cache, index);
  2106   assert_different_registers(itable_index, flags);
  2107   assert_different_registers(itable_index, cache, index);
  2108   // determine constant pool cache field offsets
  2109   const int method_offset = in_bytes(
  2110     constantPoolCacheOopDesc::base_offset() +
  2111       (is_invokevirtual
  2112        ? ConstantPoolCacheEntry::f2_offset()
  2113        : ConstantPoolCacheEntry::f1_offset()
  2115     );
  2116   const int flags_offset = in_bytes(constantPoolCacheOopDesc::base_offset() +
  2117                                     ConstantPoolCacheEntry::flags_offset());
  2118   // access constant pool cache fields
  2119   const int index_offset = in_bytes(constantPoolCacheOopDesc::base_offset() +
  2120                                     ConstantPoolCacheEntry::f2_offset());
  2122   if (byte_no == f1_oop) {
  2123     // Resolved f1_oop goes directly into 'method' register.
  2124     assert(is_invokedynamic, "");
  2125     resolve_cache_and_index(byte_no, method, cache, index, sizeof(u4));
  2126   } else {
  2127     resolve_cache_and_index(byte_no, noreg, cache, index, sizeof(u2));
  2128     __ movptr(method, Address(cache, index, Address::times_ptr, method_offset));
  2130   if (itable_index != noreg) {
  2131     __ movptr(itable_index, Address(cache, index, Address::times_ptr, index_offset));
  2133   __ movl(flags, Address(cache, index, Address::times_ptr, flags_offset));
  2137 // The registers cache and index expected to be set before call.
  2138 // Correct values of the cache and index registers are preserved.
  2139 void TemplateTable::jvmti_post_field_access(Register cache,
  2140                                             Register index,
  2141                                             bool is_static,
  2142                                             bool has_tos) {
  2143   if (JvmtiExport::can_post_field_access()) {
  2144     // Check to see if a field access watch has been set before we take
  2145     // the time to call into the VM.
  2146     Label L1;
  2147     assert_different_registers(cache, index, rax);
  2148     __ mov32(rax, ExternalAddress((address) JvmtiExport::get_field_access_count_addr()));
  2149     __ testl(rax,rax);
  2150     __ jcc(Assembler::zero, L1);
  2152     // cache entry pointer
  2153     __ addptr(cache, in_bytes(constantPoolCacheOopDesc::base_offset()));
  2154     __ shll(index, LogBytesPerWord);
  2155     __ addptr(cache, index);
  2156     if (is_static) {
  2157       __ xorptr(rax, rax);      // NULL object reference
  2158     } else {
  2159       __ pop(atos);         // Get the object
  2160       __ verify_oop(rax);
  2161       __ push(atos);        // Restore stack state
  2163     // rax,:   object pointer or NULL
  2164     // cache: cache entry pointer
  2165     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_access),
  2166                rax, cache);
  2167     __ get_cache_and_index_at_bcp(cache, index, 1);
  2168     __ bind(L1);
  2172 void TemplateTable::pop_and_check_object(Register r) {
  2173   __ pop_ptr(r);
  2174   __ null_check(r);  // for field access must check obj.
  2175   __ verify_oop(r);
  2178 void TemplateTable::getfield_or_static(int byte_no, bool is_static) {
  2179   transition(vtos, vtos);
  2181   const Register cache = rcx;
  2182   const Register index = rdx;
  2183   const Register obj   = rcx;
  2184   const Register off   = rbx;
  2185   const Register flags = rax;
  2187   resolve_cache_and_index(byte_no, noreg, cache, index, sizeof(u2));
  2188   jvmti_post_field_access(cache, index, is_static, false);
  2189   load_field_cp_cache_entry(obj, cache, index, off, flags, is_static);
  2191   if (!is_static) pop_and_check_object(obj);
  2193   const Address lo(obj, off, Address::times_1, 0*wordSize);
  2194   const Address hi(obj, off, Address::times_1, 1*wordSize);
  2196   Label Done, notByte, notInt, notShort, notChar, notLong, notFloat, notObj, notDouble;
  2198   __ shrl(flags, ConstantPoolCacheEntry::tosBits);
  2199   assert(btos == 0, "change code, btos != 0");
  2200   // btos
  2201   __ andptr(flags, 0x0f);
  2202   __ jcc(Assembler::notZero, notByte);
  2204   __ load_signed_byte(rax, lo );
  2205   __ push(btos);
  2206   // Rewrite bytecode to be faster
  2207   if (!is_static) {
  2208     patch_bytecode(Bytecodes::_fast_bgetfield, rcx, rbx);
  2210   __ jmp(Done);
  2212   __ bind(notByte);
  2213   // itos
  2214   __ cmpl(flags, itos );
  2215   __ jcc(Assembler::notEqual, notInt);
  2217   __ movl(rax, lo );
  2218   __ push(itos);
  2219   // Rewrite bytecode to be faster
  2220   if (!is_static) {
  2221     patch_bytecode(Bytecodes::_fast_igetfield, rcx, rbx);
  2223   __ jmp(Done);
  2225   __ bind(notInt);
  2226   // atos
  2227   __ cmpl(flags, atos );
  2228   __ jcc(Assembler::notEqual, notObj);
  2230   __ movl(rax, lo );
  2231   __ push(atos);
  2232   if (!is_static) {
  2233     patch_bytecode(Bytecodes::_fast_agetfield, rcx, rbx);
  2235   __ jmp(Done);
  2237   __ bind(notObj);
  2238   // ctos
  2239   __ cmpl(flags, ctos );
  2240   __ jcc(Assembler::notEqual, notChar);
  2242   __ load_unsigned_short(rax, lo );
  2243   __ push(ctos);
  2244   if (!is_static) {
  2245     patch_bytecode(Bytecodes::_fast_cgetfield, rcx, rbx);
  2247   __ jmp(Done);
  2249   __ bind(notChar);
  2250   // stos
  2251   __ cmpl(flags, stos );
  2252   __ jcc(Assembler::notEqual, notShort);
  2254   __ load_signed_short(rax, lo );
  2255   __ push(stos);
  2256   if (!is_static) {
  2257     patch_bytecode(Bytecodes::_fast_sgetfield, rcx, rbx);
  2259   __ jmp(Done);
  2261   __ bind(notShort);
  2262   // ltos
  2263   __ cmpl(flags, ltos );
  2264   __ jcc(Assembler::notEqual, notLong);
  2266   // Generate code as if volatile.  There just aren't enough registers to
  2267   // save that information and this code is faster than the test.
  2268   __ fild_d(lo);                // Must load atomically
  2269   __ subptr(rsp,2*wordSize);    // Make space for store
  2270   __ fistp_d(Address(rsp,0));
  2271   __ pop(rax);
  2272   __ pop(rdx);
  2274   __ push(ltos);
  2275   // Don't rewrite to _fast_lgetfield for potential volatile case.
  2276   __ jmp(Done);
  2278   __ bind(notLong);
  2279   // ftos
  2280   __ cmpl(flags, ftos );
  2281   __ jcc(Assembler::notEqual, notFloat);
  2283   __ fld_s(lo);
  2284   __ push(ftos);
  2285   if (!is_static) {
  2286     patch_bytecode(Bytecodes::_fast_fgetfield, rcx, rbx);
  2288   __ jmp(Done);
  2290   __ bind(notFloat);
  2291   // dtos
  2292   __ cmpl(flags, dtos );
  2293   __ jcc(Assembler::notEqual, notDouble);
  2295   __ fld_d(lo);
  2296   __ push(dtos);
  2297   if (!is_static) {
  2298     patch_bytecode(Bytecodes::_fast_dgetfield, rcx, rbx);
  2300   __ jmpb(Done);
  2302   __ bind(notDouble);
  2304   __ stop("Bad state");
  2306   __ bind(Done);
  2307   // Doug Lea believes this is not needed with current Sparcs (TSO) and Intel (PSO).
  2308   // volatile_barrier( );
  2312 void TemplateTable::getfield(int byte_no) {
  2313   getfield_or_static(byte_no, false);
  2317 void TemplateTable::getstatic(int byte_no) {
  2318   getfield_or_static(byte_no, true);
  2321 // The registers cache and index expected to be set before call.
  2322 // The function may destroy various registers, just not the cache and index registers.
  2323 void TemplateTable::jvmti_post_field_mod(Register cache, Register index, bool is_static) {
  2325   ByteSize cp_base_offset = constantPoolCacheOopDesc::base_offset();
  2327   if (JvmtiExport::can_post_field_modification()) {
  2328     // Check to see if a field modification watch has been set before we take
  2329     // the time to call into the VM.
  2330     Label L1;
  2331     assert_different_registers(cache, index, rax);
  2332     __ mov32(rax, ExternalAddress((address)JvmtiExport::get_field_modification_count_addr()));
  2333     __ testl(rax, rax);
  2334     __ jcc(Assembler::zero, L1);
  2336     // The cache and index registers have been already set.
  2337     // This allows to eliminate this call but the cache and index
  2338     // registers have to be correspondingly used after this line.
  2339     __ get_cache_and_index_at_bcp(rax, rdx, 1);
  2341     if (is_static) {
  2342       // Life is simple.  Null out the object pointer.
  2343       __ xorptr(rbx, rbx);
  2344     } else {
  2345       // Life is harder. The stack holds the value on top, followed by the object.
  2346       // We don't know the size of the value, though; it could be one or two words
  2347       // depending on its type. As a result, we must find the type to determine where
  2348       // the object is.
  2349       Label two_word, valsize_known;
  2350       __ movl(rcx, Address(rax, rdx, Address::times_ptr, in_bytes(cp_base_offset +
  2351                                    ConstantPoolCacheEntry::flags_offset())));
  2352       __ mov(rbx, rsp);
  2353       __ shrl(rcx, ConstantPoolCacheEntry::tosBits);
  2354       // Make sure we don't need to mask rcx for tosBits after the above shift
  2355       ConstantPoolCacheEntry::verify_tosBits();
  2356       __ cmpl(rcx, ltos);
  2357       __ jccb(Assembler::equal, two_word);
  2358       __ cmpl(rcx, dtos);
  2359       __ jccb(Assembler::equal, two_word);
  2360       __ addptr(rbx, Interpreter::expr_offset_in_bytes(1)); // one word jvalue (not ltos, dtos)
  2361       __ jmpb(valsize_known);
  2363       __ bind(two_word);
  2364       __ addptr(rbx, Interpreter::expr_offset_in_bytes(2)); // two words jvalue
  2366       __ bind(valsize_known);
  2367       // setup object pointer
  2368       __ movptr(rbx, Address(rbx, 0));
  2370     // cache entry pointer
  2371     __ addptr(rax, in_bytes(cp_base_offset));
  2372     __ shll(rdx, LogBytesPerWord);
  2373     __ addptr(rax, rdx);
  2374     // object (tos)
  2375     __ mov(rcx, rsp);
  2376     // rbx,: object pointer set up above (NULL if static)
  2377     // rax,: cache entry pointer
  2378     // rcx: jvalue object on the stack
  2379     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_modification),
  2380                rbx, rax, rcx);
  2381     __ get_cache_and_index_at_bcp(cache, index, 1);
  2382     __ bind(L1);
  2387 void TemplateTable::putfield_or_static(int byte_no, bool is_static) {
  2388   transition(vtos, vtos);
  2390   const Register cache = rcx;
  2391   const Register index = rdx;
  2392   const Register obj   = rcx;
  2393   const Register off   = rbx;
  2394   const Register flags = rax;
  2396   resolve_cache_and_index(byte_no, noreg, cache, index, sizeof(u2));
  2397   jvmti_post_field_mod(cache, index, is_static);
  2398   load_field_cp_cache_entry(obj, cache, index, off, flags, is_static);
  2400   // Doug Lea believes this is not needed with current Sparcs (TSO) and Intel (PSO).
  2401   // volatile_barrier( );
  2403   Label notVolatile, Done;
  2404   __ movl(rdx, flags);
  2405   __ shrl(rdx, ConstantPoolCacheEntry::volatileField);
  2406   __ andl(rdx, 0x1);
  2408   // field addresses
  2409   const Address lo(obj, off, Address::times_1, 0*wordSize);
  2410   const Address hi(obj, off, Address::times_1, 1*wordSize);
  2412   Label notByte, notInt, notShort, notChar, notLong, notFloat, notObj, notDouble;
  2414   __ shrl(flags, ConstantPoolCacheEntry::tosBits);
  2415   assert(btos == 0, "change code, btos != 0");
  2416   // btos
  2417   __ andl(flags, 0x0f);
  2418   __ jcc(Assembler::notZero, notByte);
  2420   __ pop(btos);
  2421   if (!is_static) pop_and_check_object(obj);
  2422   __ movb(lo, rax );
  2423   if (!is_static) {
  2424     patch_bytecode(Bytecodes::_fast_bputfield, rcx, rbx);
  2426   __ jmp(Done);
  2428   __ bind(notByte);
  2429   // itos
  2430   __ cmpl(flags, itos );
  2431   __ jcc(Assembler::notEqual, notInt);
  2433   __ pop(itos);
  2434   if (!is_static) pop_and_check_object(obj);
  2436   __ movl(lo, rax );
  2437   if (!is_static) {
  2438     patch_bytecode(Bytecodes::_fast_iputfield, rcx, rbx);
  2440   __ jmp(Done);
  2442   __ bind(notInt);
  2443   // atos
  2444   __ cmpl(flags, atos );
  2445   __ jcc(Assembler::notEqual, notObj);
  2447   __ pop(atos);
  2448   if (!is_static) pop_and_check_object(obj);
  2450   do_oop_store(_masm, lo, rax, _bs->kind(), false);
  2452   if (!is_static) {
  2453     patch_bytecode(Bytecodes::_fast_aputfield, rcx, rbx);
  2456   __ jmp(Done);
  2458   __ bind(notObj);
  2459   // ctos
  2460   __ cmpl(flags, ctos );
  2461   __ jcc(Assembler::notEqual, notChar);
  2463   __ pop(ctos);
  2464   if (!is_static) pop_and_check_object(obj);
  2465   __ movw(lo, rax );
  2466   if (!is_static) {
  2467     patch_bytecode(Bytecodes::_fast_cputfield, rcx, rbx);
  2469   __ jmp(Done);
  2471   __ bind(notChar);
  2472   // stos
  2473   __ cmpl(flags, stos );
  2474   __ jcc(Assembler::notEqual, notShort);
  2476   __ pop(stos);
  2477   if (!is_static) pop_and_check_object(obj);
  2478   __ movw(lo, rax );
  2479   if (!is_static) {
  2480     patch_bytecode(Bytecodes::_fast_sputfield, rcx, rbx);
  2482   __ jmp(Done);
  2484   __ bind(notShort);
  2485   // ltos
  2486   __ cmpl(flags, ltos );
  2487   __ jcc(Assembler::notEqual, notLong);
  2489   Label notVolatileLong;
  2490   __ testl(rdx, rdx);
  2491   __ jcc(Assembler::zero, notVolatileLong);
  2493   __ pop(ltos);  // overwrites rdx, do this after testing volatile.
  2494   if (!is_static) pop_and_check_object(obj);
  2496   // Replace with real volatile test
  2497   __ push(rdx);
  2498   __ push(rax);                 // Must update atomically with FIST
  2499   __ fild_d(Address(rsp,0));    // So load into FPU register
  2500   __ fistp_d(lo);               // and put into memory atomically
  2501   __ addptr(rsp, 2*wordSize);
  2502   // volatile_barrier();
  2503   volatile_barrier(Assembler::Membar_mask_bits(Assembler::StoreLoad |
  2504                                                Assembler::StoreStore));
  2505   // Don't rewrite volatile version
  2506   __ jmp(notVolatile);
  2508   __ bind(notVolatileLong);
  2510   __ pop(ltos);  // overwrites rdx
  2511   if (!is_static) pop_and_check_object(obj);
  2512   NOT_LP64(__ movptr(hi, rdx));
  2513   __ movptr(lo, rax);
  2514   if (!is_static) {
  2515     patch_bytecode(Bytecodes::_fast_lputfield, rcx, rbx);
  2517   __ jmp(notVolatile);
  2519   __ bind(notLong);
  2520   // ftos
  2521   __ cmpl(flags, ftos );
  2522   __ jcc(Assembler::notEqual, notFloat);
  2524   __ pop(ftos);
  2525   if (!is_static) pop_and_check_object(obj);
  2526   __ fstp_s(lo);
  2527   if (!is_static) {
  2528     patch_bytecode(Bytecodes::_fast_fputfield, rcx, rbx);
  2530   __ jmp(Done);
  2532   __ bind(notFloat);
  2533   // dtos
  2534   __ cmpl(flags, dtos );
  2535   __ jcc(Assembler::notEqual, notDouble);
  2537   __ pop(dtos);
  2538   if (!is_static) pop_and_check_object(obj);
  2539   __ fstp_d(lo);
  2540   if (!is_static) {
  2541     patch_bytecode(Bytecodes::_fast_dputfield, rcx, rbx);
  2543   __ jmp(Done);
  2545   __ bind(notDouble);
  2547   __ stop("Bad state");
  2549   __ bind(Done);
  2551   // Check for volatile store
  2552   __ testl(rdx, rdx);
  2553   __ jcc(Assembler::zero, notVolatile);
  2554   volatile_barrier(Assembler::Membar_mask_bits(Assembler::StoreLoad |
  2555                                                Assembler::StoreStore));
  2556   __ bind(notVolatile);
  2560 void TemplateTable::putfield(int byte_no) {
  2561   putfield_or_static(byte_no, false);
  2565 void TemplateTable::putstatic(int byte_no) {
  2566   putfield_or_static(byte_no, true);
  2569 void TemplateTable::jvmti_post_fast_field_mod() {
  2570   if (JvmtiExport::can_post_field_modification()) {
  2571     // Check to see if a field modification watch has been set before we take
  2572     // the time to call into the VM.
  2573     Label L2;
  2574     __ mov32(rcx, ExternalAddress((address)JvmtiExport::get_field_modification_count_addr()));
  2575     __ testl(rcx,rcx);
  2576     __ jcc(Assembler::zero, L2);
  2577     __ pop_ptr(rbx);               // copy the object pointer from tos
  2578     __ verify_oop(rbx);
  2579     __ push_ptr(rbx);              // put the object pointer back on tos
  2580     __ subptr(rsp, sizeof(jvalue));  // add space for a jvalue object
  2581     __ mov(rcx, rsp);
  2582     __ push_ptr(rbx);                 // save object pointer so we can steal rbx,
  2583     __ xorptr(rbx, rbx);
  2584     const Address lo_value(rcx, rbx, Address::times_1, 0*wordSize);
  2585     const Address hi_value(rcx, rbx, Address::times_1, 1*wordSize);
  2586     switch (bytecode()) {          // load values into the jvalue object
  2587     case Bytecodes::_fast_bputfield: __ movb(lo_value, rax); break;
  2588     case Bytecodes::_fast_sputfield: __ movw(lo_value, rax); break;
  2589     case Bytecodes::_fast_cputfield: __ movw(lo_value, rax); break;
  2590     case Bytecodes::_fast_iputfield: __ movl(lo_value, rax);                         break;
  2591     case Bytecodes::_fast_lputfield:
  2592       NOT_LP64(__ movptr(hi_value, rdx));
  2593       __ movptr(lo_value, rax);
  2594       break;
  2596     // need to call fld_s() after fstp_s() to restore the value for below
  2597     case Bytecodes::_fast_fputfield: __ fstp_s(lo_value); __ fld_s(lo_value);        break;
  2599     // need to call fld_d() after fstp_d() to restore the value for below
  2600     case Bytecodes::_fast_dputfield: __ fstp_d(lo_value); __ fld_d(lo_value);        break;
  2602     // since rcx is not an object we don't call store_check() here
  2603     case Bytecodes::_fast_aputfield: __ movptr(lo_value, rax);                       break;
  2605     default:  ShouldNotReachHere();
  2607     __ pop_ptr(rbx);  // restore copy of object pointer
  2609     // Save rax, and sometimes rdx because call_VM() will clobber them,
  2610     // then use them for JVM/DI purposes
  2611     __ push(rax);
  2612     if (bytecode() == Bytecodes::_fast_lputfield) __ push(rdx);
  2613     // access constant pool cache entry
  2614     __ get_cache_entry_pointer_at_bcp(rax, rdx, 1);
  2615     __ verify_oop(rbx);
  2616     // rbx,: object pointer copied above
  2617     // rax,: cache entry pointer
  2618     // rcx: jvalue object on the stack
  2619     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_modification), rbx, rax, rcx);
  2620     if (bytecode() == Bytecodes::_fast_lputfield) __ pop(rdx);  // restore high value
  2621     __ pop(rax);     // restore lower value
  2622     __ addptr(rsp, sizeof(jvalue));  // release jvalue object space
  2623     __ bind(L2);
  2627 void TemplateTable::fast_storefield(TosState state) {
  2628   transition(state, vtos);
  2630   ByteSize base = constantPoolCacheOopDesc::base_offset();
  2632   jvmti_post_fast_field_mod();
  2634   // access constant pool cache
  2635   __ get_cache_and_index_at_bcp(rcx, rbx, 1);
  2637   // test for volatile with rdx but rdx is tos register for lputfield.
  2638   if (bytecode() == Bytecodes::_fast_lputfield) __ push(rdx);
  2639   __ movl(rdx, Address(rcx, rbx, Address::times_ptr, in_bytes(base +
  2640                        ConstantPoolCacheEntry::flags_offset())));
  2642   // replace index with field offset from cache entry
  2643   __ movptr(rbx, Address(rcx, rbx, Address::times_ptr, in_bytes(base + ConstantPoolCacheEntry::f2_offset())));
  2645   // Doug Lea believes this is not needed with current Sparcs (TSO) and Intel (PSO).
  2646   // volatile_barrier( );
  2648   Label notVolatile, Done;
  2649   __ shrl(rdx, ConstantPoolCacheEntry::volatileField);
  2650   __ andl(rdx, 0x1);
  2651   // Check for volatile store
  2652   __ testl(rdx, rdx);
  2653   __ jcc(Assembler::zero, notVolatile);
  2655   if (bytecode() == Bytecodes::_fast_lputfield) __ pop(rdx);
  2657   // Get object from stack
  2658   pop_and_check_object(rcx);
  2660   // field addresses
  2661   const Address lo(rcx, rbx, Address::times_1, 0*wordSize);
  2662   const Address hi(rcx, rbx, Address::times_1, 1*wordSize);
  2664   // access field
  2665   switch (bytecode()) {
  2666     case Bytecodes::_fast_bputfield: __ movb(lo, rax); break;
  2667     case Bytecodes::_fast_sputfield: // fall through
  2668     case Bytecodes::_fast_cputfield: __ movw(lo, rax); break;
  2669     case Bytecodes::_fast_iputfield: __ movl(lo, rax); break;
  2670     case Bytecodes::_fast_lputfield:
  2671       NOT_LP64(__ movptr(hi, rdx));
  2672       __ movptr(lo, rax);
  2673       break;
  2674     case Bytecodes::_fast_fputfield: __ fstp_s(lo); break;
  2675     case Bytecodes::_fast_dputfield: __ fstp_d(lo); break;
  2676     case Bytecodes::_fast_aputfield: {
  2677       do_oop_store(_masm, lo, rax, _bs->kind(), false);
  2678       break;
  2680     default:
  2681       ShouldNotReachHere();
  2684   Label done;
  2685   volatile_barrier(Assembler::Membar_mask_bits(Assembler::StoreLoad |
  2686                                                Assembler::StoreStore));
  2687   // Barriers are so large that short branch doesn't reach!
  2688   __ jmp(done);
  2690   // Same code as above, but don't need rdx to test for volatile.
  2691   __ bind(notVolatile);
  2693   if (bytecode() == Bytecodes::_fast_lputfield) __ pop(rdx);
  2695   // Get object from stack
  2696   pop_and_check_object(rcx);
  2698   // access field
  2699   switch (bytecode()) {
  2700     case Bytecodes::_fast_bputfield: __ movb(lo, rax); break;
  2701     case Bytecodes::_fast_sputfield: // fall through
  2702     case Bytecodes::_fast_cputfield: __ movw(lo, rax); break;
  2703     case Bytecodes::_fast_iputfield: __ movl(lo, rax); break;
  2704     case Bytecodes::_fast_lputfield:
  2705       NOT_LP64(__ movptr(hi, rdx));
  2706       __ movptr(lo, rax);
  2707       break;
  2708     case Bytecodes::_fast_fputfield: __ fstp_s(lo); break;
  2709     case Bytecodes::_fast_dputfield: __ fstp_d(lo); break;
  2710     case Bytecodes::_fast_aputfield: {
  2711       do_oop_store(_masm, lo, rax, _bs->kind(), false);
  2712       break;
  2714     default:
  2715       ShouldNotReachHere();
  2717   __ bind(done);
  2721 void TemplateTable::fast_accessfield(TosState state) {
  2722   transition(atos, state);
  2724   // do the JVMTI work here to avoid disturbing the register state below
  2725   if (JvmtiExport::can_post_field_access()) {
  2726     // Check to see if a field access watch has been set before we take
  2727     // the time to call into the VM.
  2728     Label L1;
  2729     __ mov32(rcx, ExternalAddress((address) JvmtiExport::get_field_access_count_addr()));
  2730     __ testl(rcx,rcx);
  2731     __ jcc(Assembler::zero, L1);
  2732     // access constant pool cache entry
  2733     __ get_cache_entry_pointer_at_bcp(rcx, rdx, 1);
  2734     __ push_ptr(rax);  // save object pointer before call_VM() clobbers it
  2735     __ verify_oop(rax);
  2736     // rax,: object pointer copied above
  2737     // rcx: cache entry pointer
  2738     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_access), rax, rcx);
  2739     __ pop_ptr(rax);   // restore object pointer
  2740     __ bind(L1);
  2743   // access constant pool cache
  2744   __ get_cache_and_index_at_bcp(rcx, rbx, 1);
  2745   // replace index with field offset from cache entry
  2746   __ movptr(rbx, Address(rcx,
  2747                          rbx,
  2748                          Address::times_ptr,
  2749                          in_bytes(constantPoolCacheOopDesc::base_offset() + ConstantPoolCacheEntry::f2_offset())));
  2752   // rax,: object
  2753   __ verify_oop(rax);
  2754   __ null_check(rax);
  2755   // field addresses
  2756   const Address lo = Address(rax, rbx, Address::times_1, 0*wordSize);
  2757   const Address hi = Address(rax, rbx, Address::times_1, 1*wordSize);
  2759   // access field
  2760   switch (bytecode()) {
  2761     case Bytecodes::_fast_bgetfield: __ movsbl(rax, lo );                 break;
  2762     case Bytecodes::_fast_sgetfield: __ load_signed_short(rax, lo );      break;
  2763     case Bytecodes::_fast_cgetfield: __ load_unsigned_short(rax, lo );    break;
  2764     case Bytecodes::_fast_igetfield: __ movl(rax, lo);                    break;
  2765     case Bytecodes::_fast_lgetfield: __ stop("should not be rewritten");  break;
  2766     case Bytecodes::_fast_fgetfield: __ fld_s(lo);                        break;
  2767     case Bytecodes::_fast_dgetfield: __ fld_d(lo);                        break;
  2768     case Bytecodes::_fast_agetfield: __ movptr(rax, lo); __ verify_oop(rax); break;
  2769     default:
  2770       ShouldNotReachHere();
  2773   // Doug Lea believes this is not needed with current Sparcs(TSO) and Intel(PSO)
  2774   // volatile_barrier( );
  2777 void TemplateTable::fast_xaccess(TosState state) {
  2778   transition(vtos, state);
  2779   // get receiver
  2780   __ movptr(rax, aaddress(0));
  2781   // access constant pool cache
  2782   __ get_cache_and_index_at_bcp(rcx, rdx, 2);
  2783   __ movptr(rbx, Address(rcx,
  2784                          rdx,
  2785                          Address::times_ptr,
  2786                          in_bytes(constantPoolCacheOopDesc::base_offset() + ConstantPoolCacheEntry::f2_offset())));
  2787   // make sure exception is reported in correct bcp range (getfield is next instruction)
  2788   __ increment(rsi);
  2789   __ null_check(rax);
  2790   const Address lo = Address(rax, rbx, Address::times_1, 0*wordSize);
  2791   if (state == itos) {
  2792     __ movl(rax, lo);
  2793   } else if (state == atos) {
  2794     __ movptr(rax, lo);
  2795     __ verify_oop(rax);
  2796   } else if (state == ftos) {
  2797     __ fld_s(lo);
  2798   } else {
  2799     ShouldNotReachHere();
  2801   __ decrement(rsi);
  2806 //----------------------------------------------------------------------------------------------------
  2807 // Calls
  2809 void TemplateTable::count_calls(Register method, Register temp) {
  2810   // implemented elsewhere
  2811   ShouldNotReachHere();
  2815 void TemplateTable::prepare_invoke(Register method, Register index, int byte_no) {
  2816   // determine flags
  2817   Bytecodes::Code code = bytecode();
  2818   const bool is_invokeinterface  = code == Bytecodes::_invokeinterface;
  2819   const bool is_invokedynamic    = code == Bytecodes::_invokedynamic;
  2820   const bool is_invokevirtual    = code == Bytecodes::_invokevirtual;
  2821   const bool is_invokespecial    = code == Bytecodes::_invokespecial;
  2822   const bool load_receiver      = (code != Bytecodes::_invokestatic && code != Bytecodes::_invokedynamic);
  2823   const bool receiver_null_check = is_invokespecial;
  2824   const bool save_flags = is_invokeinterface || is_invokevirtual;
  2825   // setup registers & access constant pool cache
  2826   const Register recv   = rcx;
  2827   const Register flags  = rdx;
  2828   assert_different_registers(method, index, recv, flags);
  2830   // save 'interpreter return address'
  2831   __ save_bcp();
  2833   load_invoke_cp_cache_entry(byte_no, method, index, flags, is_invokevirtual, false, is_invokedynamic);
  2835   // load receiver if needed (note: no return address pushed yet)
  2836   if (load_receiver) {
  2837     assert(!is_invokedynamic, "");
  2838     __ movl(recv, flags);
  2839     __ andl(recv, 0xFF);
  2840     // recv count is 0 based?
  2841     Address recv_addr(rsp, recv, Interpreter::stackElementScale(), -Interpreter::expr_offset_in_bytes(1));
  2842     __ movptr(recv, recv_addr);
  2843     __ verify_oop(recv);
  2846   // do null check if needed
  2847   if (receiver_null_check) {
  2848     __ null_check(recv);
  2851   if (save_flags) {
  2852     __ mov(rsi, flags);
  2855   // compute return type
  2856   __ shrl(flags, ConstantPoolCacheEntry::tosBits);
  2857   // Make sure we don't need to mask flags for tosBits after the above shift
  2858   ConstantPoolCacheEntry::verify_tosBits();
  2859   // load return address
  2861     address table_addr;
  2862     if (is_invokeinterface || is_invokedynamic)
  2863       table_addr = (address)Interpreter::return_5_addrs_by_index_table();
  2864     else
  2865       table_addr = (address)Interpreter::return_3_addrs_by_index_table();
  2866     ExternalAddress table(table_addr);
  2867     __ movptr(flags, ArrayAddress(table, Address(noreg, flags, Address::times_ptr)));
  2870   // push return address
  2871   __ push(flags);
  2873   // Restore flag value from the constant pool cache, and restore rsi
  2874   // for later null checks.  rsi is the bytecode pointer
  2875   if (save_flags) {
  2876     __ mov(flags, rsi);
  2877     __ restore_bcp();
  2882 void TemplateTable::invokevirtual_helper(Register index, Register recv,
  2883                         Register flags) {
  2885   // Uses temporary registers rax, rdx
  2886   assert_different_registers(index, recv, rax, rdx);
  2888   // Test for an invoke of a final method
  2889   Label notFinal;
  2890   __ movl(rax, flags);
  2891   __ andl(rax, (1 << ConstantPoolCacheEntry::vfinalMethod));
  2892   __ jcc(Assembler::zero, notFinal);
  2894   Register method = index;  // method must be rbx,
  2895   assert(method == rbx, "methodOop must be rbx, for interpreter calling convention");
  2897   // do the call - the index is actually the method to call
  2898   __ verify_oop(method);
  2900   // It's final, need a null check here!
  2901   __ null_check(recv);
  2903   // profile this call
  2904   __ profile_final_call(rax);
  2906   __ jump_from_interpreted(method, rax);
  2908   __ bind(notFinal);
  2910   // get receiver klass
  2911   __ null_check(recv, oopDesc::klass_offset_in_bytes());
  2912   // Keep recv in rcx for callee expects it there
  2913   __ movptr(rax, Address(recv, oopDesc::klass_offset_in_bytes()));
  2914   __ verify_oop(rax);
  2916   // profile this call
  2917   __ profile_virtual_call(rax, rdi, rdx);
  2919   // get target methodOop & entry point
  2920   const int base = instanceKlass::vtable_start_offset() * wordSize;
  2921   assert(vtableEntry::size() * wordSize == 4, "adjust the scaling in the code below");
  2922   __ movptr(method, Address(rax, index, Address::times_ptr, base + vtableEntry::method_offset_in_bytes()));
  2923   __ jump_from_interpreted(method, rdx);
  2927 void TemplateTable::invokevirtual(int byte_no) {
  2928   transition(vtos, vtos);
  2929   assert(byte_no == f2_byte, "use this argument");
  2930   prepare_invoke(rbx, noreg, byte_no);
  2932   // rbx,: index
  2933   // rcx: receiver
  2934   // rdx: flags
  2936   invokevirtual_helper(rbx, rcx, rdx);
  2940 void TemplateTable::invokespecial(int byte_no) {
  2941   transition(vtos, vtos);
  2942   assert(byte_no == f1_byte, "use this argument");
  2943   prepare_invoke(rbx, noreg, byte_no);
  2944   // do the call
  2945   __ verify_oop(rbx);
  2946   __ profile_call(rax);
  2947   __ jump_from_interpreted(rbx, rax);
  2951 void TemplateTable::invokestatic(int byte_no) {
  2952   transition(vtos, vtos);
  2953   assert(byte_no == f1_byte, "use this argument");
  2954   prepare_invoke(rbx, noreg, byte_no);
  2955   // do the call
  2956   __ verify_oop(rbx);
  2957   __ profile_call(rax);
  2958   __ jump_from_interpreted(rbx, rax);
  2962 void TemplateTable::fast_invokevfinal(int byte_no) {
  2963   transition(vtos, vtos);
  2964   assert(byte_no == f2_byte, "use this argument");
  2965   __ stop("fast_invokevfinal not used on x86");
  2969 void TemplateTable::invokeinterface(int byte_no) {
  2970   transition(vtos, vtos);
  2971   assert(byte_no == f1_byte, "use this argument");
  2972   prepare_invoke(rax, rbx, byte_no);
  2974   // rax,: Interface
  2975   // rbx,: index
  2976   // rcx: receiver
  2977   // rdx: flags
  2979   // Special case of invokeinterface called for virtual method of
  2980   // java.lang.Object.  See cpCacheOop.cpp for details.
  2981   // This code isn't produced by javac, but could be produced by
  2982   // another compliant java compiler.
  2983   Label notMethod;
  2984   __ movl(rdi, rdx);
  2985   __ andl(rdi, (1 << ConstantPoolCacheEntry::methodInterface));
  2986   __ jcc(Assembler::zero, notMethod);
  2988   invokevirtual_helper(rbx, rcx, rdx);
  2989   __ bind(notMethod);
  2991   // Get receiver klass into rdx - also a null check
  2992   __ restore_locals();  // restore rdi
  2993   __ movptr(rdx, Address(rcx, oopDesc::klass_offset_in_bytes()));
  2994   __ verify_oop(rdx);
  2996   // profile this call
  2997   __ profile_virtual_call(rdx, rsi, rdi);
  2999   Label no_such_interface, no_such_method;
  3001   __ lookup_interface_method(// inputs: rec. class, interface, itable index
  3002                              rdx, rax, rbx,
  3003                              // outputs: method, scan temp. reg
  3004                              rbx, rsi,
  3005                              no_such_interface);
  3007   // rbx,: methodOop to call
  3008   // rcx: receiver
  3009   // Check for abstract method error
  3010   // Note: This should be done more efficiently via a throw_abstract_method_error
  3011   //       interpreter entry point and a conditional jump to it in case of a null
  3012   //       method.
  3013   __ testptr(rbx, rbx);
  3014   __ jcc(Assembler::zero, no_such_method);
  3016   // do the call
  3017   // rcx: receiver
  3018   // rbx,: methodOop
  3019   __ jump_from_interpreted(rbx, rdx);
  3020   __ should_not_reach_here();
  3022   // exception handling code follows...
  3023   // note: must restore interpreter registers to canonical
  3024   //       state for exception handling to work correctly!
  3026   __ bind(no_such_method);
  3027   // throw exception
  3028   __ pop(rbx);           // pop return address (pushed by prepare_invoke)
  3029   __ restore_bcp();      // rsi must be correct for exception handler   (was destroyed)
  3030   __ restore_locals();   // make sure locals pointer is correct as well (was destroyed)
  3031   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_AbstractMethodError));
  3032   // the call_VM checks for exception, so we should never return here.
  3033   __ should_not_reach_here();
  3035   __ bind(no_such_interface);
  3036   // throw exception
  3037   __ pop(rbx);           // pop return address (pushed by prepare_invoke)
  3038   __ restore_bcp();      // rsi must be correct for exception handler   (was destroyed)
  3039   __ restore_locals();   // make sure locals pointer is correct as well (was destroyed)
  3040   __ call_VM(noreg, CAST_FROM_FN_PTR(address,
  3041                    InterpreterRuntime::throw_IncompatibleClassChangeError));
  3042   // the call_VM checks for exception, so we should never return here.
  3043   __ should_not_reach_here();
  3046 void TemplateTable::invokedynamic(int byte_no) {
  3047   transition(vtos, vtos);
  3049   if (!EnableInvokeDynamic) {
  3050     // We should not encounter this bytecode if !EnableInvokeDynamic.
  3051     // The verifier will stop it.  However, if we get past the verifier,
  3052     // this will stop the thread in a reasonable way, without crashing the JVM.
  3053     __ call_VM(noreg, CAST_FROM_FN_PTR(address,
  3054                      InterpreterRuntime::throw_IncompatibleClassChangeError));
  3055     // the call_VM checks for exception, so we should never return here.
  3056     __ should_not_reach_here();
  3057     return;
  3060   assert(byte_no == f1_oop, "use this argument");
  3061   prepare_invoke(rax, rbx, byte_no);
  3063   // rax: CallSite object (f1)
  3064   // rbx: unused (f2)
  3065   // rdx: flags (unused)
  3067   if (ProfileInterpreter) {
  3068     Label L;
  3069     // %%% should make a type profile for any invokedynamic that takes a ref argument
  3070     // profile this call
  3071     __ profile_call(rsi);
  3074   __ movptr(rcx, Address(rax, __ delayed_value(java_dyn_CallSite::target_offset_in_bytes, rcx)));
  3075   __ null_check(rcx);
  3076   __ prepare_to_jump_from_interpreted();
  3077   __ jump_to_method_handle_entry(rcx, rdx);
  3080 //----------------------------------------------------------------------------------------------------
  3081 // Allocation
  3083 void TemplateTable::_new() {
  3084   transition(vtos, atos);
  3085   __ get_unsigned_2_byte_index_at_bcp(rdx, 1);
  3086   Label slow_case;
  3087   Label done;
  3088   Label initialize_header;
  3089   Label initialize_object;  // including clearing the fields
  3090   Label allocate_shared;
  3092   __ get_cpool_and_tags(rcx, rax);
  3093   // get instanceKlass
  3094   __ movptr(rcx, Address(rcx, rdx, Address::times_ptr, sizeof(constantPoolOopDesc)));
  3095   __ push(rcx);  // save the contexts of klass for initializing the header
  3097   // make sure the class we're about to instantiate has been resolved.
  3098   // Note: slow_case does a pop of stack, which is why we loaded class/pushed above
  3099   const int tags_offset = typeArrayOopDesc::header_size(T_BYTE) * wordSize;
  3100   __ cmpb(Address(rax, rdx, Address::times_1, tags_offset), JVM_CONSTANT_Class);
  3101   __ jcc(Assembler::notEqual, slow_case);
  3103   // make sure klass is initialized & doesn't have finalizer
  3104   // make sure klass is fully initialized
  3105   __ cmpl(Address(rcx, instanceKlass::init_state_offset_in_bytes() + sizeof(oopDesc)), instanceKlass::fully_initialized);
  3106   __ jcc(Assembler::notEqual, slow_case);
  3108   // get instance_size in instanceKlass (scaled to a count of bytes)
  3109   __ movl(rdx, Address(rcx, Klass::layout_helper_offset_in_bytes() + sizeof(oopDesc)));
  3110   // test to see if it has a finalizer or is malformed in some way
  3111   __ testl(rdx, Klass::_lh_instance_slow_path_bit);
  3112   __ jcc(Assembler::notZero, slow_case);
  3114   //
  3115   // Allocate the instance
  3116   // 1) Try to allocate in the TLAB
  3117   // 2) if fail and the object is large allocate in the shared Eden
  3118   // 3) if the above fails (or is not applicable), go to a slow case
  3119   // (creates a new TLAB, etc.)
  3121   const bool allow_shared_alloc =
  3122     Universe::heap()->supports_inline_contig_alloc() && !CMSIncrementalMode;
  3124   if (UseTLAB) {
  3125     const Register thread = rcx;
  3127     __ get_thread(thread);
  3128     __ movptr(rax, Address(thread, in_bytes(JavaThread::tlab_top_offset())));
  3129     __ lea(rbx, Address(rax, rdx, Address::times_1));
  3130     __ cmpptr(rbx, Address(thread, in_bytes(JavaThread::tlab_end_offset())));
  3131     __ jcc(Assembler::above, allow_shared_alloc ? allocate_shared : slow_case);
  3132     __ movptr(Address(thread, in_bytes(JavaThread::tlab_top_offset())), rbx);
  3133     if (ZeroTLAB) {
  3134       // the fields have been already cleared
  3135       __ jmp(initialize_header);
  3136     } else {
  3137       // initialize both the header and fields
  3138       __ jmp(initialize_object);
  3142   // Allocation in the shared Eden, if allowed.
  3143   //
  3144   // rdx: instance size in bytes
  3145   if (allow_shared_alloc) {
  3146     __ bind(allocate_shared);
  3148     ExternalAddress heap_top((address)Universe::heap()->top_addr());
  3150     Label retry;
  3151     __ bind(retry);
  3152     __ movptr(rax, heap_top);
  3153     __ lea(rbx, Address(rax, rdx, Address::times_1));
  3154     __ cmpptr(rbx, ExternalAddress((address)Universe::heap()->end_addr()));
  3155     __ jcc(Assembler::above, slow_case);
  3157     // Compare rax, with the top addr, and if still equal, store the new
  3158     // top addr in rbx, at the address of the top addr pointer. Sets ZF if was
  3159     // equal, and clears it otherwise. Use lock prefix for atomicity on MPs.
  3160     //
  3161     // rax,: object begin
  3162     // rbx,: object end
  3163     // rdx: instance size in bytes
  3164     __ locked_cmpxchgptr(rbx, heap_top);
  3166     // if someone beat us on the allocation, try again, otherwise continue
  3167     __ jcc(Assembler::notEqual, retry);
  3170   if (UseTLAB || Universe::heap()->supports_inline_contig_alloc()) {
  3171     // The object is initialized before the header.  If the object size is
  3172     // zero, go directly to the header initialization.
  3173     __ bind(initialize_object);
  3174     __ decrement(rdx, sizeof(oopDesc));
  3175     __ jcc(Assembler::zero, initialize_header);
  3177   // Initialize topmost object field, divide rdx by 8, check if odd and
  3178   // test if zero.
  3179     __ xorl(rcx, rcx);    // use zero reg to clear memory (shorter code)
  3180     __ shrl(rdx, LogBytesPerLong); // divide by 2*oopSize and set carry flag if odd
  3182   // rdx must have been multiple of 8
  3183 #ifdef ASSERT
  3184     // make sure rdx was multiple of 8
  3185     Label L;
  3186     // Ignore partial flag stall after shrl() since it is debug VM
  3187     __ jccb(Assembler::carryClear, L);
  3188     __ stop("object size is not multiple of 2 - adjust this code");
  3189     __ bind(L);
  3190     // rdx must be > 0, no extra check needed here
  3191 #endif
  3193     // initialize remaining object fields: rdx was a multiple of 8
  3194     { Label loop;
  3195     __ bind(loop);
  3196     __ movptr(Address(rax, rdx, Address::times_8, sizeof(oopDesc) - 1*oopSize), rcx);
  3197     NOT_LP64(__ movptr(Address(rax, rdx, Address::times_8, sizeof(oopDesc) - 2*oopSize), rcx));
  3198     __ decrement(rdx);
  3199     __ jcc(Assembler::notZero, loop);
  3202     // initialize object header only.
  3203     __ bind(initialize_header);
  3204     if (UseBiasedLocking) {
  3205       __ pop(rcx);   // get saved klass back in the register.
  3206       __ movptr(rbx, Address(rcx, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes()));
  3207       __ movptr(Address(rax, oopDesc::mark_offset_in_bytes ()), rbx);
  3208     } else {
  3209       __ movptr(Address(rax, oopDesc::mark_offset_in_bytes ()),
  3210                 (int32_t)markOopDesc::prototype()); // header
  3211       __ pop(rcx);   // get saved klass back in the register.
  3213     __ movptr(Address(rax, oopDesc::klass_offset_in_bytes()), rcx);  // klass
  3216       SkipIfEqual skip_if(_masm, &DTraceAllocProbes, 0);
  3217       // Trigger dtrace event for fastpath
  3218       __ push(atos);
  3219       __ call_VM_leaf(
  3220            CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_object_alloc), rax);
  3221       __ pop(atos);
  3224     __ jmp(done);
  3227   // slow case
  3228   __ bind(slow_case);
  3229   __ pop(rcx);   // restore stack pointer to what it was when we came in.
  3230   __ get_constant_pool(rax);
  3231   __ get_unsigned_2_byte_index_at_bcp(rdx, 1);
  3232   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::_new), rax, rdx);
  3234   // continue
  3235   __ bind(done);
  3239 void TemplateTable::newarray() {
  3240   transition(itos, atos);
  3241   __ push_i(rax);                                 // make sure everything is on the stack
  3242   __ load_unsigned_byte(rdx, at_bcp(1));
  3243   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::newarray), rdx, rax);
  3244   __ pop_i(rdx);                                  // discard size
  3248 void TemplateTable::anewarray() {
  3249   transition(itos, atos);
  3250   __ get_unsigned_2_byte_index_at_bcp(rdx, 1);
  3251   __ get_constant_pool(rcx);
  3252   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::anewarray), rcx, rdx, rax);
  3256 void TemplateTable::arraylength() {
  3257   transition(atos, itos);
  3258   __ null_check(rax, arrayOopDesc::length_offset_in_bytes());
  3259   __ movl(rax, Address(rax, arrayOopDesc::length_offset_in_bytes()));
  3263 void TemplateTable::checkcast() {
  3264   transition(atos, atos);
  3265   Label done, is_null, ok_is_subtype, quicked, resolved;
  3266   __ testptr(rax, rax);   // Object is in EAX
  3267   __ jcc(Assembler::zero, is_null);
  3269   // Get cpool & tags index
  3270   __ get_cpool_and_tags(rcx, rdx); // ECX=cpool, EDX=tags array
  3271   __ get_unsigned_2_byte_index_at_bcp(rbx, 1); // EBX=index
  3272   // See if bytecode has already been quicked
  3273   __ cmpb(Address(rdx, rbx, Address::times_1, typeArrayOopDesc::header_size(T_BYTE) * wordSize), JVM_CONSTANT_Class);
  3274   __ jcc(Assembler::equal, quicked);
  3276   __ push(atos);
  3277   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc) );
  3278   __ pop_ptr(rdx);
  3279   __ jmpb(resolved);
  3281   // Get superklass in EAX and subklass in EBX
  3282   __ bind(quicked);
  3283   __ mov(rdx, rax);          // Save object in EDX; EAX needed for subtype check
  3284   __ movptr(rax, Address(rcx, rbx, Address::times_ptr, sizeof(constantPoolOopDesc)));
  3286   __ bind(resolved);
  3287   __ movptr(rbx, Address(rdx, oopDesc::klass_offset_in_bytes()));
  3289   // Generate subtype check.  Blows ECX.  Resets EDI.  Object in EDX.
  3290   // Superklass in EAX.  Subklass in EBX.
  3291   __ gen_subtype_check( rbx, ok_is_subtype );
  3293   // Come here on failure
  3294   __ push(rdx);
  3295   // object is at TOS
  3296   __ jump(ExternalAddress(Interpreter::_throw_ClassCastException_entry));
  3298   // Come here on success
  3299   __ bind(ok_is_subtype);
  3300   __ mov(rax,rdx);           // Restore object in EDX
  3302   // Collect counts on whether this check-cast sees NULLs a lot or not.
  3303   if (ProfileInterpreter) {
  3304     __ jmp(done);
  3305     __ bind(is_null);
  3306     __ profile_null_seen(rcx);
  3307   } else {
  3308     __ bind(is_null);   // same as 'done'
  3310   __ bind(done);
  3314 void TemplateTable::instanceof() {
  3315   transition(atos, itos);
  3316   Label done, is_null, ok_is_subtype, quicked, resolved;
  3317   __ testptr(rax, rax);
  3318   __ jcc(Assembler::zero, is_null);
  3320   // Get cpool & tags index
  3321   __ get_cpool_and_tags(rcx, rdx); // ECX=cpool, EDX=tags array
  3322   __ get_unsigned_2_byte_index_at_bcp(rbx, 1); // EBX=index
  3323   // See if bytecode has already been quicked
  3324   __ cmpb(Address(rdx, rbx, Address::times_1, typeArrayOopDesc::header_size(T_BYTE) * wordSize), JVM_CONSTANT_Class);
  3325   __ jcc(Assembler::equal, quicked);
  3327   __ push(atos);
  3328   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc) );
  3329   __ pop_ptr(rdx);
  3330   __ movptr(rdx, Address(rdx, oopDesc::klass_offset_in_bytes()));
  3331   __ jmp(resolved);
  3333   // Get superklass in EAX and subklass in EDX
  3334   __ bind(quicked);
  3335   __ movptr(rdx, Address(rax, oopDesc::klass_offset_in_bytes()));
  3336   __ movptr(rax, Address(rcx, rbx, Address::times_ptr, sizeof(constantPoolOopDesc)));
  3338   __ bind(resolved);
  3340   // Generate subtype check.  Blows ECX.  Resets EDI.
  3341   // Superklass in EAX.  Subklass in EDX.
  3342   __ gen_subtype_check( rdx, ok_is_subtype );
  3344   // Come here on failure
  3345   __ xorl(rax,rax);
  3346   __ jmpb(done);
  3347   // Come here on success
  3348   __ bind(ok_is_subtype);
  3349   __ movl(rax, 1);
  3351   // Collect counts on whether this test sees NULLs a lot or not.
  3352   if (ProfileInterpreter) {
  3353     __ jmp(done);
  3354     __ bind(is_null);
  3355     __ profile_null_seen(rcx);
  3356   } else {
  3357     __ bind(is_null);   // same as 'done'
  3359   __ bind(done);
  3360   // rax, = 0: obj == NULL or  obj is not an instanceof the specified klass
  3361   // rax, = 1: obj != NULL and obj is     an instanceof the specified klass
  3365 //----------------------------------------------------------------------------------------------------
  3366 // Breakpoints
  3367 void TemplateTable::_breakpoint() {
  3369   // Note: We get here even if we are single stepping..
  3370   // jbug inists on setting breakpoints at every bytecode
  3371   // even if we are in single step mode.
  3373   transition(vtos, vtos);
  3375   // get the unpatched byte code
  3376   __ get_method(rcx);
  3377   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::get_original_bytecode_at), rcx, rsi);
  3378   __ mov(rbx, rax);
  3380   // post the breakpoint event
  3381   __ get_method(rcx);
  3382   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::_breakpoint), rcx, rsi);
  3384   // complete the execution of original bytecode
  3385   __ dispatch_only_normal(vtos);
  3389 //----------------------------------------------------------------------------------------------------
  3390 // Exceptions
  3392 void TemplateTable::athrow() {
  3393   transition(atos, vtos);
  3394   __ null_check(rax);
  3395   __ jump(ExternalAddress(Interpreter::throw_exception_entry()));
  3399 //----------------------------------------------------------------------------------------------------
  3400 // Synchronization
  3401 //
  3402 // Note: monitorenter & exit are symmetric routines; which is reflected
  3403 //       in the assembly code structure as well
  3404 //
  3405 // Stack layout:
  3406 //
  3407 // [expressions  ] <--- rsp               = expression stack top
  3408 // ..
  3409 // [expressions  ]
  3410 // [monitor entry] <--- monitor block top = expression stack bot
  3411 // ..
  3412 // [monitor entry]
  3413 // [frame data   ] <--- monitor block bot
  3414 // ...
  3415 // [saved rbp,    ] <--- rbp,
  3418 void TemplateTable::monitorenter() {
  3419   transition(atos, vtos);
  3421   // check for NULL object
  3422   __ null_check(rax);
  3424   const Address monitor_block_top(rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
  3425   const Address monitor_block_bot(rbp, frame::interpreter_frame_initial_sp_offset        * wordSize);
  3426   const int entry_size =         (     frame::interpreter_frame_monitor_size()           * wordSize);
  3427   Label allocated;
  3429   // initialize entry pointer
  3430   __ xorl(rdx, rdx);                             // points to free slot or NULL
  3432   // find a free slot in the monitor block (result in rdx)
  3433   { Label entry, loop, exit;
  3434     __ movptr(rcx, monitor_block_top);            // points to current entry, starting with top-most entry
  3435     __ lea(rbx, monitor_block_bot);               // points to word before bottom of monitor block
  3436     __ jmpb(entry);
  3438     __ bind(loop);
  3439     __ cmpptr(Address(rcx, BasicObjectLock::obj_offset_in_bytes()), (int32_t)NULL_WORD);  // check if current entry is used
  3441 // TODO - need new func here - kbt
  3442     if (VM_Version::supports_cmov()) {
  3443       __ cmov(Assembler::equal, rdx, rcx);       // if not used then remember entry in rdx
  3444     } else {
  3445       Label L;
  3446       __ jccb(Assembler::notEqual, L);
  3447       __ mov(rdx, rcx);                          // if not used then remember entry in rdx
  3448       __ bind(L);
  3450     __ cmpptr(rax, Address(rcx, BasicObjectLock::obj_offset_in_bytes()));   // check if current entry is for same object
  3451     __ jccb(Assembler::equal, exit);             // if same object then stop searching
  3452     __ addptr(rcx, entry_size);                  // otherwise advance to next entry
  3453     __ bind(entry);
  3454     __ cmpptr(rcx, rbx);                         // check if bottom reached
  3455     __ jcc(Assembler::notEqual, loop);           // if not at bottom then check this entry
  3456     __ bind(exit);
  3459   __ testptr(rdx, rdx);                          // check if a slot has been found
  3460   __ jccb(Assembler::notZero, allocated);        // if found, continue with that one
  3462   // allocate one if there's no free slot
  3463   { Label entry, loop;
  3464     // 1. compute new pointers                   // rsp: old expression stack top
  3465     __ movptr(rdx, monitor_block_bot);           // rdx: old expression stack bottom
  3466     __ subptr(rsp, entry_size);                  // move expression stack top
  3467     __ subptr(rdx, entry_size);                  // move expression stack bottom
  3468     __ mov(rcx, rsp);                            // set start value for copy loop
  3469     __ movptr(monitor_block_bot, rdx);           // set new monitor block top
  3470     __ jmp(entry);
  3471     // 2. move expression stack contents
  3472     __ bind(loop);
  3473     __ movptr(rbx, Address(rcx, entry_size));    // load expression stack word from old location
  3474     __ movptr(Address(rcx, 0), rbx);             // and store it at new location
  3475     __ addptr(rcx, wordSize);                    // advance to next word
  3476     __ bind(entry);
  3477     __ cmpptr(rcx, rdx);                         // check if bottom reached
  3478     __ jcc(Assembler::notEqual, loop);           // if not at bottom then copy next word
  3481   // call run-time routine
  3482   // rdx: points to monitor entry
  3483   __ bind(allocated);
  3485   // Increment bcp to point to the next bytecode, so exception handling for async. exceptions work correctly.
  3486   // The object has already been poped from the stack, so the expression stack looks correct.
  3487   __ increment(rsi);
  3489   __ movptr(Address(rdx, BasicObjectLock::obj_offset_in_bytes()), rax);     // store object
  3490   __ lock_object(rdx);
  3492   // check to make sure this monitor doesn't cause stack overflow after locking
  3493   __ save_bcp();  // in case of exception
  3494   __ generate_stack_overflow_check(0);
  3496   // The bcp has already been incremented. Just need to dispatch to next instruction.
  3497   __ dispatch_next(vtos);
  3501 void TemplateTable::monitorexit() {
  3502   transition(atos, vtos);
  3504   // check for NULL object
  3505   __ null_check(rax);
  3507   const Address monitor_block_top(rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
  3508   const Address monitor_block_bot(rbp, frame::interpreter_frame_initial_sp_offset        * wordSize);
  3509   const int entry_size =         (     frame::interpreter_frame_monitor_size()           * wordSize);
  3510   Label found;
  3512   // find matching slot
  3513   { Label entry, loop;
  3514     __ movptr(rdx, monitor_block_top);           // points to current entry, starting with top-most entry
  3515     __ lea(rbx, monitor_block_bot);             // points to word before bottom of monitor block
  3516     __ jmpb(entry);
  3518     __ bind(loop);
  3519     __ cmpptr(rax, Address(rdx, BasicObjectLock::obj_offset_in_bytes()));   // check if current entry is for same object
  3520     __ jcc(Assembler::equal, found);             // if same object then stop searching
  3521     __ addptr(rdx, entry_size);                  // otherwise advance to next entry
  3522     __ bind(entry);
  3523     __ cmpptr(rdx, rbx);                         // check if bottom reached
  3524     __ jcc(Assembler::notEqual, loop);           // if not at bottom then check this entry
  3527   // error handling. Unlocking was not block-structured
  3528   Label end;
  3529   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception));
  3530   __ should_not_reach_here();
  3532   // call run-time routine
  3533   // rcx: points to monitor entry
  3534   __ bind(found);
  3535   __ push_ptr(rax);                                 // make sure object is on stack (contract with oopMaps)
  3536   __ unlock_object(rdx);
  3537   __ pop_ptr(rax);                                  // discard object
  3538   __ bind(end);
  3542 //----------------------------------------------------------------------------------------------------
  3543 // Wide instructions
  3545 void TemplateTable::wide() {
  3546   transition(vtos, vtos);
  3547   __ load_unsigned_byte(rbx, at_bcp(1));
  3548   ExternalAddress wtable((address)Interpreter::_wentry_point);
  3549   __ jump(ArrayAddress(wtable, Address(noreg, rbx, Address::times_ptr)));
  3550   // Note: the rsi increment step is part of the individual wide bytecode implementations
  3554 //----------------------------------------------------------------------------------------------------
  3555 // Multi arrays
  3557 void TemplateTable::multianewarray() {
  3558   transition(vtos, atos);
  3559   __ load_unsigned_byte(rax, at_bcp(3)); // get number of dimensions
  3560   // last dim is on top of stack; we want address of first one:
  3561   // first_addr = last_addr + (ndims - 1) * stackElementSize - 1*wordsize
  3562   // the latter wordSize to point to the beginning of the array.
  3563   __ lea(  rax, Address(rsp, rax, Interpreter::stackElementScale(), -wordSize));
  3564   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::multianewarray), rax);     // pass in rax,
  3565   __ load_unsigned_byte(rbx, at_bcp(3));
  3566   __ lea(rsp, Address(rsp, rbx, Interpreter::stackElementScale()));  // get rid of counts
  3569 #endif /* !CC_INTERP */

mercurial