src/cpu/x86/vm/templateInterpreter_x86_32.cpp

Wed, 02 Jun 2010 22:45:42 -0700

author
jrose
date
Wed, 02 Jun 2010 22:45:42 -0700
changeset 1934
e9ff18c4ace7
parent 1907
c18cbe5936b8
parent 1920
ab102d5d923e
child 2138
d5d065957597
permissions
-rw-r--r--

Merge

     1 /*
     2  * Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "incls/_precompiled.incl"
    26 #include "incls/_templateInterpreter_x86_32.cpp.incl"
    28 #define __ _masm->
    31 #ifndef CC_INTERP
    32 const int method_offset = frame::interpreter_frame_method_offset * wordSize;
    33 const int bci_offset    = frame::interpreter_frame_bcx_offset    * wordSize;
    34 const int locals_offset = frame::interpreter_frame_locals_offset * wordSize;
    36 //------------------------------------------------------------------------------------------------------------------------
    38 address TemplateInterpreterGenerator::generate_StackOverflowError_handler() {
    39   address entry = __ pc();
    41   // Note: There should be a minimal interpreter frame set up when stack
    42   // overflow occurs since we check explicitly for it now.
    43   //
    44 #ifdef ASSERT
    45   { Label L;
    46     __ lea(rax, Address(rbp,
    47                 frame::interpreter_frame_monitor_block_top_offset * wordSize));
    48     __ cmpptr(rax, rsp);  // rax, = maximal rsp for current rbp,
    49                         //  (stack grows negative)
    50     __ jcc(Assembler::aboveEqual, L); // check if frame is complete
    51     __ stop ("interpreter frame not set up");
    52     __ bind(L);
    53   }
    54 #endif // ASSERT
    55   // Restore bcp under the assumption that the current frame is still
    56   // interpreted
    57   __ restore_bcp();
    59   // expression stack must be empty before entering the VM if an exception
    60   // happened
    61   __ empty_expression_stack();
    62   __ empty_FPU_stack();
    63   // throw exception
    64   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_StackOverflowError));
    65   return entry;
    66 }
    68 address TemplateInterpreterGenerator::generate_ArrayIndexOutOfBounds_handler(const char* name) {
    69   address entry = __ pc();
    70   // expression stack must be empty before entering the VM if an exception happened
    71   __ empty_expression_stack();
    72   __ empty_FPU_stack();
    73   // setup parameters
    74   // ??? convention: expect aberrant index in register rbx,
    75   __ lea(rax, ExternalAddress((address)name));
    76   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_ArrayIndexOutOfBoundsException), rax, rbx);
    77   return entry;
    78 }
    80 address TemplateInterpreterGenerator::generate_ClassCastException_handler() {
    81   address entry = __ pc();
    82   // object is at TOS
    83   __ pop(rax);
    84   // expression stack must be empty before entering the VM if an exception
    85   // happened
    86   __ empty_expression_stack();
    87   __ empty_FPU_stack();
    88   __ call_VM(noreg,
    89              CAST_FROM_FN_PTR(address,
    90                               InterpreterRuntime::throw_ClassCastException),
    91              rax);
    92   return entry;
    93 }
    95 // Arguments are: required type at TOS+4, failing object (or NULL) at TOS.
    96 address TemplateInterpreterGenerator::generate_WrongMethodType_handler() {
    97   address entry = __ pc();
    99   __ pop(rbx);                  // actual failing object is at TOS
   100   __ pop(rax);                  // required type is at TOS+4
   102   __ verify_oop(rbx);
   103   __ verify_oop(rax);
   105   // Various method handle types use interpreter registers as temps.
   106   __ restore_bcp();
   107   __ restore_locals();
   109   // Expression stack must be empty before entering the VM for an exception.
   110   __ empty_expression_stack();
   111   __ empty_FPU_stack();
   112   __ call_VM(noreg,
   113              CAST_FROM_FN_PTR(address,
   114                               InterpreterRuntime::throw_WrongMethodTypeException),
   115              // pass required type, failing object (or NULL)
   116              rax, rbx);
   117   return entry;
   118 }
   121 address TemplateInterpreterGenerator::generate_exception_handler_common(const char* name, const char* message, bool pass_oop) {
   122   assert(!pass_oop || message == NULL, "either oop or message but not both");
   123   address entry = __ pc();
   124   if (pass_oop) {
   125     // object is at TOS
   126     __ pop(rbx);
   127   }
   128   // expression stack must be empty before entering the VM if an exception happened
   129   __ empty_expression_stack();
   130   __ empty_FPU_stack();
   131   // setup parameters
   132   __ lea(rax, ExternalAddress((address)name));
   133   if (pass_oop) {
   134     __ call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::create_klass_exception), rax, rbx);
   135   } else {
   136     if (message != NULL) {
   137       __ lea(rbx, ExternalAddress((address)message));
   138     } else {
   139       __ movptr(rbx, NULL_WORD);
   140     }
   141     __ call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::create_exception), rax, rbx);
   142   }
   143   // throw exception
   144   __ jump(ExternalAddress(Interpreter::throw_exception_entry()));
   145   return entry;
   146 }
   149 address TemplateInterpreterGenerator::generate_continuation_for(TosState state) {
   150   address entry = __ pc();
   151   // NULL last_sp until next java call
   152   __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), NULL_WORD);
   153   __ dispatch_next(state);
   154   return entry;
   155 }
   158 address TemplateInterpreterGenerator::generate_return_entry_for(TosState state, int step) {
   159   TosState incoming_state = state;
   161   Label interpreter_entry;
   162   address compiled_entry = __ pc();
   164 #ifdef COMPILER2
   165   // The FPU stack is clean if UseSSE >= 2 but must be cleaned in other cases
   166   if ((incoming_state == ftos && UseSSE < 1) || (incoming_state == dtos && UseSSE < 2)) {
   167     for (int i = 1; i < 8; i++) {
   168         __ ffree(i);
   169     }
   170   } else if (UseSSE < 2) {
   171     __ empty_FPU_stack();
   172   }
   173 #endif
   174   if ((incoming_state == ftos && UseSSE < 1) || (incoming_state == dtos && UseSSE < 2)) {
   175     __ MacroAssembler::verify_FPU(1, "generate_return_entry_for compiled");
   176   } else {
   177     __ MacroAssembler::verify_FPU(0, "generate_return_entry_for compiled");
   178   }
   180   __ jmp(interpreter_entry, relocInfo::none);
   181   // emit a sentinel we can test for when converting an interpreter
   182   // entry point to a compiled entry point.
   183   __ a_long(Interpreter::return_sentinel);
   184   __ a_long((int)compiled_entry);
   185   address entry = __ pc();
   186   __ bind(interpreter_entry);
   188   // In SSE mode, interpreter returns FP results in xmm0 but they need
   189   // to end up back on the FPU so it can operate on them.
   190   if (incoming_state == ftos && UseSSE >= 1) {
   191     __ subptr(rsp, wordSize);
   192     __ movflt(Address(rsp, 0), xmm0);
   193     __ fld_s(Address(rsp, 0));
   194     __ addptr(rsp, wordSize);
   195   } else if (incoming_state == dtos && UseSSE >= 2) {
   196     __ subptr(rsp, 2*wordSize);
   197     __ movdbl(Address(rsp, 0), xmm0);
   198     __ fld_d(Address(rsp, 0));
   199     __ addptr(rsp, 2*wordSize);
   200   }
   202   __ MacroAssembler::verify_FPU(state == ftos || state == dtos ? 1 : 0, "generate_return_entry_for in interpreter");
   204   // Restore stack bottom in case i2c adjusted stack
   205   __ movptr(rsp, Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize));
   206   // and NULL it as marker that rsp is now tos until next java call
   207   __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), NULL_WORD);
   209   __ restore_bcp();
   210   __ restore_locals();
   212   Label L_got_cache, L_giant_index;
   213   if (EnableInvokeDynamic) {
   214     __ cmpb(Address(rsi, 0), Bytecodes::_invokedynamic);
   215     __ jcc(Assembler::equal, L_giant_index);
   216   }
   217   __ get_cache_and_index_at_bcp(rbx, rcx, 1, sizeof(u2));
   218   __ bind(L_got_cache);
   219   __ movl(rbx, Address(rbx, rcx,
   220                     Address::times_ptr, constantPoolCacheOopDesc::base_offset() +
   221                     ConstantPoolCacheEntry::flags_offset()));
   222   __ andptr(rbx, 0xFF);
   223   __ lea(rsp, Address(rsp, rbx, Interpreter::stackElementScale()));
   224   __ dispatch_next(state, step);
   226   // out of the main line of code...
   227   if (EnableInvokeDynamic) {
   228     __ bind(L_giant_index);
   229     __ get_cache_and_index_at_bcp(rbx, rcx, 1, sizeof(u4));
   230     __ jmp(L_got_cache);
   231   }
   233   return entry;
   234 }
   237 address TemplateInterpreterGenerator::generate_deopt_entry_for(TosState state, int step) {
   238   address entry = __ pc();
   240   // In SSE mode, FP results are in xmm0
   241   if (state == ftos && UseSSE > 0) {
   242     __ subptr(rsp, wordSize);
   243     __ movflt(Address(rsp, 0), xmm0);
   244     __ fld_s(Address(rsp, 0));
   245     __ addptr(rsp, wordSize);
   246   } else if (state == dtos && UseSSE >= 2) {
   247     __ subptr(rsp, 2*wordSize);
   248     __ movdbl(Address(rsp, 0), xmm0);
   249     __ fld_d(Address(rsp, 0));
   250     __ addptr(rsp, 2*wordSize);
   251   }
   253   __ MacroAssembler::verify_FPU(state == ftos || state == dtos ? 1 : 0, "generate_deopt_entry_for in interpreter");
   255   // The stack is not extended by deopt but we must NULL last_sp as this
   256   // entry is like a "return".
   257   __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), NULL_WORD);
   258   __ restore_bcp();
   259   __ restore_locals();
   260   // handle exceptions
   261   { Label L;
   262     const Register thread = rcx;
   263     __ get_thread(thread);
   264     __ cmpptr(Address(thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
   265     __ jcc(Assembler::zero, L);
   266     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_pending_exception));
   267     __ should_not_reach_here();
   268     __ bind(L);
   269   }
   270   __ dispatch_next(state, step);
   271   return entry;
   272 }
   275 int AbstractInterpreter::BasicType_as_index(BasicType type) {
   276   int i = 0;
   277   switch (type) {
   278     case T_BOOLEAN: i = 0; break;
   279     case T_CHAR   : i = 1; break;
   280     case T_BYTE   : i = 2; break;
   281     case T_SHORT  : i = 3; break;
   282     case T_INT    : // fall through
   283     case T_LONG   : // fall through
   284     case T_VOID   : i = 4; break;
   285     case T_FLOAT  : i = 5; break;  // have to treat float and double separately for SSE
   286     case T_DOUBLE : i = 6; break;
   287     case T_OBJECT : // fall through
   288     case T_ARRAY  : i = 7; break;
   289     default       : ShouldNotReachHere();
   290   }
   291   assert(0 <= i && i < AbstractInterpreter::number_of_result_handlers, "index out of bounds");
   292   return i;
   293 }
   296 address TemplateInterpreterGenerator::generate_result_handler_for(BasicType type) {
   297   address entry = __ pc();
   298   switch (type) {
   299     case T_BOOLEAN: __ c2bool(rax);            break;
   300     case T_CHAR   : __ andptr(rax, 0xFFFF);    break;
   301     case T_BYTE   : __ sign_extend_byte (rax); break;
   302     case T_SHORT  : __ sign_extend_short(rax); break;
   303     case T_INT    : /* nothing to do */        break;
   304     case T_DOUBLE :
   305     case T_FLOAT  :
   306       { const Register t = InterpreterRuntime::SignatureHandlerGenerator::temp();
   307         __ pop(t);                            // remove return address first
   308         // Must return a result for interpreter or compiler. In SSE
   309         // mode, results are returned in xmm0 and the FPU stack must
   310         // be empty.
   311         if (type == T_FLOAT && UseSSE >= 1) {
   312           // Load ST0
   313           __ fld_d(Address(rsp, 0));
   314           // Store as float and empty fpu stack
   315           __ fstp_s(Address(rsp, 0));
   316           // and reload
   317           __ movflt(xmm0, Address(rsp, 0));
   318         } else if (type == T_DOUBLE && UseSSE >= 2 ) {
   319           __ movdbl(xmm0, Address(rsp, 0));
   320         } else {
   321           // restore ST0
   322           __ fld_d(Address(rsp, 0));
   323         }
   324         // and pop the temp
   325         __ addptr(rsp, 2 * wordSize);
   326         __ push(t);                           // restore return address
   327       }
   328       break;
   329     case T_OBJECT :
   330       // retrieve result from frame
   331       __ movptr(rax, Address(rbp, frame::interpreter_frame_oop_temp_offset*wordSize));
   332       // and verify it
   333       __ verify_oop(rax);
   334       break;
   335     default       : ShouldNotReachHere();
   336   }
   337   __ ret(0);                                   // return from result handler
   338   return entry;
   339 }
   341 address TemplateInterpreterGenerator::generate_safept_entry_for(TosState state, address runtime_entry) {
   342   address entry = __ pc();
   343   __ push(state);
   344   __ call_VM(noreg, runtime_entry);
   345   __ dispatch_via(vtos, Interpreter::_normal_table.table_for(vtos));
   346   return entry;
   347 }
   350 // Helpers for commoning out cases in the various type of method entries.
   351 //
   353 // increment invocation count & check for overflow
   354 //
   355 // Note: checking for negative value instead of overflow
   356 //       so we have a 'sticky' overflow test
   357 //
   358 // rbx,: method
   359 // rcx: invocation counter
   360 //
   361 void InterpreterGenerator::generate_counter_incr(Label* overflow, Label* profile_method, Label* profile_method_continue) {
   363   const Address invocation_counter(rbx, methodOopDesc::invocation_counter_offset() + InvocationCounter::counter_offset());
   364   const Address backedge_counter  (rbx, methodOopDesc::backedge_counter_offset() + InvocationCounter::counter_offset());
   366   if (ProfileInterpreter) { // %%% Merge this into methodDataOop
   367     __ incrementl(Address(rbx,methodOopDesc::interpreter_invocation_counter_offset()));
   368   }
   369   // Update standard invocation counters
   370   __ movl(rax, backedge_counter);               // load backedge counter
   372   __ incrementl(rcx, InvocationCounter::count_increment);
   373   __ andl(rax, InvocationCounter::count_mask_value);  // mask out the status bits
   375   __ movl(invocation_counter, rcx);             // save invocation count
   376   __ addl(rcx, rax);                            // add both counters
   378   // profile_method is non-null only for interpreted method so
   379   // profile_method != NULL == !native_call
   380   // BytecodeInterpreter only calls for native so code is elided.
   382   if (ProfileInterpreter && profile_method != NULL) {
   383     // Test to see if we should create a method data oop
   384     __ cmp32(rcx,
   385              ExternalAddress((address)&InvocationCounter::InterpreterProfileLimit));
   386     __ jcc(Assembler::less, *profile_method_continue);
   388     // if no method data exists, go to profile_method
   389     __ test_method_data_pointer(rax, *profile_method);
   390   }
   392   __ cmp32(rcx,
   393            ExternalAddress((address)&InvocationCounter::InterpreterInvocationLimit));
   394   __ jcc(Assembler::aboveEqual, *overflow);
   396 }
   398 void InterpreterGenerator::generate_counter_overflow(Label* do_continue) {
   400   // Asm interpreter on entry
   401   // rdi - locals
   402   // rsi - bcp
   403   // rbx, - method
   404   // rdx - cpool
   405   // rbp, - interpreter frame
   407   // C++ interpreter on entry
   408   // rsi - new interpreter state pointer
   409   // rbp - interpreter frame pointer
   410   // rbx - method
   412   // On return (i.e. jump to entry_point) [ back to invocation of interpreter ]
   413   // rbx, - method
   414   // rcx - rcvr (assuming there is one)
   415   // top of stack return address of interpreter caller
   416   // rsp - sender_sp
   418   // C++ interpreter only
   419   // rsi - previous interpreter state pointer
   421   const Address size_of_parameters(rbx, methodOopDesc::size_of_parameters_offset());
   423   // InterpreterRuntime::frequency_counter_overflow takes one argument
   424   // indicating if the counter overflow occurs at a backwards branch (non-NULL bcp).
   425   // The call returns the address of the verified entry point for the method or NULL
   426   // if the compilation did not complete (either went background or bailed out).
   427   __ movptr(rax, (intptr_t)false);
   428   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::frequency_counter_overflow), rax);
   430   __ movptr(rbx, Address(rbp, method_offset));   // restore methodOop
   432   // Preserve invariant that rsi/rdi contain bcp/locals of sender frame
   433   // and jump to the interpreted entry.
   434   __ jmp(*do_continue, relocInfo::none);
   436 }
   438 void InterpreterGenerator::generate_stack_overflow_check(void) {
   439   // see if we've got enough room on the stack for locals plus overhead.
   440   // the expression stack grows down incrementally, so the normal guard
   441   // page mechanism will work for that.
   442   //
   443   // Registers live on entry:
   444   //
   445   // Asm interpreter
   446   // rdx: number of additional locals this frame needs (what we must check)
   447   // rbx,: methodOop
   449   // destroyed on exit
   450   // rax,
   452   // NOTE:  since the additional locals are also always pushed (wasn't obvious in
   453   // generate_method_entry) so the guard should work for them too.
   454   //
   456   // monitor entry size: see picture of stack set (generate_method_entry) and frame_x86.hpp
   457   const int entry_size    = frame::interpreter_frame_monitor_size() * wordSize;
   459   // total overhead size: entry_size + (saved rbp, thru expr stack bottom).
   460   // be sure to change this if you add/subtract anything to/from the overhead area
   461   const int overhead_size = -(frame::interpreter_frame_initial_sp_offset*wordSize) + entry_size;
   463   const int page_size = os::vm_page_size();
   465   Label after_frame_check;
   467   // see if the frame is greater than one page in size. If so,
   468   // then we need to verify there is enough stack space remaining
   469   // for the additional locals.
   470   __ cmpl(rdx, (page_size - overhead_size)/Interpreter::stackElementSize);
   471   __ jcc(Assembler::belowEqual, after_frame_check);
   473   // compute rsp as if this were going to be the last frame on
   474   // the stack before the red zone
   476   Label after_frame_check_pop;
   478   __ push(rsi);
   480   const Register thread = rsi;
   482   __ get_thread(thread);
   484   const Address stack_base(thread, Thread::stack_base_offset());
   485   const Address stack_size(thread, Thread::stack_size_offset());
   487   // locals + overhead, in bytes
   488   __ lea(rax, Address(noreg, rdx, Interpreter::stackElementScale(), overhead_size));
   490 #ifdef ASSERT
   491   Label stack_base_okay, stack_size_okay;
   492   // verify that thread stack base is non-zero
   493   __ cmpptr(stack_base, (int32_t)NULL_WORD);
   494   __ jcc(Assembler::notEqual, stack_base_okay);
   495   __ stop("stack base is zero");
   496   __ bind(stack_base_okay);
   497   // verify that thread stack size is non-zero
   498   __ cmpptr(stack_size, 0);
   499   __ jcc(Assembler::notEqual, stack_size_okay);
   500   __ stop("stack size is zero");
   501   __ bind(stack_size_okay);
   502 #endif
   504   // Add stack base to locals and subtract stack size
   505   __ addptr(rax, stack_base);
   506   __ subptr(rax, stack_size);
   508   // Use the maximum number of pages we might bang.
   509   const int max_pages = StackShadowPages > (StackRedPages+StackYellowPages) ? StackShadowPages :
   510                                                                               (StackRedPages+StackYellowPages);
   511   __ addptr(rax, max_pages * page_size);
   513   // check against the current stack bottom
   514   __ cmpptr(rsp, rax);
   515   __ jcc(Assembler::above, after_frame_check_pop);
   517   __ pop(rsi);  // get saved bcp / (c++ prev state ).
   519   __ pop(rax);  // get return address
   520   __ jump(ExternalAddress(Interpreter::throw_StackOverflowError_entry()));
   522   // all done with frame size check
   523   __ bind(after_frame_check_pop);
   524   __ pop(rsi);
   526   __ bind(after_frame_check);
   527 }
   529 // Allocate monitor and lock method (asm interpreter)
   530 // rbx, - methodOop
   531 //
   532 void InterpreterGenerator::lock_method(void) {
   533   // synchronize method
   534   const Address access_flags      (rbx, methodOopDesc::access_flags_offset());
   535   const Address monitor_block_top (rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
   536   const int entry_size            = frame::interpreter_frame_monitor_size() * wordSize;
   538   #ifdef ASSERT
   539     { Label L;
   540       __ movl(rax, access_flags);
   541       __ testl(rax, JVM_ACC_SYNCHRONIZED);
   542       __ jcc(Assembler::notZero, L);
   543       __ stop("method doesn't need synchronization");
   544       __ bind(L);
   545     }
   546   #endif // ASSERT
   547   // get synchronization object
   548   { Label done;
   549     const int mirror_offset = klassOopDesc::klass_part_offset_in_bytes() + Klass::java_mirror_offset_in_bytes();
   550     __ movl(rax, access_flags);
   551     __ testl(rax, JVM_ACC_STATIC);
   552     __ movptr(rax, Address(rdi, Interpreter::local_offset_in_bytes(0)));  // get receiver (assume this is frequent case)
   553     __ jcc(Assembler::zero, done);
   554     __ movptr(rax, Address(rbx, methodOopDesc::constants_offset()));
   555     __ movptr(rax, Address(rax, constantPoolOopDesc::pool_holder_offset_in_bytes()));
   556     __ movptr(rax, Address(rax, mirror_offset));
   557     __ bind(done);
   558   }
   559   // add space for monitor & lock
   560   __ subptr(rsp, entry_size);                                           // add space for a monitor entry
   561   __ movptr(monitor_block_top, rsp);                                    // set new monitor block top
   562   __ movptr(Address(rsp, BasicObjectLock::obj_offset_in_bytes()), rax); // store object
   563   __ mov(rdx, rsp);                                                    // object address
   564   __ lock_object(rdx);
   565 }
   567 //
   568 // Generate a fixed interpreter frame. This is identical setup for interpreted methods
   569 // and for native methods hence the shared code.
   571 void TemplateInterpreterGenerator::generate_fixed_frame(bool native_call) {
   572   // initialize fixed part of activation frame
   573   __ push(rax);                                       // save return address
   574   __ enter();                                         // save old & set new rbp,
   577   __ push(rsi);                                       // set sender sp
   578   __ push((int32_t)NULL_WORD);                        // leave last_sp as null
   579   __ movptr(rsi, Address(rbx,methodOopDesc::const_offset())); // get constMethodOop
   580   __ lea(rsi, Address(rsi,constMethodOopDesc::codes_offset())); // get codebase
   581   __ push(rbx);                                      // save methodOop
   582   if (ProfileInterpreter) {
   583     Label method_data_continue;
   584     __ movptr(rdx, Address(rbx, in_bytes(methodOopDesc::method_data_offset())));
   585     __ testptr(rdx, rdx);
   586     __ jcc(Assembler::zero, method_data_continue);
   587     __ addptr(rdx, in_bytes(methodDataOopDesc::data_offset()));
   588     __ bind(method_data_continue);
   589     __ push(rdx);                                       // set the mdp (method data pointer)
   590   } else {
   591     __ push(0);
   592   }
   594   __ movptr(rdx, Address(rbx, methodOopDesc::constants_offset()));
   595   __ movptr(rdx, Address(rdx, constantPoolOopDesc::cache_offset_in_bytes()));
   596   __ push(rdx);                                       // set constant pool cache
   597   __ push(rdi);                                       // set locals pointer
   598   if (native_call) {
   599     __ push(0);                                       // no bcp
   600   } else {
   601     __ push(rsi);                                     // set bcp
   602     }
   603   __ push(0);                                         // reserve word for pointer to expression stack bottom
   604   __ movptr(Address(rsp, 0), rsp);                    // set expression stack bottom
   605 }
   607 // End of helpers
   609 //
   610 // Various method entries
   611 //------------------------------------------------------------------------------------------------------------------------
   612 //
   613 //
   615 // Call an accessor method (assuming it is resolved, otherwise drop into vanilla (slow path) entry
   617 address InterpreterGenerator::generate_accessor_entry(void) {
   619   // rbx,: methodOop
   620   // rcx: receiver (preserve for slow entry into asm interpreter)
   622   // rsi: senderSP must preserved for slow path, set SP to it on fast path
   624   address entry_point = __ pc();
   625   Label xreturn_path;
   627   // do fastpath for resolved accessor methods
   628   if (UseFastAccessorMethods) {
   629     Label slow_path;
   630     // If we need a safepoint check, generate full interpreter entry.
   631     ExternalAddress state(SafepointSynchronize::address_of_state());
   632     __ cmp32(ExternalAddress(SafepointSynchronize::address_of_state()),
   633              SafepointSynchronize::_not_synchronized);
   635     __ jcc(Assembler::notEqual, slow_path);
   636     // ASM/C++ Interpreter
   637     // Code: _aload_0, _(i|a)getfield, _(i|a)return or any rewrites thereof; parameter size = 1
   638     // Note: We can only use this code if the getfield has been resolved
   639     //       and if we don't have a null-pointer exception => check for
   640     //       these conditions first and use slow path if necessary.
   641     // rbx,: method
   642     // rcx: receiver
   643     __ movptr(rax, Address(rsp, wordSize));
   645     // check if local 0 != NULL and read field
   646     __ testptr(rax, rax);
   647     __ jcc(Assembler::zero, slow_path);
   649     __ movptr(rdi, Address(rbx, methodOopDesc::constants_offset()));
   650     // read first instruction word and extract bytecode @ 1 and index @ 2
   651     __ movptr(rdx, Address(rbx, methodOopDesc::const_offset()));
   652     __ movl(rdx, Address(rdx, constMethodOopDesc::codes_offset()));
   653     // Shift codes right to get the index on the right.
   654     // The bytecode fetched looks like <index><0xb4><0x2a>
   655     __ shrl(rdx, 2*BitsPerByte);
   656     __ shll(rdx, exact_log2(in_words(ConstantPoolCacheEntry::size())));
   657     __ movptr(rdi, Address(rdi, constantPoolOopDesc::cache_offset_in_bytes()));
   659     // rax,: local 0
   660     // rbx,: method
   661     // rcx: receiver - do not destroy since it is needed for slow path!
   662     // rcx: scratch
   663     // rdx: constant pool cache index
   664     // rdi: constant pool cache
   665     // rsi: sender sp
   667     // check if getfield has been resolved and read constant pool cache entry
   668     // check the validity of the cache entry by testing whether _indices field
   669     // contains Bytecode::_getfield in b1 byte.
   670     assert(in_words(ConstantPoolCacheEntry::size()) == 4, "adjust shift below");
   671     __ movl(rcx,
   672             Address(rdi,
   673                     rdx,
   674                     Address::times_ptr, constantPoolCacheOopDesc::base_offset() + ConstantPoolCacheEntry::indices_offset()));
   675     __ shrl(rcx, 2*BitsPerByte);
   676     __ andl(rcx, 0xFF);
   677     __ cmpl(rcx, Bytecodes::_getfield);
   678     __ jcc(Assembler::notEqual, slow_path);
   680     // Note: constant pool entry is not valid before bytecode is resolved
   681     __ movptr(rcx,
   682               Address(rdi,
   683                       rdx,
   684                       Address::times_ptr, constantPoolCacheOopDesc::base_offset() + ConstantPoolCacheEntry::f2_offset()));
   685     __ movl(rdx,
   686             Address(rdi,
   687                     rdx,
   688                     Address::times_ptr, constantPoolCacheOopDesc::base_offset() + ConstantPoolCacheEntry::flags_offset()));
   690     Label notByte, notShort, notChar;
   691     const Address field_address (rax, rcx, Address::times_1);
   693     // Need to differentiate between igetfield, agetfield, bgetfield etc.
   694     // because they are different sizes.
   695     // Use the type from the constant pool cache
   696     __ shrl(rdx, ConstantPoolCacheEntry::tosBits);
   697     // Make sure we don't need to mask rdx for tosBits after the above shift
   698     ConstantPoolCacheEntry::verify_tosBits();
   699     __ cmpl(rdx, btos);
   700     __ jcc(Assembler::notEqual, notByte);
   701     __ load_signed_byte(rax, field_address);
   702     __ jmp(xreturn_path);
   704     __ bind(notByte);
   705     __ cmpl(rdx, stos);
   706     __ jcc(Assembler::notEqual, notShort);
   707     __ load_signed_short(rax, field_address);
   708     __ jmp(xreturn_path);
   710     __ bind(notShort);
   711     __ cmpl(rdx, ctos);
   712     __ jcc(Assembler::notEqual, notChar);
   713     __ load_unsigned_short(rax, field_address);
   714     __ jmp(xreturn_path);
   716     __ bind(notChar);
   717 #ifdef ASSERT
   718     Label okay;
   719     __ cmpl(rdx, atos);
   720     __ jcc(Assembler::equal, okay);
   721     __ cmpl(rdx, itos);
   722     __ jcc(Assembler::equal, okay);
   723     __ stop("what type is this?");
   724     __ bind(okay);
   725 #endif // ASSERT
   726     // All the rest are a 32 bit wordsize
   727     // This is ok for now. Since fast accessors should be going away
   728     __ movptr(rax, field_address);
   730     __ bind(xreturn_path);
   732     // _ireturn/_areturn
   733     __ pop(rdi);                               // get return address
   734     __ mov(rsp, rsi);                          // set sp to sender sp
   735     __ jmp(rdi);
   737     // generate a vanilla interpreter entry as the slow path
   738     __ bind(slow_path);
   740     (void) generate_normal_entry(false);
   741     return entry_point;
   742   }
   743   return NULL;
   745 }
   747 //
   748 // Interpreter stub for calling a native method. (asm interpreter)
   749 // This sets up a somewhat different looking stack for calling the native method
   750 // than the typical interpreter frame setup.
   751 //
   753 address InterpreterGenerator::generate_native_entry(bool synchronized) {
   754   // determine code generation flags
   755   bool inc_counter  = UseCompiler || CountCompiledCalls;
   757   // rbx,: methodOop
   758   // rsi: sender sp
   759   // rsi: previous interpreter state (C++ interpreter) must preserve
   760   address entry_point = __ pc();
   763   const Address size_of_parameters(rbx, methodOopDesc::size_of_parameters_offset());
   764   const Address invocation_counter(rbx, methodOopDesc::invocation_counter_offset() + InvocationCounter::counter_offset());
   765   const Address access_flags      (rbx, methodOopDesc::access_flags_offset());
   767   // get parameter size (always needed)
   768   __ load_unsigned_short(rcx, size_of_parameters);
   770   // native calls don't need the stack size check since they have no expression stack
   771   // and the arguments are already on the stack and we only add a handful of words
   772   // to the stack
   774   // rbx,: methodOop
   775   // rcx: size of parameters
   776   // rsi: sender sp
   778   __ pop(rax);                                       // get return address
   779   // for natives the size of locals is zero
   781   // compute beginning of parameters (rdi)
   782   __ lea(rdi, Address(rsp, rcx, Interpreter::stackElementScale(), -wordSize));
   785   // add 2 zero-initialized slots for native calls
   786   // NULL result handler
   787   __ push((int32_t)NULL_WORD);
   788   // NULL oop temp (mirror or jni oop result)
   789   __ push((int32_t)NULL_WORD);
   791   if (inc_counter) __ movl(rcx, invocation_counter);  // (pre-)fetch invocation count
   792   // initialize fixed part of activation frame
   794   generate_fixed_frame(true);
   796   // make sure method is native & not abstract
   797 #ifdef ASSERT
   798   __ movl(rax, access_flags);
   799   {
   800     Label L;
   801     __ testl(rax, JVM_ACC_NATIVE);
   802     __ jcc(Assembler::notZero, L);
   803     __ stop("tried to execute non-native method as native");
   804     __ bind(L);
   805   }
   806   { Label L;
   807     __ testl(rax, JVM_ACC_ABSTRACT);
   808     __ jcc(Assembler::zero, L);
   809     __ stop("tried to execute abstract method in interpreter");
   810     __ bind(L);
   811   }
   812 #endif
   814   // Since at this point in the method invocation the exception handler
   815   // would try to exit the monitor of synchronized methods which hasn't
   816   // been entered yet, we set the thread local variable
   817   // _do_not_unlock_if_synchronized to true. The remove_activation will
   818   // check this flag.
   820   __ get_thread(rax);
   821   const Address do_not_unlock_if_synchronized(rax,
   822         in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()));
   823   __ movbool(do_not_unlock_if_synchronized, true);
   825   // increment invocation count & check for overflow
   826   Label invocation_counter_overflow;
   827   if (inc_counter) {
   828     generate_counter_incr(&invocation_counter_overflow, NULL, NULL);
   829   }
   831   Label continue_after_compile;
   832   __ bind(continue_after_compile);
   834   bang_stack_shadow_pages(true);
   836   // reset the _do_not_unlock_if_synchronized flag
   837   __ get_thread(rax);
   838   __ movbool(do_not_unlock_if_synchronized, false);
   840   // check for synchronized methods
   841   // Must happen AFTER invocation_counter check and stack overflow check,
   842   // so method is not locked if overflows.
   843   //
   844   if (synchronized) {
   845     lock_method();
   846   } else {
   847     // no synchronization necessary
   848 #ifdef ASSERT
   849       { Label L;
   850         __ movl(rax, access_flags);
   851         __ testl(rax, JVM_ACC_SYNCHRONIZED);
   852         __ jcc(Assembler::zero, L);
   853         __ stop("method needs synchronization");
   854         __ bind(L);
   855       }
   856 #endif
   857   }
   859   // start execution
   860 #ifdef ASSERT
   861   { Label L;
   862     const Address monitor_block_top (rbp,
   863                  frame::interpreter_frame_monitor_block_top_offset * wordSize);
   864     __ movptr(rax, monitor_block_top);
   865     __ cmpptr(rax, rsp);
   866     __ jcc(Assembler::equal, L);
   867     __ stop("broken stack frame setup in interpreter");
   868     __ bind(L);
   869   }
   870 #endif
   872   // jvmti/dtrace support
   873   __ notify_method_entry();
   875   // work registers
   876   const Register method = rbx;
   877   const Register thread = rdi;
   878   const Register t      = rcx;
   880   // allocate space for parameters
   881   __ get_method(method);
   882   __ verify_oop(method);
   883   __ load_unsigned_short(t, Address(method, methodOopDesc::size_of_parameters_offset()));
   884   __ shlptr(t, Interpreter::logStackElementSize);
   885   __ addptr(t, 2*wordSize);     // allocate two more slots for JNIEnv and possible mirror
   886   __ subptr(rsp, t);
   887   __ andptr(rsp, -(StackAlignmentInBytes)); // gcc needs 16 byte aligned stacks to do XMM intrinsics
   889   // get signature handler
   890   { Label L;
   891     __ movptr(t, Address(method, methodOopDesc::signature_handler_offset()));
   892     __ testptr(t, t);
   893     __ jcc(Assembler::notZero, L);
   894     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::prepare_native_call), method);
   895     __ get_method(method);
   896     __ movptr(t, Address(method, methodOopDesc::signature_handler_offset()));
   897     __ bind(L);
   898   }
   900   // call signature handler
   901   assert(InterpreterRuntime::SignatureHandlerGenerator::from() == rdi, "adjust this code");
   902   assert(InterpreterRuntime::SignatureHandlerGenerator::to  () == rsp, "adjust this code");
   903   assert(InterpreterRuntime::SignatureHandlerGenerator::temp() == t  , "adjust this code");
   904   // The generated handlers do not touch RBX (the method oop).
   905   // However, large signatures cannot be cached and are generated
   906   // each time here.  The slow-path generator will blow RBX
   907   // sometime, so we must reload it after the call.
   908   __ call(t);
   909   __ get_method(method);        // slow path call blows RBX on DevStudio 5.0
   911   // result handler is in rax,
   912   // set result handler
   913   __ movptr(Address(rbp, frame::interpreter_frame_result_handler_offset*wordSize), rax);
   915   // pass mirror handle if static call
   916   { Label L;
   917     const int mirror_offset = klassOopDesc::klass_part_offset_in_bytes() + Klass::java_mirror_offset_in_bytes();
   918     __ movl(t, Address(method, methodOopDesc::access_flags_offset()));
   919     __ testl(t, JVM_ACC_STATIC);
   920     __ jcc(Assembler::zero, L);
   921     // get mirror
   922     __ movptr(t, Address(method, methodOopDesc:: constants_offset()));
   923     __ movptr(t, Address(t, constantPoolOopDesc::pool_holder_offset_in_bytes()));
   924     __ movptr(t, Address(t, mirror_offset));
   925     // copy mirror into activation frame
   926     __ movptr(Address(rbp, frame::interpreter_frame_oop_temp_offset * wordSize), t);
   927     // pass handle to mirror
   928     __ lea(t, Address(rbp, frame::interpreter_frame_oop_temp_offset * wordSize));
   929     __ movptr(Address(rsp, wordSize), t);
   930     __ bind(L);
   931   }
   933   // get native function entry point
   934   { Label L;
   935     __ movptr(rax, Address(method, methodOopDesc::native_function_offset()));
   936     ExternalAddress unsatisfied(SharedRuntime::native_method_throw_unsatisfied_link_error_entry());
   937     __ cmpptr(rax, unsatisfied.addr());
   938     __ jcc(Assembler::notEqual, L);
   939     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::prepare_native_call), method);
   940     __ get_method(method);
   941     __ verify_oop(method);
   942     __ movptr(rax, Address(method, methodOopDesc::native_function_offset()));
   943     __ bind(L);
   944   }
   946   // pass JNIEnv
   947   __ get_thread(thread);
   948   __ lea(t, Address(thread, JavaThread::jni_environment_offset()));
   949   __ movptr(Address(rsp, 0), t);
   951   // set_last_Java_frame_before_call
   952   // It is enough that the pc()
   953   // points into the right code segment. It does not have to be the correct return pc.
   954   __ set_last_Java_frame(thread, noreg, rbp, __ pc());
   956   // change thread state
   957 #ifdef ASSERT
   958   { Label L;
   959     __ movl(t, Address(thread, JavaThread::thread_state_offset()));
   960     __ cmpl(t, _thread_in_Java);
   961     __ jcc(Assembler::equal, L);
   962     __ stop("Wrong thread state in native stub");
   963     __ bind(L);
   964   }
   965 #endif
   967   // Change state to native
   968   __ movl(Address(thread, JavaThread::thread_state_offset()), _thread_in_native);
   969   __ call(rax);
   971   // result potentially in rdx:rax or ST0
   973   // Either restore the MXCSR register after returning from the JNI Call
   974   // or verify that it wasn't changed.
   975   if (VM_Version::supports_sse()) {
   976     if (RestoreMXCSROnJNICalls) {
   977       __ ldmxcsr(ExternalAddress(StubRoutines::addr_mxcsr_std()));
   978     }
   979     else if (CheckJNICalls ) {
   980       __ call(RuntimeAddress(StubRoutines::x86::verify_mxcsr_entry()));
   981     }
   982   }
   984   // Either restore the x87 floating pointer control word after returning
   985   // from the JNI call or verify that it wasn't changed.
   986   if (CheckJNICalls) {
   987     __ call(RuntimeAddress(StubRoutines::x86::verify_fpu_cntrl_wrd_entry()));
   988   }
   990   // save potential result in ST(0) & rdx:rax
   991   // (if result handler is the T_FLOAT or T_DOUBLE handler, result must be in ST0 -
   992   // the check is necessary to avoid potential Intel FPU overflow problems by saving/restoring 'empty' FPU registers)
   993   // It is safe to do this push because state is _thread_in_native and return address will be found
   994   // via _last_native_pc and not via _last_jave_sp
   996   // NOTE: the order of theses push(es) is known to frame::interpreter_frame_result.
   997   // If the order changes or anything else is added to the stack the code in
   998   // interpreter_frame_result will have to be changed.
  1000   { Label L;
  1001     Label push_double;
  1002     ExternalAddress float_handler(AbstractInterpreter::result_handler(T_FLOAT));
  1003     ExternalAddress double_handler(AbstractInterpreter::result_handler(T_DOUBLE));
  1004     __ cmpptr(Address(rbp, (frame::interpreter_frame_oop_temp_offset + 1)*wordSize),
  1005               float_handler.addr());
  1006     __ jcc(Assembler::equal, push_double);
  1007     __ cmpptr(Address(rbp, (frame::interpreter_frame_oop_temp_offset + 1)*wordSize),
  1008               double_handler.addr());
  1009     __ jcc(Assembler::notEqual, L);
  1010     __ bind(push_double);
  1011     __ push(dtos);
  1012     __ bind(L);
  1014   __ push(ltos);
  1016   // change thread state
  1017   __ get_thread(thread);
  1018   __ movl(Address(thread, JavaThread::thread_state_offset()), _thread_in_native_trans);
  1019   if(os::is_MP()) {
  1020     if (UseMembar) {
  1021       // Force this write out before the read below
  1022       __ membar(Assembler::Membar_mask_bits(
  1023            Assembler::LoadLoad | Assembler::LoadStore |
  1024            Assembler::StoreLoad | Assembler::StoreStore));
  1025     } else {
  1026       // Write serialization page so VM thread can do a pseudo remote membar.
  1027       // We use the current thread pointer to calculate a thread specific
  1028       // offset to write to within the page. This minimizes bus traffic
  1029       // due to cache line collision.
  1030       __ serialize_memory(thread, rcx);
  1034   if (AlwaysRestoreFPU) {
  1035     //  Make sure the control word is correct.
  1036     __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
  1039   // check for safepoint operation in progress and/or pending suspend requests
  1040   { Label Continue;
  1042     __ cmp32(ExternalAddress(SafepointSynchronize::address_of_state()),
  1043              SafepointSynchronize::_not_synchronized);
  1045     Label L;
  1046     __ jcc(Assembler::notEqual, L);
  1047     __ cmpl(Address(thread, JavaThread::suspend_flags_offset()), 0);
  1048     __ jcc(Assembler::equal, Continue);
  1049     __ bind(L);
  1051     // Don't use call_VM as it will see a possible pending exception and forward it
  1052     // and never return here preventing us from clearing _last_native_pc down below.
  1053     // Also can't use call_VM_leaf either as it will check to see if rsi & rdi are
  1054     // preserved and correspond to the bcp/locals pointers. So we do a runtime call
  1055     // by hand.
  1056     //
  1057     __ push(thread);
  1058     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address,
  1059                                             JavaThread::check_special_condition_for_native_trans)));
  1060     __ increment(rsp, wordSize);
  1061     __ get_thread(thread);
  1063     __ bind(Continue);
  1066   // change thread state
  1067   __ movl(Address(thread, JavaThread::thread_state_offset()), _thread_in_Java);
  1069   __ reset_last_Java_frame(thread, true, true);
  1071   // reset handle block
  1072   __ movptr(t, Address(thread, JavaThread::active_handles_offset()));
  1073   __ movptr(Address(t, JNIHandleBlock::top_offset_in_bytes()), NULL_WORD);
  1075   // If result was an oop then unbox and save it in the frame
  1076   { Label L;
  1077     Label no_oop, store_result;
  1078     ExternalAddress handler(AbstractInterpreter::result_handler(T_OBJECT));
  1079     __ cmpptr(Address(rbp, frame::interpreter_frame_result_handler_offset*wordSize),
  1080               handler.addr());
  1081     __ jcc(Assembler::notEqual, no_oop);
  1082     __ cmpptr(Address(rsp, 0), (int32_t)NULL_WORD);
  1083     __ pop(ltos);
  1084     __ testptr(rax, rax);
  1085     __ jcc(Assembler::zero, store_result);
  1086     // unbox
  1087     __ movptr(rax, Address(rax, 0));
  1088     __ bind(store_result);
  1089     __ movptr(Address(rbp, (frame::interpreter_frame_oop_temp_offset)*wordSize), rax);
  1090     // keep stack depth as expected by pushing oop which will eventually be discarded
  1091     __ push(ltos);
  1092     __ bind(no_oop);
  1096      Label no_reguard;
  1097      __ cmpl(Address(thread, JavaThread::stack_guard_state_offset()), JavaThread::stack_guard_yellow_disabled);
  1098      __ jcc(Assembler::notEqual, no_reguard);
  1100      __ pusha();
  1101      __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages)));
  1102      __ popa();
  1104      __ bind(no_reguard);
  1107   // restore rsi to have legal interpreter frame,
  1108   // i.e., bci == 0 <=> rsi == code_base()
  1109   // Can't call_VM until bcp is within reasonable.
  1110   __ get_method(method);      // method is junk from thread_in_native to now.
  1111   __ verify_oop(method);
  1112   __ movptr(rsi, Address(method,methodOopDesc::const_offset()));   // get constMethodOop
  1113   __ lea(rsi, Address(rsi,constMethodOopDesc::codes_offset()));    // get codebase
  1115   // handle exceptions (exception handling will handle unlocking!)
  1116   { Label L;
  1117     __ cmpptr(Address(thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
  1118     __ jcc(Assembler::zero, L);
  1119     // Note: At some point we may want to unify this with the code used in call_VM_base();
  1120     //       i.e., we should use the StubRoutines::forward_exception code. For now this
  1121     //       doesn't work here because the rsp is not correctly set at this point.
  1122     __ MacroAssembler::call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_pending_exception));
  1123     __ should_not_reach_here();
  1124     __ bind(L);
  1127   // do unlocking if necessary
  1128   { Label L;
  1129     __ movl(t, Address(method, methodOopDesc::access_flags_offset()));
  1130     __ testl(t, JVM_ACC_SYNCHRONIZED);
  1131     __ jcc(Assembler::zero, L);
  1132     // the code below should be shared with interpreter macro assembler implementation
  1133     { Label unlock;
  1134       // BasicObjectLock will be first in list, since this is a synchronized method. However, need
  1135       // to check that the object has not been unlocked by an explicit monitorexit bytecode.
  1136       const Address monitor(rbp, frame::interpreter_frame_initial_sp_offset * wordSize - (int)sizeof(BasicObjectLock));
  1138       __ lea(rdx, monitor);                   // address of first monitor
  1140       __ movptr(t, Address(rdx, BasicObjectLock::obj_offset_in_bytes()));
  1141       __ testptr(t, t);
  1142       __ jcc(Assembler::notZero, unlock);
  1144       // Entry already unlocked, need to throw exception
  1145       __ MacroAssembler::call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception));
  1146       __ should_not_reach_here();
  1148       __ bind(unlock);
  1149       __ unlock_object(rdx);
  1151     __ bind(L);
  1154   // jvmti/dtrace support
  1155   // Note: This must happen _after_ handling/throwing any exceptions since
  1156   //       the exception handler code notifies the runtime of method exits
  1157   //       too. If this happens before, method entry/exit notifications are
  1158   //       not properly paired (was bug - gri 11/22/99).
  1159   __ notify_method_exit(vtos, InterpreterMacroAssembler::NotifyJVMTI);
  1161   // restore potential result in rdx:rax, call result handler to restore potential result in ST0 & handle result
  1162   __ pop(ltos);
  1163   __ movptr(t, Address(rbp, frame::interpreter_frame_result_handler_offset*wordSize));
  1164   __ call(t);
  1166   // remove activation
  1167   __ movptr(t, Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize)); // get sender sp
  1168   __ leave();                                // remove frame anchor
  1169   __ pop(rdi);                               // get return address
  1170   __ mov(rsp, t);                            // set sp to sender sp
  1171   __ jmp(rdi);
  1173   if (inc_counter) {
  1174     // Handle overflow of counter and compile method
  1175     __ bind(invocation_counter_overflow);
  1176     generate_counter_overflow(&continue_after_compile);
  1179   return entry_point;
  1182 //
  1183 // Generic interpreted method entry to (asm) interpreter
  1184 //
  1185 address InterpreterGenerator::generate_normal_entry(bool synchronized) {
  1186   // determine code generation flags
  1187   bool inc_counter  = UseCompiler || CountCompiledCalls;
  1189   // rbx,: methodOop
  1190   // rsi: sender sp
  1191   address entry_point = __ pc();
  1194   const Address size_of_parameters(rbx, methodOopDesc::size_of_parameters_offset());
  1195   const Address size_of_locals    (rbx, methodOopDesc::size_of_locals_offset());
  1196   const Address invocation_counter(rbx, methodOopDesc::invocation_counter_offset() + InvocationCounter::counter_offset());
  1197   const Address access_flags      (rbx, methodOopDesc::access_flags_offset());
  1199   // get parameter size (always needed)
  1200   __ load_unsigned_short(rcx, size_of_parameters);
  1202   // rbx,: methodOop
  1203   // rcx: size of parameters
  1205   // rsi: sender_sp (could differ from sp+wordSize if we were called via c2i )
  1207   __ load_unsigned_short(rdx, size_of_locals);       // get size of locals in words
  1208   __ subl(rdx, rcx);                                // rdx = no. of additional locals
  1210   // see if we've got enough room on the stack for locals plus overhead.
  1211   generate_stack_overflow_check();
  1213   // get return address
  1214   __ pop(rax);
  1216   // compute beginning of parameters (rdi)
  1217   __ lea(rdi, Address(rsp, rcx, Interpreter::stackElementScale(), -wordSize));
  1219   // rdx - # of additional locals
  1220   // allocate space for locals
  1221   // explicitly initialize locals
  1223     Label exit, loop;
  1224     __ testl(rdx, rdx);
  1225     __ jcc(Assembler::lessEqual, exit);               // do nothing if rdx <= 0
  1226     __ bind(loop);
  1227     __ push((int32_t)NULL_WORD);                      // initialize local variables
  1228     __ decrement(rdx);                                // until everything initialized
  1229     __ jcc(Assembler::greater, loop);
  1230     __ bind(exit);
  1233   if (inc_counter) __ movl(rcx, invocation_counter);  // (pre-)fetch invocation count
  1234   // initialize fixed part of activation frame
  1235   generate_fixed_frame(false);
  1237   // make sure method is not native & not abstract
  1238 #ifdef ASSERT
  1239   __ movl(rax, access_flags);
  1241     Label L;
  1242     __ testl(rax, JVM_ACC_NATIVE);
  1243     __ jcc(Assembler::zero, L);
  1244     __ stop("tried to execute native method as non-native");
  1245     __ bind(L);
  1247   { Label L;
  1248     __ testl(rax, JVM_ACC_ABSTRACT);
  1249     __ jcc(Assembler::zero, L);
  1250     __ stop("tried to execute abstract method in interpreter");
  1251     __ bind(L);
  1253 #endif
  1255   // Since at this point in the method invocation the exception handler
  1256   // would try to exit the monitor of synchronized methods which hasn't
  1257   // been entered yet, we set the thread local variable
  1258   // _do_not_unlock_if_synchronized to true. The remove_activation will
  1259   // check this flag.
  1261   __ get_thread(rax);
  1262   const Address do_not_unlock_if_synchronized(rax,
  1263         in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()));
  1264   __ movbool(do_not_unlock_if_synchronized, true);
  1266   // increment invocation count & check for overflow
  1267   Label invocation_counter_overflow;
  1268   Label profile_method;
  1269   Label profile_method_continue;
  1270   if (inc_counter) {
  1271     generate_counter_incr(&invocation_counter_overflow, &profile_method, &profile_method_continue);
  1272     if (ProfileInterpreter) {
  1273       __ bind(profile_method_continue);
  1276   Label continue_after_compile;
  1277   __ bind(continue_after_compile);
  1279   bang_stack_shadow_pages(false);
  1281   // reset the _do_not_unlock_if_synchronized flag
  1282   __ get_thread(rax);
  1283   __ movbool(do_not_unlock_if_synchronized, false);
  1285   // check for synchronized methods
  1286   // Must happen AFTER invocation_counter check and stack overflow check,
  1287   // so method is not locked if overflows.
  1288   //
  1289   if (synchronized) {
  1290     // Allocate monitor and lock method
  1291     lock_method();
  1292   } else {
  1293     // no synchronization necessary
  1294 #ifdef ASSERT
  1295       { Label L;
  1296         __ movl(rax, access_flags);
  1297         __ testl(rax, JVM_ACC_SYNCHRONIZED);
  1298         __ jcc(Assembler::zero, L);
  1299         __ stop("method needs synchronization");
  1300         __ bind(L);
  1302 #endif
  1305   // start execution
  1306 #ifdef ASSERT
  1307   { Label L;
  1308      const Address monitor_block_top (rbp,
  1309                  frame::interpreter_frame_monitor_block_top_offset * wordSize);
  1310     __ movptr(rax, monitor_block_top);
  1311     __ cmpptr(rax, rsp);
  1312     __ jcc(Assembler::equal, L);
  1313     __ stop("broken stack frame setup in interpreter");
  1314     __ bind(L);
  1316 #endif
  1318   // jvmti support
  1319   __ notify_method_entry();
  1321   __ dispatch_next(vtos);
  1323   // invocation counter overflow
  1324   if (inc_counter) {
  1325     if (ProfileInterpreter) {
  1326       // We have decided to profile this method in the interpreter
  1327       __ bind(profile_method);
  1329       __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::profile_method), rsi, true);
  1331       __ movptr(rbx, Address(rbp, method_offset));   // restore methodOop
  1332       __ movptr(rax, Address(rbx, in_bytes(methodOopDesc::method_data_offset())));
  1333       __ movptr(Address(rbp, frame::interpreter_frame_mdx_offset * wordSize), rax);
  1334       __ test_method_data_pointer(rax, profile_method_continue);
  1335       __ addptr(rax, in_bytes(methodDataOopDesc::data_offset()));
  1336       __ movptr(Address(rbp, frame::interpreter_frame_mdx_offset * wordSize), rax);
  1337       __ jmp(profile_method_continue);
  1339     // Handle overflow of counter and compile method
  1340     __ bind(invocation_counter_overflow);
  1341     generate_counter_overflow(&continue_after_compile);
  1344   return entry_point;
  1347 //------------------------------------------------------------------------------------------------------------------------
  1348 // Entry points
  1349 //
  1350 // Here we generate the various kind of entries into the interpreter.
  1351 // The two main entry type are generic bytecode methods and native call method.
  1352 // These both come in synchronized and non-synchronized versions but the
  1353 // frame layout they create is very similar. The other method entry
  1354 // types are really just special purpose entries that are really entry
  1355 // and interpretation all in one. These are for trivial methods like
  1356 // accessor, empty, or special math methods.
  1357 //
  1358 // When control flow reaches any of the entry types for the interpreter
  1359 // the following holds ->
  1360 //
  1361 // Arguments:
  1362 //
  1363 // rbx,: methodOop
  1364 // rcx: receiver
  1365 //
  1366 //
  1367 // Stack layout immediately at entry
  1368 //
  1369 // [ return address     ] <--- rsp
  1370 // [ parameter n        ]
  1371 //   ...
  1372 // [ parameter 1        ]
  1373 // [ expression stack   ] (caller's java expression stack)
  1375 // Assuming that we don't go to one of the trivial specialized
  1376 // entries the stack will look like below when we are ready to execute
  1377 // the first bytecode (or call the native routine). The register usage
  1378 // will be as the template based interpreter expects (see interpreter_x86.hpp).
  1379 //
  1380 // local variables follow incoming parameters immediately; i.e.
  1381 // the return address is moved to the end of the locals).
  1382 //
  1383 // [ monitor entry      ] <--- rsp
  1384 //   ...
  1385 // [ monitor entry      ]
  1386 // [ expr. stack bottom ]
  1387 // [ saved rsi          ]
  1388 // [ current rdi        ]
  1389 // [ methodOop          ]
  1390 // [ saved rbp,          ] <--- rbp,
  1391 // [ return address     ]
  1392 // [ local variable m   ]
  1393 //   ...
  1394 // [ local variable 1   ]
  1395 // [ parameter n        ]
  1396 //   ...
  1397 // [ parameter 1        ] <--- rdi
  1399 address AbstractInterpreterGenerator::generate_method_entry(AbstractInterpreter::MethodKind kind) {
  1400   // determine code generation flags
  1401   bool synchronized = false;
  1402   address entry_point = NULL;
  1404   switch (kind) {
  1405     case Interpreter::zerolocals             :                                                                             break;
  1406     case Interpreter::zerolocals_synchronized: synchronized = true;                                                        break;
  1407     case Interpreter::native                 : entry_point = ((InterpreterGenerator*)this)->generate_native_entry(false);  break;
  1408     case Interpreter::native_synchronized    : entry_point = ((InterpreterGenerator*)this)->generate_native_entry(true);   break;
  1409     case Interpreter::empty                  : entry_point = ((InterpreterGenerator*)this)->generate_empty_entry();        break;
  1410     case Interpreter::accessor               : entry_point = ((InterpreterGenerator*)this)->generate_accessor_entry();     break;
  1411     case Interpreter::abstract               : entry_point = ((InterpreterGenerator*)this)->generate_abstract_entry();     break;
  1412     case Interpreter::method_handle          : entry_point = ((InterpreterGenerator*)this)->generate_method_handle_entry(); break;
  1414     case Interpreter::java_lang_math_sin     : // fall thru
  1415     case Interpreter::java_lang_math_cos     : // fall thru
  1416     case Interpreter::java_lang_math_tan     : // fall thru
  1417     case Interpreter::java_lang_math_abs     : // fall thru
  1418     case Interpreter::java_lang_math_log     : // fall thru
  1419     case Interpreter::java_lang_math_log10   : // fall thru
  1420     case Interpreter::java_lang_math_sqrt    : entry_point = ((InterpreterGenerator*)this)->generate_math_entry(kind);     break;
  1421     default                                  : ShouldNotReachHere();                                                       break;
  1424   if (entry_point) return entry_point;
  1426   return ((InterpreterGenerator*)this)->generate_normal_entry(synchronized);
  1430 // These should never be compiled since the interpreter will prefer
  1431 // the compiled version to the intrinsic version.
  1432 bool AbstractInterpreter::can_be_compiled(methodHandle m) {
  1433   switch (method_kind(m)) {
  1434     case Interpreter::java_lang_math_sin     : // fall thru
  1435     case Interpreter::java_lang_math_cos     : // fall thru
  1436     case Interpreter::java_lang_math_tan     : // fall thru
  1437     case Interpreter::java_lang_math_abs     : // fall thru
  1438     case Interpreter::java_lang_math_log     : // fall thru
  1439     case Interpreter::java_lang_math_log10   : // fall thru
  1440     case Interpreter::java_lang_math_sqrt    :
  1441       return false;
  1442     default:
  1443       return true;
  1447 // How much stack a method activation needs in words.
  1448 int AbstractInterpreter::size_top_interpreter_activation(methodOop method) {
  1450   const int stub_code = 4;  // see generate_call_stub
  1451   // Save space for one monitor to get into the interpreted method in case
  1452   // the method is synchronized
  1453   int monitor_size    = method->is_synchronized() ?
  1454                                 1*frame::interpreter_frame_monitor_size() : 0;
  1456   // total overhead size: entry_size + (saved rbp, thru expr stack bottom).
  1457   // be sure to change this if you add/subtract anything to/from the overhead area
  1458   const int overhead_size = -frame::interpreter_frame_initial_sp_offset;
  1460   const int extra_stack = methodOopDesc::extra_stack_entries();
  1461   const int method_stack = (method->max_locals() + method->max_stack() + extra_stack) *
  1462                            Interpreter::stackElementWords;
  1463   return overhead_size + method_stack + stub_code;
  1466 // asm based interpreter deoptimization helpers
  1468 int AbstractInterpreter::layout_activation(methodOop method,
  1469                                            int tempcount,
  1470                                            int popframe_extra_args,
  1471                                            int moncount,
  1472                                            int callee_param_count,
  1473                                            int callee_locals,
  1474                                            frame* caller,
  1475                                            frame* interpreter_frame,
  1476                                            bool is_top_frame) {
  1477   // Note: This calculation must exactly parallel the frame setup
  1478   // in AbstractInterpreterGenerator::generate_method_entry.
  1479   // If interpreter_frame!=NULL, set up the method, locals, and monitors.
  1480   // The frame interpreter_frame, if not NULL, is guaranteed to be the right size,
  1481   // as determined by a previous call to this method.
  1482   // It is also guaranteed to be walkable even though it is in a skeletal state
  1483   // NOTE: return size is in words not bytes
  1485   // fixed size of an interpreter frame:
  1486   int max_locals = method->max_locals() * Interpreter::stackElementWords;
  1487   int extra_locals = (method->max_locals() - method->size_of_parameters()) *
  1488                      Interpreter::stackElementWords;
  1490   int overhead = frame::sender_sp_offset - frame::interpreter_frame_initial_sp_offset;
  1492   // Our locals were accounted for by the caller (or last_frame_adjust on the transistion)
  1493   // Since the callee parameters already account for the callee's params we only need to account for
  1494   // the extra locals.
  1497   int size = overhead +
  1498          ((callee_locals - callee_param_count)*Interpreter::stackElementWords) +
  1499          (moncount*frame::interpreter_frame_monitor_size()) +
  1500          tempcount*Interpreter::stackElementWords + popframe_extra_args;
  1502   if (interpreter_frame != NULL) {
  1503 #ifdef ASSERT
  1504     if (!EnableMethodHandles)
  1505       // @@@ FIXME: Should we correct interpreter_frame_sender_sp in the calling sequences?
  1506       // Probably, since deoptimization doesn't work yet.
  1507       assert(caller->unextended_sp() == interpreter_frame->interpreter_frame_sender_sp(), "Frame not properly walkable");
  1508     assert(caller->sp() == interpreter_frame->sender_sp(), "Frame not properly walkable(2)");
  1509 #endif
  1511     interpreter_frame->interpreter_frame_set_method(method);
  1512     // NOTE the difference in using sender_sp and interpreter_frame_sender_sp
  1513     // interpreter_frame_sender_sp is the original sp of the caller (the unextended_sp)
  1514     // and sender_sp is fp+8
  1515     intptr_t* locals = interpreter_frame->sender_sp() + max_locals - 1;
  1517     interpreter_frame->interpreter_frame_set_locals(locals);
  1518     BasicObjectLock* montop = interpreter_frame->interpreter_frame_monitor_begin();
  1519     BasicObjectLock* monbot = montop - moncount;
  1520     interpreter_frame->interpreter_frame_set_monitor_end(monbot);
  1522     // Set last_sp
  1523     intptr_t*  rsp = (intptr_t*) monbot  -
  1524                      tempcount*Interpreter::stackElementWords -
  1525                      popframe_extra_args;
  1526     interpreter_frame->interpreter_frame_set_last_sp(rsp);
  1528     // All frames but the initial (oldest) interpreter frame we fill in have a
  1529     // value for sender_sp that allows walking the stack but isn't
  1530     // truly correct. Correct the value here.
  1532     if (extra_locals != 0 &&
  1533         interpreter_frame->sender_sp() == interpreter_frame->interpreter_frame_sender_sp() ) {
  1534       interpreter_frame->set_interpreter_frame_sender_sp(caller->sp() + extra_locals);
  1536     *interpreter_frame->interpreter_frame_cache_addr() =
  1537       method->constants()->cache();
  1539   return size;
  1543 //------------------------------------------------------------------------------------------------------------------------
  1544 // Exceptions
  1546 void TemplateInterpreterGenerator::generate_throw_exception() {
  1547   // Entry point in previous activation (i.e., if the caller was interpreted)
  1548   Interpreter::_rethrow_exception_entry = __ pc();
  1549   const Register thread = rcx;
  1551   // Restore sp to interpreter_frame_last_sp even though we are going
  1552   // to empty the expression stack for the exception processing.
  1553   __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), NULL_WORD);
  1554   // rax,: exception
  1555   // rdx: return address/pc that threw exception
  1556   __ restore_bcp();                              // rsi points to call/send
  1557   __ restore_locals();
  1559   // Entry point for exceptions thrown within interpreter code
  1560   Interpreter::_throw_exception_entry = __ pc();
  1561   // expression stack is undefined here
  1562   // rax,: exception
  1563   // rsi: exception bcp
  1564   __ verify_oop(rax);
  1566   // expression stack must be empty before entering the VM in case of an exception
  1567   __ empty_expression_stack();
  1568   __ empty_FPU_stack();
  1569   // find exception handler address and preserve exception oop
  1570   __ call_VM(rdx, CAST_FROM_FN_PTR(address, InterpreterRuntime::exception_handler_for_exception), rax);
  1571   // rax,: exception handler entry point
  1572   // rdx: preserved exception oop
  1573   // rsi: bcp for exception handler
  1574   __ push_ptr(rdx);                              // push exception which is now the only value on the stack
  1575   __ jmp(rax);                                   // jump to exception handler (may be _remove_activation_entry!)
  1577   // If the exception is not handled in the current frame the frame is removed and
  1578   // the exception is rethrown (i.e. exception continuation is _rethrow_exception).
  1579   //
  1580   // Note: At this point the bci is still the bxi for the instruction which caused
  1581   //       the exception and the expression stack is empty. Thus, for any VM calls
  1582   //       at this point, GC will find a legal oop map (with empty expression stack).
  1584   // In current activation
  1585   // tos: exception
  1586   // rsi: exception bcp
  1588   //
  1589   // JVMTI PopFrame support
  1590   //
  1592    Interpreter::_remove_activation_preserving_args_entry = __ pc();
  1593   __ empty_expression_stack();
  1594   __ empty_FPU_stack();
  1595   // Set the popframe_processing bit in pending_popframe_condition indicating that we are
  1596   // currently handling popframe, so that call_VMs that may happen later do not trigger new
  1597   // popframe handling cycles.
  1598   __ get_thread(thread);
  1599   __ movl(rdx, Address(thread, JavaThread::popframe_condition_offset()));
  1600   __ orl(rdx, JavaThread::popframe_processing_bit);
  1601   __ movl(Address(thread, JavaThread::popframe_condition_offset()), rdx);
  1604     // Check to see whether we are returning to a deoptimized frame.
  1605     // (The PopFrame call ensures that the caller of the popped frame is
  1606     // either interpreted or compiled and deoptimizes it if compiled.)
  1607     // In this case, we can't call dispatch_next() after the frame is
  1608     // popped, but instead must save the incoming arguments and restore
  1609     // them after deoptimization has occurred.
  1610     //
  1611     // Note that we don't compare the return PC against the
  1612     // deoptimization blob's unpack entry because of the presence of
  1613     // adapter frames in C2.
  1614     Label caller_not_deoptimized;
  1615     __ movptr(rdx, Address(rbp, frame::return_addr_offset * wordSize));
  1616     __ super_call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::interpreter_contains), rdx);
  1617     __ testl(rax, rax);
  1618     __ jcc(Assembler::notZero, caller_not_deoptimized);
  1620     // Compute size of arguments for saving when returning to deoptimized caller
  1621     __ get_method(rax);
  1622     __ verify_oop(rax);
  1623     __ load_unsigned_short(rax, Address(rax, in_bytes(methodOopDesc::size_of_parameters_offset())));
  1624     __ shlptr(rax, Interpreter::logStackElementSize);
  1625     __ restore_locals();
  1626     __ subptr(rdi, rax);
  1627     __ addptr(rdi, wordSize);
  1628     // Save these arguments
  1629     __ get_thread(thread);
  1630     __ super_call_VM_leaf(CAST_FROM_FN_PTR(address, Deoptimization::popframe_preserve_args), thread, rax, rdi);
  1632     __ remove_activation(vtos, rdx,
  1633                          /* throw_monitor_exception */ false,
  1634                          /* install_monitor_exception */ false,
  1635                          /* notify_jvmdi */ false);
  1637     // Inform deoptimization that it is responsible for restoring these arguments
  1638     __ get_thread(thread);
  1639     __ movl(Address(thread, JavaThread::popframe_condition_offset()), JavaThread::popframe_force_deopt_reexecution_bit);
  1641     // Continue in deoptimization handler
  1642     __ jmp(rdx);
  1644     __ bind(caller_not_deoptimized);
  1647   __ remove_activation(vtos, rdx,
  1648                        /* throw_monitor_exception */ false,
  1649                        /* install_monitor_exception */ false,
  1650                        /* notify_jvmdi */ false);
  1652   // Finish with popframe handling
  1653   // A previous I2C followed by a deoptimization might have moved the
  1654   // outgoing arguments further up the stack. PopFrame expects the
  1655   // mutations to those outgoing arguments to be preserved and other
  1656   // constraints basically require this frame to look exactly as
  1657   // though it had previously invoked an interpreted activation with
  1658   // no space between the top of the expression stack (current
  1659   // last_sp) and the top of stack. Rather than force deopt to
  1660   // maintain this kind of invariant all the time we call a small
  1661   // fixup routine to move the mutated arguments onto the top of our
  1662   // expression stack if necessary.
  1663   __ mov(rax, rsp);
  1664   __ movptr(rbx, Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize));
  1665   __ get_thread(thread);
  1666   // PC must point into interpreter here
  1667   __ set_last_Java_frame(thread, noreg, rbp, __ pc());
  1668   __ super_call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::popframe_move_outgoing_args), thread, rax, rbx);
  1669   __ get_thread(thread);
  1670   __ reset_last_Java_frame(thread, true, true);
  1671   // Restore the last_sp and null it out
  1672   __ movptr(rsp, Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize));
  1673   __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), NULL_WORD);
  1675   __ restore_bcp();
  1676   __ restore_locals();
  1677   // The method data pointer was incremented already during
  1678   // call profiling. We have to restore the mdp for the current bcp.
  1679   if (ProfileInterpreter) {
  1680     __ set_method_data_pointer_for_bcp();
  1683   // Clear the popframe condition flag
  1684   __ get_thread(thread);
  1685   __ movl(Address(thread, JavaThread::popframe_condition_offset()), JavaThread::popframe_inactive);
  1687   __ dispatch_next(vtos);
  1688   // end of PopFrame support
  1690   Interpreter::_remove_activation_entry = __ pc();
  1692   // preserve exception over this code sequence
  1693   __ pop_ptr(rax);
  1694   __ get_thread(thread);
  1695   __ movptr(Address(thread, JavaThread::vm_result_offset()), rax);
  1696   // remove the activation (without doing throws on illegalMonitorExceptions)
  1697   __ remove_activation(vtos, rdx, false, true, false);
  1698   // restore exception
  1699   __ get_thread(thread);
  1700   __ movptr(rax, Address(thread, JavaThread::vm_result_offset()));
  1701   __ movptr(Address(thread, JavaThread::vm_result_offset()), NULL_WORD);
  1702   __ verify_oop(rax);
  1704   // Inbetween activations - previous activation type unknown yet
  1705   // compute continuation point - the continuation point expects
  1706   // the following registers set up:
  1707   //
  1708   // rax: exception
  1709   // rdx: return address/pc that threw exception
  1710   // rsp: expression stack of caller
  1711   // rbp: rbp, of caller
  1712   __ push(rax);                                  // save exception
  1713   __ push(rdx);                                  // save return address
  1714   __ super_call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address), thread, rdx);
  1715   __ mov(rbx, rax);                              // save exception handler
  1716   __ pop(rdx);                                   // restore return address
  1717   __ pop(rax);                                   // restore exception
  1718   // Note that an "issuing PC" is actually the next PC after the call
  1719   __ jmp(rbx);                                   // jump to exception handler of caller
  1723 //
  1724 // JVMTI ForceEarlyReturn support
  1725 //
  1726 address TemplateInterpreterGenerator::generate_earlyret_entry_for(TosState state) {
  1727   address entry = __ pc();
  1728   const Register thread = rcx;
  1730   __ restore_bcp();
  1731   __ restore_locals();
  1732   __ empty_expression_stack();
  1733   __ empty_FPU_stack();
  1734   __ load_earlyret_value(state);
  1736   __ get_thread(thread);
  1737   __ movptr(rcx, Address(thread, JavaThread::jvmti_thread_state_offset()));
  1738   const Address cond_addr(rcx, JvmtiThreadState::earlyret_state_offset());
  1740   // Clear the earlyret state
  1741   __ movl(cond_addr, JvmtiThreadState::earlyret_inactive);
  1743   __ remove_activation(state, rsi,
  1744                        false, /* throw_monitor_exception */
  1745                        false, /* install_monitor_exception */
  1746                        true); /* notify_jvmdi */
  1747   __ jmp(rsi);
  1748   return entry;
  1749 } // end of ForceEarlyReturn support
  1752 //------------------------------------------------------------------------------------------------------------------------
  1753 // Helper for vtos entry point generation
  1755 void TemplateInterpreterGenerator::set_vtos_entry_points (Template* t, address& bep, address& cep, address& sep, address& aep, address& iep, address& lep, address& fep, address& dep, address& vep) {
  1756   assert(t->is_valid() && t->tos_in() == vtos, "illegal template");
  1757   Label L;
  1758   fep = __ pc(); __ push(ftos); __ jmp(L);
  1759   dep = __ pc(); __ push(dtos); __ jmp(L);
  1760   lep = __ pc(); __ push(ltos); __ jmp(L);
  1761   aep = __ pc(); __ push(atos); __ jmp(L);
  1762   bep = cep = sep =             // fall through
  1763   iep = __ pc(); __ push(itos); // fall through
  1764   vep = __ pc(); __ bind(L);    // fall through
  1765   generate_and_dispatch(t);
  1768 //------------------------------------------------------------------------------------------------------------------------
  1769 // Generation of individual instructions
  1771 // helpers for generate_and_dispatch
  1775 InterpreterGenerator::InterpreterGenerator(StubQueue* code)
  1776  : TemplateInterpreterGenerator(code) {
  1777    generate_all(); // down here so it can be "virtual"
  1780 //------------------------------------------------------------------------------------------------------------------------
  1782 // Non-product code
  1783 #ifndef PRODUCT
  1784 address TemplateInterpreterGenerator::generate_trace_code(TosState state) {
  1785   address entry = __ pc();
  1787   // prepare expression stack
  1788   __ pop(rcx);          // pop return address so expression stack is 'pure'
  1789   __ push(state);       // save tosca
  1791   // pass tosca registers as arguments & call tracer
  1792   __ call_VM(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::trace_bytecode), rcx, rax, rdx);
  1793   __ mov(rcx, rax);     // make sure return address is not destroyed by pop(state)
  1794   __ pop(state);        // restore tosca
  1796   // return
  1797   __ jmp(rcx);
  1799   return entry;
  1803 void TemplateInterpreterGenerator::count_bytecode() {
  1804   __ incrementl(ExternalAddress((address) &BytecodeCounter::_counter_value));
  1808 void TemplateInterpreterGenerator::histogram_bytecode(Template* t) {
  1809   __ incrementl(ExternalAddress((address) &BytecodeHistogram::_counters[t->bytecode()]));
  1813 void TemplateInterpreterGenerator::histogram_bytecode_pair(Template* t) {
  1814   __ mov32(ExternalAddress((address) &BytecodePairHistogram::_index), rbx);
  1815   __ shrl(rbx, BytecodePairHistogram::log2_number_of_codes);
  1816   __ orl(rbx, ((int)t->bytecode()) << BytecodePairHistogram::log2_number_of_codes);
  1817   ExternalAddress table((address) BytecodePairHistogram::_counters);
  1818   Address index(noreg, rbx, Address::times_4);
  1819   __ incrementl(ArrayAddress(table, index));
  1823 void TemplateInterpreterGenerator::trace_bytecode(Template* t) {
  1824   // Call a little run-time stub to avoid blow-up for each bytecode.
  1825   // The run-time runtime saves the right registers, depending on
  1826   // the tosca in-state for the given template.
  1827   assert(Interpreter::trace_code(t->tos_in()) != NULL,
  1828          "entry must have been generated");
  1829   __ call(RuntimeAddress(Interpreter::trace_code(t->tos_in())));
  1833 void TemplateInterpreterGenerator::stop_interpreter_at() {
  1834   Label L;
  1835   __ cmp32(ExternalAddress((address) &BytecodeCounter::_counter_value),
  1836            StopInterpreterAt);
  1837   __ jcc(Assembler::notEqual, L);
  1838   __ int3();
  1839   __ bind(L);
  1841 #endif // !PRODUCT
  1842 #endif // CC_INTERP

mercurial