src/cpu/x86/vm/stubGenerator_x86_32.cpp

Wed, 02 Jun 2010 22:45:42 -0700

author
jrose
date
Wed, 02 Jun 2010 22:45:42 -0700
changeset 1934
e9ff18c4ace7
parent 1907
c18cbe5936b8
child 2118
d6f45b55c972
permissions
-rw-r--r--

Merge

     1 /*
     2  * Copyright (c) 1999, 2010, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "incls/_precompiled.incl"
    26 #include "incls/_stubGenerator_x86_32.cpp.incl"
    28 // Declaration and definition of StubGenerator (no .hpp file).
    29 // For a more detailed description of the stub routine structure
    30 // see the comment in stubRoutines.hpp
    32 #define __ _masm->
    33 #define a__ ((Assembler*)_masm)->
    35 #ifdef PRODUCT
    36 #define BLOCK_COMMENT(str) /* nothing */
    37 #else
    38 #define BLOCK_COMMENT(str) __ block_comment(str)
    39 #endif
    41 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
    43 const int MXCSR_MASK  = 0xFFC0;  // Mask out any pending exceptions
    44 const int FPU_CNTRL_WRD_MASK = 0xFFFF;
    46 // -------------------------------------------------------------------------------------------------------------------------
    47 // Stub Code definitions
    49 static address handle_unsafe_access() {
    50   JavaThread* thread = JavaThread::current();
    51   address pc  = thread->saved_exception_pc();
    52   // pc is the instruction which we must emulate
    53   // doing a no-op is fine:  return garbage from the load
    54   // therefore, compute npc
    55   address npc = Assembler::locate_next_instruction(pc);
    57   // request an async exception
    58   thread->set_pending_unsafe_access_error();
    60   // return address of next instruction to execute
    61   return npc;
    62 }
    64 class StubGenerator: public StubCodeGenerator {
    65  private:
    67 #ifdef PRODUCT
    68 #define inc_counter_np(counter) (0)
    69 #else
    70   void inc_counter_np_(int& counter) {
    71     __ incrementl(ExternalAddress((address)&counter));
    72   }
    73 #define inc_counter_np(counter) \
    74   BLOCK_COMMENT("inc_counter " #counter); \
    75   inc_counter_np_(counter);
    76 #endif //PRODUCT
    78   void inc_copy_counter_np(BasicType t) {
    79 #ifndef PRODUCT
    80     switch (t) {
    81     case T_BYTE:    inc_counter_np(SharedRuntime::_jbyte_array_copy_ctr); return;
    82     case T_SHORT:   inc_counter_np(SharedRuntime::_jshort_array_copy_ctr); return;
    83     case T_INT:     inc_counter_np(SharedRuntime::_jint_array_copy_ctr); return;
    84     case T_LONG:    inc_counter_np(SharedRuntime::_jlong_array_copy_ctr); return;
    85     case T_OBJECT:  inc_counter_np(SharedRuntime::_oop_array_copy_ctr); return;
    86     }
    87     ShouldNotReachHere();
    88 #endif //PRODUCT
    89   }
    91   //------------------------------------------------------------------------------------------------------------------------
    92   // Call stubs are used to call Java from C
    93   //
    94   //    [ return_from_Java     ] <--- rsp
    95   //    [ argument word n      ]
    96   //      ...
    97   // -N [ argument word 1      ]
    98   // -7 [ Possible padding for stack alignment ]
    99   // -6 [ Possible padding for stack alignment ]
   100   // -5 [ Possible padding for stack alignment ]
   101   // -4 [ mxcsr save           ] <--- rsp_after_call
   102   // -3 [ saved rbx,            ]
   103   // -2 [ saved rsi            ]
   104   // -1 [ saved rdi            ]
   105   //  0 [ saved rbp,            ] <--- rbp,
   106   //  1 [ return address       ]
   107   //  2 [ ptr. to call wrapper ]
   108   //  3 [ result               ]
   109   //  4 [ result_type          ]
   110   //  5 [ method               ]
   111   //  6 [ entry_point          ]
   112   //  7 [ parameters           ]
   113   //  8 [ parameter_size       ]
   114   //  9 [ thread               ]
   117   address generate_call_stub(address& return_address) {
   118     StubCodeMark mark(this, "StubRoutines", "call_stub");
   119     address start = __ pc();
   121     // stub code parameters / addresses
   122     assert(frame::entry_frame_call_wrapper_offset == 2, "adjust this code");
   123     bool  sse_save = false;
   124     const Address rsp_after_call(rbp, -4 * wordSize); // same as in generate_catch_exception()!
   125     const int     locals_count_in_bytes  (4*wordSize);
   126     const Address mxcsr_save    (rbp, -4 * wordSize);
   127     const Address saved_rbx     (rbp, -3 * wordSize);
   128     const Address saved_rsi     (rbp, -2 * wordSize);
   129     const Address saved_rdi     (rbp, -1 * wordSize);
   130     const Address result        (rbp,  3 * wordSize);
   131     const Address result_type   (rbp,  4 * wordSize);
   132     const Address method        (rbp,  5 * wordSize);
   133     const Address entry_point   (rbp,  6 * wordSize);
   134     const Address parameters    (rbp,  7 * wordSize);
   135     const Address parameter_size(rbp,  8 * wordSize);
   136     const Address thread        (rbp,  9 * wordSize); // same as in generate_catch_exception()!
   137     sse_save =  UseSSE > 0;
   139     // stub code
   140     __ enter();
   141     __ movptr(rcx, parameter_size);              // parameter counter
   142     __ shlptr(rcx, Interpreter::logStackElementSize); // convert parameter count to bytes
   143     __ addptr(rcx, locals_count_in_bytes);       // reserve space for register saves
   144     __ subptr(rsp, rcx);
   145     __ andptr(rsp, -(StackAlignmentInBytes));    // Align stack
   147     // save rdi, rsi, & rbx, according to C calling conventions
   148     __ movptr(saved_rdi, rdi);
   149     __ movptr(saved_rsi, rsi);
   150     __ movptr(saved_rbx, rbx);
   151     // save and initialize %mxcsr
   152     if (sse_save) {
   153       Label skip_ldmx;
   154       __ stmxcsr(mxcsr_save);
   155       __ movl(rax, mxcsr_save);
   156       __ andl(rax, MXCSR_MASK);    // Only check control and mask bits
   157       ExternalAddress mxcsr_std(StubRoutines::addr_mxcsr_std());
   158       __ cmp32(rax, mxcsr_std);
   159       __ jcc(Assembler::equal, skip_ldmx);
   160       __ ldmxcsr(mxcsr_std);
   161       __ bind(skip_ldmx);
   162     }
   164     // make sure the control word is correct.
   165     __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
   167 #ifdef ASSERT
   168     // make sure we have no pending exceptions
   169     { Label L;
   170       __ movptr(rcx, thread);
   171       __ cmpptr(Address(rcx, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
   172       __ jcc(Assembler::equal, L);
   173       __ stop("StubRoutines::call_stub: entered with pending exception");
   174       __ bind(L);
   175     }
   176 #endif
   178     // pass parameters if any
   179     BLOCK_COMMENT("pass parameters if any");
   180     Label parameters_done;
   181     __ movl(rcx, parameter_size);  // parameter counter
   182     __ testl(rcx, rcx);
   183     __ jcc(Assembler::zero, parameters_done);
   185     // parameter passing loop
   187     Label loop;
   188     // Copy Java parameters in reverse order (receiver last)
   189     // Note that the argument order is inverted in the process
   190     // source is rdx[rcx: N-1..0]
   191     // dest   is rsp[rbx: 0..N-1]
   193     __ movptr(rdx, parameters);          // parameter pointer
   194     __ xorptr(rbx, rbx);
   196     __ BIND(loop);
   198     // get parameter
   199     __ movptr(rax, Address(rdx, rcx, Interpreter::stackElementScale(), -wordSize));
   200     __ movptr(Address(rsp, rbx, Interpreter::stackElementScale(),
   201                     Interpreter::expr_offset_in_bytes(0)), rax);          // store parameter
   202     __ increment(rbx);
   203     __ decrement(rcx);
   204     __ jcc(Assembler::notZero, loop);
   206     // call Java function
   207     __ BIND(parameters_done);
   208     __ movptr(rbx, method);           // get methodOop
   209     __ movptr(rax, entry_point);      // get entry_point
   210     __ mov(rsi, rsp);                 // set sender sp
   211     BLOCK_COMMENT("call Java function");
   212     __ call(rax);
   214     BLOCK_COMMENT("call_stub_return_address:");
   215     return_address = __ pc();
   217     Label common_return;
   219     __ BIND(common_return);
   221     // store result depending on type
   222     // (everything that is not T_LONG, T_FLOAT or T_DOUBLE is treated as T_INT)
   223     __ movptr(rdi, result);
   224     Label is_long, is_float, is_double, exit;
   225     __ movl(rsi, result_type);
   226     __ cmpl(rsi, T_LONG);
   227     __ jcc(Assembler::equal, is_long);
   228     __ cmpl(rsi, T_FLOAT);
   229     __ jcc(Assembler::equal, is_float);
   230     __ cmpl(rsi, T_DOUBLE);
   231     __ jcc(Assembler::equal, is_double);
   233     // handle T_INT case
   234     __ movl(Address(rdi, 0), rax);
   235     __ BIND(exit);
   237     // check that FPU stack is empty
   238     __ verify_FPU(0, "generate_call_stub");
   240     // pop parameters
   241     __ lea(rsp, rsp_after_call);
   243     // restore %mxcsr
   244     if (sse_save) {
   245       __ ldmxcsr(mxcsr_save);
   246     }
   248     // restore rdi, rsi and rbx,
   249     __ movptr(rbx, saved_rbx);
   250     __ movptr(rsi, saved_rsi);
   251     __ movptr(rdi, saved_rdi);
   252     __ addptr(rsp, 4*wordSize);
   254     // return
   255     __ pop(rbp);
   256     __ ret(0);
   258     // handle return types different from T_INT
   259     __ BIND(is_long);
   260     __ movl(Address(rdi, 0 * wordSize), rax);
   261     __ movl(Address(rdi, 1 * wordSize), rdx);
   262     __ jmp(exit);
   264     __ BIND(is_float);
   265     // interpreter uses xmm0 for return values
   266     if (UseSSE >= 1) {
   267       __ movflt(Address(rdi, 0), xmm0);
   268     } else {
   269       __ fstp_s(Address(rdi, 0));
   270     }
   271     __ jmp(exit);
   273     __ BIND(is_double);
   274     // interpreter uses xmm0 for return values
   275     if (UseSSE >= 2) {
   276       __ movdbl(Address(rdi, 0), xmm0);
   277     } else {
   278       __ fstp_d(Address(rdi, 0));
   279     }
   280     __ jmp(exit);
   282     // If we call compiled code directly from the call stub we will
   283     // need to adjust the return back to the call stub to a specialized
   284     // piece of code that can handle compiled results and cleaning the fpu
   285     // stack. compiled code will be set to return here instead of the
   286     // return above that handles interpreter returns.
   288     BLOCK_COMMENT("call_stub_compiled_return:");
   289     StubRoutines::x86::set_call_stub_compiled_return( __ pc());
   291 #ifdef COMPILER2
   292     if (UseSSE >= 2) {
   293       __ verify_FPU(0, "call_stub_compiled_return");
   294     } else {
   295       for (int i = 1; i < 8; i++) {
   296         __ ffree(i);
   297       }
   299       // UseSSE <= 1 so double result should be left on TOS
   300       __ movl(rsi, result_type);
   301       __ cmpl(rsi, T_DOUBLE);
   302       __ jcc(Assembler::equal, common_return);
   303       if (UseSSE == 0) {
   304         // UseSSE == 0 so float result should be left on TOS
   305         __ cmpl(rsi, T_FLOAT);
   306         __ jcc(Assembler::equal, common_return);
   307       }
   308       __ ffree(0);
   309     }
   310 #endif /* COMPILER2 */
   311     __ jmp(common_return);
   313     return start;
   314   }
   317   //------------------------------------------------------------------------------------------------------------------------
   318   // Return point for a Java call if there's an exception thrown in Java code.
   319   // The exception is caught and transformed into a pending exception stored in
   320   // JavaThread that can be tested from within the VM.
   321   //
   322   // Note: Usually the parameters are removed by the callee. In case of an exception
   323   //       crossing an activation frame boundary, that is not the case if the callee
   324   //       is compiled code => need to setup the rsp.
   325   //
   326   // rax,: exception oop
   328   address generate_catch_exception() {
   329     StubCodeMark mark(this, "StubRoutines", "catch_exception");
   330     const Address rsp_after_call(rbp, -4 * wordSize); // same as in generate_call_stub()!
   331     const Address thread        (rbp,  9 * wordSize); // same as in generate_call_stub()!
   332     address start = __ pc();
   334     // get thread directly
   335     __ movptr(rcx, thread);
   336 #ifdef ASSERT
   337     // verify that threads correspond
   338     { Label L;
   339       __ get_thread(rbx);
   340       __ cmpptr(rbx, rcx);
   341       __ jcc(Assembler::equal, L);
   342       __ stop("StubRoutines::catch_exception: threads must correspond");
   343       __ bind(L);
   344     }
   345 #endif
   346     // set pending exception
   347     __ verify_oop(rax);
   348     __ movptr(Address(rcx, Thread::pending_exception_offset()), rax          );
   349     __ lea(Address(rcx, Thread::exception_file_offset   ()),
   350            ExternalAddress((address)__FILE__));
   351     __ movl(Address(rcx, Thread::exception_line_offset   ()), __LINE__ );
   352     // complete return to VM
   353     assert(StubRoutines::_call_stub_return_address != NULL, "_call_stub_return_address must have been generated before");
   354     __ jump(RuntimeAddress(StubRoutines::_call_stub_return_address));
   356     return start;
   357   }
   360   //------------------------------------------------------------------------------------------------------------------------
   361   // Continuation point for runtime calls returning with a pending exception.
   362   // The pending exception check happened in the runtime or native call stub.
   363   // The pending exception in Thread is converted into a Java-level exception.
   364   //
   365   // Contract with Java-level exception handlers:
   366   // rax: exception
   367   // rdx: throwing pc
   368   //
   369   // NOTE: At entry of this stub, exception-pc must be on stack !!
   371   address generate_forward_exception() {
   372     StubCodeMark mark(this, "StubRoutines", "forward exception");
   373     address start = __ pc();
   374     const Register thread = rcx;
   376     // other registers used in this stub
   377     const Register exception_oop = rax;
   378     const Register handler_addr  = rbx;
   379     const Register exception_pc  = rdx;
   381     // Upon entry, the sp points to the return address returning into Java
   382     // (interpreted or compiled) code; i.e., the return address becomes the
   383     // throwing pc.
   384     //
   385     // Arguments pushed before the runtime call are still on the stack but
   386     // the exception handler will reset the stack pointer -> ignore them.
   387     // A potential result in registers can be ignored as well.
   389 #ifdef ASSERT
   390     // make sure this code is only executed if there is a pending exception
   391     { Label L;
   392       __ get_thread(thread);
   393       __ cmpptr(Address(thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
   394       __ jcc(Assembler::notEqual, L);
   395       __ stop("StubRoutines::forward exception: no pending exception (1)");
   396       __ bind(L);
   397     }
   398 #endif
   400     // compute exception handler into rbx,
   401     __ get_thread(thread);
   402     __ movptr(exception_pc, Address(rsp, 0));
   403     BLOCK_COMMENT("call exception_handler_for_return_address");
   404     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address), thread, exception_pc);
   405     __ mov(handler_addr, rax);
   407     // setup rax & rdx, remove return address & clear pending exception
   408     __ get_thread(thread);
   409     __ pop(exception_pc);
   410     __ movptr(exception_oop, Address(thread, Thread::pending_exception_offset()));
   411     __ movptr(Address(thread, Thread::pending_exception_offset()), NULL_WORD);
   413 #ifdef ASSERT
   414     // make sure exception is set
   415     { Label L;
   416       __ testptr(exception_oop, exception_oop);
   417       __ jcc(Assembler::notEqual, L);
   418       __ stop("StubRoutines::forward exception: no pending exception (2)");
   419       __ bind(L);
   420     }
   421 #endif
   423     // Verify that there is really a valid exception in RAX.
   424     __ verify_oop(exception_oop);
   426     // Restore SP from BP if the exception PC is a MethodHandle call site.
   427     __ cmpl(Address(thread, JavaThread::is_method_handle_return_offset()), 0);
   428     __ cmovptr(Assembler::notEqual, rsp, rbp);
   430     // continue at exception handler (return address removed)
   431     // rax: exception
   432     // rbx: exception handler
   433     // rdx: throwing pc
   434     __ jmp(handler_addr);
   436     return start;
   437   }
   440   //----------------------------------------------------------------------------------------------------
   441   // Support for jint Atomic::xchg(jint exchange_value, volatile jint* dest)
   442   //
   443   // xchg exists as far back as 8086, lock needed for MP only
   444   // Stack layout immediately after call:
   445   //
   446   // 0 [ret addr ] <--- rsp
   447   // 1 [  ex     ]
   448   // 2 [  dest   ]
   449   //
   450   // Result:   *dest <- ex, return (old *dest)
   451   //
   452   // Note: win32 does not currently use this code
   454   address generate_atomic_xchg() {
   455     StubCodeMark mark(this, "StubRoutines", "atomic_xchg");
   456     address start = __ pc();
   458     __ push(rdx);
   459     Address exchange(rsp, 2 * wordSize);
   460     Address dest_addr(rsp, 3 * wordSize);
   461     __ movl(rax, exchange);
   462     __ movptr(rdx, dest_addr);
   463     __ xchgl(rax, Address(rdx, 0));
   464     __ pop(rdx);
   465     __ ret(0);
   467     return start;
   468   }
   470   //----------------------------------------------------------------------------------------------------
   471   // Support for void verify_mxcsr()
   472   //
   473   // This routine is used with -Xcheck:jni to verify that native
   474   // JNI code does not return to Java code without restoring the
   475   // MXCSR register to our expected state.
   478   address generate_verify_mxcsr() {
   479     StubCodeMark mark(this, "StubRoutines", "verify_mxcsr");
   480     address start = __ pc();
   482     const Address mxcsr_save(rsp, 0);
   484     if (CheckJNICalls && UseSSE > 0 ) {
   485       Label ok_ret;
   486       ExternalAddress mxcsr_std(StubRoutines::addr_mxcsr_std());
   487       __ push(rax);
   488       __ subptr(rsp, wordSize);      // allocate a temp location
   489       __ stmxcsr(mxcsr_save);
   490       __ movl(rax, mxcsr_save);
   491       __ andl(rax, MXCSR_MASK);
   492       __ cmp32(rax, mxcsr_std);
   493       __ jcc(Assembler::equal, ok_ret);
   495       __ warn("MXCSR changed by native JNI code.");
   497       __ ldmxcsr(mxcsr_std);
   499       __ bind(ok_ret);
   500       __ addptr(rsp, wordSize);
   501       __ pop(rax);
   502     }
   504     __ ret(0);
   506     return start;
   507   }
   510   //---------------------------------------------------------------------------
   511   // Support for void verify_fpu_cntrl_wrd()
   512   //
   513   // This routine is used with -Xcheck:jni to verify that native
   514   // JNI code does not return to Java code without restoring the
   515   // FP control word to our expected state.
   517   address generate_verify_fpu_cntrl_wrd() {
   518     StubCodeMark mark(this, "StubRoutines", "verify_spcw");
   519     address start = __ pc();
   521     const Address fpu_cntrl_wrd_save(rsp, 0);
   523     if (CheckJNICalls) {
   524       Label ok_ret;
   525       __ push(rax);
   526       __ subptr(rsp, wordSize);      // allocate a temp location
   527       __ fnstcw(fpu_cntrl_wrd_save);
   528       __ movl(rax, fpu_cntrl_wrd_save);
   529       __ andl(rax, FPU_CNTRL_WRD_MASK);
   530       ExternalAddress fpu_std(StubRoutines::addr_fpu_cntrl_wrd_std());
   531       __ cmp32(rax, fpu_std);
   532       __ jcc(Assembler::equal, ok_ret);
   534       __ warn("Floating point control word changed by native JNI code.");
   536       __ fldcw(fpu_std);
   538       __ bind(ok_ret);
   539       __ addptr(rsp, wordSize);
   540       __ pop(rax);
   541     }
   543     __ ret(0);
   545     return start;
   546   }
   548   //---------------------------------------------------------------------------
   549   // Wrapper for slow-case handling of double-to-integer conversion
   550   // d2i or f2i fast case failed either because it is nan or because
   551   // of under/overflow.
   552   // Input:  FPU TOS: float value
   553   // Output: rax, (rdx): integer (long) result
   555   address generate_d2i_wrapper(BasicType t, address fcn) {
   556     StubCodeMark mark(this, "StubRoutines", "d2i_wrapper");
   557     address start = __ pc();
   559   // Capture info about frame layout
   560   enum layout { FPUState_off         = 0,
   561                 rbp_off              = FPUStateSizeInWords,
   562                 rdi_off,
   563                 rsi_off,
   564                 rcx_off,
   565                 rbx_off,
   566                 saved_argument_off,
   567                 saved_argument_off2, // 2nd half of double
   568                 framesize
   569   };
   571   assert(FPUStateSizeInWords == 27, "update stack layout");
   573     // Save outgoing argument to stack across push_FPU_state()
   574     __ subptr(rsp, wordSize * 2);
   575     __ fstp_d(Address(rsp, 0));
   577     // Save CPU & FPU state
   578     __ push(rbx);
   579     __ push(rcx);
   580     __ push(rsi);
   581     __ push(rdi);
   582     __ push(rbp);
   583     __ push_FPU_state();
   585     // push_FPU_state() resets the FP top of stack
   586     // Load original double into FP top of stack
   587     __ fld_d(Address(rsp, saved_argument_off * wordSize));
   588     // Store double into stack as outgoing argument
   589     __ subptr(rsp, wordSize*2);
   590     __ fst_d(Address(rsp, 0));
   592     // Prepare FPU for doing math in C-land
   593     __ empty_FPU_stack();
   594     // Call the C code to massage the double.  Result in EAX
   595     if (t == T_INT)
   596       { BLOCK_COMMENT("SharedRuntime::d2i"); }
   597     else if (t == T_LONG)
   598       { BLOCK_COMMENT("SharedRuntime::d2l"); }
   599     __ call_VM_leaf( fcn, 2 );
   601     // Restore CPU & FPU state
   602     __ pop_FPU_state();
   603     __ pop(rbp);
   604     __ pop(rdi);
   605     __ pop(rsi);
   606     __ pop(rcx);
   607     __ pop(rbx);
   608     __ addptr(rsp, wordSize * 2);
   610     __ ret(0);
   612     return start;
   613   }
   616   //---------------------------------------------------------------------------
   617   // The following routine generates a subroutine to throw an asynchronous
   618   // UnknownError when an unsafe access gets a fault that could not be
   619   // reasonably prevented by the programmer.  (Example: SIGBUS/OBJERR.)
   620   address generate_handler_for_unsafe_access() {
   621     StubCodeMark mark(this, "StubRoutines", "handler_for_unsafe_access");
   622     address start = __ pc();
   624     __ push(0);                       // hole for return address-to-be
   625     __ pusha();                       // push registers
   626     Address next_pc(rsp, RegisterImpl::number_of_registers * BytesPerWord);
   627     BLOCK_COMMENT("call handle_unsafe_access");
   628     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, handle_unsafe_access)));
   629     __ movptr(next_pc, rax);          // stuff next address
   630     __ popa();
   631     __ ret(0);                        // jump to next address
   633     return start;
   634   }
   637   //----------------------------------------------------------------------------------------------------
   638   // Non-destructive plausibility checks for oops
   640   address generate_verify_oop() {
   641     StubCodeMark mark(this, "StubRoutines", "verify_oop");
   642     address start = __ pc();
   644     // Incoming arguments on stack after saving rax,:
   645     //
   646     // [tos    ]: saved rdx
   647     // [tos + 1]: saved EFLAGS
   648     // [tos + 2]: return address
   649     // [tos + 3]: char* error message
   650     // [tos + 4]: oop   object to verify
   651     // [tos + 5]: saved rax, - saved by caller and bashed
   653     Label exit, error;
   654     __ pushf();
   655     __ incrementl(ExternalAddress((address) StubRoutines::verify_oop_count_addr()));
   656     __ push(rdx);                                // save rdx
   657     // make sure object is 'reasonable'
   658     __ movptr(rax, Address(rsp, 4 * wordSize));    // get object
   659     __ testptr(rax, rax);
   660     __ jcc(Assembler::zero, exit);               // if obj is NULL it is ok
   662     // Check if the oop is in the right area of memory
   663     const int oop_mask = Universe::verify_oop_mask();
   664     const int oop_bits = Universe::verify_oop_bits();
   665     __ mov(rdx, rax);
   666     __ andptr(rdx, oop_mask);
   667     __ cmpptr(rdx, oop_bits);
   668     __ jcc(Assembler::notZero, error);
   670     // make sure klass is 'reasonable'
   671     __ movptr(rax, Address(rax, oopDesc::klass_offset_in_bytes())); // get klass
   672     __ testptr(rax, rax);
   673     __ jcc(Assembler::zero, error);              // if klass is NULL it is broken
   675     // Check if the klass is in the right area of memory
   676     const int klass_mask = Universe::verify_klass_mask();
   677     const int klass_bits = Universe::verify_klass_bits();
   678     __ mov(rdx, rax);
   679     __ andptr(rdx, klass_mask);
   680     __ cmpptr(rdx, klass_bits);
   681     __ jcc(Assembler::notZero, error);
   683     // make sure klass' klass is 'reasonable'
   684     __ movptr(rax, Address(rax, oopDesc::klass_offset_in_bytes())); // get klass' klass
   685     __ testptr(rax, rax);
   686     __ jcc(Assembler::zero, error);              // if klass' klass is NULL it is broken
   688     __ mov(rdx, rax);
   689     __ andptr(rdx, klass_mask);
   690     __ cmpptr(rdx, klass_bits);
   691     __ jcc(Assembler::notZero, error);           // if klass not in right area
   692                                                  // of memory it is broken too.
   694     // return if everything seems ok
   695     __ bind(exit);
   696     __ movptr(rax, Address(rsp, 5 * wordSize));  // get saved rax, back
   697     __ pop(rdx);                                 // restore rdx
   698     __ popf();                                   // restore EFLAGS
   699     __ ret(3 * wordSize);                        // pop arguments
   701     // handle errors
   702     __ bind(error);
   703     __ movptr(rax, Address(rsp, 5 * wordSize));  // get saved rax, back
   704     __ pop(rdx);                                 // get saved rdx back
   705     __ popf();                                   // get saved EFLAGS off stack -- will be ignored
   706     __ pusha();                                  // push registers (eip = return address & msg are already pushed)
   707     BLOCK_COMMENT("call MacroAssembler::debug");
   708     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug32)));
   709     __ popa();
   710     __ ret(3 * wordSize);                        // pop arguments
   711     return start;
   712   }
   714   //
   715   //  Generate pre-barrier for array stores
   716   //
   717   //  Input:
   718   //     start   -  starting address
   719   //     count   -  element count
   720   void  gen_write_ref_array_pre_barrier(Register start, Register count) {
   721     assert_different_registers(start, count);
   722     BarrierSet* bs = Universe::heap()->barrier_set();
   723     switch (bs->kind()) {
   724       case BarrierSet::G1SATBCT:
   725       case BarrierSet::G1SATBCTLogging:
   726         {
   727           __ pusha();                      // push registers
   728           __ call_VM_leaf(CAST_FROM_FN_PTR(address, BarrierSet::static_write_ref_array_pre),
   729                           start, count);
   730           __ popa();
   731         }
   732         break;
   733       case BarrierSet::CardTableModRef:
   734       case BarrierSet::CardTableExtension:
   735       case BarrierSet::ModRef:
   736         break;
   737       default      :
   738         ShouldNotReachHere();
   740     }
   741   }
   744   //
   745   // Generate a post-barrier for an array store
   746   //
   747   //     start    -  starting address
   748   //     count    -  element count
   749   //
   750   //  The two input registers are overwritten.
   751   //
   752   void  gen_write_ref_array_post_barrier(Register start, Register count) {
   753     BarrierSet* bs = Universe::heap()->barrier_set();
   754     assert_different_registers(start, count);
   755     switch (bs->kind()) {
   756       case BarrierSet::G1SATBCT:
   757       case BarrierSet::G1SATBCTLogging:
   758         {
   759           __ pusha();                      // push registers
   760           __ call_VM_leaf(CAST_FROM_FN_PTR(address, BarrierSet::static_write_ref_array_post),
   761                           start, count);
   762           __ popa();
   763         }
   764         break;
   766       case BarrierSet::CardTableModRef:
   767       case BarrierSet::CardTableExtension:
   768         {
   769           CardTableModRefBS* ct = (CardTableModRefBS*)bs;
   770           assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
   772           Label L_loop;
   773           const Register end = count;  // elements count; end == start+count-1
   774           assert_different_registers(start, end);
   776           __ lea(end,  Address(start, count, Address::times_ptr, -wordSize));
   777           __ shrptr(start, CardTableModRefBS::card_shift);
   778           __ shrptr(end,   CardTableModRefBS::card_shift);
   779           __ subptr(end, start); // end --> count
   780         __ BIND(L_loop);
   781           intptr_t disp = (intptr_t) ct->byte_map_base;
   782           Address cardtable(start, count, Address::times_1, disp);
   783           __ movb(cardtable, 0);
   784           __ decrement(count);
   785           __ jcc(Assembler::greaterEqual, L_loop);
   786         }
   787         break;
   788       case BarrierSet::ModRef:
   789         break;
   790       default      :
   791         ShouldNotReachHere();
   793     }
   794   }
   797   // Copy 64 bytes chunks
   798   //
   799   // Inputs:
   800   //   from        - source array address
   801   //   to_from     - destination array address - from
   802   //   qword_count - 8-bytes element count, negative
   803   //
   804   void xmm_copy_forward(Register from, Register to_from, Register qword_count) {
   805     assert( UseSSE >= 2, "supported cpu only" );
   806     Label L_copy_64_bytes_loop, L_copy_64_bytes, L_copy_8_bytes, L_exit;
   807     // Copy 64-byte chunks
   808     __ jmpb(L_copy_64_bytes);
   809     __ align(OptoLoopAlignment);
   810   __ BIND(L_copy_64_bytes_loop);
   812     if(UseUnalignedLoadStores) {
   813       __ movdqu(xmm0, Address(from, 0));
   814       __ movdqu(Address(from, to_from, Address::times_1, 0), xmm0);
   815       __ movdqu(xmm1, Address(from, 16));
   816       __ movdqu(Address(from, to_from, Address::times_1, 16), xmm1);
   817       __ movdqu(xmm2, Address(from, 32));
   818       __ movdqu(Address(from, to_from, Address::times_1, 32), xmm2);
   819       __ movdqu(xmm3, Address(from, 48));
   820       __ movdqu(Address(from, to_from, Address::times_1, 48), xmm3);
   822     } else {
   823       __ movq(xmm0, Address(from, 0));
   824       __ movq(Address(from, to_from, Address::times_1, 0), xmm0);
   825       __ movq(xmm1, Address(from, 8));
   826       __ movq(Address(from, to_from, Address::times_1, 8), xmm1);
   827       __ movq(xmm2, Address(from, 16));
   828       __ movq(Address(from, to_from, Address::times_1, 16), xmm2);
   829       __ movq(xmm3, Address(from, 24));
   830       __ movq(Address(from, to_from, Address::times_1, 24), xmm3);
   831       __ movq(xmm4, Address(from, 32));
   832       __ movq(Address(from, to_from, Address::times_1, 32), xmm4);
   833       __ movq(xmm5, Address(from, 40));
   834       __ movq(Address(from, to_from, Address::times_1, 40), xmm5);
   835       __ movq(xmm6, Address(from, 48));
   836       __ movq(Address(from, to_from, Address::times_1, 48), xmm6);
   837       __ movq(xmm7, Address(from, 56));
   838       __ movq(Address(from, to_from, Address::times_1, 56), xmm7);
   839     }
   841     __ addl(from, 64);
   842   __ BIND(L_copy_64_bytes);
   843     __ subl(qword_count, 8);
   844     __ jcc(Assembler::greaterEqual, L_copy_64_bytes_loop);
   845     __ addl(qword_count, 8);
   846     __ jccb(Assembler::zero, L_exit);
   847     //
   848     // length is too short, just copy qwords
   849     //
   850   __ BIND(L_copy_8_bytes);
   851     __ movq(xmm0, Address(from, 0));
   852     __ movq(Address(from, to_from, Address::times_1), xmm0);
   853     __ addl(from, 8);
   854     __ decrement(qword_count);
   855     __ jcc(Assembler::greater, L_copy_8_bytes);
   856   __ BIND(L_exit);
   857   }
   859   // Copy 64 bytes chunks
   860   //
   861   // Inputs:
   862   //   from        - source array address
   863   //   to_from     - destination array address - from
   864   //   qword_count - 8-bytes element count, negative
   865   //
   866   void mmx_copy_forward(Register from, Register to_from, Register qword_count) {
   867     assert( VM_Version::supports_mmx(), "supported cpu only" );
   868     Label L_copy_64_bytes_loop, L_copy_64_bytes, L_copy_8_bytes, L_exit;
   869     // Copy 64-byte chunks
   870     __ jmpb(L_copy_64_bytes);
   871     __ align(OptoLoopAlignment);
   872   __ BIND(L_copy_64_bytes_loop);
   873     __ movq(mmx0, Address(from, 0));
   874     __ movq(mmx1, Address(from, 8));
   875     __ movq(mmx2, Address(from, 16));
   876     __ movq(Address(from, to_from, Address::times_1, 0), mmx0);
   877     __ movq(mmx3, Address(from, 24));
   878     __ movq(Address(from, to_from, Address::times_1, 8), mmx1);
   879     __ movq(mmx4, Address(from, 32));
   880     __ movq(Address(from, to_from, Address::times_1, 16), mmx2);
   881     __ movq(mmx5, Address(from, 40));
   882     __ movq(Address(from, to_from, Address::times_1, 24), mmx3);
   883     __ movq(mmx6, Address(from, 48));
   884     __ movq(Address(from, to_from, Address::times_1, 32), mmx4);
   885     __ movq(mmx7, Address(from, 56));
   886     __ movq(Address(from, to_from, Address::times_1, 40), mmx5);
   887     __ movq(Address(from, to_from, Address::times_1, 48), mmx6);
   888     __ movq(Address(from, to_from, Address::times_1, 56), mmx7);
   889     __ addptr(from, 64);
   890   __ BIND(L_copy_64_bytes);
   891     __ subl(qword_count, 8);
   892     __ jcc(Assembler::greaterEqual, L_copy_64_bytes_loop);
   893     __ addl(qword_count, 8);
   894     __ jccb(Assembler::zero, L_exit);
   895     //
   896     // length is too short, just copy qwords
   897     //
   898   __ BIND(L_copy_8_bytes);
   899     __ movq(mmx0, Address(from, 0));
   900     __ movq(Address(from, to_from, Address::times_1), mmx0);
   901     __ addptr(from, 8);
   902     __ decrement(qword_count);
   903     __ jcc(Assembler::greater, L_copy_8_bytes);
   904   __ BIND(L_exit);
   905     __ emms();
   906   }
   908   address generate_disjoint_copy(BasicType t, bool aligned,
   909                                  Address::ScaleFactor sf,
   910                                  address* entry, const char *name) {
   911     __ align(CodeEntryAlignment);
   912     StubCodeMark mark(this, "StubRoutines", name);
   913     address start = __ pc();
   915     Label L_0_count, L_exit, L_skip_align1, L_skip_align2, L_copy_byte;
   916     Label L_copy_2_bytes, L_copy_4_bytes, L_copy_64_bytes;
   918     int shift = Address::times_ptr - sf;
   920     const Register from     = rsi;  // source array address
   921     const Register to       = rdi;  // destination array address
   922     const Register count    = rcx;  // elements count
   923     const Register to_from  = to;   // (to - from)
   924     const Register saved_to = rdx;  // saved destination array address
   926     __ enter(); // required for proper stackwalking of RuntimeStub frame
   927     __ push(rsi);
   928     __ push(rdi);
   929     __ movptr(from , Address(rsp, 12+ 4));
   930     __ movptr(to   , Address(rsp, 12+ 8));
   931     __ movl(count, Address(rsp, 12+ 12));
   932     if (t == T_OBJECT) {
   933       __ testl(count, count);
   934       __ jcc(Assembler::zero, L_0_count);
   935       gen_write_ref_array_pre_barrier(to, count);
   936       __ mov(saved_to, to);          // save 'to'
   937     }
   939     *entry = __ pc(); // Entry point from conjoint arraycopy stub.
   940     BLOCK_COMMENT("Entry:");
   942     __ subptr(to, from); // to --> to_from
   943     __ cmpl(count, 2<<shift); // Short arrays (< 8 bytes) copy by element
   944     __ jcc(Assembler::below, L_copy_4_bytes); // use unsigned cmp
   945     if (!UseUnalignedLoadStores && !aligned && (t == T_BYTE || t == T_SHORT)) {
   946       // align source address at 4 bytes address boundary
   947       if (t == T_BYTE) {
   948         // One byte misalignment happens only for byte arrays
   949         __ testl(from, 1);
   950         __ jccb(Assembler::zero, L_skip_align1);
   951         __ movb(rax, Address(from, 0));
   952         __ movb(Address(from, to_from, Address::times_1, 0), rax);
   953         __ increment(from);
   954         __ decrement(count);
   955       __ BIND(L_skip_align1);
   956       }
   957       // Two bytes misalignment happens only for byte and short (char) arrays
   958       __ testl(from, 2);
   959       __ jccb(Assembler::zero, L_skip_align2);
   960       __ movw(rax, Address(from, 0));
   961       __ movw(Address(from, to_from, Address::times_1, 0), rax);
   962       __ addptr(from, 2);
   963       __ subl(count, 1<<(shift-1));
   964     __ BIND(L_skip_align2);
   965     }
   966     if (!VM_Version::supports_mmx()) {
   967       __ mov(rax, count);      // save 'count'
   968       __ shrl(count, shift); // bytes count
   969       __ addptr(to_from, from);// restore 'to'
   970       __ rep_mov();
   971       __ subptr(to_from, from);// restore 'to_from'
   972       __ mov(count, rax);      // restore 'count'
   973       __ jmpb(L_copy_2_bytes); // all dwords were copied
   974     } else {
   975       if (!UseUnalignedLoadStores) {
   976         // align to 8 bytes, we know we are 4 byte aligned to start
   977         __ testptr(from, 4);
   978         __ jccb(Assembler::zero, L_copy_64_bytes);
   979         __ movl(rax, Address(from, 0));
   980         __ movl(Address(from, to_from, Address::times_1, 0), rax);
   981         __ addptr(from, 4);
   982         __ subl(count, 1<<shift);
   983       }
   984     __ BIND(L_copy_64_bytes);
   985       __ mov(rax, count);
   986       __ shrl(rax, shift+1);  // 8 bytes chunk count
   987       //
   988       // Copy 8-byte chunks through MMX registers, 8 per iteration of the loop
   989       //
   990       if (UseXMMForArrayCopy) {
   991         xmm_copy_forward(from, to_from, rax);
   992       } else {
   993         mmx_copy_forward(from, to_from, rax);
   994       }
   995     }
   996     // copy tailing dword
   997   __ BIND(L_copy_4_bytes);
   998     __ testl(count, 1<<shift);
   999     __ jccb(Assembler::zero, L_copy_2_bytes);
  1000     __ movl(rax, Address(from, 0));
  1001     __ movl(Address(from, to_from, Address::times_1, 0), rax);
  1002     if (t == T_BYTE || t == T_SHORT) {
  1003       __ addptr(from, 4);
  1004     __ BIND(L_copy_2_bytes);
  1005       // copy tailing word
  1006       __ testl(count, 1<<(shift-1));
  1007       __ jccb(Assembler::zero, L_copy_byte);
  1008       __ movw(rax, Address(from, 0));
  1009       __ movw(Address(from, to_from, Address::times_1, 0), rax);
  1010       if (t == T_BYTE) {
  1011         __ addptr(from, 2);
  1012       __ BIND(L_copy_byte);
  1013         // copy tailing byte
  1014         __ testl(count, 1);
  1015         __ jccb(Assembler::zero, L_exit);
  1016         __ movb(rax, Address(from, 0));
  1017         __ movb(Address(from, to_from, Address::times_1, 0), rax);
  1018       __ BIND(L_exit);
  1019       } else {
  1020       __ BIND(L_copy_byte);
  1022     } else {
  1023     __ BIND(L_copy_2_bytes);
  1026     if (t == T_OBJECT) {
  1027       __ movl(count, Address(rsp, 12+12)); // reread 'count'
  1028       __ mov(to, saved_to); // restore 'to'
  1029       gen_write_ref_array_post_barrier(to, count);
  1030     __ BIND(L_0_count);
  1032     inc_copy_counter_np(t);
  1033     __ pop(rdi);
  1034     __ pop(rsi);
  1035     __ leave(); // required for proper stackwalking of RuntimeStub frame
  1036     __ xorptr(rax, rax); // return 0
  1037     __ ret(0);
  1038     return start;
  1042   address generate_conjoint_copy(BasicType t, bool aligned,
  1043                                  Address::ScaleFactor sf,
  1044                                  address nooverlap_target,
  1045                                  address* entry, const char *name) {
  1046     __ align(CodeEntryAlignment);
  1047     StubCodeMark mark(this, "StubRoutines", name);
  1048     address start = __ pc();
  1050     Label L_0_count, L_exit, L_skip_align1, L_skip_align2, L_copy_byte;
  1051     Label L_copy_2_bytes, L_copy_4_bytes, L_copy_8_bytes, L_copy_8_bytes_loop;
  1053     int shift = Address::times_ptr - sf;
  1055     const Register src   = rax;  // source array address
  1056     const Register dst   = rdx;  // destination array address
  1057     const Register from  = rsi;  // source array address
  1058     const Register to    = rdi;  // destination array address
  1059     const Register count = rcx;  // elements count
  1060     const Register end   = rax;  // array end address
  1062     __ enter(); // required for proper stackwalking of RuntimeStub frame
  1063     __ push(rsi);
  1064     __ push(rdi);
  1065     __ movptr(src  , Address(rsp, 12+ 4));   // from
  1066     __ movptr(dst  , Address(rsp, 12+ 8));   // to
  1067     __ movl2ptr(count, Address(rsp, 12+12)); // count
  1068     if (t == T_OBJECT) {
  1069        gen_write_ref_array_pre_barrier(dst, count);
  1072     if (entry != NULL) {
  1073       *entry = __ pc(); // Entry point from generic arraycopy stub.
  1074       BLOCK_COMMENT("Entry:");
  1077     if (t == T_OBJECT) {
  1078       __ testl(count, count);
  1079       __ jcc(Assembler::zero, L_0_count);
  1081     __ mov(from, src);
  1082     __ mov(to  , dst);
  1084     // arrays overlap test
  1085     RuntimeAddress nooverlap(nooverlap_target);
  1086     __ cmpptr(dst, src);
  1087     __ lea(end, Address(src, count, sf, 0)); // src + count * elem_size
  1088     __ jump_cc(Assembler::belowEqual, nooverlap);
  1089     __ cmpptr(dst, end);
  1090     __ jump_cc(Assembler::aboveEqual, nooverlap);
  1092     // copy from high to low
  1093     __ cmpl(count, 2<<shift); // Short arrays (< 8 bytes) copy by element
  1094     __ jcc(Assembler::below, L_copy_4_bytes); // use unsigned cmp
  1095     if (t == T_BYTE || t == T_SHORT) {
  1096       // Align the end of destination array at 4 bytes address boundary
  1097       __ lea(end, Address(dst, count, sf, 0));
  1098       if (t == T_BYTE) {
  1099         // One byte misalignment happens only for byte arrays
  1100         __ testl(end, 1);
  1101         __ jccb(Assembler::zero, L_skip_align1);
  1102         __ decrement(count);
  1103         __ movb(rdx, Address(from, count, sf, 0));
  1104         __ movb(Address(to, count, sf, 0), rdx);
  1105       __ BIND(L_skip_align1);
  1107       // Two bytes misalignment happens only for byte and short (char) arrays
  1108       __ testl(end, 2);
  1109       __ jccb(Assembler::zero, L_skip_align2);
  1110       __ subptr(count, 1<<(shift-1));
  1111       __ movw(rdx, Address(from, count, sf, 0));
  1112       __ movw(Address(to, count, sf, 0), rdx);
  1113     __ BIND(L_skip_align2);
  1114       __ cmpl(count, 2<<shift); // Short arrays (< 8 bytes) copy by element
  1115       __ jcc(Assembler::below, L_copy_4_bytes);
  1118     if (!VM_Version::supports_mmx()) {
  1119       __ std();
  1120       __ mov(rax, count); // Save 'count'
  1121       __ mov(rdx, to);    // Save 'to'
  1122       __ lea(rsi, Address(from, count, sf, -4));
  1123       __ lea(rdi, Address(to  , count, sf, -4));
  1124       __ shrptr(count, shift); // bytes count
  1125       __ rep_mov();
  1126       __ cld();
  1127       __ mov(count, rax); // restore 'count'
  1128       __ andl(count, (1<<shift)-1);      // mask the number of rest elements
  1129       __ movptr(from, Address(rsp, 12+4)); // reread 'from'
  1130       __ mov(to, rdx);   // restore 'to'
  1131       __ jmpb(L_copy_2_bytes); // all dword were copied
  1132    } else {
  1133       // Align to 8 bytes the end of array. It is aligned to 4 bytes already.
  1134       __ testptr(end, 4);
  1135       __ jccb(Assembler::zero, L_copy_8_bytes);
  1136       __ subl(count, 1<<shift);
  1137       __ movl(rdx, Address(from, count, sf, 0));
  1138       __ movl(Address(to, count, sf, 0), rdx);
  1139       __ jmpb(L_copy_8_bytes);
  1141       __ align(OptoLoopAlignment);
  1142       // Move 8 bytes
  1143     __ BIND(L_copy_8_bytes_loop);
  1144       if (UseXMMForArrayCopy) {
  1145         __ movq(xmm0, Address(from, count, sf, 0));
  1146         __ movq(Address(to, count, sf, 0), xmm0);
  1147       } else {
  1148         __ movq(mmx0, Address(from, count, sf, 0));
  1149         __ movq(Address(to, count, sf, 0), mmx0);
  1151     __ BIND(L_copy_8_bytes);
  1152       __ subl(count, 2<<shift);
  1153       __ jcc(Assembler::greaterEqual, L_copy_8_bytes_loop);
  1154       __ addl(count, 2<<shift);
  1155       if (!UseXMMForArrayCopy) {
  1156         __ emms();
  1159   __ BIND(L_copy_4_bytes);
  1160     // copy prefix qword
  1161     __ testl(count, 1<<shift);
  1162     __ jccb(Assembler::zero, L_copy_2_bytes);
  1163     __ movl(rdx, Address(from, count, sf, -4));
  1164     __ movl(Address(to, count, sf, -4), rdx);
  1166     if (t == T_BYTE || t == T_SHORT) {
  1167         __ subl(count, (1<<shift));
  1168       __ BIND(L_copy_2_bytes);
  1169         // copy prefix dword
  1170         __ testl(count, 1<<(shift-1));
  1171         __ jccb(Assembler::zero, L_copy_byte);
  1172         __ movw(rdx, Address(from, count, sf, -2));
  1173         __ movw(Address(to, count, sf, -2), rdx);
  1174         if (t == T_BYTE) {
  1175           __ subl(count, 1<<(shift-1));
  1176         __ BIND(L_copy_byte);
  1177           // copy prefix byte
  1178           __ testl(count, 1);
  1179           __ jccb(Assembler::zero, L_exit);
  1180           __ movb(rdx, Address(from, 0));
  1181           __ movb(Address(to, 0), rdx);
  1182         __ BIND(L_exit);
  1183         } else {
  1184         __ BIND(L_copy_byte);
  1186     } else {
  1187     __ BIND(L_copy_2_bytes);
  1189     if (t == T_OBJECT) {
  1190       __ movl2ptr(count, Address(rsp, 12+12)); // reread count
  1191       gen_write_ref_array_post_barrier(to, count);
  1192     __ BIND(L_0_count);
  1194     inc_copy_counter_np(t);
  1195     __ pop(rdi);
  1196     __ pop(rsi);
  1197     __ leave(); // required for proper stackwalking of RuntimeStub frame
  1198     __ xorptr(rax, rax); // return 0
  1199     __ ret(0);
  1200     return start;
  1204   address generate_disjoint_long_copy(address* entry, const char *name) {
  1205     __ align(CodeEntryAlignment);
  1206     StubCodeMark mark(this, "StubRoutines", name);
  1207     address start = __ pc();
  1209     Label L_copy_8_bytes, L_copy_8_bytes_loop;
  1210     const Register from       = rax;  // source array address
  1211     const Register to         = rdx;  // destination array address
  1212     const Register count      = rcx;  // elements count
  1213     const Register to_from    = rdx;  // (to - from)
  1215     __ enter(); // required for proper stackwalking of RuntimeStub frame
  1216     __ movptr(from , Address(rsp, 8+0));       // from
  1217     __ movptr(to   , Address(rsp, 8+4));       // to
  1218     __ movl2ptr(count, Address(rsp, 8+8));     // count
  1220     *entry = __ pc(); // Entry point from conjoint arraycopy stub.
  1221     BLOCK_COMMENT("Entry:");
  1223     __ subptr(to, from); // to --> to_from
  1224     if (VM_Version::supports_mmx()) {
  1225       if (UseXMMForArrayCopy) {
  1226         xmm_copy_forward(from, to_from, count);
  1227       } else {
  1228         mmx_copy_forward(from, to_from, count);
  1230     } else {
  1231       __ jmpb(L_copy_8_bytes);
  1232       __ align(OptoLoopAlignment);
  1233     __ BIND(L_copy_8_bytes_loop);
  1234       __ fild_d(Address(from, 0));
  1235       __ fistp_d(Address(from, to_from, Address::times_1));
  1236       __ addptr(from, 8);
  1237     __ BIND(L_copy_8_bytes);
  1238       __ decrement(count);
  1239       __ jcc(Assembler::greaterEqual, L_copy_8_bytes_loop);
  1241     inc_copy_counter_np(T_LONG);
  1242     __ leave(); // required for proper stackwalking of RuntimeStub frame
  1243     __ xorptr(rax, rax); // return 0
  1244     __ ret(0);
  1245     return start;
  1248   address generate_conjoint_long_copy(address nooverlap_target,
  1249                                       address* entry, const char *name) {
  1250     __ align(CodeEntryAlignment);
  1251     StubCodeMark mark(this, "StubRoutines", name);
  1252     address start = __ pc();
  1254     Label L_copy_8_bytes, L_copy_8_bytes_loop;
  1255     const Register from       = rax;  // source array address
  1256     const Register to         = rdx;  // destination array address
  1257     const Register count      = rcx;  // elements count
  1258     const Register end_from   = rax;  // source array end address
  1260     __ enter(); // required for proper stackwalking of RuntimeStub frame
  1261     __ movptr(from , Address(rsp, 8+0));       // from
  1262     __ movptr(to   , Address(rsp, 8+4));       // to
  1263     __ movl2ptr(count, Address(rsp, 8+8));     // count
  1265     *entry = __ pc(); // Entry point from generic arraycopy stub.
  1266     BLOCK_COMMENT("Entry:");
  1268     // arrays overlap test
  1269     __ cmpptr(to, from);
  1270     RuntimeAddress nooverlap(nooverlap_target);
  1271     __ jump_cc(Assembler::belowEqual, nooverlap);
  1272     __ lea(end_from, Address(from, count, Address::times_8, 0));
  1273     __ cmpptr(to, end_from);
  1274     __ movptr(from, Address(rsp, 8));  // from
  1275     __ jump_cc(Assembler::aboveEqual, nooverlap);
  1277     __ jmpb(L_copy_8_bytes);
  1279     __ align(OptoLoopAlignment);
  1280   __ BIND(L_copy_8_bytes_loop);
  1281     if (VM_Version::supports_mmx()) {
  1282       if (UseXMMForArrayCopy) {
  1283         __ movq(xmm0, Address(from, count, Address::times_8));
  1284         __ movq(Address(to, count, Address::times_8), xmm0);
  1285       } else {
  1286         __ movq(mmx0, Address(from, count, Address::times_8));
  1287         __ movq(Address(to, count, Address::times_8), mmx0);
  1289     } else {
  1290       __ fild_d(Address(from, count, Address::times_8));
  1291       __ fistp_d(Address(to, count, Address::times_8));
  1293   __ BIND(L_copy_8_bytes);
  1294     __ decrement(count);
  1295     __ jcc(Assembler::greaterEqual, L_copy_8_bytes_loop);
  1297     if (VM_Version::supports_mmx() && !UseXMMForArrayCopy) {
  1298       __ emms();
  1300     inc_copy_counter_np(T_LONG);
  1301     __ leave(); // required for proper stackwalking of RuntimeStub frame
  1302     __ xorptr(rax, rax); // return 0
  1303     __ ret(0);
  1304     return start;
  1308   // Helper for generating a dynamic type check.
  1309   // The sub_klass must be one of {rbx, rdx, rsi}.
  1310   // The temp is killed.
  1311   void generate_type_check(Register sub_klass,
  1312                            Address& super_check_offset_addr,
  1313                            Address& super_klass_addr,
  1314                            Register temp,
  1315                            Label* L_success, Label* L_failure) {
  1316     BLOCK_COMMENT("type_check:");
  1318     Label L_fallthrough;
  1319 #define LOCAL_JCC(assembler_con, label_ptr)                             \
  1320     if (label_ptr != NULL)  __ jcc(assembler_con, *(label_ptr));        \
  1321     else                    __ jcc(assembler_con, L_fallthrough) /*omit semi*/
  1323     // The following is a strange variation of the fast path which requires
  1324     // one less register, because needed values are on the argument stack.
  1325     // __ check_klass_subtype_fast_path(sub_klass, *super_klass*, temp,
  1326     //                                  L_success, L_failure, NULL);
  1327     assert_different_registers(sub_klass, temp);
  1329     int sc_offset = (klassOopDesc::header_size() * HeapWordSize +
  1330                      Klass::secondary_super_cache_offset_in_bytes());
  1332     // if the pointers are equal, we are done (e.g., String[] elements)
  1333     __ cmpptr(sub_klass, super_klass_addr);
  1334     LOCAL_JCC(Assembler::equal, L_success);
  1336     // check the supertype display:
  1337     __ movl2ptr(temp, super_check_offset_addr);
  1338     Address super_check_addr(sub_klass, temp, Address::times_1, 0);
  1339     __ movptr(temp, super_check_addr); // load displayed supertype
  1340     __ cmpptr(temp, super_klass_addr); // test the super type
  1341     LOCAL_JCC(Assembler::equal, L_success);
  1343     // if it was a primary super, we can just fail immediately
  1344     __ cmpl(super_check_offset_addr, sc_offset);
  1345     LOCAL_JCC(Assembler::notEqual, L_failure);
  1347     // The repne_scan instruction uses fixed registers, which will get spilled.
  1348     // We happen to know this works best when super_klass is in rax.
  1349     Register super_klass = temp;
  1350     __ movptr(super_klass, super_klass_addr);
  1351     __ check_klass_subtype_slow_path(sub_klass, super_klass, noreg, noreg,
  1352                                      L_success, L_failure);
  1354     __ bind(L_fallthrough);
  1356     if (L_success == NULL) { BLOCK_COMMENT("L_success:"); }
  1357     if (L_failure == NULL) { BLOCK_COMMENT("L_failure:"); }
  1359 #undef LOCAL_JCC
  1362   //
  1363   //  Generate checkcasting array copy stub
  1364   //
  1365   //  Input:
  1366   //    4(rsp)   - source array address
  1367   //    8(rsp)   - destination array address
  1368   //   12(rsp)   - element count, can be zero
  1369   //   16(rsp)   - size_t ckoff (super_check_offset)
  1370   //   20(rsp)   - oop ckval (super_klass)
  1371   //
  1372   //  Output:
  1373   //    rax, ==  0  -  success
  1374   //    rax, == -1^K - failure, where K is partial transfer count
  1375   //
  1376   address generate_checkcast_copy(const char *name, address* entry) {
  1377     __ align(CodeEntryAlignment);
  1378     StubCodeMark mark(this, "StubRoutines", name);
  1379     address start = __ pc();
  1381     Label L_load_element, L_store_element, L_do_card_marks, L_done;
  1383     // register use:
  1384     //  rax, rdx, rcx -- loop control (end_from, end_to, count)
  1385     //  rdi, rsi      -- element access (oop, klass)
  1386     //  rbx,           -- temp
  1387     const Register from       = rax;    // source array address
  1388     const Register to         = rdx;    // destination array address
  1389     const Register length     = rcx;    // elements count
  1390     const Register elem       = rdi;    // each oop copied
  1391     const Register elem_klass = rsi;    // each elem._klass (sub_klass)
  1392     const Register temp       = rbx;    // lone remaining temp
  1394     __ enter(); // required for proper stackwalking of RuntimeStub frame
  1396     __ push(rsi);
  1397     __ push(rdi);
  1398     __ push(rbx);
  1400     Address   from_arg(rsp, 16+ 4);     // from
  1401     Address     to_arg(rsp, 16+ 8);     // to
  1402     Address length_arg(rsp, 16+12);     // elements count
  1403     Address  ckoff_arg(rsp, 16+16);     // super_check_offset
  1404     Address  ckval_arg(rsp, 16+20);     // super_klass
  1406     // Load up:
  1407     __ movptr(from,     from_arg);
  1408     __ movptr(to,         to_arg);
  1409     __ movl2ptr(length, length_arg);
  1411     *entry = __ pc(); // Entry point from generic arraycopy stub.
  1412     BLOCK_COMMENT("Entry:");
  1414     //---------------------------------------------------------------
  1415     // Assembler stub will be used for this call to arraycopy
  1416     // if the two arrays are subtypes of Object[] but the
  1417     // destination array type is not equal to or a supertype
  1418     // of the source type.  Each element must be separately
  1419     // checked.
  1421     // Loop-invariant addresses.  They are exclusive end pointers.
  1422     Address end_from_addr(from, length, Address::times_ptr, 0);
  1423     Address   end_to_addr(to,   length, Address::times_ptr, 0);
  1425     Register end_from = from;           // re-use
  1426     Register end_to   = to;             // re-use
  1427     Register count    = length;         // re-use
  1429     // Loop-variant addresses.  They assume post-incremented count < 0.
  1430     Address from_element_addr(end_from, count, Address::times_ptr, 0);
  1431     Address   to_element_addr(end_to,   count, Address::times_ptr, 0);
  1432     Address elem_klass_addr(elem, oopDesc::klass_offset_in_bytes());
  1434     // Copy from low to high addresses, indexed from the end of each array.
  1435     gen_write_ref_array_pre_barrier(to, count);
  1436     __ lea(end_from, end_from_addr);
  1437     __ lea(end_to,   end_to_addr);
  1438     assert(length == count, "");        // else fix next line:
  1439     __ negptr(count);                   // negate and test the length
  1440     __ jccb(Assembler::notZero, L_load_element);
  1442     // Empty array:  Nothing to do.
  1443     __ xorptr(rax, rax);                  // return 0 on (trivial) success
  1444     __ jmp(L_done);
  1446     // ======== begin loop ========
  1447     // (Loop is rotated; its entry is L_load_element.)
  1448     // Loop control:
  1449     //   for (count = -count; count != 0; count++)
  1450     // Base pointers src, dst are biased by 8*count,to last element.
  1451     __ align(OptoLoopAlignment);
  1453     __ BIND(L_store_element);
  1454     __ movptr(to_element_addr, elem);     // store the oop
  1455     __ increment(count);                // increment the count toward zero
  1456     __ jccb(Assembler::zero, L_do_card_marks);
  1458     // ======== loop entry is here ========
  1459     __ BIND(L_load_element);
  1460     __ movptr(elem, from_element_addr);   // load the oop
  1461     __ testptr(elem, elem);
  1462     __ jccb(Assembler::zero, L_store_element);
  1464     // (Could do a trick here:  Remember last successful non-null
  1465     // element stored and make a quick oop equality check on it.)
  1467     __ movptr(elem_klass, elem_klass_addr); // query the object klass
  1468     generate_type_check(elem_klass, ckoff_arg, ckval_arg, temp,
  1469                         &L_store_element, NULL);
  1470       // (On fall-through, we have failed the element type check.)
  1471     // ======== end loop ========
  1473     // It was a real error; we must depend on the caller to finish the job.
  1474     // Register "count" = -1 * number of *remaining* oops, length_arg = *total* oops.
  1475     // Emit GC store barriers for the oops we have copied (length_arg + count),
  1476     // and report their number to the caller.
  1477     __ addl(count, length_arg);         // transfers = (length - remaining)
  1478     __ movl2ptr(rax, count);            // save the value
  1479     __ notptr(rax);                     // report (-1^K) to caller
  1480     __ movptr(to, to_arg);              // reload
  1481     assert_different_registers(to, count, rax);
  1482     gen_write_ref_array_post_barrier(to, count);
  1483     __ jmpb(L_done);
  1485     // Come here on success only.
  1486     __ BIND(L_do_card_marks);
  1487     __ movl2ptr(count, length_arg);
  1488     __ movptr(to, to_arg);                // reload
  1489     gen_write_ref_array_post_barrier(to, count);
  1490     __ xorptr(rax, rax);                  // return 0 on success
  1492     // Common exit point (success or failure).
  1493     __ BIND(L_done);
  1494     __ pop(rbx);
  1495     __ pop(rdi);
  1496     __ pop(rsi);
  1497     inc_counter_np(SharedRuntime::_checkcast_array_copy_ctr);
  1498     __ leave(); // required for proper stackwalking of RuntimeStub frame
  1499     __ ret(0);
  1501     return start;
  1504   //
  1505   //  Generate 'unsafe' array copy stub
  1506   //  Though just as safe as the other stubs, it takes an unscaled
  1507   //  size_t argument instead of an element count.
  1508   //
  1509   //  Input:
  1510   //    4(rsp)   - source array address
  1511   //    8(rsp)   - destination array address
  1512   //   12(rsp)   - byte count, can be zero
  1513   //
  1514   //  Output:
  1515   //    rax, ==  0  -  success
  1516   //    rax, == -1  -  need to call System.arraycopy
  1517   //
  1518   // Examines the alignment of the operands and dispatches
  1519   // to a long, int, short, or byte copy loop.
  1520   //
  1521   address generate_unsafe_copy(const char *name,
  1522                                address byte_copy_entry,
  1523                                address short_copy_entry,
  1524                                address int_copy_entry,
  1525                                address long_copy_entry) {
  1527     Label L_long_aligned, L_int_aligned, L_short_aligned;
  1529     __ align(CodeEntryAlignment);
  1530     StubCodeMark mark(this, "StubRoutines", name);
  1531     address start = __ pc();
  1533     const Register from       = rax;  // source array address
  1534     const Register to         = rdx;  // destination array address
  1535     const Register count      = rcx;  // elements count
  1537     __ enter(); // required for proper stackwalking of RuntimeStub frame
  1538     __ push(rsi);
  1539     __ push(rdi);
  1540     Address  from_arg(rsp, 12+ 4);      // from
  1541     Address    to_arg(rsp, 12+ 8);      // to
  1542     Address count_arg(rsp, 12+12);      // byte count
  1544     // Load up:
  1545     __ movptr(from ,  from_arg);
  1546     __ movptr(to   ,    to_arg);
  1547     __ movl2ptr(count, count_arg);
  1549     // bump this on entry, not on exit:
  1550     inc_counter_np(SharedRuntime::_unsafe_array_copy_ctr);
  1552     const Register bits = rsi;
  1553     __ mov(bits, from);
  1554     __ orptr(bits, to);
  1555     __ orptr(bits, count);
  1557     __ testl(bits, BytesPerLong-1);
  1558     __ jccb(Assembler::zero, L_long_aligned);
  1560     __ testl(bits, BytesPerInt-1);
  1561     __ jccb(Assembler::zero, L_int_aligned);
  1563     __ testl(bits, BytesPerShort-1);
  1564     __ jump_cc(Assembler::notZero, RuntimeAddress(byte_copy_entry));
  1566     __ BIND(L_short_aligned);
  1567     __ shrptr(count, LogBytesPerShort); // size => short_count
  1568     __ movl(count_arg, count);          // update 'count'
  1569     __ jump(RuntimeAddress(short_copy_entry));
  1571     __ BIND(L_int_aligned);
  1572     __ shrptr(count, LogBytesPerInt); // size => int_count
  1573     __ movl(count_arg, count);          // update 'count'
  1574     __ jump(RuntimeAddress(int_copy_entry));
  1576     __ BIND(L_long_aligned);
  1577     __ shrptr(count, LogBytesPerLong); // size => qword_count
  1578     __ movl(count_arg, count);          // update 'count'
  1579     __ pop(rdi); // Do pops here since jlong_arraycopy stub does not do it.
  1580     __ pop(rsi);
  1581     __ jump(RuntimeAddress(long_copy_entry));
  1583     return start;
  1587   // Perform range checks on the proposed arraycopy.
  1588   // Smashes src_pos and dst_pos.  (Uses them up for temps.)
  1589   void arraycopy_range_checks(Register src,
  1590                               Register src_pos,
  1591                               Register dst,
  1592                               Register dst_pos,
  1593                               Address& length,
  1594                               Label& L_failed) {
  1595     BLOCK_COMMENT("arraycopy_range_checks:");
  1596     const Register src_end = src_pos;   // source array end position
  1597     const Register dst_end = dst_pos;   // destination array end position
  1598     __ addl(src_end, length); // src_pos + length
  1599     __ addl(dst_end, length); // dst_pos + length
  1601     //  if (src_pos + length > arrayOop(src)->length() ) FAIL;
  1602     __ cmpl(src_end, Address(src, arrayOopDesc::length_offset_in_bytes()));
  1603     __ jcc(Assembler::above, L_failed);
  1605     //  if (dst_pos + length > arrayOop(dst)->length() ) FAIL;
  1606     __ cmpl(dst_end, Address(dst, arrayOopDesc::length_offset_in_bytes()));
  1607     __ jcc(Assembler::above, L_failed);
  1609     BLOCK_COMMENT("arraycopy_range_checks done");
  1613   //
  1614   //  Generate generic array copy stubs
  1615   //
  1616   //  Input:
  1617   //     4(rsp)    -  src oop
  1618   //     8(rsp)    -  src_pos
  1619   //    12(rsp)    -  dst oop
  1620   //    16(rsp)    -  dst_pos
  1621   //    20(rsp)    -  element count
  1622   //
  1623   //  Output:
  1624   //    rax, ==  0  -  success
  1625   //    rax, == -1^K - failure, where K is partial transfer count
  1626   //
  1627   address generate_generic_copy(const char *name,
  1628                                 address entry_jbyte_arraycopy,
  1629                                 address entry_jshort_arraycopy,
  1630                                 address entry_jint_arraycopy,
  1631                                 address entry_oop_arraycopy,
  1632                                 address entry_jlong_arraycopy,
  1633                                 address entry_checkcast_arraycopy) {
  1634     Label L_failed, L_failed_0, L_objArray;
  1636     { int modulus = CodeEntryAlignment;
  1637       int target  = modulus - 5; // 5 = sizeof jmp(L_failed)
  1638       int advance = target - (__ offset() % modulus);
  1639       if (advance < 0)  advance += modulus;
  1640       if (advance > 0)  __ nop(advance);
  1642     StubCodeMark mark(this, "StubRoutines", name);
  1644     // Short-hop target to L_failed.  Makes for denser prologue code.
  1645     __ BIND(L_failed_0);
  1646     __ jmp(L_failed);
  1647     assert(__ offset() % CodeEntryAlignment == 0, "no further alignment needed");
  1649     __ align(CodeEntryAlignment);
  1650     address start = __ pc();
  1652     __ enter(); // required for proper stackwalking of RuntimeStub frame
  1653     __ push(rsi);
  1654     __ push(rdi);
  1656     // bump this on entry, not on exit:
  1657     inc_counter_np(SharedRuntime::_generic_array_copy_ctr);
  1659     // Input values
  1660     Address SRC     (rsp, 12+ 4);
  1661     Address SRC_POS (rsp, 12+ 8);
  1662     Address DST     (rsp, 12+12);
  1663     Address DST_POS (rsp, 12+16);
  1664     Address LENGTH  (rsp, 12+20);
  1666     //-----------------------------------------------------------------------
  1667     // Assembler stub will be used for this call to arraycopy
  1668     // if the following conditions are met:
  1669     //
  1670     // (1) src and dst must not be null.
  1671     // (2) src_pos must not be negative.
  1672     // (3) dst_pos must not be negative.
  1673     // (4) length  must not be negative.
  1674     // (5) src klass and dst klass should be the same and not NULL.
  1675     // (6) src and dst should be arrays.
  1676     // (7) src_pos + length must not exceed length of src.
  1677     // (8) dst_pos + length must not exceed length of dst.
  1678     //
  1680     const Register src     = rax;       // source array oop
  1681     const Register src_pos = rsi;
  1682     const Register dst     = rdx;       // destination array oop
  1683     const Register dst_pos = rdi;
  1684     const Register length  = rcx;       // transfer count
  1686     //  if (src == NULL) return -1;
  1687     __ movptr(src, SRC);      // src oop
  1688     __ testptr(src, src);
  1689     __ jccb(Assembler::zero, L_failed_0);
  1691     //  if (src_pos < 0) return -1;
  1692     __ movl2ptr(src_pos, SRC_POS);  // src_pos
  1693     __ testl(src_pos, src_pos);
  1694     __ jccb(Assembler::negative, L_failed_0);
  1696     //  if (dst == NULL) return -1;
  1697     __ movptr(dst, DST);      // dst oop
  1698     __ testptr(dst, dst);
  1699     __ jccb(Assembler::zero, L_failed_0);
  1701     //  if (dst_pos < 0) return -1;
  1702     __ movl2ptr(dst_pos, DST_POS);  // dst_pos
  1703     __ testl(dst_pos, dst_pos);
  1704     __ jccb(Assembler::negative, L_failed_0);
  1706     //  if (length < 0) return -1;
  1707     __ movl2ptr(length, LENGTH);   // length
  1708     __ testl(length, length);
  1709     __ jccb(Assembler::negative, L_failed_0);
  1711     //  if (src->klass() == NULL) return -1;
  1712     Address src_klass_addr(src, oopDesc::klass_offset_in_bytes());
  1713     Address dst_klass_addr(dst, oopDesc::klass_offset_in_bytes());
  1714     const Register rcx_src_klass = rcx;    // array klass
  1715     __ movptr(rcx_src_klass, Address(src, oopDesc::klass_offset_in_bytes()));
  1717 #ifdef ASSERT
  1718     //  assert(src->klass() != NULL);
  1719     BLOCK_COMMENT("assert klasses not null");
  1720     { Label L1, L2;
  1721       __ testptr(rcx_src_klass, rcx_src_klass);
  1722       __ jccb(Assembler::notZero, L2);   // it is broken if klass is NULL
  1723       __ bind(L1);
  1724       __ stop("broken null klass");
  1725       __ bind(L2);
  1726       __ cmpptr(dst_klass_addr, (int32_t)NULL_WORD);
  1727       __ jccb(Assembler::equal, L1);      // this would be broken also
  1728       BLOCK_COMMENT("assert done");
  1730 #endif //ASSERT
  1732     // Load layout helper (32-bits)
  1733     //
  1734     //  |array_tag|     | header_size | element_type |     |log2_element_size|
  1735     // 32        30    24            16              8     2                 0
  1736     //
  1737     //   array_tag: typeArray = 0x3, objArray = 0x2, non-array = 0x0
  1738     //
  1740     int lh_offset = klassOopDesc::header_size() * HeapWordSize +
  1741                     Klass::layout_helper_offset_in_bytes();
  1742     Address src_klass_lh_addr(rcx_src_klass, lh_offset);
  1744     // Handle objArrays completely differently...
  1745     jint objArray_lh = Klass::array_layout_helper(T_OBJECT);
  1746     __ cmpl(src_klass_lh_addr, objArray_lh);
  1747     __ jcc(Assembler::equal, L_objArray);
  1749     //  if (src->klass() != dst->klass()) return -1;
  1750     __ cmpptr(rcx_src_klass, dst_klass_addr);
  1751     __ jccb(Assembler::notEqual, L_failed_0);
  1753     const Register rcx_lh = rcx;  // layout helper
  1754     assert(rcx_lh == rcx_src_klass, "known alias");
  1755     __ movl(rcx_lh, src_klass_lh_addr);
  1757     //  if (!src->is_Array()) return -1;
  1758     __ cmpl(rcx_lh, Klass::_lh_neutral_value);
  1759     __ jcc(Assembler::greaterEqual, L_failed_0); // signed cmp
  1761     // At this point, it is known to be a typeArray (array_tag 0x3).
  1762 #ifdef ASSERT
  1763     { Label L;
  1764       __ cmpl(rcx_lh, (Klass::_lh_array_tag_type_value << Klass::_lh_array_tag_shift));
  1765       __ jcc(Assembler::greaterEqual, L); // signed cmp
  1766       __ stop("must be a primitive array");
  1767       __ bind(L);
  1769 #endif
  1771     assert_different_registers(src, src_pos, dst, dst_pos, rcx_lh);
  1772     arraycopy_range_checks(src, src_pos, dst, dst_pos, LENGTH, L_failed);
  1774     // typeArrayKlass
  1775     //
  1776     // src_addr = (src + array_header_in_bytes()) + (src_pos << log2elemsize);
  1777     // dst_addr = (dst + array_header_in_bytes()) + (dst_pos << log2elemsize);
  1778     //
  1779     const Register rsi_offset = rsi; // array offset
  1780     const Register src_array  = src; // src array offset
  1781     const Register dst_array  = dst; // dst array offset
  1782     const Register rdi_elsize = rdi; // log2 element size
  1784     __ mov(rsi_offset, rcx_lh);
  1785     __ shrptr(rsi_offset, Klass::_lh_header_size_shift);
  1786     __ andptr(rsi_offset, Klass::_lh_header_size_mask);   // array_offset
  1787     __ addptr(src_array, rsi_offset);  // src array offset
  1788     __ addptr(dst_array, rsi_offset);  // dst array offset
  1789     __ andptr(rcx_lh, Klass::_lh_log2_element_size_mask); // log2 elsize
  1791     // next registers should be set before the jump to corresponding stub
  1792     const Register from       = src; // source array address
  1793     const Register to         = dst; // destination array address
  1794     const Register count      = rcx; // elements count
  1795     // some of them should be duplicated on stack
  1796 #define FROM   Address(rsp, 12+ 4)
  1797 #define TO     Address(rsp, 12+ 8)   // Not used now
  1798 #define COUNT  Address(rsp, 12+12)   // Only for oop arraycopy
  1800     BLOCK_COMMENT("scale indexes to element size");
  1801     __ movl2ptr(rsi, SRC_POS);  // src_pos
  1802     __ shlptr(rsi);             // src_pos << rcx (log2 elsize)
  1803     assert(src_array == from, "");
  1804     __ addptr(from, rsi);       // from = src_array + SRC_POS << log2 elsize
  1805     __ movl2ptr(rdi, DST_POS);  // dst_pos
  1806     __ shlptr(rdi);             // dst_pos << rcx (log2 elsize)
  1807     assert(dst_array == to, "");
  1808     __ addptr(to,  rdi);        // to   = dst_array + DST_POS << log2 elsize
  1809     __ movptr(FROM, from);      // src_addr
  1810     __ mov(rdi_elsize, rcx_lh); // log2 elsize
  1811     __ movl2ptr(count, LENGTH); // elements count
  1813     BLOCK_COMMENT("choose copy loop based on element size");
  1814     __ cmpl(rdi_elsize, 0);
  1816     __ jump_cc(Assembler::equal, RuntimeAddress(entry_jbyte_arraycopy));
  1817     __ cmpl(rdi_elsize, LogBytesPerShort);
  1818     __ jump_cc(Assembler::equal, RuntimeAddress(entry_jshort_arraycopy));
  1819     __ cmpl(rdi_elsize, LogBytesPerInt);
  1820     __ jump_cc(Assembler::equal, RuntimeAddress(entry_jint_arraycopy));
  1821 #ifdef ASSERT
  1822     __ cmpl(rdi_elsize, LogBytesPerLong);
  1823     __ jccb(Assembler::notEqual, L_failed);
  1824 #endif
  1825     __ pop(rdi); // Do pops here since jlong_arraycopy stub does not do it.
  1826     __ pop(rsi);
  1827     __ jump(RuntimeAddress(entry_jlong_arraycopy));
  1829   __ BIND(L_failed);
  1830     __ xorptr(rax, rax);
  1831     __ notptr(rax); // return -1
  1832     __ pop(rdi);
  1833     __ pop(rsi);
  1834     __ leave(); // required for proper stackwalking of RuntimeStub frame
  1835     __ ret(0);
  1837     // objArrayKlass
  1838   __ BIND(L_objArray);
  1839     // live at this point:  rcx_src_klass, src[_pos], dst[_pos]
  1841     Label L_plain_copy, L_checkcast_copy;
  1842     //  test array classes for subtyping
  1843     __ cmpptr(rcx_src_klass, dst_klass_addr); // usual case is exact equality
  1844     __ jccb(Assembler::notEqual, L_checkcast_copy);
  1846     // Identically typed arrays can be copied without element-wise checks.
  1847     assert_different_registers(src, src_pos, dst, dst_pos, rcx_src_klass);
  1848     arraycopy_range_checks(src, src_pos, dst, dst_pos, LENGTH, L_failed);
  1850   __ BIND(L_plain_copy);
  1851     __ movl2ptr(count, LENGTH); // elements count
  1852     __ movl2ptr(src_pos, SRC_POS);  // reload src_pos
  1853     __ lea(from, Address(src, src_pos, Address::times_ptr,
  1854                  arrayOopDesc::base_offset_in_bytes(T_OBJECT))); // src_addr
  1855     __ movl2ptr(dst_pos, DST_POS);  // reload dst_pos
  1856     __ lea(to,   Address(dst, dst_pos, Address::times_ptr,
  1857                  arrayOopDesc::base_offset_in_bytes(T_OBJECT))); // dst_addr
  1858     __ movptr(FROM,  from);   // src_addr
  1859     __ movptr(TO,    to);     // dst_addr
  1860     __ movl(COUNT, count);  // count
  1861     __ jump(RuntimeAddress(entry_oop_arraycopy));
  1863   __ BIND(L_checkcast_copy);
  1864     // live at this point:  rcx_src_klass, dst[_pos], src[_pos]
  1866       // Handy offsets:
  1867       int  ek_offset = (klassOopDesc::header_size() * HeapWordSize +
  1868                         objArrayKlass::element_klass_offset_in_bytes());
  1869       int sco_offset = (klassOopDesc::header_size() * HeapWordSize +
  1870                         Klass::super_check_offset_offset_in_bytes());
  1872       Register rsi_dst_klass = rsi;
  1873       Register rdi_temp      = rdi;
  1874       assert(rsi_dst_klass == src_pos, "expected alias w/ src_pos");
  1875       assert(rdi_temp      == dst_pos, "expected alias w/ dst_pos");
  1876       Address dst_klass_lh_addr(rsi_dst_klass, lh_offset);
  1878       // Before looking at dst.length, make sure dst is also an objArray.
  1879       __ movptr(rsi_dst_klass, dst_klass_addr);
  1880       __ cmpl(dst_klass_lh_addr, objArray_lh);
  1881       __ jccb(Assembler::notEqual, L_failed);
  1883       // It is safe to examine both src.length and dst.length.
  1884       __ movl2ptr(src_pos, SRC_POS);        // reload rsi
  1885       arraycopy_range_checks(src, src_pos, dst, dst_pos, LENGTH, L_failed);
  1886       // (Now src_pos and dst_pos are killed, but not src and dst.)
  1888       // We'll need this temp (don't forget to pop it after the type check).
  1889       __ push(rbx);
  1890       Register rbx_src_klass = rbx;
  1892       __ mov(rbx_src_klass, rcx_src_klass); // spill away from rcx
  1893       __ movptr(rsi_dst_klass, dst_klass_addr);
  1894       Address super_check_offset_addr(rsi_dst_klass, sco_offset);
  1895       Label L_fail_array_check;
  1896       generate_type_check(rbx_src_klass,
  1897                           super_check_offset_addr, dst_klass_addr,
  1898                           rdi_temp, NULL, &L_fail_array_check);
  1899       // (On fall-through, we have passed the array type check.)
  1900       __ pop(rbx);
  1901       __ jmp(L_plain_copy);
  1903       __ BIND(L_fail_array_check);
  1904       // Reshuffle arguments so we can call checkcast_arraycopy:
  1906       // match initial saves for checkcast_arraycopy
  1907       // push(rsi);    // already done; see above
  1908       // push(rdi);    // already done; see above
  1909       // push(rbx);    // already done; see above
  1911       // Marshal outgoing arguments now, freeing registers.
  1912       Address   from_arg(rsp, 16+ 4);   // from
  1913       Address     to_arg(rsp, 16+ 8);   // to
  1914       Address length_arg(rsp, 16+12);   // elements count
  1915       Address  ckoff_arg(rsp, 16+16);   // super_check_offset
  1916       Address  ckval_arg(rsp, 16+20);   // super_klass
  1918       Address SRC_POS_arg(rsp, 16+ 8);
  1919       Address DST_POS_arg(rsp, 16+16);
  1920       Address  LENGTH_arg(rsp, 16+20);
  1921       // push rbx, changed the incoming offsets (why not just use rbp,??)
  1922       // assert(SRC_POS_arg.disp() == SRC_POS.disp() + 4, "");
  1924       __ movptr(rbx, Address(rsi_dst_klass, ek_offset));
  1925       __ movl2ptr(length, LENGTH_arg);    // reload elements count
  1926       __ movl2ptr(src_pos, SRC_POS_arg);  // reload src_pos
  1927       __ movl2ptr(dst_pos, DST_POS_arg);  // reload dst_pos
  1929       __ movptr(ckval_arg, rbx);          // destination element type
  1930       __ movl(rbx, Address(rbx, sco_offset));
  1931       __ movl(ckoff_arg, rbx);          // corresponding class check offset
  1933       __ movl(length_arg, length);      // outgoing length argument
  1935       __ lea(from, Address(src, src_pos, Address::times_ptr,
  1936                             arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
  1937       __ movptr(from_arg, from);
  1939       __ lea(to, Address(dst, dst_pos, Address::times_ptr,
  1940                           arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
  1941       __ movptr(to_arg, to);
  1942       __ jump(RuntimeAddress(entry_checkcast_arraycopy));
  1945     return start;
  1948   void generate_arraycopy_stubs() {
  1949     address entry;
  1950     address entry_jbyte_arraycopy;
  1951     address entry_jshort_arraycopy;
  1952     address entry_jint_arraycopy;
  1953     address entry_oop_arraycopy;
  1954     address entry_jlong_arraycopy;
  1955     address entry_checkcast_arraycopy;
  1957     StubRoutines::_arrayof_jbyte_disjoint_arraycopy =
  1958         generate_disjoint_copy(T_BYTE,  true, Address::times_1, &entry,
  1959                                "arrayof_jbyte_disjoint_arraycopy");
  1960     StubRoutines::_arrayof_jbyte_arraycopy =
  1961         generate_conjoint_copy(T_BYTE,  true, Address::times_1,  entry,
  1962                                NULL, "arrayof_jbyte_arraycopy");
  1963     StubRoutines::_jbyte_disjoint_arraycopy =
  1964         generate_disjoint_copy(T_BYTE, false, Address::times_1, &entry,
  1965                                "jbyte_disjoint_arraycopy");
  1966     StubRoutines::_jbyte_arraycopy =
  1967         generate_conjoint_copy(T_BYTE, false, Address::times_1,  entry,
  1968                                &entry_jbyte_arraycopy, "jbyte_arraycopy");
  1970     StubRoutines::_arrayof_jshort_disjoint_arraycopy =
  1971         generate_disjoint_copy(T_SHORT,  true, Address::times_2, &entry,
  1972                                "arrayof_jshort_disjoint_arraycopy");
  1973     StubRoutines::_arrayof_jshort_arraycopy =
  1974         generate_conjoint_copy(T_SHORT,  true, Address::times_2,  entry,
  1975                                NULL, "arrayof_jshort_arraycopy");
  1976     StubRoutines::_jshort_disjoint_arraycopy =
  1977         generate_disjoint_copy(T_SHORT, false, Address::times_2, &entry,
  1978                                "jshort_disjoint_arraycopy");
  1979     StubRoutines::_jshort_arraycopy =
  1980         generate_conjoint_copy(T_SHORT, false, Address::times_2,  entry,
  1981                                &entry_jshort_arraycopy, "jshort_arraycopy");
  1983     // Next arrays are always aligned on 4 bytes at least.
  1984     StubRoutines::_jint_disjoint_arraycopy =
  1985         generate_disjoint_copy(T_INT, true, Address::times_4, &entry,
  1986                                "jint_disjoint_arraycopy");
  1987     StubRoutines::_jint_arraycopy =
  1988         generate_conjoint_copy(T_INT, true, Address::times_4,  entry,
  1989                                &entry_jint_arraycopy, "jint_arraycopy");
  1991     StubRoutines::_oop_disjoint_arraycopy =
  1992         generate_disjoint_copy(T_OBJECT, true, Address::times_ptr, &entry,
  1993                                "oop_disjoint_arraycopy");
  1994     StubRoutines::_oop_arraycopy =
  1995         generate_conjoint_copy(T_OBJECT, true, Address::times_ptr,  entry,
  1996                                &entry_oop_arraycopy, "oop_arraycopy");
  1998     StubRoutines::_jlong_disjoint_arraycopy =
  1999         generate_disjoint_long_copy(&entry, "jlong_disjoint_arraycopy");
  2000     StubRoutines::_jlong_arraycopy =
  2001         generate_conjoint_long_copy(entry, &entry_jlong_arraycopy,
  2002                                     "jlong_arraycopy");
  2004     StubRoutines::_arrayof_jint_disjoint_arraycopy  =
  2005         StubRoutines::_jint_disjoint_arraycopy;
  2006     StubRoutines::_arrayof_oop_disjoint_arraycopy   =
  2007         StubRoutines::_oop_disjoint_arraycopy;
  2008     StubRoutines::_arrayof_jlong_disjoint_arraycopy =
  2009         StubRoutines::_jlong_disjoint_arraycopy;
  2011     StubRoutines::_arrayof_jint_arraycopy  = StubRoutines::_jint_arraycopy;
  2012     StubRoutines::_arrayof_oop_arraycopy   = StubRoutines::_oop_arraycopy;
  2013     StubRoutines::_arrayof_jlong_arraycopy = StubRoutines::_jlong_arraycopy;
  2015     StubRoutines::_checkcast_arraycopy =
  2016         generate_checkcast_copy("checkcast_arraycopy",
  2017                                   &entry_checkcast_arraycopy);
  2019     StubRoutines::_unsafe_arraycopy =
  2020         generate_unsafe_copy("unsafe_arraycopy",
  2021                                entry_jbyte_arraycopy,
  2022                                entry_jshort_arraycopy,
  2023                                entry_jint_arraycopy,
  2024                                entry_jlong_arraycopy);
  2026     StubRoutines::_generic_arraycopy =
  2027         generate_generic_copy("generic_arraycopy",
  2028                                entry_jbyte_arraycopy,
  2029                                entry_jshort_arraycopy,
  2030                                entry_jint_arraycopy,
  2031                                entry_oop_arraycopy,
  2032                                entry_jlong_arraycopy,
  2033                                entry_checkcast_arraycopy);
  2036   void generate_math_stubs() {
  2038       StubCodeMark mark(this, "StubRoutines", "log");
  2039       StubRoutines::_intrinsic_log = (double (*)(double)) __ pc();
  2041       __ fld_d(Address(rsp, 4));
  2042       __ flog();
  2043       __ ret(0);
  2046       StubCodeMark mark(this, "StubRoutines", "log10");
  2047       StubRoutines::_intrinsic_log10 = (double (*)(double)) __ pc();
  2049       __ fld_d(Address(rsp, 4));
  2050       __ flog10();
  2051       __ ret(0);
  2054       StubCodeMark mark(this, "StubRoutines", "sin");
  2055       StubRoutines::_intrinsic_sin = (double (*)(double))  __ pc();
  2057       __ fld_d(Address(rsp, 4));
  2058       __ trigfunc('s');
  2059       __ ret(0);
  2062       StubCodeMark mark(this, "StubRoutines", "cos");
  2063       StubRoutines::_intrinsic_cos = (double (*)(double)) __ pc();
  2065       __ fld_d(Address(rsp, 4));
  2066       __ trigfunc('c');
  2067       __ ret(0);
  2070       StubCodeMark mark(this, "StubRoutines", "tan");
  2071       StubRoutines::_intrinsic_tan = (double (*)(double)) __ pc();
  2073       __ fld_d(Address(rsp, 4));
  2074       __ trigfunc('t');
  2075       __ ret(0);
  2078     // The intrinsic version of these seem to return the same value as
  2079     // the strict version.
  2080     StubRoutines::_intrinsic_exp = SharedRuntime::dexp;
  2081     StubRoutines::_intrinsic_pow = SharedRuntime::dpow;
  2084  public:
  2085   // Information about frame layout at time of blocking runtime call.
  2086   // Note that we only have to preserve callee-saved registers since
  2087   // the compilers are responsible for supplying a continuation point
  2088   // if they expect all registers to be preserved.
  2089   enum layout {
  2090     thread_off,    // last_java_sp
  2091     rbp_off,       // callee saved register
  2092     ret_pc,
  2093     framesize
  2094   };
  2096  private:
  2098 #undef  __
  2099 #define __ masm->
  2101   //------------------------------------------------------------------------------------------------------------------------
  2102   // Continuation point for throwing of implicit exceptions that are not handled in
  2103   // the current activation. Fabricates an exception oop and initiates normal
  2104   // exception dispatching in this frame.
  2105   //
  2106   // Previously the compiler (c2) allowed for callee save registers on Java calls.
  2107   // This is no longer true after adapter frames were removed but could possibly
  2108   // be brought back in the future if the interpreter code was reworked and it
  2109   // was deemed worthwhile. The comment below was left to describe what must
  2110   // happen here if callee saves were resurrected. As it stands now this stub
  2111   // could actually be a vanilla BufferBlob and have now oopMap at all.
  2112   // Since it doesn't make much difference we've chosen to leave it the
  2113   // way it was in the callee save days and keep the comment.
  2115   // If we need to preserve callee-saved values we need a callee-saved oop map and
  2116   // therefore have to make these stubs into RuntimeStubs rather than BufferBlobs.
  2117   // If the compiler needs all registers to be preserved between the fault
  2118   // point and the exception handler then it must assume responsibility for that in
  2119   // AbstractCompiler::continuation_for_implicit_null_exception or
  2120   // continuation_for_implicit_division_by_zero_exception. All other implicit
  2121   // exceptions (e.g., NullPointerException or AbstractMethodError on entry) are
  2122   // either at call sites or otherwise assume that stack unwinding will be initiated,
  2123   // so caller saved registers were assumed volatile in the compiler.
  2124   address generate_throw_exception(const char* name, address runtime_entry,
  2125                                    bool restore_saved_exception_pc) {
  2127     int insts_size = 256;
  2128     int locs_size  = 32;
  2130     CodeBuffer code(name, insts_size, locs_size);
  2131     OopMapSet* oop_maps  = new OopMapSet();
  2132     MacroAssembler* masm = new MacroAssembler(&code);
  2134     address start = __ pc();
  2136     // This is an inlined and slightly modified version of call_VM
  2137     // which has the ability to fetch the return PC out of
  2138     // thread-local storage and also sets up last_Java_sp slightly
  2139     // differently than the real call_VM
  2140     Register java_thread = rbx;
  2141     __ get_thread(java_thread);
  2142     if (restore_saved_exception_pc) {
  2143       __ movptr(rax, Address(java_thread, in_bytes(JavaThread::saved_exception_pc_offset())));
  2144       __ push(rax);
  2147     __ enter(); // required for proper stackwalking of RuntimeStub frame
  2149     // pc and rbp, already pushed
  2150     __ subptr(rsp, (framesize-2) * wordSize); // prolog
  2152     // Frame is now completed as far as size and linkage.
  2154     int frame_complete = __ pc() - start;
  2156     // push java thread (becomes first argument of C function)
  2157     __ movptr(Address(rsp, thread_off * wordSize), java_thread);
  2159     // Set up last_Java_sp and last_Java_fp
  2160     __ set_last_Java_frame(java_thread, rsp, rbp, NULL);
  2162     // Call runtime
  2163     BLOCK_COMMENT("call runtime_entry");
  2164     __ call(RuntimeAddress(runtime_entry));
  2165     // Generate oop map
  2166     OopMap* map =  new OopMap(framesize, 0);
  2167     oop_maps->add_gc_map(__ pc() - start, map);
  2169     // restore the thread (cannot use the pushed argument since arguments
  2170     // may be overwritten by C code generated by an optimizing compiler);
  2171     // however can use the register value directly if it is callee saved.
  2172     __ get_thread(java_thread);
  2174     __ reset_last_Java_frame(java_thread, true, false);
  2176     __ leave(); // required for proper stackwalking of RuntimeStub frame
  2178     // check for pending exceptions
  2179 #ifdef ASSERT
  2180     Label L;
  2181     __ cmpptr(Address(java_thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
  2182     __ jcc(Assembler::notEqual, L);
  2183     __ should_not_reach_here();
  2184     __ bind(L);
  2185 #endif /* ASSERT */
  2186     __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
  2189     RuntimeStub* stub = RuntimeStub::new_runtime_stub(name, &code, frame_complete, framesize, oop_maps, false);
  2190     return stub->entry_point();
  2194   void create_control_words() {
  2195     // Round to nearest, 53-bit mode, exceptions masked
  2196     StubRoutines::_fpu_cntrl_wrd_std   = 0x027F;
  2197     // Round to zero, 53-bit mode, exception mased
  2198     StubRoutines::_fpu_cntrl_wrd_trunc = 0x0D7F;
  2199     // Round to nearest, 24-bit mode, exceptions masked
  2200     StubRoutines::_fpu_cntrl_wrd_24    = 0x007F;
  2201     // Round to nearest, 64-bit mode, exceptions masked
  2202     StubRoutines::_fpu_cntrl_wrd_64    = 0x037F;
  2203     // Round to nearest, 64-bit mode, exceptions masked
  2204     StubRoutines::_mxcsr_std           = 0x1F80;
  2205     // Note: the following two constants are 80-bit values
  2206     //       layout is critical for correct loading by FPU.
  2207     // Bias for strict fp multiply/divide
  2208     StubRoutines::_fpu_subnormal_bias1[0]= 0x00000000; // 2^(-15360) == 0x03ff 8000 0000 0000 0000
  2209     StubRoutines::_fpu_subnormal_bias1[1]= 0x80000000;
  2210     StubRoutines::_fpu_subnormal_bias1[2]= 0x03ff;
  2211     // Un-Bias for strict fp multiply/divide
  2212     StubRoutines::_fpu_subnormal_bias2[0]= 0x00000000; // 2^(+15360) == 0x7bff 8000 0000 0000 0000
  2213     StubRoutines::_fpu_subnormal_bias2[1]= 0x80000000;
  2214     StubRoutines::_fpu_subnormal_bias2[2]= 0x7bff;
  2217   //---------------------------------------------------------------------------
  2218   // Initialization
  2220   void generate_initial() {
  2221     // Generates all stubs and initializes the entry points
  2223     //------------------------------------------------------------------------------------------------------------------------
  2224     // entry points that exist in all platforms
  2225     // Note: This is code that could be shared among different platforms - however the benefit seems to be smaller than
  2226     //       the disadvantage of having a much more complicated generator structure. See also comment in stubRoutines.hpp.
  2227     StubRoutines::_forward_exception_entry      = generate_forward_exception();
  2229     StubRoutines::_call_stub_entry              =
  2230       generate_call_stub(StubRoutines::_call_stub_return_address);
  2231     // is referenced by megamorphic call
  2232     StubRoutines::_catch_exception_entry        = generate_catch_exception();
  2234     // These are currently used by Solaris/Intel
  2235     StubRoutines::_atomic_xchg_entry            = generate_atomic_xchg();
  2237     StubRoutines::_handler_for_unsafe_access_entry =
  2238       generate_handler_for_unsafe_access();
  2240     // platform dependent
  2241     create_control_words();
  2243     StubRoutines::x86::_verify_mxcsr_entry                 = generate_verify_mxcsr();
  2244     StubRoutines::x86::_verify_fpu_cntrl_wrd_entry         = generate_verify_fpu_cntrl_wrd();
  2245     StubRoutines::_d2i_wrapper                              = generate_d2i_wrapper(T_INT,
  2246                                                                                    CAST_FROM_FN_PTR(address, SharedRuntime::d2i));
  2247     StubRoutines::_d2l_wrapper                              = generate_d2i_wrapper(T_LONG,
  2248                                                                                    CAST_FROM_FN_PTR(address, SharedRuntime::d2l));
  2252   void generate_all() {
  2253     // Generates all stubs and initializes the entry points
  2255     // These entry points require SharedInfo::stack0 to be set up in non-core builds
  2256     // and need to be relocatable, so they each fabricate a RuntimeStub internally.
  2257     StubRoutines::_throw_AbstractMethodError_entry         = generate_throw_exception("AbstractMethodError throw_exception",          CAST_FROM_FN_PTR(address, SharedRuntime::throw_AbstractMethodError),  false);
  2258     StubRoutines::_throw_IncompatibleClassChangeError_entry= generate_throw_exception("IncompatibleClassChangeError throw_exception", CAST_FROM_FN_PTR(address, SharedRuntime::throw_IncompatibleClassChangeError),  false);
  2259     StubRoutines::_throw_ArithmeticException_entry         = generate_throw_exception("ArithmeticException throw_exception",          CAST_FROM_FN_PTR(address, SharedRuntime::throw_ArithmeticException),  true);
  2260     StubRoutines::_throw_NullPointerException_entry        = generate_throw_exception("NullPointerException throw_exception",         CAST_FROM_FN_PTR(address, SharedRuntime::throw_NullPointerException), true);
  2261     StubRoutines::_throw_NullPointerException_at_call_entry= generate_throw_exception("NullPointerException at call throw_exception", CAST_FROM_FN_PTR(address, SharedRuntime::throw_NullPointerException_at_call), false);
  2262     StubRoutines::_throw_StackOverflowError_entry          = generate_throw_exception("StackOverflowError throw_exception",           CAST_FROM_FN_PTR(address, SharedRuntime::throw_StackOverflowError),   false);
  2264     //------------------------------------------------------------------------------------------------------------------------
  2265     // entry points that are platform specific
  2267     // support for verify_oop (must happen after universe_init)
  2268     StubRoutines::_verify_oop_subroutine_entry     = generate_verify_oop();
  2270     // arraycopy stubs used by compilers
  2271     generate_arraycopy_stubs();
  2273     generate_math_stubs();
  2277  public:
  2278   StubGenerator(CodeBuffer* code, bool all) : StubCodeGenerator(code) {
  2279     if (all) {
  2280       generate_all();
  2281     } else {
  2282       generate_initial();
  2285 }; // end class declaration
  2288 void StubGenerator_generate(CodeBuffer* code, bool all) {
  2289   StubGenerator g(code, all);

mercurial