src/share/vm/runtime/safepoint.cpp

Wed, 16 Jan 2013 16:30:04 +0100

author
sla
date
Wed, 16 Jan 2013 16:30:04 +0100
changeset 4462
e94ed1591b42
parent 4299
f34d701e952e
child 4542
db9981fd3124
permissions
-rw-r--r--

8006403: Regression: jstack failed due to the FieldInfo regression in SA
Reviewed-by: sla, dholmes
Contributed-by: Aleksey Shipilev <aleksey.shipilev@oracle.com>

     1 /*
     2  * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "classfile/symbolTable.hpp"
    27 #include "classfile/systemDictionary.hpp"
    28 #include "code/codeCache.hpp"
    29 #include "code/icBuffer.hpp"
    30 #include "code/nmethod.hpp"
    31 #include "code/pcDesc.hpp"
    32 #include "code/scopeDesc.hpp"
    33 #include "gc_interface/collectedHeap.hpp"
    34 #include "interpreter/interpreter.hpp"
    35 #include "memory/resourceArea.hpp"
    36 #include "memory/universe.inline.hpp"
    37 #include "oops/oop.inline.hpp"
    38 #include "oops/symbol.hpp"
    39 #include "runtime/compilationPolicy.hpp"
    40 #include "runtime/deoptimization.hpp"
    41 #include "runtime/frame.inline.hpp"
    42 #include "runtime/interfaceSupport.hpp"
    43 #include "runtime/mutexLocker.hpp"
    44 #include "runtime/osThread.hpp"
    45 #include "runtime/safepoint.hpp"
    46 #include "runtime/signature.hpp"
    47 #include "runtime/stubCodeGenerator.hpp"
    48 #include "runtime/stubRoutines.hpp"
    49 #include "runtime/sweeper.hpp"
    50 #include "runtime/synchronizer.hpp"
    51 #include "runtime/thread.inline.hpp"
    52 #include "services/memTracker.hpp"
    53 #include "services/runtimeService.hpp"
    54 #include "utilities/events.hpp"
    55 #ifdef TARGET_ARCH_x86
    56 # include "nativeInst_x86.hpp"
    57 # include "vmreg_x86.inline.hpp"
    58 #endif
    59 #ifdef TARGET_ARCH_sparc
    60 # include "nativeInst_sparc.hpp"
    61 # include "vmreg_sparc.inline.hpp"
    62 #endif
    63 #ifdef TARGET_ARCH_zero
    64 # include "nativeInst_zero.hpp"
    65 # include "vmreg_zero.inline.hpp"
    66 #endif
    67 #ifdef TARGET_ARCH_arm
    68 # include "nativeInst_arm.hpp"
    69 # include "vmreg_arm.inline.hpp"
    70 #endif
    71 #ifdef TARGET_ARCH_ppc
    72 # include "nativeInst_ppc.hpp"
    73 # include "vmreg_ppc.inline.hpp"
    74 #endif
    75 #ifndef SERIALGC
    76 #include "gc_implementation/concurrentMarkSweep/concurrentMarkSweepThread.hpp"
    77 #include "gc_implementation/shared/concurrentGCThread.hpp"
    78 #endif
    79 #ifdef COMPILER1
    80 #include "c1/c1_globals.hpp"
    81 #endif
    83 // --------------------------------------------------------------------------------------------------
    84 // Implementation of Safepoint begin/end
    86 SafepointSynchronize::SynchronizeState volatile SafepointSynchronize::_state = SafepointSynchronize::_not_synchronized;
    87 volatile int  SafepointSynchronize::_waiting_to_block = 0;
    88 volatile int SafepointSynchronize::_safepoint_counter = 0;
    89 int SafepointSynchronize::_current_jni_active_count = 0;
    90 long  SafepointSynchronize::_end_of_last_safepoint = 0;
    91 static volatile int PageArmed = 0 ;        // safepoint polling page is RO|RW vs PROT_NONE
    92 static volatile int TryingToBlock = 0 ;    // proximate value -- for advisory use only
    93 static bool timeout_error_printed = false;
    95 // Roll all threads forward to a safepoint and suspend them all
    96 void SafepointSynchronize::begin() {
    98   Thread* myThread = Thread::current();
    99   assert(myThread->is_VM_thread(), "Only VM thread may execute a safepoint");
   101   if (PrintSafepointStatistics || PrintSafepointStatisticsTimeout > 0) {
   102     _safepoint_begin_time = os::javaTimeNanos();
   103     _ts_of_current_safepoint = tty->time_stamp().seconds();
   104   }
   106 #ifndef SERIALGC
   107   if (UseConcMarkSweepGC) {
   108     // In the future we should investigate whether CMS can use the
   109     // more-general mechanism below.  DLD (01/05).
   110     ConcurrentMarkSweepThread::synchronize(false);
   111   } else if (UseG1GC) {
   112     ConcurrentGCThread::safepoint_synchronize();
   113   }
   114 #endif // SERIALGC
   116   // By getting the Threads_lock, we assure that no threads are about to start or
   117   // exit. It is released again in SafepointSynchronize::end().
   118   Threads_lock->lock();
   120   assert( _state == _not_synchronized, "trying to safepoint synchronize with wrong state");
   122   int nof_threads = Threads::number_of_threads();
   124   if (TraceSafepoint) {
   125     tty->print_cr("Safepoint synchronization initiated. (%d)", nof_threads);
   126   }
   128   RuntimeService::record_safepoint_begin();
   130   MutexLocker mu(Safepoint_lock);
   132   // Reset the count of active JNI critical threads
   133   _current_jni_active_count = 0;
   135   // Set number of threads to wait for, before we initiate the callbacks
   136   _waiting_to_block = nof_threads;
   137   TryingToBlock     = 0 ;
   138   int still_running = nof_threads;
   140   // Save the starting time, so that it can be compared to see if this has taken
   141   // too long to complete.
   142   jlong safepoint_limit_time;
   143   timeout_error_printed = false;
   145   // PrintSafepointStatisticsTimeout can be specified separately. When
   146   // specified, PrintSafepointStatistics will be set to true in
   147   // deferred_initialize_stat method. The initialization has to be done
   148   // early enough to avoid any races. See bug 6880029 for details.
   149   if (PrintSafepointStatistics || PrintSafepointStatisticsTimeout > 0) {
   150     deferred_initialize_stat();
   151   }
   153   // Begin the process of bringing the system to a safepoint.
   154   // Java threads can be in several different states and are
   155   // stopped by different mechanisms:
   156   //
   157   //  1. Running interpreted
   158   //     The interpeter dispatch table is changed to force it to
   159   //     check for a safepoint condition between bytecodes.
   160   //  2. Running in native code
   161   //     When returning from the native code, a Java thread must check
   162   //     the safepoint _state to see if we must block.  If the
   163   //     VM thread sees a Java thread in native, it does
   164   //     not wait for this thread to block.  The order of the memory
   165   //     writes and reads of both the safepoint state and the Java
   166   //     threads state is critical.  In order to guarantee that the
   167   //     memory writes are serialized with respect to each other,
   168   //     the VM thread issues a memory barrier instruction
   169   //     (on MP systems).  In order to avoid the overhead of issuing
   170   //     a memory barrier for each Java thread making native calls, each Java
   171   //     thread performs a write to a single memory page after changing
   172   //     the thread state.  The VM thread performs a sequence of
   173   //     mprotect OS calls which forces all previous writes from all
   174   //     Java threads to be serialized.  This is done in the
   175   //     os::serialize_thread_states() call.  This has proven to be
   176   //     much more efficient than executing a membar instruction
   177   //     on every call to native code.
   178   //  3. Running compiled Code
   179   //     Compiled code reads a global (Safepoint Polling) page that
   180   //     is set to fault if we are trying to get to a safepoint.
   181   //  4. Blocked
   182   //     A thread which is blocked will not be allowed to return from the
   183   //     block condition until the safepoint operation is complete.
   184   //  5. In VM or Transitioning between states
   185   //     If a Java thread is currently running in the VM or transitioning
   186   //     between states, the safepointing code will wait for the thread to
   187   //     block itself when it attempts transitions to a new state.
   188   //
   189   _state            = _synchronizing;
   190   OrderAccess::fence();
   192   // Flush all thread states to memory
   193   if (!UseMembar) {
   194     os::serialize_thread_states();
   195   }
   197   // Make interpreter safepoint aware
   198   Interpreter::notice_safepoints();
   200   if (UseCompilerSafepoints && DeferPollingPageLoopCount < 0) {
   201     // Make polling safepoint aware
   202     guarantee (PageArmed == 0, "invariant") ;
   203     PageArmed = 1 ;
   204     os::make_polling_page_unreadable();
   205   }
   207   // Consider using active_processor_count() ... but that call is expensive.
   208   int ncpus = os::processor_count() ;
   210 #ifdef ASSERT
   211   for (JavaThread *cur = Threads::first(); cur != NULL; cur = cur->next()) {
   212     assert(cur->safepoint_state()->is_running(), "Illegal initial state");
   213     // Clear the visited flag to ensure that the critical counts are collected properly.
   214     cur->set_visited_for_critical_count(false);
   215   }
   216 #endif // ASSERT
   218   if (SafepointTimeout)
   219     safepoint_limit_time = os::javaTimeNanos() + (jlong)SafepointTimeoutDelay * MICROUNITS;
   221   // Iterate through all threads until it have been determined how to stop them all at a safepoint
   222   unsigned int iterations = 0;
   223   int steps = 0 ;
   224   while(still_running > 0) {
   225     for (JavaThread *cur = Threads::first(); cur != NULL; cur = cur->next()) {
   226       assert(!cur->is_ConcurrentGC_thread(), "A concurrent GC thread is unexpectly being suspended");
   227       ThreadSafepointState *cur_state = cur->safepoint_state();
   228       if (cur_state->is_running()) {
   229         cur_state->examine_state_of_thread();
   230         if (!cur_state->is_running()) {
   231            still_running--;
   232            // consider adjusting steps downward:
   233            //   steps = 0
   234            //   steps -= NNN
   235            //   steps >>= 1
   236            //   steps = MIN(steps, 2000-100)
   237            //   if (iterations != 0) steps -= NNN
   238         }
   239         if (TraceSafepoint && Verbose) cur_state->print();
   240       }
   241     }
   243     if (PrintSafepointStatistics && iterations == 0) {
   244       begin_statistics(nof_threads, still_running);
   245     }
   247     if (still_running > 0) {
   248       // Check for if it takes to long
   249       if (SafepointTimeout && safepoint_limit_time < os::javaTimeNanos()) {
   250         print_safepoint_timeout(_spinning_timeout);
   251       }
   253       // Spin to avoid context switching.
   254       // There's a tension between allowing the mutators to run (and rendezvous)
   255       // vs spinning.  As the VM thread spins, wasting cycles, it consumes CPU that
   256       // a mutator might otherwise use profitably to reach a safepoint.  Excessive
   257       // spinning by the VM thread on a saturated system can increase rendezvous latency.
   258       // Blocking or yielding incur their own penalties in the form of context switching
   259       // and the resultant loss of $ residency.
   260       //
   261       // Further complicating matters is that yield() does not work as naively expected
   262       // on many platforms -- yield() does not guarantee that any other ready threads
   263       // will run.   As such we revert yield_all() after some number of iterations.
   264       // Yield_all() is implemented as a short unconditional sleep on some platforms.
   265       // Typical operating systems round a "short" sleep period up to 10 msecs, so sleeping
   266       // can actually increase the time it takes the VM thread to detect that a system-wide
   267       // stop-the-world safepoint has been reached.  In a pathological scenario such as that
   268       // described in CR6415670 the VMthread may sleep just before the mutator(s) become safe.
   269       // In that case the mutators will be stalled waiting for the safepoint to complete and the
   270       // the VMthread will be sleeping, waiting for the mutators to rendezvous.  The VMthread
   271       // will eventually wake up and detect that all mutators are safe, at which point
   272       // we'll again make progress.
   273       //
   274       // Beware too that that the VMThread typically runs at elevated priority.
   275       // Its default priority is higher than the default mutator priority.
   276       // Obviously, this complicates spinning.
   277       //
   278       // Note too that on Windows XP SwitchThreadTo() has quite different behavior than Sleep(0).
   279       // Sleep(0) will _not yield to lower priority threads, while SwitchThreadTo() will.
   280       //
   281       // See the comments in synchronizer.cpp for additional remarks on spinning.
   282       //
   283       // In the future we might:
   284       // 1. Modify the safepoint scheme to avoid potentally unbounded spinning.
   285       //    This is tricky as the path used by a thread exiting the JVM (say on
   286       //    on JNI call-out) simply stores into its state field.  The burden
   287       //    is placed on the VM thread, which must poll (spin).
   288       // 2. Find something useful to do while spinning.  If the safepoint is GC-related
   289       //    we might aggressively scan the stacks of threads that are already safe.
   290       // 3. Use Solaris schedctl to examine the state of the still-running mutators.
   291       //    If all the mutators are ONPROC there's no reason to sleep or yield.
   292       // 4. YieldTo() any still-running mutators that are ready but OFFPROC.
   293       // 5. Check system saturation.  If the system is not fully saturated then
   294       //    simply spin and avoid sleep/yield.
   295       // 6. As still-running mutators rendezvous they could unpark the sleeping
   296       //    VMthread.  This works well for still-running mutators that become
   297       //    safe.  The VMthread must still poll for mutators that call-out.
   298       // 7. Drive the policy on time-since-begin instead of iterations.
   299       // 8. Consider making the spin duration a function of the # of CPUs:
   300       //    Spin = (((ncpus-1) * M) + K) + F(still_running)
   301       //    Alternately, instead of counting iterations of the outer loop
   302       //    we could count the # of threads visited in the inner loop, above.
   303       // 9. On windows consider using the return value from SwitchThreadTo()
   304       //    to drive subsequent spin/SwitchThreadTo()/Sleep(N) decisions.
   306       if (UseCompilerSafepoints && int(iterations) == DeferPollingPageLoopCount) {
   307          guarantee (PageArmed == 0, "invariant") ;
   308          PageArmed = 1 ;
   309          os::make_polling_page_unreadable();
   310       }
   312       // Instead of (ncpus > 1) consider either (still_running < (ncpus + EPSILON)) or
   313       // ((still_running + _waiting_to_block - TryingToBlock)) < ncpus)
   314       ++steps ;
   315       if (ncpus > 1 && steps < SafepointSpinBeforeYield) {
   316         SpinPause() ;     // MP-Polite spin
   317       } else
   318       if (steps < DeferThrSuspendLoopCount) {
   319         os::NakedYield() ;
   320       } else {
   321         os::yield_all(steps) ;
   322         // Alternately, the VM thread could transiently depress its scheduling priority or
   323         // transiently increase the priority of the tardy mutator(s).
   324       }
   326       iterations ++ ;
   327     }
   328     assert(iterations < (uint)max_jint, "We have been iterating in the safepoint loop too long");
   329   }
   330   assert(still_running == 0, "sanity check");
   332   if (PrintSafepointStatistics) {
   333     update_statistics_on_spin_end();
   334   }
   336   // wait until all threads are stopped
   337   while (_waiting_to_block > 0) {
   338     if (TraceSafepoint) tty->print_cr("Waiting for %d thread(s) to block", _waiting_to_block);
   339     if (!SafepointTimeout || timeout_error_printed) {
   340       Safepoint_lock->wait(true);  // true, means with no safepoint checks
   341     } else {
   342       // Compute remaining time
   343       jlong remaining_time = safepoint_limit_time - os::javaTimeNanos();
   345       // If there is no remaining time, then there is an error
   346       if (remaining_time < 0 || Safepoint_lock->wait(true, remaining_time / MICROUNITS)) {
   347         print_safepoint_timeout(_blocking_timeout);
   348       }
   349     }
   350   }
   351   assert(_waiting_to_block == 0, "sanity check");
   353 #ifndef PRODUCT
   354   if (SafepointTimeout) {
   355     jlong current_time = os::javaTimeNanos();
   356     if (safepoint_limit_time < current_time) {
   357       tty->print_cr("# SafepointSynchronize: Finished after "
   358                     INT64_FORMAT_W(6) " ms",
   359                     ((current_time - safepoint_limit_time) / MICROUNITS +
   360                      SafepointTimeoutDelay));
   361     }
   362   }
   363 #endif
   365   assert((_safepoint_counter & 0x1) == 0, "must be even");
   366   assert(Threads_lock->owned_by_self(), "must hold Threads_lock");
   367   _safepoint_counter ++;
   369   // Record state
   370   _state = _synchronized;
   372   OrderAccess::fence();
   374 #ifdef ASSERT
   375   for (JavaThread *cur = Threads::first(); cur != NULL; cur = cur->next()) {
   376     // make sure all the threads were visited
   377     assert(cur->was_visited_for_critical_count(), "missed a thread");
   378   }
   379 #endif // ASSERT
   381   // Update the count of active JNI critical regions
   382   GC_locker::set_jni_lock_count(_current_jni_active_count);
   384   if (TraceSafepoint) {
   385     VM_Operation *op = VMThread::vm_operation();
   386     tty->print_cr("Entering safepoint region: %s", (op != NULL) ? op->name() : "no vm operation");
   387   }
   389   RuntimeService::record_safepoint_synchronized();
   390   if (PrintSafepointStatistics) {
   391     update_statistics_on_sync_end(os::javaTimeNanos());
   392   }
   394   // Call stuff that needs to be run when a safepoint is just about to be completed
   395   do_cleanup_tasks();
   397   if (PrintSafepointStatistics) {
   398     // Record how much time spend on the above cleanup tasks
   399     update_statistics_on_cleanup_end(os::javaTimeNanos());
   400   }
   401 }
   403 // Wake up all threads, so they are ready to resume execution after the safepoint
   404 // operation has been carried out
   405 void SafepointSynchronize::end() {
   407   assert(Threads_lock->owned_by_self(), "must hold Threads_lock");
   408   assert((_safepoint_counter & 0x1) == 1, "must be odd");
   409   _safepoint_counter ++;
   410   // memory fence isn't required here since an odd _safepoint_counter
   411   // value can do no harm and a fence is issued below anyway.
   413   DEBUG_ONLY(Thread* myThread = Thread::current();)
   414   assert(myThread->is_VM_thread(), "Only VM thread can execute a safepoint");
   416   if (PrintSafepointStatistics) {
   417     end_statistics(os::javaTimeNanos());
   418   }
   420 #ifdef ASSERT
   421   // A pending_exception cannot be installed during a safepoint.  The threads
   422   // may install an async exception after they come back from a safepoint into
   423   // pending_exception after they unblock.  But that should happen later.
   424   for(JavaThread *cur = Threads::first(); cur; cur = cur->next()) {
   425     assert (!(cur->has_pending_exception() &&
   426               cur->safepoint_state()->is_at_poll_safepoint()),
   427             "safepoint installed a pending exception");
   428   }
   429 #endif // ASSERT
   431   if (PageArmed) {
   432     // Make polling safepoint aware
   433     os::make_polling_page_readable();
   434     PageArmed = 0 ;
   435   }
   437   // Remove safepoint check from interpreter
   438   Interpreter::ignore_safepoints();
   440   {
   441     MutexLocker mu(Safepoint_lock);
   443     assert(_state == _synchronized, "must be synchronized before ending safepoint synchronization");
   445     // Set to not synchronized, so the threads will not go into the signal_thread_blocked method
   446     // when they get restarted.
   447     _state = _not_synchronized;
   448     OrderAccess::fence();
   450     if (TraceSafepoint) {
   451        tty->print_cr("Leaving safepoint region");
   452     }
   454     // Start suspended threads
   455     for(JavaThread *current = Threads::first(); current; current = current->next()) {
   456       // A problem occurring on Solaris is when attempting to restart threads
   457       // the first #cpus - 1 go well, but then the VMThread is preempted when we get
   458       // to the next one (since it has been running the longest).  We then have
   459       // to wait for a cpu to become available before we can continue restarting
   460       // threads.
   461       // FIXME: This causes the performance of the VM to degrade when active and with
   462       // large numbers of threads.  Apparently this is due to the synchronous nature
   463       // of suspending threads.
   464       //
   465       // TODO-FIXME: the comments above are vestigial and no longer apply.
   466       // Furthermore, using solaris' schedctl in this particular context confers no benefit
   467       if (VMThreadHintNoPreempt) {
   468         os::hint_no_preempt();
   469       }
   470       ThreadSafepointState* cur_state = current->safepoint_state();
   471       assert(cur_state->type() != ThreadSafepointState::_running, "Thread not suspended at safepoint");
   472       cur_state->restart();
   473       assert(cur_state->is_running(), "safepoint state has not been reset");
   474     }
   476     RuntimeService::record_safepoint_end();
   478     // Release threads lock, so threads can be created/destroyed again. It will also starts all threads
   479     // blocked in signal_thread_blocked
   480     Threads_lock->unlock();
   482   }
   483 #ifndef SERIALGC
   484   // If there are any concurrent GC threads resume them.
   485   if (UseConcMarkSweepGC) {
   486     ConcurrentMarkSweepThread::desynchronize(false);
   487   } else if (UseG1GC) {
   488     ConcurrentGCThread::safepoint_desynchronize();
   489   }
   490 #endif // SERIALGC
   491   // record this time so VMThread can keep track how much time has elasped
   492   // since last safepoint.
   493   _end_of_last_safepoint = os::javaTimeMillis();
   494 }
   496 bool SafepointSynchronize::is_cleanup_needed() {
   497   // Need a safepoint if some inline cache buffers is non-empty
   498   if (!InlineCacheBuffer::is_empty()) return true;
   499   return false;
   500 }
   504 // Various cleaning tasks that should be done periodically at safepoints
   505 void SafepointSynchronize::do_cleanup_tasks() {
   506   {
   507     TraceTime t1("deflating idle monitors", TraceSafepointCleanupTime);
   508     ObjectSynchronizer::deflate_idle_monitors();
   509   }
   511   {
   512     TraceTime t2("updating inline caches", TraceSafepointCleanupTime);
   513     InlineCacheBuffer::update_inline_caches();
   514   }
   515   {
   516     TraceTime t3("compilation policy safepoint handler", TraceSafepointCleanupTime);
   517     CompilationPolicy::policy()->do_safepoint_work();
   518   }
   520   {
   521     TraceTime t4("sweeping nmethods", TraceSafepointCleanupTime);
   522     NMethodSweeper::scan_stacks();
   523   }
   525   if (SymbolTable::needs_rehashing()) {
   526     TraceTime t5("rehashing symbol table", TraceSafepointCleanupTime);
   527     SymbolTable::rehash_table();
   528   }
   530   if (StringTable::needs_rehashing()) {
   531     TraceTime t6("rehashing string table", TraceSafepointCleanupTime);
   532     StringTable::rehash_table();
   533   }
   535   // rotate log files?
   536   if (UseGCLogFileRotation) {
   537     gclog_or_tty->rotate_log();
   538   }
   540   if (MemTracker::is_on()) {
   541     MemTracker::sync();
   542   }
   543 }
   546 bool SafepointSynchronize::safepoint_safe(JavaThread *thread, JavaThreadState state) {
   547   switch(state) {
   548   case _thread_in_native:
   549     // native threads are safe if they have no java stack or have walkable stack
   550     return !thread->has_last_Java_frame() || thread->frame_anchor()->walkable();
   552    // blocked threads should have already have walkable stack
   553   case _thread_blocked:
   554     assert(!thread->has_last_Java_frame() || thread->frame_anchor()->walkable(), "blocked and not walkable");
   555     return true;
   557   default:
   558     return false;
   559   }
   560 }
   563 // See if the thread is running inside a lazy critical native and
   564 // update the thread critical count if so.  Also set a suspend flag to
   565 // cause the native wrapper to return into the JVM to do the unlock
   566 // once the native finishes.
   567 void SafepointSynchronize::check_for_lazy_critical_native(JavaThread *thread, JavaThreadState state) {
   568   if (state == _thread_in_native &&
   569       thread->has_last_Java_frame() &&
   570       thread->frame_anchor()->walkable()) {
   571     // This thread might be in a critical native nmethod so look at
   572     // the top of the stack and increment the critical count if it
   573     // is.
   574     frame wrapper_frame = thread->last_frame();
   575     CodeBlob* stub_cb = wrapper_frame.cb();
   576     if (stub_cb != NULL &&
   577         stub_cb->is_nmethod() &&
   578         stub_cb->as_nmethod_or_null()->is_lazy_critical_native()) {
   579       // A thread could potentially be in a critical native across
   580       // more than one safepoint, so only update the critical state on
   581       // the first one.  When it returns it will perform the unlock.
   582       if (!thread->do_critical_native_unlock()) {
   583 #ifdef ASSERT
   584         if (!thread->in_critical()) {
   585           GC_locker::increment_debug_jni_lock_count();
   586         }
   587 #endif
   588         thread->enter_critical();
   589         // Make sure the native wrapper calls back on return to
   590         // perform the needed critical unlock.
   591         thread->set_critical_native_unlock();
   592       }
   593     }
   594   }
   595 }
   599 // -------------------------------------------------------------------------------------------------------
   600 // Implementation of Safepoint callback point
   602 void SafepointSynchronize::block(JavaThread *thread) {
   603   assert(thread != NULL, "thread must be set");
   604   assert(thread->is_Java_thread(), "not a Java thread");
   606   // Threads shouldn't block if they are in the middle of printing, but...
   607   ttyLocker::break_tty_lock_for_safepoint(os::current_thread_id());
   609   // Only bail from the block() call if the thread is gone from the
   610   // thread list; starting to exit should still block.
   611   if (thread->is_terminated()) {
   612      // block current thread if we come here from native code when VM is gone
   613      thread->block_if_vm_exited();
   615      // otherwise do nothing
   616      return;
   617   }
   619   JavaThreadState state = thread->thread_state();
   620   thread->frame_anchor()->make_walkable(thread);
   622   // Check that we have a valid thread_state at this point
   623   switch(state) {
   624     case _thread_in_vm_trans:
   625     case _thread_in_Java:        // From compiled code
   627       // We are highly likely to block on the Safepoint_lock. In order to avoid blocking in this case,
   628       // we pretend we are still in the VM.
   629       thread->set_thread_state(_thread_in_vm);
   631       if (is_synchronizing()) {
   632          Atomic::inc (&TryingToBlock) ;
   633       }
   635       // We will always be holding the Safepoint_lock when we are examine the state
   636       // of a thread. Hence, the instructions between the Safepoint_lock->lock() and
   637       // Safepoint_lock->unlock() are happening atomic with regards to the safepoint code
   638       Safepoint_lock->lock_without_safepoint_check();
   639       if (is_synchronizing()) {
   640         // Decrement the number of threads to wait for and signal vm thread
   641         assert(_waiting_to_block > 0, "sanity check");
   642         _waiting_to_block--;
   643         thread->safepoint_state()->set_has_called_back(true);
   645         DEBUG_ONLY(thread->set_visited_for_critical_count(true));
   646         if (thread->in_critical()) {
   647           // Notice that this thread is in a critical section
   648           increment_jni_active_count();
   649         }
   651         // Consider (_waiting_to_block < 2) to pipeline the wakeup of the VM thread
   652         if (_waiting_to_block == 0) {
   653           Safepoint_lock->notify_all();
   654         }
   655       }
   657       // We transition the thread to state _thread_blocked here, but
   658       // we can't do our usual check for external suspension and then
   659       // self-suspend after the lock_without_safepoint_check() call
   660       // below because we are often called during transitions while
   661       // we hold different locks. That would leave us suspended while
   662       // holding a resource which results in deadlocks.
   663       thread->set_thread_state(_thread_blocked);
   664       Safepoint_lock->unlock();
   666       // We now try to acquire the threads lock. Since this lock is hold by the VM thread during
   667       // the entire safepoint, the threads will all line up here during the safepoint.
   668       Threads_lock->lock_without_safepoint_check();
   669       // restore original state. This is important if the thread comes from compiled code, so it
   670       // will continue to execute with the _thread_in_Java state.
   671       thread->set_thread_state(state);
   672       Threads_lock->unlock();
   673       break;
   675     case _thread_in_native_trans:
   676     case _thread_blocked_trans:
   677     case _thread_new_trans:
   678       if (thread->safepoint_state()->type() == ThreadSafepointState::_call_back) {
   679         thread->print_thread_state();
   680         fatal("Deadlock in safepoint code.  "
   681               "Should have called back to the VM before blocking.");
   682       }
   684       // We transition the thread to state _thread_blocked here, but
   685       // we can't do our usual check for external suspension and then
   686       // self-suspend after the lock_without_safepoint_check() call
   687       // below because we are often called during transitions while
   688       // we hold different locks. That would leave us suspended while
   689       // holding a resource which results in deadlocks.
   690       thread->set_thread_state(_thread_blocked);
   692       // It is not safe to suspend a thread if we discover it is in _thread_in_native_trans. Hence,
   693       // the safepoint code might still be waiting for it to block. We need to change the state here,
   694       // so it can see that it is at a safepoint.
   696       // Block until the safepoint operation is completed.
   697       Threads_lock->lock_without_safepoint_check();
   699       // Restore state
   700       thread->set_thread_state(state);
   702       Threads_lock->unlock();
   703       break;
   705     default:
   706      fatal(err_msg("Illegal threadstate encountered: %d", state));
   707   }
   709   // Check for pending. async. exceptions or suspends - except if the
   710   // thread was blocked inside the VM. has_special_runtime_exit_condition()
   711   // is called last since it grabs a lock and we only want to do that when
   712   // we must.
   713   //
   714   // Note: we never deliver an async exception at a polling point as the
   715   // compiler may not have an exception handler for it. The polling
   716   // code will notice the async and deoptimize and the exception will
   717   // be delivered. (Polling at a return point is ok though). Sure is
   718   // a lot of bother for a deprecated feature...
   719   //
   720   // We don't deliver an async exception if the thread state is
   721   // _thread_in_native_trans so JNI functions won't be called with
   722   // a surprising pending exception. If the thread state is going back to java,
   723   // async exception is checked in check_special_condition_for_native_trans().
   725   if (state != _thread_blocked_trans &&
   726       state != _thread_in_vm_trans &&
   727       thread->has_special_runtime_exit_condition()) {
   728     thread->handle_special_runtime_exit_condition(
   729       !thread->is_at_poll_safepoint() && (state != _thread_in_native_trans));
   730   }
   731 }
   733 // ------------------------------------------------------------------------------------------------------
   734 // Exception handlers
   736 #ifndef PRODUCT
   737 #ifdef _LP64
   738 #define PTR_PAD ""
   739 #else
   740 #define PTR_PAD "        "
   741 #endif
   743 static void print_ptrs(intptr_t oldptr, intptr_t newptr, bool wasoop) {
   744   bool is_oop = newptr ? ((oop)newptr)->is_oop() : false;
   745   tty->print_cr(PTR_FORMAT PTR_PAD " %s %c " PTR_FORMAT PTR_PAD " %s %s",
   746                 oldptr, wasoop?"oop":"   ", oldptr == newptr ? ' ' : '!',
   747                 newptr, is_oop?"oop":"   ", (wasoop && !is_oop) ? "STALE" : ((wasoop==false&&is_oop==false&&oldptr !=newptr)?"STOMP":"     "));
   748 }
   750 static void print_longs(jlong oldptr, jlong newptr, bool wasoop) {
   751   bool is_oop = newptr ? ((oop)(intptr_t)newptr)->is_oop() : false;
   752   tty->print_cr(PTR64_FORMAT " %s %c " PTR64_FORMAT " %s %s",
   753                 oldptr, wasoop?"oop":"   ", oldptr == newptr ? ' ' : '!',
   754                 newptr, is_oop?"oop":"   ", (wasoop && !is_oop) ? "STALE" : ((wasoop==false&&is_oop==false&&oldptr !=newptr)?"STOMP":"     "));
   755 }
   757 #ifdef SPARC
   758 static void print_me(intptr_t *new_sp, intptr_t *old_sp, bool *was_oops) {
   759 #ifdef _LP64
   760   tty->print_cr("--------+------address-----+------before-----------+-------after----------+");
   761   const int incr = 1;           // Increment to skip a long, in units of intptr_t
   762 #else
   763   tty->print_cr("--------+--address-+------before-----------+-------after----------+");
   764   const int incr = 2;           // Increment to skip a long, in units of intptr_t
   765 #endif
   766   tty->print_cr("---SP---|");
   767   for( int i=0; i<16; i++ ) {
   768     tty->print("blob %c%d |"PTR_FORMAT" ","LO"[i>>3],i&7,new_sp); print_ptrs(*old_sp++,*new_sp++,*was_oops++); }
   769   tty->print_cr("--------|");
   770   for( int i1=0; i1<frame::memory_parameter_word_sp_offset-16; i1++ ) {
   771     tty->print("argv pad|"PTR_FORMAT" ",new_sp); print_ptrs(*old_sp++,*new_sp++,*was_oops++); }
   772   tty->print("     pad|"PTR_FORMAT" ",new_sp); print_ptrs(*old_sp++,*new_sp++,*was_oops++);
   773   tty->print_cr("--------|");
   774   tty->print(" G1     |"PTR_FORMAT" ",new_sp); print_longs(*(jlong*)old_sp,*(jlong*)new_sp,was_oops[incr-1]); old_sp += incr; new_sp += incr; was_oops += incr;
   775   tty->print(" G3     |"PTR_FORMAT" ",new_sp); print_longs(*(jlong*)old_sp,*(jlong*)new_sp,was_oops[incr-1]); old_sp += incr; new_sp += incr; was_oops += incr;
   776   tty->print(" G4     |"PTR_FORMAT" ",new_sp); print_longs(*(jlong*)old_sp,*(jlong*)new_sp,was_oops[incr-1]); old_sp += incr; new_sp += incr; was_oops += incr;
   777   tty->print(" G5     |"PTR_FORMAT" ",new_sp); print_longs(*(jlong*)old_sp,*(jlong*)new_sp,was_oops[incr-1]); old_sp += incr; new_sp += incr; was_oops += incr;
   778   tty->print_cr(" FSR    |"PTR_FORMAT" "PTR64_FORMAT"       "PTR64_FORMAT,new_sp,*(jlong*)old_sp,*(jlong*)new_sp);
   779   old_sp += incr; new_sp += incr; was_oops += incr;
   780   // Skip the floats
   781   tty->print_cr("--Float-|"PTR_FORMAT,new_sp);
   782   tty->print_cr("---FP---|");
   783   old_sp += incr*32;  new_sp += incr*32;  was_oops += incr*32;
   784   for( int i2=0; i2<16; i2++ ) {
   785     tty->print("call %c%d |"PTR_FORMAT" ","LI"[i2>>3],i2&7,new_sp); print_ptrs(*old_sp++,*new_sp++,*was_oops++); }
   786   tty->print_cr("");
   787 }
   788 #endif  // SPARC
   789 #endif  // PRODUCT
   792 void SafepointSynchronize::handle_polling_page_exception(JavaThread *thread) {
   793   assert(thread->is_Java_thread(), "polling reference encountered by VM thread");
   794   assert(thread->thread_state() == _thread_in_Java, "should come from Java code");
   795   assert(SafepointSynchronize::is_synchronizing(), "polling encountered outside safepoint synchronization");
   797   // Uncomment this to get some serious before/after printing of the
   798   // Sparc safepoint-blob frame structure.
   799   /*
   800   intptr_t* sp = thread->last_Java_sp();
   801   intptr_t stack_copy[150];
   802   for( int i=0; i<150; i++ ) stack_copy[i] = sp[i];
   803   bool was_oops[150];
   804   for( int i=0; i<150; i++ )
   805     was_oops[i] = stack_copy[i] ? ((oop)stack_copy[i])->is_oop() : false;
   806   */
   808   if (ShowSafepointMsgs) {
   809     tty->print("handle_polling_page_exception: ");
   810   }
   812   if (PrintSafepointStatistics) {
   813     inc_page_trap_count();
   814   }
   816   ThreadSafepointState* state = thread->safepoint_state();
   818   state->handle_polling_page_exception();
   819   // print_me(sp,stack_copy,was_oops);
   820 }
   823 void SafepointSynchronize::print_safepoint_timeout(SafepointTimeoutReason reason) {
   824   if (!timeout_error_printed) {
   825     timeout_error_printed = true;
   826     // Print out the thread infor which didn't reach the safepoint for debugging
   827     // purposes (useful when there are lots of threads in the debugger).
   828     tty->print_cr("");
   829     tty->print_cr("# SafepointSynchronize::begin: Timeout detected:");
   830     if (reason ==  _spinning_timeout) {
   831       tty->print_cr("# SafepointSynchronize::begin: Timed out while spinning to reach a safepoint.");
   832     } else if (reason == _blocking_timeout) {
   833       tty->print_cr("# SafepointSynchronize::begin: Timed out while waiting for threads to stop.");
   834     }
   836     tty->print_cr("# SafepointSynchronize::begin: Threads which did not reach the safepoint:");
   837     ThreadSafepointState *cur_state;
   838     ResourceMark rm;
   839     for(JavaThread *cur_thread = Threads::first(); cur_thread;
   840         cur_thread = cur_thread->next()) {
   841       cur_state = cur_thread->safepoint_state();
   843       if (cur_thread->thread_state() != _thread_blocked &&
   844           ((reason == _spinning_timeout && cur_state->is_running()) ||
   845            (reason == _blocking_timeout && !cur_state->has_called_back()))) {
   846         tty->print("# ");
   847         cur_thread->print();
   848         tty->print_cr("");
   849       }
   850     }
   851     tty->print_cr("# SafepointSynchronize::begin: (End of list)");
   852   }
   854   // To debug the long safepoint, specify both DieOnSafepointTimeout &
   855   // ShowMessageBoxOnError.
   856   if (DieOnSafepointTimeout) {
   857     char msg[1024];
   858     VM_Operation *op = VMThread::vm_operation();
   859     sprintf(msg, "Safepoint sync time longer than " INTX_FORMAT "ms detected when executing %s.",
   860             SafepointTimeoutDelay,
   861             op != NULL ? op->name() : "no vm operation");
   862     fatal(msg);
   863   }
   864 }
   867 // -------------------------------------------------------------------------------------------------------
   868 // Implementation of ThreadSafepointState
   870 ThreadSafepointState::ThreadSafepointState(JavaThread *thread) {
   871   _thread = thread;
   872   _type   = _running;
   873   _has_called_back = false;
   874   _at_poll_safepoint = false;
   875 }
   877 void ThreadSafepointState::create(JavaThread *thread) {
   878   ThreadSafepointState *state = new ThreadSafepointState(thread);
   879   thread->set_safepoint_state(state);
   880 }
   882 void ThreadSafepointState::destroy(JavaThread *thread) {
   883   if (thread->safepoint_state()) {
   884     delete(thread->safepoint_state());
   885     thread->set_safepoint_state(NULL);
   886   }
   887 }
   889 void ThreadSafepointState::examine_state_of_thread() {
   890   assert(is_running(), "better be running or just have hit safepoint poll");
   892   JavaThreadState state = _thread->thread_state();
   894   // Save the state at the start of safepoint processing.
   895   _orig_thread_state = state;
   897   // Check for a thread that is suspended. Note that thread resume tries
   898   // to grab the Threads_lock which we own here, so a thread cannot be
   899   // resumed during safepoint synchronization.
   901   // We check to see if this thread is suspended without locking to
   902   // avoid deadlocking with a third thread that is waiting for this
   903   // thread to be suspended. The third thread can notice the safepoint
   904   // that we're trying to start at the beginning of its SR_lock->wait()
   905   // call. If that happens, then the third thread will block on the
   906   // safepoint while still holding the underlying SR_lock. We won't be
   907   // able to get the SR_lock and we'll deadlock.
   908   //
   909   // We don't need to grab the SR_lock here for two reasons:
   910   // 1) The suspend flags are both volatile and are set with an
   911   //    Atomic::cmpxchg() call so we should see the suspended
   912   //    state right away.
   913   // 2) We're being called from the safepoint polling loop; if
   914   //    we don't see the suspended state on this iteration, then
   915   //    we'll come around again.
   916   //
   917   bool is_suspended = _thread->is_ext_suspended();
   918   if (is_suspended) {
   919     roll_forward(_at_safepoint);
   920     return;
   921   }
   923   // Some JavaThread states have an initial safepoint state of
   924   // running, but are actually at a safepoint. We will happily
   925   // agree and update the safepoint state here.
   926   if (SafepointSynchronize::safepoint_safe(_thread, state)) {
   927     SafepointSynchronize::check_for_lazy_critical_native(_thread, state);
   928     roll_forward(_at_safepoint);
   929     return;
   930   }
   932   if (state == _thread_in_vm) {
   933     roll_forward(_call_back);
   934     return;
   935   }
   937   // All other thread states will continue to run until they
   938   // transition and self-block in state _blocked
   939   // Safepoint polling in compiled code causes the Java threads to do the same.
   940   // Note: new threads may require a malloc so they must be allowed to finish
   942   assert(is_running(), "examine_state_of_thread on non-running thread");
   943   return;
   944 }
   946 // Returns true is thread could not be rolled forward at present position.
   947 void ThreadSafepointState::roll_forward(suspend_type type) {
   948   _type = type;
   950   switch(_type) {
   951     case _at_safepoint:
   952       SafepointSynchronize::signal_thread_at_safepoint();
   953       DEBUG_ONLY(_thread->set_visited_for_critical_count(true));
   954       if (_thread->in_critical()) {
   955         // Notice that this thread is in a critical section
   956         SafepointSynchronize::increment_jni_active_count();
   957       }
   958       break;
   960     case _call_back:
   961       set_has_called_back(false);
   962       break;
   964     case _running:
   965     default:
   966       ShouldNotReachHere();
   967   }
   968 }
   970 void ThreadSafepointState::restart() {
   971   switch(type()) {
   972     case _at_safepoint:
   973     case _call_back:
   974       break;
   976     case _running:
   977     default:
   978        tty->print_cr("restart thread "INTPTR_FORMAT" with state %d",
   979                       _thread, _type);
   980        _thread->print();
   981       ShouldNotReachHere();
   982   }
   983   _type = _running;
   984   set_has_called_back(false);
   985 }
   988 void ThreadSafepointState::print_on(outputStream *st) const {
   989   const char *s;
   991   switch(_type) {
   992     case _running                : s = "_running";              break;
   993     case _at_safepoint           : s = "_at_safepoint";         break;
   994     case _call_back              : s = "_call_back";            break;
   995     default:
   996       ShouldNotReachHere();
   997   }
   999   st->print_cr("Thread: " INTPTR_FORMAT
  1000               "  [0x%2x] State: %s _has_called_back %d _at_poll_safepoint %d",
  1001                _thread, _thread->osthread()->thread_id(), s, _has_called_back,
  1002                _at_poll_safepoint);
  1004   _thread->print_thread_state_on(st);
  1008 // ---------------------------------------------------------------------------------------------------------------------
  1010 // Block the thread at the safepoint poll or poll return.
  1011 void ThreadSafepointState::handle_polling_page_exception() {
  1013   // Check state.  block() will set thread state to thread_in_vm which will
  1014   // cause the safepoint state _type to become _call_back.
  1015   assert(type() == ThreadSafepointState::_running,
  1016          "polling page exception on thread not running state");
  1018   // Step 1: Find the nmethod from the return address
  1019   if (ShowSafepointMsgs && Verbose) {
  1020     tty->print_cr("Polling page exception at " INTPTR_FORMAT, thread()->saved_exception_pc());
  1022   address real_return_addr = thread()->saved_exception_pc();
  1024   CodeBlob *cb = CodeCache::find_blob(real_return_addr);
  1025   assert(cb != NULL && cb->is_nmethod(), "return address should be in nmethod");
  1026   nmethod* nm = (nmethod*)cb;
  1028   // Find frame of caller
  1029   frame stub_fr = thread()->last_frame();
  1030   CodeBlob* stub_cb = stub_fr.cb();
  1031   assert(stub_cb->is_safepoint_stub(), "must be a safepoint stub");
  1032   RegisterMap map(thread(), true);
  1033   frame caller_fr = stub_fr.sender(&map);
  1035   // Should only be poll_return or poll
  1036   assert( nm->is_at_poll_or_poll_return(real_return_addr), "should not be at call" );
  1038   // This is a poll immediately before a return. The exception handling code
  1039   // has already had the effect of causing the return to occur, so the execution
  1040   // will continue immediately after the call. In addition, the oopmap at the
  1041   // return point does not mark the return value as an oop (if it is), so
  1042   // it needs a handle here to be updated.
  1043   if( nm->is_at_poll_return(real_return_addr) ) {
  1044     // See if return type is an oop.
  1045     bool return_oop = nm->method()->is_returning_oop();
  1046     Handle return_value;
  1047     if (return_oop) {
  1048       // The oop result has been saved on the stack together with all
  1049       // the other registers. In order to preserve it over GCs we need
  1050       // to keep it in a handle.
  1051       oop result = caller_fr.saved_oop_result(&map);
  1052       assert(result == NULL || result->is_oop(), "must be oop");
  1053       return_value = Handle(thread(), result);
  1054       assert(Universe::heap()->is_in_or_null(result), "must be heap pointer");
  1057     // Block the thread
  1058     SafepointSynchronize::block(thread());
  1060     // restore oop result, if any
  1061     if (return_oop) {
  1062       caller_fr.set_saved_oop_result(&map, return_value());
  1066   // This is a safepoint poll. Verify the return address and block.
  1067   else {
  1068     set_at_poll_safepoint(true);
  1070     // verify the blob built the "return address" correctly
  1071     assert(real_return_addr == caller_fr.pc(), "must match");
  1073     // Block the thread
  1074     SafepointSynchronize::block(thread());
  1075     set_at_poll_safepoint(false);
  1077     // If we have a pending async exception deoptimize the frame
  1078     // as otherwise we may never deliver it.
  1079     if (thread()->has_async_condition()) {
  1080       ThreadInVMfromJavaNoAsyncException __tiv(thread());
  1081       Deoptimization::deoptimize_frame(thread(), caller_fr.id());
  1084     // If an exception has been installed we must check for a pending deoptimization
  1085     // Deoptimize frame if exception has been thrown.
  1087     if (thread()->has_pending_exception() ) {
  1088       RegisterMap map(thread(), true);
  1089       frame caller_fr = stub_fr.sender(&map);
  1090       if (caller_fr.is_deoptimized_frame()) {
  1091         // The exception patch will destroy registers that are still
  1092         // live and will be needed during deoptimization. Defer the
  1093         // Async exception should have defered the exception until the
  1094         // next safepoint which will be detected when we get into
  1095         // the interpreter so if we have an exception now things
  1096         // are messed up.
  1098         fatal("Exception installed and deoptimization is pending");
  1105 //
  1106 //                     Statistics & Instrumentations
  1107 //
  1108 SafepointSynchronize::SafepointStats*  SafepointSynchronize::_safepoint_stats = NULL;
  1109 jlong  SafepointSynchronize::_safepoint_begin_time = 0;
  1110 int    SafepointSynchronize::_cur_stat_index = 0;
  1111 julong SafepointSynchronize::_safepoint_reasons[VM_Operation::VMOp_Terminating];
  1112 julong SafepointSynchronize::_coalesced_vmop_count = 0;
  1113 jlong  SafepointSynchronize::_max_sync_time = 0;
  1114 jlong  SafepointSynchronize::_max_vmop_time = 0;
  1115 float  SafepointSynchronize::_ts_of_current_safepoint = 0.0f;
  1117 static jlong  cleanup_end_time = 0;
  1118 static bool   need_to_track_page_armed_status = false;
  1119 static bool   init_done = false;
  1121 // Helper method to print the header.
  1122 static void print_header() {
  1123   tty->print("         vmop                    "
  1124              "[threads: total initially_running wait_to_block]    ");
  1125   tty->print("[time: spin block sync cleanup vmop] ");
  1127   // no page armed status printed out if it is always armed.
  1128   if (need_to_track_page_armed_status) {
  1129     tty->print("page_armed ");
  1132   tty->print_cr("page_trap_count");
  1135 void SafepointSynchronize::deferred_initialize_stat() {
  1136   if (init_done) return;
  1138   if (PrintSafepointStatisticsCount <= 0) {
  1139     fatal("Wrong PrintSafepointStatisticsCount");
  1142   // If PrintSafepointStatisticsTimeout is specified, the statistics data will
  1143   // be printed right away, in which case, _safepoint_stats will regress to
  1144   // a single element array. Otherwise, it is a circular ring buffer with default
  1145   // size of PrintSafepointStatisticsCount.
  1146   int stats_array_size;
  1147   if (PrintSafepointStatisticsTimeout > 0) {
  1148     stats_array_size = 1;
  1149     PrintSafepointStatistics = true;
  1150   } else {
  1151     stats_array_size = PrintSafepointStatisticsCount;
  1153   _safepoint_stats = (SafepointStats*)os::malloc(stats_array_size
  1154                                                  * sizeof(SafepointStats), mtInternal);
  1155   guarantee(_safepoint_stats != NULL,
  1156             "not enough memory for safepoint instrumentation data");
  1158   if (UseCompilerSafepoints && DeferPollingPageLoopCount >= 0) {
  1159     need_to_track_page_armed_status = true;
  1161   init_done = true;
  1164 void SafepointSynchronize::begin_statistics(int nof_threads, int nof_running) {
  1165   assert(init_done, "safepoint statistics array hasn't been initialized");
  1166   SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
  1168   spstat->_time_stamp = _ts_of_current_safepoint;
  1170   VM_Operation *op = VMThread::vm_operation();
  1171   spstat->_vmop_type = (op != NULL ? op->type() : -1);
  1172   if (op != NULL) {
  1173     _safepoint_reasons[spstat->_vmop_type]++;
  1176   spstat->_nof_total_threads = nof_threads;
  1177   spstat->_nof_initial_running_threads = nof_running;
  1178   spstat->_nof_threads_hit_page_trap = 0;
  1180   // Records the start time of spinning. The real time spent on spinning
  1181   // will be adjusted when spin is done. Same trick is applied for time
  1182   // spent on waiting for threads to block.
  1183   if (nof_running != 0) {
  1184     spstat->_time_to_spin = os::javaTimeNanos();
  1185   }  else {
  1186     spstat->_time_to_spin = 0;
  1190 void SafepointSynchronize::update_statistics_on_spin_end() {
  1191   SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
  1193   jlong cur_time = os::javaTimeNanos();
  1195   spstat->_nof_threads_wait_to_block = _waiting_to_block;
  1196   if (spstat->_nof_initial_running_threads != 0) {
  1197     spstat->_time_to_spin = cur_time - spstat->_time_to_spin;
  1200   if (need_to_track_page_armed_status) {
  1201     spstat->_page_armed = (PageArmed == 1);
  1204   // Records the start time of waiting for to block. Updated when block is done.
  1205   if (_waiting_to_block != 0) {
  1206     spstat->_time_to_wait_to_block = cur_time;
  1207   } else {
  1208     spstat->_time_to_wait_to_block = 0;
  1212 void SafepointSynchronize::update_statistics_on_sync_end(jlong end_time) {
  1213   SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
  1215   if (spstat->_nof_threads_wait_to_block != 0) {
  1216     spstat->_time_to_wait_to_block = end_time -
  1217       spstat->_time_to_wait_to_block;
  1220   // Records the end time of sync which will be used to calculate the total
  1221   // vm operation time. Again, the real time spending in syncing will be deducted
  1222   // from the start of the sync time later when end_statistics is called.
  1223   spstat->_time_to_sync = end_time - _safepoint_begin_time;
  1224   if (spstat->_time_to_sync > _max_sync_time) {
  1225     _max_sync_time = spstat->_time_to_sync;
  1228   spstat->_time_to_do_cleanups = end_time;
  1231 void SafepointSynchronize::update_statistics_on_cleanup_end(jlong end_time) {
  1232   SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
  1234   // Record how long spent in cleanup tasks.
  1235   spstat->_time_to_do_cleanups = end_time - spstat->_time_to_do_cleanups;
  1237   cleanup_end_time = end_time;
  1240 void SafepointSynchronize::end_statistics(jlong vmop_end_time) {
  1241   SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
  1243   // Update the vm operation time.
  1244   spstat->_time_to_exec_vmop = vmop_end_time -  cleanup_end_time;
  1245   if (spstat->_time_to_exec_vmop > _max_vmop_time) {
  1246     _max_vmop_time = spstat->_time_to_exec_vmop;
  1248   // Only the sync time longer than the specified
  1249   // PrintSafepointStatisticsTimeout will be printed out right away.
  1250   // By default, it is -1 meaning all samples will be put into the list.
  1251   if ( PrintSafepointStatisticsTimeout > 0) {
  1252     if (spstat->_time_to_sync > PrintSafepointStatisticsTimeout * MICROUNITS) {
  1253       print_statistics();
  1255   } else {
  1256     // The safepoint statistics will be printed out when the _safepoin_stats
  1257     // array fills up.
  1258     if (_cur_stat_index == PrintSafepointStatisticsCount - 1) {
  1259       print_statistics();
  1260       _cur_stat_index = 0;
  1261     } else {
  1262       _cur_stat_index++;
  1267 void SafepointSynchronize::print_statistics() {
  1268   SafepointStats* sstats = _safepoint_stats;
  1270   for (int index = 0; index <= _cur_stat_index; index++) {
  1271     if (index % 30 == 0) {
  1272       print_header();
  1274     sstats = &_safepoint_stats[index];
  1275     tty->print("%.3f: ", sstats->_time_stamp);
  1276     tty->print("%-26s       ["
  1277                INT32_FORMAT_W(8)INT32_FORMAT_W(11)INT32_FORMAT_W(15)
  1278                "    ]    ",
  1279                sstats->_vmop_type == -1 ? "no vm operation" :
  1280                VM_Operation::name(sstats->_vmop_type),
  1281                sstats->_nof_total_threads,
  1282                sstats->_nof_initial_running_threads,
  1283                sstats->_nof_threads_wait_to_block);
  1284     // "/ MICROUNITS " is to convert the unit from nanos to millis.
  1285     tty->print("  ["
  1286                INT64_FORMAT_W(6)INT64_FORMAT_W(6)
  1287                INT64_FORMAT_W(6)INT64_FORMAT_W(6)
  1288                INT64_FORMAT_W(6)"    ]  ",
  1289                sstats->_time_to_spin / MICROUNITS,
  1290                sstats->_time_to_wait_to_block / MICROUNITS,
  1291                sstats->_time_to_sync / MICROUNITS,
  1292                sstats->_time_to_do_cleanups / MICROUNITS,
  1293                sstats->_time_to_exec_vmop / MICROUNITS);
  1295     if (need_to_track_page_armed_status) {
  1296       tty->print(INT32_FORMAT"         ", sstats->_page_armed);
  1298     tty->print_cr(INT32_FORMAT"   ", sstats->_nof_threads_hit_page_trap);
  1302 // This method will be called when VM exits. It will first call
  1303 // print_statistics to print out the rest of the sampling.  Then
  1304 // it tries to summarize the sampling.
  1305 void SafepointSynchronize::print_stat_on_exit() {
  1306   if (_safepoint_stats == NULL) return;
  1308   SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
  1310   // During VM exit, end_statistics may not get called and in that
  1311   // case, if the sync time is less than PrintSafepointStatisticsTimeout,
  1312   // don't print it out.
  1313   // Approximate the vm op time.
  1314   _safepoint_stats[_cur_stat_index]._time_to_exec_vmop =
  1315     os::javaTimeNanos() - cleanup_end_time;
  1317   if ( PrintSafepointStatisticsTimeout < 0 ||
  1318        spstat->_time_to_sync > PrintSafepointStatisticsTimeout * MICROUNITS) {
  1319     print_statistics();
  1321   tty->print_cr("");
  1323   // Print out polling page sampling status.
  1324   if (!need_to_track_page_armed_status) {
  1325     if (UseCompilerSafepoints) {
  1326       tty->print_cr("Polling page always armed");
  1328   } else {
  1329     tty->print_cr("Defer polling page loop count = %d\n",
  1330                  DeferPollingPageLoopCount);
  1333   for (int index = 0; index < VM_Operation::VMOp_Terminating; index++) {
  1334     if (_safepoint_reasons[index] != 0) {
  1335       tty->print_cr("%-26s"UINT64_FORMAT_W(10), VM_Operation::name(index),
  1336                     _safepoint_reasons[index]);
  1340   tty->print_cr(UINT64_FORMAT_W(5)" VM operations coalesced during safepoint",
  1341                 _coalesced_vmop_count);
  1342   tty->print_cr("Maximum sync time  "INT64_FORMAT_W(5)" ms",
  1343                 _max_sync_time / MICROUNITS);
  1344   tty->print_cr("Maximum vm operation time (except for Exit VM operation)  "
  1345                 INT64_FORMAT_W(5)" ms",
  1346                 _max_vmop_time / MICROUNITS);
  1349 // ------------------------------------------------------------------------------------------------
  1350 // Non-product code
  1352 #ifndef PRODUCT
  1354 void SafepointSynchronize::print_state() {
  1355   if (_state == _not_synchronized) {
  1356     tty->print_cr("not synchronized");
  1357   } else if (_state == _synchronizing || _state == _synchronized) {
  1358     tty->print_cr("State: %s", (_state == _synchronizing) ? "synchronizing" :
  1359                   "synchronized");
  1361     for(JavaThread *cur = Threads::first(); cur; cur = cur->next()) {
  1362        cur->safepoint_state()->print();
  1367 void SafepointSynchronize::safepoint_msg(const char* format, ...) {
  1368   if (ShowSafepointMsgs) {
  1369     va_list ap;
  1370     va_start(ap, format);
  1371     tty->vprint_cr(format, ap);
  1372     va_end(ap);
  1376 #endif // !PRODUCT

mercurial