src/cpu/x86/vm/macroAssembler_x86.cpp

Fri, 29 May 2015 10:58:45 +0200

author
zmajo
date
Fri, 29 May 2015 10:58:45 +0200
changeset 7854
e8260b6328fb
parent 7816
5f8824f56f39
child 7994
04ff2f6cd0eb
child 8173
faef2a237329
child 8489
51c505229e71
permissions
-rw-r--r--

8068945: Use RBP register as proper frame pointer in JIT compiled code on x86
Summary: Introduce the PreserveFramePointer flag to control if RBP is used as the frame pointer or as a general purpose register.
Reviewed-by: kvn, roland, dlong, enevill, shade

     1 /*
     2  * Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "asm/assembler.hpp"
    27 #include "asm/assembler.inline.hpp"
    28 #include "compiler/disassembler.hpp"
    29 #include "gc_interface/collectedHeap.inline.hpp"
    30 #include "interpreter/interpreter.hpp"
    31 #include "memory/cardTableModRefBS.hpp"
    32 #include "memory/resourceArea.hpp"
    33 #include "memory/universe.hpp"
    34 #include "prims/methodHandles.hpp"
    35 #include "runtime/biasedLocking.hpp"
    36 #include "runtime/interfaceSupport.hpp"
    37 #include "runtime/objectMonitor.hpp"
    38 #include "runtime/os.hpp"
    39 #include "runtime/sharedRuntime.hpp"
    40 #include "runtime/stubRoutines.hpp"
    41 #include "utilities/macros.hpp"
    42 #if INCLUDE_ALL_GCS
    43 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
    44 #include "gc_implementation/g1/g1SATBCardTableModRefBS.hpp"
    45 #include "gc_implementation/g1/heapRegion.hpp"
    46 #endif // INCLUDE_ALL_GCS
    48 #ifdef PRODUCT
    49 #define BLOCK_COMMENT(str) /* nothing */
    50 #define STOP(error) stop(error)
    51 #else
    52 #define BLOCK_COMMENT(str) block_comment(str)
    53 #define STOP(error) block_comment(error); stop(error)
    54 #endif
    56 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
    58 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
    60 #ifdef ASSERT
    61 bool AbstractAssembler::pd_check_instruction_mark() { return true; }
    62 #endif
    64 static Assembler::Condition reverse[] = {
    65     Assembler::noOverflow     /* overflow      = 0x0 */ ,
    66     Assembler::overflow       /* noOverflow    = 0x1 */ ,
    67     Assembler::aboveEqual     /* carrySet      = 0x2, below         = 0x2 */ ,
    68     Assembler::below          /* aboveEqual    = 0x3, carryClear    = 0x3 */ ,
    69     Assembler::notZero        /* zero          = 0x4, equal         = 0x4 */ ,
    70     Assembler::zero           /* notZero       = 0x5, notEqual      = 0x5 */ ,
    71     Assembler::above          /* belowEqual    = 0x6 */ ,
    72     Assembler::belowEqual     /* above         = 0x7 */ ,
    73     Assembler::positive       /* negative      = 0x8 */ ,
    74     Assembler::negative       /* positive      = 0x9 */ ,
    75     Assembler::noParity       /* parity        = 0xa */ ,
    76     Assembler::parity         /* noParity      = 0xb */ ,
    77     Assembler::greaterEqual   /* less          = 0xc */ ,
    78     Assembler::less           /* greaterEqual  = 0xd */ ,
    79     Assembler::greater        /* lessEqual     = 0xe */ ,
    80     Assembler::lessEqual      /* greater       = 0xf, */
    82 };
    85 // Implementation of MacroAssembler
    87 // First all the versions that have distinct versions depending on 32/64 bit
    88 // Unless the difference is trivial (1 line or so).
    90 #ifndef _LP64
    92 // 32bit versions
    94 Address MacroAssembler::as_Address(AddressLiteral adr) {
    95   return Address(adr.target(), adr.rspec());
    96 }
    98 Address MacroAssembler::as_Address(ArrayAddress adr) {
    99   return Address::make_array(adr);
   100 }
   102 void MacroAssembler::call_VM_leaf_base(address entry_point,
   103                                        int number_of_arguments) {
   104   call(RuntimeAddress(entry_point));
   105   increment(rsp, number_of_arguments * wordSize);
   106 }
   108 void MacroAssembler::cmpklass(Address src1, Metadata* obj) {
   109   cmp_literal32(src1, (int32_t)obj, metadata_Relocation::spec_for_immediate());
   110 }
   112 void MacroAssembler::cmpklass(Register src1, Metadata* obj) {
   113   cmp_literal32(src1, (int32_t)obj, metadata_Relocation::spec_for_immediate());
   114 }
   116 void MacroAssembler::cmpoop(Address src1, jobject obj) {
   117   cmp_literal32(src1, (int32_t)obj, oop_Relocation::spec_for_immediate());
   118 }
   120 void MacroAssembler::cmpoop(Register src1, jobject obj) {
   121   cmp_literal32(src1, (int32_t)obj, oop_Relocation::spec_for_immediate());
   122 }
   124 void MacroAssembler::extend_sign(Register hi, Register lo) {
   125   // According to Intel Doc. AP-526, "Integer Divide", p.18.
   126   if (VM_Version::is_P6() && hi == rdx && lo == rax) {
   127     cdql();
   128   } else {
   129     movl(hi, lo);
   130     sarl(hi, 31);
   131   }
   132 }
   134 void MacroAssembler::jC2(Register tmp, Label& L) {
   135   // set parity bit if FPU flag C2 is set (via rax)
   136   save_rax(tmp);
   137   fwait(); fnstsw_ax();
   138   sahf();
   139   restore_rax(tmp);
   140   // branch
   141   jcc(Assembler::parity, L);
   142 }
   144 void MacroAssembler::jnC2(Register tmp, Label& L) {
   145   // set parity bit if FPU flag C2 is set (via rax)
   146   save_rax(tmp);
   147   fwait(); fnstsw_ax();
   148   sahf();
   149   restore_rax(tmp);
   150   // branch
   151   jcc(Assembler::noParity, L);
   152 }
   154 // 32bit can do a case table jump in one instruction but we no longer allow the base
   155 // to be installed in the Address class
   156 void MacroAssembler::jump(ArrayAddress entry) {
   157   jmp(as_Address(entry));
   158 }
   160 // Note: y_lo will be destroyed
   161 void MacroAssembler::lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo) {
   162   // Long compare for Java (semantics as described in JVM spec.)
   163   Label high, low, done;
   165   cmpl(x_hi, y_hi);
   166   jcc(Assembler::less, low);
   167   jcc(Assembler::greater, high);
   168   // x_hi is the return register
   169   xorl(x_hi, x_hi);
   170   cmpl(x_lo, y_lo);
   171   jcc(Assembler::below, low);
   172   jcc(Assembler::equal, done);
   174   bind(high);
   175   xorl(x_hi, x_hi);
   176   increment(x_hi);
   177   jmp(done);
   179   bind(low);
   180   xorl(x_hi, x_hi);
   181   decrementl(x_hi);
   183   bind(done);
   184 }
   186 void MacroAssembler::lea(Register dst, AddressLiteral src) {
   187     mov_literal32(dst, (int32_t)src.target(), src.rspec());
   188 }
   190 void MacroAssembler::lea(Address dst, AddressLiteral adr) {
   191   // leal(dst, as_Address(adr));
   192   // see note in movl as to why we must use a move
   193   mov_literal32(dst, (int32_t) adr.target(), adr.rspec());
   194 }
   196 void MacroAssembler::leave() {
   197   mov(rsp, rbp);
   198   pop(rbp);
   199 }
   201 void MacroAssembler::lmul(int x_rsp_offset, int y_rsp_offset) {
   202   // Multiplication of two Java long values stored on the stack
   203   // as illustrated below. Result is in rdx:rax.
   204   //
   205   // rsp ---> [  ??  ] \               \
   206   //            ....    | y_rsp_offset  |
   207   //          [ y_lo ] /  (in bytes)    | x_rsp_offset
   208   //          [ y_hi ]                  | (in bytes)
   209   //            ....                    |
   210   //          [ x_lo ]                 /
   211   //          [ x_hi ]
   212   //            ....
   213   //
   214   // Basic idea: lo(result) = lo(x_lo * y_lo)
   215   //             hi(result) = hi(x_lo * y_lo) + lo(x_hi * y_lo) + lo(x_lo * y_hi)
   216   Address x_hi(rsp, x_rsp_offset + wordSize); Address x_lo(rsp, x_rsp_offset);
   217   Address y_hi(rsp, y_rsp_offset + wordSize); Address y_lo(rsp, y_rsp_offset);
   218   Label quick;
   219   // load x_hi, y_hi and check if quick
   220   // multiplication is possible
   221   movl(rbx, x_hi);
   222   movl(rcx, y_hi);
   223   movl(rax, rbx);
   224   orl(rbx, rcx);                                 // rbx, = 0 <=> x_hi = 0 and y_hi = 0
   225   jcc(Assembler::zero, quick);                   // if rbx, = 0 do quick multiply
   226   // do full multiplication
   227   // 1st step
   228   mull(y_lo);                                    // x_hi * y_lo
   229   movl(rbx, rax);                                // save lo(x_hi * y_lo) in rbx,
   230   // 2nd step
   231   movl(rax, x_lo);
   232   mull(rcx);                                     // x_lo * y_hi
   233   addl(rbx, rax);                                // add lo(x_lo * y_hi) to rbx,
   234   // 3rd step
   235   bind(quick);                                   // note: rbx, = 0 if quick multiply!
   236   movl(rax, x_lo);
   237   mull(y_lo);                                    // x_lo * y_lo
   238   addl(rdx, rbx);                                // correct hi(x_lo * y_lo)
   239 }
   241 void MacroAssembler::lneg(Register hi, Register lo) {
   242   negl(lo);
   243   adcl(hi, 0);
   244   negl(hi);
   245 }
   247 void MacroAssembler::lshl(Register hi, Register lo) {
   248   // Java shift left long support (semantics as described in JVM spec., p.305)
   249   // (basic idea for shift counts s >= n: x << s == (x << n) << (s - n))
   250   // shift value is in rcx !
   251   assert(hi != rcx, "must not use rcx");
   252   assert(lo != rcx, "must not use rcx");
   253   const Register s = rcx;                        // shift count
   254   const int      n = BitsPerWord;
   255   Label L;
   256   andl(s, 0x3f);                                 // s := s & 0x3f (s < 0x40)
   257   cmpl(s, n);                                    // if (s < n)
   258   jcc(Assembler::less, L);                       // else (s >= n)
   259   movl(hi, lo);                                  // x := x << n
   260   xorl(lo, lo);
   261   // Note: subl(s, n) is not needed since the Intel shift instructions work rcx mod n!
   262   bind(L);                                       // s (mod n) < n
   263   shldl(hi, lo);                                 // x := x << s
   264   shll(lo);
   265 }
   268 void MacroAssembler::lshr(Register hi, Register lo, bool sign_extension) {
   269   // Java shift right long support (semantics as described in JVM spec., p.306 & p.310)
   270   // (basic idea for shift counts s >= n: x >> s == (x >> n) >> (s - n))
   271   assert(hi != rcx, "must not use rcx");
   272   assert(lo != rcx, "must not use rcx");
   273   const Register s = rcx;                        // shift count
   274   const int      n = BitsPerWord;
   275   Label L;
   276   andl(s, 0x3f);                                 // s := s & 0x3f (s < 0x40)
   277   cmpl(s, n);                                    // if (s < n)
   278   jcc(Assembler::less, L);                       // else (s >= n)
   279   movl(lo, hi);                                  // x := x >> n
   280   if (sign_extension) sarl(hi, 31);
   281   else                xorl(hi, hi);
   282   // Note: subl(s, n) is not needed since the Intel shift instructions work rcx mod n!
   283   bind(L);                                       // s (mod n) < n
   284   shrdl(lo, hi);                                 // x := x >> s
   285   if (sign_extension) sarl(hi);
   286   else                shrl(hi);
   287 }
   289 void MacroAssembler::movoop(Register dst, jobject obj) {
   290   mov_literal32(dst, (int32_t)obj, oop_Relocation::spec_for_immediate());
   291 }
   293 void MacroAssembler::movoop(Address dst, jobject obj) {
   294   mov_literal32(dst, (int32_t)obj, oop_Relocation::spec_for_immediate());
   295 }
   297 void MacroAssembler::mov_metadata(Register dst, Metadata* obj) {
   298   mov_literal32(dst, (int32_t)obj, metadata_Relocation::spec_for_immediate());
   299 }
   301 void MacroAssembler::mov_metadata(Address dst, Metadata* obj) {
   302   mov_literal32(dst, (int32_t)obj, metadata_Relocation::spec_for_immediate());
   303 }
   305 void MacroAssembler::movptr(Register dst, AddressLiteral src, Register scratch) {
   306   // scratch register is not used,
   307   // it is defined to match parameters of 64-bit version of this method.
   308   if (src.is_lval()) {
   309     mov_literal32(dst, (intptr_t)src.target(), src.rspec());
   310   } else {
   311     movl(dst, as_Address(src));
   312   }
   313 }
   315 void MacroAssembler::movptr(ArrayAddress dst, Register src) {
   316   movl(as_Address(dst), src);
   317 }
   319 void MacroAssembler::movptr(Register dst, ArrayAddress src) {
   320   movl(dst, as_Address(src));
   321 }
   323 // src should NEVER be a real pointer. Use AddressLiteral for true pointers
   324 void MacroAssembler::movptr(Address dst, intptr_t src) {
   325   movl(dst, src);
   326 }
   329 void MacroAssembler::pop_callee_saved_registers() {
   330   pop(rcx);
   331   pop(rdx);
   332   pop(rdi);
   333   pop(rsi);
   334 }
   336 void MacroAssembler::pop_fTOS() {
   337   fld_d(Address(rsp, 0));
   338   addl(rsp, 2 * wordSize);
   339 }
   341 void MacroAssembler::push_callee_saved_registers() {
   342   push(rsi);
   343   push(rdi);
   344   push(rdx);
   345   push(rcx);
   346 }
   348 void MacroAssembler::push_fTOS() {
   349   subl(rsp, 2 * wordSize);
   350   fstp_d(Address(rsp, 0));
   351 }
   354 void MacroAssembler::pushoop(jobject obj) {
   355   push_literal32((int32_t)obj, oop_Relocation::spec_for_immediate());
   356 }
   358 void MacroAssembler::pushklass(Metadata* obj) {
   359   push_literal32((int32_t)obj, metadata_Relocation::spec_for_immediate());
   360 }
   362 void MacroAssembler::pushptr(AddressLiteral src) {
   363   if (src.is_lval()) {
   364     push_literal32((int32_t)src.target(), src.rspec());
   365   } else {
   366     pushl(as_Address(src));
   367   }
   368 }
   370 void MacroAssembler::set_word_if_not_zero(Register dst) {
   371   xorl(dst, dst);
   372   set_byte_if_not_zero(dst);
   373 }
   375 static void pass_arg0(MacroAssembler* masm, Register arg) {
   376   masm->push(arg);
   377 }
   379 static void pass_arg1(MacroAssembler* masm, Register arg) {
   380   masm->push(arg);
   381 }
   383 static void pass_arg2(MacroAssembler* masm, Register arg) {
   384   masm->push(arg);
   385 }
   387 static void pass_arg3(MacroAssembler* masm, Register arg) {
   388   masm->push(arg);
   389 }
   391 #ifndef PRODUCT
   392 extern "C" void findpc(intptr_t x);
   393 #endif
   395 void MacroAssembler::debug32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip, char* msg) {
   396   // In order to get locks to work, we need to fake a in_VM state
   397   JavaThread* thread = JavaThread::current();
   398   JavaThreadState saved_state = thread->thread_state();
   399   thread->set_thread_state(_thread_in_vm);
   400   if (ShowMessageBoxOnError) {
   401     JavaThread* thread = JavaThread::current();
   402     JavaThreadState saved_state = thread->thread_state();
   403     thread->set_thread_state(_thread_in_vm);
   404     if (CountBytecodes || TraceBytecodes || StopInterpreterAt) {
   405       ttyLocker ttyl;
   406       BytecodeCounter::print();
   407     }
   408     // To see where a verify_oop failed, get $ebx+40/X for this frame.
   409     // This is the value of eip which points to where verify_oop will return.
   410     if (os::message_box(msg, "Execution stopped, print registers?")) {
   411       print_state32(rdi, rsi, rbp, rsp, rbx, rdx, rcx, rax, eip);
   412       BREAKPOINT;
   413     }
   414   } else {
   415     ttyLocker ttyl;
   416     ::tty->print_cr("=============== DEBUG MESSAGE: %s ================\n", msg);
   417   }
   418   // Don't assert holding the ttyLock
   419     assert(false, err_msg("DEBUG MESSAGE: %s", msg));
   420   ThreadStateTransition::transition(thread, _thread_in_vm, saved_state);
   421 }
   423 void MacroAssembler::print_state32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip) {
   424   ttyLocker ttyl;
   425   FlagSetting fs(Debugging, true);
   426   tty->print_cr("eip = 0x%08x", eip);
   427 #ifndef PRODUCT
   428   if ((WizardMode || Verbose) && PrintMiscellaneous) {
   429     tty->cr();
   430     findpc(eip);
   431     tty->cr();
   432   }
   433 #endif
   434 #define PRINT_REG(rax) \
   435   { tty->print("%s = ", #rax); os::print_location(tty, rax); }
   436   PRINT_REG(rax);
   437   PRINT_REG(rbx);
   438   PRINT_REG(rcx);
   439   PRINT_REG(rdx);
   440   PRINT_REG(rdi);
   441   PRINT_REG(rsi);
   442   PRINT_REG(rbp);
   443   PRINT_REG(rsp);
   444 #undef PRINT_REG
   445   // Print some words near top of staack.
   446   int* dump_sp = (int*) rsp;
   447   for (int col1 = 0; col1 < 8; col1++) {
   448     tty->print("(rsp+0x%03x) 0x%08x: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (intptr_t)dump_sp);
   449     os::print_location(tty, *dump_sp++);
   450   }
   451   for (int row = 0; row < 16; row++) {
   452     tty->print("(rsp+0x%03x) 0x%08x: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (intptr_t)dump_sp);
   453     for (int col = 0; col < 8; col++) {
   454       tty->print(" 0x%08x", *dump_sp++);
   455     }
   456     tty->cr();
   457   }
   458   // Print some instructions around pc:
   459   Disassembler::decode((address)eip-64, (address)eip);
   460   tty->print_cr("--------");
   461   Disassembler::decode((address)eip, (address)eip+32);
   462 }
   464 void MacroAssembler::stop(const char* msg) {
   465   ExternalAddress message((address)msg);
   466   // push address of message
   467   pushptr(message.addr());
   468   { Label L; call(L, relocInfo::none); bind(L); }     // push eip
   469   pusha();                                            // push registers
   470   call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug32)));
   471   hlt();
   472 }
   474 void MacroAssembler::warn(const char* msg) {
   475   push_CPU_state();
   477   ExternalAddress message((address) msg);
   478   // push address of message
   479   pushptr(message.addr());
   481   call(RuntimeAddress(CAST_FROM_FN_PTR(address, warning)));
   482   addl(rsp, wordSize);       // discard argument
   483   pop_CPU_state();
   484 }
   486 void MacroAssembler::print_state() {
   487   { Label L; call(L, relocInfo::none); bind(L); }     // push eip
   488   pusha();                                            // push registers
   490   push_CPU_state();
   491   call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::print_state32)));
   492   pop_CPU_state();
   494   popa();
   495   addl(rsp, wordSize);
   496 }
   498 #else // _LP64
   500 // 64 bit versions
   502 Address MacroAssembler::as_Address(AddressLiteral adr) {
   503   // amd64 always does this as a pc-rel
   504   // we can be absolute or disp based on the instruction type
   505   // jmp/call are displacements others are absolute
   506   assert(!adr.is_lval(), "must be rval");
   507   assert(reachable(adr), "must be");
   508   return Address((int32_t)(intptr_t)(adr.target() - pc()), adr.target(), adr.reloc());
   510 }
   512 Address MacroAssembler::as_Address(ArrayAddress adr) {
   513   AddressLiteral base = adr.base();
   514   lea(rscratch1, base);
   515   Address index = adr.index();
   516   assert(index._disp == 0, "must not have disp"); // maybe it can?
   517   Address array(rscratch1, index._index, index._scale, index._disp);
   518   return array;
   519 }
   521 void MacroAssembler::call_VM_leaf_base(address entry_point, int num_args) {
   522   Label L, E;
   524 #ifdef _WIN64
   525   // Windows always allocates space for it's register args
   526   assert(num_args <= 4, "only register arguments supported");
   527   subq(rsp,  frame::arg_reg_save_area_bytes);
   528 #endif
   530   // Align stack if necessary
   531   testl(rsp, 15);
   532   jcc(Assembler::zero, L);
   534   subq(rsp, 8);
   535   {
   536     call(RuntimeAddress(entry_point));
   537   }
   538   addq(rsp, 8);
   539   jmp(E);
   541   bind(L);
   542   {
   543     call(RuntimeAddress(entry_point));
   544   }
   546   bind(E);
   548 #ifdef _WIN64
   549   // restore stack pointer
   550   addq(rsp, frame::arg_reg_save_area_bytes);
   551 #endif
   553 }
   555 void MacroAssembler::cmp64(Register src1, AddressLiteral src2) {
   556   assert(!src2.is_lval(), "should use cmpptr");
   558   if (reachable(src2)) {
   559     cmpq(src1, as_Address(src2));
   560   } else {
   561     lea(rscratch1, src2);
   562     Assembler::cmpq(src1, Address(rscratch1, 0));
   563   }
   564 }
   566 int MacroAssembler::corrected_idivq(Register reg) {
   567   // Full implementation of Java ldiv and lrem; checks for special
   568   // case as described in JVM spec., p.243 & p.271.  The function
   569   // returns the (pc) offset of the idivl instruction - may be needed
   570   // for implicit exceptions.
   571   //
   572   //         normal case                           special case
   573   //
   574   // input : rax: dividend                         min_long
   575   //         reg: divisor   (may not be eax/edx)   -1
   576   //
   577   // output: rax: quotient  (= rax idiv reg)       min_long
   578   //         rdx: remainder (= rax irem reg)       0
   579   assert(reg != rax && reg != rdx, "reg cannot be rax or rdx register");
   580   static const int64_t min_long = 0x8000000000000000;
   581   Label normal_case, special_case;
   583   // check for special case
   584   cmp64(rax, ExternalAddress((address) &min_long));
   585   jcc(Assembler::notEqual, normal_case);
   586   xorl(rdx, rdx); // prepare rdx for possible special case (where
   587                   // remainder = 0)
   588   cmpq(reg, -1);
   589   jcc(Assembler::equal, special_case);
   591   // handle normal case
   592   bind(normal_case);
   593   cdqq();
   594   int idivq_offset = offset();
   595   idivq(reg);
   597   // normal and special case exit
   598   bind(special_case);
   600   return idivq_offset;
   601 }
   603 void MacroAssembler::decrementq(Register reg, int value) {
   604   if (value == min_jint) { subq(reg, value); return; }
   605   if (value <  0) { incrementq(reg, -value); return; }
   606   if (value == 0) {                        ; return; }
   607   if (value == 1 && UseIncDec) { decq(reg) ; return; }
   608   /* else */      { subq(reg, value)       ; return; }
   609 }
   611 void MacroAssembler::decrementq(Address dst, int value) {
   612   if (value == min_jint) { subq(dst, value); return; }
   613   if (value <  0) { incrementq(dst, -value); return; }
   614   if (value == 0) {                        ; return; }
   615   if (value == 1 && UseIncDec) { decq(dst) ; return; }
   616   /* else */      { subq(dst, value)       ; return; }
   617 }
   619 void MacroAssembler::incrementq(AddressLiteral dst) {
   620   if (reachable(dst)) {
   621     incrementq(as_Address(dst));
   622   } else {
   623     lea(rscratch1, dst);
   624     incrementq(Address(rscratch1, 0));
   625   }
   626 }
   628 void MacroAssembler::incrementq(Register reg, int value) {
   629   if (value == min_jint) { addq(reg, value); return; }
   630   if (value <  0) { decrementq(reg, -value); return; }
   631   if (value == 0) {                        ; return; }
   632   if (value == 1 && UseIncDec) { incq(reg) ; return; }
   633   /* else */      { addq(reg, value)       ; return; }
   634 }
   636 void MacroAssembler::incrementq(Address dst, int value) {
   637   if (value == min_jint) { addq(dst, value); return; }
   638   if (value <  0) { decrementq(dst, -value); return; }
   639   if (value == 0) {                        ; return; }
   640   if (value == 1 && UseIncDec) { incq(dst) ; return; }
   641   /* else */      { addq(dst, value)       ; return; }
   642 }
   644 // 32bit can do a case table jump in one instruction but we no longer allow the base
   645 // to be installed in the Address class
   646 void MacroAssembler::jump(ArrayAddress entry) {
   647   lea(rscratch1, entry.base());
   648   Address dispatch = entry.index();
   649   assert(dispatch._base == noreg, "must be");
   650   dispatch._base = rscratch1;
   651   jmp(dispatch);
   652 }
   654 void MacroAssembler::lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo) {
   655   ShouldNotReachHere(); // 64bit doesn't use two regs
   656   cmpq(x_lo, y_lo);
   657 }
   659 void MacroAssembler::lea(Register dst, AddressLiteral src) {
   660     mov_literal64(dst, (intptr_t)src.target(), src.rspec());
   661 }
   663 void MacroAssembler::lea(Address dst, AddressLiteral adr) {
   664   mov_literal64(rscratch1, (intptr_t)adr.target(), adr.rspec());
   665   movptr(dst, rscratch1);
   666 }
   668 void MacroAssembler::leave() {
   669   // %%% is this really better? Why not on 32bit too?
   670   emit_int8((unsigned char)0xC9); // LEAVE
   671 }
   673 void MacroAssembler::lneg(Register hi, Register lo) {
   674   ShouldNotReachHere(); // 64bit doesn't use two regs
   675   negq(lo);
   676 }
   678 void MacroAssembler::movoop(Register dst, jobject obj) {
   679   mov_literal64(dst, (intptr_t)obj, oop_Relocation::spec_for_immediate());
   680 }
   682 void MacroAssembler::movoop(Address dst, jobject obj) {
   683   mov_literal64(rscratch1, (intptr_t)obj, oop_Relocation::spec_for_immediate());
   684   movq(dst, rscratch1);
   685 }
   687 void MacroAssembler::mov_metadata(Register dst, Metadata* obj) {
   688   mov_literal64(dst, (intptr_t)obj, metadata_Relocation::spec_for_immediate());
   689 }
   691 void MacroAssembler::mov_metadata(Address dst, Metadata* obj) {
   692   mov_literal64(rscratch1, (intptr_t)obj, metadata_Relocation::spec_for_immediate());
   693   movq(dst, rscratch1);
   694 }
   696 void MacroAssembler::movptr(Register dst, AddressLiteral src, Register scratch) {
   697   if (src.is_lval()) {
   698     mov_literal64(dst, (intptr_t)src.target(), src.rspec());
   699   } else {
   700     if (reachable(src)) {
   701       movq(dst, as_Address(src));
   702     } else {
   703       lea(scratch, src);
   704       movq(dst, Address(scratch, 0));
   705     }
   706   }
   707 }
   709 void MacroAssembler::movptr(ArrayAddress dst, Register src) {
   710   movq(as_Address(dst), src);
   711 }
   713 void MacroAssembler::movptr(Register dst, ArrayAddress src) {
   714   movq(dst, as_Address(src));
   715 }
   717 // src should NEVER be a real pointer. Use AddressLiteral for true pointers
   718 void MacroAssembler::movptr(Address dst, intptr_t src) {
   719   mov64(rscratch1, src);
   720   movq(dst, rscratch1);
   721 }
   723 // These are mostly for initializing NULL
   724 void MacroAssembler::movptr(Address dst, int32_t src) {
   725   movslq(dst, src);
   726 }
   728 void MacroAssembler::movptr(Register dst, int32_t src) {
   729   mov64(dst, (intptr_t)src);
   730 }
   732 void MacroAssembler::pushoop(jobject obj) {
   733   movoop(rscratch1, obj);
   734   push(rscratch1);
   735 }
   737 void MacroAssembler::pushklass(Metadata* obj) {
   738   mov_metadata(rscratch1, obj);
   739   push(rscratch1);
   740 }
   742 void MacroAssembler::pushptr(AddressLiteral src) {
   743   lea(rscratch1, src);
   744   if (src.is_lval()) {
   745     push(rscratch1);
   746   } else {
   747     pushq(Address(rscratch1, 0));
   748   }
   749 }
   751 void MacroAssembler::reset_last_Java_frame(bool clear_fp,
   752                                            bool clear_pc) {
   753   // we must set sp to zero to clear frame
   754   movptr(Address(r15_thread, JavaThread::last_Java_sp_offset()), NULL_WORD);
   755   // must clear fp, so that compiled frames are not confused; it is
   756   // possible that we need it only for debugging
   757   if (clear_fp) {
   758     movptr(Address(r15_thread, JavaThread::last_Java_fp_offset()), NULL_WORD);
   759   }
   761   if (clear_pc) {
   762     movptr(Address(r15_thread, JavaThread::last_Java_pc_offset()), NULL_WORD);
   763   }
   764 }
   766 void MacroAssembler::set_last_Java_frame(Register last_java_sp,
   767                                          Register last_java_fp,
   768                                          address  last_java_pc) {
   769   // determine last_java_sp register
   770   if (!last_java_sp->is_valid()) {
   771     last_java_sp = rsp;
   772   }
   774   // last_java_fp is optional
   775   if (last_java_fp->is_valid()) {
   776     movptr(Address(r15_thread, JavaThread::last_Java_fp_offset()),
   777            last_java_fp);
   778   }
   780   // last_java_pc is optional
   781   if (last_java_pc != NULL) {
   782     Address java_pc(r15_thread,
   783                     JavaThread::frame_anchor_offset() + JavaFrameAnchor::last_Java_pc_offset());
   784     lea(rscratch1, InternalAddress(last_java_pc));
   785     movptr(java_pc, rscratch1);
   786   }
   788   movptr(Address(r15_thread, JavaThread::last_Java_sp_offset()), last_java_sp);
   789 }
   791 static void pass_arg0(MacroAssembler* masm, Register arg) {
   792   if (c_rarg0 != arg ) {
   793     masm->mov(c_rarg0, arg);
   794   }
   795 }
   797 static void pass_arg1(MacroAssembler* masm, Register arg) {
   798   if (c_rarg1 != arg ) {
   799     masm->mov(c_rarg1, arg);
   800   }
   801 }
   803 static void pass_arg2(MacroAssembler* masm, Register arg) {
   804   if (c_rarg2 != arg ) {
   805     masm->mov(c_rarg2, arg);
   806   }
   807 }
   809 static void pass_arg3(MacroAssembler* masm, Register arg) {
   810   if (c_rarg3 != arg ) {
   811     masm->mov(c_rarg3, arg);
   812   }
   813 }
   815 void MacroAssembler::stop(const char* msg) {
   816   address rip = pc();
   817   pusha(); // get regs on stack
   818   lea(c_rarg0, ExternalAddress((address) msg));
   819   lea(c_rarg1, InternalAddress(rip));
   820   movq(c_rarg2, rsp); // pass pointer to regs array
   821   andq(rsp, -16); // align stack as required by ABI
   822   call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug64)));
   823   hlt();
   824 }
   826 void MacroAssembler::warn(const char* msg) {
   827   push(rbp);
   828   movq(rbp, rsp);
   829   andq(rsp, -16);     // align stack as required by push_CPU_state and call
   830   push_CPU_state();   // keeps alignment at 16 bytes
   831   lea(c_rarg0, ExternalAddress((address) msg));
   832   call_VM_leaf(CAST_FROM_FN_PTR(address, warning), c_rarg0);
   833   pop_CPU_state();
   834   mov(rsp, rbp);
   835   pop(rbp);
   836 }
   838 void MacroAssembler::print_state() {
   839   address rip = pc();
   840   pusha();            // get regs on stack
   841   push(rbp);
   842   movq(rbp, rsp);
   843   andq(rsp, -16);     // align stack as required by push_CPU_state and call
   844   push_CPU_state();   // keeps alignment at 16 bytes
   846   lea(c_rarg0, InternalAddress(rip));
   847   lea(c_rarg1, Address(rbp, wordSize)); // pass pointer to regs array
   848   call_VM_leaf(CAST_FROM_FN_PTR(address, MacroAssembler::print_state64), c_rarg0, c_rarg1);
   850   pop_CPU_state();
   851   mov(rsp, rbp);
   852   pop(rbp);
   853   popa();
   854 }
   856 #ifndef PRODUCT
   857 extern "C" void findpc(intptr_t x);
   858 #endif
   860 void MacroAssembler::debug64(char* msg, int64_t pc, int64_t regs[]) {
   861   // In order to get locks to work, we need to fake a in_VM state
   862   if (ShowMessageBoxOnError) {
   863     JavaThread* thread = JavaThread::current();
   864     JavaThreadState saved_state = thread->thread_state();
   865     thread->set_thread_state(_thread_in_vm);
   866 #ifndef PRODUCT
   867     if (CountBytecodes || TraceBytecodes || StopInterpreterAt) {
   868       ttyLocker ttyl;
   869       BytecodeCounter::print();
   870     }
   871 #endif
   872     // To see where a verify_oop failed, get $ebx+40/X for this frame.
   873     // XXX correct this offset for amd64
   874     // This is the value of eip which points to where verify_oop will return.
   875     if (os::message_box(msg, "Execution stopped, print registers?")) {
   876       print_state64(pc, regs);
   877       BREAKPOINT;
   878       assert(false, "start up GDB");
   879     }
   880     ThreadStateTransition::transition(thread, _thread_in_vm, saved_state);
   881   } else {
   882     ttyLocker ttyl;
   883     ::tty->print_cr("=============== DEBUG MESSAGE: %s ================\n",
   884                     msg);
   885     assert(false, err_msg("DEBUG MESSAGE: %s", msg));
   886   }
   887 }
   889 void MacroAssembler::print_state64(int64_t pc, int64_t regs[]) {
   890   ttyLocker ttyl;
   891   FlagSetting fs(Debugging, true);
   892   tty->print_cr("rip = 0x%016lx", pc);
   893 #ifndef PRODUCT
   894   tty->cr();
   895   findpc(pc);
   896   tty->cr();
   897 #endif
   898 #define PRINT_REG(rax, value) \
   899   { tty->print("%s = ", #rax); os::print_location(tty, value); }
   900   PRINT_REG(rax, regs[15]);
   901   PRINT_REG(rbx, regs[12]);
   902   PRINT_REG(rcx, regs[14]);
   903   PRINT_REG(rdx, regs[13]);
   904   PRINT_REG(rdi, regs[8]);
   905   PRINT_REG(rsi, regs[9]);
   906   PRINT_REG(rbp, regs[10]);
   907   PRINT_REG(rsp, regs[11]);
   908   PRINT_REG(r8 , regs[7]);
   909   PRINT_REG(r9 , regs[6]);
   910   PRINT_REG(r10, regs[5]);
   911   PRINT_REG(r11, regs[4]);
   912   PRINT_REG(r12, regs[3]);
   913   PRINT_REG(r13, regs[2]);
   914   PRINT_REG(r14, regs[1]);
   915   PRINT_REG(r15, regs[0]);
   916 #undef PRINT_REG
   917   // Print some words near top of staack.
   918   int64_t* rsp = (int64_t*) regs[11];
   919   int64_t* dump_sp = rsp;
   920   for (int col1 = 0; col1 < 8; col1++) {
   921     tty->print("(rsp+0x%03x) 0x%016lx: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (int64_t)dump_sp);
   922     os::print_location(tty, *dump_sp++);
   923   }
   924   for (int row = 0; row < 25; row++) {
   925     tty->print("(rsp+0x%03x) 0x%016lx: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (int64_t)dump_sp);
   926     for (int col = 0; col < 4; col++) {
   927       tty->print(" 0x%016lx", *dump_sp++);
   928     }
   929     tty->cr();
   930   }
   931   // Print some instructions around pc:
   932   Disassembler::decode((address)pc-64, (address)pc);
   933   tty->print_cr("--------");
   934   Disassembler::decode((address)pc, (address)pc+32);
   935 }
   937 #endif // _LP64
   939 // Now versions that are common to 32/64 bit
   941 void MacroAssembler::addptr(Register dst, int32_t imm32) {
   942   LP64_ONLY(addq(dst, imm32)) NOT_LP64(addl(dst, imm32));
   943 }
   945 void MacroAssembler::addptr(Register dst, Register src) {
   946   LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src));
   947 }
   949 void MacroAssembler::addptr(Address dst, Register src) {
   950   LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src));
   951 }
   953 void MacroAssembler::addsd(XMMRegister dst, AddressLiteral src) {
   954   if (reachable(src)) {
   955     Assembler::addsd(dst, as_Address(src));
   956   } else {
   957     lea(rscratch1, src);
   958     Assembler::addsd(dst, Address(rscratch1, 0));
   959   }
   960 }
   962 void MacroAssembler::addss(XMMRegister dst, AddressLiteral src) {
   963   if (reachable(src)) {
   964     addss(dst, as_Address(src));
   965   } else {
   966     lea(rscratch1, src);
   967     addss(dst, Address(rscratch1, 0));
   968   }
   969 }
   971 void MacroAssembler::align(int modulus) {
   972   if (offset() % modulus != 0) {
   973     nop(modulus - (offset() % modulus));
   974   }
   975 }
   977 void MacroAssembler::andpd(XMMRegister dst, AddressLiteral src) {
   978   // Used in sign-masking with aligned address.
   979   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
   980   if (reachable(src)) {
   981     Assembler::andpd(dst, as_Address(src));
   982   } else {
   983     lea(rscratch1, src);
   984     Assembler::andpd(dst, Address(rscratch1, 0));
   985   }
   986 }
   988 void MacroAssembler::andps(XMMRegister dst, AddressLiteral src) {
   989   // Used in sign-masking with aligned address.
   990   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
   991   if (reachable(src)) {
   992     Assembler::andps(dst, as_Address(src));
   993   } else {
   994     lea(rscratch1, src);
   995     Assembler::andps(dst, Address(rscratch1, 0));
   996   }
   997 }
   999 void MacroAssembler::andptr(Register dst, int32_t imm32) {
  1000   LP64_ONLY(andq(dst, imm32)) NOT_LP64(andl(dst, imm32));
  1003 void MacroAssembler::atomic_incl(Address counter_addr) {
  1004   if (os::is_MP())
  1005     lock();
  1006   incrementl(counter_addr);
  1009 void MacroAssembler::atomic_incl(AddressLiteral counter_addr, Register scr) {
  1010   if (reachable(counter_addr)) {
  1011     atomic_incl(as_Address(counter_addr));
  1012   } else {
  1013     lea(scr, counter_addr);
  1014     atomic_incl(Address(scr, 0));
  1018 #ifdef _LP64
  1019 void MacroAssembler::atomic_incq(Address counter_addr) {
  1020   if (os::is_MP())
  1021     lock();
  1022   incrementq(counter_addr);
  1025 void MacroAssembler::atomic_incq(AddressLiteral counter_addr, Register scr) {
  1026   if (reachable(counter_addr)) {
  1027     atomic_incq(as_Address(counter_addr));
  1028   } else {
  1029     lea(scr, counter_addr);
  1030     atomic_incq(Address(scr, 0));
  1033 #endif
  1035 // Writes to stack successive pages until offset reached to check for
  1036 // stack overflow + shadow pages.  This clobbers tmp.
  1037 void MacroAssembler::bang_stack_size(Register size, Register tmp) {
  1038   movptr(tmp, rsp);
  1039   // Bang stack for total size given plus shadow page size.
  1040   // Bang one page at a time because large size can bang beyond yellow and
  1041   // red zones.
  1042   Label loop;
  1043   bind(loop);
  1044   movl(Address(tmp, (-os::vm_page_size())), size );
  1045   subptr(tmp, os::vm_page_size());
  1046   subl(size, os::vm_page_size());
  1047   jcc(Assembler::greater, loop);
  1049   // Bang down shadow pages too.
  1050   // At this point, (tmp-0) is the last address touched, so don't
  1051   // touch it again.  (It was touched as (tmp-pagesize) but then tmp
  1052   // was post-decremented.)  Skip this address by starting at i=1, and
  1053   // touch a few more pages below.  N.B.  It is important to touch all
  1054   // the way down to and including i=StackShadowPages.
  1055   for (int i = 1; i < StackShadowPages; i++) {
  1056     // this could be any sized move but this is can be a debugging crumb
  1057     // so the bigger the better.
  1058     movptr(Address(tmp, (-i*os::vm_page_size())), size );
  1062 int MacroAssembler::biased_locking_enter(Register lock_reg,
  1063                                          Register obj_reg,
  1064                                          Register swap_reg,
  1065                                          Register tmp_reg,
  1066                                          bool swap_reg_contains_mark,
  1067                                          Label& done,
  1068                                          Label* slow_case,
  1069                                          BiasedLockingCounters* counters) {
  1070   assert(UseBiasedLocking, "why call this otherwise?");
  1071   assert(swap_reg == rax, "swap_reg must be rax for cmpxchgq");
  1072   LP64_ONLY( assert(tmp_reg != noreg, "tmp_reg must be supplied"); )
  1073   bool need_tmp_reg = false;
  1074   if (tmp_reg == noreg) {
  1075     need_tmp_reg = true;
  1076     tmp_reg = lock_reg;
  1077     assert_different_registers(lock_reg, obj_reg, swap_reg);
  1078   } else {
  1079     assert_different_registers(lock_reg, obj_reg, swap_reg, tmp_reg);
  1081   assert(markOopDesc::age_shift == markOopDesc::lock_bits + markOopDesc::biased_lock_bits, "biased locking makes assumptions about bit layout");
  1082   Address mark_addr      (obj_reg, oopDesc::mark_offset_in_bytes());
  1083   Address saved_mark_addr(lock_reg, 0);
  1085   if (PrintBiasedLockingStatistics && counters == NULL) {
  1086     counters = BiasedLocking::counters();
  1088   // Biased locking
  1089   // See whether the lock is currently biased toward our thread and
  1090   // whether the epoch is still valid
  1091   // Note that the runtime guarantees sufficient alignment of JavaThread
  1092   // pointers to allow age to be placed into low bits
  1093   // First check to see whether biasing is even enabled for this object
  1094   Label cas_label;
  1095   int null_check_offset = -1;
  1096   if (!swap_reg_contains_mark) {
  1097     null_check_offset = offset();
  1098     movptr(swap_reg, mark_addr);
  1100   if (need_tmp_reg) {
  1101     push(tmp_reg);
  1103   movptr(tmp_reg, swap_reg);
  1104   andptr(tmp_reg, markOopDesc::biased_lock_mask_in_place);
  1105   cmpptr(tmp_reg, markOopDesc::biased_lock_pattern);
  1106   if (need_tmp_reg) {
  1107     pop(tmp_reg);
  1109   jcc(Assembler::notEqual, cas_label);
  1110   // The bias pattern is present in the object's header. Need to check
  1111   // whether the bias owner and the epoch are both still current.
  1112 #ifndef _LP64
  1113   // Note that because there is no current thread register on x86_32 we
  1114   // need to store off the mark word we read out of the object to
  1115   // avoid reloading it and needing to recheck invariants below. This
  1116   // store is unfortunate but it makes the overall code shorter and
  1117   // simpler.
  1118   movptr(saved_mark_addr, swap_reg);
  1119 #endif
  1120   if (need_tmp_reg) {
  1121     push(tmp_reg);
  1123   if (swap_reg_contains_mark) {
  1124     null_check_offset = offset();
  1126   load_prototype_header(tmp_reg, obj_reg);
  1127 #ifdef _LP64
  1128   orptr(tmp_reg, r15_thread);
  1129   xorptr(tmp_reg, swap_reg);
  1130   Register header_reg = tmp_reg;
  1131 #else
  1132   xorptr(tmp_reg, swap_reg);
  1133   get_thread(swap_reg);
  1134   xorptr(swap_reg, tmp_reg);
  1135   Register header_reg = swap_reg;
  1136 #endif
  1137   andptr(header_reg, ~((int) markOopDesc::age_mask_in_place));
  1138   if (need_tmp_reg) {
  1139     pop(tmp_reg);
  1141   if (counters != NULL) {
  1142     cond_inc32(Assembler::zero,
  1143                ExternalAddress((address) counters->biased_lock_entry_count_addr()));
  1145   jcc(Assembler::equal, done);
  1147   Label try_revoke_bias;
  1148   Label try_rebias;
  1150   // At this point we know that the header has the bias pattern and
  1151   // that we are not the bias owner in the current epoch. We need to
  1152   // figure out more details about the state of the header in order to
  1153   // know what operations can be legally performed on the object's
  1154   // header.
  1156   // If the low three bits in the xor result aren't clear, that means
  1157   // the prototype header is no longer biased and we have to revoke
  1158   // the bias on this object.
  1159   testptr(header_reg, markOopDesc::biased_lock_mask_in_place);
  1160   jccb(Assembler::notZero, try_revoke_bias);
  1162   // Biasing is still enabled for this data type. See whether the
  1163   // epoch of the current bias is still valid, meaning that the epoch
  1164   // bits of the mark word are equal to the epoch bits of the
  1165   // prototype header. (Note that the prototype header's epoch bits
  1166   // only change at a safepoint.) If not, attempt to rebias the object
  1167   // toward the current thread. Note that we must be absolutely sure
  1168   // that the current epoch is invalid in order to do this because
  1169   // otherwise the manipulations it performs on the mark word are
  1170   // illegal.
  1171   testptr(header_reg, markOopDesc::epoch_mask_in_place);
  1172   jccb(Assembler::notZero, try_rebias);
  1174   // The epoch of the current bias is still valid but we know nothing
  1175   // about the owner; it might be set or it might be clear. Try to
  1176   // acquire the bias of the object using an atomic operation. If this
  1177   // fails we will go in to the runtime to revoke the object's bias.
  1178   // Note that we first construct the presumed unbiased header so we
  1179   // don't accidentally blow away another thread's valid bias.
  1180   NOT_LP64( movptr(swap_reg, saved_mark_addr); )
  1181   andptr(swap_reg,
  1182          markOopDesc::biased_lock_mask_in_place | markOopDesc::age_mask_in_place | markOopDesc::epoch_mask_in_place);
  1183   if (need_tmp_reg) {
  1184     push(tmp_reg);
  1186 #ifdef _LP64
  1187   movptr(tmp_reg, swap_reg);
  1188   orptr(tmp_reg, r15_thread);
  1189 #else
  1190   get_thread(tmp_reg);
  1191   orptr(tmp_reg, swap_reg);
  1192 #endif
  1193   if (os::is_MP()) {
  1194     lock();
  1196   cmpxchgptr(tmp_reg, mark_addr); // compare tmp_reg and swap_reg
  1197   if (need_tmp_reg) {
  1198     pop(tmp_reg);
  1200   // If the biasing toward our thread failed, this means that
  1201   // another thread succeeded in biasing it toward itself and we
  1202   // need to revoke that bias. The revocation will occur in the
  1203   // interpreter runtime in the slow case.
  1204   if (counters != NULL) {
  1205     cond_inc32(Assembler::zero,
  1206                ExternalAddress((address) counters->anonymously_biased_lock_entry_count_addr()));
  1208   if (slow_case != NULL) {
  1209     jcc(Assembler::notZero, *slow_case);
  1211   jmp(done);
  1213   bind(try_rebias);
  1214   // At this point we know the epoch has expired, meaning that the
  1215   // current "bias owner", if any, is actually invalid. Under these
  1216   // circumstances _only_, we are allowed to use the current header's
  1217   // value as the comparison value when doing the cas to acquire the
  1218   // bias in the current epoch. In other words, we allow transfer of
  1219   // the bias from one thread to another directly in this situation.
  1220   //
  1221   // FIXME: due to a lack of registers we currently blow away the age
  1222   // bits in this situation. Should attempt to preserve them.
  1223   if (need_tmp_reg) {
  1224     push(tmp_reg);
  1226   load_prototype_header(tmp_reg, obj_reg);
  1227 #ifdef _LP64
  1228   orptr(tmp_reg, r15_thread);
  1229 #else
  1230   get_thread(swap_reg);
  1231   orptr(tmp_reg, swap_reg);
  1232   movptr(swap_reg, saved_mark_addr);
  1233 #endif
  1234   if (os::is_MP()) {
  1235     lock();
  1237   cmpxchgptr(tmp_reg, mark_addr); // compare tmp_reg and swap_reg
  1238   if (need_tmp_reg) {
  1239     pop(tmp_reg);
  1241   // If the biasing toward our thread failed, then another thread
  1242   // succeeded in biasing it toward itself and we need to revoke that
  1243   // bias. The revocation will occur in the runtime in the slow case.
  1244   if (counters != NULL) {
  1245     cond_inc32(Assembler::zero,
  1246                ExternalAddress((address) counters->rebiased_lock_entry_count_addr()));
  1248   if (slow_case != NULL) {
  1249     jcc(Assembler::notZero, *slow_case);
  1251   jmp(done);
  1253   bind(try_revoke_bias);
  1254   // The prototype mark in the klass doesn't have the bias bit set any
  1255   // more, indicating that objects of this data type are not supposed
  1256   // to be biased any more. We are going to try to reset the mark of
  1257   // this object to the prototype value and fall through to the
  1258   // CAS-based locking scheme. Note that if our CAS fails, it means
  1259   // that another thread raced us for the privilege of revoking the
  1260   // bias of this particular object, so it's okay to continue in the
  1261   // normal locking code.
  1262   //
  1263   // FIXME: due to a lack of registers we currently blow away the age
  1264   // bits in this situation. Should attempt to preserve them.
  1265   NOT_LP64( movptr(swap_reg, saved_mark_addr); )
  1266   if (need_tmp_reg) {
  1267     push(tmp_reg);
  1269   load_prototype_header(tmp_reg, obj_reg);
  1270   if (os::is_MP()) {
  1271     lock();
  1273   cmpxchgptr(tmp_reg, mark_addr); // compare tmp_reg and swap_reg
  1274   if (need_tmp_reg) {
  1275     pop(tmp_reg);
  1277   // Fall through to the normal CAS-based lock, because no matter what
  1278   // the result of the above CAS, some thread must have succeeded in
  1279   // removing the bias bit from the object's header.
  1280   if (counters != NULL) {
  1281     cond_inc32(Assembler::zero,
  1282                ExternalAddress((address) counters->revoked_lock_entry_count_addr()));
  1285   bind(cas_label);
  1287   return null_check_offset;
  1290 void MacroAssembler::biased_locking_exit(Register obj_reg, Register temp_reg, Label& done) {
  1291   assert(UseBiasedLocking, "why call this otherwise?");
  1293   // Check for biased locking unlock case, which is a no-op
  1294   // Note: we do not have to check the thread ID for two reasons.
  1295   // First, the interpreter checks for IllegalMonitorStateException at
  1296   // a higher level. Second, if the bias was revoked while we held the
  1297   // lock, the object could not be rebiased toward another thread, so
  1298   // the bias bit would be clear.
  1299   movptr(temp_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes()));
  1300   andptr(temp_reg, markOopDesc::biased_lock_mask_in_place);
  1301   cmpptr(temp_reg, markOopDesc::biased_lock_pattern);
  1302   jcc(Assembler::equal, done);
  1305 #ifdef COMPILER2
  1307 #if INCLUDE_RTM_OPT
  1309 // Update rtm_counters based on abort status
  1310 // input: abort_status
  1311 //        rtm_counters (RTMLockingCounters*)
  1312 // flags are killed
  1313 void MacroAssembler::rtm_counters_update(Register abort_status, Register rtm_counters) {
  1315   atomic_incptr(Address(rtm_counters, RTMLockingCounters::abort_count_offset()));
  1316   if (PrintPreciseRTMLockingStatistics) {
  1317     for (int i = 0; i < RTMLockingCounters::ABORT_STATUS_LIMIT; i++) {
  1318       Label check_abort;
  1319       testl(abort_status, (1<<i));
  1320       jccb(Assembler::equal, check_abort);
  1321       atomic_incptr(Address(rtm_counters, RTMLockingCounters::abortX_count_offset() + (i * sizeof(uintx))));
  1322       bind(check_abort);
  1327 // Branch if (random & (count-1) != 0), count is 2^n
  1328 // tmp, scr and flags are killed
  1329 void MacroAssembler::branch_on_random_using_rdtsc(Register tmp, Register scr, int count, Label& brLabel) {
  1330   assert(tmp == rax, "");
  1331   assert(scr == rdx, "");
  1332   rdtsc(); // modifies EDX:EAX
  1333   andptr(tmp, count-1);
  1334   jccb(Assembler::notZero, brLabel);
  1337 // Perform abort ratio calculation, set no_rtm bit if high ratio
  1338 // input:  rtm_counters_Reg (RTMLockingCounters* address)
  1339 // tmpReg, rtm_counters_Reg and flags are killed
  1340 void MacroAssembler::rtm_abort_ratio_calculation(Register tmpReg,
  1341                                                  Register rtm_counters_Reg,
  1342                                                  RTMLockingCounters* rtm_counters,
  1343                                                  Metadata* method_data) {
  1344   Label L_done, L_check_always_rtm1, L_check_always_rtm2;
  1346   if (RTMLockingCalculationDelay > 0) {
  1347     // Delay calculation
  1348     movptr(tmpReg, ExternalAddress((address) RTMLockingCounters::rtm_calculation_flag_addr()), tmpReg);
  1349     testptr(tmpReg, tmpReg);
  1350     jccb(Assembler::equal, L_done);
  1352   // Abort ratio calculation only if abort_count > RTMAbortThreshold
  1353   //   Aborted transactions = abort_count * 100
  1354   //   All transactions = total_count *  RTMTotalCountIncrRate
  1355   //   Set no_rtm bit if (Aborted transactions >= All transactions * RTMAbortRatio)
  1357   movptr(tmpReg, Address(rtm_counters_Reg, RTMLockingCounters::abort_count_offset()));
  1358   cmpptr(tmpReg, RTMAbortThreshold);
  1359   jccb(Assembler::below, L_check_always_rtm2);
  1360   imulptr(tmpReg, tmpReg, 100);
  1362   Register scrReg = rtm_counters_Reg;
  1363   movptr(scrReg, Address(rtm_counters_Reg, RTMLockingCounters::total_count_offset()));
  1364   imulptr(scrReg, scrReg, RTMTotalCountIncrRate);
  1365   imulptr(scrReg, scrReg, RTMAbortRatio);
  1366   cmpptr(tmpReg, scrReg);
  1367   jccb(Assembler::below, L_check_always_rtm1);
  1368   if (method_data != NULL) {
  1369     // set rtm_state to "no rtm" in MDO
  1370     mov_metadata(tmpReg, method_data);
  1371     if (os::is_MP()) {
  1372       lock();
  1374     orl(Address(tmpReg, MethodData::rtm_state_offset_in_bytes()), NoRTM);
  1376   jmpb(L_done);
  1377   bind(L_check_always_rtm1);
  1378   // Reload RTMLockingCounters* address
  1379   lea(rtm_counters_Reg, ExternalAddress((address)rtm_counters));
  1380   bind(L_check_always_rtm2);
  1381   movptr(tmpReg, Address(rtm_counters_Reg, RTMLockingCounters::total_count_offset()));
  1382   cmpptr(tmpReg, RTMLockingThreshold / RTMTotalCountIncrRate);
  1383   jccb(Assembler::below, L_done);
  1384   if (method_data != NULL) {
  1385     // set rtm_state to "always rtm" in MDO
  1386     mov_metadata(tmpReg, method_data);
  1387     if (os::is_MP()) {
  1388       lock();
  1390     orl(Address(tmpReg, MethodData::rtm_state_offset_in_bytes()), UseRTM);
  1392   bind(L_done);
  1395 // Update counters and perform abort ratio calculation
  1396 // input:  abort_status_Reg
  1397 // rtm_counters_Reg, flags are killed
  1398 void MacroAssembler::rtm_profiling(Register abort_status_Reg,
  1399                                    Register rtm_counters_Reg,
  1400                                    RTMLockingCounters* rtm_counters,
  1401                                    Metadata* method_data,
  1402                                    bool profile_rtm) {
  1404   assert(rtm_counters != NULL, "should not be NULL when profiling RTM");
  1405   // update rtm counters based on rax value at abort
  1406   // reads abort_status_Reg, updates flags
  1407   lea(rtm_counters_Reg, ExternalAddress((address)rtm_counters));
  1408   rtm_counters_update(abort_status_Reg, rtm_counters_Reg);
  1409   if (profile_rtm) {
  1410     // Save abort status because abort_status_Reg is used by following code.
  1411     if (RTMRetryCount > 0) {
  1412       push(abort_status_Reg);
  1414     assert(rtm_counters != NULL, "should not be NULL when profiling RTM");
  1415     rtm_abort_ratio_calculation(abort_status_Reg, rtm_counters_Reg, rtm_counters, method_data);
  1416     // restore abort status
  1417     if (RTMRetryCount > 0) {
  1418       pop(abort_status_Reg);
  1423 // Retry on abort if abort's status is 0x6: can retry (0x2) | memory conflict (0x4)
  1424 // inputs: retry_count_Reg
  1425 //       : abort_status_Reg
  1426 // output: retry_count_Reg decremented by 1
  1427 // flags are killed
  1428 void MacroAssembler::rtm_retry_lock_on_abort(Register retry_count_Reg, Register abort_status_Reg, Label& retryLabel) {
  1429   Label doneRetry;
  1430   assert(abort_status_Reg == rax, "");
  1431   // The abort reason bits are in eax (see all states in rtmLocking.hpp)
  1432   // 0x6 = conflict on which we can retry (0x2) | memory conflict (0x4)
  1433   // if reason is in 0x6 and retry count != 0 then retry
  1434   andptr(abort_status_Reg, 0x6);
  1435   jccb(Assembler::zero, doneRetry);
  1436   testl(retry_count_Reg, retry_count_Reg);
  1437   jccb(Assembler::zero, doneRetry);
  1438   pause();
  1439   decrementl(retry_count_Reg);
  1440   jmp(retryLabel);
  1441   bind(doneRetry);
  1444 // Spin and retry if lock is busy,
  1445 // inputs: box_Reg (monitor address)
  1446 //       : retry_count_Reg
  1447 // output: retry_count_Reg decremented by 1
  1448 //       : clear z flag if retry count exceeded
  1449 // tmp_Reg, scr_Reg, flags are killed
  1450 void MacroAssembler::rtm_retry_lock_on_busy(Register retry_count_Reg, Register box_Reg,
  1451                                             Register tmp_Reg, Register scr_Reg, Label& retryLabel) {
  1452   Label SpinLoop, SpinExit, doneRetry;
  1453   // Clean monitor_value bit to get valid pointer
  1454   int owner_offset = ObjectMonitor::owner_offset_in_bytes() - markOopDesc::monitor_value;
  1456   testl(retry_count_Reg, retry_count_Reg);
  1457   jccb(Assembler::zero, doneRetry);
  1458   decrementl(retry_count_Reg);
  1459   movptr(scr_Reg, RTMSpinLoopCount);
  1461   bind(SpinLoop);
  1462   pause();
  1463   decrementl(scr_Reg);
  1464   jccb(Assembler::lessEqual, SpinExit);
  1465   movptr(tmp_Reg, Address(box_Reg, owner_offset));
  1466   testptr(tmp_Reg, tmp_Reg);
  1467   jccb(Assembler::notZero, SpinLoop);
  1469   bind(SpinExit);
  1470   jmp(retryLabel);
  1471   bind(doneRetry);
  1472   incrementl(retry_count_Reg); // clear z flag
  1475 // Use RTM for normal stack locks
  1476 // Input: objReg (object to lock)
  1477 void MacroAssembler::rtm_stack_locking(Register objReg, Register tmpReg, Register scrReg,
  1478                                        Register retry_on_abort_count_Reg,
  1479                                        RTMLockingCounters* stack_rtm_counters,
  1480                                        Metadata* method_data, bool profile_rtm,
  1481                                        Label& DONE_LABEL, Label& IsInflated) {
  1482   assert(UseRTMForStackLocks, "why call this otherwise?");
  1483   assert(!UseBiasedLocking, "Biased locking is not supported with RTM locking");
  1484   assert(tmpReg == rax, "");
  1485   assert(scrReg == rdx, "");
  1486   Label L_rtm_retry, L_decrement_retry, L_on_abort;
  1488   if (RTMRetryCount > 0) {
  1489     movl(retry_on_abort_count_Reg, RTMRetryCount); // Retry on abort
  1490     bind(L_rtm_retry);
  1492   movptr(tmpReg, Address(objReg, 0));
  1493   testptr(tmpReg, markOopDesc::monitor_value);  // inflated vs stack-locked|neutral|biased
  1494   jcc(Assembler::notZero, IsInflated);
  1496   if (PrintPreciseRTMLockingStatistics || profile_rtm) {
  1497     Label L_noincrement;
  1498     if (RTMTotalCountIncrRate > 1) {
  1499       // tmpReg, scrReg and flags are killed
  1500       branch_on_random_using_rdtsc(tmpReg, scrReg, (int)RTMTotalCountIncrRate, L_noincrement);
  1502     assert(stack_rtm_counters != NULL, "should not be NULL when profiling RTM");
  1503     atomic_incptr(ExternalAddress((address)stack_rtm_counters->total_count_addr()), scrReg);
  1504     bind(L_noincrement);
  1506   xbegin(L_on_abort);
  1507   movptr(tmpReg, Address(objReg, 0));       // fetch markword
  1508   andptr(tmpReg, markOopDesc::biased_lock_mask_in_place); // look at 3 lock bits
  1509   cmpptr(tmpReg, markOopDesc::unlocked_value);            // bits = 001 unlocked
  1510   jcc(Assembler::equal, DONE_LABEL);        // all done if unlocked
  1512   Register abort_status_Reg = tmpReg; // status of abort is stored in RAX
  1513   if (UseRTMXendForLockBusy) {
  1514     xend();
  1515     movptr(abort_status_Reg, 0x2);   // Set the abort status to 2 (so we can retry)
  1516     jmp(L_decrement_retry);
  1518   else {
  1519     xabort(0);
  1521   bind(L_on_abort);
  1522   if (PrintPreciseRTMLockingStatistics || profile_rtm) {
  1523     rtm_profiling(abort_status_Reg, scrReg, stack_rtm_counters, method_data, profile_rtm);
  1525   bind(L_decrement_retry);
  1526   if (RTMRetryCount > 0) {
  1527     // retry on lock abort if abort status is 'can retry' (0x2) or 'memory conflict' (0x4)
  1528     rtm_retry_lock_on_abort(retry_on_abort_count_Reg, abort_status_Reg, L_rtm_retry);
  1532 // Use RTM for inflating locks
  1533 // inputs: objReg (object to lock)
  1534 //         boxReg (on-stack box address (displaced header location) - KILLED)
  1535 //         tmpReg (ObjectMonitor address + 2(monitor_value))
  1536 void MacroAssembler::rtm_inflated_locking(Register objReg, Register boxReg, Register tmpReg,
  1537                                           Register scrReg, Register retry_on_busy_count_Reg,
  1538                                           Register retry_on_abort_count_Reg,
  1539                                           RTMLockingCounters* rtm_counters,
  1540                                           Metadata* method_data, bool profile_rtm,
  1541                                           Label& DONE_LABEL) {
  1542   assert(UseRTMLocking, "why call this otherwise?");
  1543   assert(tmpReg == rax, "");
  1544   assert(scrReg == rdx, "");
  1545   Label L_rtm_retry, L_decrement_retry, L_on_abort;
  1546   // Clean monitor_value bit to get valid pointer
  1547   int owner_offset = ObjectMonitor::owner_offset_in_bytes() - markOopDesc::monitor_value;
  1549   // Without cast to int32_t a movptr will destroy r10 which is typically obj
  1550   movptr(Address(boxReg, 0), (int32_t)intptr_t(markOopDesc::unused_mark()));
  1551   movptr(boxReg, tmpReg); // Save ObjectMonitor address
  1553   if (RTMRetryCount > 0) {
  1554     movl(retry_on_busy_count_Reg, RTMRetryCount);  // Retry on lock busy
  1555     movl(retry_on_abort_count_Reg, RTMRetryCount); // Retry on abort
  1556     bind(L_rtm_retry);
  1558   if (PrintPreciseRTMLockingStatistics || profile_rtm) {
  1559     Label L_noincrement;
  1560     if (RTMTotalCountIncrRate > 1) {
  1561       // tmpReg, scrReg and flags are killed
  1562       branch_on_random_using_rdtsc(tmpReg, scrReg, (int)RTMTotalCountIncrRate, L_noincrement);
  1564     assert(rtm_counters != NULL, "should not be NULL when profiling RTM");
  1565     atomic_incptr(ExternalAddress((address)rtm_counters->total_count_addr()), scrReg);
  1566     bind(L_noincrement);
  1568   xbegin(L_on_abort);
  1569   movptr(tmpReg, Address(objReg, 0));
  1570   movptr(tmpReg, Address(tmpReg, owner_offset));
  1571   testptr(tmpReg, tmpReg);
  1572   jcc(Assembler::zero, DONE_LABEL);
  1573   if (UseRTMXendForLockBusy) {
  1574     xend();
  1575     jmp(L_decrement_retry);
  1577   else {
  1578     xabort(0);
  1580   bind(L_on_abort);
  1581   Register abort_status_Reg = tmpReg; // status of abort is stored in RAX
  1582   if (PrintPreciseRTMLockingStatistics || profile_rtm) {
  1583     rtm_profiling(abort_status_Reg, scrReg, rtm_counters, method_data, profile_rtm);
  1585   if (RTMRetryCount > 0) {
  1586     // retry on lock abort if abort status is 'can retry' (0x2) or 'memory conflict' (0x4)
  1587     rtm_retry_lock_on_abort(retry_on_abort_count_Reg, abort_status_Reg, L_rtm_retry);
  1590   movptr(tmpReg, Address(boxReg, owner_offset)) ;
  1591   testptr(tmpReg, tmpReg) ;
  1592   jccb(Assembler::notZero, L_decrement_retry) ;
  1594   // Appears unlocked - try to swing _owner from null to non-null.
  1595   // Invariant: tmpReg == 0.  tmpReg is EAX which is the implicit cmpxchg comparand.
  1596 #ifdef _LP64
  1597   Register threadReg = r15_thread;
  1598 #else
  1599   get_thread(scrReg);
  1600   Register threadReg = scrReg;
  1601 #endif
  1602   if (os::is_MP()) {
  1603     lock();
  1605   cmpxchgptr(threadReg, Address(boxReg, owner_offset)); // Updates tmpReg
  1607   if (RTMRetryCount > 0) {
  1608     // success done else retry
  1609     jccb(Assembler::equal, DONE_LABEL) ;
  1610     bind(L_decrement_retry);
  1611     // Spin and retry if lock is busy.
  1612     rtm_retry_lock_on_busy(retry_on_busy_count_Reg, boxReg, tmpReg, scrReg, L_rtm_retry);
  1614   else {
  1615     bind(L_decrement_retry);
  1619 #endif //  INCLUDE_RTM_OPT
  1621 // Fast_Lock and Fast_Unlock used by C2
  1623 // Because the transitions from emitted code to the runtime
  1624 // monitorenter/exit helper stubs are so slow it's critical that
  1625 // we inline both the stack-locking fast-path and the inflated fast path.
  1626 //
  1627 // See also: cmpFastLock and cmpFastUnlock.
  1628 //
  1629 // What follows is a specialized inline transliteration of the code
  1630 // in slow_enter() and slow_exit().  If we're concerned about I$ bloat
  1631 // another option would be to emit TrySlowEnter and TrySlowExit methods
  1632 // at startup-time.  These methods would accept arguments as
  1633 // (rax,=Obj, rbx=Self, rcx=box, rdx=Scratch) and return success-failure
  1634 // indications in the icc.ZFlag.  Fast_Lock and Fast_Unlock would simply
  1635 // marshal the arguments and emit calls to TrySlowEnter and TrySlowExit.
  1636 // In practice, however, the # of lock sites is bounded and is usually small.
  1637 // Besides the call overhead, TrySlowEnter and TrySlowExit might suffer
  1638 // if the processor uses simple bimodal branch predictors keyed by EIP
  1639 // Since the helper routines would be called from multiple synchronization
  1640 // sites.
  1641 //
  1642 // An even better approach would be write "MonitorEnter()" and "MonitorExit()"
  1643 // in java - using j.u.c and unsafe - and just bind the lock and unlock sites
  1644 // to those specialized methods.  That'd give us a mostly platform-independent
  1645 // implementation that the JITs could optimize and inline at their pleasure.
  1646 // Done correctly, the only time we'd need to cross to native could would be
  1647 // to park() or unpark() threads.  We'd also need a few more unsafe operators
  1648 // to (a) prevent compiler-JIT reordering of non-volatile accesses, and
  1649 // (b) explicit barriers or fence operations.
  1650 //
  1651 // TODO:
  1652 //
  1653 // *  Arrange for C2 to pass "Self" into Fast_Lock and Fast_Unlock in one of the registers (scr).
  1654 //    This avoids manifesting the Self pointer in the Fast_Lock and Fast_Unlock terminals.
  1655 //    Given TLAB allocation, Self is usually manifested in a register, so passing it into
  1656 //    the lock operators would typically be faster than reifying Self.
  1657 //
  1658 // *  Ideally I'd define the primitives as:
  1659 //       fast_lock   (nax Obj, nax box, EAX tmp, nax scr) where box, tmp and scr are KILLED.
  1660 //       fast_unlock (nax Obj, EAX box, nax tmp) where box and tmp are KILLED
  1661 //    Unfortunately ADLC bugs prevent us from expressing the ideal form.
  1662 //    Instead, we're stuck with a rather awkward and brittle register assignments below.
  1663 //    Furthermore the register assignments are overconstrained, possibly resulting in
  1664 //    sub-optimal code near the synchronization site.
  1665 //
  1666 // *  Eliminate the sp-proximity tests and just use "== Self" tests instead.
  1667 //    Alternately, use a better sp-proximity test.
  1668 //
  1669 // *  Currently ObjectMonitor._Owner can hold either an sp value or a (THREAD *) value.
  1670 //    Either one is sufficient to uniquely identify a thread.
  1671 //    TODO: eliminate use of sp in _owner and use get_thread(tr) instead.
  1672 //
  1673 // *  Intrinsify notify() and notifyAll() for the common cases where the
  1674 //    object is locked by the calling thread but the waitlist is empty.
  1675 //    avoid the expensive JNI call to JVM_Notify() and JVM_NotifyAll().
  1676 //
  1677 // *  use jccb and jmpb instead of jcc and jmp to improve code density.
  1678 //    But beware of excessive branch density on AMD Opterons.
  1679 //
  1680 // *  Both Fast_Lock and Fast_Unlock set the ICC.ZF to indicate success
  1681 //    or failure of the fast-path.  If the fast-path fails then we pass
  1682 //    control to the slow-path, typically in C.  In Fast_Lock and
  1683 //    Fast_Unlock we often branch to DONE_LABEL, just to find that C2
  1684 //    will emit a conditional branch immediately after the node.
  1685 //    So we have branches to branches and lots of ICC.ZF games.
  1686 //    Instead, it might be better to have C2 pass a "FailureLabel"
  1687 //    into Fast_Lock and Fast_Unlock.  In the case of success, control
  1688 //    will drop through the node.  ICC.ZF is undefined at exit.
  1689 //    In the case of failure, the node will branch directly to the
  1690 //    FailureLabel
  1693 // obj: object to lock
  1694 // box: on-stack box address (displaced header location) - KILLED
  1695 // rax,: tmp -- KILLED
  1696 // scr: tmp -- KILLED
  1697 void MacroAssembler::fast_lock(Register objReg, Register boxReg, Register tmpReg,
  1698                                Register scrReg, Register cx1Reg, Register cx2Reg,
  1699                                BiasedLockingCounters* counters,
  1700                                RTMLockingCounters* rtm_counters,
  1701                                RTMLockingCounters* stack_rtm_counters,
  1702                                Metadata* method_data,
  1703                                bool use_rtm, bool profile_rtm) {
  1704   // Ensure the register assignents are disjoint
  1705   assert(tmpReg == rax, "");
  1707   if (use_rtm) {
  1708     assert_different_registers(objReg, boxReg, tmpReg, scrReg, cx1Reg, cx2Reg);
  1709   } else {
  1710     assert(cx1Reg == noreg, "");
  1711     assert(cx2Reg == noreg, "");
  1712     assert_different_registers(objReg, boxReg, tmpReg, scrReg);
  1715   if (counters != NULL) {
  1716     atomic_incl(ExternalAddress((address)counters->total_entry_count_addr()), scrReg);
  1718   if (EmitSync & 1) {
  1719       // set box->dhw = unused_mark (3)
  1720       // Force all sync thru slow-path: slow_enter() and slow_exit()
  1721       movptr (Address(boxReg, 0), (int32_t)intptr_t(markOopDesc::unused_mark()));
  1722       cmpptr (rsp, (int32_t)NULL_WORD);
  1723   } else
  1724   if (EmitSync & 2) {
  1725       Label DONE_LABEL ;
  1726       if (UseBiasedLocking) {
  1727          // Note: tmpReg maps to the swap_reg argument and scrReg to the tmp_reg argument.
  1728          biased_locking_enter(boxReg, objReg, tmpReg, scrReg, false, DONE_LABEL, NULL, counters);
  1731       movptr(tmpReg, Address(objReg, 0));           // fetch markword
  1732       orptr (tmpReg, 0x1);
  1733       movptr(Address(boxReg, 0), tmpReg);           // Anticipate successful CAS
  1734       if (os::is_MP()) {
  1735         lock();
  1737       cmpxchgptr(boxReg, Address(objReg, 0));       // Updates tmpReg
  1738       jccb(Assembler::equal, DONE_LABEL);
  1739       // Recursive locking
  1740       subptr(tmpReg, rsp);
  1741       andptr(tmpReg, (int32_t) (NOT_LP64(0xFFFFF003) LP64_ONLY(7 - os::vm_page_size())) );
  1742       movptr(Address(boxReg, 0), tmpReg);
  1743       bind(DONE_LABEL);
  1744   } else {
  1745     // Possible cases that we'll encounter in fast_lock
  1746     // ------------------------------------------------
  1747     // * Inflated
  1748     //    -- unlocked
  1749     //    -- Locked
  1750     //       = by self
  1751     //       = by other
  1752     // * biased
  1753     //    -- by Self
  1754     //    -- by other
  1755     // * neutral
  1756     // * stack-locked
  1757     //    -- by self
  1758     //       = sp-proximity test hits
  1759     //       = sp-proximity test generates false-negative
  1760     //    -- by other
  1761     //
  1763     Label IsInflated, DONE_LABEL;
  1765     // it's stack-locked, biased or neutral
  1766     // TODO: optimize away redundant LDs of obj->mark and improve the markword triage
  1767     // order to reduce the number of conditional branches in the most common cases.
  1768     // Beware -- there's a subtle invariant that fetch of the markword
  1769     // at [FETCH], below, will never observe a biased encoding (*101b).
  1770     // If this invariant is not held we risk exclusion (safety) failure.
  1771     if (UseBiasedLocking && !UseOptoBiasInlining) {
  1772       biased_locking_enter(boxReg, objReg, tmpReg, scrReg, false, DONE_LABEL, NULL, counters);
  1775 #if INCLUDE_RTM_OPT
  1776     if (UseRTMForStackLocks && use_rtm) {
  1777       rtm_stack_locking(objReg, tmpReg, scrReg, cx2Reg,
  1778                         stack_rtm_counters, method_data, profile_rtm,
  1779                         DONE_LABEL, IsInflated);
  1781 #endif // INCLUDE_RTM_OPT
  1783     movptr(tmpReg, Address(objReg, 0));          // [FETCH]
  1784     testptr(tmpReg, markOopDesc::monitor_value); // inflated vs stack-locked|neutral|biased
  1785     jccb(Assembler::notZero, IsInflated);
  1787     // Attempt stack-locking ...
  1788     orptr (tmpReg, markOopDesc::unlocked_value);
  1789     movptr(Address(boxReg, 0), tmpReg);          // Anticipate successful CAS
  1790     if (os::is_MP()) {
  1791       lock();
  1793     cmpxchgptr(boxReg, Address(objReg, 0));      // Updates tmpReg
  1794     if (counters != NULL) {
  1795       cond_inc32(Assembler::equal,
  1796                  ExternalAddress((address)counters->fast_path_entry_count_addr()));
  1798     jcc(Assembler::equal, DONE_LABEL);           // Success
  1800     // Recursive locking.
  1801     // The object is stack-locked: markword contains stack pointer to BasicLock.
  1802     // Locked by current thread if difference with current SP is less than one page.
  1803     subptr(tmpReg, rsp);
  1804     // Next instruction set ZFlag == 1 (Success) if difference is less then one page.
  1805     andptr(tmpReg, (int32_t) (NOT_LP64(0xFFFFF003) LP64_ONLY(7 - os::vm_page_size())) );
  1806     movptr(Address(boxReg, 0), tmpReg);
  1807     if (counters != NULL) {
  1808       cond_inc32(Assembler::equal,
  1809                  ExternalAddress((address)counters->fast_path_entry_count_addr()));
  1811     jmp(DONE_LABEL);
  1813     bind(IsInflated);
  1814     // The object is inflated. tmpReg contains pointer to ObjectMonitor* + 2(monitor_value)
  1816 #if INCLUDE_RTM_OPT
  1817     // Use the same RTM locking code in 32- and 64-bit VM.
  1818     if (use_rtm) {
  1819       rtm_inflated_locking(objReg, boxReg, tmpReg, scrReg, cx1Reg, cx2Reg,
  1820                            rtm_counters, method_data, profile_rtm, DONE_LABEL);
  1821     } else {
  1822 #endif // INCLUDE_RTM_OPT
  1824 #ifndef _LP64
  1825     // The object is inflated.
  1826     //
  1827     // TODO-FIXME: eliminate the ugly use of manifest constants:
  1828     //   Use markOopDesc::monitor_value instead of "2".
  1829     //   use markOop::unused_mark() instead of "3".
  1830     // The tmpReg value is an objectMonitor reference ORed with
  1831     // markOopDesc::monitor_value (2).   We can either convert tmpReg to an
  1832     // objectmonitor pointer by masking off the "2" bit or we can just
  1833     // use tmpReg as an objectmonitor pointer but bias the objectmonitor
  1834     // field offsets with "-2" to compensate for and annul the low-order tag bit.
  1835     //
  1836     // I use the latter as it avoids AGI stalls.
  1837     // As such, we write "mov r, [tmpReg+OFFSETOF(Owner)-2]"
  1838     // instead of "mov r, [tmpReg+OFFSETOF(Owner)]".
  1839     //
  1840     #define OFFSET_SKEWED(f) ((ObjectMonitor::f ## _offset_in_bytes())-2)
  1842     // boxReg refers to the on-stack BasicLock in the current frame.
  1843     // We'd like to write:
  1844     //   set box->_displaced_header = markOop::unused_mark().  Any non-0 value suffices.
  1845     // This is convenient but results a ST-before-CAS penalty.  The following CAS suffers
  1846     // additional latency as we have another ST in the store buffer that must drain.
  1848     if (EmitSync & 8192) {
  1849        movptr(Address(boxReg, 0), 3);            // results in ST-before-CAS penalty
  1850        get_thread (scrReg);
  1851        movptr(boxReg, tmpReg);                    // consider: LEA box, [tmp-2]
  1852        movptr(tmpReg, NULL_WORD);                 // consider: xor vs mov
  1853        if (os::is_MP()) {
  1854          lock();
  1856        cmpxchgptr(scrReg, Address(boxReg, ObjectMonitor::owner_offset_in_bytes()-2));
  1857     } else
  1858     if ((EmitSync & 128) == 0) {                      // avoid ST-before-CAS
  1859        movptr(scrReg, boxReg);
  1860        movptr(boxReg, tmpReg);                   // consider: LEA box, [tmp-2]
  1862        // Using a prefetchw helps avoid later RTS->RTO upgrades and cache probes
  1863        if ((EmitSync & 2048) && VM_Version::supports_3dnow_prefetch() && os::is_MP()) {
  1864           // prefetchw [eax + Offset(_owner)-2]
  1865           prefetchw(Address(tmpReg, ObjectMonitor::owner_offset_in_bytes()-2));
  1868        if ((EmitSync & 64) == 0) {
  1869          // Optimistic form: consider XORL tmpReg,tmpReg
  1870          movptr(tmpReg, NULL_WORD);
  1871        } else {
  1872          // Can suffer RTS->RTO upgrades on shared or cold $ lines
  1873          // Test-And-CAS instead of CAS
  1874          movptr(tmpReg, Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2));   // rax, = m->_owner
  1875          testptr(tmpReg, tmpReg);                   // Locked ?
  1876          jccb  (Assembler::notZero, DONE_LABEL);
  1879        // Appears unlocked - try to swing _owner from null to non-null.
  1880        // Ideally, I'd manifest "Self" with get_thread and then attempt
  1881        // to CAS the register containing Self into m->Owner.
  1882        // But we don't have enough registers, so instead we can either try to CAS
  1883        // rsp or the address of the box (in scr) into &m->owner.  If the CAS succeeds
  1884        // we later store "Self" into m->Owner.  Transiently storing a stack address
  1885        // (rsp or the address of the box) into  m->owner is harmless.
  1886        // Invariant: tmpReg == 0.  tmpReg is EAX which is the implicit cmpxchg comparand.
  1887        if (os::is_MP()) {
  1888          lock();
  1890        cmpxchgptr(scrReg, Address(boxReg, ObjectMonitor::owner_offset_in_bytes()-2));
  1891        movptr(Address(scrReg, 0), 3);          // box->_displaced_header = 3
  1892        jccb  (Assembler::notZero, DONE_LABEL);
  1893        get_thread (scrReg);                    // beware: clobbers ICCs
  1894        movptr(Address(boxReg, ObjectMonitor::owner_offset_in_bytes()-2), scrReg);
  1895        xorptr(boxReg, boxReg);                 // set icc.ZFlag = 1 to indicate success
  1897        // If the CAS fails we can either retry or pass control to the slow-path.
  1898        // We use the latter tactic.
  1899        // Pass the CAS result in the icc.ZFlag into DONE_LABEL
  1900        // If the CAS was successful ...
  1901        //   Self has acquired the lock
  1902        //   Invariant: m->_recursions should already be 0, so we don't need to explicitly set it.
  1903        // Intentional fall-through into DONE_LABEL ...
  1904     } else {
  1905        movptr(Address(boxReg, 0), intptr_t(markOopDesc::unused_mark()));  // results in ST-before-CAS penalty
  1906        movptr(boxReg, tmpReg);
  1908        // Using a prefetchw helps avoid later RTS->RTO upgrades and cache probes
  1909        if ((EmitSync & 2048) && VM_Version::supports_3dnow_prefetch() && os::is_MP()) {
  1910           // prefetchw [eax + Offset(_owner)-2]
  1911           prefetchw(Address(tmpReg, ObjectMonitor::owner_offset_in_bytes()-2));
  1914        if ((EmitSync & 64) == 0) {
  1915          // Optimistic form
  1916          xorptr  (tmpReg, tmpReg);
  1917        } else {
  1918          // Can suffer RTS->RTO upgrades on shared or cold $ lines
  1919          movptr(tmpReg, Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2));   // rax, = m->_owner
  1920          testptr(tmpReg, tmpReg);                   // Locked ?
  1921          jccb  (Assembler::notZero, DONE_LABEL);
  1924        // Appears unlocked - try to swing _owner from null to non-null.
  1925        // Use either "Self" (in scr) or rsp as thread identity in _owner.
  1926        // Invariant: tmpReg == 0.  tmpReg is EAX which is the implicit cmpxchg comparand.
  1927        get_thread (scrReg);
  1928        if (os::is_MP()) {
  1929          lock();
  1931        cmpxchgptr(scrReg, Address(boxReg, ObjectMonitor::owner_offset_in_bytes()-2));
  1933        // If the CAS fails we can either retry or pass control to the slow-path.
  1934        // We use the latter tactic.
  1935        // Pass the CAS result in the icc.ZFlag into DONE_LABEL
  1936        // If the CAS was successful ...
  1937        //   Self has acquired the lock
  1938        //   Invariant: m->_recursions should already be 0, so we don't need to explicitly set it.
  1939        // Intentional fall-through into DONE_LABEL ...
  1941 #else // _LP64
  1942     // It's inflated
  1944     // TODO: someday avoid the ST-before-CAS penalty by
  1945     // relocating (deferring) the following ST.
  1946     // We should also think about trying a CAS without having
  1947     // fetched _owner.  If the CAS is successful we may
  1948     // avoid an RTO->RTS upgrade on the $line.
  1950     // Without cast to int32_t a movptr will destroy r10 which is typically obj
  1951     movptr(Address(boxReg, 0), (int32_t)intptr_t(markOopDesc::unused_mark()));
  1953     movptr (boxReg, tmpReg);
  1954     movptr (tmpReg, Address(boxReg, ObjectMonitor::owner_offset_in_bytes()-2));
  1955     testptr(tmpReg, tmpReg);
  1956     jccb   (Assembler::notZero, DONE_LABEL);
  1958     // It's inflated and appears unlocked
  1959     if (os::is_MP()) {
  1960       lock();
  1962     cmpxchgptr(r15_thread, Address(boxReg, ObjectMonitor::owner_offset_in_bytes()-2));
  1963     // Intentional fall-through into DONE_LABEL ...
  1964 #endif // _LP64
  1966 #if INCLUDE_RTM_OPT
  1967     } // use_rtm()
  1968 #endif
  1969     // DONE_LABEL is a hot target - we'd really like to place it at the
  1970     // start of cache line by padding with NOPs.
  1971     // See the AMD and Intel software optimization manuals for the
  1972     // most efficient "long" NOP encodings.
  1973     // Unfortunately none of our alignment mechanisms suffice.
  1974     bind(DONE_LABEL);
  1976     // At DONE_LABEL the icc ZFlag is set as follows ...
  1977     // Fast_Unlock uses the same protocol.
  1978     // ZFlag == 1 -> Success
  1979     // ZFlag == 0 -> Failure - force control through the slow-path
  1983 // obj: object to unlock
  1984 // box: box address (displaced header location), killed.  Must be EAX.
  1985 // tmp: killed, cannot be obj nor box.
  1986 //
  1987 // Some commentary on balanced locking:
  1988 //
  1989 // Fast_Lock and Fast_Unlock are emitted only for provably balanced lock sites.
  1990 // Methods that don't have provably balanced locking are forced to run in the
  1991 // interpreter - such methods won't be compiled to use fast_lock and fast_unlock.
  1992 // The interpreter provides two properties:
  1993 // I1:  At return-time the interpreter automatically and quietly unlocks any
  1994 //      objects acquired the current activation (frame).  Recall that the
  1995 //      interpreter maintains an on-stack list of locks currently held by
  1996 //      a frame.
  1997 // I2:  If a method attempts to unlock an object that is not held by the
  1998 //      the frame the interpreter throws IMSX.
  1999 //
  2000 // Lets say A(), which has provably balanced locking, acquires O and then calls B().
  2001 // B() doesn't have provably balanced locking so it runs in the interpreter.
  2002 // Control returns to A() and A() unlocks O.  By I1 and I2, above, we know that O
  2003 // is still locked by A().
  2004 //
  2005 // The only other source of unbalanced locking would be JNI.  The "Java Native Interface:
  2006 // Programmer's Guide and Specification" claims that an object locked by jni_monitorenter
  2007 // should not be unlocked by "normal" java-level locking and vice-versa.  The specification
  2008 // doesn't specify what will occur if a program engages in such mixed-mode locking, however.
  2010 void MacroAssembler::fast_unlock(Register objReg, Register boxReg, Register tmpReg, bool use_rtm) {
  2011   assert(boxReg == rax, "");
  2012   assert_different_registers(objReg, boxReg, tmpReg);
  2014   if (EmitSync & 4) {
  2015     // Disable - inhibit all inlining.  Force control through the slow-path
  2016     cmpptr (rsp, 0);
  2017   } else
  2018   if (EmitSync & 8) {
  2019     Label DONE_LABEL;
  2020     if (UseBiasedLocking) {
  2021        biased_locking_exit(objReg, tmpReg, DONE_LABEL);
  2023     // Classic stack-locking code ...
  2024     // Check whether the displaced header is 0
  2025     //(=> recursive unlock)
  2026     movptr(tmpReg, Address(boxReg, 0));
  2027     testptr(tmpReg, tmpReg);
  2028     jccb(Assembler::zero, DONE_LABEL);
  2029     // If not recursive lock, reset the header to displaced header
  2030     if (os::is_MP()) {
  2031       lock();
  2033     cmpxchgptr(tmpReg, Address(objReg, 0));   // Uses RAX which is box
  2034     bind(DONE_LABEL);
  2035   } else {
  2036     Label DONE_LABEL, Stacked, CheckSucc;
  2038     // Critically, the biased locking test must have precedence over
  2039     // and appear before the (box->dhw == 0) recursive stack-lock test.
  2040     if (UseBiasedLocking && !UseOptoBiasInlining) {
  2041        biased_locking_exit(objReg, tmpReg, DONE_LABEL);
  2044 #if INCLUDE_RTM_OPT
  2045     if (UseRTMForStackLocks && use_rtm) {
  2046       assert(!UseBiasedLocking, "Biased locking is not supported with RTM locking");
  2047       Label L_regular_unlock;
  2048       movptr(tmpReg, Address(objReg, 0));           // fetch markword
  2049       andptr(tmpReg, markOopDesc::biased_lock_mask_in_place); // look at 3 lock bits
  2050       cmpptr(tmpReg, markOopDesc::unlocked_value);            // bits = 001 unlocked
  2051       jccb(Assembler::notEqual, L_regular_unlock);  // if !HLE RegularLock
  2052       xend();                                       // otherwise end...
  2053       jmp(DONE_LABEL);                              // ... and we're done
  2054       bind(L_regular_unlock);
  2056 #endif
  2058     cmpptr(Address(boxReg, 0), (int32_t)NULL_WORD); // Examine the displaced header
  2059     jcc   (Assembler::zero, DONE_LABEL);            // 0 indicates recursive stack-lock
  2060     movptr(tmpReg, Address(objReg, 0));             // Examine the object's markword
  2061     testptr(tmpReg, markOopDesc::monitor_value);    // Inflated?
  2062     jccb  (Assembler::zero, Stacked);
  2064     // It's inflated.
  2065 #if INCLUDE_RTM_OPT
  2066     if (use_rtm) {
  2067       Label L_regular_inflated_unlock;
  2068       // Clean monitor_value bit to get valid pointer
  2069       int owner_offset = ObjectMonitor::owner_offset_in_bytes() - markOopDesc::monitor_value;
  2070       movptr(boxReg, Address(tmpReg, owner_offset));
  2071       testptr(boxReg, boxReg);
  2072       jccb(Assembler::notZero, L_regular_inflated_unlock);
  2073       xend();
  2074       jmpb(DONE_LABEL);
  2075       bind(L_regular_inflated_unlock);
  2077 #endif
  2079     // Despite our balanced locking property we still check that m->_owner == Self
  2080     // as java routines or native JNI code called by this thread might
  2081     // have released the lock.
  2082     // Refer to the comments in synchronizer.cpp for how we might encode extra
  2083     // state in _succ so we can avoid fetching EntryList|cxq.
  2084     //
  2085     // I'd like to add more cases in fast_lock() and fast_unlock() --
  2086     // such as recursive enter and exit -- but we have to be wary of
  2087     // I$ bloat, T$ effects and BP$ effects.
  2088     //
  2089     // If there's no contention try a 1-0 exit.  That is, exit without
  2090     // a costly MEMBAR or CAS.  See synchronizer.cpp for details on how
  2091     // we detect and recover from the race that the 1-0 exit admits.
  2092     //
  2093     // Conceptually Fast_Unlock() must execute a STST|LDST "release" barrier
  2094     // before it STs null into _owner, releasing the lock.  Updates
  2095     // to data protected by the critical section must be visible before
  2096     // we drop the lock (and thus before any other thread could acquire
  2097     // the lock and observe the fields protected by the lock).
  2098     // IA32's memory-model is SPO, so STs are ordered with respect to
  2099     // each other and there's no need for an explicit barrier (fence).
  2100     // See also http://gee.cs.oswego.edu/dl/jmm/cookbook.html.
  2101 #ifndef _LP64
  2102     get_thread (boxReg);
  2103     if ((EmitSync & 4096) && VM_Version::supports_3dnow_prefetch() && os::is_MP()) {
  2104       // prefetchw [ebx + Offset(_owner)-2]
  2105       prefetchw(Address(tmpReg, ObjectMonitor::owner_offset_in_bytes()-2));
  2108     // Note that we could employ various encoding schemes to reduce
  2109     // the number of loads below (currently 4) to just 2 or 3.
  2110     // Refer to the comments in synchronizer.cpp.
  2111     // In practice the chain of fetches doesn't seem to impact performance, however.
  2112     if ((EmitSync & 65536) == 0 && (EmitSync & 256)) {
  2113        // Attempt to reduce branch density - AMD's branch predictor.
  2114        xorptr(boxReg, Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2));
  2115        orptr(boxReg, Address (tmpReg, ObjectMonitor::recursions_offset_in_bytes()-2));
  2116        orptr(boxReg, Address (tmpReg, ObjectMonitor::EntryList_offset_in_bytes()-2));
  2117        orptr(boxReg, Address (tmpReg, ObjectMonitor::cxq_offset_in_bytes()-2));
  2118        jccb  (Assembler::notZero, DONE_LABEL);
  2119        movptr(Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2), NULL_WORD);
  2120        jmpb  (DONE_LABEL);
  2121     } else {
  2122        xorptr(boxReg, Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2));
  2123        orptr(boxReg, Address (tmpReg, ObjectMonitor::recursions_offset_in_bytes()-2));
  2124        jccb  (Assembler::notZero, DONE_LABEL);
  2125        movptr(boxReg, Address (tmpReg, ObjectMonitor::EntryList_offset_in_bytes()-2));
  2126        orptr(boxReg, Address (tmpReg, ObjectMonitor::cxq_offset_in_bytes()-2));
  2127        jccb  (Assembler::notZero, CheckSucc);
  2128        movptr(Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2), NULL_WORD);
  2129        jmpb  (DONE_LABEL);
  2132     // The Following code fragment (EmitSync & 65536) improves the performance of
  2133     // contended applications and contended synchronization microbenchmarks.
  2134     // Unfortunately the emission of the code - even though not executed - causes regressions
  2135     // in scimark and jetstream, evidently because of $ effects.  Replacing the code
  2136     // with an equal number of never-executed NOPs results in the same regression.
  2137     // We leave it off by default.
  2139     if ((EmitSync & 65536) != 0) {
  2140        Label LSuccess, LGoSlowPath ;
  2142        bind  (CheckSucc);
  2144        // Optional pre-test ... it's safe to elide this
  2145        if ((EmitSync & 16) == 0) {
  2146           cmpptr(Address (tmpReg, ObjectMonitor::succ_offset_in_bytes()-2), (int32_t)NULL_WORD);
  2147           jccb  (Assembler::zero, LGoSlowPath);
  2150        // We have a classic Dekker-style idiom:
  2151        //    ST m->_owner = 0 ; MEMBAR; LD m->_succ
  2152        // There are a number of ways to implement the barrier:
  2153        // (1) lock:andl &m->_owner, 0
  2154        //     is fast, but mask doesn't currently support the "ANDL M,IMM32" form.
  2155        //     LOCK: ANDL [ebx+Offset(_Owner)-2], 0
  2156        //     Encodes as 81 31 OFF32 IMM32 or 83 63 OFF8 IMM8
  2157        // (2) If supported, an explicit MFENCE is appealing.
  2158        //     In older IA32 processors MFENCE is slower than lock:add or xchg
  2159        //     particularly if the write-buffer is full as might be the case if
  2160        //     if stores closely precede the fence or fence-equivalent instruction.
  2161        //     In more modern implementations MFENCE appears faster, however.
  2162        // (3) In lieu of an explicit fence, use lock:addl to the top-of-stack
  2163        //     The $lines underlying the top-of-stack should be in M-state.
  2164        //     The locked add instruction is serializing, of course.
  2165        // (4) Use xchg, which is serializing
  2166        //     mov boxReg, 0; xchgl boxReg, [tmpReg + Offset(_owner)-2] also works
  2167        // (5) ST m->_owner = 0 and then execute lock:orl &m->_succ, 0.
  2168        //     The integer condition codes will tell us if succ was 0.
  2169        //     Since _succ and _owner should reside in the same $line and
  2170        //     we just stored into _owner, it's likely that the $line
  2171        //     remains in M-state for the lock:orl.
  2172        //
  2173        // We currently use (3), although it's likely that switching to (2)
  2174        // is correct for the future.
  2176        movptr(Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2), NULL_WORD);
  2177        if (os::is_MP()) {
  2178           if (VM_Version::supports_sse2() && 1 == FenceInstruction) {
  2179             mfence();
  2180           } else {
  2181             lock (); addptr(Address(rsp, 0), 0);
  2184        // Ratify _succ remains non-null
  2185        cmpptr(Address (tmpReg, ObjectMonitor::succ_offset_in_bytes()-2), 0);
  2186        jccb  (Assembler::notZero, LSuccess);
  2188        xorptr(boxReg, boxReg);                  // box is really EAX
  2189        if (os::is_MP()) { lock(); }
  2190        cmpxchgptr(rsp, Address(tmpReg, ObjectMonitor::owner_offset_in_bytes()-2));
  2191        jccb  (Assembler::notEqual, LSuccess);
  2192        // Since we're low on registers we installed rsp as a placeholding in _owner.
  2193        // Now install Self over rsp.  This is safe as we're transitioning from
  2194        // non-null to non=null
  2195        get_thread (boxReg);
  2196        movptr(Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2), boxReg);
  2197        // Intentional fall-through into LGoSlowPath ...
  2199        bind  (LGoSlowPath);
  2200        orptr(boxReg, 1);                      // set ICC.ZF=0 to indicate failure
  2201        jmpb  (DONE_LABEL);
  2203        bind  (LSuccess);
  2204        xorptr(boxReg, boxReg);                 // set ICC.ZF=1 to indicate success
  2205        jmpb  (DONE_LABEL);
  2208     bind (Stacked);
  2209     // It's not inflated and it's not recursively stack-locked and it's not biased.
  2210     // It must be stack-locked.
  2211     // Try to reset the header to displaced header.
  2212     // The "box" value on the stack is stable, so we can reload
  2213     // and be assured we observe the same value as above.
  2214     movptr(tmpReg, Address(boxReg, 0));
  2215     if (os::is_MP()) {
  2216       lock();
  2218     cmpxchgptr(tmpReg, Address(objReg, 0)); // Uses RAX which is box
  2219     // Intention fall-thru into DONE_LABEL
  2221     // DONE_LABEL is a hot target - we'd really like to place it at the
  2222     // start of cache line by padding with NOPs.
  2223     // See the AMD and Intel software optimization manuals for the
  2224     // most efficient "long" NOP encodings.
  2225     // Unfortunately none of our alignment mechanisms suffice.
  2226     if ((EmitSync & 65536) == 0) {
  2227        bind (CheckSucc);
  2229 #else // _LP64
  2230     // It's inflated
  2231     movptr(boxReg, Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2));
  2232     xorptr(boxReg, r15_thread);
  2233     orptr (boxReg, Address (tmpReg, ObjectMonitor::recursions_offset_in_bytes()-2));
  2234     jccb  (Assembler::notZero, DONE_LABEL);
  2235     movptr(boxReg, Address (tmpReg, ObjectMonitor::cxq_offset_in_bytes()-2));
  2236     orptr (boxReg, Address (tmpReg, ObjectMonitor::EntryList_offset_in_bytes()-2));
  2237     jccb  (Assembler::notZero, CheckSucc);
  2238     movptr(Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2), (int32_t)NULL_WORD);
  2239     jmpb  (DONE_LABEL);
  2241     if ((EmitSync & 65536) == 0) {
  2242       Label LSuccess, LGoSlowPath ;
  2243       bind  (CheckSucc);
  2244       cmpptr(Address (tmpReg, ObjectMonitor::succ_offset_in_bytes()-2), (int32_t)NULL_WORD);
  2245       jccb  (Assembler::zero, LGoSlowPath);
  2247       // I'd much rather use lock:andl m->_owner, 0 as it's faster than the
  2248       // the explicit ST;MEMBAR combination, but masm doesn't currently support
  2249       // "ANDQ M,IMM".  Don't use MFENCE here.  lock:add to TOS, xchg, etc
  2250       // are all faster when the write buffer is populated.
  2251       movptr (Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2), (int32_t)NULL_WORD);
  2252       if (os::is_MP()) {
  2253          lock (); addl (Address(rsp, 0), 0);
  2255       cmpptr(Address (tmpReg, ObjectMonitor::succ_offset_in_bytes()-2), (int32_t)NULL_WORD);
  2256       jccb  (Assembler::notZero, LSuccess);
  2258       movptr (boxReg, (int32_t)NULL_WORD);                   // box is really EAX
  2259       if (os::is_MP()) { lock(); }
  2260       cmpxchgptr(r15_thread, Address(tmpReg, ObjectMonitor::owner_offset_in_bytes()-2));
  2261       jccb  (Assembler::notEqual, LSuccess);
  2262       // Intentional fall-through into slow-path
  2264       bind  (LGoSlowPath);
  2265       orl   (boxReg, 1);                      // set ICC.ZF=0 to indicate failure
  2266       jmpb  (DONE_LABEL);
  2268       bind  (LSuccess);
  2269       testl (boxReg, 0);                      // set ICC.ZF=1 to indicate success
  2270       jmpb  (DONE_LABEL);
  2273     bind  (Stacked);
  2274     movptr(tmpReg, Address (boxReg, 0));      // re-fetch
  2275     if (os::is_MP()) { lock(); }
  2276     cmpxchgptr(tmpReg, Address(objReg, 0)); // Uses RAX which is box
  2278     if (EmitSync & 65536) {
  2279        bind (CheckSucc);
  2281 #endif
  2282     bind(DONE_LABEL);
  2283     // Avoid branch to branch on AMD processors
  2284     if (EmitSync & 32768) {
  2285        nop();
  2289 #endif // COMPILER2
  2291 void MacroAssembler::c2bool(Register x) {
  2292   // implements x == 0 ? 0 : 1
  2293   // note: must only look at least-significant byte of x
  2294   //       since C-style booleans are stored in one byte
  2295   //       only! (was bug)
  2296   andl(x, 0xFF);
  2297   setb(Assembler::notZero, x);
  2300 // Wouldn't need if AddressLiteral version had new name
  2301 void MacroAssembler::call(Label& L, relocInfo::relocType rtype) {
  2302   Assembler::call(L, rtype);
  2305 void MacroAssembler::call(Register entry) {
  2306   Assembler::call(entry);
  2309 void MacroAssembler::call(AddressLiteral entry) {
  2310   if (reachable(entry)) {
  2311     Assembler::call_literal(entry.target(), entry.rspec());
  2312   } else {
  2313     lea(rscratch1, entry);
  2314     Assembler::call(rscratch1);
  2318 void MacroAssembler::ic_call(address entry) {
  2319   RelocationHolder rh = virtual_call_Relocation::spec(pc());
  2320   movptr(rax, (intptr_t)Universe::non_oop_word());
  2321   call(AddressLiteral(entry, rh));
  2324 // Implementation of call_VM versions
  2326 void MacroAssembler::call_VM(Register oop_result,
  2327                              address entry_point,
  2328                              bool check_exceptions) {
  2329   Label C, E;
  2330   call(C, relocInfo::none);
  2331   jmp(E);
  2333   bind(C);
  2334   call_VM_helper(oop_result, entry_point, 0, check_exceptions);
  2335   ret(0);
  2337   bind(E);
  2340 void MacroAssembler::call_VM(Register oop_result,
  2341                              address entry_point,
  2342                              Register arg_1,
  2343                              bool check_exceptions) {
  2344   Label C, E;
  2345   call(C, relocInfo::none);
  2346   jmp(E);
  2348   bind(C);
  2349   pass_arg1(this, arg_1);
  2350   call_VM_helper(oop_result, entry_point, 1, check_exceptions);
  2351   ret(0);
  2353   bind(E);
  2356 void MacroAssembler::call_VM(Register oop_result,
  2357                              address entry_point,
  2358                              Register arg_1,
  2359                              Register arg_2,
  2360                              bool check_exceptions) {
  2361   Label C, E;
  2362   call(C, relocInfo::none);
  2363   jmp(E);
  2365   bind(C);
  2367   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
  2369   pass_arg2(this, arg_2);
  2370   pass_arg1(this, arg_1);
  2371   call_VM_helper(oop_result, entry_point, 2, check_exceptions);
  2372   ret(0);
  2374   bind(E);
  2377 void MacroAssembler::call_VM(Register oop_result,
  2378                              address entry_point,
  2379                              Register arg_1,
  2380                              Register arg_2,
  2381                              Register arg_3,
  2382                              bool check_exceptions) {
  2383   Label C, E;
  2384   call(C, relocInfo::none);
  2385   jmp(E);
  2387   bind(C);
  2389   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
  2390   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
  2391   pass_arg3(this, arg_3);
  2393   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
  2394   pass_arg2(this, arg_2);
  2396   pass_arg1(this, arg_1);
  2397   call_VM_helper(oop_result, entry_point, 3, check_exceptions);
  2398   ret(0);
  2400   bind(E);
  2403 void MacroAssembler::call_VM(Register oop_result,
  2404                              Register last_java_sp,
  2405                              address entry_point,
  2406                              int number_of_arguments,
  2407                              bool check_exceptions) {
  2408   Register thread = LP64_ONLY(r15_thread) NOT_LP64(noreg);
  2409   call_VM_base(oop_result, thread, last_java_sp, entry_point, number_of_arguments, check_exceptions);
  2412 void MacroAssembler::call_VM(Register oop_result,
  2413                              Register last_java_sp,
  2414                              address entry_point,
  2415                              Register arg_1,
  2416                              bool check_exceptions) {
  2417   pass_arg1(this, arg_1);
  2418   call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions);
  2421 void MacroAssembler::call_VM(Register oop_result,
  2422                              Register last_java_sp,
  2423                              address entry_point,
  2424                              Register arg_1,
  2425                              Register arg_2,
  2426                              bool check_exceptions) {
  2428   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
  2429   pass_arg2(this, arg_2);
  2430   pass_arg1(this, arg_1);
  2431   call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions);
  2434 void MacroAssembler::call_VM(Register oop_result,
  2435                              Register last_java_sp,
  2436                              address entry_point,
  2437                              Register arg_1,
  2438                              Register arg_2,
  2439                              Register arg_3,
  2440                              bool check_exceptions) {
  2441   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
  2442   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
  2443   pass_arg3(this, arg_3);
  2444   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
  2445   pass_arg2(this, arg_2);
  2446   pass_arg1(this, arg_1);
  2447   call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions);
  2450 void MacroAssembler::super_call_VM(Register oop_result,
  2451                                    Register last_java_sp,
  2452                                    address entry_point,
  2453                                    int number_of_arguments,
  2454                                    bool check_exceptions) {
  2455   Register thread = LP64_ONLY(r15_thread) NOT_LP64(noreg);
  2456   MacroAssembler::call_VM_base(oop_result, thread, last_java_sp, entry_point, number_of_arguments, check_exceptions);
  2459 void MacroAssembler::super_call_VM(Register oop_result,
  2460                                    Register last_java_sp,
  2461                                    address entry_point,
  2462                                    Register arg_1,
  2463                                    bool check_exceptions) {
  2464   pass_arg1(this, arg_1);
  2465   super_call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions);
  2468 void MacroAssembler::super_call_VM(Register oop_result,
  2469                                    Register last_java_sp,
  2470                                    address entry_point,
  2471                                    Register arg_1,
  2472                                    Register arg_2,
  2473                                    bool check_exceptions) {
  2475   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
  2476   pass_arg2(this, arg_2);
  2477   pass_arg1(this, arg_1);
  2478   super_call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions);
  2481 void MacroAssembler::super_call_VM(Register oop_result,
  2482                                    Register last_java_sp,
  2483                                    address entry_point,
  2484                                    Register arg_1,
  2485                                    Register arg_2,
  2486                                    Register arg_3,
  2487                                    bool check_exceptions) {
  2488   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
  2489   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
  2490   pass_arg3(this, arg_3);
  2491   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
  2492   pass_arg2(this, arg_2);
  2493   pass_arg1(this, arg_1);
  2494   super_call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions);
  2497 void MacroAssembler::call_VM_base(Register oop_result,
  2498                                   Register java_thread,
  2499                                   Register last_java_sp,
  2500                                   address  entry_point,
  2501                                   int      number_of_arguments,
  2502                                   bool     check_exceptions) {
  2503   // determine java_thread register
  2504   if (!java_thread->is_valid()) {
  2505 #ifdef _LP64
  2506     java_thread = r15_thread;
  2507 #else
  2508     java_thread = rdi;
  2509     get_thread(java_thread);
  2510 #endif // LP64
  2512   // determine last_java_sp register
  2513   if (!last_java_sp->is_valid()) {
  2514     last_java_sp = rsp;
  2516   // debugging support
  2517   assert(number_of_arguments >= 0   , "cannot have negative number of arguments");
  2518   LP64_ONLY(assert(java_thread == r15_thread, "unexpected register"));
  2519 #ifdef ASSERT
  2520   // TraceBytecodes does not use r12 but saves it over the call, so don't verify
  2521   // r12 is the heapbase.
  2522   LP64_ONLY(if ((UseCompressedOops || UseCompressedClassPointers) && !TraceBytecodes) verify_heapbase("call_VM_base: heap base corrupted?");)
  2523 #endif // ASSERT
  2525   assert(java_thread != oop_result  , "cannot use the same register for java_thread & oop_result");
  2526   assert(java_thread != last_java_sp, "cannot use the same register for java_thread & last_java_sp");
  2528   // push java thread (becomes first argument of C function)
  2530   NOT_LP64(push(java_thread); number_of_arguments++);
  2531   LP64_ONLY(mov(c_rarg0, r15_thread));
  2533   // set last Java frame before call
  2534   assert(last_java_sp != rbp, "can't use ebp/rbp");
  2536   // Only interpreter should have to set fp
  2537   set_last_Java_frame(java_thread, last_java_sp, rbp, NULL);
  2539   // do the call, remove parameters
  2540   MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments);
  2542   // restore the thread (cannot use the pushed argument since arguments
  2543   // may be overwritten by C code generated by an optimizing compiler);
  2544   // however can use the register value directly if it is callee saved.
  2545   if (LP64_ONLY(true ||) java_thread == rdi || java_thread == rsi) {
  2546     // rdi & rsi (also r15) are callee saved -> nothing to do
  2547 #ifdef ASSERT
  2548     guarantee(java_thread != rax, "change this code");
  2549     push(rax);
  2550     { Label L;
  2551       get_thread(rax);
  2552       cmpptr(java_thread, rax);
  2553       jcc(Assembler::equal, L);
  2554       STOP("MacroAssembler::call_VM_base: rdi not callee saved?");
  2555       bind(L);
  2557     pop(rax);
  2558 #endif
  2559   } else {
  2560     get_thread(java_thread);
  2562   // reset last Java frame
  2563   // Only interpreter should have to clear fp
  2564   reset_last_Java_frame(java_thread, true, false);
  2566 #ifndef CC_INTERP
  2567    // C++ interp handles this in the interpreter
  2568   check_and_handle_popframe(java_thread);
  2569   check_and_handle_earlyret(java_thread);
  2570 #endif /* CC_INTERP */
  2572   if (check_exceptions) {
  2573     // check for pending exceptions (java_thread is set upon return)
  2574     cmpptr(Address(java_thread, Thread::pending_exception_offset()), (int32_t) NULL_WORD);
  2575 #ifndef _LP64
  2576     jump_cc(Assembler::notEqual,
  2577             RuntimeAddress(StubRoutines::forward_exception_entry()));
  2578 #else
  2579     // This used to conditionally jump to forward_exception however it is
  2580     // possible if we relocate that the branch will not reach. So we must jump
  2581     // around so we can always reach
  2583     Label ok;
  2584     jcc(Assembler::equal, ok);
  2585     jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
  2586     bind(ok);
  2587 #endif // LP64
  2590   // get oop result if there is one and reset the value in the thread
  2591   if (oop_result->is_valid()) {
  2592     get_vm_result(oop_result, java_thread);
  2596 void MacroAssembler::call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions) {
  2598   // Calculate the value for last_Java_sp
  2599   // somewhat subtle. call_VM does an intermediate call
  2600   // which places a return address on the stack just under the
  2601   // stack pointer as the user finsihed with it. This allows
  2602   // use to retrieve last_Java_pc from last_Java_sp[-1].
  2603   // On 32bit we then have to push additional args on the stack to accomplish
  2604   // the actual requested call. On 64bit call_VM only can use register args
  2605   // so the only extra space is the return address that call_VM created.
  2606   // This hopefully explains the calculations here.
  2608 #ifdef _LP64
  2609   // We've pushed one address, correct last_Java_sp
  2610   lea(rax, Address(rsp, wordSize));
  2611 #else
  2612   lea(rax, Address(rsp, (1 + number_of_arguments) * wordSize));
  2613 #endif // LP64
  2615   call_VM_base(oop_result, noreg, rax, entry_point, number_of_arguments, check_exceptions);
  2619 void MacroAssembler::call_VM_leaf(address entry_point, int number_of_arguments) {
  2620   call_VM_leaf_base(entry_point, number_of_arguments);
  2623 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0) {
  2624   pass_arg0(this, arg_0);
  2625   call_VM_leaf(entry_point, 1);
  2628 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1) {
  2630   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
  2631   pass_arg1(this, arg_1);
  2632   pass_arg0(this, arg_0);
  2633   call_VM_leaf(entry_point, 2);
  2636 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) {
  2637   LP64_ONLY(assert(arg_0 != c_rarg2, "smashed arg"));
  2638   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
  2639   pass_arg2(this, arg_2);
  2640   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
  2641   pass_arg1(this, arg_1);
  2642   pass_arg0(this, arg_0);
  2643   call_VM_leaf(entry_point, 3);
  2646 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0) {
  2647   pass_arg0(this, arg_0);
  2648   MacroAssembler::call_VM_leaf_base(entry_point, 1);
  2651 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1) {
  2653   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
  2654   pass_arg1(this, arg_1);
  2655   pass_arg0(this, arg_0);
  2656   MacroAssembler::call_VM_leaf_base(entry_point, 2);
  2659 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) {
  2660   LP64_ONLY(assert(arg_0 != c_rarg2, "smashed arg"));
  2661   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
  2662   pass_arg2(this, arg_2);
  2663   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
  2664   pass_arg1(this, arg_1);
  2665   pass_arg0(this, arg_0);
  2666   MacroAssembler::call_VM_leaf_base(entry_point, 3);
  2669 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2, Register arg_3) {
  2670   LP64_ONLY(assert(arg_0 != c_rarg3, "smashed arg"));
  2671   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
  2672   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
  2673   pass_arg3(this, arg_3);
  2674   LP64_ONLY(assert(arg_0 != c_rarg2, "smashed arg"));
  2675   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
  2676   pass_arg2(this, arg_2);
  2677   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
  2678   pass_arg1(this, arg_1);
  2679   pass_arg0(this, arg_0);
  2680   MacroAssembler::call_VM_leaf_base(entry_point, 4);
  2683 void MacroAssembler::get_vm_result(Register oop_result, Register java_thread) {
  2684   movptr(oop_result, Address(java_thread, JavaThread::vm_result_offset()));
  2685   movptr(Address(java_thread, JavaThread::vm_result_offset()), NULL_WORD);
  2686   verify_oop(oop_result, "broken oop in call_VM_base");
  2689 void MacroAssembler::get_vm_result_2(Register metadata_result, Register java_thread) {
  2690   movptr(metadata_result, Address(java_thread, JavaThread::vm_result_2_offset()));
  2691   movptr(Address(java_thread, JavaThread::vm_result_2_offset()), NULL_WORD);
  2694 void MacroAssembler::check_and_handle_earlyret(Register java_thread) {
  2697 void MacroAssembler::check_and_handle_popframe(Register java_thread) {
  2700 void MacroAssembler::cmp32(AddressLiteral src1, int32_t imm) {
  2701   if (reachable(src1)) {
  2702     cmpl(as_Address(src1), imm);
  2703   } else {
  2704     lea(rscratch1, src1);
  2705     cmpl(Address(rscratch1, 0), imm);
  2709 void MacroAssembler::cmp32(Register src1, AddressLiteral src2) {
  2710   assert(!src2.is_lval(), "use cmpptr");
  2711   if (reachable(src2)) {
  2712     cmpl(src1, as_Address(src2));
  2713   } else {
  2714     lea(rscratch1, src2);
  2715     cmpl(src1, Address(rscratch1, 0));
  2719 void MacroAssembler::cmp32(Register src1, int32_t imm) {
  2720   Assembler::cmpl(src1, imm);
  2723 void MacroAssembler::cmp32(Register src1, Address src2) {
  2724   Assembler::cmpl(src1, src2);
  2727 void MacroAssembler::cmpsd2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less) {
  2728   ucomisd(opr1, opr2);
  2730   Label L;
  2731   if (unordered_is_less) {
  2732     movl(dst, -1);
  2733     jcc(Assembler::parity, L);
  2734     jcc(Assembler::below , L);
  2735     movl(dst, 0);
  2736     jcc(Assembler::equal , L);
  2737     increment(dst);
  2738   } else { // unordered is greater
  2739     movl(dst, 1);
  2740     jcc(Assembler::parity, L);
  2741     jcc(Assembler::above , L);
  2742     movl(dst, 0);
  2743     jcc(Assembler::equal , L);
  2744     decrementl(dst);
  2746   bind(L);
  2749 void MacroAssembler::cmpss2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less) {
  2750   ucomiss(opr1, opr2);
  2752   Label L;
  2753   if (unordered_is_less) {
  2754     movl(dst, -1);
  2755     jcc(Assembler::parity, L);
  2756     jcc(Assembler::below , L);
  2757     movl(dst, 0);
  2758     jcc(Assembler::equal , L);
  2759     increment(dst);
  2760   } else { // unordered is greater
  2761     movl(dst, 1);
  2762     jcc(Assembler::parity, L);
  2763     jcc(Assembler::above , L);
  2764     movl(dst, 0);
  2765     jcc(Assembler::equal , L);
  2766     decrementl(dst);
  2768   bind(L);
  2772 void MacroAssembler::cmp8(AddressLiteral src1, int imm) {
  2773   if (reachable(src1)) {
  2774     cmpb(as_Address(src1), imm);
  2775   } else {
  2776     lea(rscratch1, src1);
  2777     cmpb(Address(rscratch1, 0), imm);
  2781 void MacroAssembler::cmpptr(Register src1, AddressLiteral src2) {
  2782 #ifdef _LP64
  2783   if (src2.is_lval()) {
  2784     movptr(rscratch1, src2);
  2785     Assembler::cmpq(src1, rscratch1);
  2786   } else if (reachable(src2)) {
  2787     cmpq(src1, as_Address(src2));
  2788   } else {
  2789     lea(rscratch1, src2);
  2790     Assembler::cmpq(src1, Address(rscratch1, 0));
  2792 #else
  2793   if (src2.is_lval()) {
  2794     cmp_literal32(src1, (int32_t) src2.target(), src2.rspec());
  2795   } else {
  2796     cmpl(src1, as_Address(src2));
  2798 #endif // _LP64
  2801 void MacroAssembler::cmpptr(Address src1, AddressLiteral src2) {
  2802   assert(src2.is_lval(), "not a mem-mem compare");
  2803 #ifdef _LP64
  2804   // moves src2's literal address
  2805   movptr(rscratch1, src2);
  2806   Assembler::cmpq(src1, rscratch1);
  2807 #else
  2808   cmp_literal32(src1, (int32_t) src2.target(), src2.rspec());
  2809 #endif // _LP64
  2812 void MacroAssembler::locked_cmpxchgptr(Register reg, AddressLiteral adr) {
  2813   if (reachable(adr)) {
  2814     if (os::is_MP())
  2815       lock();
  2816     cmpxchgptr(reg, as_Address(adr));
  2817   } else {
  2818     lea(rscratch1, adr);
  2819     if (os::is_MP())
  2820       lock();
  2821     cmpxchgptr(reg, Address(rscratch1, 0));
  2825 void MacroAssembler::cmpxchgptr(Register reg, Address adr) {
  2826   LP64_ONLY(cmpxchgq(reg, adr)) NOT_LP64(cmpxchgl(reg, adr));
  2829 void MacroAssembler::comisd(XMMRegister dst, AddressLiteral src) {
  2830   if (reachable(src)) {
  2831     Assembler::comisd(dst, as_Address(src));
  2832   } else {
  2833     lea(rscratch1, src);
  2834     Assembler::comisd(dst, Address(rscratch1, 0));
  2838 void MacroAssembler::comiss(XMMRegister dst, AddressLiteral src) {
  2839   if (reachable(src)) {
  2840     Assembler::comiss(dst, as_Address(src));
  2841   } else {
  2842     lea(rscratch1, src);
  2843     Assembler::comiss(dst, Address(rscratch1, 0));
  2848 void MacroAssembler::cond_inc32(Condition cond, AddressLiteral counter_addr) {
  2849   Condition negated_cond = negate_condition(cond);
  2850   Label L;
  2851   jcc(negated_cond, L);
  2852   pushf(); // Preserve flags
  2853   atomic_incl(counter_addr);
  2854   popf();
  2855   bind(L);
  2858 int MacroAssembler::corrected_idivl(Register reg) {
  2859   // Full implementation of Java idiv and irem; checks for
  2860   // special case as described in JVM spec., p.243 & p.271.
  2861   // The function returns the (pc) offset of the idivl
  2862   // instruction - may be needed for implicit exceptions.
  2863   //
  2864   //         normal case                           special case
  2865   //
  2866   // input : rax,: dividend                         min_int
  2867   //         reg: divisor   (may not be rax,/rdx)   -1
  2868   //
  2869   // output: rax,: quotient  (= rax, idiv reg)       min_int
  2870   //         rdx: remainder (= rax, irem reg)       0
  2871   assert(reg != rax && reg != rdx, "reg cannot be rax, or rdx register");
  2872   const int min_int = 0x80000000;
  2873   Label normal_case, special_case;
  2875   // check for special case
  2876   cmpl(rax, min_int);
  2877   jcc(Assembler::notEqual, normal_case);
  2878   xorl(rdx, rdx); // prepare rdx for possible special case (where remainder = 0)
  2879   cmpl(reg, -1);
  2880   jcc(Assembler::equal, special_case);
  2882   // handle normal case
  2883   bind(normal_case);
  2884   cdql();
  2885   int idivl_offset = offset();
  2886   idivl(reg);
  2888   // normal and special case exit
  2889   bind(special_case);
  2891   return idivl_offset;
  2896 void MacroAssembler::decrementl(Register reg, int value) {
  2897   if (value == min_jint) {subl(reg, value) ; return; }
  2898   if (value <  0) { incrementl(reg, -value); return; }
  2899   if (value == 0) {                        ; return; }
  2900   if (value == 1 && UseIncDec) { decl(reg) ; return; }
  2901   /* else */      { subl(reg, value)       ; return; }
  2904 void MacroAssembler::decrementl(Address dst, int value) {
  2905   if (value == min_jint) {subl(dst, value) ; return; }
  2906   if (value <  0) { incrementl(dst, -value); return; }
  2907   if (value == 0) {                        ; return; }
  2908   if (value == 1 && UseIncDec) { decl(dst) ; return; }
  2909   /* else */      { subl(dst, value)       ; return; }
  2912 void MacroAssembler::division_with_shift (Register reg, int shift_value) {
  2913   assert (shift_value > 0, "illegal shift value");
  2914   Label _is_positive;
  2915   testl (reg, reg);
  2916   jcc (Assembler::positive, _is_positive);
  2917   int offset = (1 << shift_value) - 1 ;
  2919   if (offset == 1) {
  2920     incrementl(reg);
  2921   } else {
  2922     addl(reg, offset);
  2925   bind (_is_positive);
  2926   sarl(reg, shift_value);
  2929 void MacroAssembler::divsd(XMMRegister dst, AddressLiteral src) {
  2930   if (reachable(src)) {
  2931     Assembler::divsd(dst, as_Address(src));
  2932   } else {
  2933     lea(rscratch1, src);
  2934     Assembler::divsd(dst, Address(rscratch1, 0));
  2938 void MacroAssembler::divss(XMMRegister dst, AddressLiteral src) {
  2939   if (reachable(src)) {
  2940     Assembler::divss(dst, as_Address(src));
  2941   } else {
  2942     lea(rscratch1, src);
  2943     Assembler::divss(dst, Address(rscratch1, 0));
  2947 // !defined(COMPILER2) is because of stupid core builds
  2948 #if !defined(_LP64) || defined(COMPILER1) || !defined(COMPILER2)
  2949 void MacroAssembler::empty_FPU_stack() {
  2950   if (VM_Version::supports_mmx()) {
  2951     emms();
  2952   } else {
  2953     for (int i = 8; i-- > 0; ) ffree(i);
  2956 #endif // !LP64 || C1 || !C2
  2959 // Defines obj, preserves var_size_in_bytes
  2960 void MacroAssembler::eden_allocate(Register obj,
  2961                                    Register var_size_in_bytes,
  2962                                    int con_size_in_bytes,
  2963                                    Register t1,
  2964                                    Label& slow_case) {
  2965   assert(obj == rax, "obj must be in rax, for cmpxchg");
  2966   assert_different_registers(obj, var_size_in_bytes, t1);
  2967   if (CMSIncrementalMode || !Universe::heap()->supports_inline_contig_alloc()) {
  2968     jmp(slow_case);
  2969   } else {
  2970     Register end = t1;
  2971     Label retry;
  2972     bind(retry);
  2973     ExternalAddress heap_top((address) Universe::heap()->top_addr());
  2974     movptr(obj, heap_top);
  2975     if (var_size_in_bytes == noreg) {
  2976       lea(end, Address(obj, con_size_in_bytes));
  2977     } else {
  2978       lea(end, Address(obj, var_size_in_bytes, Address::times_1));
  2980     // if end < obj then we wrapped around => object too long => slow case
  2981     cmpptr(end, obj);
  2982     jcc(Assembler::below, slow_case);
  2983     cmpptr(end, ExternalAddress((address) Universe::heap()->end_addr()));
  2984     jcc(Assembler::above, slow_case);
  2985     // Compare obj with the top addr, and if still equal, store the new top addr in
  2986     // end at the address of the top addr pointer. Sets ZF if was equal, and clears
  2987     // it otherwise. Use lock prefix for atomicity on MPs.
  2988     locked_cmpxchgptr(end, heap_top);
  2989     jcc(Assembler::notEqual, retry);
  2993 void MacroAssembler::enter() {
  2994   push(rbp);
  2995   mov(rbp, rsp);
  2998 // A 5 byte nop that is safe for patching (see patch_verified_entry)
  2999 void MacroAssembler::fat_nop() {
  3000   if (UseAddressNop) {
  3001     addr_nop_5();
  3002   } else {
  3003     emit_int8(0x26); // es:
  3004     emit_int8(0x2e); // cs:
  3005     emit_int8(0x64); // fs:
  3006     emit_int8(0x65); // gs:
  3007     emit_int8((unsigned char)0x90);
  3011 void MacroAssembler::fcmp(Register tmp) {
  3012   fcmp(tmp, 1, true, true);
  3015 void MacroAssembler::fcmp(Register tmp, int index, bool pop_left, bool pop_right) {
  3016   assert(!pop_right || pop_left, "usage error");
  3017   if (VM_Version::supports_cmov()) {
  3018     assert(tmp == noreg, "unneeded temp");
  3019     if (pop_left) {
  3020       fucomip(index);
  3021     } else {
  3022       fucomi(index);
  3024     if (pop_right) {
  3025       fpop();
  3027   } else {
  3028     assert(tmp != noreg, "need temp");
  3029     if (pop_left) {
  3030       if (pop_right) {
  3031         fcompp();
  3032       } else {
  3033         fcomp(index);
  3035     } else {
  3036       fcom(index);
  3038     // convert FPU condition into eflags condition via rax,
  3039     save_rax(tmp);
  3040     fwait(); fnstsw_ax();
  3041     sahf();
  3042     restore_rax(tmp);
  3044   // condition codes set as follows:
  3045   //
  3046   // CF (corresponds to C0) if x < y
  3047   // PF (corresponds to C2) if unordered
  3048   // ZF (corresponds to C3) if x = y
  3051 void MacroAssembler::fcmp2int(Register dst, bool unordered_is_less) {
  3052   fcmp2int(dst, unordered_is_less, 1, true, true);
  3055 void MacroAssembler::fcmp2int(Register dst, bool unordered_is_less, int index, bool pop_left, bool pop_right) {
  3056   fcmp(VM_Version::supports_cmov() ? noreg : dst, index, pop_left, pop_right);
  3057   Label L;
  3058   if (unordered_is_less) {
  3059     movl(dst, -1);
  3060     jcc(Assembler::parity, L);
  3061     jcc(Assembler::below , L);
  3062     movl(dst, 0);
  3063     jcc(Assembler::equal , L);
  3064     increment(dst);
  3065   } else { // unordered is greater
  3066     movl(dst, 1);
  3067     jcc(Assembler::parity, L);
  3068     jcc(Assembler::above , L);
  3069     movl(dst, 0);
  3070     jcc(Assembler::equal , L);
  3071     decrementl(dst);
  3073   bind(L);
  3076 void MacroAssembler::fld_d(AddressLiteral src) {
  3077   fld_d(as_Address(src));
  3080 void MacroAssembler::fld_s(AddressLiteral src) {
  3081   fld_s(as_Address(src));
  3084 void MacroAssembler::fld_x(AddressLiteral src) {
  3085   Assembler::fld_x(as_Address(src));
  3088 void MacroAssembler::fldcw(AddressLiteral src) {
  3089   Assembler::fldcw(as_Address(src));
  3092 void MacroAssembler::pow_exp_core_encoding() {
  3093   // kills rax, rcx, rdx
  3094   subptr(rsp,sizeof(jdouble));
  3095   // computes 2^X. Stack: X ...
  3096   // f2xm1 computes 2^X-1 but only operates on -1<=X<=1. Get int(X) and
  3097   // keep it on the thread's stack to compute 2^int(X) later
  3098   // then compute 2^(X-int(X)) as (2^(X-int(X)-1+1)
  3099   // final result is obtained with: 2^X = 2^int(X) * 2^(X-int(X))
  3100   fld_s(0);                 // Stack: X X ...
  3101   frndint();                // Stack: int(X) X ...
  3102   fsuba(1);                 // Stack: int(X) X-int(X) ...
  3103   fistp_s(Address(rsp,0));  // move int(X) as integer to thread's stack. Stack: X-int(X) ...
  3104   f2xm1();                  // Stack: 2^(X-int(X))-1 ...
  3105   fld1();                   // Stack: 1 2^(X-int(X))-1 ...
  3106   faddp(1);                 // Stack: 2^(X-int(X))
  3107   // computes 2^(int(X)): add exponent bias (1023) to int(X), then
  3108   // shift int(X)+1023 to exponent position.
  3109   // Exponent is limited to 11 bits if int(X)+1023 does not fit in 11
  3110   // bits, set result to NaN. 0x000 and 0x7FF are reserved exponent
  3111   // values so detect them and set result to NaN.
  3112   movl(rax,Address(rsp,0));
  3113   movl(rcx, -2048); // 11 bit mask and valid NaN binary encoding
  3114   addl(rax, 1023);
  3115   movl(rdx,rax);
  3116   shll(rax,20);
  3117   // Check that 0 < int(X)+1023 < 2047. Otherwise set rax to NaN.
  3118   addl(rdx,1);
  3119   // Check that 1 < int(X)+1023+1 < 2048
  3120   // in 3 steps:
  3121   // 1- (int(X)+1023+1)&-2048 == 0 => 0 <= int(X)+1023+1 < 2048
  3122   // 2- (int(X)+1023+1)&-2048 != 0
  3123   // 3- (int(X)+1023+1)&-2048 != 1
  3124   // Do 2- first because addl just updated the flags.
  3125   cmov32(Assembler::equal,rax,rcx);
  3126   cmpl(rdx,1);
  3127   cmov32(Assembler::equal,rax,rcx);
  3128   testl(rdx,rcx);
  3129   cmov32(Assembler::notEqual,rax,rcx);
  3130   movl(Address(rsp,4),rax);
  3131   movl(Address(rsp,0),0);
  3132   fmul_d(Address(rsp,0));   // Stack: 2^X ...
  3133   addptr(rsp,sizeof(jdouble));
  3136 void MacroAssembler::increase_precision() {
  3137   subptr(rsp, BytesPerWord);
  3138   fnstcw(Address(rsp, 0));
  3139   movl(rax, Address(rsp, 0));
  3140   orl(rax, 0x300);
  3141   push(rax);
  3142   fldcw(Address(rsp, 0));
  3143   pop(rax);
  3146 void MacroAssembler::restore_precision() {
  3147   fldcw(Address(rsp, 0));
  3148   addptr(rsp, BytesPerWord);
  3151 void MacroAssembler::fast_pow() {
  3152   // computes X^Y = 2^(Y * log2(X))
  3153   // if fast computation is not possible, result is NaN. Requires
  3154   // fallback from user of this macro.
  3155   // increase precision for intermediate steps of the computation
  3156   BLOCK_COMMENT("fast_pow {");
  3157   increase_precision();
  3158   fyl2x();                 // Stack: (Y*log2(X)) ...
  3159   pow_exp_core_encoding(); // Stack: exp(X) ...
  3160   restore_precision();
  3161   BLOCK_COMMENT("} fast_pow");
  3164 void MacroAssembler::fast_exp() {
  3165   // computes exp(X) = 2^(X * log2(e))
  3166   // if fast computation is not possible, result is NaN. Requires
  3167   // fallback from user of this macro.
  3168   // increase precision for intermediate steps of the computation
  3169   increase_precision();
  3170   fldl2e();                // Stack: log2(e) X ...
  3171   fmulp(1);                // Stack: (X*log2(e)) ...
  3172   pow_exp_core_encoding(); // Stack: exp(X) ...
  3173   restore_precision();
  3176 void MacroAssembler::pow_or_exp(bool is_exp, int num_fpu_regs_in_use) {
  3177   // kills rax, rcx, rdx
  3178   // pow and exp needs 2 extra registers on the fpu stack.
  3179   Label slow_case, done;
  3180   Register tmp = noreg;
  3181   if (!VM_Version::supports_cmov()) {
  3182     // fcmp needs a temporary so preserve rdx,
  3183     tmp = rdx;
  3185   Register tmp2 = rax;
  3186   Register tmp3 = rcx;
  3188   if (is_exp) {
  3189     // Stack: X
  3190     fld_s(0);                   // duplicate argument for runtime call. Stack: X X
  3191     fast_exp();                 // Stack: exp(X) X
  3192     fcmp(tmp, 0, false, false); // Stack: exp(X) X
  3193     // exp(X) not equal to itself: exp(X) is NaN go to slow case.
  3194     jcc(Assembler::parity, slow_case);
  3195     // get rid of duplicate argument. Stack: exp(X)
  3196     if (num_fpu_regs_in_use > 0) {
  3197       fxch();
  3198       fpop();
  3199     } else {
  3200       ffree(1);
  3202     jmp(done);
  3203   } else {
  3204     // Stack: X Y
  3205     Label x_negative, y_odd;
  3207     fldz();                     // Stack: 0 X Y
  3208     fcmp(tmp, 1, true, false);  // Stack: X Y
  3209     jcc(Assembler::above, x_negative);
  3211     // X >= 0
  3213     fld_s(1);                   // duplicate arguments for runtime call. Stack: Y X Y
  3214     fld_s(1);                   // Stack: X Y X Y
  3215     fast_pow();                 // Stack: X^Y X Y
  3216     fcmp(tmp, 0, false, false); // Stack: X^Y X Y
  3217     // X^Y not equal to itself: X^Y is NaN go to slow case.
  3218     jcc(Assembler::parity, slow_case);
  3219     // get rid of duplicate arguments. Stack: X^Y
  3220     if (num_fpu_regs_in_use > 0) {
  3221       fxch(); fpop();
  3222       fxch(); fpop();
  3223     } else {
  3224       ffree(2);
  3225       ffree(1);
  3227     jmp(done);
  3229     // X <= 0
  3230     bind(x_negative);
  3232     fld_s(1);                   // Stack: Y X Y
  3233     frndint();                  // Stack: int(Y) X Y
  3234     fcmp(tmp, 2, false, false); // Stack: int(Y) X Y
  3235     jcc(Assembler::notEqual, slow_case);
  3237     subptr(rsp, 8);
  3239     // For X^Y, when X < 0, Y has to be an integer and the final
  3240     // result depends on whether it's odd or even. We just checked
  3241     // that int(Y) == Y.  We move int(Y) to gp registers as a 64 bit
  3242     // integer to test its parity. If int(Y) is huge and doesn't fit
  3243     // in the 64 bit integer range, the integer indefinite value will
  3244     // end up in the gp registers. Huge numbers are all even, the
  3245     // integer indefinite number is even so it's fine.
  3247 #ifdef ASSERT
  3248     // Let's check we don't end up with an integer indefinite number
  3249     // when not expected. First test for huge numbers: check whether
  3250     // int(Y)+1 == int(Y) which is true for very large numbers and
  3251     // those are all even. A 64 bit integer is guaranteed to not
  3252     // overflow for numbers where y+1 != y (when precision is set to
  3253     // double precision).
  3254     Label y_not_huge;
  3256     fld1();                     // Stack: 1 int(Y) X Y
  3257     fadd(1);                    // Stack: 1+int(Y) int(Y) X Y
  3259 #ifdef _LP64
  3260     // trip to memory to force the precision down from double extended
  3261     // precision
  3262     fstp_d(Address(rsp, 0));
  3263     fld_d(Address(rsp, 0));
  3264 #endif
  3266     fcmp(tmp, 1, true, false);  // Stack: int(Y) X Y
  3267 #endif
  3269     // move int(Y) as 64 bit integer to thread's stack
  3270     fistp_d(Address(rsp,0));    // Stack: X Y
  3272 #ifdef ASSERT
  3273     jcc(Assembler::notEqual, y_not_huge);
  3275     // Y is huge so we know it's even. It may not fit in a 64 bit
  3276     // integer and we don't want the debug code below to see the
  3277     // integer indefinite value so overwrite int(Y) on the thread's
  3278     // stack with 0.
  3279     movl(Address(rsp, 0), 0);
  3280     movl(Address(rsp, 4), 0);
  3282     bind(y_not_huge);
  3283 #endif
  3285     fld_s(1);                   // duplicate arguments for runtime call. Stack: Y X Y
  3286     fld_s(1);                   // Stack: X Y X Y
  3287     fabs();                     // Stack: abs(X) Y X Y
  3288     fast_pow();                 // Stack: abs(X)^Y X Y
  3289     fcmp(tmp, 0, false, false); // Stack: abs(X)^Y X Y
  3290     // abs(X)^Y not equal to itself: abs(X)^Y is NaN go to slow case.
  3292     pop(tmp2);
  3293     NOT_LP64(pop(tmp3));
  3294     jcc(Assembler::parity, slow_case);
  3296 #ifdef ASSERT
  3297     // Check that int(Y) is not integer indefinite value (int
  3298     // overflow). Shouldn't happen because for values that would
  3299     // overflow, 1+int(Y)==Y which was tested earlier.
  3300 #ifndef _LP64
  3302       Label integer;
  3303       testl(tmp2, tmp2);
  3304       jcc(Assembler::notZero, integer);
  3305       cmpl(tmp3, 0x80000000);
  3306       jcc(Assembler::notZero, integer);
  3307       STOP("integer indefinite value shouldn't be seen here");
  3308       bind(integer);
  3310 #else
  3312       Label integer;
  3313       mov(tmp3, tmp2); // preserve tmp2 for parity check below
  3314       shlq(tmp3, 1);
  3315       jcc(Assembler::carryClear, integer);
  3316       jcc(Assembler::notZero, integer);
  3317       STOP("integer indefinite value shouldn't be seen here");
  3318       bind(integer);
  3320 #endif
  3321 #endif
  3323     // get rid of duplicate arguments. Stack: X^Y
  3324     if (num_fpu_regs_in_use > 0) {
  3325       fxch(); fpop();
  3326       fxch(); fpop();
  3327     } else {
  3328       ffree(2);
  3329       ffree(1);
  3332     testl(tmp2, 1);
  3333     jcc(Assembler::zero, done); // X <= 0, Y even: X^Y = abs(X)^Y
  3334     // X <= 0, Y even: X^Y = -abs(X)^Y
  3336     fchs();                     // Stack: -abs(X)^Y Y
  3337     jmp(done);
  3340   // slow case: runtime call
  3341   bind(slow_case);
  3343   fpop();                       // pop incorrect result or int(Y)
  3345   fp_runtime_fallback(is_exp ? CAST_FROM_FN_PTR(address, SharedRuntime::dexp) : CAST_FROM_FN_PTR(address, SharedRuntime::dpow),
  3346                       is_exp ? 1 : 2, num_fpu_regs_in_use);
  3348   // Come here with result in F-TOS
  3349   bind(done);
  3352 void MacroAssembler::fpop() {
  3353   ffree();
  3354   fincstp();
  3357 void MacroAssembler::fremr(Register tmp) {
  3358   save_rax(tmp);
  3359   { Label L;
  3360     bind(L);
  3361     fprem();
  3362     fwait(); fnstsw_ax();
  3363 #ifdef _LP64
  3364     testl(rax, 0x400);
  3365     jcc(Assembler::notEqual, L);
  3366 #else
  3367     sahf();
  3368     jcc(Assembler::parity, L);
  3369 #endif // _LP64
  3371   restore_rax(tmp);
  3372   // Result is in ST0.
  3373   // Note: fxch & fpop to get rid of ST1
  3374   // (otherwise FPU stack could overflow eventually)
  3375   fxch(1);
  3376   fpop();
  3380 void MacroAssembler::incrementl(AddressLiteral dst) {
  3381   if (reachable(dst)) {
  3382     incrementl(as_Address(dst));
  3383   } else {
  3384     lea(rscratch1, dst);
  3385     incrementl(Address(rscratch1, 0));
  3389 void MacroAssembler::incrementl(ArrayAddress dst) {
  3390   incrementl(as_Address(dst));
  3393 void MacroAssembler::incrementl(Register reg, int value) {
  3394   if (value == min_jint) {addl(reg, value) ; return; }
  3395   if (value <  0) { decrementl(reg, -value); return; }
  3396   if (value == 0) {                        ; return; }
  3397   if (value == 1 && UseIncDec) { incl(reg) ; return; }
  3398   /* else */      { addl(reg, value)       ; return; }
  3401 void MacroAssembler::incrementl(Address dst, int value) {
  3402   if (value == min_jint) {addl(dst, value) ; return; }
  3403   if (value <  0) { decrementl(dst, -value); return; }
  3404   if (value == 0) {                        ; return; }
  3405   if (value == 1 && UseIncDec) { incl(dst) ; return; }
  3406   /* else */      { addl(dst, value)       ; return; }
  3409 void MacroAssembler::jump(AddressLiteral dst) {
  3410   if (reachable(dst)) {
  3411     jmp_literal(dst.target(), dst.rspec());
  3412   } else {
  3413     lea(rscratch1, dst);
  3414     jmp(rscratch1);
  3418 void MacroAssembler::jump_cc(Condition cc, AddressLiteral dst) {
  3419   if (reachable(dst)) {
  3420     InstructionMark im(this);
  3421     relocate(dst.reloc());
  3422     const int short_size = 2;
  3423     const int long_size = 6;
  3424     int offs = (intptr_t)dst.target() - ((intptr_t)pc());
  3425     if (dst.reloc() == relocInfo::none && is8bit(offs - short_size)) {
  3426       // 0111 tttn #8-bit disp
  3427       emit_int8(0x70 | cc);
  3428       emit_int8((offs - short_size) & 0xFF);
  3429     } else {
  3430       // 0000 1111 1000 tttn #32-bit disp
  3431       emit_int8(0x0F);
  3432       emit_int8((unsigned char)(0x80 | cc));
  3433       emit_int32(offs - long_size);
  3435   } else {
  3436 #ifdef ASSERT
  3437     warning("reversing conditional branch");
  3438 #endif /* ASSERT */
  3439     Label skip;
  3440     jccb(reverse[cc], skip);
  3441     lea(rscratch1, dst);
  3442     Assembler::jmp(rscratch1);
  3443     bind(skip);
  3447 void MacroAssembler::ldmxcsr(AddressLiteral src) {
  3448   if (reachable(src)) {
  3449     Assembler::ldmxcsr(as_Address(src));
  3450   } else {
  3451     lea(rscratch1, src);
  3452     Assembler::ldmxcsr(Address(rscratch1, 0));
  3456 int MacroAssembler::load_signed_byte(Register dst, Address src) {
  3457   int off;
  3458   if (LP64_ONLY(true ||) VM_Version::is_P6()) {
  3459     off = offset();
  3460     movsbl(dst, src); // movsxb
  3461   } else {
  3462     off = load_unsigned_byte(dst, src);
  3463     shll(dst, 24);
  3464     sarl(dst, 24);
  3466   return off;
  3469 // Note: load_signed_short used to be called load_signed_word.
  3470 // Although the 'w' in x86 opcodes refers to the term "word" in the assembler
  3471 // manual, which means 16 bits, that usage is found nowhere in HotSpot code.
  3472 // The term "word" in HotSpot means a 32- or 64-bit machine word.
  3473 int MacroAssembler::load_signed_short(Register dst, Address src) {
  3474   int off;
  3475   if (LP64_ONLY(true ||) VM_Version::is_P6()) {
  3476     // This is dubious to me since it seems safe to do a signed 16 => 64 bit
  3477     // version but this is what 64bit has always done. This seems to imply
  3478     // that users are only using 32bits worth.
  3479     off = offset();
  3480     movswl(dst, src); // movsxw
  3481   } else {
  3482     off = load_unsigned_short(dst, src);
  3483     shll(dst, 16);
  3484     sarl(dst, 16);
  3486   return off;
  3489 int MacroAssembler::load_unsigned_byte(Register dst, Address src) {
  3490   // According to Intel Doc. AP-526, "Zero-Extension of Short", p.16,
  3491   // and "3.9 Partial Register Penalties", p. 22).
  3492   int off;
  3493   if (LP64_ONLY(true || ) VM_Version::is_P6() || src.uses(dst)) {
  3494     off = offset();
  3495     movzbl(dst, src); // movzxb
  3496   } else {
  3497     xorl(dst, dst);
  3498     off = offset();
  3499     movb(dst, src);
  3501   return off;
  3504 // Note: load_unsigned_short used to be called load_unsigned_word.
  3505 int MacroAssembler::load_unsigned_short(Register dst, Address src) {
  3506   // According to Intel Doc. AP-526, "Zero-Extension of Short", p.16,
  3507   // and "3.9 Partial Register Penalties", p. 22).
  3508   int off;
  3509   if (LP64_ONLY(true ||) VM_Version::is_P6() || src.uses(dst)) {
  3510     off = offset();
  3511     movzwl(dst, src); // movzxw
  3512   } else {
  3513     xorl(dst, dst);
  3514     off = offset();
  3515     movw(dst, src);
  3517   return off;
  3520 void MacroAssembler::load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed, Register dst2) {
  3521   switch (size_in_bytes) {
  3522 #ifndef _LP64
  3523   case  8:
  3524     assert(dst2 != noreg, "second dest register required");
  3525     movl(dst,  src);
  3526     movl(dst2, src.plus_disp(BytesPerInt));
  3527     break;
  3528 #else
  3529   case  8:  movq(dst, src); break;
  3530 #endif
  3531   case  4:  movl(dst, src); break;
  3532   case  2:  is_signed ? load_signed_short(dst, src) : load_unsigned_short(dst, src); break;
  3533   case  1:  is_signed ? load_signed_byte( dst, src) : load_unsigned_byte( dst, src); break;
  3534   default:  ShouldNotReachHere();
  3538 void MacroAssembler::store_sized_value(Address dst, Register src, size_t size_in_bytes, Register src2) {
  3539   switch (size_in_bytes) {
  3540 #ifndef _LP64
  3541   case  8:
  3542     assert(src2 != noreg, "second source register required");
  3543     movl(dst,                        src);
  3544     movl(dst.plus_disp(BytesPerInt), src2);
  3545     break;
  3546 #else
  3547   case  8:  movq(dst, src); break;
  3548 #endif
  3549   case  4:  movl(dst, src); break;
  3550   case  2:  movw(dst, src); break;
  3551   case  1:  movb(dst, src); break;
  3552   default:  ShouldNotReachHere();
  3556 void MacroAssembler::mov32(AddressLiteral dst, Register src) {
  3557   if (reachable(dst)) {
  3558     movl(as_Address(dst), src);
  3559   } else {
  3560     lea(rscratch1, dst);
  3561     movl(Address(rscratch1, 0), src);
  3565 void MacroAssembler::mov32(Register dst, AddressLiteral src) {
  3566   if (reachable(src)) {
  3567     movl(dst, as_Address(src));
  3568   } else {
  3569     lea(rscratch1, src);
  3570     movl(dst, Address(rscratch1, 0));
  3574 // C++ bool manipulation
  3576 void MacroAssembler::movbool(Register dst, Address src) {
  3577   if(sizeof(bool) == 1)
  3578     movb(dst, src);
  3579   else if(sizeof(bool) == 2)
  3580     movw(dst, src);
  3581   else if(sizeof(bool) == 4)
  3582     movl(dst, src);
  3583   else
  3584     // unsupported
  3585     ShouldNotReachHere();
  3588 void MacroAssembler::movbool(Address dst, bool boolconst) {
  3589   if(sizeof(bool) == 1)
  3590     movb(dst, (int) boolconst);
  3591   else if(sizeof(bool) == 2)
  3592     movw(dst, (int) boolconst);
  3593   else if(sizeof(bool) == 4)
  3594     movl(dst, (int) boolconst);
  3595   else
  3596     // unsupported
  3597     ShouldNotReachHere();
  3600 void MacroAssembler::movbool(Address dst, Register src) {
  3601   if(sizeof(bool) == 1)
  3602     movb(dst, src);
  3603   else if(sizeof(bool) == 2)
  3604     movw(dst, src);
  3605   else if(sizeof(bool) == 4)
  3606     movl(dst, src);
  3607   else
  3608     // unsupported
  3609     ShouldNotReachHere();
  3612 void MacroAssembler::movbyte(ArrayAddress dst, int src) {
  3613   movb(as_Address(dst), src);
  3616 void MacroAssembler::movdl(XMMRegister dst, AddressLiteral src) {
  3617   if (reachable(src)) {
  3618     movdl(dst, as_Address(src));
  3619   } else {
  3620     lea(rscratch1, src);
  3621     movdl(dst, Address(rscratch1, 0));
  3625 void MacroAssembler::movq(XMMRegister dst, AddressLiteral src) {
  3626   if (reachable(src)) {
  3627     movq(dst, as_Address(src));
  3628   } else {
  3629     lea(rscratch1, src);
  3630     movq(dst, Address(rscratch1, 0));
  3634 void MacroAssembler::movdbl(XMMRegister dst, AddressLiteral src) {
  3635   if (reachable(src)) {
  3636     if (UseXmmLoadAndClearUpper) {
  3637       movsd (dst, as_Address(src));
  3638     } else {
  3639       movlpd(dst, as_Address(src));
  3641   } else {
  3642     lea(rscratch1, src);
  3643     if (UseXmmLoadAndClearUpper) {
  3644       movsd (dst, Address(rscratch1, 0));
  3645     } else {
  3646       movlpd(dst, Address(rscratch1, 0));
  3651 void MacroAssembler::movflt(XMMRegister dst, AddressLiteral src) {
  3652   if (reachable(src)) {
  3653     movss(dst, as_Address(src));
  3654   } else {
  3655     lea(rscratch1, src);
  3656     movss(dst, Address(rscratch1, 0));
  3660 void MacroAssembler::movptr(Register dst, Register src) {
  3661   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
  3664 void MacroAssembler::movptr(Register dst, Address src) {
  3665   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
  3668 // src should NEVER be a real pointer. Use AddressLiteral for true pointers
  3669 void MacroAssembler::movptr(Register dst, intptr_t src) {
  3670   LP64_ONLY(mov64(dst, src)) NOT_LP64(movl(dst, src));
  3673 void MacroAssembler::movptr(Address dst, Register src) {
  3674   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
  3677 void MacroAssembler::movdqu(XMMRegister dst, AddressLiteral src) {
  3678   if (reachable(src)) {
  3679     Assembler::movdqu(dst, as_Address(src));
  3680   } else {
  3681     lea(rscratch1, src);
  3682     Assembler::movdqu(dst, Address(rscratch1, 0));
  3686 void MacroAssembler::movdqa(XMMRegister dst, AddressLiteral src) {
  3687   if (reachable(src)) {
  3688     Assembler::movdqa(dst, as_Address(src));
  3689   } else {
  3690     lea(rscratch1, src);
  3691     Assembler::movdqa(dst, Address(rscratch1, 0));
  3695 void MacroAssembler::movsd(XMMRegister dst, AddressLiteral src) {
  3696   if (reachable(src)) {
  3697     Assembler::movsd(dst, as_Address(src));
  3698   } else {
  3699     lea(rscratch1, src);
  3700     Assembler::movsd(dst, Address(rscratch1, 0));
  3704 void MacroAssembler::movss(XMMRegister dst, AddressLiteral src) {
  3705   if (reachable(src)) {
  3706     Assembler::movss(dst, as_Address(src));
  3707   } else {
  3708     lea(rscratch1, src);
  3709     Assembler::movss(dst, Address(rscratch1, 0));
  3713 void MacroAssembler::mulsd(XMMRegister dst, AddressLiteral src) {
  3714   if (reachable(src)) {
  3715     Assembler::mulsd(dst, as_Address(src));
  3716   } else {
  3717     lea(rscratch1, src);
  3718     Assembler::mulsd(dst, Address(rscratch1, 0));
  3722 void MacroAssembler::mulss(XMMRegister dst, AddressLiteral src) {
  3723   if (reachable(src)) {
  3724     Assembler::mulss(dst, as_Address(src));
  3725   } else {
  3726     lea(rscratch1, src);
  3727     Assembler::mulss(dst, Address(rscratch1, 0));
  3731 void MacroAssembler::null_check(Register reg, int offset) {
  3732   if (needs_explicit_null_check(offset)) {
  3733     // provoke OS NULL exception if reg = NULL by
  3734     // accessing M[reg] w/o changing any (non-CC) registers
  3735     // NOTE: cmpl is plenty here to provoke a segv
  3736     cmpptr(rax, Address(reg, 0));
  3737     // Note: should probably use testl(rax, Address(reg, 0));
  3738     //       may be shorter code (however, this version of
  3739     //       testl needs to be implemented first)
  3740   } else {
  3741     // nothing to do, (later) access of M[reg + offset]
  3742     // will provoke OS NULL exception if reg = NULL
  3746 void MacroAssembler::os_breakpoint() {
  3747   // instead of directly emitting a breakpoint, call os:breakpoint for better debugability
  3748   // (e.g., MSVC can't call ps() otherwise)
  3749   call(RuntimeAddress(CAST_FROM_FN_PTR(address, os::breakpoint)));
  3752 void MacroAssembler::pop_CPU_state() {
  3753   pop_FPU_state();
  3754   pop_IU_state();
  3757 void MacroAssembler::pop_FPU_state() {
  3758   NOT_LP64(frstor(Address(rsp, 0));)
  3759   LP64_ONLY(fxrstor(Address(rsp, 0));)
  3760   addptr(rsp, FPUStateSizeInWords * wordSize);
  3763 void MacroAssembler::pop_IU_state() {
  3764   popa();
  3765   LP64_ONLY(addq(rsp, 8));
  3766   popf();
  3769 // Save Integer and Float state
  3770 // Warning: Stack must be 16 byte aligned (64bit)
  3771 void MacroAssembler::push_CPU_state() {
  3772   push_IU_state();
  3773   push_FPU_state();
  3776 void MacroAssembler::push_FPU_state() {
  3777   subptr(rsp, FPUStateSizeInWords * wordSize);
  3778 #ifndef _LP64
  3779   fnsave(Address(rsp, 0));
  3780   fwait();
  3781 #else
  3782   fxsave(Address(rsp, 0));
  3783 #endif // LP64
  3786 void MacroAssembler::push_IU_state() {
  3787   // Push flags first because pusha kills them
  3788   pushf();
  3789   // Make sure rsp stays 16-byte aligned
  3790   LP64_ONLY(subq(rsp, 8));
  3791   pusha();
  3794 void MacroAssembler::reset_last_Java_frame(Register java_thread, bool clear_fp, bool clear_pc) {
  3795   // determine java_thread register
  3796   if (!java_thread->is_valid()) {
  3797     java_thread = rdi;
  3798     get_thread(java_thread);
  3800   // we must set sp to zero to clear frame
  3801   movptr(Address(java_thread, JavaThread::last_Java_sp_offset()), NULL_WORD);
  3802   if (clear_fp) {
  3803     movptr(Address(java_thread, JavaThread::last_Java_fp_offset()), NULL_WORD);
  3806   if (clear_pc)
  3807     movptr(Address(java_thread, JavaThread::last_Java_pc_offset()), NULL_WORD);
  3811 void MacroAssembler::restore_rax(Register tmp) {
  3812   if (tmp == noreg) pop(rax);
  3813   else if (tmp != rax) mov(rax, tmp);
  3816 void MacroAssembler::round_to(Register reg, int modulus) {
  3817   addptr(reg, modulus - 1);
  3818   andptr(reg, -modulus);
  3821 void MacroAssembler::save_rax(Register tmp) {
  3822   if (tmp == noreg) push(rax);
  3823   else if (tmp != rax) mov(tmp, rax);
  3826 // Write serialization page so VM thread can do a pseudo remote membar.
  3827 // We use the current thread pointer to calculate a thread specific
  3828 // offset to write to within the page. This minimizes bus traffic
  3829 // due to cache line collision.
  3830 void MacroAssembler::serialize_memory(Register thread, Register tmp) {
  3831   movl(tmp, thread);
  3832   shrl(tmp, os::get_serialize_page_shift_count());
  3833   andl(tmp, (os::vm_page_size() - sizeof(int)));
  3835   Address index(noreg, tmp, Address::times_1);
  3836   ExternalAddress page(os::get_memory_serialize_page());
  3838   // Size of store must match masking code above
  3839   movl(as_Address(ArrayAddress(page, index)), tmp);
  3842 // Calls to C land
  3843 //
  3844 // When entering C land, the rbp, & rsp of the last Java frame have to be recorded
  3845 // in the (thread-local) JavaThread object. When leaving C land, the last Java fp
  3846 // has to be reset to 0. This is required to allow proper stack traversal.
  3847 void MacroAssembler::set_last_Java_frame(Register java_thread,
  3848                                          Register last_java_sp,
  3849                                          Register last_java_fp,
  3850                                          address  last_java_pc) {
  3851   // determine java_thread register
  3852   if (!java_thread->is_valid()) {
  3853     java_thread = rdi;
  3854     get_thread(java_thread);
  3856   // determine last_java_sp register
  3857   if (!last_java_sp->is_valid()) {
  3858     last_java_sp = rsp;
  3861   // last_java_fp is optional
  3863   if (last_java_fp->is_valid()) {
  3864     movptr(Address(java_thread, JavaThread::last_Java_fp_offset()), last_java_fp);
  3867   // last_java_pc is optional
  3869   if (last_java_pc != NULL) {
  3870     lea(Address(java_thread,
  3871                  JavaThread::frame_anchor_offset() + JavaFrameAnchor::last_Java_pc_offset()),
  3872         InternalAddress(last_java_pc));
  3875   movptr(Address(java_thread, JavaThread::last_Java_sp_offset()), last_java_sp);
  3878 void MacroAssembler::shlptr(Register dst, int imm8) {
  3879   LP64_ONLY(shlq(dst, imm8)) NOT_LP64(shll(dst, imm8));
  3882 void MacroAssembler::shrptr(Register dst, int imm8) {
  3883   LP64_ONLY(shrq(dst, imm8)) NOT_LP64(shrl(dst, imm8));
  3886 void MacroAssembler::sign_extend_byte(Register reg) {
  3887   if (LP64_ONLY(true ||) (VM_Version::is_P6() && reg->has_byte_register())) {
  3888     movsbl(reg, reg); // movsxb
  3889   } else {
  3890     shll(reg, 24);
  3891     sarl(reg, 24);
  3895 void MacroAssembler::sign_extend_short(Register reg) {
  3896   if (LP64_ONLY(true ||) VM_Version::is_P6()) {
  3897     movswl(reg, reg); // movsxw
  3898   } else {
  3899     shll(reg, 16);
  3900     sarl(reg, 16);
  3904 void MacroAssembler::testl(Register dst, AddressLiteral src) {
  3905   assert(reachable(src), "Address should be reachable");
  3906   testl(dst, as_Address(src));
  3909 void MacroAssembler::sqrtsd(XMMRegister dst, AddressLiteral src) {
  3910   if (reachable(src)) {
  3911     Assembler::sqrtsd(dst, as_Address(src));
  3912   } else {
  3913     lea(rscratch1, src);
  3914     Assembler::sqrtsd(dst, Address(rscratch1, 0));
  3918 void MacroAssembler::sqrtss(XMMRegister dst, AddressLiteral src) {
  3919   if (reachable(src)) {
  3920     Assembler::sqrtss(dst, as_Address(src));
  3921   } else {
  3922     lea(rscratch1, src);
  3923     Assembler::sqrtss(dst, Address(rscratch1, 0));
  3927 void MacroAssembler::subsd(XMMRegister dst, AddressLiteral src) {
  3928   if (reachable(src)) {
  3929     Assembler::subsd(dst, as_Address(src));
  3930   } else {
  3931     lea(rscratch1, src);
  3932     Assembler::subsd(dst, Address(rscratch1, 0));
  3936 void MacroAssembler::subss(XMMRegister dst, AddressLiteral src) {
  3937   if (reachable(src)) {
  3938     Assembler::subss(dst, as_Address(src));
  3939   } else {
  3940     lea(rscratch1, src);
  3941     Assembler::subss(dst, Address(rscratch1, 0));
  3945 void MacroAssembler::ucomisd(XMMRegister dst, AddressLiteral src) {
  3946   if (reachable(src)) {
  3947     Assembler::ucomisd(dst, as_Address(src));
  3948   } else {
  3949     lea(rscratch1, src);
  3950     Assembler::ucomisd(dst, Address(rscratch1, 0));
  3954 void MacroAssembler::ucomiss(XMMRegister dst, AddressLiteral src) {
  3955   if (reachable(src)) {
  3956     Assembler::ucomiss(dst, as_Address(src));
  3957   } else {
  3958     lea(rscratch1, src);
  3959     Assembler::ucomiss(dst, Address(rscratch1, 0));
  3963 void MacroAssembler::xorpd(XMMRegister dst, AddressLiteral src) {
  3964   // Used in sign-bit flipping with aligned address.
  3965   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
  3966   if (reachable(src)) {
  3967     Assembler::xorpd(dst, as_Address(src));
  3968   } else {
  3969     lea(rscratch1, src);
  3970     Assembler::xorpd(dst, Address(rscratch1, 0));
  3974 void MacroAssembler::xorps(XMMRegister dst, AddressLiteral src) {
  3975   // Used in sign-bit flipping with aligned address.
  3976   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
  3977   if (reachable(src)) {
  3978     Assembler::xorps(dst, as_Address(src));
  3979   } else {
  3980     lea(rscratch1, src);
  3981     Assembler::xorps(dst, Address(rscratch1, 0));
  3985 void MacroAssembler::pshufb(XMMRegister dst, AddressLiteral src) {
  3986   // Used in sign-bit flipping with aligned address.
  3987   bool aligned_adr = (((intptr_t)src.target() & 15) == 0);
  3988   assert((UseAVX > 0) || aligned_adr, "SSE mode requires address alignment 16 bytes");
  3989   if (reachable(src)) {
  3990     Assembler::pshufb(dst, as_Address(src));
  3991   } else {
  3992     lea(rscratch1, src);
  3993     Assembler::pshufb(dst, Address(rscratch1, 0));
  3997 // AVX 3-operands instructions
  3999 void MacroAssembler::vaddsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
  4000   if (reachable(src)) {
  4001     vaddsd(dst, nds, as_Address(src));
  4002   } else {
  4003     lea(rscratch1, src);
  4004     vaddsd(dst, nds, Address(rscratch1, 0));
  4008 void MacroAssembler::vaddss(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
  4009   if (reachable(src)) {
  4010     vaddss(dst, nds, as_Address(src));
  4011   } else {
  4012     lea(rscratch1, src);
  4013     vaddss(dst, nds, Address(rscratch1, 0));
  4017 void MacroAssembler::vandpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, bool vector256) {
  4018   if (reachable(src)) {
  4019     vandpd(dst, nds, as_Address(src), vector256);
  4020   } else {
  4021     lea(rscratch1, src);
  4022     vandpd(dst, nds, Address(rscratch1, 0), vector256);
  4026 void MacroAssembler::vandps(XMMRegister dst, XMMRegister nds, AddressLiteral src, bool vector256) {
  4027   if (reachable(src)) {
  4028     vandps(dst, nds, as_Address(src), vector256);
  4029   } else {
  4030     lea(rscratch1, src);
  4031     vandps(dst, nds, Address(rscratch1, 0), vector256);
  4035 void MacroAssembler::vdivsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
  4036   if (reachable(src)) {
  4037     vdivsd(dst, nds, as_Address(src));
  4038   } else {
  4039     lea(rscratch1, src);
  4040     vdivsd(dst, nds, Address(rscratch1, 0));
  4044 void MacroAssembler::vdivss(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
  4045   if (reachable(src)) {
  4046     vdivss(dst, nds, as_Address(src));
  4047   } else {
  4048     lea(rscratch1, src);
  4049     vdivss(dst, nds, Address(rscratch1, 0));
  4053 void MacroAssembler::vmulsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
  4054   if (reachable(src)) {
  4055     vmulsd(dst, nds, as_Address(src));
  4056   } else {
  4057     lea(rscratch1, src);
  4058     vmulsd(dst, nds, Address(rscratch1, 0));
  4062 void MacroAssembler::vmulss(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
  4063   if (reachable(src)) {
  4064     vmulss(dst, nds, as_Address(src));
  4065   } else {
  4066     lea(rscratch1, src);
  4067     vmulss(dst, nds, Address(rscratch1, 0));
  4071 void MacroAssembler::vsubsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
  4072   if (reachable(src)) {
  4073     vsubsd(dst, nds, as_Address(src));
  4074   } else {
  4075     lea(rscratch1, src);
  4076     vsubsd(dst, nds, Address(rscratch1, 0));
  4080 void MacroAssembler::vsubss(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
  4081   if (reachable(src)) {
  4082     vsubss(dst, nds, as_Address(src));
  4083   } else {
  4084     lea(rscratch1, src);
  4085     vsubss(dst, nds, Address(rscratch1, 0));
  4089 void MacroAssembler::vxorpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, bool vector256) {
  4090   if (reachable(src)) {
  4091     vxorpd(dst, nds, as_Address(src), vector256);
  4092   } else {
  4093     lea(rscratch1, src);
  4094     vxorpd(dst, nds, Address(rscratch1, 0), vector256);
  4098 void MacroAssembler::vxorps(XMMRegister dst, XMMRegister nds, AddressLiteral src, bool vector256) {
  4099   if (reachable(src)) {
  4100     vxorps(dst, nds, as_Address(src), vector256);
  4101   } else {
  4102     lea(rscratch1, src);
  4103     vxorps(dst, nds, Address(rscratch1, 0), vector256);
  4108 //////////////////////////////////////////////////////////////////////////////////
  4109 #if INCLUDE_ALL_GCS
  4111 void MacroAssembler::g1_write_barrier_pre(Register obj,
  4112                                           Register pre_val,
  4113                                           Register thread,
  4114                                           Register tmp,
  4115                                           bool tosca_live,
  4116                                           bool expand_call) {
  4118   // If expand_call is true then we expand the call_VM_leaf macro
  4119   // directly to skip generating the check by
  4120   // InterpreterMacroAssembler::call_VM_leaf_base that checks _last_sp.
  4122 #ifdef _LP64
  4123   assert(thread == r15_thread, "must be");
  4124 #endif // _LP64
  4126   Label done;
  4127   Label runtime;
  4129   assert(pre_val != noreg, "check this code");
  4131   if (obj != noreg) {
  4132     assert_different_registers(obj, pre_val, tmp);
  4133     assert(pre_val != rax, "check this code");
  4136   Address in_progress(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
  4137                                        PtrQueue::byte_offset_of_active()));
  4138   Address index(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
  4139                                        PtrQueue::byte_offset_of_index()));
  4140   Address buffer(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
  4141                                        PtrQueue::byte_offset_of_buf()));
  4144   // Is marking active?
  4145   if (in_bytes(PtrQueue::byte_width_of_active()) == 4) {
  4146     cmpl(in_progress, 0);
  4147   } else {
  4148     assert(in_bytes(PtrQueue::byte_width_of_active()) == 1, "Assumption");
  4149     cmpb(in_progress, 0);
  4151   jcc(Assembler::equal, done);
  4153   // Do we need to load the previous value?
  4154   if (obj != noreg) {
  4155     load_heap_oop(pre_val, Address(obj, 0));
  4158   // Is the previous value null?
  4159   cmpptr(pre_val, (int32_t) NULL_WORD);
  4160   jcc(Assembler::equal, done);
  4162   // Can we store original value in the thread's buffer?
  4163   // Is index == 0?
  4164   // (The index field is typed as size_t.)
  4166   movptr(tmp, index);                   // tmp := *index_adr
  4167   cmpptr(tmp, 0);                       // tmp == 0?
  4168   jcc(Assembler::equal, runtime);       // If yes, goto runtime
  4170   subptr(tmp, wordSize);                // tmp := tmp - wordSize
  4171   movptr(index, tmp);                   // *index_adr := tmp
  4172   addptr(tmp, buffer);                  // tmp := tmp + *buffer_adr
  4174   // Record the previous value
  4175   movptr(Address(tmp, 0), pre_val);
  4176   jmp(done);
  4178   bind(runtime);
  4179   // save the live input values
  4180   if(tosca_live) push(rax);
  4182   if (obj != noreg && obj != rax)
  4183     push(obj);
  4185   if (pre_val != rax)
  4186     push(pre_val);
  4188   // Calling the runtime using the regular call_VM_leaf mechanism generates
  4189   // code (generated by InterpreterMacroAssember::call_VM_leaf_base)
  4190   // that checks that the *(ebp+frame::interpreter_frame_last_sp) == NULL.
  4191   //
  4192   // If we care generating the pre-barrier without a frame (e.g. in the
  4193   // intrinsified Reference.get() routine) then ebp might be pointing to
  4194   // the caller frame and so this check will most likely fail at runtime.
  4195   //
  4196   // Expanding the call directly bypasses the generation of the check.
  4197   // So when we do not have have a full interpreter frame on the stack
  4198   // expand_call should be passed true.
  4200   NOT_LP64( push(thread); )
  4202   if (expand_call) {
  4203     LP64_ONLY( assert(pre_val != c_rarg1, "smashed arg"); )
  4204     pass_arg1(this, thread);
  4205     pass_arg0(this, pre_val);
  4206     MacroAssembler::call_VM_leaf_base(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_pre), 2);
  4207   } else {
  4208     call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_pre), pre_val, thread);
  4211   NOT_LP64( pop(thread); )
  4213   // save the live input values
  4214   if (pre_val != rax)
  4215     pop(pre_val);
  4217   if (obj != noreg && obj != rax)
  4218     pop(obj);
  4220   if(tosca_live) pop(rax);
  4222   bind(done);
  4225 void MacroAssembler::g1_write_barrier_post(Register store_addr,
  4226                                            Register new_val,
  4227                                            Register thread,
  4228                                            Register tmp,
  4229                                            Register tmp2) {
  4230 #ifdef _LP64
  4231   assert(thread == r15_thread, "must be");
  4232 #endif // _LP64
  4234   Address queue_index(thread, in_bytes(JavaThread::dirty_card_queue_offset() +
  4235                                        PtrQueue::byte_offset_of_index()));
  4236   Address buffer(thread, in_bytes(JavaThread::dirty_card_queue_offset() +
  4237                                        PtrQueue::byte_offset_of_buf()));
  4239   BarrierSet* bs = Universe::heap()->barrier_set();
  4240   CardTableModRefBS* ct = (CardTableModRefBS*)bs;
  4241   assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
  4243   Label done;
  4244   Label runtime;
  4246   // Does store cross heap regions?
  4248   movptr(tmp, store_addr);
  4249   xorptr(tmp, new_val);
  4250   shrptr(tmp, HeapRegion::LogOfHRGrainBytes);
  4251   jcc(Assembler::equal, done);
  4253   // crosses regions, storing NULL?
  4255   cmpptr(new_val, (int32_t) NULL_WORD);
  4256   jcc(Assembler::equal, done);
  4258   // storing region crossing non-NULL, is card already dirty?
  4260   const Register card_addr = tmp;
  4261   const Register cardtable = tmp2;
  4263   movptr(card_addr, store_addr);
  4264   shrptr(card_addr, CardTableModRefBS::card_shift);
  4265   // Do not use ExternalAddress to load 'byte_map_base', since 'byte_map_base' is NOT
  4266   // a valid address and therefore is not properly handled by the relocation code.
  4267   movptr(cardtable, (intptr_t)ct->byte_map_base);
  4268   addptr(card_addr, cardtable);
  4270   cmpb(Address(card_addr, 0), (int)G1SATBCardTableModRefBS::g1_young_card_val());
  4271   jcc(Assembler::equal, done);
  4273   membar(Assembler::Membar_mask_bits(Assembler::StoreLoad));
  4274   cmpb(Address(card_addr, 0), (int)CardTableModRefBS::dirty_card_val());
  4275   jcc(Assembler::equal, done);
  4278   // storing a region crossing, non-NULL oop, card is clean.
  4279   // dirty card and log.
  4281   movb(Address(card_addr, 0), (int)CardTableModRefBS::dirty_card_val());
  4283   cmpl(queue_index, 0);
  4284   jcc(Assembler::equal, runtime);
  4285   subl(queue_index, wordSize);
  4286   movptr(tmp2, buffer);
  4287 #ifdef _LP64
  4288   movslq(rscratch1, queue_index);
  4289   addq(tmp2, rscratch1);
  4290   movq(Address(tmp2, 0), card_addr);
  4291 #else
  4292   addl(tmp2, queue_index);
  4293   movl(Address(tmp2, 0), card_addr);
  4294 #endif
  4295   jmp(done);
  4297   bind(runtime);
  4298   // save the live input values
  4299   push(store_addr);
  4300   push(new_val);
  4301 #ifdef _LP64
  4302   call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_post), card_addr, r15_thread);
  4303 #else
  4304   push(thread);
  4305   call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_post), card_addr, thread);
  4306   pop(thread);
  4307 #endif
  4308   pop(new_val);
  4309   pop(store_addr);
  4311   bind(done);
  4314 #endif // INCLUDE_ALL_GCS
  4315 //////////////////////////////////////////////////////////////////////////////////
  4318 void MacroAssembler::store_check(Register obj) {
  4319   // Does a store check for the oop in register obj. The content of
  4320   // register obj is destroyed afterwards.
  4321   store_check_part_1(obj);
  4322   store_check_part_2(obj);
  4325 void MacroAssembler::store_check(Register obj, Address dst) {
  4326   store_check(obj);
  4330 // split the store check operation so that other instructions can be scheduled inbetween
  4331 void MacroAssembler::store_check_part_1(Register obj) {
  4332   BarrierSet* bs = Universe::heap()->barrier_set();
  4333   assert(bs->kind() == BarrierSet::CardTableModRef, "Wrong barrier set kind");
  4334   shrptr(obj, CardTableModRefBS::card_shift);
  4337 void MacroAssembler::store_check_part_2(Register obj) {
  4338   BarrierSet* bs = Universe::heap()->barrier_set();
  4339   assert(bs->kind() == BarrierSet::CardTableModRef, "Wrong barrier set kind");
  4340   CardTableModRefBS* ct = (CardTableModRefBS*)bs;
  4341   assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
  4343   // The calculation for byte_map_base is as follows:
  4344   // byte_map_base = _byte_map - (uintptr_t(low_bound) >> card_shift);
  4345   // So this essentially converts an address to a displacement and it will
  4346   // never need to be relocated. On 64bit however the value may be too
  4347   // large for a 32bit displacement.
  4348   intptr_t disp = (intptr_t) ct->byte_map_base;
  4349   if (is_simm32(disp)) {
  4350     Address cardtable(noreg, obj, Address::times_1, disp);
  4351     movb(cardtable, 0);
  4352   } else {
  4353     // By doing it as an ExternalAddress 'disp' could be converted to a rip-relative
  4354     // displacement and done in a single instruction given favorable mapping and a
  4355     // smarter version of as_Address. However, 'ExternalAddress' generates a relocation
  4356     // entry and that entry is not properly handled by the relocation code.
  4357     AddressLiteral cardtable((address)ct->byte_map_base, relocInfo::none);
  4358     Address index(noreg, obj, Address::times_1);
  4359     movb(as_Address(ArrayAddress(cardtable, index)), 0);
  4363 void MacroAssembler::subptr(Register dst, int32_t imm32) {
  4364   LP64_ONLY(subq(dst, imm32)) NOT_LP64(subl(dst, imm32));
  4367 // Force generation of a 4 byte immediate value even if it fits into 8bit
  4368 void MacroAssembler::subptr_imm32(Register dst, int32_t imm32) {
  4369   LP64_ONLY(subq_imm32(dst, imm32)) NOT_LP64(subl_imm32(dst, imm32));
  4372 void MacroAssembler::subptr(Register dst, Register src) {
  4373   LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src));
  4376 // C++ bool manipulation
  4377 void MacroAssembler::testbool(Register dst) {
  4378   if(sizeof(bool) == 1)
  4379     testb(dst, 0xff);
  4380   else if(sizeof(bool) == 2) {
  4381     // testw implementation needed for two byte bools
  4382     ShouldNotReachHere();
  4383   } else if(sizeof(bool) == 4)
  4384     testl(dst, dst);
  4385   else
  4386     // unsupported
  4387     ShouldNotReachHere();
  4390 void MacroAssembler::testptr(Register dst, Register src) {
  4391   LP64_ONLY(testq(dst, src)) NOT_LP64(testl(dst, src));
  4394 // Defines obj, preserves var_size_in_bytes, okay for t2 == var_size_in_bytes.
  4395 void MacroAssembler::tlab_allocate(Register obj,
  4396                                    Register var_size_in_bytes,
  4397                                    int con_size_in_bytes,
  4398                                    Register t1,
  4399                                    Register t2,
  4400                                    Label& slow_case) {
  4401   assert_different_registers(obj, t1, t2);
  4402   assert_different_registers(obj, var_size_in_bytes, t1);
  4403   Register end = t2;
  4404   Register thread = NOT_LP64(t1) LP64_ONLY(r15_thread);
  4406   verify_tlab();
  4408   NOT_LP64(get_thread(thread));
  4410   movptr(obj, Address(thread, JavaThread::tlab_top_offset()));
  4411   if (var_size_in_bytes == noreg) {
  4412     lea(end, Address(obj, con_size_in_bytes));
  4413   } else {
  4414     lea(end, Address(obj, var_size_in_bytes, Address::times_1));
  4416   cmpptr(end, Address(thread, JavaThread::tlab_end_offset()));
  4417   jcc(Assembler::above, slow_case);
  4419   // update the tlab top pointer
  4420   movptr(Address(thread, JavaThread::tlab_top_offset()), end);
  4422   // recover var_size_in_bytes if necessary
  4423   if (var_size_in_bytes == end) {
  4424     subptr(var_size_in_bytes, obj);
  4426   verify_tlab();
  4429 // Preserves rbx, and rdx.
  4430 Register MacroAssembler::tlab_refill(Label& retry,
  4431                                      Label& try_eden,
  4432                                      Label& slow_case) {
  4433   Register top = rax;
  4434   Register t1  = rcx;
  4435   Register t2  = rsi;
  4436   Register thread_reg = NOT_LP64(rdi) LP64_ONLY(r15_thread);
  4437   assert_different_registers(top, thread_reg, t1, t2, /* preserve: */ rbx, rdx);
  4438   Label do_refill, discard_tlab;
  4440   if (CMSIncrementalMode || !Universe::heap()->supports_inline_contig_alloc()) {
  4441     // No allocation in the shared eden.
  4442     jmp(slow_case);
  4445   NOT_LP64(get_thread(thread_reg));
  4447   movptr(top, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())));
  4448   movptr(t1,  Address(thread_reg, in_bytes(JavaThread::tlab_end_offset())));
  4450   // calculate amount of free space
  4451   subptr(t1, top);
  4452   shrptr(t1, LogHeapWordSize);
  4454   // Retain tlab and allocate object in shared space if
  4455   // the amount free in the tlab is too large to discard.
  4456   cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_refill_waste_limit_offset())));
  4457   jcc(Assembler::lessEqual, discard_tlab);
  4459   // Retain
  4460   // %%% yuck as movptr...
  4461   movptr(t2, (int32_t) ThreadLocalAllocBuffer::refill_waste_limit_increment());
  4462   addptr(Address(thread_reg, in_bytes(JavaThread::tlab_refill_waste_limit_offset())), t2);
  4463   if (TLABStats) {
  4464     // increment number of slow_allocations
  4465     addl(Address(thread_reg, in_bytes(JavaThread::tlab_slow_allocations_offset())), 1);
  4467   jmp(try_eden);
  4469   bind(discard_tlab);
  4470   if (TLABStats) {
  4471     // increment number of refills
  4472     addl(Address(thread_reg, in_bytes(JavaThread::tlab_number_of_refills_offset())), 1);
  4473     // accumulate wastage -- t1 is amount free in tlab
  4474     addl(Address(thread_reg, in_bytes(JavaThread::tlab_fast_refill_waste_offset())), t1);
  4477   // if tlab is currently allocated (top or end != null) then
  4478   // fill [top, end + alignment_reserve) with array object
  4479   testptr(top, top);
  4480   jcc(Assembler::zero, do_refill);
  4482   // set up the mark word
  4483   movptr(Address(top, oopDesc::mark_offset_in_bytes()), (intptr_t)markOopDesc::prototype()->copy_set_hash(0x2));
  4484   // set the length to the remaining space
  4485   subptr(t1, typeArrayOopDesc::header_size(T_INT));
  4486   addptr(t1, (int32_t)ThreadLocalAllocBuffer::alignment_reserve());
  4487   shlptr(t1, log2_intptr(HeapWordSize/sizeof(jint)));
  4488   movl(Address(top, arrayOopDesc::length_offset_in_bytes()), t1);
  4489   // set klass to intArrayKlass
  4490   // dubious reloc why not an oop reloc?
  4491   movptr(t1, ExternalAddress((address)Universe::intArrayKlassObj_addr()));
  4492   // store klass last.  concurrent gcs assumes klass length is valid if
  4493   // klass field is not null.
  4494   store_klass(top, t1);
  4496   movptr(t1, top);
  4497   subptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_start_offset())));
  4498   incr_allocated_bytes(thread_reg, t1, 0);
  4500   // refill the tlab with an eden allocation
  4501   bind(do_refill);
  4502   movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_size_offset())));
  4503   shlptr(t1, LogHeapWordSize);
  4504   // allocate new tlab, address returned in top
  4505   eden_allocate(top, t1, 0, t2, slow_case);
  4507   // Check that t1 was preserved in eden_allocate.
  4508 #ifdef ASSERT
  4509   if (UseTLAB) {
  4510     Label ok;
  4511     Register tsize = rsi;
  4512     assert_different_registers(tsize, thread_reg, t1);
  4513     push(tsize);
  4514     movptr(tsize, Address(thread_reg, in_bytes(JavaThread::tlab_size_offset())));
  4515     shlptr(tsize, LogHeapWordSize);
  4516     cmpptr(t1, tsize);
  4517     jcc(Assembler::equal, ok);
  4518     STOP("assert(t1 != tlab size)");
  4519     should_not_reach_here();
  4521     bind(ok);
  4522     pop(tsize);
  4524 #endif
  4525   movptr(Address(thread_reg, in_bytes(JavaThread::tlab_start_offset())), top);
  4526   movptr(Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())), top);
  4527   addptr(top, t1);
  4528   subptr(top, (int32_t)ThreadLocalAllocBuffer::alignment_reserve_in_bytes());
  4529   movptr(Address(thread_reg, in_bytes(JavaThread::tlab_end_offset())), top);
  4530   verify_tlab();
  4531   jmp(retry);
  4533   return thread_reg; // for use by caller
  4536 void MacroAssembler::incr_allocated_bytes(Register thread,
  4537                                           Register var_size_in_bytes,
  4538                                           int con_size_in_bytes,
  4539                                           Register t1) {
  4540   if (!thread->is_valid()) {
  4541 #ifdef _LP64
  4542     thread = r15_thread;
  4543 #else
  4544     assert(t1->is_valid(), "need temp reg");
  4545     thread = t1;
  4546     get_thread(thread);
  4547 #endif
  4550 #ifdef _LP64
  4551   if (var_size_in_bytes->is_valid()) {
  4552     addq(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())), var_size_in_bytes);
  4553   } else {
  4554     addq(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())), con_size_in_bytes);
  4556 #else
  4557   if (var_size_in_bytes->is_valid()) {
  4558     addl(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())), var_size_in_bytes);
  4559   } else {
  4560     addl(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())), con_size_in_bytes);
  4562   adcl(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())+4), 0);
  4563 #endif
  4566 void MacroAssembler::fp_runtime_fallback(address runtime_entry, int nb_args, int num_fpu_regs_in_use) {
  4567   pusha();
  4569   // if we are coming from c1, xmm registers may be live
  4570   int off = 0;
  4571   if (UseSSE == 1)  {
  4572     subptr(rsp, sizeof(jdouble)*8);
  4573     movflt(Address(rsp,off++*sizeof(jdouble)),xmm0);
  4574     movflt(Address(rsp,off++*sizeof(jdouble)),xmm1);
  4575     movflt(Address(rsp,off++*sizeof(jdouble)),xmm2);
  4576     movflt(Address(rsp,off++*sizeof(jdouble)),xmm3);
  4577     movflt(Address(rsp,off++*sizeof(jdouble)),xmm4);
  4578     movflt(Address(rsp,off++*sizeof(jdouble)),xmm5);
  4579     movflt(Address(rsp,off++*sizeof(jdouble)),xmm6);
  4580     movflt(Address(rsp,off++*sizeof(jdouble)),xmm7);
  4581   } else if (UseSSE >= 2)  {
  4582 #ifdef COMPILER2
  4583     if (MaxVectorSize > 16) {
  4584       assert(UseAVX > 0, "256bit vectors are supported only with AVX");
  4585       // Save upper half of YMM registes
  4586       subptr(rsp, 16 * LP64_ONLY(16) NOT_LP64(8));
  4587       vextractf128h(Address(rsp,  0),xmm0);
  4588       vextractf128h(Address(rsp, 16),xmm1);
  4589       vextractf128h(Address(rsp, 32),xmm2);
  4590       vextractf128h(Address(rsp, 48),xmm3);
  4591       vextractf128h(Address(rsp, 64),xmm4);
  4592       vextractf128h(Address(rsp, 80),xmm5);
  4593       vextractf128h(Address(rsp, 96),xmm6);
  4594       vextractf128h(Address(rsp,112),xmm7);
  4595 #ifdef _LP64
  4596       vextractf128h(Address(rsp,128),xmm8);
  4597       vextractf128h(Address(rsp,144),xmm9);
  4598       vextractf128h(Address(rsp,160),xmm10);
  4599       vextractf128h(Address(rsp,176),xmm11);
  4600       vextractf128h(Address(rsp,192),xmm12);
  4601       vextractf128h(Address(rsp,208),xmm13);
  4602       vextractf128h(Address(rsp,224),xmm14);
  4603       vextractf128h(Address(rsp,240),xmm15);
  4604 #endif
  4606 #endif
  4607     // Save whole 128bit (16 bytes) XMM regiters
  4608     subptr(rsp, 16 * LP64_ONLY(16) NOT_LP64(8));
  4609     movdqu(Address(rsp,off++*16),xmm0);
  4610     movdqu(Address(rsp,off++*16),xmm1);
  4611     movdqu(Address(rsp,off++*16),xmm2);
  4612     movdqu(Address(rsp,off++*16),xmm3);
  4613     movdqu(Address(rsp,off++*16),xmm4);
  4614     movdqu(Address(rsp,off++*16),xmm5);
  4615     movdqu(Address(rsp,off++*16),xmm6);
  4616     movdqu(Address(rsp,off++*16),xmm7);
  4617 #ifdef _LP64
  4618     movdqu(Address(rsp,off++*16),xmm8);
  4619     movdqu(Address(rsp,off++*16),xmm9);
  4620     movdqu(Address(rsp,off++*16),xmm10);
  4621     movdqu(Address(rsp,off++*16),xmm11);
  4622     movdqu(Address(rsp,off++*16),xmm12);
  4623     movdqu(Address(rsp,off++*16),xmm13);
  4624     movdqu(Address(rsp,off++*16),xmm14);
  4625     movdqu(Address(rsp,off++*16),xmm15);
  4626 #endif
  4629   // Preserve registers across runtime call
  4630   int incoming_argument_and_return_value_offset = -1;
  4631   if (num_fpu_regs_in_use > 1) {
  4632     // Must preserve all other FPU regs (could alternatively convert
  4633     // SharedRuntime::dsin, dcos etc. into assembly routines known not to trash
  4634     // FPU state, but can not trust C compiler)
  4635     NEEDS_CLEANUP;
  4636     // NOTE that in this case we also push the incoming argument(s) to
  4637     // the stack and restore it later; we also use this stack slot to
  4638     // hold the return value from dsin, dcos etc.
  4639     for (int i = 0; i < num_fpu_regs_in_use; i++) {
  4640       subptr(rsp, sizeof(jdouble));
  4641       fstp_d(Address(rsp, 0));
  4643     incoming_argument_and_return_value_offset = sizeof(jdouble)*(num_fpu_regs_in_use-1);
  4644     for (int i = nb_args-1; i >= 0; i--) {
  4645       fld_d(Address(rsp, incoming_argument_and_return_value_offset-i*sizeof(jdouble)));
  4649   subptr(rsp, nb_args*sizeof(jdouble));
  4650   for (int i = 0; i < nb_args; i++) {
  4651     fstp_d(Address(rsp, i*sizeof(jdouble)));
  4654 #ifdef _LP64
  4655   if (nb_args > 0) {
  4656     movdbl(xmm0, Address(rsp, 0));
  4658   if (nb_args > 1) {
  4659     movdbl(xmm1, Address(rsp, sizeof(jdouble)));
  4661   assert(nb_args <= 2, "unsupported number of args");
  4662 #endif // _LP64
  4664   // NOTE: we must not use call_VM_leaf here because that requires a
  4665   // complete interpreter frame in debug mode -- same bug as 4387334
  4666   // MacroAssembler::call_VM_leaf_base is perfectly safe and will
  4667   // do proper 64bit abi
  4669   NEEDS_CLEANUP;
  4670   // Need to add stack banging before this runtime call if it needs to
  4671   // be taken; however, there is no generic stack banging routine at
  4672   // the MacroAssembler level
  4674   MacroAssembler::call_VM_leaf_base(runtime_entry, 0);
  4676 #ifdef _LP64
  4677   movsd(Address(rsp, 0), xmm0);
  4678   fld_d(Address(rsp, 0));
  4679 #endif // _LP64
  4680   addptr(rsp, sizeof(jdouble) * nb_args);
  4681   if (num_fpu_regs_in_use > 1) {
  4682     // Must save return value to stack and then restore entire FPU
  4683     // stack except incoming arguments
  4684     fstp_d(Address(rsp, incoming_argument_and_return_value_offset));
  4685     for (int i = 0; i < num_fpu_regs_in_use - nb_args; i++) {
  4686       fld_d(Address(rsp, 0));
  4687       addptr(rsp, sizeof(jdouble));
  4689     fld_d(Address(rsp, (nb_args-1)*sizeof(jdouble)));
  4690     addptr(rsp, sizeof(jdouble) * nb_args);
  4693   off = 0;
  4694   if (UseSSE == 1)  {
  4695     movflt(xmm0, Address(rsp,off++*sizeof(jdouble)));
  4696     movflt(xmm1, Address(rsp,off++*sizeof(jdouble)));
  4697     movflt(xmm2, Address(rsp,off++*sizeof(jdouble)));
  4698     movflt(xmm3, Address(rsp,off++*sizeof(jdouble)));
  4699     movflt(xmm4, Address(rsp,off++*sizeof(jdouble)));
  4700     movflt(xmm5, Address(rsp,off++*sizeof(jdouble)));
  4701     movflt(xmm6, Address(rsp,off++*sizeof(jdouble)));
  4702     movflt(xmm7, Address(rsp,off++*sizeof(jdouble)));
  4703     addptr(rsp, sizeof(jdouble)*8);
  4704   } else if (UseSSE >= 2)  {
  4705     // Restore whole 128bit (16 bytes) XMM regiters
  4706     movdqu(xmm0, Address(rsp,off++*16));
  4707     movdqu(xmm1, Address(rsp,off++*16));
  4708     movdqu(xmm2, Address(rsp,off++*16));
  4709     movdqu(xmm3, Address(rsp,off++*16));
  4710     movdqu(xmm4, Address(rsp,off++*16));
  4711     movdqu(xmm5, Address(rsp,off++*16));
  4712     movdqu(xmm6, Address(rsp,off++*16));
  4713     movdqu(xmm7, Address(rsp,off++*16));
  4714 #ifdef _LP64
  4715     movdqu(xmm8, Address(rsp,off++*16));
  4716     movdqu(xmm9, Address(rsp,off++*16));
  4717     movdqu(xmm10, Address(rsp,off++*16));
  4718     movdqu(xmm11, Address(rsp,off++*16));
  4719     movdqu(xmm12, Address(rsp,off++*16));
  4720     movdqu(xmm13, Address(rsp,off++*16));
  4721     movdqu(xmm14, Address(rsp,off++*16));
  4722     movdqu(xmm15, Address(rsp,off++*16));
  4723 #endif
  4724     addptr(rsp, 16 * LP64_ONLY(16) NOT_LP64(8));
  4725 #ifdef COMPILER2
  4726     if (MaxVectorSize > 16) {
  4727       // Restore upper half of YMM registes.
  4728       vinsertf128h(xmm0, Address(rsp,  0));
  4729       vinsertf128h(xmm1, Address(rsp, 16));
  4730       vinsertf128h(xmm2, Address(rsp, 32));
  4731       vinsertf128h(xmm3, Address(rsp, 48));
  4732       vinsertf128h(xmm4, Address(rsp, 64));
  4733       vinsertf128h(xmm5, Address(rsp, 80));
  4734       vinsertf128h(xmm6, Address(rsp, 96));
  4735       vinsertf128h(xmm7, Address(rsp,112));
  4736 #ifdef _LP64
  4737       vinsertf128h(xmm8, Address(rsp,128));
  4738       vinsertf128h(xmm9, Address(rsp,144));
  4739       vinsertf128h(xmm10, Address(rsp,160));
  4740       vinsertf128h(xmm11, Address(rsp,176));
  4741       vinsertf128h(xmm12, Address(rsp,192));
  4742       vinsertf128h(xmm13, Address(rsp,208));
  4743       vinsertf128h(xmm14, Address(rsp,224));
  4744       vinsertf128h(xmm15, Address(rsp,240));
  4745 #endif
  4746       addptr(rsp, 16 * LP64_ONLY(16) NOT_LP64(8));
  4748 #endif
  4750   popa();
  4753 static const double     pi_4 =  0.7853981633974483;
  4755 void MacroAssembler::trigfunc(char trig, int num_fpu_regs_in_use) {
  4756   // A hand-coded argument reduction for values in fabs(pi/4, pi/2)
  4757   // was attempted in this code; unfortunately it appears that the
  4758   // switch to 80-bit precision and back causes this to be
  4759   // unprofitable compared with simply performing a runtime call if
  4760   // the argument is out of the (-pi/4, pi/4) range.
  4762   Register tmp = noreg;
  4763   if (!VM_Version::supports_cmov()) {
  4764     // fcmp needs a temporary so preserve rbx,
  4765     tmp = rbx;
  4766     push(tmp);
  4769   Label slow_case, done;
  4771   ExternalAddress pi4_adr = (address)&pi_4;
  4772   if (reachable(pi4_adr)) {
  4773     // x ?<= pi/4
  4774     fld_d(pi4_adr);
  4775     fld_s(1);                // Stack:  X  PI/4  X
  4776     fabs();                  // Stack: |X| PI/4  X
  4777     fcmp(tmp);
  4778     jcc(Assembler::above, slow_case);
  4780     // fastest case: -pi/4 <= x <= pi/4
  4781     switch(trig) {
  4782     case 's':
  4783       fsin();
  4784       break;
  4785     case 'c':
  4786       fcos();
  4787       break;
  4788     case 't':
  4789       ftan();
  4790       break;
  4791     default:
  4792       assert(false, "bad intrinsic");
  4793       break;
  4795     jmp(done);
  4798   // slow case: runtime call
  4799   bind(slow_case);
  4801   switch(trig) {
  4802   case 's':
  4804       fp_runtime_fallback(CAST_FROM_FN_PTR(address, SharedRuntime::dsin), 1, num_fpu_regs_in_use);
  4806     break;
  4807   case 'c':
  4809       fp_runtime_fallback(CAST_FROM_FN_PTR(address, SharedRuntime::dcos), 1, num_fpu_regs_in_use);
  4811     break;
  4812   case 't':
  4814       fp_runtime_fallback(CAST_FROM_FN_PTR(address, SharedRuntime::dtan), 1, num_fpu_regs_in_use);
  4816     break;
  4817   default:
  4818     assert(false, "bad intrinsic");
  4819     break;
  4822   // Come here with result in F-TOS
  4823   bind(done);
  4825   if (tmp != noreg) {
  4826     pop(tmp);
  4831 // Look up the method for a megamorphic invokeinterface call.
  4832 // The target method is determined by <intf_klass, itable_index>.
  4833 // The receiver klass is in recv_klass.
  4834 // On success, the result will be in method_result, and execution falls through.
  4835 // On failure, execution transfers to the given label.
  4836 void MacroAssembler::lookup_interface_method(Register recv_klass,
  4837                                              Register intf_klass,
  4838                                              RegisterOrConstant itable_index,
  4839                                              Register method_result,
  4840                                              Register scan_temp,
  4841                                              Label& L_no_such_interface) {
  4842   assert_different_registers(recv_klass, intf_klass, method_result, scan_temp);
  4843   assert(itable_index.is_constant() || itable_index.as_register() == method_result,
  4844          "caller must use same register for non-constant itable index as for method");
  4846   // Compute start of first itableOffsetEntry (which is at the end of the vtable)
  4847   int vtable_base = InstanceKlass::vtable_start_offset() * wordSize;
  4848   int itentry_off = itableMethodEntry::method_offset_in_bytes();
  4849   int scan_step   = itableOffsetEntry::size() * wordSize;
  4850   int vte_size    = vtableEntry::size() * wordSize;
  4851   Address::ScaleFactor times_vte_scale = Address::times_ptr;
  4852   assert(vte_size == wordSize, "else adjust times_vte_scale");
  4854   movl(scan_temp, Address(recv_klass, InstanceKlass::vtable_length_offset() * wordSize));
  4856   // %%% Could store the aligned, prescaled offset in the klassoop.
  4857   lea(scan_temp, Address(recv_klass, scan_temp, times_vte_scale, vtable_base));
  4858   if (HeapWordsPerLong > 1) {
  4859     // Round up to align_object_offset boundary
  4860     // see code for InstanceKlass::start_of_itable!
  4861     round_to(scan_temp, BytesPerLong);
  4864   // Adjust recv_klass by scaled itable_index, so we can free itable_index.
  4865   assert(itableMethodEntry::size() * wordSize == wordSize, "adjust the scaling in the code below");
  4866   lea(recv_klass, Address(recv_klass, itable_index, Address::times_ptr, itentry_off));
  4868   // for (scan = klass->itable(); scan->interface() != NULL; scan += scan_step) {
  4869   //   if (scan->interface() == intf) {
  4870   //     result = (klass + scan->offset() + itable_index);
  4871   //   }
  4872   // }
  4873   Label search, found_method;
  4875   for (int peel = 1; peel >= 0; peel--) {
  4876     movptr(method_result, Address(scan_temp, itableOffsetEntry::interface_offset_in_bytes()));
  4877     cmpptr(intf_klass, method_result);
  4879     if (peel) {
  4880       jccb(Assembler::equal, found_method);
  4881     } else {
  4882       jccb(Assembler::notEqual, search);
  4883       // (invert the test to fall through to found_method...)
  4886     if (!peel)  break;
  4888     bind(search);
  4890     // Check that the previous entry is non-null.  A null entry means that
  4891     // the receiver class doesn't implement the interface, and wasn't the
  4892     // same as when the caller was compiled.
  4893     testptr(method_result, method_result);
  4894     jcc(Assembler::zero, L_no_such_interface);
  4895     addptr(scan_temp, scan_step);
  4898   bind(found_method);
  4900   // Got a hit.
  4901   movl(scan_temp, Address(scan_temp, itableOffsetEntry::offset_offset_in_bytes()));
  4902   movptr(method_result, Address(recv_klass, scan_temp, Address::times_1));
  4906 // virtual method calling
  4907 void MacroAssembler::lookup_virtual_method(Register recv_klass,
  4908                                            RegisterOrConstant vtable_index,
  4909                                            Register method_result) {
  4910   const int base = InstanceKlass::vtable_start_offset() * wordSize;
  4911   assert(vtableEntry::size() * wordSize == wordSize, "else adjust the scaling in the code below");
  4912   Address vtable_entry_addr(recv_klass,
  4913                             vtable_index, Address::times_ptr,
  4914                             base + vtableEntry::method_offset_in_bytes());
  4915   movptr(method_result, vtable_entry_addr);
  4919 void MacroAssembler::check_klass_subtype(Register sub_klass,
  4920                            Register super_klass,
  4921                            Register temp_reg,
  4922                            Label& L_success) {
  4923   Label L_failure;
  4924   check_klass_subtype_fast_path(sub_klass, super_klass, temp_reg,        &L_success, &L_failure, NULL);
  4925   check_klass_subtype_slow_path(sub_klass, super_klass, temp_reg, noreg, &L_success, NULL);
  4926   bind(L_failure);
  4930 void MacroAssembler::check_klass_subtype_fast_path(Register sub_klass,
  4931                                                    Register super_klass,
  4932                                                    Register temp_reg,
  4933                                                    Label* L_success,
  4934                                                    Label* L_failure,
  4935                                                    Label* L_slow_path,
  4936                                         RegisterOrConstant super_check_offset) {
  4937   assert_different_registers(sub_klass, super_klass, temp_reg);
  4938   bool must_load_sco = (super_check_offset.constant_or_zero() == -1);
  4939   if (super_check_offset.is_register()) {
  4940     assert_different_registers(sub_klass, super_klass,
  4941                                super_check_offset.as_register());
  4942   } else if (must_load_sco) {
  4943     assert(temp_reg != noreg, "supply either a temp or a register offset");
  4946   Label L_fallthrough;
  4947   int label_nulls = 0;
  4948   if (L_success == NULL)   { L_success   = &L_fallthrough; label_nulls++; }
  4949   if (L_failure == NULL)   { L_failure   = &L_fallthrough; label_nulls++; }
  4950   if (L_slow_path == NULL) { L_slow_path = &L_fallthrough; label_nulls++; }
  4951   assert(label_nulls <= 1, "at most one NULL in the batch");
  4953   int sc_offset = in_bytes(Klass::secondary_super_cache_offset());
  4954   int sco_offset = in_bytes(Klass::super_check_offset_offset());
  4955   Address super_check_offset_addr(super_klass, sco_offset);
  4957   // Hacked jcc, which "knows" that L_fallthrough, at least, is in
  4958   // range of a jccb.  If this routine grows larger, reconsider at
  4959   // least some of these.
  4960 #define local_jcc(assembler_cond, label)                                \
  4961   if (&(label) == &L_fallthrough)  jccb(assembler_cond, label);         \
  4962   else                             jcc( assembler_cond, label) /*omit semi*/
  4964   // Hacked jmp, which may only be used just before L_fallthrough.
  4965 #define final_jmp(label)                                                \
  4966   if (&(label) == &L_fallthrough) { /*do nothing*/ }                    \
  4967   else                            jmp(label)                /*omit semi*/
  4969   // If the pointers are equal, we are done (e.g., String[] elements).
  4970   // This self-check enables sharing of secondary supertype arrays among
  4971   // non-primary types such as array-of-interface.  Otherwise, each such
  4972   // type would need its own customized SSA.
  4973   // We move this check to the front of the fast path because many
  4974   // type checks are in fact trivially successful in this manner,
  4975   // so we get a nicely predicted branch right at the start of the check.
  4976   cmpptr(sub_klass, super_klass);
  4977   local_jcc(Assembler::equal, *L_success);
  4979   // Check the supertype display:
  4980   if (must_load_sco) {
  4981     // Positive movl does right thing on LP64.
  4982     movl(temp_reg, super_check_offset_addr);
  4983     super_check_offset = RegisterOrConstant(temp_reg);
  4985   Address super_check_addr(sub_klass, super_check_offset, Address::times_1, 0);
  4986   cmpptr(super_klass, super_check_addr); // load displayed supertype
  4988   // This check has worked decisively for primary supers.
  4989   // Secondary supers are sought in the super_cache ('super_cache_addr').
  4990   // (Secondary supers are interfaces and very deeply nested subtypes.)
  4991   // This works in the same check above because of a tricky aliasing
  4992   // between the super_cache and the primary super display elements.
  4993   // (The 'super_check_addr' can address either, as the case requires.)
  4994   // Note that the cache is updated below if it does not help us find
  4995   // what we need immediately.
  4996   // So if it was a primary super, we can just fail immediately.
  4997   // Otherwise, it's the slow path for us (no success at this point).
  4999   if (super_check_offset.is_register()) {
  5000     local_jcc(Assembler::equal, *L_success);
  5001     cmpl(super_check_offset.as_register(), sc_offset);
  5002     if (L_failure == &L_fallthrough) {
  5003       local_jcc(Assembler::equal, *L_slow_path);
  5004     } else {
  5005       local_jcc(Assembler::notEqual, *L_failure);
  5006       final_jmp(*L_slow_path);
  5008   } else if (super_check_offset.as_constant() == sc_offset) {
  5009     // Need a slow path; fast failure is impossible.
  5010     if (L_slow_path == &L_fallthrough) {
  5011       local_jcc(Assembler::equal, *L_success);
  5012     } else {
  5013       local_jcc(Assembler::notEqual, *L_slow_path);
  5014       final_jmp(*L_success);
  5016   } else {
  5017     // No slow path; it's a fast decision.
  5018     if (L_failure == &L_fallthrough) {
  5019       local_jcc(Assembler::equal, *L_success);
  5020     } else {
  5021       local_jcc(Assembler::notEqual, *L_failure);
  5022       final_jmp(*L_success);
  5026   bind(L_fallthrough);
  5028 #undef local_jcc
  5029 #undef final_jmp
  5033 void MacroAssembler::check_klass_subtype_slow_path(Register sub_klass,
  5034                                                    Register super_klass,
  5035                                                    Register temp_reg,
  5036                                                    Register temp2_reg,
  5037                                                    Label* L_success,
  5038                                                    Label* L_failure,
  5039                                                    bool set_cond_codes) {
  5040   assert_different_registers(sub_klass, super_klass, temp_reg);
  5041   if (temp2_reg != noreg)
  5042     assert_different_registers(sub_klass, super_klass, temp_reg, temp2_reg);
  5043 #define IS_A_TEMP(reg) ((reg) == temp_reg || (reg) == temp2_reg)
  5045   Label L_fallthrough;
  5046   int label_nulls = 0;
  5047   if (L_success == NULL)   { L_success   = &L_fallthrough; label_nulls++; }
  5048   if (L_failure == NULL)   { L_failure   = &L_fallthrough; label_nulls++; }
  5049   assert(label_nulls <= 1, "at most one NULL in the batch");
  5051   // a couple of useful fields in sub_klass:
  5052   int ss_offset = in_bytes(Klass::secondary_supers_offset());
  5053   int sc_offset = in_bytes(Klass::secondary_super_cache_offset());
  5054   Address secondary_supers_addr(sub_klass, ss_offset);
  5055   Address super_cache_addr(     sub_klass, sc_offset);
  5057   // Do a linear scan of the secondary super-klass chain.
  5058   // This code is rarely used, so simplicity is a virtue here.
  5059   // The repne_scan instruction uses fixed registers, which we must spill.
  5060   // Don't worry too much about pre-existing connections with the input regs.
  5062   assert(sub_klass != rax, "killed reg"); // killed by mov(rax, super)
  5063   assert(sub_klass != rcx, "killed reg"); // killed by lea(rcx, &pst_counter)
  5065   // Get super_klass value into rax (even if it was in rdi or rcx).
  5066   bool pushed_rax = false, pushed_rcx = false, pushed_rdi = false;
  5067   if (super_klass != rax || UseCompressedOops) {
  5068     if (!IS_A_TEMP(rax)) { push(rax); pushed_rax = true; }
  5069     mov(rax, super_klass);
  5071   if (!IS_A_TEMP(rcx)) { push(rcx); pushed_rcx = true; }
  5072   if (!IS_A_TEMP(rdi)) { push(rdi); pushed_rdi = true; }
  5074 #ifndef PRODUCT
  5075   int* pst_counter = &SharedRuntime::_partial_subtype_ctr;
  5076   ExternalAddress pst_counter_addr((address) pst_counter);
  5077   NOT_LP64(  incrementl(pst_counter_addr) );
  5078   LP64_ONLY( lea(rcx, pst_counter_addr) );
  5079   LP64_ONLY( incrementl(Address(rcx, 0)) );
  5080 #endif //PRODUCT
  5082   // We will consult the secondary-super array.
  5083   movptr(rdi, secondary_supers_addr);
  5084   // Load the array length.  (Positive movl does right thing on LP64.)
  5085   movl(rcx, Address(rdi, Array<Klass*>::length_offset_in_bytes()));
  5086   // Skip to start of data.
  5087   addptr(rdi, Array<Klass*>::base_offset_in_bytes());
  5089   // Scan RCX words at [RDI] for an occurrence of RAX.
  5090   // Set NZ/Z based on last compare.
  5091   // Z flag value will not be set by 'repne' if RCX == 0 since 'repne' does
  5092   // not change flags (only scas instruction which is repeated sets flags).
  5093   // Set Z = 0 (not equal) before 'repne' to indicate that class was not found.
  5095     testptr(rax,rax); // Set Z = 0
  5096     repne_scan();
  5098   // Unspill the temp. registers:
  5099   if (pushed_rdi)  pop(rdi);
  5100   if (pushed_rcx)  pop(rcx);
  5101   if (pushed_rax)  pop(rax);
  5103   if (set_cond_codes) {
  5104     // Special hack for the AD files:  rdi is guaranteed non-zero.
  5105     assert(!pushed_rdi, "rdi must be left non-NULL");
  5106     // Also, the condition codes are properly set Z/NZ on succeed/failure.
  5109   if (L_failure == &L_fallthrough)
  5110         jccb(Assembler::notEqual, *L_failure);
  5111   else  jcc(Assembler::notEqual, *L_failure);
  5113   // Success.  Cache the super we found and proceed in triumph.
  5114   movptr(super_cache_addr, super_klass);
  5116   if (L_success != &L_fallthrough) {
  5117     jmp(*L_success);
  5120 #undef IS_A_TEMP
  5122   bind(L_fallthrough);
  5126 void MacroAssembler::cmov32(Condition cc, Register dst, Address src) {
  5127   if (VM_Version::supports_cmov()) {
  5128     cmovl(cc, dst, src);
  5129   } else {
  5130     Label L;
  5131     jccb(negate_condition(cc), L);
  5132     movl(dst, src);
  5133     bind(L);
  5137 void MacroAssembler::cmov32(Condition cc, Register dst, Register src) {
  5138   if (VM_Version::supports_cmov()) {
  5139     cmovl(cc, dst, src);
  5140   } else {
  5141     Label L;
  5142     jccb(negate_condition(cc), L);
  5143     movl(dst, src);
  5144     bind(L);
  5148 void MacroAssembler::verify_oop(Register reg, const char* s) {
  5149   if (!VerifyOops) return;
  5151   // Pass register number to verify_oop_subroutine
  5152   const char* b = NULL;
  5154     ResourceMark rm;
  5155     stringStream ss;
  5156     ss.print("verify_oop: %s: %s", reg->name(), s);
  5157     b = code_string(ss.as_string());
  5159   BLOCK_COMMENT("verify_oop {");
  5160 #ifdef _LP64
  5161   push(rscratch1);                    // save r10, trashed by movptr()
  5162 #endif
  5163   push(rax);                          // save rax,
  5164   push(reg);                          // pass register argument
  5165   ExternalAddress buffer((address) b);
  5166   // avoid using pushptr, as it modifies scratch registers
  5167   // and our contract is not to modify anything
  5168   movptr(rax, buffer.addr());
  5169   push(rax);
  5170   // call indirectly to solve generation ordering problem
  5171   movptr(rax, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address()));
  5172   call(rax);
  5173   // Caller pops the arguments (oop, message) and restores rax, r10
  5174   BLOCK_COMMENT("} verify_oop");
  5178 RegisterOrConstant MacroAssembler::delayed_value_impl(intptr_t* delayed_value_addr,
  5179                                                       Register tmp,
  5180                                                       int offset) {
  5181   intptr_t value = *delayed_value_addr;
  5182   if (value != 0)
  5183     return RegisterOrConstant(value + offset);
  5185   // load indirectly to solve generation ordering problem
  5186   movptr(tmp, ExternalAddress((address) delayed_value_addr));
  5188 #ifdef ASSERT
  5189   { Label L;
  5190     testptr(tmp, tmp);
  5191     if (WizardMode) {
  5192       const char* buf = NULL;
  5194         ResourceMark rm;
  5195         stringStream ss;
  5196         ss.print("DelayedValue="INTPTR_FORMAT, delayed_value_addr[1]);
  5197         buf = code_string(ss.as_string());
  5199       jcc(Assembler::notZero, L);
  5200       STOP(buf);
  5201     } else {
  5202       jccb(Assembler::notZero, L);
  5203       hlt();
  5205     bind(L);
  5207 #endif
  5209   if (offset != 0)
  5210     addptr(tmp, offset);
  5212   return RegisterOrConstant(tmp);
  5216 Address MacroAssembler::argument_address(RegisterOrConstant arg_slot,
  5217                                          int extra_slot_offset) {
  5218   // cf. TemplateTable::prepare_invoke(), if (load_receiver).
  5219   int stackElementSize = Interpreter::stackElementSize;
  5220   int offset = Interpreter::expr_offset_in_bytes(extra_slot_offset+0);
  5221 #ifdef ASSERT
  5222   int offset1 = Interpreter::expr_offset_in_bytes(extra_slot_offset+1);
  5223   assert(offset1 - offset == stackElementSize, "correct arithmetic");
  5224 #endif
  5225   Register             scale_reg    = noreg;
  5226   Address::ScaleFactor scale_factor = Address::no_scale;
  5227   if (arg_slot.is_constant()) {
  5228     offset += arg_slot.as_constant() * stackElementSize;
  5229   } else {
  5230     scale_reg    = arg_slot.as_register();
  5231     scale_factor = Address::times(stackElementSize);
  5233   offset += wordSize;           // return PC is on stack
  5234   return Address(rsp, scale_reg, scale_factor, offset);
  5238 void MacroAssembler::verify_oop_addr(Address addr, const char* s) {
  5239   if (!VerifyOops) return;
  5241   // Address adjust(addr.base(), addr.index(), addr.scale(), addr.disp() + BytesPerWord);
  5242   // Pass register number to verify_oop_subroutine
  5243   const char* b = NULL;
  5245     ResourceMark rm;
  5246     stringStream ss;
  5247     ss.print("verify_oop_addr: %s", s);
  5248     b = code_string(ss.as_string());
  5250 #ifdef _LP64
  5251   push(rscratch1);                    // save r10, trashed by movptr()
  5252 #endif
  5253   push(rax);                          // save rax,
  5254   // addr may contain rsp so we will have to adjust it based on the push
  5255   // we just did (and on 64 bit we do two pushes)
  5256   // NOTE: 64bit seemed to have had a bug in that it did movq(addr, rax); which
  5257   // stores rax into addr which is backwards of what was intended.
  5258   if (addr.uses(rsp)) {
  5259     lea(rax, addr);
  5260     pushptr(Address(rax, LP64_ONLY(2 *) BytesPerWord));
  5261   } else {
  5262     pushptr(addr);
  5265   ExternalAddress buffer((address) b);
  5266   // pass msg argument
  5267   // avoid using pushptr, as it modifies scratch registers
  5268   // and our contract is not to modify anything
  5269   movptr(rax, buffer.addr());
  5270   push(rax);
  5272   // call indirectly to solve generation ordering problem
  5273   movptr(rax, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address()));
  5274   call(rax);
  5275   // Caller pops the arguments (addr, message) and restores rax, r10.
  5278 void MacroAssembler::verify_tlab() {
  5279 #ifdef ASSERT
  5280   if (UseTLAB && VerifyOops) {
  5281     Label next, ok;
  5282     Register t1 = rsi;
  5283     Register thread_reg = NOT_LP64(rbx) LP64_ONLY(r15_thread);
  5285     push(t1);
  5286     NOT_LP64(push(thread_reg));
  5287     NOT_LP64(get_thread(thread_reg));
  5289     movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())));
  5290     cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_start_offset())));
  5291     jcc(Assembler::aboveEqual, next);
  5292     STOP("assert(top >= start)");
  5293     should_not_reach_here();
  5295     bind(next);
  5296     movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_end_offset())));
  5297     cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())));
  5298     jcc(Assembler::aboveEqual, ok);
  5299     STOP("assert(top <= end)");
  5300     should_not_reach_here();
  5302     bind(ok);
  5303     NOT_LP64(pop(thread_reg));
  5304     pop(t1);
  5306 #endif
  5309 class ControlWord {
  5310  public:
  5311   int32_t _value;
  5313   int  rounding_control() const        { return  (_value >> 10) & 3      ; }
  5314   int  precision_control() const       { return  (_value >>  8) & 3      ; }
  5315   bool precision() const               { return ((_value >>  5) & 1) != 0; }
  5316   bool underflow() const               { return ((_value >>  4) & 1) != 0; }
  5317   bool overflow() const                { return ((_value >>  3) & 1) != 0; }
  5318   bool zero_divide() const             { return ((_value >>  2) & 1) != 0; }
  5319   bool denormalized() const            { return ((_value >>  1) & 1) != 0; }
  5320   bool invalid() const                 { return ((_value >>  0) & 1) != 0; }
  5322   void print() const {
  5323     // rounding control
  5324     const char* rc;
  5325     switch (rounding_control()) {
  5326       case 0: rc = "round near"; break;
  5327       case 1: rc = "round down"; break;
  5328       case 2: rc = "round up  "; break;
  5329       case 3: rc = "chop      "; break;
  5330     };
  5331     // precision control
  5332     const char* pc;
  5333     switch (precision_control()) {
  5334       case 0: pc = "24 bits "; break;
  5335       case 1: pc = "reserved"; break;
  5336       case 2: pc = "53 bits "; break;
  5337       case 3: pc = "64 bits "; break;
  5338     };
  5339     // flags
  5340     char f[9];
  5341     f[0] = ' ';
  5342     f[1] = ' ';
  5343     f[2] = (precision   ()) ? 'P' : 'p';
  5344     f[3] = (underflow   ()) ? 'U' : 'u';
  5345     f[4] = (overflow    ()) ? 'O' : 'o';
  5346     f[5] = (zero_divide ()) ? 'Z' : 'z';
  5347     f[6] = (denormalized()) ? 'D' : 'd';
  5348     f[7] = (invalid     ()) ? 'I' : 'i';
  5349     f[8] = '\x0';
  5350     // output
  5351     printf("%04x  masks = %s, %s, %s", _value & 0xFFFF, f, rc, pc);
  5354 };
  5356 class StatusWord {
  5357  public:
  5358   int32_t _value;
  5360   bool busy() const                    { return ((_value >> 15) & 1) != 0; }
  5361   bool C3() const                      { return ((_value >> 14) & 1) != 0; }
  5362   bool C2() const                      { return ((_value >> 10) & 1) != 0; }
  5363   bool C1() const                      { return ((_value >>  9) & 1) != 0; }
  5364   bool C0() const                      { return ((_value >>  8) & 1) != 0; }
  5365   int  top() const                     { return  (_value >> 11) & 7      ; }
  5366   bool error_status() const            { return ((_value >>  7) & 1) != 0; }
  5367   bool stack_fault() const             { return ((_value >>  6) & 1) != 0; }
  5368   bool precision() const               { return ((_value >>  5) & 1) != 0; }
  5369   bool underflow() const               { return ((_value >>  4) & 1) != 0; }
  5370   bool overflow() const                { return ((_value >>  3) & 1) != 0; }
  5371   bool zero_divide() const             { return ((_value >>  2) & 1) != 0; }
  5372   bool denormalized() const            { return ((_value >>  1) & 1) != 0; }
  5373   bool invalid() const                 { return ((_value >>  0) & 1) != 0; }
  5375   void print() const {
  5376     // condition codes
  5377     char c[5];
  5378     c[0] = (C3()) ? '3' : '-';
  5379     c[1] = (C2()) ? '2' : '-';
  5380     c[2] = (C1()) ? '1' : '-';
  5381     c[3] = (C0()) ? '0' : '-';
  5382     c[4] = '\x0';
  5383     // flags
  5384     char f[9];
  5385     f[0] = (error_status()) ? 'E' : '-';
  5386     f[1] = (stack_fault ()) ? 'S' : '-';
  5387     f[2] = (precision   ()) ? 'P' : '-';
  5388     f[3] = (underflow   ()) ? 'U' : '-';
  5389     f[4] = (overflow    ()) ? 'O' : '-';
  5390     f[5] = (zero_divide ()) ? 'Z' : '-';
  5391     f[6] = (denormalized()) ? 'D' : '-';
  5392     f[7] = (invalid     ()) ? 'I' : '-';
  5393     f[8] = '\x0';
  5394     // output
  5395     printf("%04x  flags = %s, cc =  %s, top = %d", _value & 0xFFFF, f, c, top());
  5398 };
  5400 class TagWord {
  5401  public:
  5402   int32_t _value;
  5404   int tag_at(int i) const              { return (_value >> (i*2)) & 3; }
  5406   void print() const {
  5407     printf("%04x", _value & 0xFFFF);
  5410 };
  5412 class FPU_Register {
  5413  public:
  5414   int32_t _m0;
  5415   int32_t _m1;
  5416   int16_t _ex;
  5418   bool is_indefinite() const           {
  5419     return _ex == -1 && _m1 == (int32_t)0xC0000000 && _m0 == 0;
  5422   void print() const {
  5423     char  sign = (_ex < 0) ? '-' : '+';
  5424     const char* kind = (_ex == 0x7FFF || _ex == (int16_t)-1) ? "NaN" : "   ";
  5425     printf("%c%04hx.%08x%08x  %s", sign, _ex, _m1, _m0, kind);
  5426   };
  5428 };
  5430 class FPU_State {
  5431  public:
  5432   enum {
  5433     register_size       = 10,
  5434     number_of_registers =  8,
  5435     register_mask       =  7
  5436   };
  5438   ControlWord  _control_word;
  5439   StatusWord   _status_word;
  5440   TagWord      _tag_word;
  5441   int32_t      _error_offset;
  5442   int32_t      _error_selector;
  5443   int32_t      _data_offset;
  5444   int32_t      _data_selector;
  5445   int8_t       _register[register_size * number_of_registers];
  5447   int tag_for_st(int i) const          { return _tag_word.tag_at((_status_word.top() + i) & register_mask); }
  5448   FPU_Register* st(int i) const        { return (FPU_Register*)&_register[register_size * i]; }
  5450   const char* tag_as_string(int tag) const {
  5451     switch (tag) {
  5452       case 0: return "valid";
  5453       case 1: return "zero";
  5454       case 2: return "special";
  5455       case 3: return "empty";
  5457     ShouldNotReachHere();
  5458     return NULL;
  5461   void print() const {
  5462     // print computation registers
  5463     { int t = _status_word.top();
  5464       for (int i = 0; i < number_of_registers; i++) {
  5465         int j = (i - t) & register_mask;
  5466         printf("%c r%d = ST%d = ", (j == 0 ? '*' : ' '), i, j);
  5467         st(j)->print();
  5468         printf(" %s\n", tag_as_string(_tag_word.tag_at(i)));
  5471     printf("\n");
  5472     // print control registers
  5473     printf("ctrl = "); _control_word.print(); printf("\n");
  5474     printf("stat = "); _status_word .print(); printf("\n");
  5475     printf("tags = "); _tag_word    .print(); printf("\n");
  5478 };
  5480 class Flag_Register {
  5481  public:
  5482   int32_t _value;
  5484   bool overflow() const                { return ((_value >> 11) & 1) != 0; }
  5485   bool direction() const               { return ((_value >> 10) & 1) != 0; }
  5486   bool sign() const                    { return ((_value >>  7) & 1) != 0; }
  5487   bool zero() const                    { return ((_value >>  6) & 1) != 0; }
  5488   bool auxiliary_carry() const         { return ((_value >>  4) & 1) != 0; }
  5489   bool parity() const                  { return ((_value >>  2) & 1) != 0; }
  5490   bool carry() const                   { return ((_value >>  0) & 1) != 0; }
  5492   void print() const {
  5493     // flags
  5494     char f[8];
  5495     f[0] = (overflow       ()) ? 'O' : '-';
  5496     f[1] = (direction      ()) ? 'D' : '-';
  5497     f[2] = (sign           ()) ? 'S' : '-';
  5498     f[3] = (zero           ()) ? 'Z' : '-';
  5499     f[4] = (auxiliary_carry()) ? 'A' : '-';
  5500     f[5] = (parity         ()) ? 'P' : '-';
  5501     f[6] = (carry          ()) ? 'C' : '-';
  5502     f[7] = '\x0';
  5503     // output
  5504     printf("%08x  flags = %s", _value, f);
  5507 };
  5509 class IU_Register {
  5510  public:
  5511   int32_t _value;
  5513   void print() const {
  5514     printf("%08x  %11d", _value, _value);
  5517 };
  5519 class IU_State {
  5520  public:
  5521   Flag_Register _eflags;
  5522   IU_Register   _rdi;
  5523   IU_Register   _rsi;
  5524   IU_Register   _rbp;
  5525   IU_Register   _rsp;
  5526   IU_Register   _rbx;
  5527   IU_Register   _rdx;
  5528   IU_Register   _rcx;
  5529   IU_Register   _rax;
  5531   void print() const {
  5532     // computation registers
  5533     printf("rax,  = "); _rax.print(); printf("\n");
  5534     printf("rbx,  = "); _rbx.print(); printf("\n");
  5535     printf("rcx  = "); _rcx.print(); printf("\n");
  5536     printf("rdx  = "); _rdx.print(); printf("\n");
  5537     printf("rdi  = "); _rdi.print(); printf("\n");
  5538     printf("rsi  = "); _rsi.print(); printf("\n");
  5539     printf("rbp,  = "); _rbp.print(); printf("\n");
  5540     printf("rsp  = "); _rsp.print(); printf("\n");
  5541     printf("\n");
  5542     // control registers
  5543     printf("flgs = "); _eflags.print(); printf("\n");
  5545 };
  5548 class CPU_State {
  5549  public:
  5550   FPU_State _fpu_state;
  5551   IU_State  _iu_state;
  5553   void print() const {
  5554     printf("--------------------------------------------------\n");
  5555     _iu_state .print();
  5556     printf("\n");
  5557     _fpu_state.print();
  5558     printf("--------------------------------------------------\n");
  5561 };
  5564 static void _print_CPU_state(CPU_State* state) {
  5565   state->print();
  5566 };
  5569 void MacroAssembler::print_CPU_state() {
  5570   push_CPU_state();
  5571   push(rsp);                // pass CPU state
  5572   call(RuntimeAddress(CAST_FROM_FN_PTR(address, _print_CPU_state)));
  5573   addptr(rsp, wordSize);       // discard argument
  5574   pop_CPU_state();
  5578 static bool _verify_FPU(int stack_depth, char* s, CPU_State* state) {
  5579   static int counter = 0;
  5580   FPU_State* fs = &state->_fpu_state;
  5581   counter++;
  5582   // For leaf calls, only verify that the top few elements remain empty.
  5583   // We only need 1 empty at the top for C2 code.
  5584   if( stack_depth < 0 ) {
  5585     if( fs->tag_for_st(7) != 3 ) {
  5586       printf("FPR7 not empty\n");
  5587       state->print();
  5588       assert(false, "error");
  5589       return false;
  5591     return true;                // All other stack states do not matter
  5594   assert((fs->_control_word._value & 0xffff) == StubRoutines::_fpu_cntrl_wrd_std,
  5595          "bad FPU control word");
  5597   // compute stack depth
  5598   int i = 0;
  5599   while (i < FPU_State::number_of_registers && fs->tag_for_st(i)  < 3) i++;
  5600   int d = i;
  5601   while (i < FPU_State::number_of_registers && fs->tag_for_st(i) == 3) i++;
  5602   // verify findings
  5603   if (i != FPU_State::number_of_registers) {
  5604     // stack not contiguous
  5605     printf("%s: stack not contiguous at ST%d\n", s, i);
  5606     state->print();
  5607     assert(false, "error");
  5608     return false;
  5610   // check if computed stack depth corresponds to expected stack depth
  5611   if (stack_depth < 0) {
  5612     // expected stack depth is -stack_depth or less
  5613     if (d > -stack_depth) {
  5614       // too many elements on the stack
  5615       printf("%s: <= %d stack elements expected but found %d\n", s, -stack_depth, d);
  5616       state->print();
  5617       assert(false, "error");
  5618       return false;
  5620   } else {
  5621     // expected stack depth is stack_depth
  5622     if (d != stack_depth) {
  5623       // wrong stack depth
  5624       printf("%s: %d stack elements expected but found %d\n", s, stack_depth, d);
  5625       state->print();
  5626       assert(false, "error");
  5627       return false;
  5630   // everything is cool
  5631   return true;
  5635 void MacroAssembler::verify_FPU(int stack_depth, const char* s) {
  5636   if (!VerifyFPU) return;
  5637   push_CPU_state();
  5638   push(rsp);                // pass CPU state
  5639   ExternalAddress msg((address) s);
  5640   // pass message string s
  5641   pushptr(msg.addr());
  5642   push(stack_depth);        // pass stack depth
  5643   call(RuntimeAddress(CAST_FROM_FN_PTR(address, _verify_FPU)));
  5644   addptr(rsp, 3 * wordSize);   // discard arguments
  5645   // check for error
  5646   { Label L;
  5647     testl(rax, rax);
  5648     jcc(Assembler::notZero, L);
  5649     int3();                  // break if error condition
  5650     bind(L);
  5652   pop_CPU_state();
  5655 void MacroAssembler::restore_cpu_control_state_after_jni() {
  5656   // Either restore the MXCSR register after returning from the JNI Call
  5657   // or verify that it wasn't changed (with -Xcheck:jni flag).
  5658   if (VM_Version::supports_sse()) {
  5659     if (RestoreMXCSROnJNICalls) {
  5660       ldmxcsr(ExternalAddress(StubRoutines::addr_mxcsr_std()));
  5661     } else if (CheckJNICalls) {
  5662       call(RuntimeAddress(StubRoutines::x86::verify_mxcsr_entry()));
  5665   if (VM_Version::supports_avx()) {
  5666     // Clear upper bits of YMM registers to avoid SSE <-> AVX transition penalty.
  5667     vzeroupper();
  5670 #ifndef _LP64
  5671   // Either restore the x87 floating pointer control word after returning
  5672   // from the JNI call or verify that it wasn't changed.
  5673   if (CheckJNICalls) {
  5674     call(RuntimeAddress(StubRoutines::x86::verify_fpu_cntrl_wrd_entry()));
  5676 #endif // _LP64
  5680 void MacroAssembler::load_klass(Register dst, Register src) {
  5681 #ifdef _LP64
  5682   if (UseCompressedClassPointers) {
  5683     movl(dst, Address(src, oopDesc::klass_offset_in_bytes()));
  5684     decode_klass_not_null(dst);
  5685   } else
  5686 #endif
  5687     movptr(dst, Address(src, oopDesc::klass_offset_in_bytes()));
  5690 void MacroAssembler::load_prototype_header(Register dst, Register src) {
  5691   load_klass(dst, src);
  5692   movptr(dst, Address(dst, Klass::prototype_header_offset()));
  5695 void MacroAssembler::store_klass(Register dst, Register src) {
  5696 #ifdef _LP64
  5697   if (UseCompressedClassPointers) {
  5698     encode_klass_not_null(src);
  5699     movl(Address(dst, oopDesc::klass_offset_in_bytes()), src);
  5700   } else
  5701 #endif
  5702     movptr(Address(dst, oopDesc::klass_offset_in_bytes()), src);
  5705 void MacroAssembler::load_heap_oop(Register dst, Address src) {
  5706 #ifdef _LP64
  5707   // FIXME: Must change all places where we try to load the klass.
  5708   if (UseCompressedOops) {
  5709     movl(dst, src);
  5710     decode_heap_oop(dst);
  5711   } else
  5712 #endif
  5713     movptr(dst, src);
  5716 // Doesn't do verfication, generates fixed size code
  5717 void MacroAssembler::load_heap_oop_not_null(Register dst, Address src) {
  5718 #ifdef _LP64
  5719   if (UseCompressedOops) {
  5720     movl(dst, src);
  5721     decode_heap_oop_not_null(dst);
  5722   } else
  5723 #endif
  5724     movptr(dst, src);
  5727 void MacroAssembler::store_heap_oop(Address dst, Register src) {
  5728 #ifdef _LP64
  5729   if (UseCompressedOops) {
  5730     assert(!dst.uses(src), "not enough registers");
  5731     encode_heap_oop(src);
  5732     movl(dst, src);
  5733   } else
  5734 #endif
  5735     movptr(dst, src);
  5738 void MacroAssembler::cmp_heap_oop(Register src1, Address src2, Register tmp) {
  5739   assert_different_registers(src1, tmp);
  5740 #ifdef _LP64
  5741   if (UseCompressedOops) {
  5742     bool did_push = false;
  5743     if (tmp == noreg) {
  5744       tmp = rax;
  5745       push(tmp);
  5746       did_push = true;
  5747       assert(!src2.uses(rsp), "can't push");
  5749     load_heap_oop(tmp, src2);
  5750     cmpptr(src1, tmp);
  5751     if (did_push)  pop(tmp);
  5752   } else
  5753 #endif
  5754     cmpptr(src1, src2);
  5757 // Used for storing NULLs.
  5758 void MacroAssembler::store_heap_oop_null(Address dst) {
  5759 #ifdef _LP64
  5760   if (UseCompressedOops) {
  5761     movl(dst, (int32_t)NULL_WORD);
  5762   } else {
  5763     movslq(dst, (int32_t)NULL_WORD);
  5765 #else
  5766   movl(dst, (int32_t)NULL_WORD);
  5767 #endif
  5770 #ifdef _LP64
  5771 void MacroAssembler::store_klass_gap(Register dst, Register src) {
  5772   if (UseCompressedClassPointers) {
  5773     // Store to klass gap in destination
  5774     movl(Address(dst, oopDesc::klass_gap_offset_in_bytes()), src);
  5778 #ifdef ASSERT
  5779 void MacroAssembler::verify_heapbase(const char* msg) {
  5780   assert (UseCompressedOops, "should be compressed");
  5781   assert (Universe::heap() != NULL, "java heap should be initialized");
  5782   if (CheckCompressedOops) {
  5783     Label ok;
  5784     push(rscratch1); // cmpptr trashes rscratch1
  5785     cmpptr(r12_heapbase, ExternalAddress((address)Universe::narrow_ptrs_base_addr()));
  5786     jcc(Assembler::equal, ok);
  5787     STOP(msg);
  5788     bind(ok);
  5789     pop(rscratch1);
  5792 #endif
  5794 // Algorithm must match oop.inline.hpp encode_heap_oop.
  5795 void MacroAssembler::encode_heap_oop(Register r) {
  5796 #ifdef ASSERT
  5797   verify_heapbase("MacroAssembler::encode_heap_oop: heap base corrupted?");
  5798 #endif
  5799   verify_oop(r, "broken oop in encode_heap_oop");
  5800   if (Universe::narrow_oop_base() == NULL) {
  5801     if (Universe::narrow_oop_shift() != 0) {
  5802       assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
  5803       shrq(r, LogMinObjAlignmentInBytes);
  5805     return;
  5807   testq(r, r);
  5808   cmovq(Assembler::equal, r, r12_heapbase);
  5809   subq(r, r12_heapbase);
  5810   shrq(r, LogMinObjAlignmentInBytes);
  5813 void MacroAssembler::encode_heap_oop_not_null(Register r) {
  5814 #ifdef ASSERT
  5815   verify_heapbase("MacroAssembler::encode_heap_oop_not_null: heap base corrupted?");
  5816   if (CheckCompressedOops) {
  5817     Label ok;
  5818     testq(r, r);
  5819     jcc(Assembler::notEqual, ok);
  5820     STOP("null oop passed to encode_heap_oop_not_null");
  5821     bind(ok);
  5823 #endif
  5824   verify_oop(r, "broken oop in encode_heap_oop_not_null");
  5825   if (Universe::narrow_oop_base() != NULL) {
  5826     subq(r, r12_heapbase);
  5828   if (Universe::narrow_oop_shift() != 0) {
  5829     assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
  5830     shrq(r, LogMinObjAlignmentInBytes);
  5834 void MacroAssembler::encode_heap_oop_not_null(Register dst, Register src) {
  5835 #ifdef ASSERT
  5836   verify_heapbase("MacroAssembler::encode_heap_oop_not_null2: heap base corrupted?");
  5837   if (CheckCompressedOops) {
  5838     Label ok;
  5839     testq(src, src);
  5840     jcc(Assembler::notEqual, ok);
  5841     STOP("null oop passed to encode_heap_oop_not_null2");
  5842     bind(ok);
  5844 #endif
  5845   verify_oop(src, "broken oop in encode_heap_oop_not_null2");
  5846   if (dst != src) {
  5847     movq(dst, src);
  5849   if (Universe::narrow_oop_base() != NULL) {
  5850     subq(dst, r12_heapbase);
  5852   if (Universe::narrow_oop_shift() != 0) {
  5853     assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
  5854     shrq(dst, LogMinObjAlignmentInBytes);
  5858 void  MacroAssembler::decode_heap_oop(Register r) {
  5859 #ifdef ASSERT
  5860   verify_heapbase("MacroAssembler::decode_heap_oop: heap base corrupted?");
  5861 #endif
  5862   if (Universe::narrow_oop_base() == NULL) {
  5863     if (Universe::narrow_oop_shift() != 0) {
  5864       assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
  5865       shlq(r, LogMinObjAlignmentInBytes);
  5867   } else {
  5868     Label done;
  5869     shlq(r, LogMinObjAlignmentInBytes);
  5870     jccb(Assembler::equal, done);
  5871     addq(r, r12_heapbase);
  5872     bind(done);
  5874   verify_oop(r, "broken oop in decode_heap_oop");
  5877 void  MacroAssembler::decode_heap_oop_not_null(Register r) {
  5878   // Note: it will change flags
  5879   assert (UseCompressedOops, "should only be used for compressed headers");
  5880   assert (Universe::heap() != NULL, "java heap should be initialized");
  5881   // Cannot assert, unverified entry point counts instructions (see .ad file)
  5882   // vtableStubs also counts instructions in pd_code_size_limit.
  5883   // Also do not verify_oop as this is called by verify_oop.
  5884   if (Universe::narrow_oop_shift() != 0) {
  5885     assert(LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
  5886     shlq(r, LogMinObjAlignmentInBytes);
  5887     if (Universe::narrow_oop_base() != NULL) {
  5888       addq(r, r12_heapbase);
  5890   } else {
  5891     assert (Universe::narrow_oop_base() == NULL, "sanity");
  5895 void  MacroAssembler::decode_heap_oop_not_null(Register dst, Register src) {
  5896   // Note: it will change flags
  5897   assert (UseCompressedOops, "should only be used for compressed headers");
  5898   assert (Universe::heap() != NULL, "java heap should be initialized");
  5899   // Cannot assert, unverified entry point counts instructions (see .ad file)
  5900   // vtableStubs also counts instructions in pd_code_size_limit.
  5901   // Also do not verify_oop as this is called by verify_oop.
  5902   if (Universe::narrow_oop_shift() != 0) {
  5903     assert(LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
  5904     if (LogMinObjAlignmentInBytes == Address::times_8) {
  5905       leaq(dst, Address(r12_heapbase, src, Address::times_8, 0));
  5906     } else {
  5907       if (dst != src) {
  5908         movq(dst, src);
  5910       shlq(dst, LogMinObjAlignmentInBytes);
  5911       if (Universe::narrow_oop_base() != NULL) {
  5912         addq(dst, r12_heapbase);
  5915   } else {
  5916     assert (Universe::narrow_oop_base() == NULL, "sanity");
  5917     if (dst != src) {
  5918       movq(dst, src);
  5923 void MacroAssembler::encode_klass_not_null(Register r) {
  5924   if (Universe::narrow_klass_base() != NULL) {
  5925     // Use r12 as a scratch register in which to temporarily load the narrow_klass_base.
  5926     assert(r != r12_heapbase, "Encoding a klass in r12");
  5927     mov64(r12_heapbase, (int64_t)Universe::narrow_klass_base());
  5928     subq(r, r12_heapbase);
  5930   if (Universe::narrow_klass_shift() != 0) {
  5931     assert (LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
  5932     shrq(r, LogKlassAlignmentInBytes);
  5934   if (Universe::narrow_klass_base() != NULL) {
  5935     reinit_heapbase();
  5939 void MacroAssembler::encode_klass_not_null(Register dst, Register src) {
  5940   if (dst == src) {
  5941     encode_klass_not_null(src);
  5942   } else {
  5943     if (Universe::narrow_klass_base() != NULL) {
  5944       mov64(dst, (int64_t)Universe::narrow_klass_base());
  5945       negq(dst);
  5946       addq(dst, src);
  5947     } else {
  5948       movptr(dst, src);
  5950     if (Universe::narrow_klass_shift() != 0) {
  5951       assert (LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
  5952       shrq(dst, LogKlassAlignmentInBytes);
  5957 // Function instr_size_for_decode_klass_not_null() counts the instructions
  5958 // generated by decode_klass_not_null(register r) and reinit_heapbase(),
  5959 // when (Universe::heap() != NULL).  Hence, if the instructions they
  5960 // generate change, then this method needs to be updated.
  5961 int MacroAssembler::instr_size_for_decode_klass_not_null() {
  5962   assert (UseCompressedClassPointers, "only for compressed klass ptrs");
  5963   if (Universe::narrow_klass_base() != NULL) {
  5964     // mov64 + addq + shlq? + mov64  (for reinit_heapbase()).
  5965     return (Universe::narrow_klass_shift() == 0 ? 20 : 24);
  5966   } else {
  5967     // longest load decode klass function, mov64, leaq
  5968     return 16;
  5972 // !!! If the instructions that get generated here change then function
  5973 // instr_size_for_decode_klass_not_null() needs to get updated.
  5974 void  MacroAssembler::decode_klass_not_null(Register r) {
  5975   // Note: it will change flags
  5976   assert (UseCompressedClassPointers, "should only be used for compressed headers");
  5977   assert(r != r12_heapbase, "Decoding a klass in r12");
  5978   // Cannot assert, unverified entry point counts instructions (see .ad file)
  5979   // vtableStubs also counts instructions in pd_code_size_limit.
  5980   // Also do not verify_oop as this is called by verify_oop.
  5981   if (Universe::narrow_klass_shift() != 0) {
  5982     assert(LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
  5983     shlq(r, LogKlassAlignmentInBytes);
  5985   // Use r12 as a scratch register in which to temporarily load the narrow_klass_base.
  5986   if (Universe::narrow_klass_base() != NULL) {
  5987     mov64(r12_heapbase, (int64_t)Universe::narrow_klass_base());
  5988     addq(r, r12_heapbase);
  5989     reinit_heapbase();
  5993 void  MacroAssembler::decode_klass_not_null(Register dst, Register src) {
  5994   // Note: it will change flags
  5995   assert (UseCompressedClassPointers, "should only be used for compressed headers");
  5996   if (dst == src) {
  5997     decode_klass_not_null(dst);
  5998   } else {
  5999     // Cannot assert, unverified entry point counts instructions (see .ad file)
  6000     // vtableStubs also counts instructions in pd_code_size_limit.
  6001     // Also do not verify_oop as this is called by verify_oop.
  6002     mov64(dst, (int64_t)Universe::narrow_klass_base());
  6003     if (Universe::narrow_klass_shift() != 0) {
  6004       assert(LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
  6005       assert(LogKlassAlignmentInBytes == Address::times_8, "klass not aligned on 64bits?");
  6006       leaq(dst, Address(dst, src, Address::times_8, 0));
  6007     } else {
  6008       addq(dst, src);
  6013 void  MacroAssembler::set_narrow_oop(Register dst, jobject obj) {
  6014   assert (UseCompressedOops, "should only be used for compressed headers");
  6015   assert (Universe::heap() != NULL, "java heap should be initialized");
  6016   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
  6017   int oop_index = oop_recorder()->find_index(obj);
  6018   RelocationHolder rspec = oop_Relocation::spec(oop_index);
  6019   mov_narrow_oop(dst, oop_index, rspec);
  6022 void  MacroAssembler::set_narrow_oop(Address dst, jobject obj) {
  6023   assert (UseCompressedOops, "should only be used for compressed headers");
  6024   assert (Universe::heap() != NULL, "java heap should be initialized");
  6025   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
  6026   int oop_index = oop_recorder()->find_index(obj);
  6027   RelocationHolder rspec = oop_Relocation::spec(oop_index);
  6028   mov_narrow_oop(dst, oop_index, rspec);
  6031 void  MacroAssembler::set_narrow_klass(Register dst, Klass* k) {
  6032   assert (UseCompressedClassPointers, "should only be used for compressed headers");
  6033   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
  6034   int klass_index = oop_recorder()->find_index(k);
  6035   RelocationHolder rspec = metadata_Relocation::spec(klass_index);
  6036   mov_narrow_oop(dst, Klass::encode_klass(k), rspec);
  6039 void  MacroAssembler::set_narrow_klass(Address dst, Klass* k) {
  6040   assert (UseCompressedClassPointers, "should only be used for compressed headers");
  6041   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
  6042   int klass_index = oop_recorder()->find_index(k);
  6043   RelocationHolder rspec = metadata_Relocation::spec(klass_index);
  6044   mov_narrow_oop(dst, Klass::encode_klass(k), rspec);
  6047 void  MacroAssembler::cmp_narrow_oop(Register dst, jobject obj) {
  6048   assert (UseCompressedOops, "should only be used for compressed headers");
  6049   assert (Universe::heap() != NULL, "java heap should be initialized");
  6050   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
  6051   int oop_index = oop_recorder()->find_index(obj);
  6052   RelocationHolder rspec = oop_Relocation::spec(oop_index);
  6053   Assembler::cmp_narrow_oop(dst, oop_index, rspec);
  6056 void  MacroAssembler::cmp_narrow_oop(Address dst, jobject obj) {
  6057   assert (UseCompressedOops, "should only be used for compressed headers");
  6058   assert (Universe::heap() != NULL, "java heap should be initialized");
  6059   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
  6060   int oop_index = oop_recorder()->find_index(obj);
  6061   RelocationHolder rspec = oop_Relocation::spec(oop_index);
  6062   Assembler::cmp_narrow_oop(dst, oop_index, rspec);
  6065 void  MacroAssembler::cmp_narrow_klass(Register dst, Klass* k) {
  6066   assert (UseCompressedClassPointers, "should only be used for compressed headers");
  6067   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
  6068   int klass_index = oop_recorder()->find_index(k);
  6069   RelocationHolder rspec = metadata_Relocation::spec(klass_index);
  6070   Assembler::cmp_narrow_oop(dst, Klass::encode_klass(k), rspec);
  6073 void  MacroAssembler::cmp_narrow_klass(Address dst, Klass* k) {
  6074   assert (UseCompressedClassPointers, "should only be used for compressed headers");
  6075   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
  6076   int klass_index = oop_recorder()->find_index(k);
  6077   RelocationHolder rspec = metadata_Relocation::spec(klass_index);
  6078   Assembler::cmp_narrow_oop(dst, Klass::encode_klass(k), rspec);
  6081 void MacroAssembler::reinit_heapbase() {
  6082   if (UseCompressedOops || UseCompressedClassPointers) {
  6083     if (Universe::heap() != NULL) {
  6084       if (Universe::narrow_oop_base() == NULL) {
  6085         MacroAssembler::xorptr(r12_heapbase, r12_heapbase);
  6086       } else {
  6087         mov64(r12_heapbase, (int64_t)Universe::narrow_ptrs_base());
  6089     } else {
  6090       movptr(r12_heapbase, ExternalAddress((address)Universe::narrow_ptrs_base_addr()));
  6095 #endif // _LP64
  6098 // C2 compiled method's prolog code.
  6099 void MacroAssembler::verified_entry(int framesize, int stack_bang_size, bool fp_mode_24b) {
  6101   // WARNING: Initial instruction MUST be 5 bytes or longer so that
  6102   // NativeJump::patch_verified_entry will be able to patch out the entry
  6103   // code safely. The push to verify stack depth is ok at 5 bytes,
  6104   // the frame allocation can be either 3 or 6 bytes. So if we don't do
  6105   // stack bang then we must use the 6 byte frame allocation even if
  6106   // we have no frame. :-(
  6107   assert(stack_bang_size >= framesize || stack_bang_size <= 0, "stack bang size incorrect");
  6109   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
  6110   // Remove word for return addr
  6111   framesize -= wordSize;
  6112   stack_bang_size -= wordSize;
  6114   // Calls to C2R adapters often do not accept exceptional returns.
  6115   // We require that their callers must bang for them.  But be careful, because
  6116   // some VM calls (such as call site linkage) can use several kilobytes of
  6117   // stack.  But the stack safety zone should account for that.
  6118   // See bugs 4446381, 4468289, 4497237.
  6119   if (stack_bang_size > 0) {
  6120     generate_stack_overflow_check(stack_bang_size);
  6122     // We always push rbp, so that on return to interpreter rbp, will be
  6123     // restored correctly and we can correct the stack.
  6124     push(rbp);
  6125     // Save caller's stack pointer into RBP if the frame pointer is preserved.
  6126     if (PreserveFramePointer) {
  6127       mov(rbp, rsp);
  6129     // Remove word for ebp
  6130     framesize -= wordSize;
  6132     // Create frame
  6133     if (framesize) {
  6134       subptr(rsp, framesize);
  6136   } else {
  6137     // Create frame (force generation of a 4 byte immediate value)
  6138     subptr_imm32(rsp, framesize);
  6140     // Save RBP register now.
  6141     framesize -= wordSize;
  6142     movptr(Address(rsp, framesize), rbp);
  6143     // Save caller's stack pointer into RBP if the frame pointer is preserved.
  6144     if (PreserveFramePointer) {
  6145       movptr(rbp, rsp);
  6146       addptr(rbp, framesize + wordSize);
  6150   if (VerifyStackAtCalls) { // Majik cookie to verify stack depth
  6151     framesize -= wordSize;
  6152     movptr(Address(rsp, framesize), (int32_t)0xbadb100d);
  6155 #ifndef _LP64
  6156   // If method sets FPU control word do it now
  6157   if (fp_mode_24b) {
  6158     fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_24()));
  6160   if (UseSSE >= 2 && VerifyFPU) {
  6161     verify_FPU(0, "FPU stack must be clean on entry");
  6163 #endif
  6165 #ifdef ASSERT
  6166   if (VerifyStackAtCalls) {
  6167     Label L;
  6168     push(rax);
  6169     mov(rax, rsp);
  6170     andptr(rax, StackAlignmentInBytes-1);
  6171     cmpptr(rax, StackAlignmentInBytes-wordSize);
  6172     pop(rax);
  6173     jcc(Assembler::equal, L);
  6174     STOP("Stack is not properly aligned!");
  6175     bind(L);
  6177 #endif
  6181 void MacroAssembler::clear_mem(Register base, Register cnt, Register tmp) {
  6182   // cnt - number of qwords (8-byte words).
  6183   // base - start address, qword aligned.
  6184   assert(base==rdi, "base register must be edi for rep stos");
  6185   assert(tmp==rax,   "tmp register must be eax for rep stos");
  6186   assert(cnt==rcx,   "cnt register must be ecx for rep stos");
  6188   xorptr(tmp, tmp);
  6189   if (UseFastStosb) {
  6190     shlptr(cnt,3); // convert to number of bytes
  6191     rep_stosb();
  6192   } else {
  6193     NOT_LP64(shlptr(cnt,1);) // convert to number of dwords for 32-bit VM
  6194     rep_stos();
  6198 // IndexOf for constant substrings with size >= 8 chars
  6199 // which don't need to be loaded through stack.
  6200 void MacroAssembler::string_indexofC8(Register str1, Register str2,
  6201                                       Register cnt1, Register cnt2,
  6202                                       int int_cnt2,  Register result,
  6203                                       XMMRegister vec, Register tmp) {
  6204   ShortBranchVerifier sbv(this);
  6205   assert(UseSSE42Intrinsics, "SSE4.2 is required");
  6207   // This method uses pcmpestri inxtruction with bound registers
  6208   //   inputs:
  6209   //     xmm - substring
  6210   //     rax - substring length (elements count)
  6211   //     mem - scanned string
  6212   //     rdx - string length (elements count)
  6213   //     0xd - mode: 1100 (substring search) + 01 (unsigned shorts)
  6214   //   outputs:
  6215   //     rcx - matched index in string
  6216   assert(cnt1 == rdx && cnt2 == rax && tmp == rcx, "pcmpestri");
  6218   Label RELOAD_SUBSTR, SCAN_TO_SUBSTR, SCAN_SUBSTR,
  6219         RET_FOUND, RET_NOT_FOUND, EXIT, FOUND_SUBSTR,
  6220         MATCH_SUBSTR_HEAD, RELOAD_STR, FOUND_CANDIDATE;
  6222   // Note, inline_string_indexOf() generates checks:
  6223   // if (substr.count > string.count) return -1;
  6224   // if (substr.count == 0) return 0;
  6225   assert(int_cnt2 >= 8, "this code isused only for cnt2 >= 8 chars");
  6227   // Load substring.
  6228   movdqu(vec, Address(str2, 0));
  6229   movl(cnt2, int_cnt2);
  6230   movptr(result, str1); // string addr
  6232   if (int_cnt2 > 8) {
  6233     jmpb(SCAN_TO_SUBSTR);
  6235     // Reload substr for rescan, this code
  6236     // is executed only for large substrings (> 8 chars)
  6237     bind(RELOAD_SUBSTR);
  6238     movdqu(vec, Address(str2, 0));
  6239     negptr(cnt2); // Jumped here with negative cnt2, convert to positive
  6241     bind(RELOAD_STR);
  6242     // We came here after the beginning of the substring was
  6243     // matched but the rest of it was not so we need to search
  6244     // again. Start from the next element after the previous match.
  6246     // cnt2 is number of substring reminding elements and
  6247     // cnt1 is number of string reminding elements when cmp failed.
  6248     // Restored cnt1 = cnt1 - cnt2 + int_cnt2
  6249     subl(cnt1, cnt2);
  6250     addl(cnt1, int_cnt2);
  6251     movl(cnt2, int_cnt2); // Now restore cnt2
  6253     decrementl(cnt1);     // Shift to next element
  6254     cmpl(cnt1, cnt2);
  6255     jccb(Assembler::negative, RET_NOT_FOUND);  // Left less then substring
  6257     addptr(result, 2);
  6259   } // (int_cnt2 > 8)
  6261   // Scan string for start of substr in 16-byte vectors
  6262   bind(SCAN_TO_SUBSTR);
  6263   pcmpestri(vec, Address(result, 0), 0x0d);
  6264   jccb(Assembler::below, FOUND_CANDIDATE);   // CF == 1
  6265   subl(cnt1, 8);
  6266   jccb(Assembler::lessEqual, RET_NOT_FOUND); // Scanned full string
  6267   cmpl(cnt1, cnt2);
  6268   jccb(Assembler::negative, RET_NOT_FOUND);  // Left less then substring
  6269   addptr(result, 16);
  6270   jmpb(SCAN_TO_SUBSTR);
  6272   // Found a potential substr
  6273   bind(FOUND_CANDIDATE);
  6274   // Matched whole vector if first element matched (tmp(rcx) == 0).
  6275   if (int_cnt2 == 8) {
  6276     jccb(Assembler::overflow, RET_FOUND);    // OF == 1
  6277   } else { // int_cnt2 > 8
  6278     jccb(Assembler::overflow, FOUND_SUBSTR);
  6280   // After pcmpestri tmp(rcx) contains matched element index
  6281   // Compute start addr of substr
  6282   lea(result, Address(result, tmp, Address::times_2));
  6284   // Make sure string is still long enough
  6285   subl(cnt1, tmp);
  6286   cmpl(cnt1, cnt2);
  6287   if (int_cnt2 == 8) {
  6288     jccb(Assembler::greaterEqual, SCAN_TO_SUBSTR);
  6289   } else { // int_cnt2 > 8
  6290     jccb(Assembler::greaterEqual, MATCH_SUBSTR_HEAD);
  6292   // Left less then substring.
  6294   bind(RET_NOT_FOUND);
  6295   movl(result, -1);
  6296   jmpb(EXIT);
  6298   if (int_cnt2 > 8) {
  6299     // This code is optimized for the case when whole substring
  6300     // is matched if its head is matched.
  6301     bind(MATCH_SUBSTR_HEAD);
  6302     pcmpestri(vec, Address(result, 0), 0x0d);
  6303     // Reload only string if does not match
  6304     jccb(Assembler::noOverflow, RELOAD_STR); // OF == 0
  6306     Label CONT_SCAN_SUBSTR;
  6307     // Compare the rest of substring (> 8 chars).
  6308     bind(FOUND_SUBSTR);
  6309     // First 8 chars are already matched.
  6310     negptr(cnt2);
  6311     addptr(cnt2, 8);
  6313     bind(SCAN_SUBSTR);
  6314     subl(cnt1, 8);
  6315     cmpl(cnt2, -8); // Do not read beyond substring
  6316     jccb(Assembler::lessEqual, CONT_SCAN_SUBSTR);
  6317     // Back-up strings to avoid reading beyond substring:
  6318     // cnt1 = cnt1 - cnt2 + 8
  6319     addl(cnt1, cnt2); // cnt2 is negative
  6320     addl(cnt1, 8);
  6321     movl(cnt2, 8); negptr(cnt2);
  6322     bind(CONT_SCAN_SUBSTR);
  6323     if (int_cnt2 < (int)G) {
  6324       movdqu(vec, Address(str2, cnt2, Address::times_2, int_cnt2*2));
  6325       pcmpestri(vec, Address(result, cnt2, Address::times_2, int_cnt2*2), 0x0d);
  6326     } else {
  6327       // calculate index in register to avoid integer overflow (int_cnt2*2)
  6328       movl(tmp, int_cnt2);
  6329       addptr(tmp, cnt2);
  6330       movdqu(vec, Address(str2, tmp, Address::times_2, 0));
  6331       pcmpestri(vec, Address(result, tmp, Address::times_2, 0), 0x0d);
  6333     // Need to reload strings pointers if not matched whole vector
  6334     jcc(Assembler::noOverflow, RELOAD_SUBSTR); // OF == 0
  6335     addptr(cnt2, 8);
  6336     jcc(Assembler::negative, SCAN_SUBSTR);
  6337     // Fall through if found full substring
  6339   } // (int_cnt2 > 8)
  6341   bind(RET_FOUND);
  6342   // Found result if we matched full small substring.
  6343   // Compute substr offset
  6344   subptr(result, str1);
  6345   shrl(result, 1); // index
  6346   bind(EXIT);
  6348 } // string_indexofC8
  6350 // Small strings are loaded through stack if they cross page boundary.
  6351 void MacroAssembler::string_indexof(Register str1, Register str2,
  6352                                     Register cnt1, Register cnt2,
  6353                                     int int_cnt2,  Register result,
  6354                                     XMMRegister vec, Register tmp) {
  6355   ShortBranchVerifier sbv(this);
  6356   assert(UseSSE42Intrinsics, "SSE4.2 is required");
  6357   //
  6358   // int_cnt2 is length of small (< 8 chars) constant substring
  6359   // or (-1) for non constant substring in which case its length
  6360   // is in cnt2 register.
  6361   //
  6362   // Note, inline_string_indexOf() generates checks:
  6363   // if (substr.count > string.count) return -1;
  6364   // if (substr.count == 0) return 0;
  6365   //
  6366   assert(int_cnt2 == -1 || (0 < int_cnt2 && int_cnt2 < 8), "should be != 0");
  6368   // This method uses pcmpestri inxtruction with bound registers
  6369   //   inputs:
  6370   //     xmm - substring
  6371   //     rax - substring length (elements count)
  6372   //     mem - scanned string
  6373   //     rdx - string length (elements count)
  6374   //     0xd - mode: 1100 (substring search) + 01 (unsigned shorts)
  6375   //   outputs:
  6376   //     rcx - matched index in string
  6377   assert(cnt1 == rdx && cnt2 == rax && tmp == rcx, "pcmpestri");
  6379   Label RELOAD_SUBSTR, SCAN_TO_SUBSTR, SCAN_SUBSTR, ADJUST_STR,
  6380         RET_FOUND, RET_NOT_FOUND, CLEANUP, FOUND_SUBSTR,
  6381         FOUND_CANDIDATE;
  6383   { //========================================================
  6384     // We don't know where these strings are located
  6385     // and we can't read beyond them. Load them through stack.
  6386     Label BIG_STRINGS, CHECK_STR, COPY_SUBSTR, COPY_STR;
  6388     movptr(tmp, rsp); // save old SP
  6390     if (int_cnt2 > 0) {     // small (< 8 chars) constant substring
  6391       if (int_cnt2 == 1) {  // One char
  6392         load_unsigned_short(result, Address(str2, 0));
  6393         movdl(vec, result); // move 32 bits
  6394       } else if (int_cnt2 == 2) { // Two chars
  6395         movdl(vec, Address(str2, 0)); // move 32 bits
  6396       } else if (int_cnt2 == 4) { // Four chars
  6397         movq(vec, Address(str2, 0));  // move 64 bits
  6398       } else { // cnt2 = { 3, 5, 6, 7 }
  6399         // Array header size is 12 bytes in 32-bit VM
  6400         // + 6 bytes for 3 chars == 18 bytes,
  6401         // enough space to load vec and shift.
  6402         assert(HeapWordSize*TypeArrayKlass::header_size() >= 12,"sanity");
  6403         movdqu(vec, Address(str2, (int_cnt2*2)-16));
  6404         psrldq(vec, 16-(int_cnt2*2));
  6406     } else { // not constant substring
  6407       cmpl(cnt2, 8);
  6408       jccb(Assembler::aboveEqual, BIG_STRINGS); // Both strings are big enough
  6410       // We can read beyond string if srt+16 does not cross page boundary
  6411       // since heaps are aligned and mapped by pages.
  6412       assert(os::vm_page_size() < (int)G, "default page should be small");
  6413       movl(result, str2); // We need only low 32 bits
  6414       andl(result, (os::vm_page_size()-1));
  6415       cmpl(result, (os::vm_page_size()-16));
  6416       jccb(Assembler::belowEqual, CHECK_STR);
  6418       // Move small strings to stack to allow load 16 bytes into vec.
  6419       subptr(rsp, 16);
  6420       int stk_offset = wordSize-2;
  6421       push(cnt2);
  6423       bind(COPY_SUBSTR);
  6424       load_unsigned_short(result, Address(str2, cnt2, Address::times_2, -2));
  6425       movw(Address(rsp, cnt2, Address::times_2, stk_offset), result);
  6426       decrement(cnt2);
  6427       jccb(Assembler::notZero, COPY_SUBSTR);
  6429       pop(cnt2);
  6430       movptr(str2, rsp);  // New substring address
  6431     } // non constant
  6433     bind(CHECK_STR);
  6434     cmpl(cnt1, 8);
  6435     jccb(Assembler::aboveEqual, BIG_STRINGS);
  6437     // Check cross page boundary.
  6438     movl(result, str1); // We need only low 32 bits
  6439     andl(result, (os::vm_page_size()-1));
  6440     cmpl(result, (os::vm_page_size()-16));
  6441     jccb(Assembler::belowEqual, BIG_STRINGS);
  6443     subptr(rsp, 16);
  6444     int stk_offset = -2;
  6445     if (int_cnt2 < 0) { // not constant
  6446       push(cnt2);
  6447       stk_offset += wordSize;
  6449     movl(cnt2, cnt1);
  6451     bind(COPY_STR);
  6452     load_unsigned_short(result, Address(str1, cnt2, Address::times_2, -2));
  6453     movw(Address(rsp, cnt2, Address::times_2, stk_offset), result);
  6454     decrement(cnt2);
  6455     jccb(Assembler::notZero, COPY_STR);
  6457     if (int_cnt2 < 0) { // not constant
  6458       pop(cnt2);
  6460     movptr(str1, rsp);  // New string address
  6462     bind(BIG_STRINGS);
  6463     // Load substring.
  6464     if (int_cnt2 < 0) { // -1
  6465       movdqu(vec, Address(str2, 0));
  6466       push(cnt2);       // substr count
  6467       push(str2);       // substr addr
  6468       push(str1);       // string addr
  6469     } else {
  6470       // Small (< 8 chars) constant substrings are loaded already.
  6471       movl(cnt2, int_cnt2);
  6473     push(tmp);  // original SP
  6475   } // Finished loading
  6477   //========================================================
  6478   // Start search
  6479   //
  6481   movptr(result, str1); // string addr
  6483   if (int_cnt2  < 0) {  // Only for non constant substring
  6484     jmpb(SCAN_TO_SUBSTR);
  6486     // SP saved at sp+0
  6487     // String saved at sp+1*wordSize
  6488     // Substr saved at sp+2*wordSize
  6489     // Substr count saved at sp+3*wordSize
  6491     // Reload substr for rescan, this code
  6492     // is executed only for large substrings (> 8 chars)
  6493     bind(RELOAD_SUBSTR);
  6494     movptr(str2, Address(rsp, 2*wordSize));
  6495     movl(cnt2, Address(rsp, 3*wordSize));
  6496     movdqu(vec, Address(str2, 0));
  6497     // We came here after the beginning of the substring was
  6498     // matched but the rest of it was not so we need to search
  6499     // again. Start from the next element after the previous match.
  6500     subptr(str1, result); // Restore counter
  6501     shrl(str1, 1);
  6502     addl(cnt1, str1);
  6503     decrementl(cnt1);   // Shift to next element
  6504     cmpl(cnt1, cnt2);
  6505     jccb(Assembler::negative, RET_NOT_FOUND);  // Left less then substring
  6507     addptr(result, 2);
  6508   } // non constant
  6510   // Scan string for start of substr in 16-byte vectors
  6511   bind(SCAN_TO_SUBSTR);
  6512   assert(cnt1 == rdx && cnt2 == rax && tmp == rcx, "pcmpestri");
  6513   pcmpestri(vec, Address(result, 0), 0x0d);
  6514   jccb(Assembler::below, FOUND_CANDIDATE);   // CF == 1
  6515   subl(cnt1, 8);
  6516   jccb(Assembler::lessEqual, RET_NOT_FOUND); // Scanned full string
  6517   cmpl(cnt1, cnt2);
  6518   jccb(Assembler::negative, RET_NOT_FOUND);  // Left less then substring
  6519   addptr(result, 16);
  6521   bind(ADJUST_STR);
  6522   cmpl(cnt1, 8); // Do not read beyond string
  6523   jccb(Assembler::greaterEqual, SCAN_TO_SUBSTR);
  6524   // Back-up string to avoid reading beyond string.
  6525   lea(result, Address(result, cnt1, Address::times_2, -16));
  6526   movl(cnt1, 8);
  6527   jmpb(SCAN_TO_SUBSTR);
  6529   // Found a potential substr
  6530   bind(FOUND_CANDIDATE);
  6531   // After pcmpestri tmp(rcx) contains matched element index
  6533   // Make sure string is still long enough
  6534   subl(cnt1, tmp);
  6535   cmpl(cnt1, cnt2);
  6536   jccb(Assembler::greaterEqual, FOUND_SUBSTR);
  6537   // Left less then substring.
  6539   bind(RET_NOT_FOUND);
  6540   movl(result, -1);
  6541   jmpb(CLEANUP);
  6543   bind(FOUND_SUBSTR);
  6544   // Compute start addr of substr
  6545   lea(result, Address(result, tmp, Address::times_2));
  6547   if (int_cnt2 > 0) { // Constant substring
  6548     // Repeat search for small substring (< 8 chars)
  6549     // from new point without reloading substring.
  6550     // Have to check that we don't read beyond string.
  6551     cmpl(tmp, 8-int_cnt2);
  6552     jccb(Assembler::greater, ADJUST_STR);
  6553     // Fall through if matched whole substring.
  6554   } else { // non constant
  6555     assert(int_cnt2 == -1, "should be != 0");
  6557     addl(tmp, cnt2);
  6558     // Found result if we matched whole substring.
  6559     cmpl(tmp, 8);
  6560     jccb(Assembler::lessEqual, RET_FOUND);
  6562     // Repeat search for small substring (<= 8 chars)
  6563     // from new point 'str1' without reloading substring.
  6564     cmpl(cnt2, 8);
  6565     // Have to check that we don't read beyond string.
  6566     jccb(Assembler::lessEqual, ADJUST_STR);
  6568     Label CHECK_NEXT, CONT_SCAN_SUBSTR, RET_FOUND_LONG;
  6569     // Compare the rest of substring (> 8 chars).
  6570     movptr(str1, result);
  6572     cmpl(tmp, cnt2);
  6573     // First 8 chars are already matched.
  6574     jccb(Assembler::equal, CHECK_NEXT);
  6576     bind(SCAN_SUBSTR);
  6577     pcmpestri(vec, Address(str1, 0), 0x0d);
  6578     // Need to reload strings pointers if not matched whole vector
  6579     jcc(Assembler::noOverflow, RELOAD_SUBSTR); // OF == 0
  6581     bind(CHECK_NEXT);
  6582     subl(cnt2, 8);
  6583     jccb(Assembler::lessEqual, RET_FOUND_LONG); // Found full substring
  6584     addptr(str1, 16);
  6585     addptr(str2, 16);
  6586     subl(cnt1, 8);
  6587     cmpl(cnt2, 8); // Do not read beyond substring
  6588     jccb(Assembler::greaterEqual, CONT_SCAN_SUBSTR);
  6589     // Back-up strings to avoid reading beyond substring.
  6590     lea(str2, Address(str2, cnt2, Address::times_2, -16));
  6591     lea(str1, Address(str1, cnt2, Address::times_2, -16));
  6592     subl(cnt1, cnt2);
  6593     movl(cnt2, 8);
  6594     addl(cnt1, 8);
  6595     bind(CONT_SCAN_SUBSTR);
  6596     movdqu(vec, Address(str2, 0));
  6597     jmpb(SCAN_SUBSTR);
  6599     bind(RET_FOUND_LONG);
  6600     movptr(str1, Address(rsp, wordSize));
  6601   } // non constant
  6603   bind(RET_FOUND);
  6604   // Compute substr offset
  6605   subptr(result, str1);
  6606   shrl(result, 1); // index
  6608   bind(CLEANUP);
  6609   pop(rsp); // restore SP
  6611 } // string_indexof
  6613 // Compare strings.
  6614 void MacroAssembler::string_compare(Register str1, Register str2,
  6615                                     Register cnt1, Register cnt2, Register result,
  6616                                     XMMRegister vec1) {
  6617   ShortBranchVerifier sbv(this);
  6618   Label LENGTH_DIFF_LABEL, POP_LABEL, DONE_LABEL, WHILE_HEAD_LABEL;
  6620   // Compute the minimum of the string lengths and the
  6621   // difference of the string lengths (stack).
  6622   // Do the conditional move stuff
  6623   movl(result, cnt1);
  6624   subl(cnt1, cnt2);
  6625   push(cnt1);
  6626   cmov32(Assembler::lessEqual, cnt2, result);
  6628   // Is the minimum length zero?
  6629   testl(cnt2, cnt2);
  6630   jcc(Assembler::zero, LENGTH_DIFF_LABEL);
  6632   // Compare first characters
  6633   load_unsigned_short(result, Address(str1, 0));
  6634   load_unsigned_short(cnt1, Address(str2, 0));
  6635   subl(result, cnt1);
  6636   jcc(Assembler::notZero,  POP_LABEL);
  6637   cmpl(cnt2, 1);
  6638   jcc(Assembler::equal, LENGTH_DIFF_LABEL);
  6640   // Check if the strings start at the same location.
  6641   cmpptr(str1, str2);
  6642   jcc(Assembler::equal, LENGTH_DIFF_LABEL);
  6644   Address::ScaleFactor scale = Address::times_2;
  6645   int stride = 8;
  6647   if (UseAVX >= 2 && UseSSE42Intrinsics) {
  6648     Label COMPARE_WIDE_VECTORS, VECTOR_NOT_EQUAL, COMPARE_WIDE_TAIL, COMPARE_SMALL_STR;
  6649     Label COMPARE_WIDE_VECTORS_LOOP, COMPARE_16_CHARS, COMPARE_INDEX_CHAR;
  6650     Label COMPARE_TAIL_LONG;
  6651     int pcmpmask = 0x19;
  6653     // Setup to compare 16-chars (32-bytes) vectors,
  6654     // start from first character again because it has aligned address.
  6655     int stride2 = 16;
  6656     int adr_stride  = stride  << scale;
  6657     int adr_stride2 = stride2 << scale;
  6659     assert(result == rax && cnt2 == rdx && cnt1 == rcx, "pcmpestri");
  6660     // rax and rdx are used by pcmpestri as elements counters
  6661     movl(result, cnt2);
  6662     andl(cnt2, ~(stride2-1));   // cnt2 holds the vector count
  6663     jcc(Assembler::zero, COMPARE_TAIL_LONG);
  6665     // fast path : compare first 2 8-char vectors.
  6666     bind(COMPARE_16_CHARS);
  6667     movdqu(vec1, Address(str1, 0));
  6668     pcmpestri(vec1, Address(str2, 0), pcmpmask);
  6669     jccb(Assembler::below, COMPARE_INDEX_CHAR);
  6671     movdqu(vec1, Address(str1, adr_stride));
  6672     pcmpestri(vec1, Address(str2, adr_stride), pcmpmask);
  6673     jccb(Assembler::aboveEqual, COMPARE_WIDE_VECTORS);
  6674     addl(cnt1, stride);
  6676     // Compare the characters at index in cnt1
  6677     bind(COMPARE_INDEX_CHAR); //cnt1 has the offset of the mismatching character
  6678     load_unsigned_short(result, Address(str1, cnt1, scale));
  6679     load_unsigned_short(cnt2, Address(str2, cnt1, scale));
  6680     subl(result, cnt2);
  6681     jmp(POP_LABEL);
  6683     // Setup the registers to start vector comparison loop
  6684     bind(COMPARE_WIDE_VECTORS);
  6685     lea(str1, Address(str1, result, scale));
  6686     lea(str2, Address(str2, result, scale));
  6687     subl(result, stride2);
  6688     subl(cnt2, stride2);
  6689     jccb(Assembler::zero, COMPARE_WIDE_TAIL);
  6690     negptr(result);
  6692     //  In a loop, compare 16-chars (32-bytes) at once using (vpxor+vptest)
  6693     bind(COMPARE_WIDE_VECTORS_LOOP);
  6694     vmovdqu(vec1, Address(str1, result, scale));
  6695     vpxor(vec1, Address(str2, result, scale));
  6696     vptest(vec1, vec1);
  6697     jccb(Assembler::notZero, VECTOR_NOT_EQUAL);
  6698     addptr(result, stride2);
  6699     subl(cnt2, stride2);
  6700     jccb(Assembler::notZero, COMPARE_WIDE_VECTORS_LOOP);
  6701     // clean upper bits of YMM registers
  6702     vpxor(vec1, vec1);
  6704     // compare wide vectors tail
  6705     bind(COMPARE_WIDE_TAIL);
  6706     testptr(result, result);
  6707     jccb(Assembler::zero, LENGTH_DIFF_LABEL);
  6709     movl(result, stride2);
  6710     movl(cnt2, result);
  6711     negptr(result);
  6712     jmpb(COMPARE_WIDE_VECTORS_LOOP);
  6714     // Identifies the mismatching (higher or lower)16-bytes in the 32-byte vectors.
  6715     bind(VECTOR_NOT_EQUAL);
  6716     // clean upper bits of YMM registers
  6717     vpxor(vec1, vec1);
  6718     lea(str1, Address(str1, result, scale));
  6719     lea(str2, Address(str2, result, scale));
  6720     jmp(COMPARE_16_CHARS);
  6722     // Compare tail chars, length between 1 to 15 chars
  6723     bind(COMPARE_TAIL_LONG);
  6724     movl(cnt2, result);
  6725     cmpl(cnt2, stride);
  6726     jccb(Assembler::less, COMPARE_SMALL_STR);
  6728     movdqu(vec1, Address(str1, 0));
  6729     pcmpestri(vec1, Address(str2, 0), pcmpmask);
  6730     jcc(Assembler::below, COMPARE_INDEX_CHAR);
  6731     subptr(cnt2, stride);
  6732     jccb(Assembler::zero, LENGTH_DIFF_LABEL);
  6733     lea(str1, Address(str1, result, scale));
  6734     lea(str2, Address(str2, result, scale));
  6735     negptr(cnt2);
  6736     jmpb(WHILE_HEAD_LABEL);
  6738     bind(COMPARE_SMALL_STR);
  6739   } else if (UseSSE42Intrinsics) {
  6740     Label COMPARE_WIDE_VECTORS, VECTOR_NOT_EQUAL, COMPARE_TAIL;
  6741     int pcmpmask = 0x19;
  6742     // Setup to compare 8-char (16-byte) vectors,
  6743     // start from first character again because it has aligned address.
  6744     movl(result, cnt2);
  6745     andl(cnt2, ~(stride - 1));   // cnt2 holds the vector count
  6746     jccb(Assembler::zero, COMPARE_TAIL);
  6748     lea(str1, Address(str1, result, scale));
  6749     lea(str2, Address(str2, result, scale));
  6750     negptr(result);
  6752     // pcmpestri
  6753     //   inputs:
  6754     //     vec1- substring
  6755     //     rax - negative string length (elements count)
  6756     //     mem - scaned string
  6757     //     rdx - string length (elements count)
  6758     //     pcmpmask - cmp mode: 11000 (string compare with negated result)
  6759     //               + 00 (unsigned bytes) or  + 01 (unsigned shorts)
  6760     //   outputs:
  6761     //     rcx - first mismatched element index
  6762     assert(result == rax && cnt2 == rdx && cnt1 == rcx, "pcmpestri");
  6764     bind(COMPARE_WIDE_VECTORS);
  6765     movdqu(vec1, Address(str1, result, scale));
  6766     pcmpestri(vec1, Address(str2, result, scale), pcmpmask);
  6767     // After pcmpestri cnt1(rcx) contains mismatched element index
  6769     jccb(Assembler::below, VECTOR_NOT_EQUAL);  // CF==1
  6770     addptr(result, stride);
  6771     subptr(cnt2, stride);
  6772     jccb(Assembler::notZero, COMPARE_WIDE_VECTORS);
  6774     // compare wide vectors tail
  6775     testptr(result, result);
  6776     jccb(Assembler::zero, LENGTH_DIFF_LABEL);
  6778     movl(cnt2, stride);
  6779     movl(result, stride);
  6780     negptr(result);
  6781     movdqu(vec1, Address(str1, result, scale));
  6782     pcmpestri(vec1, Address(str2, result, scale), pcmpmask);
  6783     jccb(Assembler::aboveEqual, LENGTH_DIFF_LABEL);
  6785     // Mismatched characters in the vectors
  6786     bind(VECTOR_NOT_EQUAL);
  6787     addptr(cnt1, result);
  6788     load_unsigned_short(result, Address(str1, cnt1, scale));
  6789     load_unsigned_short(cnt2, Address(str2, cnt1, scale));
  6790     subl(result, cnt2);
  6791     jmpb(POP_LABEL);
  6793     bind(COMPARE_TAIL); // limit is zero
  6794     movl(cnt2, result);
  6795     // Fallthru to tail compare
  6797   // Shift str2 and str1 to the end of the arrays, negate min
  6798   lea(str1, Address(str1, cnt2, scale));
  6799   lea(str2, Address(str2, cnt2, scale));
  6800   decrementl(cnt2);  // first character was compared already
  6801   negptr(cnt2);
  6803   // Compare the rest of the elements
  6804   bind(WHILE_HEAD_LABEL);
  6805   load_unsigned_short(result, Address(str1, cnt2, scale, 0));
  6806   load_unsigned_short(cnt1, Address(str2, cnt2, scale, 0));
  6807   subl(result, cnt1);
  6808   jccb(Assembler::notZero, POP_LABEL);
  6809   increment(cnt2);
  6810   jccb(Assembler::notZero, WHILE_HEAD_LABEL);
  6812   // Strings are equal up to min length.  Return the length difference.
  6813   bind(LENGTH_DIFF_LABEL);
  6814   pop(result);
  6815   jmpb(DONE_LABEL);
  6817   // Discard the stored length difference
  6818   bind(POP_LABEL);
  6819   pop(cnt1);
  6821   // That's it
  6822   bind(DONE_LABEL);
  6825 // Compare char[] arrays aligned to 4 bytes or substrings.
  6826 void MacroAssembler::char_arrays_equals(bool is_array_equ, Register ary1, Register ary2,
  6827                                         Register limit, Register result, Register chr,
  6828                                         XMMRegister vec1, XMMRegister vec2) {
  6829   ShortBranchVerifier sbv(this);
  6830   Label TRUE_LABEL, FALSE_LABEL, DONE, COMPARE_VECTORS, COMPARE_CHAR;
  6832   int length_offset  = arrayOopDesc::length_offset_in_bytes();
  6833   int base_offset    = arrayOopDesc::base_offset_in_bytes(T_CHAR);
  6835   // Check the input args
  6836   cmpptr(ary1, ary2);
  6837   jcc(Assembler::equal, TRUE_LABEL);
  6839   if (is_array_equ) {
  6840     // Need additional checks for arrays_equals.
  6841     testptr(ary1, ary1);
  6842     jcc(Assembler::zero, FALSE_LABEL);
  6843     testptr(ary2, ary2);
  6844     jcc(Assembler::zero, FALSE_LABEL);
  6846     // Check the lengths
  6847     movl(limit, Address(ary1, length_offset));
  6848     cmpl(limit, Address(ary2, length_offset));
  6849     jcc(Assembler::notEqual, FALSE_LABEL);
  6852   // count == 0
  6853   testl(limit, limit);
  6854   jcc(Assembler::zero, TRUE_LABEL);
  6856   if (is_array_equ) {
  6857     // Load array address
  6858     lea(ary1, Address(ary1, base_offset));
  6859     lea(ary2, Address(ary2, base_offset));
  6862   shll(limit, 1);      // byte count != 0
  6863   movl(result, limit); // copy
  6865   if (UseAVX >= 2) {
  6866     // With AVX2, use 32-byte vector compare
  6867     Label COMPARE_WIDE_VECTORS, COMPARE_TAIL;
  6869     // Compare 32-byte vectors
  6870     andl(result, 0x0000001e);  //   tail count (in bytes)
  6871     andl(limit, 0xffffffe0);   // vector count (in bytes)
  6872     jccb(Assembler::zero, COMPARE_TAIL);
  6874     lea(ary1, Address(ary1, limit, Address::times_1));
  6875     lea(ary2, Address(ary2, limit, Address::times_1));
  6876     negptr(limit);
  6878     bind(COMPARE_WIDE_VECTORS);
  6879     vmovdqu(vec1, Address(ary1, limit, Address::times_1));
  6880     vmovdqu(vec2, Address(ary2, limit, Address::times_1));
  6881     vpxor(vec1, vec2);
  6883     vptest(vec1, vec1);
  6884     jccb(Assembler::notZero, FALSE_LABEL);
  6885     addptr(limit, 32);
  6886     jcc(Assembler::notZero, COMPARE_WIDE_VECTORS);
  6888     testl(result, result);
  6889     jccb(Assembler::zero, TRUE_LABEL);
  6891     vmovdqu(vec1, Address(ary1, result, Address::times_1, -32));
  6892     vmovdqu(vec2, Address(ary2, result, Address::times_1, -32));
  6893     vpxor(vec1, vec2);
  6895     vptest(vec1, vec1);
  6896     jccb(Assembler::notZero, FALSE_LABEL);
  6897     jmpb(TRUE_LABEL);
  6899     bind(COMPARE_TAIL); // limit is zero
  6900     movl(limit, result);
  6901     // Fallthru to tail compare
  6902   } else if (UseSSE42Intrinsics) {
  6903     // With SSE4.2, use double quad vector compare
  6904     Label COMPARE_WIDE_VECTORS, COMPARE_TAIL;
  6906     // Compare 16-byte vectors
  6907     andl(result, 0x0000000e);  //   tail count (in bytes)
  6908     andl(limit, 0xfffffff0);   // vector count (in bytes)
  6909     jccb(Assembler::zero, COMPARE_TAIL);
  6911     lea(ary1, Address(ary1, limit, Address::times_1));
  6912     lea(ary2, Address(ary2, limit, Address::times_1));
  6913     negptr(limit);
  6915     bind(COMPARE_WIDE_VECTORS);
  6916     movdqu(vec1, Address(ary1, limit, Address::times_1));
  6917     movdqu(vec2, Address(ary2, limit, Address::times_1));
  6918     pxor(vec1, vec2);
  6920     ptest(vec1, vec1);
  6921     jccb(Assembler::notZero, FALSE_LABEL);
  6922     addptr(limit, 16);
  6923     jcc(Assembler::notZero, COMPARE_WIDE_VECTORS);
  6925     testl(result, result);
  6926     jccb(Assembler::zero, TRUE_LABEL);
  6928     movdqu(vec1, Address(ary1, result, Address::times_1, -16));
  6929     movdqu(vec2, Address(ary2, result, Address::times_1, -16));
  6930     pxor(vec1, vec2);
  6932     ptest(vec1, vec1);
  6933     jccb(Assembler::notZero, FALSE_LABEL);
  6934     jmpb(TRUE_LABEL);
  6936     bind(COMPARE_TAIL); // limit is zero
  6937     movl(limit, result);
  6938     // Fallthru to tail compare
  6941   // Compare 4-byte vectors
  6942   andl(limit, 0xfffffffc); // vector count (in bytes)
  6943   jccb(Assembler::zero, COMPARE_CHAR);
  6945   lea(ary1, Address(ary1, limit, Address::times_1));
  6946   lea(ary2, Address(ary2, limit, Address::times_1));
  6947   negptr(limit);
  6949   bind(COMPARE_VECTORS);
  6950   movl(chr, Address(ary1, limit, Address::times_1));
  6951   cmpl(chr, Address(ary2, limit, Address::times_1));
  6952   jccb(Assembler::notEqual, FALSE_LABEL);
  6953   addptr(limit, 4);
  6954   jcc(Assembler::notZero, COMPARE_VECTORS);
  6956   // Compare trailing char (final 2 bytes), if any
  6957   bind(COMPARE_CHAR);
  6958   testl(result, 0x2);   // tail  char
  6959   jccb(Assembler::zero, TRUE_LABEL);
  6960   load_unsigned_short(chr, Address(ary1, 0));
  6961   load_unsigned_short(limit, Address(ary2, 0));
  6962   cmpl(chr, limit);
  6963   jccb(Assembler::notEqual, FALSE_LABEL);
  6965   bind(TRUE_LABEL);
  6966   movl(result, 1);   // return true
  6967   jmpb(DONE);
  6969   bind(FALSE_LABEL);
  6970   xorl(result, result); // return false
  6972   // That's it
  6973   bind(DONE);
  6974   if (UseAVX >= 2) {
  6975     // clean upper bits of YMM registers
  6976     vpxor(vec1, vec1);
  6977     vpxor(vec2, vec2);
  6981 void MacroAssembler::generate_fill(BasicType t, bool aligned,
  6982                                    Register to, Register value, Register count,
  6983                                    Register rtmp, XMMRegister xtmp) {
  6984   ShortBranchVerifier sbv(this);
  6985   assert_different_registers(to, value, count, rtmp);
  6986   Label L_exit, L_skip_align1, L_skip_align2, L_fill_byte;
  6987   Label L_fill_2_bytes, L_fill_4_bytes;
  6989   int shift = -1;
  6990   switch (t) {
  6991     case T_BYTE:
  6992       shift = 2;
  6993       break;
  6994     case T_SHORT:
  6995       shift = 1;
  6996       break;
  6997     case T_INT:
  6998       shift = 0;
  6999       break;
  7000     default: ShouldNotReachHere();
  7003   if (t == T_BYTE) {
  7004     andl(value, 0xff);
  7005     movl(rtmp, value);
  7006     shll(rtmp, 8);
  7007     orl(value, rtmp);
  7009   if (t == T_SHORT) {
  7010     andl(value, 0xffff);
  7012   if (t == T_BYTE || t == T_SHORT) {
  7013     movl(rtmp, value);
  7014     shll(rtmp, 16);
  7015     orl(value, rtmp);
  7018   cmpl(count, 2<<shift); // Short arrays (< 8 bytes) fill by element
  7019   jcc(Assembler::below, L_fill_4_bytes); // use unsigned cmp
  7020   if (!UseUnalignedLoadStores && !aligned && (t == T_BYTE || t == T_SHORT)) {
  7021     // align source address at 4 bytes address boundary
  7022     if (t == T_BYTE) {
  7023       // One byte misalignment happens only for byte arrays
  7024       testptr(to, 1);
  7025       jccb(Assembler::zero, L_skip_align1);
  7026       movb(Address(to, 0), value);
  7027       increment(to);
  7028       decrement(count);
  7029       BIND(L_skip_align1);
  7031     // Two bytes misalignment happens only for byte and short (char) arrays
  7032     testptr(to, 2);
  7033     jccb(Assembler::zero, L_skip_align2);
  7034     movw(Address(to, 0), value);
  7035     addptr(to, 2);
  7036     subl(count, 1<<(shift-1));
  7037     BIND(L_skip_align2);
  7039   if (UseSSE < 2) {
  7040     Label L_fill_32_bytes_loop, L_check_fill_8_bytes, L_fill_8_bytes_loop, L_fill_8_bytes;
  7041     // Fill 32-byte chunks
  7042     subl(count, 8 << shift);
  7043     jcc(Assembler::less, L_check_fill_8_bytes);
  7044     align(16);
  7046     BIND(L_fill_32_bytes_loop);
  7048     for (int i = 0; i < 32; i += 4) {
  7049       movl(Address(to, i), value);
  7052     addptr(to, 32);
  7053     subl(count, 8 << shift);
  7054     jcc(Assembler::greaterEqual, L_fill_32_bytes_loop);
  7055     BIND(L_check_fill_8_bytes);
  7056     addl(count, 8 << shift);
  7057     jccb(Assembler::zero, L_exit);
  7058     jmpb(L_fill_8_bytes);
  7060     //
  7061     // length is too short, just fill qwords
  7062     //
  7063     BIND(L_fill_8_bytes_loop);
  7064     movl(Address(to, 0), value);
  7065     movl(Address(to, 4), value);
  7066     addptr(to, 8);
  7067     BIND(L_fill_8_bytes);
  7068     subl(count, 1 << (shift + 1));
  7069     jcc(Assembler::greaterEqual, L_fill_8_bytes_loop);
  7070     // fall through to fill 4 bytes
  7071   } else {
  7072     Label L_fill_32_bytes;
  7073     if (!UseUnalignedLoadStores) {
  7074       // align to 8 bytes, we know we are 4 byte aligned to start
  7075       testptr(to, 4);
  7076       jccb(Assembler::zero, L_fill_32_bytes);
  7077       movl(Address(to, 0), value);
  7078       addptr(to, 4);
  7079       subl(count, 1<<shift);
  7081     BIND(L_fill_32_bytes);
  7083       assert( UseSSE >= 2, "supported cpu only" );
  7084       Label L_fill_32_bytes_loop, L_check_fill_8_bytes, L_fill_8_bytes_loop, L_fill_8_bytes;
  7085       movdl(xtmp, value);
  7086       if (UseAVX >= 2 && UseUnalignedLoadStores) {
  7087         // Fill 64-byte chunks
  7088         Label L_fill_64_bytes_loop, L_check_fill_32_bytes;
  7089         vpbroadcastd(xtmp, xtmp);
  7091         subl(count, 16 << shift);
  7092         jcc(Assembler::less, L_check_fill_32_bytes);
  7093         align(16);
  7095         BIND(L_fill_64_bytes_loop);
  7096         vmovdqu(Address(to, 0), xtmp);
  7097         vmovdqu(Address(to, 32), xtmp);
  7098         addptr(to, 64);
  7099         subl(count, 16 << shift);
  7100         jcc(Assembler::greaterEqual, L_fill_64_bytes_loop);
  7102         BIND(L_check_fill_32_bytes);
  7103         addl(count, 8 << shift);
  7104         jccb(Assembler::less, L_check_fill_8_bytes);
  7105         vmovdqu(Address(to, 0), xtmp);
  7106         addptr(to, 32);
  7107         subl(count, 8 << shift);
  7109         BIND(L_check_fill_8_bytes);
  7110         // clean upper bits of YMM registers
  7111         movdl(xtmp, value);
  7112         pshufd(xtmp, xtmp, 0);
  7113       } else {
  7114         // Fill 32-byte chunks
  7115         pshufd(xtmp, xtmp, 0);
  7117         subl(count, 8 << shift);
  7118         jcc(Assembler::less, L_check_fill_8_bytes);
  7119         align(16);
  7121         BIND(L_fill_32_bytes_loop);
  7123         if (UseUnalignedLoadStores) {
  7124           movdqu(Address(to, 0), xtmp);
  7125           movdqu(Address(to, 16), xtmp);
  7126         } else {
  7127           movq(Address(to, 0), xtmp);
  7128           movq(Address(to, 8), xtmp);
  7129           movq(Address(to, 16), xtmp);
  7130           movq(Address(to, 24), xtmp);
  7133         addptr(to, 32);
  7134         subl(count, 8 << shift);
  7135         jcc(Assembler::greaterEqual, L_fill_32_bytes_loop);
  7137         BIND(L_check_fill_8_bytes);
  7139       addl(count, 8 << shift);
  7140       jccb(Assembler::zero, L_exit);
  7141       jmpb(L_fill_8_bytes);
  7143       //
  7144       // length is too short, just fill qwords
  7145       //
  7146       BIND(L_fill_8_bytes_loop);
  7147       movq(Address(to, 0), xtmp);
  7148       addptr(to, 8);
  7149       BIND(L_fill_8_bytes);
  7150       subl(count, 1 << (shift + 1));
  7151       jcc(Assembler::greaterEqual, L_fill_8_bytes_loop);
  7154   // fill trailing 4 bytes
  7155   BIND(L_fill_4_bytes);
  7156   testl(count, 1<<shift);
  7157   jccb(Assembler::zero, L_fill_2_bytes);
  7158   movl(Address(to, 0), value);
  7159   if (t == T_BYTE || t == T_SHORT) {
  7160     addptr(to, 4);
  7161     BIND(L_fill_2_bytes);
  7162     // fill trailing 2 bytes
  7163     testl(count, 1<<(shift-1));
  7164     jccb(Assembler::zero, L_fill_byte);
  7165     movw(Address(to, 0), value);
  7166     if (t == T_BYTE) {
  7167       addptr(to, 2);
  7168       BIND(L_fill_byte);
  7169       // fill trailing byte
  7170       testl(count, 1);
  7171       jccb(Assembler::zero, L_exit);
  7172       movb(Address(to, 0), value);
  7173     } else {
  7174       BIND(L_fill_byte);
  7176   } else {
  7177     BIND(L_fill_2_bytes);
  7179   BIND(L_exit);
  7182 // encode char[] to byte[] in ISO_8859_1
  7183 void MacroAssembler::encode_iso_array(Register src, Register dst, Register len,
  7184                                       XMMRegister tmp1Reg, XMMRegister tmp2Reg,
  7185                                       XMMRegister tmp3Reg, XMMRegister tmp4Reg,
  7186                                       Register tmp5, Register result) {
  7187   // rsi: src
  7188   // rdi: dst
  7189   // rdx: len
  7190   // rcx: tmp5
  7191   // rax: result
  7192   ShortBranchVerifier sbv(this);
  7193   assert_different_registers(src, dst, len, tmp5, result);
  7194   Label L_done, L_copy_1_char, L_copy_1_char_exit;
  7196   // set result
  7197   xorl(result, result);
  7198   // check for zero length
  7199   testl(len, len);
  7200   jcc(Assembler::zero, L_done);
  7201   movl(result, len);
  7203   // Setup pointers
  7204   lea(src, Address(src, len, Address::times_2)); // char[]
  7205   lea(dst, Address(dst, len, Address::times_1)); // byte[]
  7206   negptr(len);
  7208   if (UseSSE42Intrinsics || UseAVX >= 2) {
  7209     Label L_chars_8_check, L_copy_8_chars, L_copy_8_chars_exit;
  7210     Label L_chars_16_check, L_copy_16_chars, L_copy_16_chars_exit;
  7212     if (UseAVX >= 2) {
  7213       Label L_chars_32_check, L_copy_32_chars, L_copy_32_chars_exit;
  7214       movl(tmp5, 0xff00ff00);   // create mask to test for Unicode chars in vector
  7215       movdl(tmp1Reg, tmp5);
  7216       vpbroadcastd(tmp1Reg, tmp1Reg);
  7217       jmpb(L_chars_32_check);
  7219       bind(L_copy_32_chars);
  7220       vmovdqu(tmp3Reg, Address(src, len, Address::times_2, -64));
  7221       vmovdqu(tmp4Reg, Address(src, len, Address::times_2, -32));
  7222       vpor(tmp2Reg, tmp3Reg, tmp4Reg, /* vector256 */ true);
  7223       vptest(tmp2Reg, tmp1Reg);       // check for Unicode chars in  vector
  7224       jccb(Assembler::notZero, L_copy_32_chars_exit);
  7225       vpackuswb(tmp3Reg, tmp3Reg, tmp4Reg, /* vector256 */ true);
  7226       vpermq(tmp4Reg, tmp3Reg, 0xD8, /* vector256 */ true);
  7227       vmovdqu(Address(dst, len, Address::times_1, -32), tmp4Reg);
  7229       bind(L_chars_32_check);
  7230       addptr(len, 32);
  7231       jccb(Assembler::lessEqual, L_copy_32_chars);
  7233       bind(L_copy_32_chars_exit);
  7234       subptr(len, 16);
  7235       jccb(Assembler::greater, L_copy_16_chars_exit);
  7237     } else if (UseSSE42Intrinsics) {
  7238       movl(tmp5, 0xff00ff00);   // create mask to test for Unicode chars in vector
  7239       movdl(tmp1Reg, tmp5);
  7240       pshufd(tmp1Reg, tmp1Reg, 0);
  7241       jmpb(L_chars_16_check);
  7244     bind(L_copy_16_chars);
  7245     if (UseAVX >= 2) {
  7246       vmovdqu(tmp2Reg, Address(src, len, Address::times_2, -32));
  7247       vptest(tmp2Reg, tmp1Reg);
  7248       jccb(Assembler::notZero, L_copy_16_chars_exit);
  7249       vpackuswb(tmp2Reg, tmp2Reg, tmp1Reg, /* vector256 */ true);
  7250       vpermq(tmp3Reg, tmp2Reg, 0xD8, /* vector256 */ true);
  7251     } else {
  7252       if (UseAVX > 0) {
  7253         movdqu(tmp3Reg, Address(src, len, Address::times_2, -32));
  7254         movdqu(tmp4Reg, Address(src, len, Address::times_2, -16));
  7255         vpor(tmp2Reg, tmp3Reg, tmp4Reg, /* vector256 */ false);
  7256       } else {
  7257         movdqu(tmp3Reg, Address(src, len, Address::times_2, -32));
  7258         por(tmp2Reg, tmp3Reg);
  7259         movdqu(tmp4Reg, Address(src, len, Address::times_2, -16));
  7260         por(tmp2Reg, tmp4Reg);
  7262       ptest(tmp2Reg, tmp1Reg);       // check for Unicode chars in  vector
  7263       jccb(Assembler::notZero, L_copy_16_chars_exit);
  7264       packuswb(tmp3Reg, tmp4Reg);
  7266     movdqu(Address(dst, len, Address::times_1, -16), tmp3Reg);
  7268     bind(L_chars_16_check);
  7269     addptr(len, 16);
  7270     jccb(Assembler::lessEqual, L_copy_16_chars);
  7272     bind(L_copy_16_chars_exit);
  7273     if (UseAVX >= 2) {
  7274       // clean upper bits of YMM registers
  7275       vpxor(tmp2Reg, tmp2Reg);
  7276       vpxor(tmp3Reg, tmp3Reg);
  7277       vpxor(tmp4Reg, tmp4Reg);
  7278       movdl(tmp1Reg, tmp5);
  7279       pshufd(tmp1Reg, tmp1Reg, 0);
  7281     subptr(len, 8);
  7282     jccb(Assembler::greater, L_copy_8_chars_exit);
  7284     bind(L_copy_8_chars);
  7285     movdqu(tmp3Reg, Address(src, len, Address::times_2, -16));
  7286     ptest(tmp3Reg, tmp1Reg);
  7287     jccb(Assembler::notZero, L_copy_8_chars_exit);
  7288     packuswb(tmp3Reg, tmp1Reg);
  7289     movq(Address(dst, len, Address::times_1, -8), tmp3Reg);
  7290     addptr(len, 8);
  7291     jccb(Assembler::lessEqual, L_copy_8_chars);
  7293     bind(L_copy_8_chars_exit);
  7294     subptr(len, 8);
  7295     jccb(Assembler::zero, L_done);
  7298   bind(L_copy_1_char);
  7299   load_unsigned_short(tmp5, Address(src, len, Address::times_2, 0));
  7300   testl(tmp5, 0xff00);      // check if Unicode char
  7301   jccb(Assembler::notZero, L_copy_1_char_exit);
  7302   movb(Address(dst, len, Address::times_1, 0), tmp5);
  7303   addptr(len, 1);
  7304   jccb(Assembler::less, L_copy_1_char);
  7306   bind(L_copy_1_char_exit);
  7307   addptr(result, len); // len is negative count of not processed elements
  7308   bind(L_done);
  7311 #ifdef _LP64
  7312 /**
  7313  * Helper for multiply_to_len().
  7314  */
  7315 void MacroAssembler::add2_with_carry(Register dest_hi, Register dest_lo, Register src1, Register src2) {
  7316   addq(dest_lo, src1);
  7317   adcq(dest_hi, 0);
  7318   addq(dest_lo, src2);
  7319   adcq(dest_hi, 0);
  7322 /**
  7323  * Multiply 64 bit by 64 bit first loop.
  7324  */
  7325 void MacroAssembler::multiply_64_x_64_loop(Register x, Register xstart, Register x_xstart,
  7326                                            Register y, Register y_idx, Register z,
  7327                                            Register carry, Register product,
  7328                                            Register idx, Register kdx) {
  7329   //
  7330   //  jlong carry, x[], y[], z[];
  7331   //  for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx-, kdx--) {
  7332   //    huge_128 product = y[idx] * x[xstart] + carry;
  7333   //    z[kdx] = (jlong)product;
  7334   //    carry  = (jlong)(product >>> 64);
  7335   //  }
  7336   //  z[xstart] = carry;
  7337   //
  7339   Label L_first_loop, L_first_loop_exit;
  7340   Label L_one_x, L_one_y, L_multiply;
  7342   decrementl(xstart);
  7343   jcc(Assembler::negative, L_one_x);
  7345   movq(x_xstart, Address(x, xstart, Address::times_4,  0));
  7346   rorq(x_xstart, 32); // convert big-endian to little-endian
  7348   bind(L_first_loop);
  7349   decrementl(idx);
  7350   jcc(Assembler::negative, L_first_loop_exit);
  7351   decrementl(idx);
  7352   jcc(Assembler::negative, L_one_y);
  7353   movq(y_idx, Address(y, idx, Address::times_4,  0));
  7354   rorq(y_idx, 32); // convert big-endian to little-endian
  7355   bind(L_multiply);
  7356   movq(product, x_xstart);
  7357   mulq(y_idx); // product(rax) * y_idx -> rdx:rax
  7358   addq(product, carry);
  7359   adcq(rdx, 0);
  7360   subl(kdx, 2);
  7361   movl(Address(z, kdx, Address::times_4,  4), product);
  7362   shrq(product, 32);
  7363   movl(Address(z, kdx, Address::times_4,  0), product);
  7364   movq(carry, rdx);
  7365   jmp(L_first_loop);
  7367   bind(L_one_y);
  7368   movl(y_idx, Address(y,  0));
  7369   jmp(L_multiply);
  7371   bind(L_one_x);
  7372   movl(x_xstart, Address(x,  0));
  7373   jmp(L_first_loop);
  7375   bind(L_first_loop_exit);
  7378 /**
  7379  * Multiply 64 bit by 64 bit and add 128 bit.
  7380  */
  7381 void MacroAssembler::multiply_add_128_x_128(Register x_xstart, Register y, Register z,
  7382                                             Register yz_idx, Register idx,
  7383                                             Register carry, Register product, int offset) {
  7384   //     huge_128 product = (y[idx] * x_xstart) + z[kdx] + carry;
  7385   //     z[kdx] = (jlong)product;
  7387   movq(yz_idx, Address(y, idx, Address::times_4,  offset));
  7388   rorq(yz_idx, 32); // convert big-endian to little-endian
  7389   movq(product, x_xstart);
  7390   mulq(yz_idx);     // product(rax) * yz_idx -> rdx:product(rax)
  7391   movq(yz_idx, Address(z, idx, Address::times_4,  offset));
  7392   rorq(yz_idx, 32); // convert big-endian to little-endian
  7394   add2_with_carry(rdx, product, carry, yz_idx);
  7396   movl(Address(z, idx, Address::times_4,  offset+4), product);
  7397   shrq(product, 32);
  7398   movl(Address(z, idx, Address::times_4,  offset), product);
  7402 /**
  7403  * Multiply 128 bit by 128 bit. Unrolled inner loop.
  7404  */
  7405 void MacroAssembler::multiply_128_x_128_loop(Register x_xstart, Register y, Register z,
  7406                                              Register yz_idx, Register idx, Register jdx,
  7407                                              Register carry, Register product,
  7408                                              Register carry2) {
  7409   //   jlong carry, x[], y[], z[];
  7410   //   int kdx = ystart+1;
  7411   //   for (int idx=ystart-2; idx >= 0; idx -= 2) { // Third loop
  7412   //     huge_128 product = (y[idx+1] * x_xstart) + z[kdx+idx+1] + carry;
  7413   //     z[kdx+idx+1] = (jlong)product;
  7414   //     jlong carry2  = (jlong)(product >>> 64);
  7415   //     product = (y[idx] * x_xstart) + z[kdx+idx] + carry2;
  7416   //     z[kdx+idx] = (jlong)product;
  7417   //     carry  = (jlong)(product >>> 64);
  7418   //   }
  7419   //   idx += 2;
  7420   //   if (idx > 0) {
  7421   //     product = (y[idx] * x_xstart) + z[kdx+idx] + carry;
  7422   //     z[kdx+idx] = (jlong)product;
  7423   //     carry  = (jlong)(product >>> 64);
  7424   //   }
  7425   //
  7427   Label L_third_loop, L_third_loop_exit, L_post_third_loop_done;
  7429   movl(jdx, idx);
  7430   andl(jdx, 0xFFFFFFFC);
  7431   shrl(jdx, 2);
  7433   bind(L_third_loop);
  7434   subl(jdx, 1);
  7435   jcc(Assembler::negative, L_third_loop_exit);
  7436   subl(idx, 4);
  7438   multiply_add_128_x_128(x_xstart, y, z, yz_idx, idx, carry, product, 8);
  7439   movq(carry2, rdx);
  7441   multiply_add_128_x_128(x_xstart, y, z, yz_idx, idx, carry2, product, 0);
  7442   movq(carry, rdx);
  7443   jmp(L_third_loop);
  7445   bind (L_third_loop_exit);
  7447   andl (idx, 0x3);
  7448   jcc(Assembler::zero, L_post_third_loop_done);
  7450   Label L_check_1;
  7451   subl(idx, 2);
  7452   jcc(Assembler::negative, L_check_1);
  7454   multiply_add_128_x_128(x_xstart, y, z, yz_idx, idx, carry, product, 0);
  7455   movq(carry, rdx);
  7457   bind (L_check_1);
  7458   addl (idx, 0x2);
  7459   andl (idx, 0x1);
  7460   subl(idx, 1);
  7461   jcc(Assembler::negative, L_post_third_loop_done);
  7463   movl(yz_idx, Address(y, idx, Address::times_4,  0));
  7464   movq(product, x_xstart);
  7465   mulq(yz_idx); // product(rax) * yz_idx -> rdx:product(rax)
  7466   movl(yz_idx, Address(z, idx, Address::times_4,  0));
  7468   add2_with_carry(rdx, product, yz_idx, carry);
  7470   movl(Address(z, idx, Address::times_4,  0), product);
  7471   shrq(product, 32);
  7473   shlq(rdx, 32);
  7474   orq(product, rdx);
  7475   movq(carry, product);
  7477   bind(L_post_third_loop_done);
  7480 /**
  7481  * Multiply 128 bit by 128 bit using BMI2. Unrolled inner loop.
  7483  */
  7484 void MacroAssembler::multiply_128_x_128_bmi2_loop(Register y, Register z,
  7485                                                   Register carry, Register carry2,
  7486                                                   Register idx, Register jdx,
  7487                                                   Register yz_idx1, Register yz_idx2,
  7488                                                   Register tmp, Register tmp3, Register tmp4) {
  7489   assert(UseBMI2Instructions, "should be used only when BMI2 is available");
  7491   //   jlong carry, x[], y[], z[];
  7492   //   int kdx = ystart+1;
  7493   //   for (int idx=ystart-2; idx >= 0; idx -= 2) { // Third loop
  7494   //     huge_128 tmp3 = (y[idx+1] * rdx) + z[kdx+idx+1] + carry;
  7495   //     jlong carry2  = (jlong)(tmp3 >>> 64);
  7496   //     huge_128 tmp4 = (y[idx]   * rdx) + z[kdx+idx] + carry2;
  7497   //     carry  = (jlong)(tmp4 >>> 64);
  7498   //     z[kdx+idx+1] = (jlong)tmp3;
  7499   //     z[kdx+idx] = (jlong)tmp4;
  7500   //   }
  7501   //   idx += 2;
  7502   //   if (idx > 0) {
  7503   //     yz_idx1 = (y[idx] * rdx) + z[kdx+idx] + carry;
  7504   //     z[kdx+idx] = (jlong)yz_idx1;
  7505   //     carry  = (jlong)(yz_idx1 >>> 64);
  7506   //   }
  7507   //
  7509   Label L_third_loop, L_third_loop_exit, L_post_third_loop_done;
  7511   movl(jdx, idx);
  7512   andl(jdx, 0xFFFFFFFC);
  7513   shrl(jdx, 2);
  7515   bind(L_third_loop);
  7516   subl(jdx, 1);
  7517   jcc(Assembler::negative, L_third_loop_exit);
  7518   subl(idx, 4);
  7520   movq(yz_idx1,  Address(y, idx, Address::times_4,  8));
  7521   rorxq(yz_idx1, yz_idx1, 32); // convert big-endian to little-endian
  7522   movq(yz_idx2, Address(y, idx, Address::times_4,  0));
  7523   rorxq(yz_idx2, yz_idx2, 32);
  7525   mulxq(tmp4, tmp3, yz_idx1);  //  yz_idx1 * rdx -> tmp4:tmp3
  7526   mulxq(carry2, tmp, yz_idx2); //  yz_idx2 * rdx -> carry2:tmp
  7528   movq(yz_idx1,  Address(z, idx, Address::times_4,  8));
  7529   rorxq(yz_idx1, yz_idx1, 32);
  7530   movq(yz_idx2, Address(z, idx, Address::times_4,  0));
  7531   rorxq(yz_idx2, yz_idx2, 32);
  7533   if (VM_Version::supports_adx()) {
  7534     adcxq(tmp3, carry);
  7535     adoxq(tmp3, yz_idx1);
  7537     adcxq(tmp4, tmp);
  7538     adoxq(tmp4, yz_idx2);
  7540     movl(carry, 0); // does not affect flags
  7541     adcxq(carry2, carry);
  7542     adoxq(carry2, carry);
  7543   } else {
  7544     add2_with_carry(tmp4, tmp3, carry, yz_idx1);
  7545     add2_with_carry(carry2, tmp4, tmp, yz_idx2);
  7547   movq(carry, carry2);
  7549   movl(Address(z, idx, Address::times_4, 12), tmp3);
  7550   shrq(tmp3, 32);
  7551   movl(Address(z, idx, Address::times_4,  8), tmp3);
  7553   movl(Address(z, idx, Address::times_4,  4), tmp4);
  7554   shrq(tmp4, 32);
  7555   movl(Address(z, idx, Address::times_4,  0), tmp4);
  7557   jmp(L_third_loop);
  7559   bind (L_third_loop_exit);
  7561   andl (idx, 0x3);
  7562   jcc(Assembler::zero, L_post_third_loop_done);
  7564   Label L_check_1;
  7565   subl(idx, 2);
  7566   jcc(Assembler::negative, L_check_1);
  7568   movq(yz_idx1, Address(y, idx, Address::times_4,  0));
  7569   rorxq(yz_idx1, yz_idx1, 32);
  7570   mulxq(tmp4, tmp3, yz_idx1); //  yz_idx1 * rdx -> tmp4:tmp3
  7571   movq(yz_idx2, Address(z, idx, Address::times_4,  0));
  7572   rorxq(yz_idx2, yz_idx2, 32);
  7574   add2_with_carry(tmp4, tmp3, carry, yz_idx2);
  7576   movl(Address(z, idx, Address::times_4,  4), tmp3);
  7577   shrq(tmp3, 32);
  7578   movl(Address(z, idx, Address::times_4,  0), tmp3);
  7579   movq(carry, tmp4);
  7581   bind (L_check_1);
  7582   addl (idx, 0x2);
  7583   andl (idx, 0x1);
  7584   subl(idx, 1);
  7585   jcc(Assembler::negative, L_post_third_loop_done);
  7586   movl(tmp4, Address(y, idx, Address::times_4,  0));
  7587   mulxq(carry2, tmp3, tmp4);  //  tmp4 * rdx -> carry2:tmp3
  7588   movl(tmp4, Address(z, idx, Address::times_4,  0));
  7590   add2_with_carry(carry2, tmp3, tmp4, carry);
  7592   movl(Address(z, idx, Address::times_4,  0), tmp3);
  7593   shrq(tmp3, 32);
  7595   shlq(carry2, 32);
  7596   orq(tmp3, carry2);
  7597   movq(carry, tmp3);
  7599   bind(L_post_third_loop_done);
  7602 /**
  7603  * Code for BigInteger::multiplyToLen() instrinsic.
  7605  * rdi: x
  7606  * rax: xlen
  7607  * rsi: y
  7608  * rcx: ylen
  7609  * r8:  z
  7610  * r11: zlen
  7611  * r12: tmp1
  7612  * r13: tmp2
  7613  * r14: tmp3
  7614  * r15: tmp4
  7615  * rbx: tmp5
  7617  */
  7618 void MacroAssembler::multiply_to_len(Register x, Register xlen, Register y, Register ylen, Register z, Register zlen,
  7619                                      Register tmp1, Register tmp2, Register tmp3, Register tmp4, Register tmp5) {
  7620   ShortBranchVerifier sbv(this);
  7621   assert_different_registers(x, xlen, y, ylen, z, zlen, tmp1, tmp2, tmp3, tmp4, tmp5, rdx);
  7623   push(tmp1);
  7624   push(tmp2);
  7625   push(tmp3);
  7626   push(tmp4);
  7627   push(tmp5);
  7629   push(xlen);
  7630   push(zlen);
  7632   const Register idx = tmp1;
  7633   const Register kdx = tmp2;
  7634   const Register xstart = tmp3;
  7636   const Register y_idx = tmp4;
  7637   const Register carry = tmp5;
  7638   const Register product  = xlen;
  7639   const Register x_xstart = zlen;  // reuse register
  7641   // First Loop.
  7642   //
  7643   //  final static long LONG_MASK = 0xffffffffL;
  7644   //  int xstart = xlen - 1;
  7645   //  int ystart = ylen - 1;
  7646   //  long carry = 0;
  7647   //  for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx-, kdx--) {
  7648   //    long product = (y[idx] & LONG_MASK) * (x[xstart] & LONG_MASK) + carry;
  7649   //    z[kdx] = (int)product;
  7650   //    carry = product >>> 32;
  7651   //  }
  7652   //  z[xstart] = (int)carry;
  7653   //
  7655   movl(idx, ylen);      // idx = ylen;
  7656   movl(kdx, zlen);      // kdx = xlen+ylen;
  7657   xorq(carry, carry);   // carry = 0;
  7659   Label L_done;
  7661   movl(xstart, xlen);
  7662   decrementl(xstart);
  7663   jcc(Assembler::negative, L_done);
  7665   multiply_64_x_64_loop(x, xstart, x_xstart, y, y_idx, z, carry, product, idx, kdx);
  7667   Label L_second_loop;
  7668   testl(kdx, kdx);
  7669   jcc(Assembler::zero, L_second_loop);
  7671   Label L_carry;
  7672   subl(kdx, 1);
  7673   jcc(Assembler::zero, L_carry);
  7675   movl(Address(z, kdx, Address::times_4,  0), carry);
  7676   shrq(carry, 32);
  7677   subl(kdx, 1);
  7679   bind(L_carry);
  7680   movl(Address(z, kdx, Address::times_4,  0), carry);
  7682   // Second and third (nested) loops.
  7683   //
  7684   // for (int i = xstart-1; i >= 0; i--) { // Second loop
  7685   //   carry = 0;
  7686   //   for (int jdx=ystart, k=ystart+1+i; jdx >= 0; jdx--, k--) { // Third loop
  7687   //     long product = (y[jdx] & LONG_MASK) * (x[i] & LONG_MASK) +
  7688   //                    (z[k] & LONG_MASK) + carry;
  7689   //     z[k] = (int)product;
  7690   //     carry = product >>> 32;
  7691   //   }
  7692   //   z[i] = (int)carry;
  7693   // }
  7694   //
  7695   // i = xlen, j = tmp1, k = tmp2, carry = tmp5, x[i] = rdx
  7697   const Register jdx = tmp1;
  7699   bind(L_second_loop);
  7700   xorl(carry, carry);    // carry = 0;
  7701   movl(jdx, ylen);       // j = ystart+1
  7703   subl(xstart, 1);       // i = xstart-1;
  7704   jcc(Assembler::negative, L_done);
  7706   push (z);
  7708   Label L_last_x;
  7709   lea(z, Address(z, xstart, Address::times_4, 4)); // z = z + k - j
  7710   subl(xstart, 1);       // i = xstart-1;
  7711   jcc(Assembler::negative, L_last_x);
  7713   if (UseBMI2Instructions) {
  7714     movq(rdx,  Address(x, xstart, Address::times_4,  0));
  7715     rorxq(rdx, rdx, 32); // convert big-endian to little-endian
  7716   } else {
  7717     movq(x_xstart, Address(x, xstart, Address::times_4,  0));
  7718     rorq(x_xstart, 32);  // convert big-endian to little-endian
  7721   Label L_third_loop_prologue;
  7722   bind(L_third_loop_prologue);
  7724   push (x);
  7725   push (xstart);
  7726   push (ylen);
  7729   if (UseBMI2Instructions) {
  7730     multiply_128_x_128_bmi2_loop(y, z, carry, x, jdx, ylen, product, tmp2, x_xstart, tmp3, tmp4);
  7731   } else { // !UseBMI2Instructions
  7732     multiply_128_x_128_loop(x_xstart, y, z, y_idx, jdx, ylen, carry, product, x);
  7735   pop(ylen);
  7736   pop(xlen);
  7737   pop(x);
  7738   pop(z);
  7740   movl(tmp3, xlen);
  7741   addl(tmp3, 1);
  7742   movl(Address(z, tmp3, Address::times_4,  0), carry);
  7743   subl(tmp3, 1);
  7744   jccb(Assembler::negative, L_done);
  7746   shrq(carry, 32);
  7747   movl(Address(z, tmp3, Address::times_4,  0), carry);
  7748   jmp(L_second_loop);
  7750   // Next infrequent code is moved outside loops.
  7751   bind(L_last_x);
  7752   if (UseBMI2Instructions) {
  7753     movl(rdx, Address(x,  0));
  7754   } else {
  7755     movl(x_xstart, Address(x,  0));
  7757   jmp(L_third_loop_prologue);
  7759   bind(L_done);
  7761   pop(zlen);
  7762   pop(xlen);
  7764   pop(tmp5);
  7765   pop(tmp4);
  7766   pop(tmp3);
  7767   pop(tmp2);
  7768   pop(tmp1);
  7770 #endif
  7772 /**
  7773  * Emits code to update CRC-32 with a byte value according to constants in table
  7775  * @param [in,out]crc   Register containing the crc.
  7776  * @param [in]val       Register containing the byte to fold into the CRC.
  7777  * @param [in]table     Register containing the table of crc constants.
  7779  * uint32_t crc;
  7780  * val = crc_table[(val ^ crc) & 0xFF];
  7781  * crc = val ^ (crc >> 8);
  7783  */
  7784 void MacroAssembler::update_byte_crc32(Register crc, Register val, Register table) {
  7785   xorl(val, crc);
  7786   andl(val, 0xFF);
  7787   shrl(crc, 8); // unsigned shift
  7788   xorl(crc, Address(table, val, Address::times_4, 0));
  7791 /**
  7792  * Fold 128-bit data chunk
  7793  */
  7794 void MacroAssembler::fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, Register buf, int offset) {
  7795   if (UseAVX > 0) {
  7796     vpclmulhdq(xtmp, xK, xcrc); // [123:64]
  7797     vpclmulldq(xcrc, xK, xcrc); // [63:0]
  7798     vpxor(xcrc, xcrc, Address(buf, offset), false /* vector256 */);
  7799     pxor(xcrc, xtmp);
  7800   } else {
  7801     movdqa(xtmp, xcrc);
  7802     pclmulhdq(xtmp, xK);   // [123:64]
  7803     pclmulldq(xcrc, xK);   // [63:0]
  7804     pxor(xcrc, xtmp);
  7805     movdqu(xtmp, Address(buf, offset));
  7806     pxor(xcrc, xtmp);
  7810 void MacroAssembler::fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, XMMRegister xbuf) {
  7811   if (UseAVX > 0) {
  7812     vpclmulhdq(xtmp, xK, xcrc);
  7813     vpclmulldq(xcrc, xK, xcrc);
  7814     pxor(xcrc, xbuf);
  7815     pxor(xcrc, xtmp);
  7816   } else {
  7817     movdqa(xtmp, xcrc);
  7818     pclmulhdq(xtmp, xK);
  7819     pclmulldq(xcrc, xK);
  7820     pxor(xcrc, xbuf);
  7821     pxor(xcrc, xtmp);
  7825 /**
  7826  * 8-bit folds to compute 32-bit CRC
  7828  * uint64_t xcrc;
  7829  * timesXtoThe32[xcrc & 0xFF] ^ (xcrc >> 8);
  7830  */
  7831 void MacroAssembler::fold_8bit_crc32(XMMRegister xcrc, Register table, XMMRegister xtmp, Register tmp) {
  7832   movdl(tmp, xcrc);
  7833   andl(tmp, 0xFF);
  7834   movdl(xtmp, Address(table, tmp, Address::times_4, 0));
  7835   psrldq(xcrc, 1); // unsigned shift one byte
  7836   pxor(xcrc, xtmp);
  7839 /**
  7840  * uint32_t crc;
  7841  * timesXtoThe32[crc & 0xFF] ^ (crc >> 8);
  7842  */
  7843 void MacroAssembler::fold_8bit_crc32(Register crc, Register table, Register tmp) {
  7844   movl(tmp, crc);
  7845   andl(tmp, 0xFF);
  7846   shrl(crc, 8);
  7847   xorl(crc, Address(table, tmp, Address::times_4, 0));
  7850 /**
  7851  * @param crc   register containing existing CRC (32-bit)
  7852  * @param buf   register pointing to input byte buffer (byte*)
  7853  * @param len   register containing number of bytes
  7854  * @param table register that will contain address of CRC table
  7855  * @param tmp   scratch register
  7856  */
  7857 void MacroAssembler::kernel_crc32(Register crc, Register buf, Register len, Register table, Register tmp) {
  7858   assert_different_registers(crc, buf, len, table, tmp, rax);
  7860   Label L_tail, L_tail_restore, L_tail_loop, L_exit, L_align_loop, L_aligned;
  7861   Label L_fold_tail, L_fold_128b, L_fold_512b, L_fold_512b_loop, L_fold_tail_loop;
  7863   lea(table, ExternalAddress(StubRoutines::crc_table_addr()));
  7864   notl(crc); // ~crc
  7865   cmpl(len, 16);
  7866   jcc(Assembler::less, L_tail);
  7868   // Align buffer to 16 bytes
  7869   movl(tmp, buf);
  7870   andl(tmp, 0xF);
  7871   jccb(Assembler::zero, L_aligned);
  7872   subl(tmp,  16);
  7873   addl(len, tmp);
  7875   align(4);
  7876   BIND(L_align_loop);
  7877   movsbl(rax, Address(buf, 0)); // load byte with sign extension
  7878   update_byte_crc32(crc, rax, table);
  7879   increment(buf);
  7880   incrementl(tmp);
  7881   jccb(Assembler::less, L_align_loop);
  7883   BIND(L_aligned);
  7884   movl(tmp, len); // save
  7885   shrl(len, 4);
  7886   jcc(Assembler::zero, L_tail_restore);
  7888   // Fold crc into first bytes of vector
  7889   movdqa(xmm1, Address(buf, 0));
  7890   movdl(rax, xmm1);
  7891   xorl(crc, rax);
  7892   pinsrd(xmm1, crc, 0);
  7893   addptr(buf, 16);
  7894   subl(len, 4); // len > 0
  7895   jcc(Assembler::less, L_fold_tail);
  7897   movdqa(xmm2, Address(buf,  0));
  7898   movdqa(xmm3, Address(buf, 16));
  7899   movdqa(xmm4, Address(buf, 32));
  7900   addptr(buf, 48);
  7901   subl(len, 3);
  7902   jcc(Assembler::lessEqual, L_fold_512b);
  7904   // Fold total 512 bits of polynomial on each iteration,
  7905   // 128 bits per each of 4 parallel streams.
  7906   movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr() + 32));
  7908   align(32);
  7909   BIND(L_fold_512b_loop);
  7910   fold_128bit_crc32(xmm1, xmm0, xmm5, buf,  0);
  7911   fold_128bit_crc32(xmm2, xmm0, xmm5, buf, 16);
  7912   fold_128bit_crc32(xmm3, xmm0, xmm5, buf, 32);
  7913   fold_128bit_crc32(xmm4, xmm0, xmm5, buf, 48);
  7914   addptr(buf, 64);
  7915   subl(len, 4);
  7916   jcc(Assembler::greater, L_fold_512b_loop);
  7918   // Fold 512 bits to 128 bits.
  7919   BIND(L_fold_512b);
  7920   movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr() + 16));
  7921   fold_128bit_crc32(xmm1, xmm0, xmm5, xmm2);
  7922   fold_128bit_crc32(xmm1, xmm0, xmm5, xmm3);
  7923   fold_128bit_crc32(xmm1, xmm0, xmm5, xmm4);
  7925   // Fold the rest of 128 bits data chunks
  7926   BIND(L_fold_tail);
  7927   addl(len, 3);
  7928   jccb(Assembler::lessEqual, L_fold_128b);
  7929   movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr() + 16));
  7931   BIND(L_fold_tail_loop);
  7932   fold_128bit_crc32(xmm1, xmm0, xmm5, buf,  0);
  7933   addptr(buf, 16);
  7934   decrementl(len);
  7935   jccb(Assembler::greater, L_fold_tail_loop);
  7937   // Fold 128 bits in xmm1 down into 32 bits in crc register.
  7938   BIND(L_fold_128b);
  7939   movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr()));
  7940   if (UseAVX > 0) {
  7941     vpclmulqdq(xmm2, xmm0, xmm1, 0x1);
  7942     vpand(xmm3, xmm0, xmm2, false /* vector256 */);
  7943     vpclmulqdq(xmm0, xmm0, xmm3, 0x1);
  7944   } else {
  7945     movdqa(xmm2, xmm0);
  7946     pclmulqdq(xmm2, xmm1, 0x1);
  7947     movdqa(xmm3, xmm0);
  7948     pand(xmm3, xmm2);
  7949     pclmulqdq(xmm0, xmm3, 0x1);
  7951   psrldq(xmm1, 8);
  7952   psrldq(xmm2, 4);
  7953   pxor(xmm0, xmm1);
  7954   pxor(xmm0, xmm2);
  7956   // 8 8-bit folds to compute 32-bit CRC.
  7957   for (int j = 0; j < 4; j++) {
  7958     fold_8bit_crc32(xmm0, table, xmm1, rax);
  7960   movdl(crc, xmm0); // mov 32 bits to general register
  7961   for (int j = 0; j < 4; j++) {
  7962     fold_8bit_crc32(crc, table, rax);
  7965   BIND(L_tail_restore);
  7966   movl(len, tmp); // restore
  7967   BIND(L_tail);
  7968   andl(len, 0xf);
  7969   jccb(Assembler::zero, L_exit);
  7971   // Fold the rest of bytes
  7972   align(4);
  7973   BIND(L_tail_loop);
  7974   movsbl(rax, Address(buf, 0)); // load byte with sign extension
  7975   update_byte_crc32(crc, rax, table);
  7976   increment(buf);
  7977   decrementl(len);
  7978   jccb(Assembler::greater, L_tail_loop);
  7980   BIND(L_exit);
  7981   notl(crc); // ~c
  7984 #undef BIND
  7985 #undef BLOCK_COMMENT
  7988 Assembler::Condition MacroAssembler::negate_condition(Assembler::Condition cond) {
  7989   switch (cond) {
  7990     // Note some conditions are synonyms for others
  7991     case Assembler::zero:         return Assembler::notZero;
  7992     case Assembler::notZero:      return Assembler::zero;
  7993     case Assembler::less:         return Assembler::greaterEqual;
  7994     case Assembler::lessEqual:    return Assembler::greater;
  7995     case Assembler::greater:      return Assembler::lessEqual;
  7996     case Assembler::greaterEqual: return Assembler::less;
  7997     case Assembler::below:        return Assembler::aboveEqual;
  7998     case Assembler::belowEqual:   return Assembler::above;
  7999     case Assembler::above:        return Assembler::belowEqual;
  8000     case Assembler::aboveEqual:   return Assembler::below;
  8001     case Assembler::overflow:     return Assembler::noOverflow;
  8002     case Assembler::noOverflow:   return Assembler::overflow;
  8003     case Assembler::negative:     return Assembler::positive;
  8004     case Assembler::positive:     return Assembler::negative;
  8005     case Assembler::parity:       return Assembler::noParity;
  8006     case Assembler::noParity:     return Assembler::parity;
  8008   ShouldNotReachHere(); return Assembler::overflow;
  8011 SkipIfEqual::SkipIfEqual(
  8012     MacroAssembler* masm, const bool* flag_addr, bool value) {
  8013   _masm = masm;
  8014   _masm->cmp8(ExternalAddress((address)flag_addr), value);
  8015   _masm->jcc(Assembler::equal, _label);
  8018 SkipIfEqual::~SkipIfEqual() {
  8019   _masm->bind(_label);

mercurial