src/cpu/x86/vm/c1_FrameMap_x86.cpp

Fri, 29 May 2015 10:58:45 +0200

author
zmajo
date
Fri, 29 May 2015 10:58:45 +0200
changeset 7854
e8260b6328fb
parent 6198
55fb97c4c58d
child 7994
04ff2f6cd0eb
child 9835
39b41ab3366c
permissions
-rw-r--r--

8068945: Use RBP register as proper frame pointer in JIT compiled code on x86
Summary: Introduce the PreserveFramePointer flag to control if RBP is used as the frame pointer or as a general purpose register.
Reviewed-by: kvn, roland, dlong, enevill, shade

     1 /*
     2  * Copyright (c) 1999, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "c1/c1_FrameMap.hpp"
    27 #include "c1/c1_LIR.hpp"
    28 #include "runtime/sharedRuntime.hpp"
    29 #include "vmreg_x86.inline.hpp"
    31 const int FrameMap::pd_c_runtime_reserved_arg_size = 0;
    33 LIR_Opr FrameMap::map_to_opr(BasicType type, VMRegPair* reg, bool) {
    34   LIR_Opr opr = LIR_OprFact::illegalOpr;
    35   VMReg r_1 = reg->first();
    36   VMReg r_2 = reg->second();
    37   if (r_1->is_stack()) {
    38     // Convert stack slot to an SP offset
    39     // The calling convention does not count the SharedRuntime::out_preserve_stack_slots() value
    40     // so we must add it in here.
    41     int st_off = (r_1->reg2stack() + SharedRuntime::out_preserve_stack_slots()) * VMRegImpl::stack_slot_size;
    42     opr = LIR_OprFact::address(new LIR_Address(rsp_opr, st_off, type));
    43   } else if (r_1->is_Register()) {
    44     Register reg = r_1->as_Register();
    45     if (r_2->is_Register() && (type == T_LONG || type == T_DOUBLE)) {
    46       Register reg2 = r_2->as_Register();
    47 #ifdef _LP64
    48       assert(reg2 == reg, "must be same register");
    49       opr = as_long_opr(reg);
    50 #else
    51       opr = as_long_opr(reg2, reg);
    52 #endif // _LP64
    53     } else if (type == T_OBJECT || type == T_ARRAY) {
    54       opr = as_oop_opr(reg);
    55     } else if (type == T_METADATA) {
    56       opr = as_metadata_opr(reg);
    57     } else {
    58       opr = as_opr(reg);
    59     }
    60   } else if (r_1->is_FloatRegister()) {
    61     assert(type == T_DOUBLE || type == T_FLOAT, "wrong type");
    62     int num = r_1->as_FloatRegister()->encoding();
    63     if (type == T_FLOAT) {
    64       opr = LIR_OprFact::single_fpu(num);
    65     } else {
    66       opr = LIR_OprFact::double_fpu(num);
    67     }
    68   } else if (r_1->is_XMMRegister()) {
    69     assert(type == T_DOUBLE || type == T_FLOAT, "wrong type");
    70     int num = r_1->as_XMMRegister()->encoding();
    71     if (type == T_FLOAT) {
    72       opr = LIR_OprFact::single_xmm(num);
    73     } else {
    74       opr = LIR_OprFact::double_xmm(num);
    75     }
    76   } else {
    77     ShouldNotReachHere();
    78   }
    79   return opr;
    80 }
    83 LIR_Opr FrameMap::rsi_opr;
    84 LIR_Opr FrameMap::rdi_opr;
    85 LIR_Opr FrameMap::rbx_opr;
    86 LIR_Opr FrameMap::rax_opr;
    87 LIR_Opr FrameMap::rdx_opr;
    88 LIR_Opr FrameMap::rcx_opr;
    89 LIR_Opr FrameMap::rsp_opr;
    90 LIR_Opr FrameMap::rbp_opr;
    92 LIR_Opr FrameMap::receiver_opr;
    94 LIR_Opr FrameMap::rsi_oop_opr;
    95 LIR_Opr FrameMap::rdi_oop_opr;
    96 LIR_Opr FrameMap::rbx_oop_opr;
    97 LIR_Opr FrameMap::rax_oop_opr;
    98 LIR_Opr FrameMap::rdx_oop_opr;
    99 LIR_Opr FrameMap::rcx_oop_opr;
   101 LIR_Opr FrameMap::rsi_metadata_opr;
   102 LIR_Opr FrameMap::rdi_metadata_opr;
   103 LIR_Opr FrameMap::rbx_metadata_opr;
   104 LIR_Opr FrameMap::rax_metadata_opr;
   105 LIR_Opr FrameMap::rdx_metadata_opr;
   106 LIR_Opr FrameMap::rcx_metadata_opr;
   108 LIR_Opr FrameMap::long0_opr;
   109 LIR_Opr FrameMap::long1_opr;
   110 LIR_Opr FrameMap::fpu0_float_opr;
   111 LIR_Opr FrameMap::fpu0_double_opr;
   112 LIR_Opr FrameMap::xmm0_float_opr;
   113 LIR_Opr FrameMap::xmm0_double_opr;
   115 #ifdef _LP64
   117 LIR_Opr  FrameMap::r8_opr;
   118 LIR_Opr  FrameMap::r9_opr;
   119 LIR_Opr FrameMap::r10_opr;
   120 LIR_Opr FrameMap::r11_opr;
   121 LIR_Opr FrameMap::r12_opr;
   122 LIR_Opr FrameMap::r13_opr;
   123 LIR_Opr FrameMap::r14_opr;
   124 LIR_Opr FrameMap::r15_opr;
   126 // r10 and r15 can never contain oops since they aren't available to
   127 // the allocator
   128 LIR_Opr  FrameMap::r8_oop_opr;
   129 LIR_Opr  FrameMap::r9_oop_opr;
   130 LIR_Opr FrameMap::r11_oop_opr;
   131 LIR_Opr FrameMap::r12_oop_opr;
   132 LIR_Opr FrameMap::r13_oop_opr;
   133 LIR_Opr FrameMap::r14_oop_opr;
   135 LIR_Opr  FrameMap::r8_metadata_opr;
   136 LIR_Opr  FrameMap::r9_metadata_opr;
   137 LIR_Opr FrameMap::r11_metadata_opr;
   138 LIR_Opr FrameMap::r12_metadata_opr;
   139 LIR_Opr FrameMap::r13_metadata_opr;
   140 LIR_Opr FrameMap::r14_metadata_opr;
   141 #endif // _LP64
   143 LIR_Opr FrameMap::_caller_save_cpu_regs[] = { 0, };
   144 LIR_Opr FrameMap::_caller_save_fpu_regs[] = { 0, };
   145 LIR_Opr FrameMap::_caller_save_xmm_regs[] = { 0, };
   147 XMMRegister FrameMap::_xmm_regs [] = { 0, };
   149 XMMRegister FrameMap::nr2xmmreg(int rnr) {
   150   assert(_init_done, "tables not initialized");
   151   return _xmm_regs[rnr];
   152 }
   154 //--------------------------------------------------------
   155 //               FrameMap
   156 //--------------------------------------------------------
   158 void FrameMap::initialize() {
   159   assert(!_init_done, "once");
   161   assert(nof_cpu_regs == LP64_ONLY(16) NOT_LP64(8), "wrong number of CPU registers");
   162   map_register(0, rsi);  rsi_opr = LIR_OprFact::single_cpu(0);
   163   map_register(1, rdi);  rdi_opr = LIR_OprFact::single_cpu(1);
   164   map_register(2, rbx);  rbx_opr = LIR_OprFact::single_cpu(2);
   165   map_register(3, rax);  rax_opr = LIR_OprFact::single_cpu(3);
   166   map_register(4, rdx);  rdx_opr = LIR_OprFact::single_cpu(4);
   167   map_register(5, rcx);  rcx_opr = LIR_OprFact::single_cpu(5);
   169 #ifndef _LP64
   170   // The unallocatable registers are at the end
   171   map_register(6, rsp);
   172   map_register(7, rbp);
   173 #else
   174   map_register( 6, r8);    r8_opr = LIR_OprFact::single_cpu(6);
   175   map_register( 7, r9);    r9_opr = LIR_OprFact::single_cpu(7);
   176   map_register( 8, r11);  r11_opr = LIR_OprFact::single_cpu(8);
   177   map_register( 9, r13);  r13_opr = LIR_OprFact::single_cpu(9);
   178   map_register(10, r14);  r14_opr = LIR_OprFact::single_cpu(10);
   179   // r12 is allocated conditionally. With compressed oops it holds
   180   // the heapbase value and is not visible to the allocator.
   181   map_register(11, r12);  r12_opr = LIR_OprFact::single_cpu(11);
   182   // The unallocatable registers are at the end
   183   map_register(12, r10);  r10_opr = LIR_OprFact::single_cpu(12);
   184   map_register(13, r15);  r15_opr = LIR_OprFact::single_cpu(13);
   185   map_register(14, rsp);
   186   map_register(15, rbp);
   187 #endif // _LP64
   189 #ifdef _LP64
   190   long0_opr = LIR_OprFact::double_cpu(3 /*eax*/, 3 /*eax*/);
   191   long1_opr = LIR_OprFact::double_cpu(2 /*ebx*/, 2 /*ebx*/);
   192 #else
   193   long0_opr = LIR_OprFact::double_cpu(3 /*eax*/, 4 /*edx*/);
   194   long1_opr = LIR_OprFact::double_cpu(2 /*ebx*/, 5 /*ecx*/);
   195 #endif // _LP64
   196   fpu0_float_opr   = LIR_OprFact::single_fpu(0);
   197   fpu0_double_opr  = LIR_OprFact::double_fpu(0);
   198   xmm0_float_opr   = LIR_OprFact::single_xmm(0);
   199   xmm0_double_opr  = LIR_OprFact::double_xmm(0);
   201   _caller_save_cpu_regs[0] = rsi_opr;
   202   _caller_save_cpu_regs[1] = rdi_opr;
   203   _caller_save_cpu_regs[2] = rbx_opr;
   204   _caller_save_cpu_regs[3] = rax_opr;
   205   _caller_save_cpu_regs[4] = rdx_opr;
   206   _caller_save_cpu_regs[5] = rcx_opr;
   208 #ifdef _LP64
   209   _caller_save_cpu_regs[6]  = r8_opr;
   210   _caller_save_cpu_regs[7]  = r9_opr;
   211   _caller_save_cpu_regs[8]  = r11_opr;
   212   _caller_save_cpu_regs[9]  = r13_opr;
   213   _caller_save_cpu_regs[10] = r14_opr;
   214   _caller_save_cpu_regs[11] = r12_opr;
   215 #endif // _LP64
   218   _xmm_regs[0] = xmm0;
   219   _xmm_regs[1] = xmm1;
   220   _xmm_regs[2] = xmm2;
   221   _xmm_regs[3] = xmm3;
   222   _xmm_regs[4] = xmm4;
   223   _xmm_regs[5] = xmm5;
   224   _xmm_regs[6] = xmm6;
   225   _xmm_regs[7] = xmm7;
   227 #ifdef _LP64
   228   _xmm_regs[8]   = xmm8;
   229   _xmm_regs[9]   = xmm9;
   230   _xmm_regs[10]  = xmm10;
   231   _xmm_regs[11]  = xmm11;
   232   _xmm_regs[12]  = xmm12;
   233   _xmm_regs[13]  = xmm13;
   234   _xmm_regs[14]  = xmm14;
   235   _xmm_regs[15]  = xmm15;
   236 #endif // _LP64
   238   for (int i = 0; i < 8; i++) {
   239     _caller_save_fpu_regs[i] = LIR_OprFact::single_fpu(i);
   240   }
   242   for (int i = 0; i < nof_caller_save_xmm_regs ; i++) {
   243     _caller_save_xmm_regs[i] = LIR_OprFact::single_xmm(i);
   244   }
   246   _init_done = true;
   248   rsi_oop_opr = as_oop_opr(rsi);
   249   rdi_oop_opr = as_oop_opr(rdi);
   250   rbx_oop_opr = as_oop_opr(rbx);
   251   rax_oop_opr = as_oop_opr(rax);
   252   rdx_oop_opr = as_oop_opr(rdx);
   253   rcx_oop_opr = as_oop_opr(rcx);
   255   rsi_metadata_opr = as_metadata_opr(rsi);
   256   rdi_metadata_opr = as_metadata_opr(rdi);
   257   rbx_metadata_opr = as_metadata_opr(rbx);
   258   rax_metadata_opr = as_metadata_opr(rax);
   259   rdx_metadata_opr = as_metadata_opr(rdx);
   260   rcx_metadata_opr = as_metadata_opr(rcx);
   262   rsp_opr = as_pointer_opr(rsp);
   263   rbp_opr = as_pointer_opr(rbp);
   265 #ifdef _LP64
   266   r8_oop_opr = as_oop_opr(r8);
   267   r9_oop_opr = as_oop_opr(r9);
   268   r11_oop_opr = as_oop_opr(r11);
   269   r12_oop_opr = as_oop_opr(r12);
   270   r13_oop_opr = as_oop_opr(r13);
   271   r14_oop_opr = as_oop_opr(r14);
   273   r8_metadata_opr = as_metadata_opr(r8);
   274   r9_metadata_opr = as_metadata_opr(r9);
   275   r11_metadata_opr = as_metadata_opr(r11);
   276   r12_metadata_opr = as_metadata_opr(r12);
   277   r13_metadata_opr = as_metadata_opr(r13);
   278   r14_metadata_opr = as_metadata_opr(r14);
   279 #endif // _LP64
   281   VMRegPair regs;
   282   BasicType sig_bt = T_OBJECT;
   283   SharedRuntime::java_calling_convention(&sig_bt, &regs, 1, true);
   284   receiver_opr = as_oop_opr(regs.first()->as_Register());
   286 }
   289 Address FrameMap::make_new_address(ByteSize sp_offset) const {
   290   // for rbp, based address use this:
   291   // return Address(rbp, in_bytes(sp_offset) - (framesize() - 2) * 4);
   292   return Address(rsp, in_bytes(sp_offset));
   293 }
   296 // ----------------mapping-----------------------
   297 // all mapping is based on rbp, addressing, except for simple leaf methods where we access
   298 // the locals rsp based (and no frame is built)
   301 // Frame for simple leaf methods (quick entries)
   302 //
   303 //   +----------+
   304 //   | ret addr |   <- TOS
   305 //   +----------+
   306 //   | args     |
   307 //   | ......   |
   309 // Frame for standard methods
   310 //
   311 //   | .........|  <- TOS
   312 //   | locals   |
   313 //   +----------+
   314 //   | old rbp,  |  <- EBP
   315 //   +----------+
   316 //   | ret addr |
   317 //   +----------+
   318 //   |  args    |
   319 //   | .........|
   322 // For OopMaps, map a local variable or spill index to an VMRegImpl name.
   323 // This is the offset from sp() in the frame of the slot for the index,
   324 // skewed by VMRegImpl::stack0 to indicate a stack location (vs.a register.)
   325 //
   326 //           framesize +
   327 //           stack0         stack0          0  <- VMReg
   328 //             |              | <registers> |
   329 //  ...........|..............|.............|
   330 //      0 1 2 3 x x 4 5 6 ... |                <- local indices
   331 //      ^           ^        sp()                 ( x x indicate link
   332 //      |           |                               and return addr)
   333 //  arguments   non-argument locals
   336 VMReg FrameMap::fpu_regname (int n) {
   337   // Return the OptoReg name for the fpu stack slot "n"
   338   // A spilled fpu stack slot comprises to two single-word OptoReg's.
   339   return as_FloatRegister(n)->as_VMReg();
   340 }
   342 LIR_Opr FrameMap::stack_pointer() {
   343   return FrameMap::rsp_opr;
   344 }
   346 // JSR 292
   347 // On x86, there is no need to save the SP, because neither
   348 // method handle intrinsics, nor compiled lambda forms modify it.
   349 LIR_Opr FrameMap::method_handle_invoke_SP_save_opr() {
   350   return LIR_OprFact::illegalOpr;
   351 }
   353 bool FrameMap::validate_frame() {
   354   return true;
   355 }

mercurial